
FEDERATED MULTI-TASK LEARNING ON
ACOUSTIC SIGNALS FOR PREDICTIVE

MAINTENANCE

MASTER’S THESIS, MATTEK - F21MATTEKSPEC_4

KRISTIAN JUUL TILSTED

MATHEMATICAL ENGINEERING

AALBORG UNIVERSITY

Mathematical Sciences - Aalborg University

Skjernvej 4A, 9220 Aalborg Øst

http://www.aau.dk

Title:

Federated Multi-Task Learning

on Acoustic Signals for

Predictive Maintenance

Theme:

Master’s Thesis

Project period:

Autumn semester 2020 and

spring semester 2021

Project group:

MATTEK 9-10 - f21mattekspec_4

Participants:

Kristian Juul Tilsted

Supervisors:

Zheng-Hua Tan

Petar Popovski

Jesper Møller

Number of pages: 95

Date of Completion: 4th of june 2021

Abstract:

This Master’s thesis investigates the possi-

bility of developing a federated multi-task

learning algorithm with focus on minimal

computational complexity and low com-

munications requirements, for use in a

distributed predictive maintenance setting.

This Master’s thesis is a collaboration with

Grundfos A/S on predictive maintenance on

acoustic data, from their pumping systems.

The proposed solution - developed in this

work - is compared to the current state-of-

the-art federated multi-task algorithm, the

MOCHA algorithm. We compare the two so-

lution using ROC curves, which yielded an

average decreased performance, in terms of

AUC, for 100 runs of each algorithms, across

9 tasks, of 0.095. Though the proposed so-

lution performs worse, the computational

complexity is about 150 times less, in terms

of FLOPs, compared to that of the MOCHA

algorithm.

Preface

This Master Thesis (60 ECTS) is written by Kristian Juul Tilsted of the Master’s program: Math-

ematical Engineering at Aalborg University, Department of Mathematical Sciences and has

been completed in the period of September 2020 to June 2021. The project is a collaboration

between the Department of Mathematical Sciences at Aalborg University, the Department of

Electronic Systems at Aalborg University and Grundfos A/S.

Citations appear as numbers encased by brackets - e.g. [6] - with an optional location specify-

ing, among others, the chapter, section, theorem or definition in the source. The bibliography

is ordered numerically after appearance in the thesis.

The author is the creator of all figures presented in this thesis, except for the figure on the front

page, which is from [1].

Referencing of theorems, definitions, figures, tables etc. have individual counters, e.g. Theo-

rem 1.1 could follow Definition 1.5.

The author would like to thank the supervisors Zheng-Hua Tan (Department of Electronic Sys-

tems), Petar Popovski (Department of Electronic Systems), Jesper Møller (Department of Math-

ematical Sciences) and Rasmus Engholm (Grundfos A/S) for their guidance during the project.

Aalborg University, June 4, 2021

V

Resumé på dansk

Søgen efter øget effektivitet og optimering af ressourcebrug og mandetimer, samtidigt med at

processeseringsenheder bliver mindre og mere kraftfulde, har givet mulighed for decentralis-

eret overvågning af og fejlfinding på diverse maskineri. Konstant overvågning af maskineriet,

kan give et mere nutidigt og detaljeret indblik i maskineriets tilstand. Derved, gøres det muligt

at tilpasse vedligeholdelsen på individuelle maskiner, uafhængigt at arbejdspres og miljø, som

den individuelle maskine befinder sig i. Vi kalder dette for prædiktiv vedligeholdelse, altså at

forudsige hvornår en maskine behøver vedligeholdelse.

I dette kandidat speciale arbejder vi særskilt på en case fra Grundfos A/S, som omhandler

prædiktiv vedligeholdelse på nogle af deres pumpesystemer. Vi ønsker at undersøge hvorledes

det er muligt at konstruere en model ved hjælp af machine learning, som kan tilpasse sig

de individuelle pumpesystemer og deres miljø således vi kan give en detaljeret beskrivelse af

pumpesystemmets tilstand. Vi forestiller os at pumpesystemerne allerede er blevet installeret

hos kunderne. Et hvert system er udstyret med en processeserings- og en kommonikation-

senhed, som muliggøre delvise computer operationer på selve systemerne, og tillader kommu-

nikation med en central server, placeret hos Grundfos.

Da, vi ingen antagelser gør os om de miljøer, hvor i pumpesystemerne placeres, antager vi nød-

vendigheden af en unik model til ethvert pumpesystem. Samtidigt er der en forventning om

at pumpesystemer af samme type, vil have mange ligheder i deres tilhørende modeller, og den

største forskel vil være baggrundsstøjen fra miljøet hvori systemerne er placeret i. Derved, skal

der bygges et system som tillader samarbejde blandt pumpesystemerne. Vi har en forventning

at dette vil øge indlæringshastigheden og kvaliteten af de modeller som i sidste ende bliver

konstrueret.

Det findes allerede algoritmer som kan løse disse typer af problemer. Nogle af dem er [2, 3],

som dog begge kræver kommunikation af selve det data, som opsamles ved de individuelle

pumpesystemer. Dette kræver øget kommunikation mellem pumpesystemer og den centrale

server hos Grundfos, som vi, i dette speciale, ikke kan tillade. Et andet forslag til en løsning er

[4], som på nuværende tidspunkt er en state-of-the-art løsning. Vi sammenligne de resultater,

som opnåes i dette kandidat speciale med [4].

I dette speciale udvikler vi en federated multi-task leanring løsning som opfylder de oven-

VII

stående krav, med særligt stort fokus på at løsningen har mindre krav til processeserings- og

kommunikationsenheden i pumpesystemerne. Dog, som forventet finder vi, at med mindre

processeseringskraft følger ringere evne til, at detaljeret give indblik i pumpesystemerne til-

stand.

Det viser sig, at den udviklede løsning er i stand til, i nogle tilfælde ligeværdig og andre rin-

gere end [4], at forudsige pumpesystemernes tilstand. Dette er dog forventeligt, da antallet af

brugte computeroperationer (FLOPs) er ca. 150 gange færre ved den udviklede løsning end

hos [4]. Vi må derfor konkludere, at den udviklede løsning ikke bliver en konkurrent til allerede

eksisterende metoder.

VIII

Contents

1 Introduction 1

1.1 Problem Statement . 2

2 Optimisation Theory 5

2.1 General Properties of Optimisation Problems . 5

2.2 Solving Inequality Constrained Optimisation Problems 11

3 Machine Learning 17

3.1 Support Vector Machine . 17

3.2 Federated Learning . 24

3.3 Multi-Task Learning . 29

4 Proposed Solution: Federated Multi-Task Learning 43

4.1 Updating the weights . 44

4.2 Computational Complexity . 52

4.3 Additional nodes . 53

4.4 Federated solution . 54

5 Simulations 55

5.1 Task Relation Learning on Synthetic Data . 55

5.2 Predictive Maintenance on the MIMII Data Set . 61

6 Discussion 71

6.1 The Proposed Solution . 71

6.2 Performance of the Proposed Solution . 72

6.3 Predictive Maintenance as Binary Classification 73

7 Conclusion 75

8 Further Development 77

Bibliography 79

A Remaining ROC curves for tasks: 2-4,7,8 81

IX

B Accompanying Python Code 85

X

1 Introduction

The everlasting industrial search for increased efficiency and reduction in cost of both power

and man hours, has laid the groundwork for increased monitoring of production machinery

and product tests. A more detailed evaluation of the status of the machinery gives the opportu-

nity of planning repairs or complete swaps. This will in turn increases efficiency by avoiding re-

pairs or swaps in the middle of a batch of products and diminishes the possibility of unforeseen

emergencies. Planning repairs and avoiding these unforeseen emergencies could potentially

reduce the maintenance cost of running a production, which in many cases range from 15% to

60 % of the entire production cost [5]. Besides the increase in efficiency, continued monitoring

of products after them being sold to the customers has the potential of becoming a secondary

income source or an advantage that will favour a company’s products over its competitors’.

This project is done in collaboration with Grundfos A/S on machine learning and acoustic

sensing for predictive maintenance. Grundfos is a company that manufactures a wide range of

water solutions for both private and commercial use [6]. In this collaboration with Grundfos,

we pretend that the leadership at Grundfos see a potential business opportunity in offering a

monitoring solution to customers, to inform them of the status of their pumps. We shall in this

project investigate if and how such a solution could become real.

Due to the both private and commercial sales, there is no minimum limit on how many units

a particular customer buys. Thus, there is no control over amount of pumps being installed at

a given location. To avoid the high costs and inconveniences associated with having a tech-

nician visit every single location of a sold pump, to perform maintenance service, the desired

solution has to be automatic. This naturally leads to a machine learning approach which, once

the model is trained, is a fully automated process of predicting the status of the pump. A solu-

tion where a computation unit is placed on the pumps with memory, computational power and

transmission ability is proposed. As every single pump would have to be equipped with such a

device, limiting the cost of the device is essential. A vital part of this project should concern the

required processing power. We, therefore, make an assumption of having limited processing

power on each of the pumps. This means that a fully local machine learning scheme might not

be feasible, as would be the traditional approach.

Even within the category of pumps there exists a multitude of sizes and shapes based on the

needs of the customer and the application. Thus, is it unlikely to assume that we can build one

1

model that would fit all types of pumps. Another problem is the environment that the pumps

are placed in. These can be vastly different. That is, some pump might operate in noisy envi-

ronments, whilst others in near silent acoustic environments. This means, that one model for

each type of pump might not even be specific enough to determine the status of a pump.

Lately, there has been a lot of research in the field of federated (or decentralised) learning, the

act of learning a model in a setting where the data is located in multiple location with no real-

istic means of moving the data. However, in general, federated learning is employed to build a

single model from the averaging of multiple models learned where the data is stored. [7, 8]

The idea for a solution is to learn multiple models at the same time, given limited processing

power, memory and transmission power. In a multi-task machine learning scheme, multiple

tasks (models) are learned at the same time. In such a scheme, the goal is to take advantage of

potential similarities between the tasks, e.g. two pumps could be of the same type. However,

multi-task learning - in it self - does not imply friendliness or fitness to be employed in a feder-

ated settings, as many of them utilise a kernel matrix consisting of some transformation of the

inner products between all the data points regardless of task association [9, 10].

Recently, a new field has emerged. The field of federated multi-task learning, which is the act of

learning multiple related models (or tasks) simultaneously in a federated setting. A federated

multi-task solution could be a perfect solution. There already exists algorithms which could

solve the problem at hand. However, common for both [3] and [11] is the need - in some ca-

pacity - to share or move the data, as both of them rely on a kernel matrix. This kernel matrix is

a strong tool as it expresses relations between the data points, even across tasks. However, the

goal of this project is to develop a solution which rely on only very limited communications.

There exists other solutions, one of them is [2], however, it focuses on deep neural networks

(abbr. DNN). A DNN requires a large amount of computations, but has the opportunity to gen-

erate an outstanding prediction model. Thought they have great upsides, the requirement on

the amount of computations makes it infeasible for this problem. Lastly, possible the best so-

lution that currently exists is the MOCHA algorithm from [4]. The MOCHA algorithm does not

- like the others mentioned - require any sharing of the data.

Common for all federated multi-task learning schemes - mentioned here - as well as federated

learning schemes, is the need for a central server for the pumps to communicate with [3, 4, 11].

With the limited processing power on the pumps, the aim should be for most of the computa-

tions to be handled by the central server. With the above introduction in mind we investigate

the potential for a solution to the described problem.

1.1 Problem Statement

Based upon the above introduction we formulate the problem statement:

2

In what capacity is it possible to build an algorithm that conducts meaningful predictive

maintenance on machinery by the use of federated multi-task learning focusing on low

computational complexity and without any sharing of data points?

Sub-Questions

• How does machine learning function in a federated setting?

• How does one learn multiple machine learning tasks simultaneously, by letting the tasks

cooperate to improve learning?

• In what way can these two concepts be combined?

• Is possible to construct an algorithm that detects faulty machinery using federated multi-

task learning?

• How does such an algorithm stack up against traditional methods?

Delimitations

The goal of the project is to find a solution to the federated predictive maintenance problem

described above. While a sub-goal is to minimise the number of computations at the pumps,

we set no upper bound on this, we simply aim to minimise the number of computations. We

make the assumption that the central server has a large amount of processing power. We solely

comment on this as there is no consideration in regards to the memory nor processing power

requirements on the central server. We shall not consider routing protocols, schedulers nor

channel models, as we simply assume that these function with lossless channels. We shall,

however, consider the amount of floating point values transmitted to compare this to moving

the entirety of the data sets. Likewise, we are going to compare the number of floating point op-

erations required, but will do so in a non-detailed oriented way, as computer science is outside

the scope of the project.

Outline

The thesis is structured as follow: An introduction to preliminary optimisation results, aiming

to ease the derivations later on in the thesis, is found in chapter 2. In chapter 3, we introduce

the necessary machine learning schemes and techniques, for us to be able to develop a new

federated multi-task learning algorithm. Chapter 4 introduced the proposed solution of this

thesis in great theoretical detail, and lastly presents the associated algorithm. Next, in chap-

ter 5, we experiment with the proposed solution, to determine its capabilities, and present the

results of said experiments. Lastly, in chapters 6 and 7, we question the methods and results

obtained in the thesis, and give our final verdict of the usefulness of the proposed solution,

respectively.

3

2 Optimisation Theory

We shall in this chapter discuss introductory optimisation theory. The goal of this chapter is to

introduce concepts and theorems, which shall lay the groundwork for later discussions. Unless

otherwise stated, this chapter is based on [12]

2.1 General Properties of Optimisation Problems

We shall in this section briefly cover some of the important concepts of optimisation theory.

We begin by examining a general formulation of an minimisation problem.

min
x

f0(x)

s.t. fi (x) ≤ 0 for i = 1, . . . N

hi (x) = 0 for i = 1, . . . M ,

(2.1)

where f0 : Rn → R is called the objective function, fi : Rn → R for i = 1, . . . N are called the

inequality constraints and hi : Rn → R for i = 1, . . . M are called the equality constraints. The

domain D of (2.1) is defined as follows:

D =
N⋂

i=0
dom fi ∩

M⋂
i=1

domhi ,

where dom fi is the domain of fi . The subset F ⊂D given as

F = {
x ∈D | fi (x) ≤ 0, i ∈ [0, N]∧hi (x) = 0, i ∈ [1, M]

}
,

is known as the feasible set, the set of all points x between which we can find the minimum.

Thus, x ∈ F is a feasible point and a point x̃ ∈ F is said to be strictly feasible if fi (x̃) < 0 for

i = 1, . . . N . We then say that the optimal value p? for the minimisation problem in (2.1) is

defined as

p? = inf
{

f0(x)|x ∈F}
,

likewise, x? is the point such f0(x?) = p?, called the optimal point.

An interesting subclass of optimisation problems is convex optimisation problems, which we

defined next.

5

Definition 2.1. Convex Function

A function f is convex if dom f is convex and if for all x , y ∈dom f and 0 ≤ θ ≤ 1, we have

f (θx + (1−θ)y) ≤ θ f (x)+ (1−θ) f (y). (2.2)

f is said to be strictly convex if the inequality in (2.2) is sharp.

Definition 2.2. Convex Optimisation Problem

An optimisation problem

min
x

f0(x)

s.t. fi (x) ≤ 0 for i = 1, . . . N

hi (x) = 0 for i = 1, . . . M ,

is convex if the objective function and the constraints are convex.

The optimisation problem of the form in (2.1) is known as the primal problem, however, there

is also a formulation known as the dual problem which solution gives a lower bound for p? of

(2.1). To formulate the dual problem, one needs the Lagrangian L : Rn ×RN ×RM →R, which

is defines as

L(x ,λ,µ) = f0(x)+
N∑

i=1
λi fi (x)+

M∑
i=1

µi hi (x),

where λ and µ are known as the Lagrangian multipliers. Next we introduce the dual function

g :RN ×RM →R:

g (λ,µ) = inf
x∈D

L(x ,λ,µ).

Note that the dual function is concave, due to it being the point-wise infimum of a family of

affine functions of (λ,µ), even if the problem in (2.1) it self is not convex [12]. We have pre-

viously claimed that the dual function is a lower bound for p?, which we prove in the next

theorem.

Theorem 2.1. Dual Function is a Lower Bound

The optimal value p? for an optimisation problem is lower bounded by the dual function of

said optimisation problem, that is

g (λ,µ) ≤ p?,

for any λº 0 and µ.

Proof

Assume x̄ ∈F and λº 0, thus we have

N∑
i=1

λi fi (x̄)+
M∑

i=1
µi hi (x̄) ≤ 0, (2.3)

6

since the first sum is less than or equal to zero and the second sum is exactly zero. Equation

(2.3) implies that

L(x̄ ,λ,µ) = f0(x̄)+
N∑

i=1
λi fi (x̄)+

M∑
i=1

µi hi (x̄) ≤ f0(x̄),

and hence

g (λ,µ) = inf
x∈D

L(x ,λ,µ) ≤ L(x̄ ,λ,µ) ≤ f0(x̄),

yielding the desired inequality and completing the proof. �

Note that there are technically no constraints on the Lagrangian multipliers, but the dual func-

tion only gives a nontrivial lower bound on p? when λ º 0. Thus, we call a pair (λ,µ) dual

feasible, when λº 0, (λ,µ) ∈ dom g and g (λ,µ) >−∞.

Knowing that the dual problem gives a lower bound on the optimal value of an optimisation

problem, the question of what the best lower bound is naturally arises, that is, the maximum

values of the dual function. This leads us to the formulation of the dual problem:

max
x

g (λ,µ)

s.t. λº 0.
(2.4)

Note that we refer to the pair (λ?,µ?) as the optimal Lagrangian multipliers and d? as the op-

timal value for the dual problem. Lastly note that (2.4) is a convex problem as it maximises a

concave function.

It is not always the case that d? = p?, in which case weak duality holds and we refer to the

scalar p?−d? as the duality gap. If, on the other hand is equality, i.e. the duality gap is zero,

strong duality holds. Strong duality is obviously a nice property, but not one that holds in gen-

eral. Next we introduce Slater’s theorem, a result presenting a sufficient condition for strong

duality. First we define Slater’s condition:

Definition 2.3. Slater’s Condition

A convex optimisation problem on the form

min
x

f0(x)

s.t. fi (x) ≤ 0 for i = 1, . . . N

Ax = b,

for which there exists a strictly feasible point x ∈ relint D, is said to satisfy Slater’s condition.

