
3D Bounding Box Prediction
for Embedded Systems

Department of Computer Science
Aalborg University

June 10, 2021

Ahmet Pekbas
apekba18@student.aau.dk

Christoffer Najbjerg Knudsen
cnkn16@student.aau.dk

Rasmus Barrett
rbarre16@student.aau.dk

Abstract
As autonomous vehicles become common,
the variety of mobile robots increases.
These robots are becoming increasingly in-
dependent and have to act based on their
observations in the environment. An es-
sential task for self-driving robots is the
detection and localization of objects in the
environment. This paper focuses on devel-
oping a model suited for embedded sys-
tems to detect objects in 3D. Previous ap-
proaches often focus on either image de-
tection or point clouds. We propose a back-
bone, which utilizes both image and LiDAR
data as inputs to infer better information
by including a novel fusion. The idea is
to leverage the best properties from each
input for more accurate detection. For the
prediction head, we test two approaches:
a center-based and a single-shot detection.
Through testing on the KITTI 3D bench-
mark, we show that our proposed model
is inadequate in learning prediction of 3D
bounding boxes, both with a front-facing
image feed as well as a preprocessed Bird’s-
Eye View (BEV).

I. Introduction
Deploying autonomous vehicles in un-
known or unmapped environments is a
complex technological challenge. Among
other tasks, the vehicles need to detect and
track moving objects such as other vehi-
cles, pedestrians, and cyclists in real-time.
Given the advances in deep learning meth-
ods for computer vision, much research has
been invested in how technology can be
applied for object detection. The trend in
recent years is to use increasingly powerful
computers to produce accurate and precise
models for both 2D, and 3D bounding box
prediction [2, 31, 3].

However, these improved models depend
on powerful computing units, consisting
of an increasingly high number of oper-
ations for each pass-through. This makes
the state-of-the-art models unfeasible for
embedded systems such as the Jetson Nano.
The embedded systems are intended to be
deployed on mobile devices, where both
computation time and energy consumption
are of interest. Embedded systems have be-
come much more relevant as the next gen-

2 II Related Work

eration of autonomous vehicles and robots
becomes available.

This paper presents an attempt at build-
ing a model that provides a learned fu-
sion between sparse point clouds and cam-
era images with dense RGB information.
Specifically, our model takes both a point
cloud and a single front-facing image as
input. For the point cloud, the model uses a
standard LiDAR-based encoder, Pillar Fea-
ture Net [11], to build a representation,
which is flattened into a Bird’s-Eye View
(BEV). For the input image, we scale and
encode the image to a higher dimension
representation.

For the backbone, we present a two
streams encoder inspired by ESANet [25].
The bottom stream encodes the BEV encod-
ing, and the top encodes the image. The
encoding uses a ResNet34 with the residual
blocks are replaced with Non-Bottleneck-
1D-Blocks (NBt1Ds) [24]. At each dimen-
sional stage of the ResNet34, we present a
novel fusion between the two streams. The
fusion uses an attention mechanism based
on depth-wise separable convolution. The
result of the fusion is further encoded in
the top stream.

For detection head, we follow Center-
Point [31], which locates objects by the cen-
ter point of the object and regresses to all
other object properties such as 3D size and
orientation for each detected center.

For testing the model, we use the KITTI
3D benchmark [4]. Where we show, the
model setup is inadequate for convergence
to a useful prediction.

II. Related Work
In the past, several methods for detecting
objects have been introduced. This chap-
ter focuses specifically on those used for
bounding box prediction.

A. 2D and 3D Object Detection
Over the years, object detection has aimed
at either predicting either 2D or 3D ob-
jects. 2D object detection uses an image and
works by predicting axis-aligned bounding
boxes. 3D object detection aims to predict
three-dimensional rotated bounding boxes,
often from point clouds, sometimes aug-
mented with RGB or semantic information.

In 2D detection, the main approaches
relate to the RCNN detector family [5, 6, 10,
23], which finds candidate bounding boxes
to classify and refine. The best-known ap-
proaches are YOLO [22], SSD [18], and Reti-
naNet [17]. These models rely on a learned
number of anchor boxes to predict objects.
Many 3D object detectors have drawn inspi-
ration from these 2D object detectors [8, 26,
27, 30]. The use of anchor boxes provides
an easy translation, as they can encode a
3D size given the size of the anchor box
itself, providing a simple translation from
2D to 3D. However, these methods share the
same problems as 2D detection, such as the
quantity and scale of the anchor boxes.

3D object detection is more diverse in its
approach and differs from 2D detectors in
both the input and backbone structure [4,
11, 29, 30]. The input to 3D prediction is
often in the form of sparse point clouds. To
process a point cloud directly for predic-
tion is computationally expensive and often
infeasible. Thus, the point cloud requires
encoding into a dense representation. The
two mainstream approaches are VoxelNet
[34] and PointPillars [11].

3

VoxelNet divides the sparse point clouds
into equally spaced 3D voxels. PointNet
[21] is then used inside each voxel to gen-
erate a unified feature representation. A
prediction head of 3D convolutions and 2D
convolutions can then predict objects from
this representation.

PointPillars substitutes the voxels with a
pillar representation, a single tall elongated
voxel for each grid location. By having it
this way, 2D convolution replaces expensive
3D convolutions.

B. Object Detection Approaches
The most common approaches for detect-
ing and finding objects can be categorized
based on predicting regions, anchors, or
key points.

1) Region Classification
One of the first successful deep object detec-
tors is RCNN [6]. RCNN works by looking
through object locations from a large set
of region candidates [28]. These regions
are cropped and classified using a deep
network. An improvement of this method is
Fast-RCNN [5] which saves computation by
cropping image features instead. However,
these methods rely on slow low-level region
proposal methods, making them unsuited
for real-time performance.

2) Anchor Boxes
Another group of predictors works by sam-
pling fixed-shaped bounding boxes, known
as anchors, around a low-resolution image
grid and classifying each into foreground
or background. A well-known example is
Faster-RCNN [23] which generates region
proposals within the detection model.

