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Abstract:

In the manufacturing industry, qual-
ity control is necessary to keep a
high product standard. This process
is typically manual labor, which can
be subject to human error. A pos-
sible solution is an automated pro-
cess using unsupervised deep learn-
ing, as defect data is uncommon in
the manufacturing industry, making
labeled data limited. This report
investigates the generation of syn-
thetic data and automatic segmenta-
tion to improve anomaly detection
performance with different neural net-
work architecture to find the one that
yields the best results for detecting de-
fects. U-net was implemented to seg-
ment the background and make the
model more robust from background
noise. A convolutional autoencoder
was created for anomaly detection.
In conclusion, U-net provided func-
tional masks. The synthetic data could
increase the dataset and improve a
model; however, the similarity to the
real dataset will need to be improved.
The autoencoder created a distinction
between defects and non-defects, but
only for images from the same view.
An adaptive anomaly threshold will
need to be explored further.
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Chapter 1

Introduction

The manufacturing industry seeks to uphold a production standard for the prod-
ucts and is researching ways to improve the current methods. One of these areas
is visual quality control. One company researching this is LEGO; they are cur-
rently using manual visual inspection to look for defects in their products. With
manual visual inspection comes some different issues, such as training experts to
identify the different defects. Since human decisions are subjective, there can be
a difference in what each quality assessor marks as a defect, thereby creating in-
dividual standards. The current process for LEGO is taking samples from a batch
and manually looking at them under a light to detect the defects in the bricks. This
process can lead to issues such as the inspector getting eye strain which can cause
the inspector to miss a defect. A possible solution to the time-consuming quality
control is to have an automatic process or screening tool to assist the quality as-
sessors by utilizing deep learning and computer vision. Deep learning has shown
great promise for defect, and anomaly detection in the manufacturing context [1],
as defects can be detected only with the use of data and with limited manual labor.
Defects can occur in any shape and size, making unsupervised learning a viable op-
tion for detecting unknown/not previously seen defects. Deep learning, being very
data-dependent, requires as much data as possible. However, in the manufacturing
context, data acquisition might be in its starting stages, having a small amount of
data available.

1.1 Previous work

This project is a continuation of an earlier project we had in collaboration with
LEGO. The project focused on exploring techniques for quantifying and objec-
tifying the quality control measure for polymer surfaces. This is done by using
unsupervised deep learning strategies, where autoencoders were only trained on
non-defect data to find outliers. Experiments were conducted with background
segmentation, Contrast-Limited Adaptive Histogram Equalization (CLAHE), and
data augmentation to show the effect of the addition of each processing step.
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Chapter 1. Introduction

(a) Raw data (b) Segmented data (c) Preprocessed data

Figure 1.1: Showing the same image with no modification, masked and prepro-
cessed

Figure 1.2: ATOS ScanBox with a mounted ATOS Capsule scanner (Image pro-
vided by collaborator)

The dataset consisted of 10 batches with 24 images in each batch. The 24 im-
ages were taken from different angles of the units. Figure 1.2 shows the ATOS
ScanBox[2] with the ATOS Capsule scanner[3] attached. The scanner was rotat-
ing around the bricks, while taking gray scale images of the bricks. Examples
of changes done to the original dataset be seen in Figure 1.1, which showcase
the original images, a segmented dataset with the background removed. Further-
more, a segmented dataset with Contrast Limited Adaptive Histogram equalization
(CLAHE) applied, enhancing the defects seen in the defective images visually. The
three different versions were created to test the effect of removing the background
and applying CLAHE. The original dataset was discarded because of a defect in-
dicator next to the bricks see Figure 1.3. The indicator was removed during the
background segmentation and was not present in the subsequent datasets.
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Chapter 1. Introduction

(a) With defect (b) Without defect

Figure 1.3: Figure show indicator bricks that was used to show if the image is of a
batch with or without defect

In the end, the experiments resulted in three test cases for the datasets:

• Background segmented dataset with no CLAHE or data augmentation

• Background segmented dataset with CLAHE applied but no data augmenta-
tion

• Background segmented dataset with CLAHE and with data augmentation
added during training

Figure 1.4: Old CAE model
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Chapter 1. Introduction

Figure 1.5: Old DAE model

A deep autoencoder(DAE) and a convolutional autoencoder(CAE), were used
for anomaly detection can be seen in figure 1.4 and 1.5. The key differences be-
tween the two were the DAE being fully connected and the CAE using 2D con-
volutional kernels and more layers. Both models used Adam as optimizer and
ReLU-activations for all convolutional and dense layers except the final layer with
sigmoid activation. The datasets were split into train, validation, and test sets. Both
autoencoders were trained only on good samples and would adjust the weights in
the networks based on the reconstruction error between the input image and the
reconstruction.

The finished trained models would be evaluated with the test set. If a test image
had any defects, they would be removed in the reconstruction. The results were a
patch-wise anomaly score and an average global anomaly score across the input
image. An example of anomaly detection can be seen in figure

(a) Input image (b) Reconstructed image (c) Difference image

Figure 1.6: Image (with background segmentation and CLAHE applied) with no
defects and reconstruction generated by the CAE with data augmentation enabled.
The differences are squared and shown as a difference map. The model was trained
for 130 epochs with binary cross-entropy loss.
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Chapter 1. Introduction

(a) Input (b) Reconstructed image (c) Anomaly Output

Figure 1.7: Segmented and contrast enhanced data prediction and anomaly output
using DAE

The datasets were trained separately and evaluated upon (see Figure 1.1). Be-
fore training, the full images of size 4248x2832 pixels were resized to 750x500
and sliced into 256x344 patches, with a 64-pixel overlap. Random rotation was
applied to each slice in a -5 to 5 degree range. The area under the ROC Curve
(AUC ROC) and f1-score were used as the evaluating measures, which can be seen
in Figure 1.8. The experiments showed that when the images were both masked
and preprocessed, the anomaly detection improved the most, with an AUCROC of
0.96 and f1-score of 0.70 (figure 1.1). The ROC curves for all experiments can be
seen in Figure 1.1c.

Datasets DAE CAE
F1 AUCROC F1 AUCROC

Segmented 0.29 0.63 0.55 0.82
Segmented and Contrast Enhanced 0.54 0.77 0.59 0.91
Segmented, Contrast Enhanced and Augmented 0.68 0.92 0.70 0.96

Table 1.1: F1- score and AUCROC for DAE and CAE.

Statistical Process Control (SPC) is a method of monitoring quality control
in manufacturing. It was included as an exploratory measure and calculated with
batch-based Quality Index (nQI) [4], given by the formula:

nQI =
C−minC(XC)√

∑C (C−µC)2

nC

(1.1)

Where C is the total sum of all anomaly pixels for a single image angle, minC

is the minimum value for the same angle across all batches, XC is the standard
deviation over a population across all batches for a single angle, µC is the mean
of a single image angle across all batches and nC is the sample size of all image
angles and batches.

The best results for CAE and DAE can be seen in figure 1.9a and 1.9b.
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(a) DAE: Segmented im-
ages

(b) DAE: Segmented and
Contrast Enhanced images

(c) DAE: Segmented, Con-
trast Enhanced and Aug-
mented images

(d) CAE: Segmented im-
ages

(e) CAE: Segmented and
Contrast Enhanced images

(f) CAE: Segmented, Con-
trast Enhanced and Aug-
mented images

Figure 1.8: ROC curves for the different datasets. A true positive would be a defect
classified correctly.

1.1.1 Takeaways from 8th semester project

This section describes what was attempted in the 8th semester project and could be
improved this Semester.

Background Subtraction

During the 8th semester project, background subtraction was proven to be needed
as the images of defects had an extra knob as shown in Figure 1.3. When the
network trained on the images, it learned how many knobs there were present and
did not take the polymer surface into account. Therefore, to gain any knowledge
about the polymer surface, the background and unnecessary information need to be
removed. In order to remove the background, a mask was needed to show what was
the background and what was not. These masks were done by hand and proved to
be a tedious and tiresome task, as mask was needed for each image and segmented.
Making this process a lot smoother by automation could reduce time spent and
make the mask more uniform.
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Chapter 1. Introduction

(a) SPC for DAE (b) SPC for CAE

Figure 1.9: SPC for each batch in the segmented, contrast-enhanced, and data
augmented dataset for both DAE and CAE. The batch with defects are labeled as
B1.

Agnostic and robust system

In the project on our 8th semester, we had a quick look at data augmentation.
We looked specifically at rotation, yet there are various methods that we could
apply when training our model or models. Using data augmentation can artificially
increase the amount of data in a dataset. So when working with small datasets, its
use can significantly impact the trained model’s accuracy.

Improving the previous network

While the networks showed great promise and could distinguish between defect
and non-defect batches, there were some problems to look at. The previous project
used rotation as the data augmentation method and a fully connected model (DAE),
and a convolutional model(CAE). Both models were under-fitted, so further devel-
opments would be to introduce other data augmentations and exploring other more
complex neural network architectures to increase the performance and accuracy of
defect predictions. The DAE network was too sensitive to data augmentation and
had worse results than the CAE, so convolutional neural networks will be the start-
ing point of further research. The CAE, while better than the DAE, could still be
improved, as it did have issues with not being generalized enough and reconstruct-
ing defects instead of removing them and creating a non-defect image(example in
Figure 1.10).

Furthermore, the networks used Central Processing Unit (CPU) to train on,
which caused long training times, up to 6 hours, or even errors caused by lack
of memory. This can be improved by using the Graphics Processing Unit(GPU)
instead. Since the GPU has a higher memory bandwidth and has dedicated Video
Random Access Memory(VRAM)[5] makes it easier for the GPU to handle big
amount of data and make the training and predictions faster.

Using AUCROC was not the best measure, as the dataset was imbalanced, so
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Chapter 1. Introduction

(a) Input image with defect (b) Defect reconstructed

Figure 1.10: Example of defect that was reconstructed instead of removed.

changing it to Area under the Precision-Recall curve would be better to compare
any future models.

1.2 Problem Statement

Based on the takeaways from the previous project, this report will go through the
process of creating a system that can automatically segment and detect defects
across multiple different real-world datasets. The system needs to support batches
with multiple image data from different angles and provide an objective anomaly
score. These aspects can be combined in the problem statement:

How can a robust defect detection system be made for visual quality control,
which utilizes deep learning and supports small and varying datasets as input?

To answer this, the following research questions were created:

1. How can we artificially generate more data using data augmentation or other
methods?

2. How can the system be made robust towards lighting, perspective, and place-
ment changes?

3. How can the background of a dataset be segmented automatically?

4. How can a network be made more generalized to avoid reconstruction of
defects while keeping a good representation of the data?

5. Can one system be used on multiple datasets?

9



Chapter 2

Research

This chapter will aim to answer the research questions presented in the previous
chapter. The research covers Data Augmentation methods, Robustness in Deep
learning, Image segmentation, and Anomaly Detection.

2.1 Deep learning Fundamentals

Deep learning is a subfield of machine learning in artificial intelligence (AI), where
neural networks are trained to carry out a task. Neural networks consist of multiple
layers, which can be described in three types; The Input Layer, which sets the
dimensions for the input data. The output layer, which is the results of the network,
and the hidden layers, which are all the layers between the input and output layer
[6]. Each layer consists of a unit (or hidden units [7]) which gets activated based
on the input, weight, and bias. Figure 2.1 shows how a single neuron in a layer is
calculated.

10



Chapter 2. Research

Figure 2.1: Image of An Individual Neuron[8]

A neuron or hidden unit can be described as:

Out put = σ

n

∑
i=1

xiwi +b, (2.1)

Where the output of the neuron is equals, the sum of weights times input, added
with a bias[6]. One single input is referred to as a sample, and if supervised train-
ing is done, classes are referred to as labels. Training a network is usually done
in batches of a dataset. When all batches have been trained on, it is called an
Epoch. The simplest neural networks are feed forward, meaning they receive an
input, which passes through the hidden layers and returns an output without ever
revisiting the other layers in a cycle.

Layers, Activation and Weights

Each unit has an activation function, which decides whether a neuron should be
activated (returning an output) or not. Tanh, also known as a hyperbolic tangent,
ranges from -1 to 1, as seen in Figure 2.2a. It is used for classification mainly[6].

