
Human-to-Robot Handovers Based on Visual Data for
Optimisation of Industrial Tasks

Handovers and Grasp Generation

Master Thesis

Group 1061

Department of Electronic Systems

© Group 1061, Aalborg University, Spring 2021.

Attributions

This report was typeset using LATEX.

Department of Electronic Systems
Department of Materials and Production
M.Sc. Robotics

Fredrik Bajers Vej 7
9220 Aalborg Ø
http://www.es.aau.dk

Title:

Human-to-Robot Handovers
Based on Visual Data for
Optimisation of Industrial Tasks

Theme:

Master Thesis

Project Period:

Spring 2021

Project Group:

Group 1061

Authors:

Jan Kjær Jørgensen
Rune Grønhøj

Supervisors:

Dimitris Chrysostomou

Number of Pages: 48
Appendix: 0 pages
Date of completion:
June 2, 2021

Abstract:
This project revolves around human-to-robot
handovers, with a focus on robust real-time
grasping. The system is developed with the
Little Helper 7 dual-arm UR5 platform in
mind. This project explores multiple state
of the art grasp generation methods to utilise
them for real-time grasping in handover sce-
narios. A standardised conversion between
grasp representation is presented for visuali-
sation of grasp predictions using ROS. Mul-
tiple viewpoints are investigated using a cus-
tom grasp rectangle data-set, with 50 scenes
from three different views. Two pixel-wise
real-time grasp generation methods (GG-
CNN and GR-ConvNet) are explored and
tuned, including tweaking batch-size, opti-
miser and data-set. Mainly, the novel Grasp-
net 1-billion data-set is investigated to im-
prove the existing performance of the mod-
els, as the data-set is widely different from
the previously available ones. The grasp
generation methods proposed shows promise
during evaluation. Especially the use of
Graspnet seems to improve invariance to
viewpoints which is essential during a han-
dover scenario. However, to achieve a human
to robot handovers, integration with other
systems is needed. Mainly hand detection is
required and integration with previous sys-
tems of the Little Helper 7.

The intellectual property rights to all original material brought in this report belong to the authors.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.

Preface

The report "Human-to-Robot Handovers Based on Visual Data for Optimisation of
Industrial Tasks" are written by group 1061 as our thesis for the Robotics Master program
at Aalborg University.

Firstly, we would like to thank our supervisor, Dimitris Chrysostomou, for motivation,
good talks and support throughout both the bachelor and masters education. He always
supplied the desired hardware (and more), listened to our weird ideas and helped shape
our project proposals and education in general.

Furthermore, we also want to express thanks to our friends and families for continued
support throughout the last 5 years of our journey through university.

Jan Kjær Jørgensen Rune Grønhøj
<jkja16@student.aau.dk> <rgranh16@student.aau.dk>

iv

Reading Guide Aalborg University

Reading Guide

A Git repository for the project is made available on Bitbucket with the following link:

https://bitbucket.org/masterrob/lh7-handover/src/main/

The list of acronyms ordered alphabetically

Acronym Definition
CNN Convolutional Neural Network
CPU Central Processing Unit
DOF Degrees of Freedom
FPS Frames per Second
GPU Graphics Processing Unit
HRC Human Robot Collaboration
HRI Human Robot Interaction
IOU Intersection over Union
LH7 Little Helper 7
LIDAR Light Detection and Ranging
RGB-D Red, Green, Blue - Depth (Images)
ROS Robotic Operating System
UR Universal Robots
YOLO You Only Look Once

v

https://bitbucket.org/masterrob/lh7-handover/src/main/

Table of Contents

Preface iv
Reading Guide . v

Chapter 1 Introduction 1
1.1 Previous Development . 1
1.2 Contributions . 3
1.3 Outline . 4

Chapter 2 Grasp Generation for Human to Robot Handovers 5
2.1 Related Works . 5

2.1.1 Handovers in Literature . 5
2.1.2 Grasping in Literature . 6

2.2 Input Modalities . 10
2.2.1 Camera Viewpoint . 10

2.3 Grasp Representation . 11
2.3.1 Converting Between Representations 12
2.3.2 Visualisation . 13

2.4 Summary . 14

Chapter 3 Datasets and Evaluation Metrics 15
3.1 Object Data-sets . 15
3.2 Grasping Data-sets . 17
3.3 Evaluation Metrics . 20