An anchor is labeled as foreground if
it significantly overlaps with any ground
truth object, background if the overlap is

below a threshold, and unknown if the
overlap is in between. The regions of in-
terest, i.e., the foreground, are classified
again to obtain the objects [23]. Changing
the proposal classifier to a multi-class is the
basis of one-stage detectors. In recent years,
there have been several improvements to
one-stage detectors include anchor shape
priors [22, 13], different feature resolution
[18], and loss re-weighting among differ-
ent samples [17]. However, the extraction
and combination of interest regions are still
computationally expensive processes.

3) Key Point Prediction
A different approach is the key point
prediction. Key points classify important
places in the scene. CornerNet [12] detects
two corners of the bounding box as key
points, while ExtremeNet [33] detects the
top-, left-, bottom-, right-most point of all
objects. However, both require a combina-
torial grouping stage after key point detec-
tion, which significantly slows down each
algorithm. Current state-of-art approaches
like CenterNet [32] and CenterPoint [31],
extract a single center point per object and
regress the box features. This significantly
reduces the complexity of the task.

C. Fusion of Image and Point Cloud
There have been multiple studies on the
possibility of multi-sensor fusion to lever-
age the best properties of each sensor. The
benefit of camera-based approaches is the
dense information available in the image,
while LiDAR provides sparse but precise
3D information.

A direct approach is proposed by Hori-
zonLiDAR3D [1], where a 2D detector
is used to predict 2D bounding boxes
and semantic segmentation. LiDAR points

4 III Preliminaries

falling within a bounding box are aug-
mented with semantic information. Like-
wise, Cross-Modality3D [35] also augments
points with high-level semantic informa-
tion. However, it handles the sparseness by
applying RoI-wise feature fusion to learn
denser representations for refinement.

UberATG-MMF [15] takes a different ap-
proach by using the point cloud as a sparse
depth map. This depth map is learned to-
gether with an image to predict a dense
depth map, from which a pseudo LiDAR
is made to fuse the image and point cloud
encodings.

ContFuse [14] proposed to aggregate
BEV with image features by projecting Li-
DAR points onto the image. This approach
interpolates BEV pixel location with im-
age features based on K-nearest neighbor
search.

D. Approach Inspiration
Based on the current research, we focus
on a center-based approach to predicting
bounding boxes. This is because center-
based representation dramatically simpli-
fies the task and fits better with embedded
systems [32, 31].

Objects do not follow any particular ori-
entations in the 3D world, making it hard to
predict the bounding boxes, as they usually
do not align with any global coordinate
system. The reason being 3D objects come
in a broad range of sizes, shapes, and aspect
ratios than in 2D, e.g., bicycles are flat,
buses and limousines are elongated, and
pedestrians are tall.

The key advantage of center-based rep-
resentation is that points have no intrinsic
orientation. Furthermore, it simplifies sub-
sequent tasks such as tracking through the
relative offset of objects between consecu-

tive frames. The simplification should also
make it possible to design much simpler
and faster modules [31].

For encoding of the point cloud, we look
at the two state-of-the-art approaches, Vox-
elNet and PointPillars. VoxelNet voxelizes
the point cloud, providing more 3D infor-
mation giving better accuracy at the trade-
off of higher memory usage. On the other
hand, PointPillars simplifies the representa-
tion for speed-up and lower memory, with
the trade-off being accuracy. This paper fo-
cuses on the PointPillars representation as
it matches better with embedded systems
in terms of memory and speed.

Most of the previous methods use either
images or point clouds, a few methods use
augmentation, and only a limited number
of methods use a direct fusion of dense
image information and the sparse point
cloud. The high computational requirement
of the methods containing fusion is the rea-
son we investigate a direct fusion between
image and point cloud that can be run on
embedded systems.

III. Preliminaries
This section describes how the Pillar Fea-
ture Net [11] and the CenterPoint predic-
tion head [31] work and the purpose of
these. We have used these two models for
point cloud encoding and bounding box
prediction.

A. Pillar Feature Net
A mainstream approach to process point
clouds is to encode them into pillars, with
the Pillar Feature Net as presented in Point-
Pillars [11]. The idea is to group points
within a grid of pillars and apply a 2D
convolutional architecture to get a learned
pseudo-image from the pillars.

5

The first step is to divide the point cloud
into an evenly spaced grid in the x-y plane,
creating a set of pillars, P. Note that there
is no need for a hyperparameter to control
the binning of the z dimension. In the point
cloud, each point is represented with coor-
dinates x, y, z, and reflectance r. The points
are augmented with xc, yc and zc where
the c subscript denotes the arithmetic mean
distance of all the points in the same pillar.
Thus, the augmented points are now D = 7
dimensional.

Next, to produce a learned representation
of the points of size C, a simplified version
of PointNet [21] is applied. For each point,
a linear layer1 is applied, and the result is
batch normalized, and a ReLU activation
generates a (P, N, C) sized tensor. After-
ward, a max operation over the channels,
C, creates an output tensor of size (P, C).
Once encoded, the pillars are scattered back
to the original pillar locations in the grid
to create a pseudo-image of size (H, W, C)
where H and W indicate the height and
width of the grid.

The set of pillars will be mostly empty
due to the sparsity of the point cloud, with
the non-empty pillars having few points in
them. For example, at 0.16m × 0.16m grid
the point cloud from KITTI [4] has 6k-9k
non-empty pillars which is a ∼97% sparsity
[11]. By exploiting the sparsity, a limitation
on both the number of non-empty pillars
per scene, P, and on the number of points
per pillar, N, creates a dense tensor of size
(P, N, D). If a pillar holds too much data
to fit in this tensor, the data is randomly
sampled. Conversely, if a pillar has too little

1Note that the linear layer is formulated as a 1× 1
convolution across the pillar resulting in very efficient
computation.

data to populate the tensor, zero paddings
are applied.

B. CenterPoint Prediction Head
For the predictions in this paper, we follow
the prediction head of the first stage in
CenterPoint [31], where classes are grouped
into tasks. The first stage of CenterPoint
predicts dense heat maps, sub-voxel loca-
tion refinement, object size, and rotation for
each task.