The sigmoid function is similar to the Tanh function, as they are both S-shaped.
The sigmoid function is useful for the prediction of probabilities, as they only can
exist in ranges 0 to 1. The function is expressed as[6]:

f (x) =
1

1+ exp−x (2.2)

and its curve can be seen in Figure 2.2b.
Both the Tanh (Figure 2.2a) and Sigmoid (Figure 2.2b) activations suffer from

the vanishing gradient problem [9]. The vanishing gradient problem is a prob-
lem that can occur under each iteration in the early layers of training when us-
ing gradient-based learning methods to update the weights. The problem happens

11
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when the gradient is so tiny that it prevents the weights from update their values
during backward propagation. If the network can not change the values for the
weight, it can, in the worst case, cause the network not to learn the data’s features.
Another method that does not suffer from the vanishing gradient problem is the
activation function Rectified Linear Unit (ReLU)2.2c[10]. The ReLU-activation
outputs any negative input to be 0, making the network lighter, and it’s linearity
makes it avoid any expensive exponential computations effectively making it faster
to train than sigmoid and tanh. The ReLU-activation function is expressed as:

f (x) = max(0,x) (2.3)

where x is the input[6].
The ReLU activation function can suffer from dying ReLU, a similar problem

as the vanishing gradient problem. The neurons in the network end up in a state
where they are inactive or dead, meaning the neurons’ output zero. If too many
neurons are inactive, the network can die. In practice this means that it can’t pre-
dict anything. It usually happens when the learning rate is too high, but it can be
lessened using leaky ReLU instead.[10](Figure 2.2d).

(a) Tanh (b) Sigmoid

(c) Relu (d) Leaky ReLU

Figure 2.2: Different types of activation functions
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Chapter 2. Research

Convolution 2D

A kernel slides over a 2D matrix in a convolution operation could be an image and
converts the matrix into another smaller matrix depending on if padding is used or
not. The output is the weighted sums of the features where the weight is the kernel.
It can be described by the following equation[6]:

G(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n), (2.4)

where G is the resulting image I is the input image and K is the Kernel. If padding

is used, the values of the matrix will fall roughly the exact location as the original
matrix. If no padding is used, the output matrix will be smaller than the original
matrix decided by the size of the kernel. The reduction of the matrix can some-
times be called dimensionality reduction.

Dimensionality reduction can be accomplished by using max-pooling but can also
be done with the use of stride. Stride works by skipping some of the slide loca-
tions. Depending on the stride, the convolutional operation is not done on each
pixel. Some are skipped depending on the size of the stride. By doing so, the
dimensionality of the matrix will be reduced like with max-pooling.

Figure 2.3: convolution 2D with a 3x3 kernel
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Conv2DTranspose

Conv2DTranspose, a convolution layer that goes in the opposite direction com-
pared to a normal convolution, performs an inverse convolution operation to up-
sample the input. Conv2DTranspose layers are often used in segmentation chal-
lenges or to increase the resolution of an image[11]. An example of how Conv2D-
Transpose works can be seen in Figure2.4 where a 2x2 input image is upscaled to
4x4.

Figure 2.4: Conv2DTransposed

Not all layers in a neural network contains activation functions. Other opera-
tions such as max are commonly used[12].

Maxpooling is used to reduce the dimensionality of the output matrixes. Like
with dropout, this also one way to avoid overfitting. The U-Net code Listing A.1
a MaxPooling of 2x2 is used, meaning that the dimensionality is halved, and an
Example of using Maxpooling on a 4x4 matrix with the kernel size of 2x2 can be
seen in Figure 2.5.

Figure 2.5: MaxPooling
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Chapter 2. Research

Loss Functions and Optimization

The loss function is also referred to as the cost function or error function[6]. The
aim is to maximize or minimize the error the loss function returns.

An example of minimizing the loss is with the loss function Mean Squared
Error (MSE), which is expressed as[6]:

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2, (2.5)

where y is the input, ŷ is the prediction based on the input.
Another loss function is Binary Cross-Entropy, Which is sometimes used in

segmentation networks such as U-Net[13]. It returns a value between 0 and 1, and
is used in binary classification cases where the probability of a class is needed. For
instance, if a classifier is to determine whether the input is a dog or a cat, the loss
function would return a value closer to 1, where 1 is a dog and 0 is a cat, then the
input is predicted to being a ’dog’ and vice versa.

Gradient Descent

An way of training a neural is by using Gradient Descent algorithm to minimize
the loss and optimize the network accordingly through backward propagation (up-
dating the weights).

The algorithm for gradient descent starts with finding the derivative for each
parameter(weight and bias) of a chosen loss function (e.g., MSE), also known as
taking the gradient of a loss function.

Random values are then initialized and inserted in the gradient. Step size is cal-
culated with the formula: StepSize = slope ·LearningRate With the step size, new
parameters can be calculated with the formula: Newparameter = OldParameter−
StepSize, and be inserted into the gradient. This cycle continues until the step size
is below a specified minimum (e.g., 0.001). At that point, the gradient descent
should have reached the minimum of the loss function, though this is not always
the case see Figure2.6. Suppose the loss function has multiple ’valleys’ or mini-
mums. In that case, the gradient descent could reach a valley that would only be a
local minimum or a saddle point (a plateau between a positive and negative slope)
and not the global minimum. When all data is used to compute the gradient, it is
referred to as Batch Gradient Descent[15]. Unfortunately, this variant isn’t suitable
for large datasets and doesn’t allow for adding new sample without recalculating
the gradient. Instead, Stochastic Gradient Descent (SGD) adds a randomness to
the gradient descent by taking one sample at random and minimizing it. New sam-
ples can be added later. Another standard method is Mini-Batch Gradient Descent,
where a random selection of samples is used to optimize (e.g., 50 samples instead
of a single sample)[15, 6].

Another commonly used optimizer is Adaptive Moment Estimation (Adam)[16].
Where SGD uses a fixed learning rate, Adam uses an adaptive learning rate during
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Figure 2.6: Image show gradient descent and the local minimum problem[14]

training. It is known to achieve good results and is faster than other optimizers.
Adam uses estimations of the first and second moment, respectively the mean and
the uncentered variance of the gradients, to adapt the learning rate [15].

Adam can be described as a ”Heavy Ball with Friction since it averages over
past gradients”[17]. The averaging acts as a velocity, which makes it avoid settling
in local minimums. Adam is commonly used for anomaly detection[18, 12, 19].

Regularization

Regularization can be applied to avoid overfitting, making a model more robust and
general in anomaly detection. When using regularization, the model loses some of
its ability to fit the training data well, but it will be better to generalize on data it
has not seen yet. It does it by adding a term to the loss function that penalizes for
large weights.

Different types of regularization are L1 and L2 norms, and data augmentation
[7].

The L1 norm regularization is the sum of the absolute value of weights, also
known as the Manhattan distance. L1 is described as the equation [6]:

||x||1 = ∑ i|xi| (2.6)

L2 norm regularization is the squared value of weights, also known as the Eu-
clidean Distance. The L2 norm is expressed as the equation[6]:

||x||2 = ∑ i|xi|2 (2.7)

Dropout
Dropout is also a regularization method[6], that is implemented on a layer-basis. It
avoids the network from overfitting the data by ignoring some of the neurons. The
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neurons that are ignored are chosen randomly[11].

Data augmentation is also a regularization form. Data augmentation modifies
the data to avoid biases by making small random changes to the data each epoch,
based on the chosen data augmentation.

2.1.1 Network types

Deep learning can be categorized into two general types; Supervised and Unsuper-
vised.

Supervised

Supervised learning is when the model is trained on labeled data, meaning that
when the model is given data, it is also given a corresponding class or label. An
example of some data could be an image of a dog or cat, and the corresponding
label would then be “dog” or “cat.” When the model is then given new data, it will
try to classify it into one of the classes given by the labels. Common networks using
supervised learning is Convolutional Neural Network(CNN) for classification.

Unsupervised

Unsupervised learning is a machine learning technique used when the data is not
labeled, meaning that the model is not told what classes are in the data. The model
will attempt to find structure from the data and extract the most valuable features
that can be used to map the data. Common unsupervised networks are autoencoders
and Generative Adversarial Networks (GAN).

2.2 Image Enhancement

With image enhancement, you can clean up data to be easier to use for further
analysis. Image enhancement such as morphological operations, histogram equal-
ization, or median filters can be used to enhance the contrast in an image or remove
noise. It has before been used to pre-process data for the user to train a neural net-
work. Toufique Ahmed Soomro et al. [20] show the effect of Contrast limited
Histogram equalization on CNNModel for Retinal Blood Vessels Segmentation
and found that they got better or comparable result compared to existing methods.

Histogram Equalization is used to enhance images. It does this by redistribut-
ing the image histogram so that all intensity values represent the whole image,
thereby enhancing the contrast of the image.

Histogram equalization considers the global contrast of an image. Therefore, it
is not a good choice when applied on an image in which histogram covers a more
extensive region on the intensity spectrum and is better suited to be used on an
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image where the intensity values of the image are located in a smaller region of the
histogram.

Other variations of histogram equalization exist, such as adaptive histogram
equalization (AHE), which splits an image into smaller tiles and applies histogram
equalization on each tile separately. A problem with AHE is that it overamplifies
the contrast in areas where the histogram is almost constant. Therefore, it may
cause noise in the image to be amplified in these near-constant regions. Contrast
limited adaptive histogram equalization (CLAHE) is a variation of AHE where the
amplification of the contrast is limited(sometimes referred to as a clip-limit) to
reduce the problem of amplifying the noise in the image. CLAHE has been used
before to increase the contrast of images to make it easier for a CNN to extract
features from dental x-rays [21].

2.3 Data Augmentation

Data augmentation is an easy and commonly used method to increase the size of
a dataset used in neural networks and reduce overfitting. Data augmentation is
done by making different label preserving augmentations to the training images
in the dataset [22, 23, 24]. There is no scientific method mentioned of what data
augmentations are needed [23, 22, 25, 24]. It is necessary to know what kind of
data is being dealt with, how the data is captured, and its use to find the best data
augmentations.

Label-preserving transformation

Since data augmentation is a good way to increase the dataset and to make a model
more robust, it is necessary to consider what augmentation to use and how these
would impact the data. In most cases, the augmentations have parameters to tweak
and tune. These parameters need to be tuned in a way so that the image still rep-
resents the same concept and therefore keeping its label. Figure 2.7 shows an
example from the MNIST dataset[26], where the rotation is taken too far, and the
new image does not resemble the original image. Here the ”6” is turned into a
”9” by rotating the image 180 degrees, and it is therefore not a label-preserving
transformation.

2.3.1 Data Augmentations based on basic image manipulations

This section will describe some of the most commonly used data augmentations
and in which situations these can be useful. It is necessary to keep in mind that in
most cases when applying data augmentation, the label must be preserved.

Translation is moving the image a certain amount in any direction[27]. This aug-
mentation is very useful to avoid positional bias in the data. An example could be
that tennis ball is at the center of the image in all the images. The model would
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(a) Original image (b) Rotated 180 degrees

Figure 2.7: Example of a non label-preserving transformation

therefore need to be tested on centered images as well. Figure 2.8 shows a tennis
ball that has been translated.

Figure 2.8: Example of translation data augmentation [28]

Cropping can be an efficient augmentation for images with mixed height and width
by cropping an important region of an image. Cropping gives an effect that is a lot
like translation due to the object of interest is moved because of the height and
width being changed. However, ”Depending on the reduction threshold chosen for
cropping, this might not be a label-preserving transformation.”[27], meaning if an
image is cropped too much, the label can’t be placed on the object.
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Figure 2.9: Example of cropping data augmentation [29].

Rotation augmentation is done by rotating the image around a point. However, as
the rotation degree increases, the label for the data can be lost[27]. An example
could be with digit recognition, and here a ”6” can be the same as a ”9” with a 90-
degree rotation. This augmentation is useful if the object of interest is not always
at the same angle and can, like translation, help to avoid positional bias.

Figure 2.10: Example of rotation data augmentation [29].

Flipping can be done either horizontally or vertically, with horizontally being more
common than vertically[27]. Figure 2.11 shows an example of the flipping aug-
mentation. On a dataset involving text recognition, flipping is not a label preserving
transformation [27].
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Figure 2.11: Flipping Augmentation. Original image is in the top left. In the top
right, the image has been flipped horizontally. The bottom left has been flipped
vertically, and the bottom right has been flipped vertically and horizontally [29].

Color space transformation is augmentations to the color space. The color space
is how the colors in the image is encoded. One color space is the RGB color space,
here the colors are divided into Red, Green and Blue. According to Shorten et
al.[27] ”Lighting biases are amongst the most frequently occurring challenges to
image recognition problems.”. It is therefore ideal to know what to do in order to
avoid this problem.

An easy way to use the color space transformation would be to make the image
brighter or darker. This can be done by adding or subtracting a constant from all the
pixel values in the image. Addition and subtraction can also be made on a single
color channel adding more value to that channel as seen in Figure 2.12.

Figure 2.12: Examples of color augmentations [30].
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Color space transformation can also be used to convert RGB images into grayscale.
Combining the three channels into one, resulting in faster computation [27]. How-
ever Chatifled et al. [31] found that this would significantly decrease the classifica-
tion accuracy. However there are also disadvantages to color space transformations
done on images with multiple color channels. Each image takes up more memory,
transformations are more computational heavy, increased training time, and it may
discard important color information. In the case of discarding color information
the transformation may not be label-preserving.

Perspective correction is correcting the view angle of an image so that the image
appears to be taken straight in front of the object. Figure 2.13 shows how perspec-
tive correction can make license plates from vehicles easier to read, and thereby
improving text recognition.