7

Theorem 2.2. Slater’s Theorem

For a convex optimisation problem on the form

min
x

f0(x)

s.t. fi (x) ≤ 0 for i = 1, . . . N

Ax = b,

satisfying Slater’s condition, strong duality holds.

Proof

To simplify the proof we assume that the interior of D is nonempty, thus relint D = int D. We

also assume that p? is finite and that A has full row rank. We construct two sets:

A= {
(u, v , t) ∈RN ×RM ×R

∣∣∃x ∈D, fi (x) ≤ ui , i = 1, . . . , N , Ax −b = v , f0(x) ≤ t
}

B = {
(0,0, t) ∈RN ×RM ×R|t < p?

}
.

Obviously A⋂B = ;, and both A and B are covex. Thus, the separating hyperplane theorem

[12, §2.51] ensures the existence of (λ,µ,ξ) 6= 0 and α, such that

(u, v , t) ∈A =⇒ λᵀu +µᵀv +ξt ≥α (2.5)

(u, v , t) ∈B =⇒ λᵀu +µᵀv +ξt ≤α. (2.6)

Equation (2.5) implies that λ º 0 and ξ ≥ 0, otherwise, λᵀu + ξt would be unbounded from

below, contradicting (2.5). Equation (2.6) implies that ξt ≤ α since λᵀu +µᵀv = 0. Since

ξt ≤α ∀t < p? we have ξp? ≤α [12]. We shall next show that strong duality holds when ξ> 0,

and then show that ξ= 0 cannot occur. Firstly, expanding (2.5), gives

N∑
i=1

λi fi (x)+µᵀ (Ax −b)+ξ f0(x) ≥ ξp?. (2.7)

Assuming ξ> 0:

Dividing (2.7) by ξ, which is possible by the assumption of ξ> 0, gives

N∑
i=1

λi

ξ
fi (x)+ 1

ξ
µᵀ (Ax −b)+ f0(x) ≥ p?,

from which it is clearly seen that the dual function is lower bounded by the optimal value p?,

that is

g (λ̄,µ̄) = inf
x

L(x ,λ̄,µ̄) =
N∑

i=1

λi

ξ
fi (x)+ 1

ξ
µᵀ (Ax −b)+ f0(x) ≥ p?,

defining λ̄=λ/ξ and µ̄/ξ. But from theorem 2.1 we know that g (λ̄,µ̄) ≤ p?, thus we must have

g (λ̄,µ̄) = p?,

and strong duality holds.

8

Assuming ξ= 0:

Consider (2.7) for ξ= 0, thus yielding

N∑
i=1

λi fi (x)+µᵀ (Ax −b) ≥ 0.

Since the primal problem upholds Slater’s condition, there exists a point x ′ ∈ intD, such that

Ax ′−b = 0, thus

N∑
i=1

λi fi (x ′) ≥ 0,

however, particular: fi (x ′) < 0 for i = 1, . . . , N , thus λ must equate to zero. Recall that the sepa-

rating hyperplane theorem ensure the existence of (λ,µ,ξ) 6= 0, and so far both ξ= 0 andλ= 0,

which implies that µ 6= 0. This means that

µᵀ (Ax −b) ≥ 0.

However, since x ′ ∈ intD there exists ε> 0 such x ′+ε ∈D and

µᵀ
(

A
(
x ′+ε)−b

)< 0,

unless Aᵀµ= 0, however, this contradicts the assumption of A having full rank. Thus we have

proven that ξ= 0 cannot be the case and the proof is complete.

�

Next we assume that f0(. . .), . . . , fN (. . .) are differentiable, and let x? and λ?,µ? be the primal

and dual optimal points. Since x? minimises the Lagrangian, the gradient must vanish at x?,

that is

0 =∇L(x?,λ?,µ?)

=∇ f0(x?)+
N∑

i=1
λ?i ∇ fi (x?)+

M∑
i=1

λ?i ∇hi (x?).

Hereby, we have that, for x?,λ?,µ? to be optimal points, the following must old

fi (x?) ≤ 0

hi (x?) = 0

λ?i ≥ 0

λ?i fi (x?) = 0

∇ f0(x?)+
N∑

i=1
λ?i ∇ fi (x?)+

M∑
i=1

λ?i ∇hi (x?) = 0.

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions.

Next we present a result that claims strong duality for convex optimisation problems.

9

Theorem 2.3.

For a convex optimisation problem on the form

min
x

f0(x)

s.t. fi (x) ≤ 0 for i = 1, . . . N

hi (x) = 0 for i = 1, . . . M ,

where fi (·) for i = 0, . . . , N and hi (·) for i = 1, . . . , M are differentiable, strong duality holds.

Proof

let x?,λ?,µ? uphold the KKT conditions, thus

g (λ?,µ?) = L(x?,λ?,µ?)

= f0(x?)+
N∑

i=1
λ?i fi (x?)+

M∑
i=1

λ?i hi (x?)

= f0(x?),

since λ?i fi (x?) = 0 for i = 1, . . . , N and hi (x?) = 0 for i = 1, . . . , M , and the proof is complete.

�

This means that, if a convex optimisation problem has differentiable objective function and

constraints, and satisfies Slater’s condition, the KKT conditions provide necessary and suffi-

cient conditions for optimality.

Lastly we present a result on uniqueness of solutions.

Proposition 2.1.

If f is a convex function with convex domain D, then any local minimiser of f is also a global

minimiser.

Proof

Assume f is convex with convex domain D and let N ⊆D, be a neighbourhood of the domain

of f . Then let x? ∈ N , such that for all x ∈ N we have f (x?) ≤ f (x). Next suppose towards a

contradiction that there exists x̃ ∈D, such that f (x̃) < f (x?). Now let x(t) = t x?+ (1− t)x̃ for

t ∈ [0,1]. Note that by convexity of D, x(t) ∈D. Then by convexity of f , we have

f (x(t)) ≤ t f (x?)+ (1− t) f (x̃) < t f (x?)+ (1− t) f (x?) = f (x?). (2.8)

However, we can choose t sufficiently close to 1, such that x(t) ∈ N , which implies that f (x?) ≤
f (x(t)). However, this is in contradiction with (2.8) and the proof is complete. �

10

Proposition 2.2. Uniqueness of minima in Strictly Convex Functions

If f is a strictly convex function and has convex domain D, then there exists at most one

local minimum. If it exists, then it is a global minimum.

Proof

The second statement follows directly from the first by proposition 2.1. Thus, we only have to

show that if a local minimiser exists, it is unique. Suppose that x? ∈D is a local minimiser of

f . Then suppose towards a contradiction that x̃ ∈D too is a local minimiser of f , such x? 6= x̃ .

As f is strictly convex, it is convex and thus f (x?) = f (x̃). Consider x(t) = t x? + (1− t)x̃ for

t ∈ [0,1], and due to the convexity of D, we have x(t) ∈D for all t . Since f is strictly convex, we

have

f (x(t)) < t f (x?)+ (1− t) f (x̃) = t f (x?)+ (1− t) f (x?) = f (x?).

However this shows that f (x(t)) < f (x?) contradicting that x? is a global minimiser. Thus, if x̃

is a local minimiser, then x̃ = x?, and x? is unique. �

2.2 Solving Inequality Constrained Optimisation Problems

Consider the following optimisation problem

min
x

f0(x)

s.t. fi (x) ≤ 0 for i = 1, . . . N

Ax = b,

(2.9)

where f0, . . . fN : RM → R are twice continuous differentiable and convex, and A ∈ Rn×m with

rankA = n < m. We assume the existence of a solution to (2.9), which we denote f0(x?) = p?.

Additionally, Slater’s theorem is assumed to be fulfilled, i.e. strong duality holds.

Having inequalities constraints in (2.9) makes it difficult to solve, however, we can eliminate

the constraints by instead including them into the objective function as such

min
x

f0(x)+∑N
i=1 I (fi (x))

Ax = b,
(2.10)

where I is the indicator function given as

I (v) =
0 if v ≤ 0

∞ if v ≤ 0 .

Equation (2.10) has no inequalities, however, it is no longer differentiable. One solution to this

problem is to approximate the indicator function with a logarithmic function as such

I (v) ≈−1

t
ln(−v),

11

where t > 0 controls the accuracy. That is

lim
t→∞−1

t
ln(−v) = I (v). (2.11)

Thus we state the convex optimisation problem, which we aim to solve

min
x

t f0(x)+φ(x)

Ax = b,
(2.12)

which has the same optimal value as (2.9), and φ(x) =−∑N
i=1 ln(− fi (x)). Equation (2.11) gives

the intuitive idea that increasing t yields a solution closer to the solution of (2.9).

The method for solving (2.12) is the barrier method, which functions by solving a series of

equality constrained optimisation problems using Newton’s method, using the previous op-

timum as starting point for the next problem. With each iteration the t-value is increased by a

factor τ such −1/t ln(·) better approximates the indicator function. This also circumvents the

problem of (2.12) begin difficult to solve for large t by using Newton’s method, as t will only be

large for final few times the problem is solved.

Each time (2.12) is solved for given t-value, a minimiser x?(t) is found. Imagine that this pro-

cess is done multiple times, such that we achieve a set of these minimisers: Cp , which is referred

to as the central path. Common among the points on the central path is that they are strictly

feasible [12], that is for any x?(t) ∈ Cp

Ax?(t) = b, fi (x?(t)) < 0, ∀i

and that there exists µ̂ such

0 = t∇ f0(x?(t))+∇φ(x?(t))+ Aᵀµ̂

= t∇ f0(x?(t))+
N∑

i=1

1

− fi (x?(t))
∇ fi ((x?(t))+ Aᵀµ̂.

Next we present a result that further strengthens our intuition that the increase of t will yield

more accurate solutions

Theorem 2.4. Duality Gap for Central Points

Every point on the central path x?(t) ∈ Cp yields a dual feasible pair (λ?,µ?), and for a par-

ticular x?(t) ∈ Cp the dual gap is

p?−d?(t) = N /t .

Proof

There exists a µ̂ such

0 = t∇ f0(x?(t))+
N∑

i=1

1

− fi (x?(t))
∇ fi ((x?(t))+ Aᵀµ̂, (2.13)

12

for every point in Cp and t > 0. Next we claim that the pair

λ?i (t) =− 1

t fi (x?)
and µ?(t) = µ̂/t

is dual feasible. This requires that λ?i (t) > 0, which it is since fi (x?) < 0 and that x? minimises

the Lagrangian. To see this we rewrite (2.13) as

0 =∇ f0(x?(t))+
N∑

i=1
λ?i (t)∇ fi ((x?(t))+ Aᵀµ?(t),

which is the derivative of the Lagrangian equated to zero. Thus x? is seen to minimise the

Lagrangian

L(x ,λ,µ) = f0(x)+
N∑

i=1
λi fi ((x)+µ(Ax −b),

where λi =λ?i (t) and µ=µ?(t), which in turn means that (λ,µ) is dual feasible. Thus the dual

function is finite and

g (λ?(t),µ?(t)) = L(x?(t),λ?(t),µ?(t))

= f0(x?(t))+
N∑

i=1
λ?i (t) fi ((x?(t))+µ?(t)(Ax?(t)−b)

= f0(x?(t))−
N∑

i=1

1

t fi (x?)
fi ((x?(t))

= f0(x?(t))−N /t

Thus we can show that the duality gap is:

p?−d?(t) = f0(x?(t))− (f0(x?(t))−N /t)

= N /t ,

and the proof is complete.

�

This result increases our confidence in the intuition; that letting t →∞ will give a more accu-

rate solution.

Lastly we arrive at the description of the barrier method. Using the barrier method we can

obtain arbitrary small accuracy ε > 0, simply by continuing the series of solving (2.12) until

t > N /ε.

Algorithm 1 The Barrier Method Algorithm

Input: strictly feasible x , t := t (0) > 0, τ> 1, ε> 0
Output: Optimal point x?

1: while t < N /ε do
2: Compute x?(t) by solving: min

x ′ t f0(x ′)+φ(x ′) s.t. Ax = b starting at x

3: Update x ← x?(t) from the previous step
4: Increase t : t ← τt
5: end while

13

Example 2.1 (Quadratic Optimisation).

The standard form for quadratic optimisation is

min
x

1
2 xᵀP x +qᵀx + r

s.t. G x ¹ h

Ax = 0,

(2.14)

where x , q ∈Rn , P ∈Rn×n , r ∈R, G ∈Rm×n , h ∈Rm , A ∈Rp×n and 0 is the zero vector of appro-

priate size. We first note that the objective function and the constraint are differentiable and thus

by theorem (2.3) strong duality holds. We may present (2.14) using the indicator trick described

in this section, as

min
x

t
2 xᵀP x + t qᵀx + tr −∑m

i ln
(−(Gᵀi x −hi)

)
s.t. Ax = 0,

where G i is the i th row of the matrix G and hi is the i th entry in the vector h. Thus we may solve

this problem using the barrier method.

Next we show a convergence result of the barrier method.

Theorem 2.5. Convergence in k steps

Assuming t f0(x)+φ(x) can be minimised using Newton’s method for t = t (0),τt (0),τ2t (0), . . . ,

then the desired accuracy ε is obtained after exactly

k =

ÈÌÌÌÌÌ
ln

(
m

εt (0)

)
ln(τ)

ÉÍÍÍÍÍ .

iterations, where d·e is the ceiling function rounding up to the nearest integer.

Proof

Assume that the stopping criterion is met, that is

m

τk t (0)
< ε

for k ∈N. This implies that

m

εt (0)
< τk =⇒

ln
m

εt (0)
< k lnτ =⇒

ln
m

εt (0)

lnτ
< k.

Thus if we round the left side of the last equation up to the nearest integer, the desired result is

obtained.

14

�

We have in this section introduced the barrier method for solving quadratic optimisation prob-

lems, which shall later prove useful.

15

3 Machine Learning

We live in a world were data is becoming more and more accessible and there is more of it. A

wide range of data is collected every second from all over the world. These vast and enormous

data sets are incomprehensible for a human, thus we turn to machines to make the analyses

using machine learning. Machine learning is the science of fitting a specific model to a spe-

cific data set and finding patterns within said data set. Such a model can then be used for e.g.

predicting the evolution of stock prices, or the classification of abnormal transactions within

the banking world, dependent on the type of model fitted to the data. We shall in this chapter

discuss a few techniques relevant for the over all goal of the thesis: To classify pumps as faulty

or functioning. The goal of this chapter is to introduce the necessary component to describe

and build a federated multi-task learning scheme. [13, 14]

3.1 Support Vector Machine

Support vector machine (SVM) is the term used to describe a maximum marginal classifier.

It functions under the assumption that the data in linear separable and aims to find a hyper-

plane which separates the data in an desirable way. The hyperplane is chosen such the margin

is maximised, see figure 3.1. Based on the hyperplane, we may classify new data and deter-

mine whether this new data most likely to belong to one or the other type. This section is,

unless otherwise stated, based on [14].

We consider the N D-dimensional data points x1, . . . , x N ∈RD , with associated labels t1, . . . , tN

∈ {−1,1}, as the training data for the binary classification model

y(x) = wᵀφ(x)+b. (3.1)

where φ(·) : RD → Rn maps the data into a feature space. It is assumed that the data is lin-

ear separable in the feature space, that is, at leased one choice for w and b exists where (3.1)

satisfies both

y(x i) > 0 ∀i where ti = 1 and

y(x i) < 0 ∀i where ti =−1,
(3.2)

17

y(x) =−1

y(x) = 0

y(x) = 1

Margin

Margin
hyperplanes

Figure 3.1. Depicts the concept of SVM.

thus also ti y(x i) > 0 ∀i . This way, a new point x0 is classified as belonging to class C1 if y(x0) <
0 or class C2 otherwise. Any point x satisfying y(x) = 0 is said to lie on the decision bound, the

hyperplane separating the two classes.

Let x a and xb be any two distinct points on the decision bound. Because y(x a) = y(xb) = 0 we

have that wᵀ(x a − xb) = 0. This shows that w is perpendicular to all vectors lying within the

decision surface. Thereby, w controls the orientation of the decision bound.

The perpendicular distance from any point x to the decision bound is given by

r (x) = |y(x)|
‖w‖ . (3.3)

Note that the distance from origin to the decision bound is given by |b|/‖w‖, thus b controls

the placement of the decision bound. Since choices for w and b exist satisfying (3.2), we may

rewrite (3.3) as follows

r (x i) = ti y(x i)

‖w‖ = ti (wᵀφ(x i)+b)

‖w‖ .

The margin is the smallest perpendicular distance between the decision bound and any one

training data point. The goal is to find w and b such this distance is maximised. Thus, we

formulate the following optimisation problem

argmax
w ,b

(
1

‖w‖ min
i

[
ti (wᵀφ(x i)+b)

])
. (3.4)

Where 1/‖w‖ is excluded in the minimisation over i as it does not depend on i . Note that r (·)
from (3.3) is invariant under scaling of w and b. Let i ′ solve argmini [ti (wᵀx i +b)], then there

exists a κ ∈R+ such

t ′i (κwᵀφ(x ′
i)+κb)

‖κw‖ = 1,

18

Decision
bound

φ(x)

r (x)

Figure 3.2. Distance to the decision bound

where κ is omitted from now on. In this case all data points will satisfy the following condition

ti (wᵀφ(x i)+b)

‖w‖ ≥ 1 for i = 1, . . . N .

Thus, the optimisation problem from (3.4) can be rewritten as

arg min
w ,b

1
2‖w‖2

s.t. ti (wᵀφ(x i)+b) ≥ 1 for i = 1, . . . N
(3.5)

where the introduction of the scalar in the objective function is for ease of derivation later on.

Note that the maximisation problem has changed to a minimisation and that we examine ‖w‖2

and not ‖w‖−1.

A method for solving the constrained optimisation problem in (3.5) is to introduce Lagrangian

multipliers µi ≥ 0, one multiplier for each of the constrains, giving the Lagrangian

L(w ,b,µ) = 1

2
‖w‖2 −

N∑
i=1

µi
(
ti (wᵀφ(x i)+b)−1

)
, (3.6)

where µ= (µ1, . . . ,µN).

Differentiating (3.6) w.r.t w and b, and equating to zero yields

w =
N∑

i=1
µi tiφ(x)

0 =
N∑

i=1
µi ti .