1) Heat Map Head
The head’s goal is to produce a heat map
peak at the center location of any detected
object in BEV. The heat map head predicts
a K-channel heat map, one channel for each
K class in the tasks.

Objects in a BEV are sparser than in an
image. In BEV, distances are absolute, while
an front-view has perspective distortion.
An example of this is a scene of a road
with vehicles. In BEV, the area occupied
by vehicles is relatively small, but a few
large objects may occupy most of front-
view. Furthermore, the compression of the
depth places object centers closer to each
other [31].

2) Regression Head
The goal of the regression head is to predict
the bounding boxes. For each object, several
properties are predicted. These properties
are: a sub-voxel location refinement o ∈ R2,
the elevation of the center point hc ∈ R,
the bounding box size s ∈ R3, and a yaw-
rotation as (sin(α), cos(α)) ∈ R2. The sub-
voxel location refinement, o, reduces the
quantization error from voxelization and
striding of the backbone. The elevation, hc,
adds the missing elevation information re-
moved by the BEV projection. The orienta-
tion prediction uses the sine and cosine of

6 IV Framework

the yaw as a continuous regression target.
Combined with box size, the regression
heads provide the full state information
of the 3D bounding box. To better handle
boxes of various shapes, sizes are regressed
to the logarithmic value. At inference time,
all properties are extracted by indexing into
the outputs of the regression heads at each
object’s peak location in the heat map.

IV. Framework
This section covers our framework structure
and the reasons we have selected this struc-
ture. The layout of our approach can be
seen in Figure 1 on page 7. The framework
is divided into three stages: encoding the
input, a backbone, and the prediction head
for predicting the bounding box attributes.

A. Input Streams
Our model takes a front-facing camera im-
age and a point cloud with points from
within the camera’s field of view as input.
The first stage aims to get an equal-sized
representation of the image and point cloud
to allow for the fusion of the data in the
backbone.

The image is first scaled to get a con-
sistent size that can be convoluted to the
exact dimensions of the pillar grid. Since
the image is wide-angle, it is pixel-wise
large in the horizontal direction. Thus, we
use an asymmetrical stride in the first con-
volution to decrease the learned represen-
tation’s width. The goal is for the convolu-
tions to learn a translation of the input to a
BEV representation.

For the point cloud, we use a Pillar Fea-
ture Net encoding [11] to convert the point
cloud into a learned BEV pseudo-image.

B. Backbone
The image and pillar encoder both use a
ResNet34 architecture [9]. Thus, the result-
ing feature maps at the end of the en-
coder are 16 times smaller than the input.
ResNet34 is chosen as it provides a reason-
able trade-off between speed and accuracy
in embedded systems [25]. We replace the
residual blocks with a spatially factorized
version. This version is named NBt1D and
is depicted in Figure 1 with purple outline
and was initially proposed by ERFNet [24].
NBt1D is better at retaining spatial infor-
mation, with minimal impact on efficiency.

The encoded pillar features are fused into
the image features at the start and after
each resolution stage in ResNet34. For the
fusion, we propose a novel approach. The
approach is outlined in light green on Fig-
ure 1. We propose an attention mechanism
that utilizes a depth-wise separable con-
volution. By first performing a per chan-
nel 2D convolution, we allow for different
weighting of objects at different heights in
the feature maps. The following 1 chan-
nel convolution combines the weights to
a single attention map. The attention map
is multiplied by the feature representation.
In this way, the model can learn which
features to enhance and suppress. After the
attention mechanism, the pillar and image
representation is concatenated, and a con-
volution combines the results and brings
the channels down to the input channel
size.

The rest of the backbone is for decoding
the encoding. We follow [25] and utilize
three decoding blocks. The number of chan-
nels is not decreased for the first block,
while the rest of the blocks halve the chan-
nel in the first convolution. It is then further

7

Figure 1. Overview of our proposed model architecture. Red boxes are convolutions, written in the format
of MxN for the kernel size, S(x, x) is the stride, and the number at the end is the channels; if no channel is
given, it is the same as the input. Convolutions marked with DW are depth-wise convolutions. IPM Image
represents an alternate input image approach.

8 V Experiments

convoluted with three NBt1Ds before being
passed to a learned upsampling method.
The learned upsampling works by first us-
ing nearest neighbor upsampling, and after-
ward, a depth-wise convolution is applied
to combine adjacent features.

C. Prediction Head
We follow the design of CenterPoint [31]
for the prediction head. The benefit of the
head is that it indicates objects based solely
on a single location instead of relying on
multiple overlapping bounding boxes.

This removes the requirement of a man-
ual threshold between foreground and
background, allowing for only one positive
peak per object. Therefore, Non-Maximum
Suppression (NMS) is not needed, reduc-
ing the computation time and making it
better suited for embedded systems. The
more straightforward approach of repre-
senting objects as points greatly simplifies
3D recognition.

V. Experiments
This section goes through the data set, our
model setup, and the training process. We
use a cluster server with a single NVIDIA
Tesla v100 to training the model. To evalu-
ate the suitability of the model design on
embedded systems, we record the infer-
ence time on the Jetson Nano Developer
Kit running Jetpack v4.5. Jetson Nano is
equipped with a 128-core Maxwell GPU,
Quad-core ARM A57 CPU, and 4GB 64-
bit LPDDR4 25.6 GB/s memory. The ex-
periment is performed in the Jetson Nano’s
5W mode. The CPU is limited to two cores
in this mode, with the decreased maxi-
mum CPU frequency from 1479MHz down
to 918MHz. Likewise, the maximum GPU

Hyperparameter Value

Min/Max x 0.0m/80.0m
Min/Max y -52.8m/52.8m

Pillar size x/y 0.2m/0.2m
Max points per pillar, N 50

Max pillars, P 6000
Learned channel, C 64

Image scale size 400px × 1056px

Tasks

{Car, Van, Truck, Tram},
{Cyclist},

{Pedestrian, Person sitting},
{Misc}

Table I
Model hyperparameters

frequency is decreased from 921.6MHz to
640MHz.