Figure 2.13: (a) Original image of a license plate. (b) Its perspective corrected ver-
sion. (c) Two selected characters shown before correction and (d) The characters
shown after correction. [25]

When working with images taken from cameras, these images often suffer from
projective distortion[25]. In order to make up for this, the neural network would
have to take in more parameters, thereby making it more complex. So by elimi-
nating these distortions with perspective correction, it would be possible to reduce
the complexity of the neural network. Perspective distortion of a plane can be in-
terpreted as a generalized linear transformation of a plane. In order to correct the
distortion, different clues can be gathered in the image, such as object boundaries
and textual structure[25].

2.4 Segmentation

Segmentation is one of the larger areas in computer vision. To segment is to di-
vide an image into two significant parts or more[32, 33]. There are two forms of
segmentation; semantic and instance segmentation.
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The goal of semantic and instance segmentation is to label individual pixels
in an image into different classes. In recent years, progress in segmentation chal-
lenges is mainly done by CNNs.

Figure 2.14: Example of semantic segmentation and instance segmentation. Even
though there are more than one camel, they are all classified with the same label in
Semantic segmentation but multiple camels in instance segmentation[34].

In Figure 2.14, it is shown what semantic and instance segmentation outputs.
In the image, four camels are present, and some of them are obscuring each other.
There are three classes: Sky, Camel, and Desert. Semantic segmentation labels
each pixel as one of these classes. Despite there being multiple camels, they are all
labeled as the same. This method has been used to help autonomous cars drive on
the current road infrastructure[35], or in the medical field to help experts process
medical images faster [36].

While instance segmentation assigns classes to pixels in the same way as se-
mantic segmentation, it additionally identifies how many instances of an object of
a specific class occur in an image. Instance segmentation is a two-part problem;
Object detection and segmentation. In Figure 2.14, all the camels have their own
separate contour, indicating that they are multiple instances of the class camel.

2.4.1 Segmentation Methods

This section describes several semantic segmentation techniques.

Threshold Method
One of the simplest methods for segmenting pictures is thresholding see Figure
2.15, where gray-scale image values are split into two; foreground and background.
This is done by setting a threshold on the pixel intensity 0-255. If a threshold of
75 was set, it would imply that all pixel values underneath would be a background,
and all pixel values above would be the foreground.
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Figure 2.15: shows a example of thresholding using the Otsu method[37]

There exist two methods of thresholding; local and global. Local thresholding
separates the picture into smaller fragments, and multiple thresholds split the frag-
ments into foreground and background. Global thresholding has a single threshold
for the entire picture. There are various methods for picking the threshold. One
regularly utilized is the Otsu method[38]. The greatest advantage of thresholding
for segmenting is that it is quick, no labels needed and good at segmenting if the
foreground and the background have a significant pixel intensity difference[39].

Clustering Based Segmentation
Another segmentation method is Clustering-based methods (see Figure 2.16), for
example, k-Means. K-Means is an unsupervised machine learning algorithm that
segments images based on various classes. For example, in background and fore-
ground segmentation, there would be two classes defined by the k-parameter (k
= 2). The algorithm is unsupervised, meaning that labeling isn’t necessary as K-
means will attempt to cluster the data into classes. Having a k-parameter of two
will make the K-Means algorithm pick 2 points as starting points. It then looks at
which points are closest and move towards them. It will continue to do this until
the best means of the two clusters are found, and a threshold can be chosen based
on the two clusters’ means [39].
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Figure 2.16: Shows what happen to an image if you chose a different k[40]

Region-Based Segmentation
The watershed algorithm is a region-based segmentation method (see Figure 2.17).
Watershed sees the image as a topographic landscape and treats all intensity values
in an image as a height; the higher the intensity, the higher the peak is, and the
lower the intensity, the more profound the valley is likewise called the basin [41].
The watershed algorithm mimics the idea of water, filling up the valleys with the
basins’ absolute minimums as its origin point. The point of contact where two
water sources meet is known as the ridgelines, which are utilized to isolate two
objects and would be the edge of an object. Each body of water is then marked as
different objects [41].

Figure 2.17: Show am example of watershed being used to segment nuclei from a
confocal laser scanning[42]

Artificial Neural Network Based Segmentation
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Newer approaches when segmenting images are utilizing CNNs, for example, U-
Net, which was first utilized in 2015 for the division of biomedical images [13].
CNNs work by detecting patterns in an image with the assistance of its convo-
lutional layers. Convolutional layers are comprised of various filters that detect
patterns, for example, edge detectors and corner detectors, and some layers detect
circles and squares. The deeper, the more sophisticated the layers become, for
example, layers that can detect eyes or full shapes like animals [43].

2.4.2 U-Net

U-net is an encoder-decoder network that comprises of two parts 2.18; a contract-
ing path where dimensionality is reduced (Here, the image resolution gets reduced),
and this is the encoder part of the network. It uses a 3x3 kernel in convolution lay-
ers in this path with an activation function of ReLU and Maxpooling of 2x2. The

second part, the decoder, is an expansive path that comprises upsampling with 2x2
kernel convolution layers. In this path, the images get upscaled, and the image
from the contracting path gets concatenated. This is followed by two 3x3 kernel
convolution layers with ReLU. The network can train on a few images compared
to other networks and is fast to train on GPUs.

Figure 2.18: U-Net Architecture [13].
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2.5 Anomaly Detection

Anomaly detection, also known as outlier detection or defect detection, is an un-
supervised method of finding outliers from a distribution. Anomaly detection is
unsupervised because the network is not passed any labeled data. It is usually
trained on only data without anomalies.

2.5.1 Autoencoders

The autoencoder is a bottleneck architecture, as seen in Figure 2.19. The purpose of
the encoder is to learn the representation of the input data in a smaller compressed
state known as the latent space. This forces the encoder to only learn the most
valuable features from that input data to later decode it as a reconstructed image.

Autoencoders can be expressed as

x̄ = D(E(x)), (2.8)

where x is the input, E is the encoder part of the model, D is the decoder, and x̄ is
the reconstructed version of the input x [44].

Figure 2.19: Autoencoder bottleneck architecture [45]

For calculating the reconstruction error, Mean-Square-Error (MSE)[12] have
regularly been used. MSE is known as loss function or cost function. Commonly
used optimizers have been Stochastic Gradient Descent (SGD)[46] and Adaptive
Moment Estimation (Adam)[19, 12, 18].

Autoencoders with more than one hidden layer are usually referred to as deep
autoencoders [44].

The chosen optimizer and loss function depends on the specific architecture
and the activation used in the layers.

Autoencoders can be used for denoising[47], dimensionality reduction and
anomaly detection[48, 49, 12].

For image data, convolutional autoencoders (CAE) uses a kernel to extract 2D
feature data from the input images [50, 12]. When using images with large di-
mensions, it is impossible to use the whole image as input due to the limited GPU
memory. Solutions have been to use overlap-tile strategies with extrapolation to
stitch the images later seamlessly together [12]. Chow et al. [12] used a sliding
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window of 256x256 and extrapolated samples to 320x320 using mirroring before
normalizing (range -1 to 1) and inputting them to a CAE. Tsai and Jen (2021) [18]
implemented a 13-layer CAE for anomaly detection for surface defect inspection,
which can be seen in Figure 2.20. The CAE used MSE as loss function and the
Adam optimizer. Their results showed that applying regularization to their model
increased defect detection.

Figure 2.20: CAE for anomaly detection[18].

2.5.2 Generative Adversarial Networks

GANs are another network used for anomaly detection[46]. The network consists
of two models; a discriminator and a generative model (see Figure 2.21). The
network is referred to as ’adversarial’ as the two models are opposing each other.
The generator is trained on real data and receives randomly distributed noise as the
input. The result is a generated image that is passed to the discriminator, trying to
mimic real data. The discriminator model acts as a classifier, labeling the data to be
real or fake. The model is successful if the discriminator cannot tell the generated
fake image from the real image. The results are used to fine-tune the generator[51].

While GANs can create good results, they can be difficult to train in practice
due to the high dimensional spaces, while AE and CAE are more straight forward
[18].

2.5.3 Evaluating Anomaly Detection

For evaluating the performance of anomaly detection models, the most commonly
used methods are Area under the ROC curve (AUROC) and area under the precision-
recall curve (AUPRC) [19].

Dealing with skewed and imbalanced datasets, the AUPRC is preferred over
AUROC [52]. In other cases, simply Precision, Recall, and F1 and F2-score are
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Figure 2.21: Generative Adversarial Network Architecture [51]

used as evaluating measure[12].
F1 and F2-scores are calculating with the formula:

Fβ = (1+β
2)

precision× recall
(β 2× precision)recall

, (2.9)

where β is a positive real number that is a weight allocated to precision and recall.
The weight in F2-score is added more to recall over precision, which puts more
importance of determining real defects, by avoiding false negatives[12].

To display defects, anomaly maps have been used to inform inspectors of any
possible defects. Chow et al.[12] used the reconstruction error (e):

e =
3

∑
c=1

(p(x,y)− p̂(x,y))2, (2.10)

where c is the channel, p is the input pixel, p̂ is the reconstructed pixel. As they
were working with RGB image and not grayscale images, each channel had to be
summed to reach an anomaly score.

2.6 Synthetic Data

Industrial anomaly detection is a challenging task, not only with the lack of defects
but also for evaluating defects. Evaluating what constitutes a defect can result in
false negatives or false positives depending on the priority. In addition, the dataset
can contain multiple categories of defects which makes it even more difficult for
the model to train on with the already minimal dataset. Creating synthetic datasets
can provide more information to the model for detecting defects and strengthening
them. Synthetic Data is artificial data created to mirror the statistical properties of
original data without revealing any sensitive information.[53][54] Synthetic data
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could be utilized for instance-segmentation. Segmenting objects from an image
can be troublesome, and one method for achieving good segmentation is by creat-
ing the mask by hand. This, of course, takes a lot of time and human resources.
Therefore, a network trained on synthetic masks can predict the masks for real data
and be utilized to eliminate the background and other unnecessary information in
the images.

2.6.1 Methods for creating synthetic data

There have been different ways to create a synthetic dataset. One method could be
to train a Generative Adversarial Networks(GAN). Jain et al. [55] trained different
versions of GAN to generate new surface defect images in steel strips from random
noise filters.The GANs was trained on augmented data so the networked learned to
generated synthetic augmentation images for then to be tested on a Convolutional
Neural Networks(CNN), to see which GAN generated synthetic data improved the
network the most. Three different GAN models were made to create new syn-
thetic data, first is the Deep Convolutional GAN (DCGAN). The benefit for this
network is in the discriminator, which excels in feature extraction. This can im-
prove the training stability and the quality of generated images compared with a
normal GAN. A result of generated synthetic data from the DCGAN can be seen in
figure2.22. Another GAN used to generate data was the Auxiliary Classifier GAN
(ACGAN), which allows the model for conditioning on information obtained from
a provided class label. This makes the network able to incorporate the provided
class labels from its training to produce labeled image samples for supervised data,
which improved the image sample quality. The last GAN used is the Information-
theoretic GAN (InfoGAN). The benefit of InfoGAN is that the generator input is
split into two parts: the noise vector and the latent code vector (also called the
bottleneck). This makes the InfoGAN capable of separating the generated defects
from background and therefore changing the amount of defect should appear in
the synthetic data generated images. The three networks was then evaluated on
the accuracy of the CNN to predict the right classes of defects, against the classic
data augmentation such as flipping, rotation, and scaling. The result for the classic
augmentation had a accuracy of 90.28% then compared with the three networks
where DCGAN had a accuracy of 95.78%, ACGAN had a accuracy of 92.78% and
InfoGAN with a accuracy of 94.86%. even tho there is an improvement in accuracy
the findings of this study suggest that a GAN-based data augmentation can offer
an advantage, in not have the opportunity to collect new data but also reducing the
time it takes for collection it.
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Figure 2.22: Synthetic data generated from DCGAN from the study[55]

Ekbatani et al.[54] trained a Deep Convolutional Neural Networks(DCNN) to
count people in a crowd. Synthetic data was then introduced to increase the dataset
and at the same time protect privacy and confidentiality compared to using real
data. The dataset contains clips of groups of people walking towards and away
from the camera, consisting of 34 training video samples and 36 testing video sam-
ples. All video samples were used to generate the synthetic dataset. The method
was split into five parts. First, background extraction, where they extracted the
background in the videos, then extracted the pedestrians morphological labeling
methods. With the extracted backgrounds, they then generate their own back-
grounds, and to make them more realistic. They apply image augmentation such as
changing the global illumination of the images randomly and adding some random
Gaussian noise to the backgrounds. They then applies a filter to show only the re-
gion of interest(ROI) in the images. Then adds pedestrians to the synthetic images
which got normalized between 0 and 255 and resized to match the network. These
five steps can be seen in Figure2.23. the study concludes that a DCNN trained on
synthetic a highly realistic synthetic dataset of pedestrians in a walkway, synthetic
data generated by Ekbatani et al. had a lower mean absolute error(MAE) 0.707
and mean squared error (MSE) 0.942 compared to synthetic dataset generated by
another study (Segu´ı et al., 2015)[56] where the MAE 0.74 and MSE of 1.12.