(3.7)

Substituting these equalities into (3.6), yields

L̃(µ) =
N∑

i=1
µi − 1

2

N∑
i=1

N∑
k=1

µiµk ti tk k(x i , xk), (3.8)

where k(x , x ′) = φ(x i)ᵀφ(xk), thus relieving the necessity of knowing φ(x), only requiring to

know the kernel k(·, ·). Note the removing of the dependencies on w and b. Hereby, we have

19

the optimisation problem

arg max
µ

L̃(µ)

s.t. µi ≥ 0, for i = 1, . . . , N

0 =∑N
i=1µi ti

(3.9)

It can be seen, that if the kernel function k(x , x ′) is positive definite, (3.8) is bounded from be-

low, thus (3.9) is well defined [14]. It is the solution to (3.8) that will in turn give the optimal

values for w and b from (3.1). This is a quadratic optimisation problem, and we may thus

reformulate (3.8) such it appears on the standard form of (2.14) as such:

arg min
µ

1
2µ
ᵀPµ−qᵀµ

s.t. Gµ¹ h

aᵀµ= b,

(3.10)

where P (k,i) = tk ti k(xk , x i), q = [1,1, . . . ,1]ᵀ, G = −I , ¹ indicates an elementwise inequality,

h = 0, a = [t1, t2, . . . tN]ᵀ and b = 0. This also means that we now have a way of solving this

problem using the barrier method.

Any minimiser of (3.9) must adhere to the Karush-Kuhn-Tucker (KKT) constraints which in this

case are

µi ≥ 0, for i = 1, . . . , N

ti y(x i)−1 ≥ 0, for i = 1, . . . , N

µi
(
ti y(x i)−1

)≥ 0, for i = 1, . . . , N . (3.11)

From (3.11) it is clearly seen that for every i = 1, . . . , N either µi = 0 or ti y(x i) = 1. Any train-

ing point x i for which ti y(x i) = 1 is called a support vector, hence the name support vector

machines. Let S be the set of indices associated with the support vectors, that is S = {i =
1, . . . , N | ti y(x i) = 1} Thus, we know form our observation in regards to (3.11) that for any i ∈S

ti

(∑
m∈S

µm tmk(x i , xm)+b

)
= 1. (3.12)

The scalar b could be determine directly from (3.12) using any support vector, however, in the

following we show a more numerically strong way of determining b, utilising an average over

all support vector. Note that t 2
i = 1 for i = 1, . . . , N , thus:

b = 1

|S|
∑
i∈S

(
ti −

∑
m∈S

µm tmk(x i , xm)

)
,

where |S| denotes the cardinality of S . Thus, we have expressions for w in (3.7) and b as just

shown.

Imagine having a trained model, wanting to predict what class new data points belong to. We

consider the new data point x with associated label t . If y(x) ≥ 0 then x belongs to class t = 1

20

and vice versa. Thus we can determine whether we correctly classified x by

t y(x) =
≥ 0 correctly classified

< 0 incorrectly classified.

3.1.1 Non-perfect classifiers

So far we have assumed the training data was perfectly linearly separable in the feature space,

however, this is often not the case. Sometimes class distributions overlap, and if we were to

create a model that correctly classified all training points, even if they were deep within the

convex hull of the other class, it might lead to a model that perform worse in general. Thus, it

can sometimes be advantageous to purposefully misclassify some training data to build a more

robust model. If we compare the figures 3.3a and 3.3b, we see that allowing the one misclassifi-

cation actually builds a more robust model, that we expect to perform much better in the long

run.

We introduce slack variables ξi ≥ 0 for 1 = 1, . . . , N , such there are one for each training data

point, to allow training points to be on the "wrong" side of the margin hyperplanes, as seen on

the figures 3.3a and 3.3b. Points that are on the correct side of the margin hyperplanes have

a slack variable of ξi = 0, while every other point will have a slack variable of ξi = |ti − y(x i)|.
This implies that points on the decision bound will have ξi = 1, while points with ξi > 1 will be

misclasified, just as seen on figure 3.3. Points with 0 < ξi < 1 are on the wrong side of the hy-

perplane, yet still classified correctly. We introduce the Hinge loss function which does exactly

all this.

`H (x i , ti) = max(0,1− ti y(x i)).

(a) Allowing no misclassification.

ξi > 1

(b) Allowing some misclassification.

Figure 3.3. Shows the difference between allowing and not allowing misclassification.

21

Therefore, we simply define ξi = `H (x i , ti).

The objective is now to maximise the margin, while including penalisation of training points

not correctly classified, as seen

arg min
w ,b

1
2‖w‖2 +C

∑N
i=1 ξi

s.t. ti (wᵀφ(x i)+b) ≥ 1−ξi for i = 1, . . . N

ξi ≥ 0 for i = 1, . . . N

(3.13)

where C > 0 is a scalar that controls the trade-off between the importance of a large margin and

the slack variables. In the limit C →∞, (3.13) will be equivalent to (3.5), while if C → 0 there will

be almost no penalty for having huge slack variables, which will in most cases lead to useless

models. The KKT conditions are similar, however, this time we introduced the slack ξi which is

thus influencing the KKT conditions, as seen

µi ≥ 0, for i = 1, . . . , N

ti y(x i)−1+ξi ≥ 0, for i = 1, . . . , N

µi
(
ti y(x i)−1+ξi

)≥ 0, for i = 1, . . . , N

ξi ≥ 0, for i = 1, . . . , N

λi ≥ 0, for i = 1, . . . , N

λiξi = 0, for i = 1, . . . , N .

(3.14)

Again, the Lagrangian is determined

L(w ,b,ξ,µ,λ) = 1

2
‖w‖2 +C

N∑
i=1

ξi −
N∑

i=1
µi

(
ti

(
wᵀφ(x i)+b

)−1+ξi
)− N∑

i=1
λiξi , (3.15)

differentiated w.r.t w , b and ξn , equated to zeros, yields

w =
N∑

i=1
µi tiφ(x i) (3.16)

0 =
N∑

i=1
µi ti (3.17)

µi =C −λi . (3.18)

These may be used to eliminate w , b and ξn from (3.15) by insertion, thus yielding

L̃(µ) =
N∑

i=1
µi − 1

2

N∑
i=1

N∑
k=1

µiµk ti tk k(x i , xk). (3.19)

Next, we optimise (3.19)

arg max
µ

L̃(µ)

s.t. 0 ≤µi ≤C , for i = 1, . . . , N

0 =∑N
i=1µi ti .

22

Note that this is again a quadratic optimisation problem, and can be reformulated similar to

(3.10), with the only difference being G = [−Iᵀ, Iᵀ]ᵀ and h = [0ᵀ,C ,C , . . .C]ᵀ.

Any training point x i for which µi < C , we have by (3.18) that λi > 0, and thus by KKT condi-

tions in (3.14) ξi = 0. Hereby, such x i is correctly classified and lie on the correct side of the

margin or on the margin. However, points for which µi = C =⇒ λi = 0, thus lie within the

margin and are correctly classified if ξi ≤ 1 or misclassified if ξi > 1. Lastly we simply need to

determine b, which again will be done through an average. Any training point x i for which

0 <µi <C will have ξi = 0 implying that ti y(x i) = 1, thus we can determine b as,

b = 1

|M|
∑

m∈M

(
tm − ∑

i∈S
µi ti k(x i , xm)

)
,

where M= {i ∈ [1, N]|0 <µi <C } and |M| denotes the cardinality of M.

(a) Slack variable penalty C = 1 (b) Slack variable penalty C = 2

(c) Slack variable penalty C = 3 (d) Slack variable penalty C = 4

Figure 3.4. Experiments with four different penalty coefficients, where the support vectors
are circled.

One thing that has yet to be discussed is the choice of the penalty coefficient, C . Figure fig-

ure 3.4 depicts the result of four learning instances of the SVM discussed in this section, using

four different values for C . The learning has been done with the use the sklearn module for

python [15]. As can be seen, four different results with different placements of the decision

bound and widths of the margin are obtained. Dependent on the application, one has to ex-

periment and determine a suitable value for the penalty coefficient.

23

3.2 Federated Learning

Federated learning is the concept of learning a single model from the average of multiple mod-

els all trained on distinct data sets D1,D2 . . .DK [16]. An example of this could be if a mobile

phone company wants to help their customers write better text messages. Specifically, help

include apostrophes in contractions such as "I’ve". The traditional way of considering such a

problem, would be to communicate all the data, i.e. the text messages, to a central server and

commence with the learning once all the data had been collected and stored on the server [16].

However, this way of considering the problem has its downsides. The communication between

the devices and the server is time consuming and inefficient. If we instead move the learning

process to the individual devices (nodes, as they will be referred to from now on) we save the

transmission cost of the entire data sets. Instead, only the weights - a set of parameters that

entirely describe the model - are communicated which will be of a far less cost. The concept is

depicted in figure 3.5.

In the text message case, we are unable to share the data with a central server due to a differ-

ent and yet maybe even more important concern; privacy. However, with the recent strides in

mobile technology we luckily do not have to, since today’s mobile phones have huge compu-

tational power compared those of past decades, which allows us to perform the learning on

the nodes [7]. We shall from now on refer to a single text message as a data point. As one can

imagine, the frequency of data points being collected will be different from node to node, as

people write text messages with different frequency. Likewise, people write different styles of

text massages, thus the data will in its nature will be different. Thus, we can conclude, that a

solution to this problem must be able to handle non-IID and unbalanced data sets.

3.2.1 The Federated Averaging Algorithm

This problem is considered as one problem, meaning that in the end a single weight vector is

found, even though the data separated into K parts (one for each devise), all of which are val-

Node 1
D1

Node 2
D2

Node K
DK

Central
server

Figure 3.5. Depicts the star network setup of the federated learning.

24

ued equally. It makes sense to consider the problem of minimising the average over all the loss

functions, as seen below. We seek to solve the following problem

min
w

1

N

∑N
i=1 fi (w), (3.20)

where w ∈Rd are the weights of the global model, N ∈R is the total number of data points and

fi (w) = `(x i , w) is the loss obtained from training the model using the training data x i , with

` : Rd ×Rm →R+. That is, we choose a model, then seek to find the weights w that best fit the

entire data set. Unless otherwise stated, this section is based on [17].

However, as previously described, the data in generated and stored on K nodes, such that they

each have a distinct data set Dk . Thus, (3.20) is rewritten as

min
w

∑K
k=1

nk

N
Fk (w), where Fk (w) = 1

nk

∑
i∈Dk

fi (w) (3.21)

and nk = |Dk |. This means that we cannot directly solve (3.20), as we are not allowed to share

data. We instead turn to solving (3.21), that is solving K optimisation problem by fitting the

same type of model to the K distinct data sets D1, . . . ,DK .

One way of solving (3.21) would be to take a gradient descent (abbr. GD) approach. GD is

a technique that finds the gradient of the loss function and updates the weights by subtract-

ing the gradient of the loss function scaled with a learning step constant η [12]. This is then

repeated a number of times until the result is sufficient. One could also have approach this

problem using a SVM solution. In the case of a GD solution, it would be to find the gradient of

Fk (w m) at the mth iteration, that is

g k =∇Fk (w m) for k = 1, . . . ,K .

In our federated setting, the updates of the weights of the global model would then happen as

w m+1 = w m −η
K∑

k=1

nk

N
g k . (3.22)

This way of doing the update is not arbitrary, as it has strong links to the original problem of

(3.20):

K∑
k=1

nk

N
g k =

K∑
k=1

nk

N
∇Fk (w)

=∇
K∑

k=1

nk

N
Fk (w)

=∇ 1

N

N∑
i=1

fi (w),

which is the gradient of the objective function. This seems natural, as we are considering a GD

approach.

25

If we examine (3.22), it may be rewritten as

w m+1 = w m −η
K∑

k=1

nk

N
g k

=
K∑

k=1

nk

N
w m −η

K∑
k=1

nk

N
g k

=
K∑

k=1

nk

N
(w m −ηg k)

=
K∑

k=1

nk

N
w k

m+1,

where w k
m+1 = w m −ηg k . This shows that instead of each node communicating the deriva-

tive of its loss function, the nodes may communicate their updated weights and the server

then averages the weights to achieve the weights of the global model. This also opens up for

the opportunity of having more than one update of the weights on the nodes before updat-

ing the global model at the central serer. We refer to E as the number of local epochs on each

node. Note that we distinct between iterations and local epochs. An iteration is one full round

through algorithm 2, while a local epoch is one round through algorithm 3.

If there are a large number of nodes to base an update upon, it may advantageous to randomly

choose some of them instead. This concept is also seen in techniques such as the stochastic

gradient descents (abbr. SGD). We refer to 0 ≤C ≤ 1 as the fraction of nodes to base the update

upon. This is included as it could be of interest to make global updates on only some of the de-

vises. In the mobile phone case, with an enormous amount of devises it could take a long time

to receive updates from them all. Thus, we randomly choose only some of them. The amount

is decided by the value of C .

It may also be advantageous to split the data sets into smaller mini batches of data and only

use a single mini batch at a time in the on-node updates, similar to SGD. This is different from

having more than one epoch on the node. The idea is to split the data Dk of the kth node into

minim batches of size of B . Then update the weights of the node on the mini batches, one at a

time. Note that B =∞ means the entire local data set is used, thus we do not split the data set

into smaller mini batches at all.

Next we present the Federated Average Algorithm.

26

Algorithm 2 The Federated Averaging Algorithm [17]

Input: Number of local epochs E , the learning rate η, the size of local mini batches B , the frac-
tion of nodes to receive updates from C , the number of nodes K and initial weights w 0

Output: The weights for a global model w
1: for each communication round t = 1,2, . . . do
2: m ← max(C ·K ,1)
3: St ←(random set of m indices)
4: for each node k ∈St in parallel do
5: w k

t+1 ← NodeUpdate(k,E ,η,B , w t)
6: end for
7: w t+1 ←∑|St |

k=1

nk

N
w k

t+1

8: end for

Where NodeUpdate(·) as the name suggests is the function that updates the local weights on

the nodes. The NodeUpdate function is given as.

Algorithm 3 NodeUpdate Algorithm [17]

Input: The node number k, the number of local epochs E , the learning rate η, the size of local
mini batches B and the current weights w t .

Output: The updated weights from node k: w k
t+1.

1: B← (randomly split Dk into mini batches of size B)
2: for each local epoch i = 1,2, . . .E do
3: for each mini batch b ∈B do
4: w ← w −η∇`(b, w)
5: end for
6: end for

Note that C = 0.0 means the update is based upon a single node.

Example 3.1 (Federated Learning Using SVM).

Imagine wanting to classify the gender of mobile device users based on the text messages written.

One way of approaching a solution to this obvious classification problem is using the SVM tech-

nique and the federated averaging algorithm, both previously discussed. Recall the loss function

for an SVM scheme is the Hinge loss function, given as:

`H (bi , w) = max(0,1− ti y(bi)),

where bi is the i th data point in the training set with associated label ti and w are the weights

needed for the classification. Depicted in figure 3.6 is `H (·, ·) as a function of ti y(bi).

27

−2 −1 0 1 2 3 4
0

1

2

3

ti y(bi)

`H (bi , w)

Figure 3.6. Depicts the Hinge loss function as a function of the product between the output
of the decision function and the true label of the data point.

From this visual inspection it is clear that the function is not differentiable, however, it is piece-

wise differentiable. Thus,

∇`H (bi , w) =
−tiφ(bi) ti y(bi) < 1

0 otherwise
,

where we have defined the derivative to be zero if ti y(bi) = 1. Thus we have the necessary tool to

construct federated learning scheme to solve this problem using SVM on the nodes.

3.2.2 Parameter Discussion

We have so far introduced the Federated Averaging algorithm, given an example of an applica-

ble case and given some parameters which need to be specified. We begin by discussing the

parallelism i.e. the C parameter. This parameter is included in the algorithm to minimise the

communication needed for the algorithm to run. That is, the fewer nodes the central server

need to communicate with, the less of a communication cost occurs. On the other hand, in-

tuitively having a large C updates the model bases upon more data, thus should yield a faster

convergence in terms of numbers of communication rounds. One thing, yet to be discussed is

the fact that one cannot expect all nodes to be available all the time. This could be if the mobile

phone company has agreed to only do learning updates during the night, avoiding user frus-

tration due to allocated processing resources slowing down the mobile phone, had the learning

update been done during the hours of which the phone is operated by the user. Thus choos-

ing C large would increase the expected time a single communication round takes, leading

to slower convergence. From the experiments conducted in [16, 17] a conclusion is drawn

28

that choosing C = 0.1 strikes a good balance between the number of communication rounds

needed and the computational efficiency (i.e. the availability of nodes).

The number of computations on each nodes is controlled both by the mini batch size B and the

number of local epochs E , thus these two parameter are connected and it makes sense to dis-

cuss these simultaneously. The way the NodeUpdate algorithm is constructed, the expected

number of local computations is given as:

u =
(E [nk]

B

)
E = E

(
N

K B

)
,

whereE[·] is the expectation operator. Having larger u generally leads to fewer communication

rounds [16, 17], thus we are interested in having large u. We may increase u by either increasing

E or decreasing B . The parameter B should always be large enough to take full advantage of the

parallelism of the node hardware, meaning that the node hardware should be fully occupied at

all times during the node update. That is, if B is chosen sufficiently small, some of the compu-

tational power on the node might not be used to full capacity. However, that said, if B is large

enough (such the parallelism on the node is fully used), there is essentially no computational

cost in decreasing B [16, 17]. Recall that decreasing B leads to more local computations, in-

creasing parallelism of the entire learning scheme. Thus, B should be the first parameter to be

tuned [16, 17]. On the other hand, a larger u puts larger constraints on the hardware available

on the nodes as more computations are needed. Obviously, not all nodes (dependent on the

application) will have the same computational speed. In the mobile phone case, one or more

mobile phones might be older and thus their computational power will be inferior to some of

the newer ones. This will lead to a slower convergence in terms of time. One has to consider

the application when choosing both B and E : Is it important to keep the number of communi-

cation rounds low, sacrificing the convergence in terms of time, or does the application allow

for a larger number of communication rounds, having less local computations.

3.3 Multi-Task Learning

Multi-task learning (abbr. MTL) is the concept of learning a number of tasks faster or more

proficiently by learning them simultaneously, rather than if the tasks were learned indepen-

dently [18]. The goal is to learn T task, all equally important, simultaneously. That is, to build

T models with model parameters θ1, . . . ,θT ∈ Rn . However, to have multi-task, one needs to

know what a single task is.