A. Data Set
We evaluate our approach on the KITTI
3D benchmark [4] containing 7481 training
and 7518 test frames. There are eight object
classes: car, van, truck, tram, cyclist, pedes-
trian, person sitting, and misc, evaluated in
three categories: easy, moderate, and hard.
These categories are assigned based on the
object’s pixel height, occlusion, and trunca-
tion level. The moderate category is used
for the ranking of the benchmark. Since the
ground truth labels are not available for the
test frames, we split the KITTI training set
into train, validation, and test sets contain-
ing 6347, 423, and 711 frames, respectively.
Furthermore, given that we fuse the point
cloud and image, we extract only those
points from the point cloud within the cam-
era’s field of view. We use the provided
synced and rectified images, resulting in a
change of the resolution from 1392 × 512
pixels to 1242× 375± 5 pixels.

B. Model Setup
For the training of our model, we have
multiple hyperparameters, which can be
seen in Table I.

9

Given that we target an embedded sys-
tem with limited memory, we target a low
memory requirement of our point cloud
encoding. For the Pillar Feature Net, the
pillar size is set to 0.2m × 0.2m, the max
pillar limit is declared as P = 6000, and the
max points per pillar is N = 50. Based on
the distribution of the points in KITTI, the
grid is extended to 80m forward and 52.8m
to either side. A pillar size of 0.2m× 0.2m
results in a grid size of 400× 528. For the
subsequently learned encoding of each pil-
lar, we follow PointPillars [11] and use a 64
channel learning. Thus, the output dimen-
sions of Pillar Feature Net is 400× 528× 64.

To get the image and point pillar to
match up, the image is scaled to 400× 1056
pixels. This scaling decreases the width by
∼242 pixels and increases the height by
∼25 pixels, introducing some distortion.
The prediction head is grouped into mul-
tiple task-specific prediction heads, follow-
ing the setup from CenterPoint [31]. We
divided the eight classes in KITTI [4] into
four tasks based on the similarity of the
object types:

1) Car, Van, Truck, and Tram
2) Cyclist
3) Pedestrian and Person sitting
4) Misc

C. Training Setup
The training is performed with a batch size
of 4, using the AdamW [19] optimizer with
an one-cycle learning rate policy [7]. The
one-cycle learning rate policy provides re-
sults faster while acting as a regularization
method to keep the model from overfitting.
For the AdamW, we have experimented
with initial learning rates from 10−2 to 10−6

in factor 10 decrements, with the weight de-

cay kept a factor 10 larger than the learning
rate.

Each task’s ground truth heat map is
generated by projecting the object centers
into a 400 × 528 grid to match the pillar
grid. To counteract the high background
to foreground ratio, we increased the posi-
tive supervision by enlarging the Gaussian
peak at the object center, as proposed by
[31]. The Gaussian radius is set as ω =
max(f (wl), τ), where τ = 2 is the small-
est Gaussian radius, and f is the radius
function defined by CornerNet [12]. Given
the radius, the amount of penalty reduction

is the unnormalized 2D Gaussian, e−
x2+y2

2σ2 ,
with σ = 1

3 ω. The center of the Gaussian
represents the positive location. However,
even with the increased positive supervi-
sion, the heat map is still very sparse with
information on object locations.

D. Loss Functions
Training of our model includes two differ-
ent loss functions. The first loss function is
for the heat map, and the second one is for
the regression of the predicted bounding
boxes. When summing up the losses to get
the total loss, the regression loss is scaled
by a factor of 2:

Ltotal = LHeatMap + 2 · LRegression. (1)

The effect is that initially, the loss of the
heat map is larger and will be the main
contributor to the loss, but as the heat map
loss subsides, the regression loss will over-
take, and the correct prediction of bounding
boxes will be more important.

1) Heat Map Loss
We have tested three different loss functions
for the heat map. The first loss function
is Mean Squared Error (MSE). MSE is an

10 VII Evaluation

acceptable baseline but has problems deal-
ing with sparse information. MSE weighs
positive and negative loss equally, making
it sub-optimal in distinguishing the fore-
ground and background in regions of in-
terest.

The second loss function is a variant of
focal loss as proposed by CornerNet [12].
The loss function is as follows:

LF = −1
N

C

∑
c=1

H

∑
i=1

W

∑
j=1

{
(1− pcij)

α log(pcij) if ycij = 1

(1− ycij)
β(pcij)

α log(1− pcij) otherwise,

(2)
where N is the number of objects, and α

and β are the hyperparameters that control
the contribution of each point. We set α to
2 and β to 4 following CornerNet. With the
Gaussian bumps encoded in ycij, the (1−
ycij) term reduces the penalty around the
ground truth locations.

The last loss function tested is Binary
Cross-Entropy (BCE) given as:

LBCE = −1
N

N

∑
i=0

yi · log(p(yi)) + (1− yi) · log(1− p(yi)),

(3)
where y is the label2 and p(y) is the pre-
dicted probability of the point being posi-
tive for all N points. The downside of BCE
is that it does not use the Gaussian noise in
the generated heat map. Given that a single
point is too small to learn, we include the
Gaussian noise as a positive label.

2) Bounding Box Loss
For training the bounding box prediction,
we combine the predicted properties of the
regression head to provide the complete 3D
bounding box state information. At train-
ing, we collect the state information only at
the ground truth centers. The prediction at
these locations is compared with the truth

2The label is set to 1 for positive locations and 0
for negative locations.

Method Seconds

End-to-end 0.13

Pillar Feature Net 0.04
Image Encoding 0.05

Backbone + Prediction Head 0.04
Table II

Time requirements of different parts of the

model

using an L1 regression loss for each prop-
erty. The results are summed up, meaning
we weigh the different properties equally.