Figure 2.23: Steps that was made to generated the synthetic data of pedestrians in
[54]

Another approach is to make the synthetic from 3D models. Ward et al. [57]
implemented an automated segmentation to find phenotypic traits in plant leaves.
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They tested if there is an improvement between real-world data and synthetic data
to train and segment plant leaves. The synthetic leaf is made in a free 3D software
tool called Blender[58]. The approach for the synthetic data was to make a inspi-
ration leaf which was made in Blender with manipulation points. Each generated
leaf is then scaled along its axis individually and applied random leaf texture this
can be seen in Figure 2.24. Before rendering the synthetic data image, there is
applied a random background behind the leaves. As for the camera and lighting,
the camera angle was from a top-down view and a single light source, there was a
variation in the position of both camera and light. With the synthetic data gener-
ated, the evaluation then consisted of training a Mask-Region Based Convolutional
Neural Networks(RCNN) on different versions of synthetic data and real. The best
result for segmenting phenotypic was by training on a combination of synthetic
data and real data.

Figure 2.24: Stages for rendering each leaf

Figure 2.25: Pipeline for generating synthetic 2D images of the leafs

2.7 Summary of findings

• It is possible to increasing the size of a dataset with the use of data augmen-
tation or with synthetic data by using either a neural network or a graphical
program. Thereby answering the first research question: ”How can we arti-
ficially generate more data using data augmentation or other methods?”

• In data augmentation, it is important that the augmentation is label preserv-
ing, and knowing about you data to chose the correct augmentations in order
to make the data invariant for certain biases. Thereby answering the second
research question: ”How can the system be made robust towards lighting,
perspective, and placement changes?”
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• Image segmentation is done mainly by CNN in state of the art, but other
methods such as thresholding can be used if the data allows it. This an-
swers the third research question: ”How can the background of a dataset be
segmented automatically?”

• Extrapolation should be used to avoid border-effects.

• MSE and Adam are the most common loss function and optimizer.

• L1 norm, L2 norm, dropout, and data augmentation are used to avoid over-
fitting and can make the model more generalizing.

• F2-measure puts more weight on recall to avoid false negatives and defects.

• GANs can give good results, but very hard to train in practice, where Con-
volutional Autoencoders are easy and faster to train.
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Design and Implementation

This chapter covers the implementation process and design choices that has been
made throughout the implementation of this project with explanation on the tools
used and a description of the setup. Throughout the process of implementing this
project, we have made use of internal testing.

3.1 Overview of the whole system

The process of anomaly detection in this project works as a pipeline. The pipeline
will take in the raw data given to us by our collaborators and afterward segment the
background out from the images, thereby eliminating most of the unnecessary in-
formation in the images. The data with no background will be fed into the anomaly
detection model and checked for anomalies. The output of the anomaly detection
would a reconstructed image and a picture which shows where in the image the
anomalies are found, along with an anomaly score which can be utilized to get an
idea to which batch has the most anomalies in it. Figure 3.1 shows the proposed
system. Two squares show the networks for training the models utilized in the
primary system to segment and detect anomalies. Example images of input and
output are likewise shown.
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Figure 3.1: Overview of the process

3.2 Tools

During this project, different tools and software has been utilized. The tools and
software used will be described in this section.
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3.2.1 Blender

The process for creating our synthetic data was decided to be made in Blender since
we received a Blender project with a 3D Computer-aided design (CAD) model of
the bricks from our collaborator.
Blender is a free, open-source 3D creation program that supports the possibility
of modeling, rigging, animation, simulation, rendering, compositing, and motion
tracking. The rendering feature is the process of making a 3D scene into a 2D
image, and Blender includes three different rendering engines: Eevee, Cycles, and
workbench. Blender also gives the user the possibility to download other third-
party rendering engines through the add-on plugin. Eevee is a physically-based
real-time rendering engine. It focuses on speed and interactivity while achieving
the goal of rendering physically based renderer(PBR) materials. This makes it
great to use for previewing the materials in real-time. Eevee uses a process called
rasterization that turns vector graphics shapes into raster images. So through nu-
merous algorithms, it estimates how light interacts with objects and materials, but
Eevee has many limitations compared to Cycles because of this.

Cycles is a physically-based path tracing. It casts rays from each pixel of the
camera into the scene to collect information for objects it reflects, refract, or gets
absorbed by until they either hit a light source or reach their bounce limit. Cycles
also fire additional randomized rays from the same pixels called samples and aver-
age the results over time. Cycles, compared to Eevee, use ray-tracing in its render
engine for this task. Cycles makes the rendering a lot more photo-realistic. Lastly,
the workbench rendering method is not meant for final rendering but for display-
ing a scene in the 3D viewport as it is optimized for fast rendering. The rendering
engine has mostly the same parameters that define the outcome of the rendering,
which are cameras, lights, and material. These parameters are also shared between
Eevee and Cycles. [59, 60]

Figure 3.2: Blender UI and functionality
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3.2.2 TensorFlow

TensorFlow is an open-source software library used for machine learning, such
as training different deep neural networks. The Google Brain team developed it
for internal use but was released under the Free Apache License 2.0[61] in 2015.
TensorFlow can run on multiple CPUs and GPUs. GPUs are better for training a
deep neural network model because they are good at handling simple calculations
but can calculate many of them in parallel. A CPU is best at handling single but
more complex calculations one after the other. Because GPU is so much faster
when training, segmentation, and anomaly detection models will be using GPUs to
train, an example of the difference between the performance of CPUs And GPUs
can be seen in Figure 3.3.

Figure 3.3: Transfer speeds for CPUs and GPUs[5]

3.2.3 Google Colab

Since we only had access to our personal computers to train our models, we in-
vestigated online browser solutions such as google Colab, a free service provided
by Google. Google Colab can run python code in the form of Jupiter Notebook
directly from the browser. Google Colab runs python 3.7.10 at the time of this re-
port. Resources at Google Colab might not always be available for users. Google
Colab gives access to one of the graphical processors available at the time. It can
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be Nvidia K80s, T4s, P4s, or and P100s. There is no controlling which of the
processing units get connected to the session at any given time when using their
services[62].

The code seen in Listing 3.2.3 was used to see the amount of GPU utilized at
the time and to print the device information. An example of the device information
can be seen in Figure 3.4.

1 !ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
2 !pip install gputil
3 !pip install psutil
4 !pip install humanize
5 import psutil
6 import humanize
7 import os
8 import GPUtil as GPU
9 from tensorflow.python.client import device_lib

10 # Prints devices that are avalible to train on GPU/CPU
11 print(device_lib.list_local_devices())
12 GPUs = GPU.getGPUs()
13 #Check for free GPU
14 gpu = GPUs[0]
15 def printm():
16 process = psutil.Process(os.getpid())
17 print("Gen RAM Free: " + humanize.naturalsize( psutil.

virtual_memory().available ), " | Proc size: " + humanize.
naturalsize( process.memory_info().rss))

18 print("GPU RAM Free: {0:.0f}MB | Used: {1:.0f}MB | Util {2:3.0f}%
| Total {3:.0f}MB".format(gpu.memoryFree, gpu.memoryUsed, gpu

.memoryUtil*100, gpu.memoryTotal))
19 printm()

Figure 3.4: Show the information printed form the code in Listing 3.2.3
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3.3 Data Description

The dataset given to us by our collaborator consists of 10 batches, each with 24
gray-scale images from different viewpoints. One of the batches contains defects
on all the bricks, while the rest are non defect. An example of a non-defect batch
can be seen in Figure 3.5.

Figure 3.5: An example of a non-defect batch with the 24 images from different
view angles.

Image acquisition

Our collaboration partner collected and provided the data in this project. The data
was recorded by placing polymer surface elements on a plate by hand and placing
the plate in an ATOS ScanBox series 4[2], where an ATOS capsule scanner[3]
rotated around the polymer surfaces taking gray-scale images. The scanner has a
120 mm measurement volume. The images are taken from 12 different positions.
The two images are taken from two cameras being roughly 5 cm apart as on the
ATOS Capsule for each position. However, the exact angles the images are taken
from are unknown.

3.4 Data Preprocessing

Before the data can be put into the network it is necessary to prepare the data. This
is done by making sure the folder structure is correct for the network to take in and
with the use of Contrast Limited Histogram Equalization. Before the data can be
put into the U-Net, true masks also had to be created for the data, these are done in
hand using GIMP [63].
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3.4.1 Folder Structures

For this project, two separate neural networks were made. One for U-Net and one
for the autoencoder. As the use of these networks are different and need different
input, the folder structure for the two are therefore different. Figure 3.6a shows the
folder structure for the U-Net and Figure 3.6b shows the folder structure for the
autoencoder.

(a) Folder Structure used when training U-
Net

(b) Folder structure used when training Au-
toencoder

Figure 3.6: Folder structures for neural networks used in this project

3.4.2 Contrast Limited Histogram Equalization

In the past project, we saw improvements in the performers of the defect detec-
tion network’s ability to find defects in the images when we applied Contrast
Limited Histogram Equalization (CLAHE) to the images. A code example us-
ing OpenCV[64] can be found in listing 3.1. This code was also used to get the
histograms, as shown in Figure 3.8 and Figure 3.9. They show the change of dis-
tribution of the pixels for an image with a specular highlight and a dark image.
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When also counting the background pixels in the image, we would get his-
tograms that did not represent the distribution of the pixels properly. That is why
we chose not to count the black pixels in the image when computing the histogram
of different images. An example of the change can be seen in Figure 3.7.

Figure 3.7: Example of a histogram where we count the zero-value background
pixels in the image. Notice that it is hard to see the non-zero values because of the
large number of background pixels.

1 import cv2
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from google.colab.patches import cv2_imshow
5

6 ImagePath = '/content/Masked_Light_Grey_Brick_Angle_19_Batch_1.png
'

7 MaskPath = '/content/Light_Grey_Brick_Angle_19_Mask.png'
8

9

10 img = cv2.imread(ImagePath,0)
11 finalMask = cv2.imread(MaskPath,0)
12

13 CLAHE = cv2.createCLAHE(clipLimit = 50, tileGridSize = (16,16))
14 CLAHEimg = CLAHE.apply(img)
15

16 MaskedImage = cv2.bitwise_and(CLAHEimg, CLAHEimg, mask=finalMask)
17 cv2_imshow(MaskedImage)
18

19 # plt.hist(MaskedImage[MaskedImage != 257], color="blue", bins
=256)

20

21 plt.hist(MaskedImage[MaskedImage != 0], color="blue", bins=256)
22

23 plt.figure
24 plt.show()

Listing 3.1: Contrast Limited Histogram Equalization Code
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(a) Input Image (b) Histogram for In-
put Image

(c) CLAHE Image (d) Histogram for
CLAHE Image

Figure 3.8: When applying CLAHE to an image with an area of high-intensity
light, the pixel distribution changes to be flatter which gives the image a higher
uniform contrast.

(a) Input Image (b) Histogram for In-
put Image

(c) CLAHE Image (d) Histogram for
CLAHE Image

Figure 3.9: When applying CLAHE to a low light image, the pixel distribution
changes to be flatter which gives the image a higher uniform contrast

Contrast limited histogram equalization was applied to improve the result for
the anomaly detection as a preprocessing step. It was done when the masks gen-
erated by the U-Net model were applied to the image data. When first applying
CLAHE, it was noticed that it affected the background of the images. The back-
ground would become lightly more grey of about 10-pixel intensity value. The
masks were applied again to remove the change in the background caused by ap-
plying CLAHE, and it can be seen in Listing 3.2 on line six to nine.

1 CLAHE = cv2.createCLAHE(clipLimit = 9, tileGridSize = (9,9))
2

3 # APPLY MASK OF THE WHOLE DATA AND APPLY (CLAHE)
4

5 MaskedImage = cv2.bitwise_and(OriginalImage, OriginalImage,
mask=Mask)

6 MaskedImage = cv2.cvtColor(MaskedImage, cv2.COLOR_BGR2GRAY)
7 CLAHEimg = CLAHE.apply(MaskedImage)
8 MaskedImage = cv2.bitwise_and(CLAHEimg, CLAHEimg, mask=Mask)
9

10 # USED IF WE WANT TO SPLIT THE BRICKS

Listing 3.2: CLAHE
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3.5 Creating synthetic data

As mentioned the synthetic data was created in Blender, using the CAD model
received from our collaboration partner. To make the synthetic data similar to
the real data, we added a spotlight that pointed at the bricks in the scene, which
simulated the spotlight source from the real data. We got the information from the
collaborators that an ATOS GOM scanner[3] was used to take the images. The
ATOS GOM scanner contains two cameras, and therefore two cameras were added
to the scene that both looked at the same spot to simulated the ATOS GOM scanner
(see Figure 3.10). Bezier curves were placed, which the cameras would follow to
get different angles. The Bezier curves were made to simulate the movement of the
scanner looking at the bricks from different angles, and an example can be seen in
Figure 3.11.