Definition 3.1. A task

We define the t th task in a MTL scheme as

Tt ,
{
Dt , Li (θi , x , y)

}
, (3.23)

where Dt = {(x1,t , y 1,t), (x2,t , y 2,t), . . . , (x Nt ,t , y Nt ,t)} is the data set, Nt denotes the number of

29

data point in the data set, Lt (·, ·, ·) is the loss function and θi ∈Rm is the model parameters

all associated with the t th task.

Note that the terms in a task are indexed, which means that they could all be distinct for each

task. That is, one might consider a MTL scheme of classifying images from clothes shopping

websites. This could be the case where one wanted to classify the colour of the product (on the

image) and the type of clothes (blouse, dress, shirt etc.) as two tasks. In these cases the data

points and the loss function (possibly cross-entropy) would be the same across the two tasks.

However, the labels would differ.

To learn T tasks faster or more proficiently we assume that tasks are related.

Definition 3.2. Related Tasks

Two tasks are said to be related if the models perform well while sharing some model pa-

rameters.

This means that we may split each model θ1, . . .θT into a part that is shared and one that is task

specific. If none of the chosen T tasks are related, then multi-task learning could yield a worse

result, than learning the tasks individually. This is due to the fact that, the multi-task learning

scheme enforces similarity between the tasks - which is not there in this case - as we shall see

later.

A simple formulation of a MTL scheme is to minimise the sum of the loss over each task

min
Θ

∑T
t=1

∑Nt
n=1Lt

(
θt , xn,t , yn,t

)
, (3.24)

where θt is the t th column of Θ ∈Rm×T and the model parameters for the t th task. Equation

(3.24) is the very basic concept of MTL, however, we often include regularisation terms and

constraints to penalise undesirable behaviour of the model parameters [18]. Different regular-

isation terms and constraints are used dependent on what outcome is desired. Some of the

possible approaches include a low-rank approach, task clustering approach and task group-

ing approach [18]. We shall, however, investigate another approach, described in the following

subsection.

3.3.1 Feature learning approach

In a feature learning approach, the model tries to learn a feature space that is useful for the

problem. This could be a linear transformation of the data before the model parameters are

applied [18]. We have seen this concept in section 3.1 with the φ(·) function, that brings the

data into a feature space where it is linear separable. Solely using a linear transformation has

its limitations, as we are thus only able to achieve something similar to principal component

analysis or linear discriminant analysis. We shall in the later investigate the possibility of in-

cluding a nonlinear transformation of the data.

30

This way our baseline problem (3.24) becomes [18]

min
Θ,U

∑T
t=1

∑Nt
n=1Lt

(
θt , Uᵀxn,t , yn,t

)+R(Θ)

s.t. UUᵀ = I ,
(3.25)

where U ∈Rm×m is the transformation matrix, R(Θ) is the regularisation terms which we shall

discuss later and I is the identity matrix of appropriate size. Note the constraint of UUᵀ = I ,

this ensures that the transformation matrix is orthogonal.

Next we concern ourselves with the choice of regularisation term.

Definition 3.3.

For B ∈Rk×l and p, q ∈N such p, q > 0, define

‖B‖p,q = ‖ ‖b1‖p , . . . ,‖bk‖p ‖q ,

where bi is the i th row of B .

We choose our regularisation term as R(Θ) = λ‖Θ‖2
2,1, for λ ∈R. Choosing ‖ · ‖2,1 enforces the

model parameters to be similar across tasks and sparsity within model parameters. That is, the

enforcement of a few large model parameters and similarity of model parameters across the

tasks. Assume that the prediction function is a linear function given as

P(x ,θ) = θᵀx . (3.26)

The loss function is modified to simply take the prediction as input, and we have the MTL

problem of

min
Θ,U

∑T
t=1

∑Nt
n=1Lt

(
θ
ᵀ
t Uᵀxn,t , yn,t

)+λ‖Θ‖2
2,1

s.t. UUᵀ = I .
(3.27)

Unfortunately (3.27) is non-smooth and non-convex [9]. We shall later show how to combat

these issues, however, first we introduce a lemma which plays i vital part in a later result.

Lemma 3.1.

For any b = [b1, . . . ,bd]ᵀ ∈Rd , such that bi 6= 0 ∀i = 1, . . . ,d , we have

min
λ

{
d∑

i=1

b2
i

λi
: λi > 0 ∀i ∈ [1,d],

d∑
i=1

λi ≤ 1

}
= ‖b‖2

1 (3.28)

where λ= [λ1, . . . ,λd]ᵀ, and the minimiser is given as

λ? =
[|b1|
‖b‖1

, . . . ,
|bd |
‖b‖1

]
.

31

Proof

We begin by showing that ‖b‖2
1 is an obtainable lower bound to (3.28).

‖b‖1 =
d∑

i=1
|bi |

(a)=
d∑

i=1
λ1/2

i λ−1/2
i |bi | (3.29)

(b)≤
(

d∑
i=1

λi

)1/2 (
d∑

i=1
λ−1

i |bi |2
)1/2

(3.30)

(c)≤
(

d∑
i=1

λ−1
i |bi |2

)1/2

, (3.31)

where (a) comes from the multiplication of 1 =λ1/2
i λ−1/2

i ∀i ∈ [1,d], (b) comes from the square

root of the Cauchy-Schwarz inequality and (c) comes from the fact that
∑d

i=1λi ≤ 1. This im-

plies that

‖b‖2
1 ≤

d∑
i=1

|bi |2
λi

,

showing that ‖b‖2
1 is an obtainable lower bound. Next we show conditions for equality in (3.30)

and (3.31). For equality to hold in (3.31) we simply require that
∑d

i=1λi = 1. The Cauchy-

Schwarz inequality has equality if and only if

λ1/2
i = k

(
λ−1/2

i |bi |
)

,

for some k ∈R. Thus, (3.30) will have equality if and only if

λ1/2
i

λ−1/2
i |bi |

=
λ1/2

j

λ−1/2
j |b j |

∀i , j = 1, . . . ,d .

Finally, we show that the solution

λ? =
[|b1|
‖b‖1

, . . . ,
|bd |
‖b‖1

]
fulfils all requirements. First,

d∑
i=1

|bi |
‖b‖1

= 1

‖b‖1

d∑
i=1

|bi |

= ‖b‖1

‖b‖1

= 1.

Secondly,

λ1/2
i

λ−1/2
i |bi |

= λi

|bi |

=
|bi |
‖b‖1

|bi |
= 1

‖b‖ ,

32

is a constant independent of index and the proof is complete. �

With the lemma introduced, we next introduce a theorem that states (3.27) may be rewritten

into a convex and smooth equivalent version [9].

Theorem 3.1.

The minimisation problem

min
Θ,U

∑T
t=1

∑Nt
n=1Lt

(
θ
ᵀ
t Uᵀxn,t , yn,t

)+λ‖Θ‖2
2,1

s.t. UUᵀ = I .
(3.32)

is equivalent to the minimisation problem

min
W ,D

∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr(W ᵀD+W)

s.t. tr(D) ≤ 1, D º 0, range(W) ⊆ range(D),
(3.33)

where D+ is the pseudoinverse of D , tr(·) is the trace operator and B º C means B −C is

positive semi definite. In particular, if (U?,Θ?) is a minimiser of (3.32) then

(W ?,D?) =
(

U?Θ?,U?diag

([‖θ1?‖2

‖Θ?‖2,1
, . . . ,

‖θn?‖2

‖Θ?‖2,1

]ᵀ)
U?ᵀ

)
,

is a minimiser of (3.33), where diag(·) forms a diagonal matrix with the elements of the vector

input and θi? denotes the i th row of the matrix Θ?. Conversely, if (W ?,D?) is a minimiser

of (3.33), then any (Θ,U) such U forms an orthonormal basis of the eigenvectors of D? and

Θ=UᵀW ? will minimise (3.32).

Proof

Assume that (U ,Θ) is in the feasible set of (3.32), that W =UΘ and that

D =U diag

([‖θ1‖2

‖Θ‖2,1
, . . . ,

‖θn‖2

‖Θ‖2,1

]ᵀ)
Uᵀ.

Firstly, we show that indeed the objective functions of (3.32) and (3.33) are equal. Using the

assumptions above, then

T∑
t=1

Nt∑
n=1

Lt
(
θ
ᵀ
t Uᵀxn,t , yn,t

)= T∑
t=1

Nt∑
n=1

Lt
(
wᵀt xn,t , yn,t

)
.

33

And,

tr
(
W ᵀD+W

) (a)= tr
(
ΘᵀUᵀU diag

(
‖Θ‖2,1

[‖θ1‖+2 , . . . ,‖θn‖+2
]ᵀ)

UᵀUΘ
)

(b)= ‖Θ‖2,1 tr
(
Θᵀdiag

([‖θ1‖+2 , . . . ,‖θn‖+2
]ᵀ)

Θ
)

(c)= ‖Θ‖2,1 tr
(
diag

([‖θ1‖+2 , . . . ,‖θn‖+2
]ᵀ)

ΘΘᵀ
)

(d)= ‖Θ‖2,1

n∑
i=1

‖θi‖+2 ‖θi‖2
2

= ‖Θ‖2,1

n∑
i=1

‖θi‖2

(e)= ‖Θ‖2
2,1,

where (a) comes from substitution of the definitions of both W and D (Note that U is orthog-

onal, thus U+ = Uᵀ), (b) comes from the fact that tr(c A) = c tr(A) for c ∈ R and A ∈ Rh×g , (c)

comes from the fact that the trace operator is invariant under cyclic permutations, (d) comes

from the definition of the trace operator, the fact that the diagonal of ΘΘᵀ is the squared `2-

norm of the rows of Θ and that the diagonal of the matrix-product between a diagonal matrix

and any other matrix (of appropriate size) is simply the product of the diagonal entries, and (e)

comes from definition 3.3. Thus, we have now shown that the objective functions of (3.32) and

(3.33) are equal, when W and D are defined based on a feasible (U ,Θ) of (3.32).

Notice that W is a matrix multiple of the submatrix of U which corresponds to the nonzero

rows of Θ. This is easily seen if we without loss of generality (abbr. wlog) assume that the first

k ∈ [1,n] rows of Θ are zero. Then we may represent W in a block structure:

W =
[
U 1 U 2

][
Θ1

Θ2

]
,

where Θ1 represents the first k rows of Θ and is thus zero. This means that W = U 2Θ2. Since

we assumed that the first k rows of Θ were zero, we may also rewrite D , as

D =U 2 diag

([
‖θk+1‖2

‖Θ‖2,1
, . . . ,

‖θn‖2

‖Θ‖2,1

]ᵀ)
Uᵀ2 . (3.34)

This shows that W is also a matrix multiple of the submatrix of U which corresponds to the

nonzero eigenvalues of D , as (3.34) is an eigenvalue decomposition. Thus, we have the follow-

ing relation: range(W) ⊆ range(D).

So far we have shown that for a feasible (U ,θ), the objective function in (3.32) is equal the ob-

jective function in (3.33) for appropriate (W ,D). However, this choice for (W ,D) might not be

the optimiser to (3.33), and thus we can conclude that the minimum of (3.33) is less than or

equal to the minimum of (3.32).

We now aim to show the converse of the aforementioned conclusion. Namely that the mini-

mum of (3.32) is less than or equal to the minimum of (3.33), such the problems have equal

minima. Now let (W ,D) be in the feasible set of (3.33). Assume D = U diag([λ1, . . . ,λn])Uᵀ

34

be a eigenvalue decomposition with the columns of U being the eigenvectors and λi the i th

eigenvalue. Moreover, assume Θ=UᵀW . Then,

tr
(
W ᵀD+W

)= tr
(
ΘᵀUᵀU diag

([
λ+

1 , . . . ,λ+
n

])
UᵀUΘ

)
= tr

(
diag

([
λ+

1 , . . . ,λ+
n

])
ΘΘᵀ

)
=

m∑
i=1

λ+
i ‖θi‖2

2.

Due to the positive semi definiteness of D , some of the eigenvalues might equate to zero. If

λi = 0 then θi = 0 to obey the range constraint. To show this we make an argument of contra-

diction. Let e i ∈RT be i th column of a T ×T identity matrix, and suppose λi = 0 and θi 6= 0.

Then W e i =UΘe i =Uθi . Then by the range constraint, there exists x ∈Rm such θi =UᵀD x .

Notice that due to the assumption of θi 6= 0, the i th entry of θi is also nonzero. However, by the

assumption of λi = 0

diag([λ1, . . . ,λi−1,0,λi+1, . . . ,λn])Uᵀ =
[
λ1u1 . . . λi−1ui−1 0 λi+1ui+1 . . . λnun

]ᵀ
.

This shows that the i th entry of UᵀD x , for any x ∈ Rn , will always be zero. Thus, we cannot

find a vector x ∈Rm such θi =UᵀD x , and the range constraint does not hold (which it must,

by assumption). Hereby, we have concluded that ifλi = 0 then θi cannot be nonzero if we must

uphold the range constraint. Thus, we have by contradiction shown that if λi = 0 =⇒ θi = 0.

Consequently,

n∑
i=1

λ+
i ‖θi‖2

2 =
∑

i :λi 6=0

‖θi‖2
2

λi

(a)≥
(∑

i :λi 6=0
λ1/2

i λ−1/2
i ‖θi‖2

)2

=
(∑

i :λi 6=0
‖θi‖2

)2

= ‖Θ‖2
2,1

where (a) comes from lemma 3.1. This shows that the minimum of (3.32) will be less than or

equal to the minimum of (3.33).

We have shown that for feasible choices, the objective functions of (3.32) and (3.33) are equal.

Furthermore, we have shown that the minima of the optimisation problems are upper bounded

by each other, thus they must equate, and the proof is complete. �

The constraint on the trace of D to be upper bounded in theorem 3.1 is necessary, as otherwise

D = ∞ would be the optimal solution. This is the case, as the pseudoinverse of D is used in

(3.33). Likewise, the range constraint is necessary, for the regularisation term tr(W ᵀD+W) to

be strictly positive. Otherwise, when W does not have full rank, DW = 0 is possible, which

indeed would result in the regularisation terms being zero, eluding the point of it. [9]

35

The whole point of theorem 3.1 was to find an equivalent optimisation problem that was con-

vex. Hence, with the next proposition we show exactly that.

Proposition 3.1.

The following optimisation problem

min
W ,D

∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr(W ᵀD+W)

s.t. tr(D) ≤ 1, D º 0, range(W) ⊆ range(D),
(3.35)

is convex.

Proof

The proof is omitted, but can be found in [9]. �

3.3.2 Alternating Minimisation Algorithm for Multi-Task Feature Learning

We shall in this section present an alternation algorithm for solving (3.33). The term alternating

refers to the optimisation over one parameter while the other is fixed and vice versa.

If we constrain D to be positive definite in theorem 3.1, we may drop the range constraint [9,

Corollary 1]. Thus, (3.33) becomes

min
W ,D

∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr(W ᵀD−1W)

s.t. tr(D) ≤ 1, D Â 0.
(3.36)

We shall in this section discuss how the minimum of (3.36) is found. Define,

Rε(W ,D) =
T∑

t=1

Nt∑
n=1

Lt
(
wᵀt xn,t , yn,t

)+λ tr(D−1(W W ᵀ+εI)),

where ε ∈R and ε> 0, and I is the identity matrix of appropriate size. Note that,

min
W ,D

Rε(W ,D)

s.t. tr(D) ≤ 1, D Â 0,
(3.37)

is similar to (3.36), as is the point. This section will introduce an alternating minimisation al-

gorithm for multi-task feature learning, that is, solving (3.37). We refer to this algorithm as the

MTFL algorithm. Next, we aim to show that: (1) equation (3.37) has a unique minima, (2) the

MTFL algorithm converges to that minima and (3) that the solution to (3.37) for ε→ 0 con-

verges to the solution of (3.36). Thus, we may use the MTFL algorithm to find a solution to

(3.36) and by theorem 3.1 also (3.27), which was the originally desired solution.

The MTFL algorithm generally consist of a supervised step, where D is fixed and an unsuper-

vised step, where W is fixed. Let D be fixed, then (3.37) becomes

min
W

∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr
(
D−1W W ᵀ)

st. W ∈Rm×T
(3.38)

36

One crucial observation is that when D is fixed the columns of W are decoupled [9]. The D ma-

trix binds the tasks together, such if one of the weights were to chance it would chance D and in

turn change the other weights, and so on. This means that (when D is fixed) the minimisation

of the columns of W can be carried out independently. That is, one may consider (3.38) as T

independent minimisation problems. This fact shall prove to be a key result in the later works

of this project.

Let W be fixed, then (3.37) becomes

min
D

tr
(
D−1 (W W ᵀ+εI)

)
st. tr(D) ≤ 1, D Â 0.

(3.39)

The next theorem shows that (3.39) has a closed form solution.

Theorem 3.2.

The minimum of

min
D

tr
(
D−1 (W W ᵀ+εI)

)
st. tr(D) ≤ 1, D Â 0.

(3.40)

is

tr
((

W W ᵀ+εI
)1/2

)2
,

and is obtained when

D (W) = (W W ᵀ+εI)1/2

tr
(
(W W ᵀ+εI)1/2) . (3.41)

Proof

Assume that D Â 0, tr(D) ≤ 1, and let C =W W ᵀ+εI º 0. First, we show the minimum of (3.40)

is indeed tr
(
C 1/2

)2
. Under the assumptions,

tr
(
D−1C

) (a)≥ tr
(
D−1C

)
tr(D)

(b)= tr
((

D−1/2C 1/2)(D−1/2C 1/2)ᵀ) tr
(
D1/2 (

D1/2)ᵀ)
(c)= ‖D−1/2C 1/2‖2

F‖D1/2‖2
F

(d)≥ tr
(
D−1/2C 1/2D1/2)2

(e)= tr
(
C 1/2)2

.

(3.42)

Where (a) comes from the assumption of tr(D) ≤ 1, and (b) holds, since the trace operator is

invariant under cyclic permutations. Here A1/2 denotes the square root of A. Note that if A º 0,

then A1/2 is symmetric. Equality (c) in (3.42) comes from the relation between the trace op-

erator and the Frobenius norm, and (d) comes from the Cauchy-Schwarz inequality for the

Frobenius norm.

37

For (a) in (3.42) to have equality, tr(D) = 1 is required. For the Cauchy-Schwarz inequality (in

(d)) to have equality, D−1/2C 1/2 = kD1/2 =⇒ D−1C 1/2 = kI for some k ∈R is required. Next,

we show that (3.41) solves (3.40). Indeed,

tr(D) = tr

(
C 1/2

tr
(
C 1/2

))
= tr

(
C 1/2

)
tr

(
C 1/2

) = 1,

and obviously tr(C 1/2)C−1/2C 1/2 = tr(C 1/2) is a constant in regards to D . This completes the

proof.