VI. Model Inference Time
The time requirements of our model are
presented in Table II. The total inference
requirement of our model is 0.13s, which
translates to ∼7.69FPS. This FPS count is
not high, but considering the computa-
tional specification of the Jetson Nano, it
is decent. When breaking down the time
requirements for the different parts of our
model, we see that the time required for
Pillar Feature Net, Image Encoding, and
Backbone + Prediction Head differ at most
0.01s from each other. Given the difference
in the size of the tasks, it could indicate
there can be some performance to gain in
optimization of Pillar Feature Net and im-
age encoding. Pillar Feature Net is written
in C++ code. Converted to GPU executable
code, some speed up in terms of execu-
tion time and pipelining is expected on
the Jetson Nano. Likewise, for the image
encoding, we see it requires the longest
time. The time requirement is primarily
caused by the TensorFlow implementation
of resizing of the image. Thus, with more
efficient implementation, speed up is also
possible at this part.

11

VII. Evaluation
This section contains the evaluation of the
experiments and a discussion of the various
problems that occurred. We present poten-
tial solutions to these problems and tests to
validate our assumptions of the problems.

A. Model Stability
We experienced problems with the stabil-
ity of the learning. When back-propagating
the loss through the model, the gradients
became too large, and a gradient explosion
occurred. The gradient explosion seems to
occur due to a combination of the learning
rate and large loss values. To rectify the
problem, we experimented with different
learning rates between 10−2 and 10−6. We
found that a learning rate of 10−5 allowed
for better stability without gradient explo-
sion.

1) Heat Map Loss
To further improve stability, we tested mul-
tiple loss functions for the heat map. We
discovered that MSE decreased the stabil-
ity of the model. The stability problem is
caused by MSE’s lack of distinction be-
tween foreground and background. This
causes the sparse heat map prediction to
end up with a large loss, causing a gra-
dient overflow when back-propagating or
causing the model not to learn.

We found that the focal loss is suscepti-
ble to small changes in the predicted heat
map, resulting in substantial loss values.
The significant loss values overpowered the
model, making the model overcompensate
and ending in an irreversible state. To coun-
teract this, we substituted the sums with the
mean. The change yielded more reasonable
loss values, which are less likely to generate
a gradient explosion.

Using BCE, no problem with too large
values occurred. However, it still has the
downside of it not distinguishing between
the center point and Gaussian noise as de-
scribed earlier.

2) Upsampling Design
Why the model is susceptible to gradient
explosion can be explained by our upsam-
pling approach. In our learned up 2x block,
we use a nearest-neighbor interpolation.
The nearest neighbor algorithm selects the
value of the nearest point and does not
consider the values of neighboring points at
all, yielding a piecewise-constant interpo-
lation. Thus, compared to more traditional
deconvolution where surrounding pixels
influence some scaling, we have a single-
pixel responsible for the full upsampling.
Thus, this pixel is also responsible for all
of the gradients in the following calcula-
tions. This might not be a problem until
we consider that we are working with very
sparse data. Therefore, multiple upscaled
pixels are more likely to rely on a single-
pixel for upscaling.

The reason we use this upscaling method
was that [25] shows it to be fast on em-
bedded systems and provide cleaner out-
puts. However, [25] is research from within
the field of semantic segmentation, which
focuses on dense image prediction. The
expected prediction output in this paper
is sparse, for which the suitability of the
method is uncertain.

B. Fusion of Image and Point Pillars
While training, we discovered multiple
problems with the fusion of the image and
pillar representation. In this subsection, we
discuss possible causes and solutions for
this problem.

12 VII Evaluation

Figure 2. Heat map output from the model. The
images are in order top-left, top-right, bottom-left,
and bottom-right with 5000 training steps between
each image.

When looking at the model’s output,
clear indications of the image overpowering
the output are present. Figure 2 shows the
heat map at different steps of training. The
images clearly show that the input image
is responsible for nearly all influence on
the output. The learning of the model re-
quires much training to reduce the influ-
ence from the image, thereby resulting in
the model predicting blank heat maps. The
RGB values of the images are normalized
from [0, 255] to [0, 1], which ensures that the
model focuses less on the values and makes
them correspond better to the value range
from PointPillars.

1) Perspective Misalignment
Our model is not able to converge to any
meaningful heat map prediction. A proba-
ble reason is the inconsistency of the per-
spective between the image and the point
pillars. The pillars are created based on
groupings in the x-y coordinates, the en-
coding of which provides a learned pseudo
image representation. Thus, the pseudo im-
age is a BEV of the environment in front

Figure 3. Example of a front-facing image and the
image after applying IPM to obtain BEV perspective

of the origin. In contrast, the input image
is taking in a front perspective view. Thus,
the perspectives of the two inputs differ
from each other. The fusion of the image
and the pseudo image is impossible unless
the model learns a shared spatial repre-
sentation of the inputs. Without the shared
representation, one input will likely act as
noise for the other and push the learning
in the wrong direction.

To achieve a more unified representa-
tion, we warped the input image with In-
verse Perspective Mapping (IPM) [20] to
be closer to the BEV of the pseudo image.
The downside of IPM is the homography
warping, leading to unnatural blurring and
stretching of objects at further distances.
An example of this effect can be seen in
Figure 3. Thus, IPM does not work well at
distances, but it might still allow for a better
fusion between image and point pillars.

Given that IPM is modifying the images,
we made some minor changes to our frame-
work to comply with the changes and better
fit the new images. We removed the original
resizing of the images, as IPM is warping
the images and changes the perspective by
stretching the pixels. Instead, we resized be-
fore and after IPM, as this provides a more
accurate perspective. The output of IPM is
set to have the same size as our pillar grid.
The change in size requires an adjustment

13

of the first convolution of the image branch
of the input-encoder. We changed the asym-
metric (height, width) stride of (1, 2) to
(1, 1), as we no longer need to reduce the
width to match the grid size.

Unfortunately, the use of IPM did not
solve the problem of the model converging
to a homogeneous heat map output of the
model.

VIII. Analysis
In order to confirm whether the fusion
causes the resulting homogeneity of the
heat map, we then excluded the image en-
tirely and removed the corresponding con-
nection to the first fusion, using only the
point cloud as our input.