3.3.1 Rectangle Metric . 20
3.3.2 Graspnet Metric . 21
3.3.3 Physical Evaluation . 21

3.4 Summary . 21

Chapter 4 Grasping Methods and Implementation 22
4.1 Methods Implementation . 23

4.1.1 Grasp Representation . 23
4.1.2 Training the Networks . 25
4.1.3 Tuning Parameters . 26
4.1.4 Inference . 28

4.2 Data-set Processing and Loading . 29
4.2.1 Cornell Data-set . 29
4.2.2 Jacquard Data-set . 29

vi

Table of Contents Aalborg University

4.2.3 Graspnet Data-set . 30
4.2.4 Depth Image Processing . 30
4.2.5 Data-set Splits . 31
4.2.6 Ground Truth Labels . 31

4.3 Cloud Computing using CLAAUDIA . 34
4.4 Summary . 34

Chapter 5 Evaluation 35
5.1 Training Parameter Tuning . 35
5.2 Qualitative Evaluation of Q-Images During Inference 36
5.3 Data-set Invariance to Changes in Viewpoint 37
5.4 Model Invariance to Changes in Viewpoint 39
5.5 Summary . 40

Chapter 6 Discussion 41
6.1 Testing/Evaluation . 41

6.1.1 Parameter Tuning . 41
6.1.2 Qualitative Evaluation of Q-Images During Inference 43
6.1.3 Data-set Invariance to Changes in Viewpoint 44
6.1.4 Model Invariance to Change in Viewpoint 44

6.2 Grasp Generation and Grasping . 45
6.3 The Rectangle Metric . 45
6.4 Future Works . 46

6.4.1 Towards Handovers in an Industrial Setting 46

Chapter 7 Conclusion 48

Bibliography 49

vii

1 Introduction

This chapter introduces the overall topic revolving around the theme of the master thesis:
Human-robot handovers. An overview of the hardware and software components of the
robotic system is given. It recaps the development of the Little Helper 7 platform and
examines previously developed functionalities as stepping stones for new development.
Finally, the project is given a specific direction, which is the basis for the contributions of
the project. Finally, an outline of the thesis is presented.

As artificial intelligence for robotics is on the rise, the usability of robots and relation
and collaboration with human increases and becomes more advantageous[1]. Human-
robot collaboration (HRC) revolves around synergistically combining humans and robots
to utilise the individual strengths of both the humans and the robots[2]. A major aspect
of HRC is the task of collaborating with a robot to achieve a common goal. One of the
main tasks that enable this teamwork is handovers. Humans do handovers with little to
no thought, as it is an inherently learned ability[1]. However, this is a complex task for
robots to accomplish, touching on topics such as:

• Communication (agreeing on time and place of handover, often non-verbally)
• Motion planning (moving safely and predictably)
• Safety (not hitting or harming the human)
• Grasping (taking hold of an object without dropping it)

With these main essential elements for human to robot handovers in mind, the robotic
system used for this project is explored. Some of the aspects are covered by previous
development of the robotic platform, and therefore the scope of this project is focused on
specific areas.

1.1 Previous Development

In this project, the Little Helper 7 dual-arm robotic platform is utilized (see Figure 1.1).
It contains two UR5 manipulators, a Robotiq 3-finger gripper, a camera on the wrist of
the arm with the gripper, a camera mounted on a pan-tilt unit at the top of the system,
and a screen in the middle of the torso, in the form of an iPad. Furthermore, a LIDAR
is positioned in front of the robot. In addition to this, at the bottom, a base is found,
consisting of a move-able table and a compartment for the controllers of the manipulators
and the central computer that controls all the systems.

The Little Helper robotic family is a long-running project, where Little Helper 7 is the
seventh iteration. This iteration mainly differs from previous versions with its dual-arm

1

1.1. Previous Development Aalborg University

Figure 1.1: The physical Little Helper 7 platform.[3]

capabilities. The system has been in development for three years, starting with the
construction of the platform [4]. With the platform as a base, functionalities have been
incrementally added throughout semester projects.

Firstly, an industrial disassembly task was considered, where a mock-up product was
dynamically disassembled using a vision system [5]. Furthermore, development was made
in [6] where a task-oriented dialogue system was explored to enable natural language
communication during pick and place tasks, where also a vision system is utilized for
object detection and grasp generation - however, only realized in a simulated environment.
Finally, HRI/HRC aspects are explored, where the human around the robot is detected
and tracked for safety measures while also recognising the performed actions [3].

This work focuses on human-to-robot handover. This includes object manipulation
in the form of object-independent grasp generation. In combination with the following
existing sub-system it will be possible to realise a full handover scenario:

• Action recognition (Initiation of handover)
• Human pose estimation and tracking (Safety and location of human)
• Motion planning (Robot movement)

These systems allow the realization of a human to robot handover. However, one important
system is missing, that being object manipulation, or more specifically grasp generation.
Figure 1.2 shows the flow from the hardware and software systems. The camera and LIDAR
input is shown at the top, where they first are used for human awareness in the form of
human pose estimation, tracking and action recognition. These elements are essential for

2

1.2. Contributions Aalborg University

handovers as they help ensure safety and can be used to initiate the handover. Following
human awareness is object manipulation, which is a missing part of the Little Helper 7
system and the focus of this work. This system gets input from the RGB-D camera for
grasp generation. Finally, a method for control of the robot exists, which is concerned
with planning the movement of the manipulators and moving them in the desired manner.