�

We have now shown that the second (unsupervised) step of the MTFL algorithm has a closed

form solution. This is unfortunately not the case for the first (supervised) step of the algorithm.

However, with the next result we show that the first step has a unique solution.

Theorem 3.3.

The minimisation problem

min
W

∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr
(
(W W ᵀ+εI)1/2)2

s.t. W ∈Rm×T

has a unique solution.

Proof

By proposition 2.2, a strictly convex function has a unique global minimiser. Thus, it is suffi-

cient to show that

W 7→ tr
((

W W ᵀ+εI
)1/2

)2
, (3.43)

is strictly convex, as we have to assume strict convexity in Lt . Note that a sum of functions is

strictly convex if and only if each term in the sum is strictly convex [12]. The map in (3.43) can

be rewritten as the following mapping of singular values of (W W ᵀ+εI)1/2,

σ 7→
(

n∑
i=1

√
σ2

i +ε
)2

. (3.44)

This can be done as tr(A) = ∑
i σi , where σi is the i th singular value of A. Lastly, we simply

need to argue that (3.44) is strictly convex. This is most easily done if we consider (3.44) in one

dimension. Then (3.44) simply becomes σ 7→ σ2 + ε, which is obviously strictly convex. This

generalises to arbitrary dimension. Thus the proof is complete. �

Based on the above results, we may now present the MTFL algorithm.

38

Algorithm 4 Multi-Task Feature Learning algorithm [9]

Input: T training sets Dt for t = 1, . . .T , the regularisation constant λ and a tolerances ε and
tol.

Output: The weight matrix W ∈Rm×T , and the feature relation matrix D ∈Rm×m .
1: Initialise: D = 1

m I .
2: while ‖W −W prev‖ > tol do
3: for each task t = 1,2, . . .T do
4: w t = argmin

w

{∑Nt
m=1Lt

(
wᵀxm,t , ym,t

)+λ(
wᵀD−1w

)}
5: end for

6: set D = (W W ᵀ+εI)1/2

tr
(
(W W ᵀ+εI)1/2)

7: end while

Finally we present two important convergence results for algorithm 4. Define,

Dε(W) = (W W ᵀ+εI)1/2

tr
(
(W W ᵀ+εI)1/2) .

As the algorithm alternates, for each iteration we obtain a pair:
(
W (k), Dε

(
W (k)

))
, where the

superscript (k) indicates the kth iteration through the while-loop.

Lemma 3.2.

The sequence
{
Rε

(
W (k), Dε

(
W (k)

))}∞
k=1 is nonincreasing.

Proof

At any given iteration (k)

Rε

(
W (k),Dε

(
W (k)

))
≥ min

V
Rε

(
V ,Dε

(
W (k)

))
≥Rε

(
W (k+1),Dε

(
W (k+1)

))
,

thus showing the sequence to be nonincreasing. �

Theorem 3.4.

For every ε> 0 the sequence
{(

W (k), Dε

(
W (k)

))}∞
k=1 converges to the minimiser of

min
W ,D

Rε(W ,Dε (W)) =∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr
(
Dε(W)−1 (W W ᵀ+εI)

)
s.t. tr(D) ≤ 1, D Â 0.

Proof

By lemma 3.2, and the fact that L(·, ·) is bounded, Rε

(
W (k), Dε

(
W (k)

))
is bounded. We de-

note limk→∞Rε

(
W (k), Dε

(
W (k)

)) = R?
ε . Since Rε

(
W (k), Dε

(
W (k)

))
is bounded, we deduce

that
{

tr
((

W (k)W (k)ᵀ +εI
)1/2

)}∞
K=1

and in turn
{

W (k)
}∞

k=1 also are bounded. Then by Balzano-

Weierstrass’ theorem [19, sec. 3.4.2], there exists a convergent subsequence of
{

W (k)
}∞

k=1, namely

39

{
W (kl)

}∞
l=1. We denote liml→∞W (kl) = W ?. Let gε(W) = min

V
Rε

(
V ,Dε

(
W (k)

))
. Recall from the

proof of lemma 3.2 that

Rε

(
W (k),Dε

(
W (k)

))
≥ gε(W) ≥Rε

(
W (k+1),Dε

(
W (k+1)

))
.

By the sandwich theorem [19, sec. 3.1.3], gε(W) will as well converge to R?
ε . Rε(W ,Dε(W)) is

continuous, due to it being convex and defined on an open interval. This is the case, since any

function that is convex on an open interval is also continuous on said open interval. Likewise,

gε(W) can be shown to be continuous [9]. As a consequence of this continuity, we conclude

that gε(W ?) = Rε(W?,Dε(W ?)), which implies that W ? is a minimiser of gε(·). Moreover,

Dε(W ?) is a minimiser of Rε(W ?, ·). Then, as tr(D−1(W W ᵀ+ εI)) is smooth, any directional

derivatives of Rε(W ,D) is the sum of its directional derivatives with respect to W and D [9].

Therefore, (W ?,Dε(W ?)) is a minimiser of Rε(·, ·). Thus, we have shown that any convergent

subsequence of
{

W (kl)
}∞

l=1 converges to a minimiser of Rε(·, ·). Since the original sequence{
W (k)

}∞
k=1 is monotone and bounded, it is convergent [19, sec. 3.4.1], thus completing the

proof.

�

Theorem 3.5.

Let the sequence {εl > 0}∞l=1 converge towards zero, and let
(
W l ,Dεl (W l)

)
be a minimiser of

min
W ,D

Rεl (W ,D) =∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr
(
D−1 (W W ᵀ+εl I)

)
s.t. tr(D) ≤ 1, D Â 0,

for every l ∈N. Then any limiting point of (W l ,Dεl (W l)) is a minimiser of

min
W ,D

∑T
t=1

∑Nt
n=1Lt

(
wᵀt xn,t , yn,t

)+λ tr(W ᵀD−1W)

s.t. tr(D) ≤ 1, D Â 0.

Proof

Let the sequence {εl > 0}∞l=1 converge towards zero. Let
{(

W lk , Dεlk

(
W lk

))}∞
k=1

be a sequence

of limiting points of the sequence
{(

W l ,Dεl (W l)
)}∞

l=1. Finally, let limk→∞
(
W lk , Dεlk

(
W lk

)) =(
W ?,D?

)
. It is clear that min

W ,D
Rε(W ,D) is decreasing, as a function of ε. Fix both W and D , and

move εoutside the trace operator, to see that this statement is true. Next, let limε→0 min
W ,D

Rε(W ,D) =
R?. This means that, if we use

{(
W lk , Dεlk

(
W lk

))}∞
k=1

as input to Rε(W ,D), we must have

lim
k→∞

Rεlk

(
W lk ,Dεlk

)
=R?.

By proposition 3.1, R(W ,D) is convex, and so is Rε(W ,Dε). Rε(W ,D), as a function of ε, is

defined on the open interval]0,∞[, and thus it is continuous. Note that Rε(W ,D) is also con-

tinuous in W , as W ∈Rm×T , which is an open interval. By this continuity in both ε and W , we

conclude that Rε(W ?,D?) =R? for ε= 0, completing the proof. �

40

We have in this section discussed the concept of multi-task learning, and under which circum-

stances one should apply a multi-task learning scheme. We have in (3.27) seen an intuitive for-

mulation of a multi-task learning minimisation problem. We have discussed some undesirable

properties of (3.27), when it comes to the method of solving this. However, we have presented

a result in theorem 3.1 which states that we may rewrite (3.27), such the solving should prove

easier. The MTFL algorithm has been introduced, and we have shown a multitude of results

regarding the convergence of the algorithm. In the next chapter we aim to combine the section

on federated learning and this section on multi-task learning to describe federated multi-task

learning.

41

4 Proposed Solution: Federated

Multi-Task Learning

We shall in this section make a stride to combine the two previously described concepts: Fed-

erated Learning and Multi-Task Learning. Thus, finding a way of solving multi-task learn-

ing problems in settings where the data is split into disjoint subset, which are physically dis-

tributed, further restricted by the fact that we are neither able nor allowed to communicate the

data it self.

We have previously discussed the learning of a linear feature space, and proposed the inclu-

sion of a non-linear transformation of the data in the model. With this inclusion, we shall in

this section investigate the effects of the data being distributed in a multi-task setting. The aim

of this section is to build a federated multi-task learning algorithm with low communication

cost and computational complexity, that has the ability to perform binary classification.

There already exist algorithms that can solve problem of this kind. One of these is [11], which

both utilises a kernel matrix, granting a great measure for task relation within the data. How-

ever, this requires that all the data be transmitted to the central server before beginning the

training, to determine said kernel matrix, followed by the distribution of the kernel matrix, to

all of the nodes. The solution from [3], likewise, utilises a kernel matrix. This solution even

includes the distribution of data during the training between the nodes. Another solution is

the MOCHA algorithm [4]. It does not require any transmission of data, and solely communi-

cates local weights. However, it does so to not only the central server, but also to all of the other

nodes. Common for all of the mentioned solutions is the similar primal problem, and the use

of the stochastic dual coordinate ascent (abbr. SDCA) algorithm. This algorithm is commonly

used throughout the literature of federated multi-task learning to solve quadratic approxima-

tions of the dual problem. This means, that all of the mentioned literature utilises this SDCA

algorithm on the nodes.

The shall in this section aim to create an algorithm that takes ideas from [3, 4, 11, 13], to cre-

ate an algorithm that does not require sharing of data, that has both limited communication

requirements and limited computational complexity.

43

First we state the optimisation problem, which we aim to solve.

min
W ,D

∑T
t=1

∑Nt
n=1Lt

(
wᵀt φ

(
xn,t

)
, yn,t

)+λ tr
(
W D−1W ᵀ)

s.t. tr(D) ≤ 1, D Â 0.
(4.1)

It is important to note that in the regularisation term, we have changed the transpose. This

means that the D-matrix will now learn the relations between the tasks, rather than the re-

lation between the features. As we are interested in introducing different types of machinery

into the learning, the features these different type of machinery might not be the same, thus it

makes more sense the compare tasks rather than features. With that said, many of the results

from the previous chapter still applies. Namely, theorem 3.2, which means that we may still

update D using a closed form solution:

D = (W ᵀW +εI)1/2

tr
(
(W ᵀW +εI)1/2) (4.2)

This is the case as we may simply define C =W ᵀW +εI in the proof of theorem 3.2. This deci-

sion is supported by [11] and [4], as they do the same. Also note the introduction of the feature

mapping: φ(·), which maps each data point into the feature space.

We aim to build an algorithm that, like in the previous chapter, alternates between optimising

over W with fixed D , and vice versa. As mentioned above we can use the closed form solution

for D from (4.2). This means that we only need to determine a way of updating the weights w i

for i = 1, . . . ,T .

4.1 Updating the weights

Recall that for fixed D in (4.1) the constraints are removed. According to [10], (4.1) is convex,

and therefore the derivative of the Lagrangian will be zero at the optimal point. However, the

concept of constructing the Lagrangian, only makes sense, if the original optimisation problem

has constraints. We, therefore, rewrite (4.1) as follows

min
W

∑T
t=1

∑Nt
n=1Ln,t

(
zn,t

)+λ tr
(
W D−1W ᵀ)

s.t. wᵀt φ
(
xn,t

)− zn,t = 0 ∀t ,n.
(4.3)

Note the n index on the loss function, which allows us the omit the label. It can be seen that

(4.1) for fixed D , and (4.3) are identical. Now we are able to form a meaningful Lagrangian, by

introducing the Lagrangian multipliers α:

L(W , z ,α) =
T∑

t=1

Nt∑
n=1

Ln,t
(
zn,t

)+λ tr
(
W D−1W ᵀ)+ T∑

t=1

Nt∑
n=1

αn,t
(
wᵀt φ

(
xn,t

)− zn,t
)

(4.4)

To clarify: The structure of the Lagrangian multipliers is as followsα= [
α
ᵀ
1 ,αᵀ2 , . . . ,αᵀT

]ᵀ
, mean-

ing that αn,t is the nth entry of αt . Likewise, for z .

44

Recall, that the data is distributed, thus we cannot use (4.4) directly, as it contains all of the

data. Therefore, we consider the influence that the t th column of W has on the Lagrangian

from (4.4). Due to convexity:
∂L(w?

t)
∂w t

= 0 for the optimal weights w?
t , thus

∂L

∂w t
= ∂

∂w t
λ tr

(
W D−1W ᵀ)+ nt∑

n=1
αn,tφ(xn,t)

= ∂

∂w t
λ

T∑
k=1

T∑
l=1

D−1
l ,k wᵀl w k +

nt∑
n=1

αn,tφ(xn,t)

= 2λ
T∑

l=1
D−1

l ,t w l −
nt∑

n=1
αn,tφ(xn,t)

= 2λ
T∑

l 6=t
D−1

l ,t w l +2λD−1
t ,t w t +

nt∑
n=1

αn,tφ(xn,t)

= 0

=⇒ w?
t =

−bt −2λ
∑T

l 6=t D−1
l ,t w l

2λD−1
t ,t

, (4.5)

where bt =∑nt
n=1αn,tφ(xn,t). Note how only bt depends on the data, and that this dependency

is only on the locally accessible data. This means that each node is able to locally compute bt .

However, to do so, αt is necessary. To determine αt we turn to the dual function. Recall that

the dual function is given as the infimum of the Lagrangian, hence

g (α) = inf
W ,z

L(W , z ,α)

= inf
W ,z

(
T∑

t=1

Nt∑
n=1

Ln,t
(
zn,t

)+λ tr
(
W D−1W ᵀ)+ T∑

t=1

Nt∑
n=1

+αn,t
(
wᵀt φ

(
xn,t

)− zn,t
))

(a)=
T∑

t=1

Nt∑
n=1

inf
z

(
Ln,t

(
zn,t

)−αn,t zn,t
)+ inf

W

(
λ tr

(
W D−1W ᵀ)+ T∑

t=1

Nt∑
n=1

αn,t wᵀt φ
(
xn,t

))
(b)=

T∑
t=1

Nt∑
n=1

−L∗
n,t (αn,t)+ inf

W

(
λ tr

(
W D−1W ᵀ)+ T∑

t=1

Nt∑
n=1

αn,t wᵀt φ
(
xn,t

))
(4.6)

where (a) comes from splitting up the Lagrangian into terms dependent on z and W and (b)

comes from the definition of the convex conjugate (also referred to as the Fenchel conjugate).

It can be seen that maximisation of (4.6) is equivalent to the minimisation problem

min
α

gG (α) =∑T
t=1

∑Nt
n=1L

∗
n,t (αn,t)−λ tr

(
W ?D−1W ?ᵀ)−∑T

t=1
∑Nt

n=1αn,t w?ᵀ

t φ
(
xn,t

)
. (4.7)

Note that the maximum of (4.6) and the minimum of (4.7) is not guaranteed to have the same

value, but will have the same argument, and recall that we are interested in the Lagrangian mul-

tipliers that minimise (4.7), and not the minimum value of g (α). We refer to gG (α) as the dual

function of the global problem or simply the global dual function. Using the same argument as

before, we investigate the impact that αt has on (4.7), as seen below.

min
αt

∑Nt
n=1L

∗
n,t (αn,t)−∑Nt

n=1αn,t w?ᵀ

t φ
(
xn,t

)
. (4.8)

45

We can do this as we are interested in the argument and not the value. Notice, that (4.8) may

be rewritten as follows

min
αt

∑Nt
n=1L

∗
n,t (αn,t)−w?ᵀ

t X tαt , (4.9)

where X t =
[
φ

(
x1,t

)
, . . . ,φ

(
xn,t

)]
. As proclaimed in chapter 2 the dual function is always con-

cave regardless of whether the original problem is convex. This means that (4.9) is convex as it

is the minimisation of a negated concave problem. Next, we can find the optimal Lagrangian

multipliers by equating the derivative of (4.9) to zero. However, before determining the deriva-

tive of (4.9) we need to determine an expression for the convex conjugated of the loss function.

Recall the definition of the convex conjugated:

L∗
n,t (αn,t) = sup

z∈R

{
αn,t z −Ln,t (z)

}
. (4.10)

To move forward, a loss function must be chosen. All of the tasks in this project will be bi-

nary classification problems, thus choices such as cross-entropy loss(from logistic regression)

or Hinge-loss are fitting.

Simply by examining (4.10), we realise that - dependent on the choice of loss function - there

might not be a choice of αn,t such (4.10) is finite. To ensure that (4.9) gives a meaningful result,

we next examine (4.10) for different choices of loss function.

We start by examining the hinge-loss function. Thus, (4.10) becomes,

L∗
n,t (αn,t) = sup

z∈R

{
αn,t z −max

(
0,1− yn,t z

)}
. (4.11)

As there are two labels, it is natural to examine (4.11) for one label at a time.

In the following we assume yn,t = 1, even when referring to (4.11). It is clear from (4.11), that

for αn,t > 0, (4.11) will be ∞, as we can let z → ∞. The same goes for αn,t < −1, as we can

let z → −∞. Thus, we must limit our search to αn,t ∈ [−1,0]. Equation (4.11) is essentially a

piecewise function given as follows:

L∗
n,t (αn,t) =

αn,t z − (1− z) z < 1

αn,t z z ≥ 1,
(4.12)

for αn,t ∈ [−1,0]. Note that (4.12) is strictly increasing for z < 1 and decreasing for z ≥ 1. Thus,

the maximum will be found where they meet, at z = 1. At z = 1, (4.12) takes the value αn,t . This

means, that we now have an expression for (4.11) as a function of αn,t for yn,t = 1.

We can make the same analysis for yn,t =−1. Using the same argument, we realise that (4.11) is

finite for αn,t ∈ [0,1], and likewise for yn,t = 1, it takes its maximum value where the functions

meet, at z =−1. Thus, (4.11) take the value of −αn,t , for αn,t ∈ [0,1].

Next we examine what these findings mean for the original problem, we investigated, (4.9).

Note that we may consider (4.9) as Nt separate optimisation problems, formulated as follows

min
αn,t

L∗
n,t (αn,t)−αn,t w?ᵀ

t φ
(
xn,t

)
. (4.13)

46

This is the case as we are minimising over αt in (4.9), and it can be noticed that each entry in

αt - that is αn,t for n = 1, . . . , Nt - is only present in one of the terms in the sum, likewise is the

same entry only multiplied by its associated data point (xn,t).