We confirmed that the model is still not
able to learn even with only point pillar
input. In Figure 4, the heat map prediction
is seen at different training steps. The pre-
diction of at training step 20000 seems to
follow the same pattern as with both inputs.
At step 40000− 60000, we see a difference
in the output, with the frustum of the point
pillar showing up in the heat map. The clear
frustum indicates the model has impacted
the values very little in the passthrough.
After step ∼60000, the output returns to the
homogeneity of the output, and it stays like
this with only a tiny variation in intensity
over time. The persistence of the homoge-
neous output indicates that our proposed
model cannot learn a general representa-
tion that can predict a sparse heat map.

An often-used method for object recog-
nition is a Feature Pyramid Network (FPN)
[16]. This FPN outputs feature maps at mul-
tiple resolutions and performs the predic-
tion individually from all of them. This way,
it attempts to predict objects at different

Figure 4. Heat map output from the model at
different training steps. Top-left is step 2000, top-right
step 20000, bottom-left 48000, and bottom-right step
158000.

scales. This process is very memory inten-
sive, thus not suited for our goal to design
a model for embedded systems. Instead,
we use a ResNet34 with NBt1D, which is
more efficient but might not be sufficient
to retain information of the small surface
area of objects captured in the point cloud.

A. Alternative Prediction Approach
While investigating why our model pre-
dicts homogeneous outputs for the heat
map, we found a discussion from Tianwei
Yin3, author of the CenterPoint paper [31].
The discussion describes that PointPillars,
for center prediction on the KITTI data set,
is so bad that he will not provide any
configuration for PointPillars encoding.

To test whether our proposed backbone
is suitable for encoding, we replaced the
prediction head with a more established
bounding box prediction head, the Single
Shot Detector (SSD) [18]. For the codebase,
we follow the TensorFlow implementation

3https://github.com/tianweiy/
CenterPoint-KITTI/issues/1

 https://github.com/tianweiy/CenterPoint-KITTI/issues/1
 https://github.com/tianweiy/CenterPoint-KITTI/issues/1

14 VIII Analysis

Variable Original Changed

focal weight 1.0 3.0
location weight 2.0 2.0

size weight 2.0 2.0
angle weight 2.0 1.0

heading weight 0.2 0.2
class weight 0.2 0.5

Table III
Loss weightings for the alternative setup

by Anjul Tyagi4. This follows the PointPil-
lars paper setup [11], but changes the loss
weightings to better match with more data
sets. The original and changed weights can
be seen in Table III.

We trained our model for 100 epochs,
with the result being that the model was
not able to predict correct bounding boxes.

The occupancy threshold used for the se-
lection of predicted bounding boxes posed
a problem in our model. By default, the
threshold was set to 0.7, which we lowered
to 0.4 since the model was not able to
assign higher confidence to any prediction.
At inference time, we apply axis-aligned
NMS with an overlap threshold of 0.5 given
Intersection over Union. With the filtered
bounding boxes, we still got an accuracy of
zero. The main problem with these boxes
was the location prediction. This might in-
dicate that our backbone is poor at retain-
ing spatial information about objects in the
point cloud. Given that PointPillars trained
for 160 epochs in their paper, and our back-
bone is larger, we might have trained for
too few epochs to achieve a reliable result.
However, given time constraints, we have
limited the learning time to 100 epochs.

We have designed our upsampling based
on efficient proposals from research in se-
mantic segmentation. However, there is an

4https://github.com/tyagi-iiitv/PointPillars

inconsistency between predictions in the
two research fields. In semantic segmenta-
tion, the goal is to make a dense prediction
of the whole image with a class for every
pixel. This is in contrast to 3D detection,
where we work on sparse data and sparse
prediction. Thus, our model might try to
make dense predictions in a sparse context.
If the model is predicting too densely, it will
provide itself with a lot of error and not
learn.

In our backbone, we utilize max pooling
in the beginning to increase the density of
the input. However, max pooling is known
to decrease spatial retainment. Thus, if we
remove or substitute the max pooling, we
might get some improvement.

Another place that might decrease spatial
retainment is our introduction of fusion. In
the fusion, we have proposed a mechanism
for creating an attention map. The mecha-
nism first makes a depth-wise convolution
and then a 1× 1 convolution with 1 channel
output. The reduction in channels provides
a considerable compression, especially in
the deeper part of the encoder, with the last
fusion compressing 512 channels down to
1. The attention map might be inadequate
in providing an appropriate scaling of the
information with that number of channels,
thereby suppressing essential information
in some intermediate channels.

https://github.com/tyagi-iiitv/PointPillars

15

IX. Conclusion
In this paper, we propose a model for 3D
bounding box prediction. The model has a
two-stream input, the first using standard
Pillar Feature Net for encoding a point
cloud and the other for processing an im-
age. For the backbone of the model, we
use a ResNet34 architecture utilizing the
Non-Bottleneck-1D-Block (NBt1D) blocks
for each stream. We introduce a novel fu-
sion with an attention mechanism to com-
bine information of the two streams. We ex-
periment with two prediction heads for the
prediction of the bounding boxes: a center
point-based and a single-shot detection ap-
proach. We test our model’s inference time
on a Jetson Nano. Here we show that the
model reaches near real-time performance.

We train the model on the KITTI 3D de-
tection benchmark and have tested and dis-
cussed different components in the model.
We have confirmed that the backbone is
suboptimal at retaining spatial informa-
tion in the single-shot detection approach
and produces homogeneous outputs for the
center point-based approach. This gives us
reasonable safety to assume that the model
is not fit for the task.

X. Future Work
Tianwei Yin commented5 that the point pil-
lar encoding does not work well with the
KITTI data set. Thus, further tests of our
approach on a different data set are needed.
This way, it can be confirmed whether the
problem lies within the backbone or is spe-
cific to the KITTI 3D benchmark.

In this paper, we have transformed the
images into Bird’s-Eye View (BEV) with the
use of the classical method Inverse Per-
spective Mapping (IPM), which causes un-
wanted stretching and distortion of the im-
age. Using a camera configured or learned
transformation method, which is less prone
to these side effects, can provide more re-
alistic BEV in terms of object sizes and
shapes. The improved BEV should yield a
closer one-to-one mapping with point pil-
lars improving the accuracy and feasibility
of the fusion.