Figure 3.10: The Setup of the ATOS
GOM Scanner in Blender

Figure 3.11: The two bezier curves
where the cameras are attached to

With the cameras attached to the bezier curves, the animation properties “fol-
low path” and “look at” were applied to the cameras. The “follow path” property
moves the cameras according to animations within the keyframes specified (See
Figure 3.12), and the “look at” property makes sure the cameras always focus an
point in the scene, in our case the brick model. With the cameras attached, they
will follow along the Bezier curve in the animation.

Figure 3.12: The animation window with keyframes

The Blender project contained a lot of polygon information, which caused it to
be slow or not respond, since it was run on personal computers. To combat Blender
not responding, the number of faces was reduced by decimating all objects in the
scene. Decimate is a modifier that reduces the vertex/face count of a model with as
minimal changes to the model as possible. The total number of faces was reduced
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from 36.168.875 to 74.083 faces by keeping only ten bricks and massively reducing
the number of faces on the background brick holder, as shown in Figure 3.13. Each
brick got a slight reduction in faces as we still wanted the quality to be as high as
possible for the bricks.

Figure 3.13: Showcasing the models that is in the scene with both the LEGO bricks
and the holder for them from the real scanner

The chosen rendering engine was Cycles, as it gives the most photo-realistic
renders compared to the other engines. The images were rendered in 4248x2832
resolution matching the size of the data.

To control the rendering process, a python script was created to automatically
render the images across the Bezier curve, as seen in Listing 3.3. Additionally,
masks were rendered per image, where the bricks were added to a layer, and its
alpha channel was rendered as a binary image. All masks and original images
were saved to separate folders to be later used to train a segmentation network.

1 import bpy
2 import os
3 import time
4

5 counter = bpy.context.scene.frame_start
6 framenumber = 20 #every x frame will there be generated an images
7

8 start = time.time()
9 path_dir = bpy.context.scene.render.filepath #save for restore

10 print('Taking pictures')
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11 for f in range(bpy.context.scene.frame_start, bpy.context.scene.
frame_end+1):

12 if counter >= framenumber:
13 print(f, bpy.context.scene.frame_end)
14 bpy.context.scene.frame_set(f)
15 for cam in [obj for obj in bpy.data.objects if obj.

type == 'CAMERA']:
16 print(cam.name)
17 bpy.context.scene.camera = cam
18 bpy.context.scene.render.filepath = os.path.join(

path_dir, cam.name + str(f))
19 bpy.ops.render.render(write_still=True)
20 bpy.context.scene.render.filepath = path_dir
21 counter = 0
22 print("done did it")
23

24

25 counter +=1
26

27 print( "Elapsed time", time.time()-start)

Listing 3.3: Blender Rendering script

Different samples per pixel(SPP) renders were compared to find the optimal
render time without sacrificing the quality. The chosen SPP were 10, 20, 50, 100,
and 150 SPP, and their renders can be seen in Figures 3.14a, 3.14b and 3.14c. It was
decided on using the 50 samples because it kept most of the highlights compared
to the lower SPP images. Increasing the SPP over 50 samples did not add enough
visual fidelity to the images to be worth the additional render time, as 50 SPP took
4 minutes and 18 seconds per render while 150 took 9 minutes and 20 seconds per
render, rendered on a NVIDIA GeForce 1060 6GB graphics card. All the times
can be seen in Table 3.1. A Non-Local Means(NLM) denoising filter was applied
to remove some of the noise on the rendered images. This effect can be seen in
Figures 3.14d, 3.14e and 3.14f.

SPP Time

10 2.14 minutes
20 2.39 minutes
50 4.18 minutes
100 6.19 minutes
150 9.20 minutes

Table 3.1: Time it takes to render one angel for different samples per pixel
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(a) 10 SPP no denoising (b) 50 SPP no denoising (c) 150 SPP no denoising

(d) 10 SPP with denoising (e) 50 SPP with denoising (f) 150 SPP with denoising

Figure 3.14: Comparison for different samples per pixels with and without denois-
ing

3.5.1 Data Augmentation

To choose the most fitting data augmentation, we need to know more about our
data. Other than knowing that the images are gray-scale and taken from different
angles, we know from our collaborator, who collected the data, that the polymer
bricks were placed by hand. This means that there are slight differences in position
and rotation. In Figure 3.15 it can be seen how the differences are highlighted
around the edges due to the slight positional difference.

Figure 3.15: Image of absolute difference between two images
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Based on the knowledge from the data, we have to make networks positional
and rotational invariant, as we do not know where the position and rotation of the
bricks will be.

The augmentation we are using is therefore:

• Translation to get it positional invariant

• Rotation to get it rotational invariant

Implementation of Data augmentation

The data augmentation is implemented using the image data generator function
from Tensorflow-library. The image data generator ”Generate batches of tensor
image data with real-time data augmentation”[65]. The selected data augmen-
tations are specified as arguments. For rotation and translation, the arguments
are rotation range, width shift range, and height shift range. The rotation range
takes an integer value representing the maximum amount of rotation that can be
applied. The width shift range and the height shift range determine how much
random translation is added to the horizontal translation and the vertical transla-
tion. This is done with a integer value representing the max amount of pixels that
the image can be translated.

3.6 Segmentation

Since we are only interested in finding defects in the bricks, we see the background
as unwanted noise in the images. Therefore our segmentation aims to eliminate the
background of the images and consequently remove noise. We are not interested
in the individual objects or their location in the images, and we, thus, focus on
semantic segmentation as a segmentation method. This section implements vari-
ous methods to see what results we get utilizing two images with a low and high
specular highlight.

3.6.1 Testing Segmentation Methods

This section covers the test of different segmentation methods Thresholding A
quick test was performed utilizing ImageJ[66] and the Plugin Auto Thresholding[67]
to see what sort of masks global and local thresholding would create, which can be
found in Figures 3.16 3.17 3.18 3.19
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Figure 3.16: The original image is an example taken from our data with low light.
Different Global thresholding methods were applied using ImageJ[66] and the plu-
gin Auto Threshold[67]. The method used starting from the left is Default, Huang,
Huang2, Intermodes, IsoData, Li, MaxEntropy, Mean, MinError(i), Minimum,
Moments, Otsu, Percentile, RenyiEntropy, Shanbhag, Triangle, and Yen.

Figure 3.17: The original image is an example taken from our data with intense
specular highlights. Different Global thresholding methods were applied using
ImageJ[66] and the plugin Auto Threshold[67]. The method used starting from
the left is Default, Huang, Huang2, Intermodes, IsoData, Li, MaxEntropy, Mean,
MinError(i), Minimum, Moments, Otsu, Percentile, RenyiEntropy, Shanbhag, Tri-
angle, and Yen.
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Figure 3.18: The original image is an example taken from our data with low light.
Different local thresholding methods were applied using ImageJ[66] and the plugin
Auto Threshold[67]. The method used starting from the left is. Bernsen, Contrast,
Mean, Median, MidGrey, Nibblack, Otsu, Phansalkar, and Sauvola.

Figure 3.19: The original image is an example taken from our data with in-
tense specular highlights. Different local thresholding methods were applied using
ImageJ[66] and the plugin Auto Threshold[67]. The method used starting from the
left is. Bernsen, Contrast, Mean, Median, MidGrey, Nibblack, Otsu, Phansalkar,
and Sauvola.

Both global and local thresholding perform well on the image with low light,
and a decent mask could be made with the assistance of some morphology opera-
tion like closing. However, it is not easy to get a proper mask from doing the same
on the picture with a specular highlight.
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K-means A small test of K-means was conducted utilizing OpenCV[64] with
k=2, and random initial centers were chosen for each iteration. The test was done
to see what kind of result we would get on the various images in the dataset. The
result of the test can be found in Figures 3.20 and 3.21.

Figure 3.20: The original image is an example of a low-light image from the
dataset. To the left is the effect of utilizing OpenCV[64] K-Means where k=2.

Figure 3.21: The original image is an example of an intense specular highlight
image from the dataset. To the left is the effect of utilizing OpenCV[64] K-Means
where k=2.

As seen with thresholding, k-means seems to have a problem getting good
results on the image seen in Figure3.21. Nevertheless, it has no problem with the
image with low light seen in Figure3.20.
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Watershed Algorithm A test was done using ImageJ to see how the watershed
algorithm would perform when applied to the same images used for testing the
other methods. The results can be seen in Figures3.22 and 3.23.

Figure 3.22: The left images show a low light image from the dataset, and the right
is the same image with watershed applied using a plugin [68] in ImageJ[66].

Figure 3.23: The left image shows an intense specular highlight image from the
dataset, and to the right is the same image with watershed applied using a plugin
[68] in ImageJ[66].

Although the watershed algorithm still has issues with getting a good segmen-
tation of the image with specular highlights, but it is performing better than the
previous methods that have been tested. Figures 3.22 and 3.23 show the results of
the watershed algorithm used on the two images.

U-Net While traditional segmentation algorithms can give good segmentation
on low-light images, they still not performing well for images with high specular
highlights. Therefore, we have also chosen to explore the use of neural networks
for segmentation. An test was done utilizing an implementation of U-Net[13] on
the data given to us with masks made manually in GIMP[63]. The result of the test
can be found in Figures 3.24 and 3.25.
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Figure 3.24: The mask generated by U-net along with the original low light image
from the dataset. The optimizer used was Adam with the loss function Binary
Cross-Entropy. Early stopping was used with a patience of 9 for a maximum of
100 epochs with a batch size of 16.

Figure 3.25: The masks generated by U-net along with the original image high
specular highlight from the dataset. The optimizer used was Adam with the loss
function Binary Cross-Entropy. Early stopping was used with a patience of 9 for a
maximum of 100 epochs with a batch size of 16.

Looking at the generated masks in the tests conducted, U-net is the approach
that gives the best resulting masks. Subsequently, we decided to go with U-net to
segment the data for later use in anomaly detection.
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3.6.2 Test Summary

When looking at the different results, U-Net is the one that gives the best mask,
but it requires predefined masks to train the network for generating them. It is,
therefore, our hope that we can use synthetic data to train a model to make a mask
for the real data.

Even if the model trained on synthetic data performs poorly on real data, it
might still be worth using a u-net model trained on real data only. The generated
mask from the real data can still be accurate on the images with high specular high-
lights, granted that the future obtained data does not change significantly. When
the model is trained, it will continue to generate a mask for future data collection
efforts.

3.6.3 U-Net implementation

This section goes through the implementation of the U-Net. The images first get
resized down to 512x512 so that U-Net can process them. The U-Net model uses
ReLU and Sigmoid activation functions, Adam as Optimizer, and Binary Cross-
Entropy as its loss function. Early stopping was used to stop the model from train-
ing when it did not improve its validation loss. The model was saved every time it
improved, so if the training was stopped early for any reason, we would be able to
continue training from that point.

Loading and Resizing Image Data

The code seen in Listing 3.4 was used to load in, resize and store all the images and
masks in NumPy arrays. The code for resizing images consists of two loops. First
is a double for-loop that goes through all the images and masks in the train folder
and resizes them to fit the input for the model. If multiple masks exist for one
image, they are combined into a single mask. The second also resizes the images
but for the test images, where the are no masks. The images and masks are stored
in X train and Y train for the train image and X test for the test images.

1

2 #resize train images
3 print('resizing traning images and masks')
4 for n, id_ in tqdm(enumerate(train_ids), total=len(train_ids)):
5 path = TRAIN_PATH + id_
6 img = imread(path + '/images/' + id_ + '.png')[:,:,:

IMG_CHANNELS]
7

8 img = cv2.resize(img, (IMG_HIGHT, IMG_WIDTH))
9 X_train[n] = img #fill empty X_train with values from img

10 mask = np.zeros((IMG_WIDTH, IMG_HIGHT, 1), dtype=np.bool)
11 for mask_file in next(os.walk(path + '/masks/'))[2]:
12 mask_ = imread(path + '/masks/' + mask_file)
13 mask_ = np.expand_dims(resize(mask_, (IMG_WIDTH, IMG_HIGHT

), mode='constant', preserve_range=True), axis = -1)
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14 mask = np.maximum(mask,mask_)
15 Y_train[n] = mask
16

17 #resize test images
18 X_test = np.zeros((len(test_ids), IMG_WIDTH, IMG_HIGHT,

IMG_CHANNELS), dtype=np.uint8)
19 sizes_test = []
20 print('resizing Test images and masks')
21 for n, id_ in tqdm(enumerate(test_ids), total=len(test_ids)):
22 path = TEST_PATH + id_
23 img = imread(path + '/images/' + id_ + '.png')[:,:,:

IMG_CHANNELS]
24 sizes_test.append([img.shape[0], img.shape[1]])
25 img = cv2.resize(img, (IMG_HIGHT, IMG_WIDTH))
26 X_test[n] = img
27

28 print('Done Resizing')

Listing 3.4: Code snippet used to resize images for U-Net

U-net

The code in Listing A.1 a lot of the inspiration for the code is from a GitHub repos-
itory by Bhattiprolu[69]. U-Net consists of two parts; the encoder (contracting
path) and the decoder (expansive path). It uses different layers such as Conv2D,
Dropout, Maxpooling, Conv2Dtranspose, And concatenate layers. In the Keras
layer Conv2D, five inputs are given: the dimensionality space, kernel size, activa-
tion function, kernel initializer, and padding mode.