Assuming that yn,t = 1, then (4.13) becomes,

min
αn,t

αn,t
(
1−w?ᵀ

t φ
(
xn,t

))
s.t. αn,t ∈ [−1,0].

(4.14)

We may rewrite (4.14) as follows:

min
αn,t

αn,t
(−1+w?ᵀ

t φ
(
xn,t

))
s.t. αn,t ∈ [0,1].

(4.15)

Note that the equality can be seen by examining the minima of (4.14) and (4.15) for values of

e.g. w?ᵀ

t φ
(
xn,t

)= 0.5,1,2.

It is clear to see that in this case αn,t will always take on the value 1 or 0, dependent on the sign

of −1+w?ᵀ

t φ
(
xn,t

)
. If we try to interpret this result: For a given data point with a ground truth

label of 1, the product w?ᵀ

t φ
(
xn,t

)
should be larger than one, yielding a correct classification.

Now if that is the case, then αn,t = 0 is chosen in (4.15). Recall from (4.5) that the weight w t is

- amongst others - determine by bt = X tαt . This means that if the data point is correctly clas-

sified using the current version of the weights, it will not have any influence on the updated

version of the weights. This is the case as the entry in corresponding to said data point will be

zero.

To clarify: Any correctly classified data point, using the current version of the weights, will not

influence the updated version. We update the weights based solely upon the wrongly classified

data points. However, this means that any data point will either have full influence or non at

all. Perhaps it could be beneficial to make more subtle changes in weights.

It should be mentioned that the cross-entropy suffers from a similar problem. For any data

point with label y = 1 the the associated α must be chosen within the interval [−1,0] and like-

wise [0,1] for y =−1. Otherwise, the convex conjugate will converge towards infinity.

To investigate the opportunity of giving data point a smoother influence, without moving away

from the idea of hinge-loss, we examine (4.10) for squared hinge-loss, which is simply hinge-

loss squared. Thus, (4.10) becomes,

L∗
n,t (αn,t) = sup

z∈R

{
αn,t z −max

(
0,1− yn,t z

)2
}

. (4.16)

We next do the same analysis as for hinge-loss. Like previous, we examine (4.16) one label at a

time. Assuming yn,t = 1, we notice the following equality:

αn,t z −max(0,1− z)2 =
αn,t z z ≥ 1

−z2 + (αn,t +2)z −1 z < 1.
(4.17)

47

Notice that for z < 1 the function is concave, meaning it has a unique maximum. Likewise

notice two obvious observation that for αn,t > 0, (4.16) will be ∞ as we can let z →∞. There-

fore, we must restrict αn,t ≤ 0. Figure figure 4.1 depicts (4.17) for four different choices of αn,t ,

namely 1,−1,−5 and −15. Notice how for αn,t = 1 the function is non-decreasing, just as we

argued earlier.

(a)αn,t = 1 (b)αn,t =−1

(c) αn,t =−5 (d)αn,t =−15

Figure 4.1. Equation (4.17) for various choices of αn,t

Like previously, with αn,t ≤ 0, the maximum value is found on the bound, i.e. at z = 1 or on

the left hand side i.e. z < 1. We can quickly verify that (4.16) is zero for αn,t = 0: Obviously

0z = 0,∀z ≥ 1, and secondly, −z2 +2z −1 > 0 has no solutions, as its extremum is 0 with z = 1.

This means that for αn,t < 0 the maximum of (4.17) is to be found when z < 1.

For a second-order polynomial on the form az2 +bz + c, the extremum is given as:

−(b2 −4ac)/4a. This means, that for αn,t < 0 and yn,t = 1, (4.16) is given as,

−(
(αn,t +2)2 − (4 · (−1) · (−1))

)
−4

= −(
α2

n,t +4+4αn,t −4
)

−4

= α2
n,t +4αn,t

4

= α2
n,t

4
+αn,t .

W now have an expression for (4.16) when yn,t = 1.

The same can be done for when yn,t =−1. In that case we notice the following equality:

αn,t z −max(0,1+ z)2 =
αn,t z z ≤−1

−z2 + (αn,t −2)z −1 z >−1.
(4.18)

48

We notice that for αn,t < 0 (4.16) is ∞. Thus, we limit αn,t ≥ 0, as we recall the goal is to min-

imise (4.16) w.r.t αn,t . We again argue that (4.16) is zero for αn,t = 0, using the same argument

as previously. Next we examine the extremum of (4.18) for αn,t > 0:

−(
(αn,t −2)2 −4

)
−4

= α2
n,t +4−4αn,t −4

4

= α2
n,t

4
−αn,t .

With the two expressions for (4.16) - one for each of the labels - we are now ready to examine

(4.13).

Assume yn,t = 1. Then (4.13) becomes

min
αn,t

α2
n,t

4
+αn,t

(
1−w?ᵀ

t φ
(
xn,t

))
s.t. αn,t ≤ 0.

(4.19)

Now since the objective function of (4.19) is convex, the minimum can be found by equating

the derivative to zero. Thus,

1

2
αn,t +

(
1−w?ᵀ

t φ
(
xn,t

))= 0

=⇒ αn,t =−2
(
1−w?ᵀ

t φ
(
xn,t

))
.

From this it can clearly be seen that in a solution of (4.19), different fromαn,t = 0, we must have

1−w?ᵀ

t φ
(
xn,t

)> 0

=⇒ 1 > w?ᵀ

t φ
(
xn,t

)
,

which means a misclassification. Thus, we again see that the data point which are correctly

classified, will have no influence on the updated weights. However, we have constructed a set-

ting where data points which are misclassified have influence based upon the severity of the

misclassification. Let examine an example. Let the label of φ
(
xn,t

)
be 1, but w?ᵀ

t φ
(
xn,t

)=−5.

This, in turn, implies that αn,t =−12, making it very important in the next weight update. We

shall not be conducting the same analysis for the cases when yn,t =−1, as it will be very similar.

Next, we give an overview of how αn,t is chosen:

αn,t =

−2
(
1−w?ᵀ

t φ
(
xn,t

))
1 > w?ᵀ

t φ
(
xn,t

)
and yn,t = 1

0 1 ≤ w?ᵀ

t φ
(
xn,t

)
and yn,t = 1

2
(
1+w?ᵀ

t φ
(
xn,t

))
w?ᵀ

t φ
(
xn,t

)>−1 and yn,t =−1

0 w?ᵀ

t φ
(
xn,t

)≤−1 and yn,t =−1.

(4.20)

To summarise: We have determined a way of updating the weights in (4.5), these updates re-

quires knowledge of the Lagrangian multipliers, which we have determined values for based on

the label and the prediction of a given data point in (4.20). Finally, we are updating the relation

matrix using (4.2).

49

Next we are able to paint a picture of how the federated multi-task learning should function.

Locally, the Lagrangian multipliers are being determined, such in turn we can determine the

bt vector at each node. These bt vectors are then transmitted from each node to the central

server, where the weights, w t are update, followed by the update of D . The way, that we have

structured this, we are able to run the scheme utilising asynchronous updates. This means,

that when the t th node finished updating the Lagrangian multipliers, it transmits its bt vector

to the central server, which in turn updates the weights w t and the D matrix. The central server

then transmits the updated weights back to the t th node.

Now, we have not assumed anything about the computing power at each node, nor the number

of data point at each node. This means that some nodes may determine b faster than others.

This is the incentive to allow asynchronous updates in the first place. However, this might also

result in cases where no other node has requested an update at the central server between two

consecutive requests from a particular node. Thus, the second update request is somewhat

irrelevant.

First, we argue that two consecutive update request, without any other nodes updates in be-

tween is not pointless. This is not the case, since the weight of this particular node has been

updated. Thus, the predictions of the local data points will most likely be different, and thus in

turn the Lagrangian multipliers will be different. However, said node will probably experience

diminishing returns if such consecutive updates happen multiple times in a row. Imagine a

particular node, having requested 10 updates in row, without any other node having requested

updates in between. Most likely the 10th update will not yield as much of a change in the pre-

diction of the local data points as the first did.

This problem encourages the ability of a node making multiple local updates, before requesting

an global update at the central server. This is made available by making approximate updates

to the wights on potentially each of the nodes. This approximate update simply consists of

letting vector bt be the updated version of w t . That is, instead of requesting an update an the

central server, we let the node make the approximate update simply using bt instead. Note,

that is only something that should be employed if a particular node has extremely high com-

putation time compare the rest of the nodes. As the number of nodes increase this will most

likely not become necessary.

We are now ready to present the algorithm.

50

Algorithm 5 Federated Multi-Task Task Learning Algorithm

Input: T training sets Dt for t = 1, . . .T , the regularisation constant λ and a tolerances ε and
tol.

Output: The weight matrix W ∈Rm×T , and the relation matrix D ∈RT×T .
1: Initialise: D = 1

T I .
2: while ‖W −W prev‖ > tol do
3: for each task t = 1,2, . . .T in parallel do
4: αt = NODE_UPDATE(w t , X t , y t)
5: bt = X tαt

6: Transmit bt to the central server
7: end for

The central server update for node t :
8: Receive bt from the t th node

9: w t =
−bt −2λ

∑T
l 6=t D−1

l ,t w l

2λD−1
t ,t

10: set D = (W ᵀW +εI)1/2

tr
(
(W ᵀW +εI)1/2)

11: Transmit w t to the t th node.
12: end while

Below we present the NODE_UPDATE algorithm.

Algorithm 6 NODE_UPDATE

Input: The current version of the weights w t ∈ Rm , the data X t ∈ Rm×Nt and the associated
labels y t ∈RNt .

Output: The optimal Lagrangian multipliers αt ∈RNt .
1: Initialise αt = 0.
2: for i = 1,2, . . . , Nt do
3: if yi = 1 then
4: temp=−2+2wᵀt x i

5: if temp< 0 then
6: αi = temp
7: end if
8: else if yi =−1 then
9: temp= 2+2wᵀt x i

10: if temp > 0 then
11: αi = temp
12: end if
13: end if
14: end for

It is atypical to be this specific with algorithms, but it shall in the next subsection be made

perfectly clear, why exactly we have been this specific.

51

4.2 Computational Complexity

In this subsection, we shall investigate the computational complexity of the proposed solu-

tion. In most cases, the accuracy of a solution is the most important parameter, however, not

the only one. Another parameter is computational complexity. This gives an expression of how

hard a processing unit needs to work to obtain the aforementioned accuracy. Computational

complexity in algorithms is measured in floating point operations (abbr. FLOPs), which is sim-

ply the total number of operations performed during the algorithm. If a particular algorithm is

required to add two scalars, we say that the particular algorithm has a FLOPs count of one.

We have in chapter 1 mentioned that we are not concerned with the computations on the cen-

tral server. And if we were to compare algorithm 5 to a local traditional solution, then the com-

putations on the central server are disregarded. Thus, we solely count the number of FLOPs

that occurs on the node.

We shall do this by going through steps 4 and 5 in algorithm 5. The goal is to find an expression

for the number of FLOPs performed as a function of the number of data points. We shall then

compare this number to the traditional method of the support vector machines.

We start be examining step 4 in algorithm 5, which is the same as the entire algorithm 6. We

shall examine this, by evaluating a single run through of the for-loop in step 2 of algorithm 6.

This means that there will be a single FLOP to check whether yi = 1. Step 8 is formulated as

an else if, but could for all intents and purposes have been an else, thus, we do not attribute

a FLOP to this. Assume that yi = 1, we reach step 4, which holds the majority of the FLOPs of

the algorithm. An inner product between two vectors of same size - in this case size m - can

be perform using 2m −1 FLOPs. Then there is another FLOP used to multiply the result of the

inner product by 2, and finally another FLOP to subtract 2. Then step 5 has a single FLOP in the

if-statement. This totals to 2m +3 FLOPs if yi = 1. However, it will be the exact same number

of FLOPs if yi = −1, and since only one of these cases will be the case, we conclude that the

algorithm needs 2m +3 FLOPs per run through the for-loop. The for-loop is performed a total

of Nt times as it runs once per data point. Thus, algorithm 6 need a total of Nt (2m +3) FLOPs

to complete.

Finally we need to include step 5 from algorithm 5 to have our final answer. A matrix-vector

product will need 2Nt −1 FLOPs per number of rows in X t , which has m rows, thus a total of:

m(2Nt −1) FLOPs to comple step 5 in algorithm 5. This brings the total FLOPs need to perform

a single round of processing on the node to a total of: Nt (4m +3)−m. From this number we

can see that the number of FLOPs needed scales linearly with the number data points.

We choose to compare the proposed solution with an SVM solution. We have chosen a python

implementation for this project, and one library that has a SVM solution is SKlearn. It can be

found in the documentation for said SVM solution that the implementation scales at leased

quadratic with the number of data points [15]. Another research - [20] - has investigated the

52

number of FLOPs needed to perform sequential minimal optimisation algorithms, which are

algorithms that - amongst others - are used in SVM solutions. The research conducted reports a

count of FLOPs needed of upwards of 109, for a data set of size 1000. This number is enormous

compared to the number of FLOPs required for algorithm 5 per node. Let Nt = 1000 and let

m = 20, then we expect algorithm 5 to need Nt (4m +3)−m = 829.890 FLOPs, which is approx-

imately 0.8 ·105. Even if we assume the quadratic scaling with the number of data points, then

the number of FLOPs needed to perform SVM is 106, which is still about 12 times the amount

of FLOPs. This sounds like a lot, but algorithm 5 performs the 829.890 FLOPs at every round.

Thus, we conclude that the number of communication rounds must be smaller than 12 for a set

up with 20 features. The number of communication round are obviously dependant on both

the number of data points and the number of features.

When comparing the number of FLOPs needed in algorithm 5, to the local SVM, we realise that

the number of FLOPs needed in the local SVM will too depend on the number of features. How-

ever, as the number of features will often be much smaller than the number of data points, it is

usually disregarded.

4.3 Additional nodes

An important part of such a solution we are after is the ability of said solution to adapt to the

number of tasks. That is, we need a solution that is robust in terms of adding new tasks. When

we say robust, we refer to the ability to easily include a new task in the learning without requir-

ing to start the entire learning process over.

Imagine that algorithm 5 is running and assume that it currently has T nodes in the scheme.

At some point, before the algorithm has converged, a new node is suppose to be included in

the learning, thus bringing the total number of nodes to T +1. Once the new node is fully in-

stalled, it begins steps 4 and 5 of algorithm 5, with an initialisation of w T+1 = 0. This way it can

calculate the bT+1 vector. With the first transmission of the bT+1 vector to the central server,

it includes the fact that is it a new node, such the central server can act accordingly. The only

thing that the central server is changing, with the inclusion of the new node, is a change of di-

mension of the relation matrix. The dimension of D is expanded to D ∈R(T+1)×(T+1), and the

new entries in D are given as follows:

DT+1 =

 T

T +1
D 0

0ᵀ
1

T +1

 .

This way we assume no relations between the new task and any of the existing tasks. This way

of handling the addition of new nodes is suggested by [13].

53

4.4 Federated solution

The final point we need to argue, is whether or not a federated solution makes sense. Recall

the arguments in chapter 1 about limited processing power etc. However, what if the number

of communication rounds needed for algorithm 5 to converge exceeds the number of trans-

missions needed to move the entire data set to the central server? In that case, it would be

preferable to simply transmit all the data and conduct training on the central server.

In order to, perform such an analysis, without going into too much detail, we define a single

data point as 1 unit of communication. Since w t and bt for any t have the same dimension as a

single data point, we consider a single transmission of w t or bt as one unit of communication

as well. This means that every time a node needs to communicate with the central server, 2

units of communication is used, as the node transmits bt to the central server, and receives w t

in return. If algorithm 5 needs more than half the number of data point on a single node to

converge, it is not communications efficient. Algorithm 5 would have to use substantially less

rounds of communication than the number of data points, since a solution where the data is

transmitted will most likely lead to a more accurate solution, due to the ability of running more

complex machine learning schemes.

54

5 Simulations

We shall in this chapter investigate the capabilities of the proposed solution compared to those

of SVM solutions. We investigate whether it would be advantageous to transmit all of the data

sets to the central server, by comparing the proposed solution to a "global" SVM. That is, a

single SVM, that has access the all of the data. We investigate whether a purely local solution

would be better. This way, no communication between the nodes and the central server would

be necessary. We do this, by comparing the proposed solution to local SVMs, one for each of

the node, having access to the local data only. Lastly we compare with the MOCHA algorithm

[4], which is a state of the arc federated multi-task solution, that is in many ways similar to the

proposed solution.

We begin by examining the proposed solution on a synthetic data. Later, we shall investigate in

what capacity the proposed solution can perform predictive maintenance on the MIMII data,

which will be described later.

5.1 Task Relation Learning on Synthetic Data

We shall in this section investigate, via a simulation study, the capabilities of algorithm 5. In

this section we solely focus on synthetic data, that is, data which is generated for this simu-

lation study. Unless otherwise stated, the simulation studies below were conducted using the

convergence tolerance tol = 10−4 from algorithm 5. We shall run multiple experiments, all

designed to test different aspects of algorithm 5.

Firstly, we explain how the synthetic data is generated. The data is regenerated before every ex-

periment, and every experiment is run multiple times. Firstly, a total number of tasks is chosen

e.g. T = 16, then a number of "original" tasks is chosen e.g. Tog = 4. Is shall be clear why these

are referred to as original tasks. For each original task a Gaussian vector is drawn as follows:

w̃ o ∼N (0, I) , for o = 1, . . . ,Tog .

It is worth noting that the elements of w̃ o ∈Rm are uncorrelated. The remaining T −Tog tasks

are randomly selected from the set {±w̃ o |o ∈N : o ≤ Tog }. The negative sign is included to sim-

ulate negative relations, and is applied with a probability of 0.5. We refer to these T vectors as

the "creator" weights, as their sole purpose is to determine the labels of the data points.

55

The data points, xn,t are each drawn uniformly from the interval [−1,1] with a dimension of

m. There are independence both between data points, but also between entries in a single

data point. The number of data points is (unless otherwise stated) drawn uniformly from the

interval [900,1100], and rounded to nearest integer. This way, the amount of data points will

most likely be different across task, while still maintaining a substantial amount of data points.

This is done accommodate the assumption of different frequency of data generation acrois the

nodes. Lastly, the labels are generated as follows:

yn,t = sign
(
wᵀt xn,t

)
, (5.1)

where sign(·) is the sign function that returns −1 or 1 depending on the sign of the input. With

the data creation complete, we are now ready to describe the first experiment.