5https://github.com/tianweiy/
CenterPoint-KITTI/issues/1

 https://github.com/tianweiy/CenterPoint-KITTI/issues/1
 https://github.com/tianweiy/CenterPoint-KITTI/issues/1

16 References

References
[1] Zhuangzhuang Ding et al. “1st Place Solution for Waymo Open Dataset Challenge - 3D Detection and

Domain Adaptation”. In: CoRR abs/2006.15505 (2020). arXiv: 2006.15505. url: https://arxiv.org/abs/
2006.15505 (cit. on p. 3).

[2] Kaiwen Duan et al. CenterNet: Keypoint Triplets for Object Detection. 2019. arXiv: 1904.08189 [cs.CV]
(cit. on p. 1).

[3] Runzhou Ge et al. AFDet: Anchor Free One Stage 3D Object Detection. 2020. arXiv: 2006.12671 [cs.CV]
(cit. on p. 1).

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous driving? The KITTI
vision benchmark suite”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012,
pp. 3354–3361. doi: 10.1109/CVPR.2012.6248074 (cit. on pp. 2, 5, 8, 9).

[5] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv: 1504.08083. url: http://arxiv.
org/abs/1504.08083 (cit. on pp. 2, 3).

[6] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection and semantic segmenta-
tion”. In: CoRR abs/1311.2524 (2013). arXiv: 1311.2524. url: http://arxiv.org/abs/1311.2524 (cit. on
pp. 2, 3).

[7] Sylvain Gugger. The 1cycle policy. Apr. 2018. url: https://sgugger.github.io/the-1cycle-policy.html
(cit. on p. 9).

[8] Chenhang He et al. “Structure Aware Single-Stage 3D Object Detection From Point Cloud”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 11870–11879. doi:
10.1109/CVPR42600.2020.01189 (cit. on p. 2).

[9] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/1512.03385 (2015).
arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385 (cit. on p. 6).

[10] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017). arXiv: 1703 .06870. url: http :
//arxiv.org/abs/1703.06870 (cit. on p. 2).

[11] Alex H. Lang et al. “PointPillars: Fast Encoders for Object Detection from Point Clouds”. In: CoRR
abs/1812.05784 (2018). arXiv: 1812.05784. url: http://arxiv.org/abs/1812.05784 (cit. on pp. 2, 4–6, 9,
14).

[12] Hei Law and Jia Deng. “CornerNet: Detecting Objects as Paired Keypoints”. In: Int. J. Comput. Vis.
128.3 (2020), pp. 642–656. doi: 10.1007/s11263-019-01204-1. url: https://doi.org/10.1007/s11263-
019-01204-1 (cit. on pp. 3, 9, 10).

[13] Hao Li et al. “Enhanced YOLO v3 Tiny Network for Real-Time Ship Detection From Visual Image”.
In: IEEE Access 9 (2021), pp. 16692–16706. doi: 10.1109/ACCESS.2021.3053956. url: https://doi.org/
10.1109/ACCESS.2021.3053956 (cit. on p. 3).

[14] Ming Liang et al. “Deep Continuous Fusion for Multi-Sensor 3D Object Detection”. In: CoRR
abs/2012.10992 (2020). arXiv: 2012.10992. url: https://arxiv.org/abs/2012.10992 (cit. on p. 4).

[15] Ming Liang et al. “Multi-Task Multi-Sensor Fusion for 3D Object Detection”. In: CoRR abs/2012.12397
(2020). arXiv: 2012.12397. url: https://arxiv.org/abs/2012.12397 (cit. on p. 4).

[16] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. 2017. arXiv: 1612.03144 [cs.CV]
(cit. on p. 13).

[17] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: CoRR abs/1708.02002 (2017). arXiv:
1708.02002. url: http://arxiv.org/abs/1708.02002 (cit. on pp. 2, 3).

[18] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325 (2015). arXiv: 1512.02325.
url: http://arxiv.org/abs/1512.02325 (cit. on pp. 2, 3, 13).

[19] Ilya Loshchilov and Frank Hutter. “Fixing Weight Decay Regularization in Adam”. In: CoRR
abs/1711.05101 (2017). arXiv: 1711.05101. url: http://arxiv.org/abs/1711.05101 (cit. on p. 9).

[20] Hanspeter Mallot et al. “Inverse Perspective Mapping Simplifies Optical Flow Computation and
Obstacle Detection”. In: Biological cybernetics 64 (Feb. 1991), pp. 177–85. doi: 10 . 1007 / BF00201978
(cit. on p. 12).

[21] Charles Ruizhongtai Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation”. In: CoRR abs/1612.00593 (2016). arXiv: 1612 . 00593. url: http : / / arxiv. org / abs /
1612.00593 (cit. on pp. 3, 5).

https://arxiv.org/abs/2006.15505
https://arxiv.org/abs/2006.15505
https://arxiv.org/abs/2006.15505
https://arxiv.org/abs/1904.08189
https://arxiv.org/abs/2006.12671
https://doi.org/10.1109/CVPR.2012.6248074
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://sgugger.github.io/the-1cycle-policy.html
https://doi.org/10.1109/CVPR42600.2020.01189
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1812.05784
http://arxiv.org/abs/1812.05784
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1109/ACCESS.2021.3053956
https://doi.org/10.1109/ACCESS.2021.3053956
https://doi.org/10.1109/ACCESS.2021.3053956
https://arxiv.org/abs/2012.10992
https://arxiv.org/abs/2012.10992
https://arxiv.org/abs/2012.12397
https://arxiv.org/abs/2012.12397
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.1007/BF00201978
https://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593

17

[22] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: CoRR abs/1612.08242 (2016).
arXiv: 1612.08242. url: http://arxiv.org/abs/1612.08242 (cit. on pp. 2, 3).

[23] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks”. In: CoRR abs/1506.01497 (2015). arXiv: 1506.01497. url: http://arxiv.org/abs/1506.01497
(cit. on pp. 2, 3).