• Dimensionality filters are the number of kernels that the convolutional layer
applies. For the first layer (c1) in U-net, this is 16. The number given here is
equal to the number of feature maps we get for the layer[11].

• Kernel size is the size of the kernels which will be applied. In the first layer
(c1), the height is 3, and the width is 3. These 3x3 matrices are the kernels
that are used in the convolutional layer as the filters[11].

• Activation function is ReLU for the first layer (c1) and decides if the neu-
ron should be active or not by calculating the weighted sum and adding the
bias[11].

• Kernel Initializer decides the initial weight for the layer. For the first layer
(c1), He normal is used, which picks a random number based on the trun-
cated normal distribution centered around zero and looking at the size of the
previous layer. The weights are random, but the range of the numbers to pick
from changes based on the size of the previous layer.[70, 11]

• Padding is used to keep the input image size by adding the number of pixels
lost in all directions. Because of how convolutional operations work, a 3x3
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kernel will remove a one-pixel wide border in all directions of the image
when applied. The amount lost is more significant on larger kernel sizes.
The ‘same’ parameter for padding means that we want to keep the size of
the input image by adding zero-padding [11].

Concatenate Layer

Concatenate layer links two layers together. The first time we see the concatenate
layer in U-Net is in the decoder, where it links the Conv2DTranspose layer (u6)
with the Conv2D layer in the encoder (c4) corresponding to its size. It is done to
get back information the might have been lost during convolutional operations.

Output Layer

The output layr is the last layer in a neural network and is used to return the final
result. In the instance of U-Net, the network returns a mask. The last layer uses the
sigmoid activation function because it works well with binary classification tasks,
which for u-net is classifying between background and brick.

Training and saving model

ModelCheckpoint is used to save the model each time the model improves after
an epoch. The callbacks included early-stopping with a patience of 20, meaning
if the model did not improve after 20 epochs, it would stop training based on the
validation loss. A log is also saved using TensorBoard, informing about the model’s
training.

The Model.fit() function is used to start the training. It takes multiple param-
eters, such as the number of epochs it should train for, batch size (the number of
images in the network at one time), the validation split (which is 10% seen in line
11), and settings for callbacks. It can all be seen in Listing 3.5.

1

2 checkpointer = tf.keras.callbacks.ModelCheckpoint('
model_for_TestDataModel.h5', verbose=1, save_best_only=True)

3

4

5 callbacks =[
6 tf.keras.callbacks.EarlyStopping(patience=50, monitor='

val_loss'),
7 tf.keras.callbacks.TensorBoard(log_dir='logs'),
8 checkpointer
9 ]

10

11 results = model.fit(X_train,Y_train, validation_split=0.1,
batch_size=16, epochs=400, callbacks=callbacks)

Listing 3.5: code for saving model and starting training
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3.7 Using the U-Net model

The model was trained on images with the size 512x512. Using the model to
predict the mask for a new image, we needed to resize them to be the same size. The
code used for that purpose can be seen in Listing 3.6, where the original image is
also saved in a variable that is used later with the mask to subtract the background.

1

2 image = image.numpy()
3 #SAVE AN COPY OF IMAGE
4 OriginalImage = image
5

6 #RESIZE
7 image = cv2.resize(image, (IMG_HIGHT, IMG_WIDTH))
8

9 print("image shape: ", image.shape)

Listing 3.6: Resizing the images

The morphology operation ‘Closing’ was used to remove holes in the generated
mask after the mask was predicted, seen in Listing 3.7. Afterwards, it was resized
back to the original image size.

1 # PREDICT MASK BASED ON U-NET MODEL
2 preds_mask = model.predict(image, verbose=1)
3 preds_mask_t = (preds_mask > 0.5).astype(np.uint8)
4

5

6 # RUN MORPH (CLOSING) TO REMOVE GAPS IF ANY
7 Mask = np.squeeze(preds_mask_t*255)
8 Mask = cv2.morphologyEx(Mask, cv2.MORPH_CLOSE, cv2.

getStructuringElement(cv2.MORPH_CROSS,(5,5)), iterations= 3)
9 Mask = cv2.resize(Mask, (OriginalImage.shape[1],

OriginalImage.shape[0]))
10

11 ret,Mask = cv2.threshold(Mask,220,255,cv2.THRESH_BINARY)
12 Mask = Mask.astype(np.uint8)

Listing 3.7: Closing code used to fill in gaps

In Listing 3.8, the code for segmenting individual bricks by cutting masks into
separate different masks can be seen, with their resulting masks being shown in
Figure 3.26. We ended up not using the functionality, as it changed the dataset too
much and was therefore not representative of the data collected.

1

2 ##----------- For Cutting in slice -----------##
3 #Cropout function
4 def get_segment_crop(img,tol=0, mask=None):
5 if mask is None:
6 mask = img > tol
7 return img[np.ix_(mask.any(1), mask.any(0))]
8

9 # SEPARATE MASK
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10 def create_separate_mask(mask):
11 #get the masks
12 mask = mask
13 #List Containing the final masks
14 maskList = []
15 label_im, nb_labels = ndimage.label(mask)
16

17 for i in range(nb_labels):
18

19 # create an array which size is same as the mask but filled
with

20 # values that we get from the label_im.
21 # If there are three masks, then the pixels are labeled
22 # as 1, 2 and 3.
23 mask_compare = np.full(np.shape(label_im), i+1)
24

25 # check equality test and have the value 1 on the location
of each mask

26 separate_mask = np.equal(label_im, mask_compare).astype(int)
27

28 # replace 1 with 255 for visualization as rgb image
29 separate_mask[separate_mask == 1] = 255
30

31 # Append mask to list
32 maskList.append(separate_mask)
33 return maskList
34

35 ##----------- For Cutting in slice -----------##

Listing 3.8: Code used to separated bricks based on mask
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Figure 3.26: Sliced mask

3.8 Anomaly Detection

To determined the best possible autoencoder for our dataset, different smaller ex-
periments were conducted. The input was resized from 4248x2832 to 1062x708
and then normalized to the 0 and 1 range.

Early stopping was set to a patience of 10, so if the model does not improve in
a consistent 10 epochs, it will stop the training.
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3.8.1 Data Preprocessing

Due to the original images having a large resolution size (4248x2832), the images
were resized to 1536x1024 before slicing them into smaller patches. The resizing
resolution was found by checking all available resolutions under 4248x2832, where
256x256 would fit each dimension, avoiding any leftover pixels. The patches were
determined to be 256x256, slightly overlapping so they would be easier to stitch to-
gether after. To avoid any border effects on the patches, the patches were increased
to 320x320. The slicing windows can be seen in Figure 3.27.

Figure 3.27: Slicing of the images. The yellow dashed squares show the 320x320
patches that are used as the input for the model, and the pink squares show the
256x256 resulting patches. These patches are repeated over the whole image.

The reconstructed patches of 320x320 would be cropped back to 256x256 and
stitched together to a 1536x1024 image. The full slicing and stitching process can
be seen in Figure 3.28.

The amount of slices would then end up being 24 images per image, which in
total was 576 images per batch.
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Figure 3.28: Input being processed for anomaly detection

3.8.2 Testing Architecture Parameters

In this section we will test different architecture parameters, such at architecture
size, dropout, and latent space.

Architecture Size

A small experiment was made to test the effect of the amount of layers in a convo-
lutional autoencoder.

A hidden layer block consisted of either a compressing or expanding layer
followed by two convolutional layers.

The encoders hidden layer block consisted of a Max Pooling layer with 2x2
kernel and stride of 2, followed by two Convolutional layers. For the decoder,
the hidden layer block consisted of a Transposed Convolutional layer, and two
convolutional layers. All layers were using 3x3 kernels.

The results show that the more layers we added, the more blurred and gen-
eralized the surface of the brick got. This made any visible defect ’disappear’ in
its reconstruction, which consequently increased the defect on the difference map.
The knobs on the brick became sharper and clearer with the extra layers.
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1 hidden layer block 2 hidden layers block 3 hidden layers block

Figure 3.29: Comparison of layer sizes in a CAE.

Dropout

As we are interested in having a more generalized model, to avoid reconstruction of
the defects, a dropout was experimented with, to add regularization to the network.
A dropout layer was added in the encoder part of the network, and the addition
shows increased anomaly scores for the defect images, which can be seen in Figure
3.30.

No dropout With Dropout

Figure 3.30: Comparison of the addition of dropout in the model.
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Latent Space

As the latent space is the bottleneck layer of the network, which consists of the in-
formation the decoder will reconstruct the image from. Having a small latent space
forces the network to extract the most meaningful features for the reconstruction.
Two latent spaces were compared, showing that when the latent space is decreased
from 50 to 25 in a dense layer, the defect stands out slightly more, and edges are
more likely to be reconstructed right. The difference can be seen in Figure 3.31.

Latent Space of size 50 Latent Space of size 25

Figure 3.31: Comparison of the addition of geometric transformations during train-
ing.

3.8.3 Chosen Architecture

The chosen architecture for anomaly detection was inspired by the work by Chow
et al. [12].

After the smaller experiments, the final CAE was a 31-layer convolutional au-
toencoder, consisting over Conv2D-layer with ReLU activation, dropout-layer and
max-pooling layers in the encoder, while the decoder consisted of Transposed Conv
to increase the dimensions back up, Conv2D layers with ReLU, except for the last
layers with sigmoid activation, as we are interested in greyscale values between 0
and 1. The latent space consisted of 3 dense-layer to compress the data, with the
smaller dense layer being 25 in size. The architecture can be seen in Figure 3.32,
with a larger size of the overview found in Appendix A and the models code can
be seen in Appendix A.
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Figure 3.32: Final Convolutional Autoencoder
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Evaluation

This chapter will describe the experiments done in this project to evaluate the pro-
posed system. The goal for this chapter is to answer the research question ”How
can a robust defect detection system be made for visual quality control, which uti-
lizes deep learning and supports small and varying datasets as input?”. As this
chapter will describe multiple experiments, each experiment will be presented with
a procedure and results of the experiments.

4.1 Experimental setup

The setup for the experiments in this project is done using an experimental setup,
where one process is tested at a time. The experiments were conducted in Google
Colab with GPU hardware acceleration. The experiments will involve testing the
Automatic segmentation and Anomaly Detection. The final experiment will be
about how well the system detects defects in polymer surfaces.

4.1.1 Data

For testing the impact of synthetic data on automatic segmentation and on the
anomaly detection network, three datasets were made; Real data, Synthetic data,
and a mix of synthetic data and real data.

Real Data

The real data is the original light grey brick dataset, consisting of 10 batches with
24 images from different viewpoints, where one of the batches contains defects.
Two of the batches were reserved as test data; one with defects and one without
defects. In total, 240 images, 168 for training and 48 for testing.
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Synthetic Data

The synthetic dataset consisted of 640 images generated in Blender. This dataset
was used for training U-Net for segmentation and the autoencoder for anomaly
detection. The test data was the same as the real data, with 48 real images.

Mixed Data

For training, the 168 train images from the real data were combined with the 640
synthetically generated images, in total 808 images. The test data was still the 48
real images as with the other datasets.

4.2 Automatic segmentation

For the automatic segmentation, the U-net was tested by comparing a U-net trained
on synthetic data, real data, and mixed data. The purpose of this test was to inves-
tigate if the U-net could be trained on synthetic data only. Real images are used to
test the model and its performance. The results can be seen in Table 4.1 and the
Receiver operating characteristic(ROC) can be seen in Figure 4.1.

Training Data Test Data Precision Recall F1 AUC
All Synthetic Data Real(Batch 1-2) 0.734 0.433 0.55 0.69
Real Data (Batch 3-10) Real(Batch 1-2) 0.968 0.999 0.98 0.97
Mixed Data Real(Batch 1-2) 0.991 0.991 0.99 0.99

Table 4.1: Results of U-Net

Real Synthetic Mixed

Figure 4.1: ROC curve for Real, Synthetic, and Mixed

4.2.1 Mask Results

In Figure 4.2 the resulting masks are generated using the models trained on the
Real, Synthetic, and Mixed data set can be seen. It is easy to see that a model
trained only on the synthetic data set does not perform well enough to segment the
real data. The model trained on the mixed data set is the one performing the best
out of the three.
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Input

Real

Synthetic

Mixed

Input

Real

Synthetic
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Input

Real

Synthetic

Mixed

Figure 4.2: Random selected mask generated by models trained on Real, Synthetic
and mixed data

4.3 Anomaly Detection

Three experiments were conducted with the three different train datasets. All ex-
periments used the same test and validation dataset. The network used patience of
10, MSE-loss function, and Adam optimizer. The experiments were run in Google
Colab.