5.1.1 Learning Tasks Relations

In this subsection we investigate whether algorithm 5 can actually learn the relations between

the individual tasks. That is, can it find randomly selected positive or negative relations that all

of the non-original creator weights have with one of the original creator weights. This exper-

iment is conducted, by simply running the algorithm on the synthetic data, generated above,

and then comparing the learned D matrix, line 10 in algorithm 5, with the estimated trace nor-

malised covariance matrix of the creator weights. We trace normalise the covariance matrix,

such we may compare the values of the matrix entries. For this experiment we chose T = 16

and Tog = 4, and placed the 4 original creator weights at positions: 1, 5, 9 and 13. Through-

out this experiment we are using λ= 0.6, from algorithm 5, as was found to yield good results.

We found this value through numerous tests. This parameter will be application specific, and

should undergo thorough testing before settling on a specific value. Further more, we let the

number of features be m = 20. Figure 5.1 depicts heat maps of the learned D matrix (left) and

the estimated trace normalised covariance matrix of the creator weights (right), for two differ-

ent synthetic data sets. If the algorithm does, what it claims to do, we expect the two heat maps

to be similar.

From Figure 5.1 it is clearly seen that algorithm 5 can detect the relations between the tasks

that are actually related (referring to the four squares). However, it is also clearly seen that the

algorithm does not capture the scale of these relations. This could be a worrying sign, if tasks

are only slightly related, these might be interpreted by algorithm 5 as being unrelated, and thus,

some of the advantages of the solution are lost.

5.1.2 Accuracy of the Proposed Solution

In this subsection, we examine the obtainable accuracy of the classification, based the weights

learned from algorithm 5. The data is generated in the exact same way as in the previous sub-

section, except in this subsection we use m = 2. We simply run the algorithm and examine

56

(a) Heat map comparison for comparison between the learned relations matrix
(left) and the estimated covariance matrix of the creator weights (right)

(b) Heat map comparison for comparison between the learned relations matrix
(left) and the estimated covariance matrix of the creator weights (right)

Figure 5.1. Depicts heat maps for comparison between the learned relations matrix (left)
and the estimated covariance matrix of the creator weights (right), for two different synthetic

data sets.

the results. While the SVM implementation used in this project, from [15], comes with scoring

extension, the proposed solution does not. Thus, we predict the labels of data points as done

in (5.1). The accuracy of the four methods used can be found and compared in table 5.1. From

table 5.1, it can be seen that in general, the proposed solution performs worse than the local

SVM solution, however, much better than the global SVM solution. One thing to notice is the

indifference in the accuracy between the two types of kernels used in the SVMs. The most likely

reason for this is the way the data and labels are generated. It is generated in a way such that - in

theory - a SVM solution with a linear kernel should be able to perfectly classify the data. Thus,

the added complexity from the Gaussian kernel does not bring any additional information.

Next we examine the behaviour in term of accuracy of the proposed solution against the local

SVM alternative, as the number of data points and features increases. We do, however, examine

these separately. That is, while one is increasing, the other is fixed. The results are shown in

figure 5.2.

57

Table 5.1. Shows the accuracy of the 4 methods compared.

Accuracy of Local SVM Local SVM Global SVM
Task id proposed solution accuracy(Gaussian) accuracy(linear) accuracy
1 0.966 985 0.998
2 0.98 0.998 0.991
3 0.996 0.994 0.997
4 0.989 1 0.993
5 0.988 0.996 0.998
6 0.989 0.997 0.997
7 0.994 0.998 0.999
8 0.987 0.997 0.993
9 0.943 0.998 0.994
10 0.942 0.996 0.995
11 0.953 1 0.997
12 0.958 0.995 0.99
13 0.953 0.994 0.998
14 0.958 0.995 0.997
15 0.985 0.997 0.999
16 0.955 0.999 0.992
Average: 0.971 0.996 0.996 0.604

(a) Accuracy vs. number of data points per node, Nt (b) Accuracy vs. number of features, m

Figure 5.2. Depicts the accuracy obtained from the proposed solution and a local SVM
solution.

From figure 5.2 it can be seen that algorithm 5 consistently performs almost as good at the local

SVM alternative. Though the accuracy of algorithm 5 decreases when the number of features

increase, so does the accuracy of the local SVM. From the way that the data is generated, the

number of features (m) is sort of a metric for the difficulty of the problem. As the number of

features grow, more parameters have to be correctly tuned, thus, making the tasks more diffi-

cult. Therefore, it is expected to see a decrease in accuracy with an increase in features.

5.1.3 Enhanced Learning From Learning Task Relations

We shall in this subsection investigate, whether it is worth it, to include the sharing of weights

and letting them influence each other. In this experiment, we examine the differences in ac-

58

curacy and number of local rounds needed to converge, between sharing and not sharing the

weights with the central server. This would be the same as fixing D = I , this way when the

weights are updated, no weight will have any influence on any other weight. Thus, for the "no

sharing" version, we simply only allow local computations to take place, and in the "sharing"

version, we let the algorithm run as described in algorithm 5.

In this experiment we use the synthetic data previously described, unless otherwise stated.

First, we examine the accuracy vs. the number of data points at each node. For this we keep

the number of data points constant across the tasks, thus all task have the same number of

data points. We found a need to increase the value of tol to 0.1, as the convergence of the "no

sharing" version is very slow. Figure 5.3 depicts both the accuracy and the number of rounds

needed to converge as a function of the number of data points per task.

(a) Accuracy vs. Nt (b) # of local rounds needed to converge vs. Nt

Figure 5.3. Depicts the accuracy of and the number of rounds needed for algorithm 5 to
converge.

From Figure 5.3 it can be seen that sharing the weights with the central server, has very little

to no improvement in the accuracy, and in some cases it even worsens the accuracy. However,

as can be seen from figure 5.3b, it does drastically reduce on the number of rounds needed to

converge.

Next, we conducted a similar experiment, however, this time, letting the accuracy and the num-

ber of rounds needed to converge be a function of the number of features, m. Figure 5.4 depicts

these results.

(a) Accuracy vs. m (b) # of local rounds needed to converge vs. m

Figure 5.4. Depicts a comparison of the accuracy and the number of rounds to convergence,
for algorithm 5 with and with out sharing of the weights.

59

From Figure 5.4 it can - once again - be seen that the gain in accuracy is small (if any), however,

we do see an immense improvement in the convergence speed. This means the algorithm is

greatly enhanced by the sharing of the weights in terms of convergence.

As a final note; experiments were conducted in order to determine the number of rounds

needed to converge, for the version of algorithm 5 without sharing, with a number of features of

125. However, after 40.000 iterations, the algorithm had yet to terminate. Thus, the experiment

was cut.

5.1.4 Communication Rounds

Recall our discussion in chapter 4 about the number of communication rounds. We discussed

two aspects of concern, being: The number of FLOPs and whether it is worth it to construct a

federated solution. We begin by investigating the number of rounds needed to converge. The

number of rounds needed to converge for algorithm 5, along with the obtained accuracy as a

function of the number of data points is seen in table 5.2. It should be noted that tol = 0.1 in

this experiment.

Table 5.2. Comparison of the number of data points per task and the rounds needed to
converge, together with the obtained accuracy.

Number of data points: 104 1.5 ·104 2 ·104 4 ·104 7 ·104 105 5 ·105 106

Rounds to converge 5 4 5 4 5 4 4 4
Accuracy 0.976 0.972 0.975 0.977 0.982 0.992 0.983 0.976

From table 5.2 it is seen that the number of rounds needed to converge seems more or less un-

affected by the number of data points per task. Therefore, we move onward in this investigation

with a selection of numbers of rounds, as follows: 3, 5, 10. We note that the accuracy in table 5.2

is included solely to inform that the low number of rounds is not affecting the accuracy.

(a) Number of rounds [106] vs. the number of data points
Nt

(b) Number of rounds [105] vs. the number of data points
Nt

Figure 5.5. Depicts the number of rounds vs. the number of data points Nt , for fixed m = 20.

Recall, that algorithm 5 needs, Nt (4m +3)−m FLOPs per round of communication per node.

However, as previously argued, we simply compare one node to one local SVM solution. In the

60

figures 5.5 and 5.6, we see the results of this experiment. Note that we compare to the minimum

number of FLOPs needed to complete a SVM algorithm, which is the square of the number of

data points (blue curve on the figures 5.5 and 5.6).

During these two experiments we fix the number of features to 20 and 100, to test the differ-

ences. The goal of this experiment is to determine whether the loss in accuracy is made of for

in the reduced number of FLOPs needed to complete algorithm 5. As can be seen from the fig-

ures 5.5 and 5.6, the answer to that question is dependent on the number of data points. As the

SVM scales at least quadratic and algorithm 5 scales linearly, the proposed solution will always

be favoured for large amounts of data points.

(a) Number of rounds [108] vs. the number of data points
Nt

(b) Number of rounds [107] vs. the number of data points
Nt

Figure 5.6. Depicts the number of rounds vs. the number of data points Nt , for fixed
m = 100.

Next we discuss whether it is worth it to construct a federated solution at all. Luckily - as can be

seen from table 5.2 - algorithm 5 converges very quickly in terms of number of communication

rounds. The number of rounds never exceeds 5, even as the number of data points increase.

We have in all of the experiments - using synthetic data - used the same precision (32 bits) for

data points and weights. This means that algorithm 5 uses at most 10 units of communication,

which is well under the amount that would otherwise be needed to transmit all the data points.

We are examining this on a per node basis, since it has to communication efficient for all the

nodes. Otherwise, if a node has far fewer data points than the rest, it would probably be more

efficient to simply transmit the data points of said node and take the node out of the federated

learning.

5.2 Predictive Maintenance on the MIMII Data Set

We shall in this section investigate the capabilities of algorithm 5, in terms of ability to perform

predictive maintenance, on the MIMII data set [21].

61

5.2.1 Data Description and Preprocessing

The data set used in this project consists of 4 different types of machines: Valves, pumps, fans,

and slide rails. The data consists of a large amount of 10 seconds long acoustic recordings, col-

lected using a TAMAGO-03 microphone, which is a circular microphone array consisting of 8

microphones. The microphone array was in each case placed 50 cm from the machines, except

for the valves where the array was placed 10 cm away.

Within each type of machinery (valves, pumps etc.), there are recordings of 7 individual ma-

chines of the same type, however, they may come from different manufactures. For each in-

dividual machine, there are recordings under both normal and abnormal operations. These

conditions are described in table 5.3. The exact number of recording for each individual ma-

chine across machine type, can be found in table 5.4. For a more detailed description of the

data, we refer to [21], from which the data is taken. Unfortunately, only some of the recordings

are available, those being: 00, 02, 04 and 06 individuals for all types for machinery. The authors

promise the full data set in the future. However, each individual recording is available in three

distinct signal-to-noise ratios (abbr. SNR), those being: 6 dB, 0 dB and -6 dB. That is, a ran-

dom background noise is added to each "clean" recording. The background noise is recorded

in several real-life production factories, and is added to each individual recording at random.

Thus, two recordings from the same individual machine, might have two different background

noises added to them.

Table 5.3. Shows the functionalities and the abnormal conditions of each of the machinery
types in the data set.

Machine type Functionality Abnormal conditions

Valve
Opening / closing, repeating multiple types
at different time intervals of contamination

Pump
Suction from / discharge to, Leakage, contamination,
a water pool clogging

Fan
Continuous flow of Unbalanced, voltage changes,
gas / air clogging

Slide rail
Sliding back and forth, Rail damage,
repeating insufficient grease

5.2.1.1 Preprocessing

Thought the goal was to conduct experiments on all of the four types of machinery accessible

in the MIMMI data set, we have - due to time restrictions - had to limit the amount of exper-

iments included. Since we are collaborating with Grundfos A/S, it is natural to focus on the

water pump data.

It was found - through visual inspection - that the abnormal data in general had a more volatile

frequency content in the lower frequencies across time, in the time-frequency spectrum. This

62

Table 5.4. Shows the number of recording/data points associated with each of the individual
machines, both under normal and abnormal conditions.

Machine type / model ID # of normal segments # of abnormal segments

Valves

00 991 119
01 869 120
02 708 120
03 963 120
04 1000 120
05 999 400
06 992 120

Pump

00 1006 143
01 1003 116
02 1005 111
03 706 113
04 702 100
05 1008 248
06 1036 102

Fan

00 1011 407
01 1034 407
02 1016 359
03 1012 358
04 1033 348
05 1109 349
06 1015 361

Slide rail

00 1068 356
01 1068 178
02 1068 267
03 1068 178
04 534 178
05 534 178
06 534 89

Total 26092 6065

observation led to the choice of feature space, which is the variance of the tiles across time,

in the time-frequency spectrum. Furthermore, we ensure zero-mean and unit-variance across

the features within a task.

5.2.2 Proposed Solution vs. Local SVM

We shall in this subsection conduct experiments comparing the proposed solution to a local

SVM. As seen in the in section 5.1, the global SVM solution performs poorly, and we have,

therefore, chosen not to continue to consider it.

As mentioned, each recording of the pumps (in the MIMII data set) comes in three SNR levels.

To test whether the proposed solution can detect the relations between the task, we consider

each level of SNR as a seperate task. This way we experiment with 9 task, three for each of the

63

individuals: 00, 02 and 06. That is, task 1 is the task of classifying the data from pump individ-

ual 00 with a SNR of -6, task 2 is the same, but for SNR 0. Task 3 is again the same, but for SNR

6. Tasks 4-6 is likewise formulated for pump individual 02 and tasks 7-9 as for 06.

For each of the nine tasks, we construct two data sets: A training set and a testing set. The test

set always contains exactly 200 normal data points and 10 abnormal, regardless of task. The

training set will contain the remaining data points. This means that the training set will have

different size across tasks.

During this experiment, we used λ = 0.03, tol = 0.1, ε = 0.01, and the algorithm converged in

11 rounds.

Due to task setup, we expect a strong positive relation between tasks 1-3, 4-6 and 7-9. Addi-

tionally, as all the task are of the same type of pump, we expect a positive relation between all

the tasks. Examining figure 5.7 we see exactly what we expect.

Figure 5.7. A heat map of the relation matrix, D .

It is clear to see - from figure 5.7 - that the algorithm recognises that some of the tasks are more

related than others. Simultaneously, we see that all the tasks have a positive relation with all of

the other tasks, as expected.

The problem, that we are trying to solve is a classification problem, but in reality it is a pre-

dictive maintenance problem. This means, that we a particular interested in detecting the ab-

normal data points. Therefore, it is to a degree acceptable to classify normal data points as

abnormal data points, if we make sure that all of the abnormal data points are correctly classi-

fied. A tool to observe to what degree we need to allow misclassification of normal data points,

to obtain a certain accuracy of the abnormal data points, is the receiver operating characteristic

(abbr. ROC) curve.

The ROC curve is a visualisation of the confusion matrix as the decision bound changes. In the

64

case of the proposed solution the decision is the cutoff for which data points are being classi-

fied. The confusion matrix is an expression of how the relation between the ground truth label

and the predicted label. In the binary case, that is the detection of abnormal pumps, we define:

• True Positive: An abnormal Pump classified as an abnormal Pump

• True Negative: A normal Pump classified as a normal Pump

• False Positive: A normal Pump classified as an abnormal Pump

• False Negative: An abnormal Pump classified as a normal Pump

In this case the confusion matrix is as follow:

[
True Negative False Positive

False Negative True Positive

]
,

Ideally, we would like to see the number of false positives and false negatives be zero. We can

compare the ROC curve the confusion matrix of the local SVM solution, by plotting if as a single

point on the ROC curve.

We start by examining the task 1 through 3, for which the ROC curves may be found depicted on

figure 5.8. The y-axis of the ROC curve should be interpreted as the ratio of abnormal pumps

being classified as abnormal pumps (True Positives), while the x-axis represents the ratio of

normal pumps being classified as abnormal pumps (False Positives). This means, that is if it

one wanted to correctly classify every single abnormal data point in task 1, it would result in

ca. 80 % of the normal pumps too being classified as abnormal pumps.

The area under the curve (abbr. AUC) is a measure of comparing the algorithms or in this case

tasks. The closer the AUC is to 1, the better the algorithm/solution is.

Despite the lower SNR, it seems that the proposed solution performs better on the data set at 0

SNR, compared to the data set at 6 SNR. It can be seen that the two local SVM solution perform

almost as good as the proposed solution in task 1, and as good or better in tasks 2 and 3.

Next we examine the tasks 4 through 6, depicted on figure 5.9. From which it can be seen that

the two local SVM solution truly struggle, e.g. the linear SVM classifies all data points as normal

pumps. The poor performance seen in the tasks with SNR = -6 is far from unexpected. With a

SNR of -6, the power of the noise in the signal is about 4 times that of the actual signals from

the pump. In the tasks 5 and 6 we see that the proposed solution and the SVMs perform about

similar.

65

(a) ROC curve for task 1 (SNR: -6).

(b) ROC curve for task 2 (SNR: 0). (c) ROC curve for task 3 (SNR: 6).

Figure 5.8. Depicts the ROC curves of the tasks 1-3 and the associated SVM confusion matrix
points.

(a) ROC curve for task 4 (SNR: -6).

(b) ROC curve for task 5 (SNR: 0). (c) ROC curve for task 6 (SNR: 6).

Figure 5.9. Depicts the ROC curves of the tasks 4-6 and the associated SVM confusion matrix
points.

66

(a) ROC curve for task 7 (SNR: -6).

(b) ROC curve for task 8 (SNR: 0). (c) ROC curve for task 9 (SNR: 6).

Figure 5.10. Depicts the ROC curves of the tasks 7-9 and the associated SVM confusion
matrix points.

Lastly we comment on the results depicted on figure 5.10. As can be seen from figure 5.10c,

the proposed solution actually correctly classifies every single data point in the test set, as can

be seen from the AUC = 1. For the other tasks, it can be seen that the two local SVM solutions

perform better in both cases.

Figure 5.11. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 1), along with the average confusion matrix of both linear and Gaussian

SVMs.