[24] Eduardo Romera et al. “ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic
Segmentation”. In: IEEE Transactions on Intelligent Transportation Systems 19.1 (2018), pp. 263–272. doi:
10.1109/TITS.2017.2750080 (cit. on pp. 2, 6).

[25] Daniel Seichter et al. “Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis”. In: CoRR
abs/2011.06961 (2020). arXiv: 2011.06961. url: https://arxiv.org/abs/2011.06961 (cit. on pp. 2, 6, 11).

[26] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. “PointRCNN: 3D Object Proposal Generation
and Detection from Point Cloud”. In: CoRR abs/1812.04244 (2018). arXiv: 1812 . 04244. url: http :
//arxiv.org/abs/1812.04244 (cit. on p. 2).

[27] Martin Simon et al. “Complex-YOLO: Real-time 3D Object Detection on Point Clouds”. In: CoRR
abs/1803.06199 (2018). arXiv: 1803.06199. url: http://arxiv.org/abs/1803.06199 (cit. on p. 2).

[28] Jasper R. R. Uijlings et al. “Selective Search for Object Recognition”. In: Int. J. Comput. Vis. 104.2 (2013),
pp. 154–171. doi: 10.1007/s11263-013-0620-5. url: https://doi.org/10.1007/s11263-013-0620-5 (cit. on
p. 3).

[29] Yan Yan, Yuxing Mao, and Bo Li. “SECOND: Sparsely Embedded Convolutional Detection”. In: Sensors
18.10 (2018). issn: 1424-8220. doi: 10.3390/s18103337. url: https://www.mdpi.com/1424-8220/18/
10/3337 (cit. on p. 2).

[30] Zetong Yang et al. “3DSSD: Point-based 3D Single Stage Object Detector”. In: CoRR abs/2002.10187
(2020). arXiv: 2002.10187. url: https://arxiv.org/abs/2002.10187 (cit. on p. 2).

[31] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. “Center-based 3D Object Detection and Tracking”.
In: CoRR abs/2006.11275 (2020). arXiv: 2006.11275. url: https://arxiv.org/abs/2006.11275 (cit. on
pp. 1–5, 8, 9, 13).

[32] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. “Objects as Points”. In: CoRR abs/1904.07850
(2019). arXiv: 1904.07850. url: http://arxiv.org/abs/1904.07850 (cit. on pp. 3, 4).

[33] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krähenbühl. “Bottom-Up Object Detection by Grouping
Extreme and Center Points”. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp. 850–859.
doi: 10.1109/CVPR.2019.00094. url: http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/
html/Zhou%5C_Bottom-Up%5C_Object%5C_Detection%5C_by%5C_Grouping%5C_Extreme%5C_
and%5C_Center%5C_Points%5C_CVPR%5C_2019%5C_paper.html (cit. on p. 3).

[34] Yin Zhou and Oncel Tuzel. “VoxelNet: End-to-End Learning for Point Cloud Based 3D Object
Detection”. In: CoRR abs/1711.06396 (2017). arXiv: 1711.06396. url: http://arxiv.org/abs/1711.06396
(cit. on p. 2).

[35] Ming Zhu et al. “Cross-Modality 3D Object Detection”. In: CoRR abs/2008.10436 (2020). arXiv: 2008.
10436. url: https://arxiv.org/abs/2008.10436 (cit. on p. 4).

https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/TITS.2017.2750080
https://arxiv.org/abs/2011.06961
https://arxiv.org/abs/2011.06961
https://arxiv.org/abs/1812.04244
http://arxiv.org/abs/1812.04244
http://arxiv.org/abs/1812.04244
https://arxiv.org/abs/1803.06199
http://arxiv.org/abs/1803.06199
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.3390/s18103337
https://www.mdpi.com/1424-8220/18/10/3337
https://www.mdpi.com/1424-8220/18/10/3337
https://arxiv.org/abs/2002.10187
https://arxiv.org/abs/2002.10187
https://arxiv.org/abs/2006.11275
https://arxiv.org/abs/2006.11275
https://arxiv.org/abs/1904.07850
http://arxiv.org/abs/1904.07850
https://doi.org/10.1109/CVPR.2019.00094
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Zhou%5C_Bottom-Up%5C_Object%5C_Detection%5C_by%5C_Grouping%5C_Extreme%5C_and%5C_Center%5C_Points%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Zhou%5C_Bottom-Up%5C_Object%5C_Detection%5C_by%5C_Grouping%5C_Extreme%5C_and%5C_Center%5C_Points%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Zhou%5C_Bottom-Up%5C_Object%5C_Detection%5C_by%5C_Grouping%5C_Extreme%5C_and%5C_Center%5C_Points%5C_CVPR%5C_2019%5C_paper.html
https://arxiv.org/abs/1711.06396
http://arxiv.org/abs/1711.06396
https://arxiv.org/abs/2008.10436
https://arxiv.org/abs/2008.10436
https://arxiv.org/abs/2008.10436

	I Introduction
	II Related Work
	II-A 2D and 3D Object Detection
	II-B Object Detection Approaches
	II-B1 Region Classification
	II-B2 Anchor Boxes
	II-B3 Key Point Prediction

	II-C Fusion of Image and Point Cloud
	II-D Approach Inspiration

	III Preliminaries
	III-A Pillar Feature Net
	III-B CenterPoint Prediction Head
	III-B1 Heat Map Head
	III-B2 Regression Head

	IV Framework
	IV-A Input Streams
	IV-B Backbone
	IV-C Prediction Head

	V Experiments
	V-A Data Set
	V-B Model Setup
	V-C Training Setup
	V-D Loss Functions
	V-D1 Heat Map Loss
	V-D2 Bounding Box Loss

	VI Model Inference Time
	VII Evaluation
	VII-A Model Stability
	VII-A1 Heat Map Loss
	VII-A2 Upsampling Design

	VII-B Fusion of Image and Point Pillars
	VII-B1 Perspective Misalignment

	VIII Analysis
	VIII-A Alternative Prediction Approach

	IX Conclusion
	X Future Work
	References