Figure 1.2: System diagram showing in green the previously implemented systems and in orange
the areas of focus for this project.

Grasp generation is chosen as the focus of the project, as it is the most crucial missing
system needed to realise a human to robot handover action. Furthermore, it has an essential
role in handovers and therefore needs to be explored extensively to achieve successful
human-robot interaction.

1.2 Contributions

Given the previously developed systems and functionalities of the Little Helper 7 platform,
and the focus area of grasp generation for this work, the project has the following
contributions:

• Exploration of different state of the art grasp generation methods
• Standardized conversion between different grasps for visualisation
• Fine-tuning of a set of robust real-time grasp generation methods
• A new viewpoint data-set for grasp generation evaluation
• Extensive evaluation of a selection of grasp generation methods
• Proposal of necessary future work to bring efficient grasping into handover actions

and thereafter to operations in the industry

3

1.3. Outline Aalborg University

1.3 Outline

Chapter 1 introduced the project. It also gives an overview of the robotic system, the
development of the system is recapped, and the handover task is split into smaller tasks,
and a specific direction for the project is chosen.

Chapter 2 introduces the concept of grasp generations and gives an overview of the
significant developments of grasp generation, the input modalities, grasp representation
and visualisation. Furthermore, in Chapter 3, grasping data-sets are examined to
understand the data which is needed to train a network for grasp generation.

The details and methods used for grasp generation are presented in Chapter 4. This
includes the choice of grasp generation network, among the ones explored in Chapter 2.
Furthermore, details on training, data processing and data loading are covered.

Chapter 5 presents the evaluation of the chosen methods. Herein, the testing performed
to evaluate the general performance. Furthermore, a viewpoint data-set is created to
understand the invariance of the models to changes in viewpoint.

In Chapter 6, a discussion about the main elements of the work is comprised. It also
includes a discussion on the performed evaluation. The concept of human to robot
handovers is also considered again and set into perspective with the development of the
grasp generation method. Finally, in Chapter 7, a conclusion is given that brings the
project to a close.

4

2 Grasp Generation for Human to
Robot Handovers

When generation grasps, the common goal is, given an input, to calculate the best-known
grasp(s). This chapter explores important works in grasp generation literature. Grasp
generation exists in many cases and is widely differed for different gripper types, like:
Parallel jaws, soft grippers or fully articulated grippers resembling a human hand. However,
for this project, the focus lies on antipodal grasping methods using parallel jaw grippers
as it achieves good results despite its simplicity and is widely studied and researched.

Antipodal grasping is a versatile method of manipulating an object as many grippers are
parallel inherently or can perform a parallel action. In this project, the Robotiq 3-finger
gripper is used in pinch mode, imitating a parallel gripping motion.

Furthermore, only newer advances in the field concerned with neural networks and deep
learning are considered. Within this scope, image, depth and point cloud modalities exist
and is explored in this chapter. Furthermore, multiple different grasp representations are
investigated in Section 2.3.

2.1 Related Works

Firstly, this section covers related works in the domain of handovers. Furthermore, it delves
into robotic grasp generation, which can be used as a significant part of the handover action.
The grasp generation methods are all based on antipodal grasping.

2.1.1 Handovers in Literature

The act of handing over an object is an essential physical interaction skill during daily
living. Oftentimes the need to transfer an object to another person arises, whether at
home, at a restaurant or in an industrial workplace. Therefore, the handover skill is
essential for assistant robots in many different areas, as this physical interaction is useful
in many scenarios.[7]

The handover usually involves two actors, the giver and the receiver, that collaborate in
successfully transferring an object [7; 1]. The actors need to agree on when, where and
how to perform the handover[1].

The when of the handover concerns the timing aspects of the collaboration, not only how
the handover is started, the initiation, but also the timing of when the giver should let go

5

2.1. Related Works Aalborg University

of the object to allow the receiver take it. An important aspect is gaze. Studies [8; 9] show
that gaze can improve the handover efficiency and feel, as it is a simple form of underlying
communication that indicates the intention of both actors in the handover. Furthermore,
initiation concepts where human motion or gestures is used is shown in [10; 11], where the
motion of the human body or hand is tracked and categorized. The detected action can
then be used to alter the behaviour of the robot, e.g. initiating a handover, when the arm
is moved towards the robot or the hand is opened, ready to receive an object.

where is a bit more simple, as it determines the location in the space where the handover
is to take place. This location is usually in the midpoint between the two actors or shifted
towards the receiver [12].