So far we have examined the results of a single run of the proposed algorithm. Next we exam-

67

ine what happens in general. We have run the proposed algorithm 100 times, and - for each

task - determined the average ROC curve of the proposed solution and the average confusion

matrix for the two local SVM solutions. We, likewise, run the MOCHA algorithm 100 times and

average the ROC curves. We have selected the best three tasks in terms of AUC, within each of

the three task blocks (those being tasks: 1-3, 4-6 and 7-9), to present, which may be found on

the figures 5.11 to 5.13. The ROC curves of the remaining 6 tasks may be found in appendix A

The grey area defines ± the standard deviation of the ROC curves of the proposed solution. The

red area, defines the same, but for the MOCHA algorithm.

Figure 5.12. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 6), along with the average confusion matrix of both linear and Gaussian

SVMs.

Figure 5.13. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 9), along with the average confusion matrix of both linear and Gaussian

SVMs.

Lastly we present table 5.5, which shows the AUCs of both the proposed solution and the

MOCHA algorithm, along with the signed difference between them. From table 5.5 it can be

68

Table 5.5. Contains the AUCs of both the proposed solution and the MOCHA algorithm
along with the difference for each task.

Task no.
AUC of
Proposed
Solution

AUC of
the MOCHA
algorithm

Difference

1 0.7637 0.783 0.0193
2 0.7025 0.8475 0.145
3 0.6749 0.8692 0.1943
4 0.6944 0.7516 0.0572
5 0.7344 0.8844 0.15
6 0.8474 0.9828 0.1354
7 0.8186 0.832 0.0134
8 0.8656 0.9524 0.0868
9 0.9272 0.9804 0.0532

Average 0.7810 0.8760 0.095

seen that the MOCHA algorithm performs better in every single task, however, on average, the

difference is small.

5.2.3 Convergence

The results presented above we found that the algorithm converged in 11 rounds. However,

this is unfortunately not something that we found in general. occasionally, we found a timely

convergence, that is when the number of rounds we less than 15, however in most cases the

number of rounds needed to converge was far larger than 15.

Obviously there is a relationship between the tol , λ and the number of rounds needed to con-

verge. We chose not to alter the tol = 0.1, as changing this parameter makes little sense. Thus,

the only parameter that could be experimented with is λ. λ describes the ration of importance

between collaboration of the tasks and the individuality of the tasks. That is, the smaller the

λ, the less emphasis the algorithm puts on collaboration. In theory for larger λ the algorithm

should converge faster, as the algorithm forces the weights to be similar meaning less changes

in the weights, thus the convergence criteria is met faster.

We conducted a small experiment to investigate how large we needed to select λ to force con-

vergence within 15 rounds. We found that the average λ needed was 0.5304 with a variance of

0.3874. This experiment was conducted from 100 runs of the algorithm, each time randomly

choosing the training set.

69

6 Discussion

We shall in this chapter discuss the results presented in chapter 5. Furthermore, we shall dis-

cuss the proposed solution it self, presented in chapter 4.

6.1 The Proposed Solution

We have in chapter 4 presented the proposed solution. The goal was to construct an algorithm

with low computational complexity and low requirements on communications. These goals

have been fulfilled, as we have shown in section 4.2 that the number of FLOPS is well under the

number of FLOPS for a SVM solution, and we have shown that the algorithm solely needs to

communicate with the central server.

In this section, we shall discuss the proposed solution in depth, as from chapter 5, it has be-

come clear that there are issues with the proposed solution. Firstly we shall go through the

logic of the path chosen to derive the proposed solution. As mentioned in the introduction of

chapter 4, common for the existing similar solutions is the use of the quadratic approximation

of the dual problem. To draw parallels, that would be the same had we made a quadratic ap-

proximation of (4.8). However, it was decided that this project should take another approach.

Since the convex conjugate of any convex function, is also convex and the fact that the second

term in (4.8) is linear, we knew that choosing a convex loss function would result in (4.8) being

convex. Any minimum in a convex optimisation problem is a global minimum, which can be

obtained from equating the derivative to zero. Thus, began the search for the derivative of the

convex conjugate of the loss function.

Though the mathematical analysis in section 4.1 leading to the proposed solution is mathe-

matically sound, the result in a way be counter intuitive. If a data point is correctly classified,

we should strive not to change the weights in the upcoming iteration. However, this is not ex-

actly what is happening. For every correctly classified data point the associated Lagrangian

multiplier α is set to zero. This means that only wrongly classified data points have influence

on the b vector from (4.5). In the current version of the proposed solution, there are no incen-

tives to keep the current version of the weights. There is no reward for correctly classifying e.g.

90% of the data point, only great penalty for wrongly classifying 10% of the data points. Note

71

that we could take these numbers to the extremes: Imagine that all data points are correctly

classified. This implies that α = 0, which in turn implies b = 0. Thus, that the weight from

this particular task will - in the upcoming weight update using (4.5) - solely be defined by the

weights from the other tasks based on the relationship with those tasks. Then in the extreme

case; imagine that the particular task in question has no relation with any of the other tasks. In

that case the weights of the particular task is set to w = 0, starting all over with the algorithm.

In one iteration, we went from a perfect classifier, to a classifier that classifies every single data

point as the same class.

The scenario describe, is the reason we need the large values of λ to see convergence. If we

compare with similar literature, such as [11], the choice of λ range from 10−6 to 10−5. The aver-

age obtained in the experiments from section 5.2.3 is about 0.5, which is orders of magnitude

larger than 10−5. This means that the proposed solution puts a huge emphasis in the collab-

oration of tasks, and could in some cases even force a relationship between two tasks, where

there might not be one.

6.2 Performance of the Proposed Solution

We have in chapter 5 presented the results obtained from multiple experiments using the pro-

posed solution. We have in he previous section discuss how the proposed solution, intuitively

makes little to no sense, besides the fact that is solve the optimisation problem (4.9). Despite

this, the proposed solution performs surprisingly well. From the figures 5.11 to 5.13 in chap-

ter 5 and the figures A.1 to A.6 in appendix A, we observe that the proposed solution perform

in general as well as or worse than the three methods of comparison, those being a local SVM

(linear), a local SVM (Gaussian) and the MOCHA algorithm. We make these claims based on

the AUCs and the placements of the SVM confusion matrices. We notice that gap seems to be

larger for tasks with higher SNR (those being tasks: 3,6,9), while there is almost no difference

for the tasks with low SNR (those being tasks: 1,4,7). The results on the aforementioned figures

are as expected, in terms of the differences between the proposed solution and the MOCHA

algorithm. The requirements of the MOCHA algorithm are more demanding, as it requires ap-

proximately 150 times the number of FLOPs, and requires communication between the nodes.

That is, after a completed round on a node, said node will communicate its results to all of the

other nodes. This way, the communication requirements for MOCHA scales quadratic with the

number of nodes, while the communication requirements of the proposed solution only scales

linearly. Reducing the number of FLOPs by 150 times, is probably not going to be enough of

an argument to choose the proposed solution over the MOCHA algorithm. The only scenario,

where one might make the choice in is low SNR environment, where the performance of the

proposed solution seems to be the same as the MOCHA algorithm. These claims are based en-

tirely on the experiments run in this thesis, as we might experience completely different results,

with a different data set.

72

6.3 Predictive Maintenance as Binary Classification

In this section, we address the binary classification setting for predictive maintenance in this

scenario described in chapter 1. Recall that the motivation for multi-task learning, was that the

nodes (pumps) could potentially be placed in different noise environments. This also means

that in practice the data would have to be recorded post installation of the product (pump).

Here lies the problem: This would mean that abnormal data would have to be recorded post

installation. It is not unreasonable to assume that this is quite difficult. As the operator in-

stalling the pump, would have to forcefully break the pump to achieve these data, possible

completely destroying the pump in the process. In that case a new pump would be needed to

be installed, completely undermining the point of learning a model of each pump. Thus, the

choice of binary classification for predictive maintenance is probably not the best choice.

While it is impossible to do binary classification with only normal data points, it is, however,

totally possible to do anomaly detection using only normal data points. Anomaly detection is

the act of detecting when a new data point is different from all of the training data. An intuitive

way of thinking of this is to build a transformation such all the training data of transformed in

a circle or an oval. This way all data point that fall outside the oval are considered abnormal.

[22]

73

7 Conclusion

We have in this thesis investigated the possibility of constructing a federated multi-task learn-

ing algorithm with a focus on minimal communications and computational power, for pre-

dictive maintenance use. The overall idea of the thesis was to take inspiration from already

existing work, such as [3, 4, 11], to create an algorithm that was suited for both the problem

and the specification of the problem, described in chapter 1.

The derivation of the proposed solution is based upon a primal problem similar to those of

[3, 4, 11]. Even, the update of the relation matrix D (the matrix that describes the relations

between the tasks), is equivalent. The main difference between the proposed solution and

similar literature ([3, 4, 11]) is the formulation and solution method of the local dual problem,

the problem that is solved on the nodes (pumps). Where the proposed solution takes a naive

and direct approach, the likes of [3, 4, 11] all conduct quadratic approximation and solve via

the stochastic dual coordinate ascend method. Through appropriate choice of loss function

(squared hinge-loss) and the realisation of the convexity of the local dual problem, led to an

analytical solution of the local dual problem. These observation gave rise to the proposed al-

gorithm found in chapter 4, algorithm 5.

We have in this thesis succeeded in developing an algorithm that performs binary classifica-

tion, with a computational complexity that is much smaller than that of a support vector ma-

chine (abbr. SVM) solution, in terms of number of FLOPs. We have succeeded in developing an

algorithm, that allows for asynchronous updates of the weights, as each node is free to contact

the central server at any given time. This is contrary to existing literature mentioned, which all

- in some way - require synchronous updates of the weights and the relation matrix. However,

as can be found in chapter 5, the accuracy of the proposed solution and the receiver operating

characteristics are inferior to those of the two local SVM solutions with linear and Gaussian

kernels, and the MOCHA algorithm.

In order to obtain the necessary knowledge to develop a federated multi-task learning algo-

rithm, we have investigated and documented, how machine learning functions in a federated

setting. More specifically we have - in section 3.2 - studied federated learning, which is a tech-

nique that allows for nodes to - via communication with a central server - collaborate on learn-

ing a single global model. We have in section 3.3 introduced the concept of multi-task learn-

ing, which is a technique that allows for multiple machine learning schemes to collaborated

75

and help each other in achieving their individual goals, of each learning a model that fits their

respective data. Included in section 3.3 is a multitude of theorems and results that are essential

in the combination of federated learning and multi-task learning.

Lastly, we give the final verdict over the proposed solution. The main two arguments for de-

ploying the proposed solution are; if there are strict requirements on the communication in

the network and limited processing power and memory available at the nodes. The main argu-

ment against the proposed solution is the inferior accuracy. While the MOCHA algorithm and

the SVM solutions would require more memory and processing power to complete in the same

amount of time, they have - in some cases - a vastly better accuracy. Thus, serious considera-

tions are needed, in regards to the importance of limiting the computational complexity at the

cost of loosing accuracy, before deploying the proposed solution.

76

8 Further Development

Unfortunate, we ran out of time during the process of completing this master’s thesis. In this

chapter we discuss ideas and concepts that could improve upon the proposed solution from

chapter 4. With more time, we would have investigated this.

We have discussed how the intuitive understanding of the proposed solution is contradicting to

the overall goal. We have described how correctly classified data points have zero influence on

how the future weights are shaped. In an attempt to combat this, we see a potential solutions.

We have discussed how, when most of the data points are being correctly classified only a very

few select data point decides how the next iteration of the weights are shaped. We propose a

solution to this problem, by letting the bt vector from eq. (4.5) be define by a weighted average.

Note that bt - in the thesis - is defined as follows,

bt = X tαt , (8.1)

where the columns of X t contains the data points from the t th task, and αt the variable we

optimise over in the local dual problems. The nth entry of αt is set to zero if the nth data point

in task t is correctly classified. As can be imagined, the current version of bt can potentially

become very unstable, get stuck in a loop, or even be set to zero, as discussed in chapter 6.

The idea is, instead of giving the misclassified data points sole jurisdiction over bt , we propose

to let the correctly classified data points to have influence as well. This is done by introducing

a convex sum between X tαt and the current set of weights. That is, at the i th iteration at the

t th node, we define

b(i)
t =

1−

∣∣∣N (i)
t

∣∣∣
Nt

 X tα
(i)
t +

∣∣∣N (i)
t

∣∣∣
Nt

w (i−1)
t , (8.2)

where N (i) =
{

n ∈N | α(i)
n,t = 0

}
,
∣∣N (i)

∣∣ denotes the cardinality of N (i), Nt is the number of data

points in the t th task, and the use of superscript, (i), denotes the i th iteration.

The intuitive interpretation of (8.2) is that, we are still updating bt as in the thesis, but we weight

it be the number of points that are wrongly classified. Simultaneously, we weigh the weights

from the previous iteration by the number of correctly classified data points. This way we have

build a sort of democratic voting system on, not if there should be change, but to what degree

the weights should change.

77

As mentioned, if ever single data point in a task is correctly classified at iteration i , then by

(8.1), b(i)
t = 0, which is possibly the worst choice of weights. If we, however, use (8.2), and ever

single data point in a task is correctly classified at iteration i , then b(i)
t = w (i−1)

t .

If we were to put this in the context of predictive maintenance, one could assign different

weights to the individual data points. By this, we refer to the possibility of giving data points

with the "abnormal" label more influence than those with a label of "normal". This could po-

tentially combat an imbalanced data set. In (8.2) we assume that all data points have identical

influence.

78

Bibliography

[1] Faisal Zaman. Instilling Responsible and Reliable AI Development with Federated Learn-

ing. medium.com, 2020.

[2] Amaury Bouchra Pilet, Davide Frey, and Taïani François. Simple, Efficient and Convenient

Decentralized Multi-Task Learning for Neural Networks. hal-02373338v4, 2020.

[3] Virginia Smith, Sebastian Caldas, and Ameet Talwalkar. Federated Kernelized Multi-Task

Learning. SYSML, 2018.

[4] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated Multi-

Task Learning. ArXiv, 2018.

[5] Omkar Motaghare, Anju S Pillai, and K.I. Ramachandran. Predictive Maintenance Archi-

tecture. IEEE, 2018.

[6] grundfos.dk. Last visited the 3rd of may 2021.

[7] Filip Hanzely and Peter Richtárik. Federated Learning of a Mixture of Global and Local

Models. arXiv, 2020.

[8] Zheng Wang, Fan Xiaoliang, Jianzhong Qi, Chenglu Wen, and Rongshan Yu. Federated

Learning with Fair Averaging. arXiv, 2021.

[9] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex Multi-Task Fea-

ture Learning. Springer, 2008.

[10] Yu Zhang and Dit-Yan Yeung. A Convex Formulation for Learning Task Relationships in

Multi-Task Learning. arXiv, 2012.

[11] Sulin Liu, Sinno Jialin Pan, and Qirong Ho. Distributed Multi-Task Relationship Learning.

arXiv, 2017.

[12] Stephan Boyd and Lieven Vandenberge. Convex Optimization. Cambridge University

Press, 2004. ISBN 978-0-521-83378-3.

[13] Rui Li, Fenglong Ma, Wenjun Jiang, and Jing Gao. Online Federated Multitask Learning.

IEEE, 2019.

79

[14] Christopher M. Bishop. Pattern Regocnition and Machine Learning. Springer Science,

2006.

[15] scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html. Last visited the 4rd of

may 2021.

[16] H. Brendan McMahan, Daniel Ramage, and Blaise Aguera y Arcas. Federated Learning of

Deep Networks using Model Averaging. arXiv, 2016.

[17] H. Brendan McMahan, Seth Hampson, Daniel Ramage, and Blaise Aguera y Arcas.

Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv,

2017.

[18] Yu Zhang and Qiang Yang. A Survey on Multi-Task Learning. arXiv, 2018.

[19] Rob Haggarty. Fundamentals of Mathematical Analysis. Addison-Wesley, second edition,

1993.

[20] Alistair Shilton, Daniel Ralph, and Marimuthu Palaniswami. Incremental Training of Sup-

port Vector Machines. IEEE, 2005.

[21] Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and

Yohei Kawaguchi. MIMII DATASET: SOUND DATASET FOR MALFUNCTIONING INDUS-

TRIAL MACHINE INVESTIGATION AND INSPECTION. arXiv, 2019.

[22] Sangamesh Ragate, Ndim Hmeidat, and Mustafa Aljumaily. Pattern Rcognition "Anomaly

Detection Challenges". ResearchGate, 2015.

80

A Remaining ROC curves for tasks: 2-4,7,8

Figure A.1. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 2), along with the average confusion matrix of both linear and Gaussian

SVMs.

Figure A.2. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 3), along with the average confusion matrix of both linear and Gaussian

SVMs.

81

Figure A.3. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 4), along with the average confusion matrix of both linear and Gaussian

SVMs.

Figure A.4. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 5), along with the average confusion matrix of both linear and Gaussian

SVMs.

82

Figure A.5. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 7), along with the average confusion matrix of both linear and Gaussian

SVMs.

Figure A.6. Average ROC curves of 100 runs of the proposed solution and the MOCHA
algorithm (task 8), along with the average confusion matrix of both linear and Gaussian

SVMs.

83

B Accompanying Python Code

Accompanying the master’s thesis, is a ROC_MANY.PY file. Running the file, with the MIMII

data set and the VAGT.MAT file in the appropriate location, will result in the averaged ROC

curves seen in appendix A. Note that the VAGT.MAT contains the weights obtained from run-

ning the MOCHA algorithm 100 times in matlab. The VAGT.MAT is as well as the ROC_MANY.PY

file is accompanying the master’s thesis. However, the matlab source code for the MOCHA al-

gorithm is not. We do, however, refer the reader to [4], for the code. The code created for this

master’s thesis is written in spyder 3.8.

85

	Titelblad
	1 Introduction
	1.1 Problem Statement

	2 Optimisation Theory
	2.1 General Properties of Optimisation Problems
	2.2 Solving Inequality Constrained Optimisation Problems

	3 Machine Learning
	3.1 Support Vector Machine
	3.2 Federated Learning
	3.3 Multi-Task Learning

	4 Proposed Solution: Federated Multi-Task Learning
	4.1 Updating the weights
	4.2 Computational Complexity
	4.3 Additional nodes
	4.4 Federated solution

	5 Simulations
	5.1 Task Relation Learning on Synthetic Data
	5.2 Predictive Maintenance on the MIMII Data Set

	6 Discussion
	6.1 The Proposed Solution
	6.2 Performance of the Proposed Solution
	6.3 Predictive Maintenance as Binary Classification

	7 Conclusion
	8 Further Development
	Bibliography
	A Remaining ROC curves for tasks: 2-4,7,8
	B Accompanying Python Code