The anomaly score was calculated by taking the squared pixel difference:

AnomalyScore =
√
(x− x̂)2, (4.1)

where x is the original image and x̂ is the predicted image.
The anomaly threshold was found by taking the highest anomaly score from

the training data per experiment. The anomaly score range greatly varied between
each model and a static threshold.

66



Chapter 4. Evaluation

4.3.1 Results

This section will cover the result of anomaly detection. For each dataset, an ex-
ample of a non-defect image and defect image will be shown, together with the re-
constructed image from the Autoencoder, a difference map of the input image and
the reconstructed image. An anomaly map is placed on the input image to show
where the detected defects on the polymer surface are located. The defect thresh-
old for the anomaly maps are based on the median maximum anomaly scores from
the training data, so the anomalies need to be above the training images maximum
anomaly score.

Real Data

For the autoencoder train on real data, it can be seen that the reconstruction reminds
a lot about the input image. It does however have a smoother surface, without
the structure of the brick and without any defects, making the difference map and
anomaly map highligt the defects.

Original Input Reconstruction Difference Map Anomaly Map

Figure 4.3: Defect and non-defect predictions and anomaly maps for the network
trained on real data.

Synthetic Data

For the autoencoder trained on only synthetic data, it can be seen that the recon-
struction looks similar in shape of the brick, there is a correct amount of knobs, and
they are placed correctly. However, the reconstruction seems blurry and almost low
poly. This makes the difference map light up, especially around the knobs of the
brick. The anomaly map shows that the defects are located around the knobs, but
the ”real” defect is not highlighted at all.
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Original Input Reconstruction Difference Map Anomaly Map

Figure 4.4: Defect and non-defect predictions and anomaly maps for the network
trained on synthetic data.

Mixed Data

For the autoencoder trained on the mixed dataset, the reconstructions look a lot like
the input image, with a lot of detail and a smooth surface. However, it also has a
small hint of the defect in the reconstructed image. The difference maps show a lot
of small differences, and when we look at the anomaly map, we can see that due
to the low threshold, all the structure from the input image is now classified as a
defect, making it hard to see the ”real” defect.

Original Input Reconstruction Difference Map Anomaly Map

Figure 4.5: Defect and non-defect predictions and anomaly maps for the network
trained on mixed data.
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4.3.2 ROC Curve, F1

Receiver operating characteristic (ROC) curves are made for the three different
datasets, showing that generally, for all three models that a simple straight threshold
can not be determined for the data. The AUROC score for the three dataset are
as follows: Real data = 0.53, Synthetic data = 0.54 and Mixed data = 0.51 as
seen in Figure 4.6. These scores tell us that with the thresholds that we made, the
network can not predict whether the images are a defect or non-defect. They are
all equivalent to make a 50/50 guessing if the image is a defect or not.

F1-score Real Data F1-score Synthetic Data F1-score Mixed Data

Figure 4.6: ROC curves

F1 score was then plotted with the precision and recall values for all the dif-
ferent thresholds and can be seen in figure4.7. F1-score, which is the weighted
average of the precision and recall curve, tells us which of the selected threshold
would give us the best result if used on the data.

Real Data Synthetic Data Mixed Data

Figure 4.7: F1 score plotted with Precision and Recall

From the ROC curve and f1 score, we can tell that a simple threshold for the
data is not possible to make. The anomaly score for each image is to cluster to-
gether per angle, so no matter the threshold value, the network can do nothing but
guess which anomaly score is a defect and which one is a non-defect. This is the
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case for all examples of real, synthetic, or mixed data. An example can be seen in
figure 4.8, where the anomaly scores for defect and non-defect are almost on top
of each other.

Real Data Synthetic Data Mixed Data

Figure 4.8: The anomaly scores

70



Chapter 5

Discussion

This chapter discusses different aspects of the project’s process and will discuss
possible solutions for future work.

5.1 U-Net

If the data was acquired in another way, U-Net could be redundant. Our reason
for using U-net is that the data is “bad” for traditional segmentation methods such
as thresholding or watershed due to highlights in the images and gray-scale color
space instead of RGB or HSI. The data was collected in a controlled environment,
which means additional steps can be taken, making segmenting the data more
straightforward. One solution could be having a uniform background, so pixel
values between target and background have no similarities.

5.1.1 Mean mask in U-Net

There were ten images taken from the same viewpoint in the dataset. Therefore,
a mask generated from one image could be used for a corresponding image from
the same view. Creating a mean mask that could be applied to all images from
that viewpoint would be worth investigating further, as it might work better than
a mask generated from a single image. Having a mean mask could have given
a better result, but we ran into out-of-memory errors when attempted. To avoid
this, other ways to generate mean masks or more computational power would be
necessary.

5.2 Quality and Realism of Synthetic Data

The synthetic dataset was generated in Blender with a provided CAD model from
our collaboration partner. A problem that occurred was that the Lego logos on the
knobs were not very visible in the render compared to the real images, and the
texture in the real images is gone in the synthetic data. This difference made it

71



Chapter 5. Discussion

hard for the network to learn these features. Additional adjustments with lighting
and render settings are needed to get the renderings closer to the real images.

As seen in Figure 5.1 the synthetic data is too ”clean”. It does not have the
texture that the real data has.

Real image Synthetic image

Figure 5.1: The difference in texture between real and synthetic data

The texture could have been added on a bump map or possibly with random
noise on the UV map but will need further testing to see how it affects the network.

For the realism of the synthetic data, a qualitative test could have been con-
ducted where participants could have looked at synthetic data examples with dif-
ferent rendering settings and compared them to real data to see which synthetic
images represent the real data the most. Parameters such as samples per pixel, ma-
terials, and light options can be changed to make synthetic data look even more
realistic.

5.3 The effect of CLAHE

Contrast limited histogram equalization was used to increase the contrast in the
image. The change in contrast will visually increase the difference between what
is a defect and what is not. By changing the contrast, the hope was that the network
would have an easier time determining what is and is not a defect. Furthermore,
when generating a reconstruction of a brick to subtract from the original image, the
places where a defect occurs will give a higher anomaly score.

5.4 The effect of perspective correction

When applying Perspective Correction to our dataset, as seen in Figure 5.2, Per-
spective Correction appears to only have corrected some bricks. The upper half
of the image shows how projection correction should work by making the objects
appear as if the image was taken from a front parallel view. Due to this unwanted
effect, we have decided not to test on projection corrected images as a new method
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for projection correction would have to be found, which does not distort some of
the images the same way.

Original image Projection corrected

Figure 5.2: Example of good projection correction(top) and bad projection correc-
tion(bottom)

5.5 Brightness as Data Augmentation

When testing out U-Net with real, synthetic, and mixed data, there is a difference
in how well they perform. The network using real data performs better than the
one on synthetic data, and the mixed performs a little better than real data. As seen
in Figure 4.2, the real data has quite a lot of difference in brightness compared
to each other. It can also be seen that training on synthetic data performs better
on brighter data, indicating that the synthetic data might be a lot brighter than the
real data. One way to maybe get around this would be to test the effect of random
brightness as a data augmentation when training on the synthetic data. However,
this will need to be tested at a future point.

5.6 Experiments

Throughout this project, multiple experiments have been made. This section will
discuss some of the choices made in these experiments.
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5.6.1 Selecting of test and train batches

The experiments performed on U-Net and the anomaly detection both require data
for training and testing. Batch one is the batch with defects and is put in the testing.
However, we also need to ensure that the data can perform well on non-defect data.
Therefore a batch of good samples (batch two) was added to the testing dataset.
The rest of the batches (batch three to ten) would then be the training data.

However, there could be a potential bias because batch two is always in the
testing set. Even though all batches, except batch one, are evaluated by our collab-
orator as good batches, there could be differences in texture and placement of the
bricks, making batch two potentially better or worse than the other batches to test
on.

5.6.2 Unequal amount of data (more synthetic data than original)

The amount of synthetic data generated was 664 images. These images were all
generated looking from the same angels. The cameras always went from left to
right or from the bottom to the top of the synthetic bricks. Since the data was not
generating the same amount of images from both angles, there were more images
from one angel than the other, meaning that the synthetic data set could be biased
to one view.

Ways to improve the synthetic data could be to generate data from new angles.
Generating new angles can be done in Blender by making the Bezier curves cover
a wider range of angles. Having more angles could also help make the network
more robust for new angles in the future.

5.6.3 Results

This section will discuss some of the results from the experiments. This will in-
clude results from the U-Net and results from the anomaly detection.

U-Net

The results of U-Net show that the mixed data performs the best. However, given
that the mixed data have roughly 3.8 times the amount of data compared to the
result of the real data and the time used to set up the synthetic data. The real data
might be the better option for automatic segmentation.

Threshold of Defects

When only looking at the anomaly scores, both the defect and non-defect images
are distributed across the whole anomaly score range, regardless of defects being
present or not. This is due to the visually different images, where some images
have four bricks, and others have six visible. This difference makes the image with
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more bricks have a higher anomaly score, simply because there is more to calculate
the difference from.

The anomaly score would be more accurate when calculating the anomaly
threshold based only on the corresponding image angle in the training data. It
would no longer be a global threshold being calculated across all image angles.
Examples of anomaly thresholds being calculated per view can be seen in Figure
5.3.

Non-Defect Images Defect Images

Figure 5.3: Image from two different angles with their appropriate thresholds. The
thresholds are based on their train image angle counterparts, where the median was
calculated based on the train images anomaly scores.

In Figure 5.4, the images are displayed as data points when the anomaly scores
are compared against the number of pixels above zero. The difference between left
and right camera angles is displayed as triangle and circle points. The anomaly
scores are higher for the defect images for each corresponding view angle.
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Figure 5.4: Distribution of the defect and non-defect batches based on anomaly
score and amount of non-zero pixels in the images. Triangle points are images
taking from the right camera, where circles are taken from the left.

A solution to the anomaly scores being influences by their view angles could
be having an adaptive threshold created based on the view angle. Another solution
to be explored is using a traditional classifier, such as SVM, to create the threshold
boundary of the view angles, and clustering with a KNN could make the model
more dynamic. Both SVM and clustering would need relevant features to be uti-
lized.

The simpler solution could also be to eliminate some angles as not all angles
showed enough distinction between the defect and non-defect images.

5.7 Future work

In this project, many different experiments have been done together with much
internal testing. Based on these, some possible solutions have been found to make
this process of defect detection smoother and how the process could be improved
or needs further testing to determine how well the process works.

5.7.1 Future Unknown Angles

As U-Net and the CAE have been training on batches with all angles present, it is
unclear whether the networks would perform the same way with future unknown
angles. The use of synthetic data could make the network robust towards this, but
future testing is required.
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5.7.2 Data Collection

When new data is collected, we suggest that the element is placed on a uniform
background and the images are in color. A uniform background would help make
sure that the network does not learn from the background. Furthermore, a color im-
age would give more data to train on because the image would have three channels.
Some color mistakes would not show up as much on a grey-scale image and might
be easier to catch if the images were in color. It is also essential to think about
how the light hits the element since the surface can reflect the light in the camera,
making an area of intense light. An area of intense light on the element would be
impossible to get any data from because there will be no change in pixel intensity,
making it hard for a network to learn anything. The placement of the element in
the image is also something to consider when collecting data.

What to be aware of when collecting data:

• Background

• Light

• Color Space

• Placement

Masks

If the data were collected with the purpose of segmentation, watershed would be
a reasonable choice, as seen in Figure 3.22. When creating a mask for the im-
ages with no intense light, the watershed algorithm visually gives a good mask.
If the images were in color, other methods such as color thresholding would also
be something that might give a good mask, but this would need to be tested on a
dataset with colors.

Brick separation

By cutting the data up and into separate images, we might get better results in
anomaly detection. Together with perspective correction, it could improve even
further. It would remove some of the differences the images have from being taken
from different viewpoints. Implementation of brick segmentation was made, and
a dataset was generated, but it was never thoroughly tested but is something to
consider in the future.
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Conclusion

In this project, a process for automatic segmentation and anomaly detection has
been set up. The process was designed around the problem statement:

”How can a robust defect detection system be made for visual quality control,
which utilizes deep learning and supports small and varying datasets as input?”

A system consisting of U-net and a Convolutional Autoencoder was created,
which utilized data augmentation and synthetic data to increase the dataset.

6.1 Synthetic data

The synthetic data did not work well enough for segmentation and defect detection.
There is still a need to improve lighting, surface detail, and random background in
the synthetic data to be more helpful.

6.2 Automatic segmentation

U-Net was chosen for the automatic segmentation of the datasets. When U-Net is
trained on real or mixed data, it can segment the background out. If a different
method was used to capture the data, a segmentation method such as watershed
could be used, removing the need to train a U-Net for segmentation.

6.3 Anomaly detection

The selected network could support a small dataset as it could predict images rea-
sonably close to non-defect data. While the condition with real and mixed data
showed the best looking reconstructions, the synthetic data performed the best with
a global threshold. Subsets and adaptive thresholds would be needed to determine
the best viewpoints and best thresholds in the future. Further work is needed in
more fitting synthetic data, which is closer to the original real images.
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Anomaly detection in manufacturing systems using structured neural net-
works. In 2018 13th World Congress on Intelligent Control and Automation
(WCICA), pages 175–180, 2018.

[2] GOM Gmbh. Atos scanbox series 4, 2021-04-21.
https://www.zebicon.com/maaleudstyr/automatiseret-3d-scanning/atos-
scanbox-serie-4/.

[3] GOM Gmbh. Precise industrial 3d metrology, atos capsule, 2021-03-
19. https://www.gom.com/en/products/high-precision-3d-metrology/atos-
capsule.

[4] Anne Juhler Hansen, Hendrik Knoche, and Thomas B. Moeslund. Fantastic
plastic? an image-based test method to detect aesthetic defects in batches
based on reference samples. Polymer Testing, 89:106585, 2020.

[5] Shachi Shah. Do we really need gpu for deep learning? - cpu vs gpu, 2018.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[7] Ismoilov Nusrat and Sung-Bong Jang. A comparison of regularization tech-
niques in deep neural networks. Symmetry, 10(11):648, Nov 2018.

[8] Rob Fergus. Computer vision - csci-ga.2271-001.

[9] Chigozie Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation
functions: Comparison of trends in practice and research for deep learning.
ArXiv, abs/1811.03378, 2018.

[10] Janusz Kolbusz, Pawel Rozycki, and Bogdan M Wilamowski. The study
of architecture mlp with linear neurons in order to eliminate the “vanishing
gradient” problem. In Artificial Intelligence and Soft Computing, Lecture
Notes in Computer Science, pages 97–106, Cham, 2017. Springer Interna-
tional Publishing.

[11] Keras Team. Keras documentation: Conv2d layer.

79

http://www.deeplearningbook.org


Bibliography

[12] J.K. Chow, Z. Su, J. Wu, P.S. Tan, X. Mao, and Y.H. Wang. Anomaly de-
tection of defects on concrete structures with the convolutional autoencoder.
Advanced Engineering Informatics, 45:101105, 2020.

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim
Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical Im-
age Computing and Computer-Assisted Intervention – MICCAI 2015, pages
234–241, Cham, 2015. Springer International Publishing.

[14] NVS Yashwanth. Understanding gradient descent, Sep 2020.

[15] Sebastian Ruder. An overview of gradient descent optimization algorithms,
Jan 2016.

[16] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. International Conference on Learning Representations, 12 2014.

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
Günter Klambauer, and Sepp Hochreiter. Gans trained by a two time-scale
update rule converge to a nash equilibrium. CoRR, abs/1706.08500, 2017.

[18] Du-Ming Tsai and Po-Hao Jen. Autoencoder-based anomaly detection for
surface defect inspection. Advanced Engineering Informatics, 48:101272,
2021.

[19] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Ro-
bust, deep and inductive anomaly detection, 2017.

[20] Toufique Ahmed Soomro, Ahmed J. Afifi, Ahmed Ali Shah, Shafiullah
Soomro, Gulsher Ali Baloch, Lihong Zheng, Ming Yin, and Junbin Gao. Im-
pact of image enhancement technique on cnn model for retinal blood vessels
segmentation. IEEE Access, 7:158183–158197, 2019.

[21] Stephen M. Pizer, E. Philip Amburn, John D. Austin, Robert Cromartie, Ari
Geselowitz, Trey Greer, Bart ter Haar Romeny, John B. Zimmerman, and
Karel Zuiderveld. Adaptive histogram equalization and its variations. Com-
puter Vision, Graphics, and Image Processing, 39(3):355–368, 1987.

[22] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V
Le. Autoaugment: Learning augmentation strategies from data. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 113–123, 2019.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. Commun. ACM,
60(6):84–90, May 2017.

80



Bibliography

[24] Giuseppe Russo. Data augmentation with automatic label preserving trans-
formation. Master’s thesis, ETH Zurich, 2020.

[25] L Jagannathan and CV Jawahar. Perspective correction methods for camera
based document analysis. In Proc. First Int. Workshop on Camera-based
Document Analysis and Recognition, pages 148–154, 2005.

[26] Li Deng. The mnist database of handwritten digit images for machine learn-
ing research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[27] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmen-
tation for deep learning. Journal of Big Data, 6(1):1–48, 2019.

[28] Arun Gandhi. Data augmentation — how to use deep learning when you have
limited data - part 2.

[29] Tensorflow. Tensorflow data augmentation.

[30] Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. Deep image:
Scaling up image recognition, 2015.

[31] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Return of the devil in the details: Delving deep into convolutional nets, 2014.

[32] Swarnendu Ghosh, N. Das, I. Das, and U. Maulik. Understanding deep learn-
ing techniques for image segmentation. ACM Computing Surveys (CSUR),
52:1 – 35, 2019.

[33] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-
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Appendix A

Neural networks models

U-Net model

1 """## U-Net Model """
2

3 #U-Net
4 inputs = tf.keras.layers.Input((IMG_WIDTH, IMG_HIGHT, IMG_CHANNELS

))
5

6 #convert input to float by dividing with 255
7 s = tf.keras.layers.Lambda(lambda x: x /255)(inputs)
8

9 #Contracting path
10

11 #first layer in Contracting path and its dropout percentage 1.??
2.(3,3) is the kernel size 3. the activation function 4. the
start weights .5 the padding is the change in image size after
kernel

12 c1 = tf.keras.layers.Conv2D(16, (3,3), activation="relu",
kernel_initializer='he_normal', padding='same')(s)

13 c1 = tf.keras.layers.Dropout(0.1)(c1)
14 c1 = tf.keras.layers.Conv2D(16, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c1)
15 p1 = tf.keras.layers.MaxPooling2D((2,2))(c1)
16

17 #second layer
18 c2 = tf.keras.layers.Conv2D(32, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(p1)
19 c2 = tf.keras.layers.Dropout(0.1)(c2)
20 c2 = tf.keras.layers.Conv2D(32, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c2)
21 p2 = tf.keras.layers.MaxPooling2D((2,2))(c2)
22

23 #third layer
24 c3 = tf.keras.layers.Conv2D(64, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(p2)
25 c3 = tf.keras.layers.Dropout(0.1)(c3)
26 c3 = tf.keras.layers.Conv2D(64, (3,3), activation="relu",
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kernel_initializer='he_normal', padding='same')(c3)
27 p3 = tf.keras.layers.MaxPooling2D((2,2))(c3)
28

29 #fourth layer
30 c4 = tf.keras.layers.Conv2D(128, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(p3)
31 c4 = tf.keras.layers.Dropout(0.2)(c4)
32 c4 = tf.keras.layers.Conv2D(128, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c4)
33 p4 = tf.keras.layers.MaxPooling2D((2,2))(c4)
34

35 #fifth layer
36 c5 = tf.keras.layers.Conv2D(256, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(p4)
37 c5 = tf.keras.layers.Dropout(0.3)(c5)
38 c5 = tf.keras.layers.Conv2D(256, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c5)
39

40 #Expansive path
41

42 #layer
43 u6 = tf.keras.layers.Conv2DTranspose(128, (2,2), strides=(2,2),

padding='same')(c5)
44 u6 = tf.keras.layers.concatenate([u6, c4])
45 c6 = tf.keras.layers.Conv2D(128, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(u6)
46 c6 = tf.keras.layers.Dropout(0.2)(c6)
47 c6 = tf.keras.layers.Conv2D(128, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c6)
48

49 #layer
50 u7 = tf.keras.layers.Conv2DTranspose(64, (2,2), strides=(2,2),

padding='same')(c6)
51 u7 = tf.keras.layers.concatenate([u7, c3])
52 c7 = tf.keras.layers.Conv2D(64, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(u7)
53 c7 = tf.keras.layers.Dropout(0.2)(c7)
54 c7 = tf.keras.layers.Conv2D(64, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c7)
55

56 #layer
57 u8 = tf.keras.layers.Conv2DTranspose(32, (2,2), strides=(2,2),

padding='same')(c7)
58 u8 = tf.keras.layers.concatenate([u8, c2])
59 c8 = tf.keras.layers.Conv2D(32, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(u8)
60 c8 = tf.keras.layers.Dropout(0.1)(c8)
61 c8 = tf.keras.layers.Conv2D(32, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c8)
62

63 #layer
64 u9 = tf.keras.layers.Conv2DTranspose(16, (2,2), strides=(2,2),

padding='same')(c8)
65 u9 = tf.keras.layers.concatenate([u9, c1], axis=3)
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66 c9 = tf.keras.layers.Conv2D(16, (3,3), activation="relu",
kernel_initializer='he_normal', padding='same')(u9)

67 c9 = tf.keras.layers.Dropout(0.1)(c9)
68 c9 = tf.keras.layers.Conv2D(16, (3,3), activation="relu",

kernel_initializer='he_normal', padding='same')(c9)
69

70 #Output
71 outputs = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(

c9)
72

73

74 model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
75 model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])
76 model.summary()

Listing A.1: U-Net models in code

Anomaly Detection model

1 AE_name = 'FinalAE'
2

3 input_img = Input(shape=(WINDOW_HEIGHT_PADDED, WINDOW_WIDTH_PADDED
, 1))

4

5

6 x = Conv2D(16, (3, 3), activation='relu', padding='same')(
input_img)

7 x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
8 x = Dropout(0.2)(x)
9 x = MaxPooling2D((2, 2), strides=2, padding='same')(x)

10 x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
11 x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
12

13 x = MaxPooling2D((2, 2), strides=2, padding='same')(x)
14 x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
15 x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
16

17 x = MaxPooling2D((2, 2), strides=2, padding='same')(x)
18 x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
19 x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
20

21 x = MaxPooling2D((2, 2), strides=2, padding='same')(x)
22 x = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
23 x = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
24

25 x = Dense(100)(x)
26 x = Dense(25)(x)
27 x = Dense(100)(x)
28

29

30 x = Conv2DTranspose(128,(3,3), strides=2, padding='same')(x)
31 x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
32 x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)

87



Appendix A. Neural networks models

33

34 x = Conv2DTranspose(64,(3,3), strides=2, padding='same')(x)
35 x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
36 x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
37

38 x = Conv2DTranspose(32,(3,3), strides=2, padding='same')(x)
39 x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
40 x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
41

42 x = Conv2DTranspose(16,(3,3), strides=2, padding='same')(x)
43 x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
44 x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
45 r = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
46

47

48 autoencoder = Model(input_img, r)
49 autoencoder.compile(optimizer='adam', loss='mse')
50 autoencoder.summary()

Listing A.2: Anomaly detection model
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CAE overview
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Appendix B

Digital Folder

This appendix will be available as a digital download together with the project and
will include a short film about the project (AV production), the code used in the
project and the gray-scale images received from our collaboration partner. The
CAD model received from our collaboration partner used for synthetic data is not
included in the appendix, as this data is sensitive information.
Below is an overview of the folder structure for the digital appendix.

• AV production

– This folder contains the .MP4 file, which is the audio visual production
about the project.

• Code

– Anomaly detection

* This folder contains the code used in the anomaly detection as a
python file and as Jupyter Notebook files

– U-Net

* This folder contains the code used in the U-Net, as a Jupyter Note-
book file.

– Evaluation

* This folder contains the code used for calculating the different el-
ements in the evaluation
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• Data

– Anomaly Detection design

* This folder contains internal test made for Anomaly detection

– CSV Files

* This folder contains comma separated files, which includes anomaly
scores for the different images and some statistical calculations

– OutputImagesMixedData

* Here you will find the Anomaly Maps, Difference Maps, Recon-
structed images and the images used for reconstructing for the
dataset of mixed images.

– OutputImagesRealData

* Here you will find the Anomaly Maps, Difference Maps, Recon-
structed images and the images used for reconstructing for the
dataset of real images.

– OutputImagesSyntheticImages

* Here you will find the Anomaly Maps, Difference Maps, Recon-
structed images and the images used for reconstructing for the
dataset of synthetic images.

– Real data

* Here you will find 240 folders, each containing an image taken by
the collaborator and a mask made in hand by us.

– Synthetic data

* Here you will find 664 folders, each containing and image and a
mask for the synthetic data

• Evaluation plots

– This folder contains plots used for the evaluation of the anomaly detec-
tion.

• Models

– Anomaly

* This folder contains Trained TensorFlow Models for the anomaly
detection

– U-Net

* This folder contains Trained TensorFlow Models for U-Net
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