The process of how can be split into two main parts: The movement of the human/robot
and the grasping technique used to get a hold of the object.

In the past, robot safety was established by physically separating the human and the robot,
by cages or by detecting the person entering the workspace using sensors[13]; however,
when performing handover, there is a need for the human and robot to be close, and safety
becomes a different and important task. The movement of the robot arm is therefore
important, as it has to be safe for the collaboration to succeed[14]. Furthermore, to
achieve a successful handover for the human collaborating with the robot, it has to move
in predictable ways, as it enables the human to understand the robot, which makes the
handover more efficient and comfortable[11; 15].

Finally, grasping is needed to manipulate the objects. In [16] the grasp is pre-defined
based on the small selection of objects, and only the approach is explored. However, to
achieve a dynamic system capable of manipulating a majority of objects, grasp generation
is needed[14; 17].

Therefore, grasping literature is explored for methods that enable robust real-time grasp
detection, as a means to achieve handovers.

2.1.2 Grasping in Literature

The introduction of neural networks and deep learning for grasp generation started in
[18], where RGB-D images are used in a sliding windows-like manner to generate rectangle
grasps. This sparked the deep learning research in the grasping domain. In [19] a single look
approach is introduced, similar to YOLO1[20], which drastically improved performance and
made grasp generation viable for robotic manipulation in real-time.

In more recent work, the 6-DOF grasp representation is explored. While image-space
representations have inherent computational advantages, generation grasps in space have
clear advantages in manipulation of real-world object[21]. The first major introduction to
6-DOF grasp generation [22] uses point cloud as input and is widely used as a baseline
for these types of methods. Although a new closer to real robot grasping 3D approach is
presented, it still is not deemed reliable enough to be viable[22].

In [23] a new 2D approach is introduced. Instead of locating rectangles in the image by
1State of the art object detector

6

2.1. Related Works Aalborg University

looking at objects or the scene in the previously utilized ways, the network predicts three
images, where each pixel of the images corresponds to a parameter of the grasp. The three
images represent: Gripper width, grasp angle and grasp quality (the grasp is implied to
be centred around each pixel, eliminating the need to specify grasp centre separately). An
example can be seen in Figure 2.1. This work inspired other works in 2D [24; 25] and even
similar works in 3D [26].

Figure 2.1: Example of three images representing a grasp at each pixel[24].

All the methods using this pixel-wise grasp technique have vastly improved the inference
speed of grasp generation. Furthermore, 100’s of grasp candidates can be found at each
frame due to the nature of predicting a grasp at every pixel. This also easily makes it
possible to scale the method to more grasp predictions per image, which is especially
useful in cluttered scenes.

A different approach is introduced with Dex-net [27], which uses sample-based grasp
candidates and a grasp quality (GQ-CNN) network to pick the best grasp from randomly
sampled grasps on an object. GQ-CNN was training on a large grasping data-set of 6.8
million grasps created from synthetically captured point clouds of 1500 3D household
object models in a simulation. Each grasp in the data-set is evaluated with the robust
grasp wrench space, which analyses a set of contact points from a grasp on an object,
and tests if the grasp can withstand external wrenches. These wrenches include gravity,
friction and the collision with the table and other objects. The grasp is a force-closure
grasp if all the external wrenches can be compensated for during the grasp.[28; 27]

As technologies behind hardware become better due to new developments, more complex
grasp generation methods arise, which can uphold the same inference time, despite more
complex computations. In [21], a partial point cloud is observed, alongside proposing
grasps, the point cloud is reconstructed and used to refine the grasp. Reconstruction of
the partial point cloud requires more computational power; however, it also gives a more
detailed object representation and hence grasp.

Furthermore, different representations of the 3D space are explored for learning in [26].
Here a point cloud is captured and used to create a TSDF2, which is then used for training
a network for detecting 6-DOF grasps. Promising results are shown, and the idea of
representing the data in different ways is introduced.

Finally, in [29] a grasping data-set is introduced. It is created to close a gap in research,
where there is not sufficient data available for training grasp generation methods for

2Truncated Signed Distance Function

7

2.1. Related Works Aalborg University

cluttered scenes. In addition to the vast data-set, a baseline prediction method is proposed,
which predicts 6-DOF grasps in cluttered scenes at varying viewpoints.

An overview of the previously mentioned methods and other similar ones are compiled in
Table 2.1. It contains essential information about the different methods, including: The
backbone network or algorithm used for grasp generation; The main data-set which is used
to train the model (see also Chapter 3); The input modality; Whether the predicted grasp
is presented on an image or in space; Information about the scenes which it was trained
on; and finally the inference time, if given in the paper.

The input modality, the viewpoints and the grasp representations are presented following
the table.

8

2.1.
R
elated

W
orks

A
alborg

U
niversity

Ref. Network Dataset Input Out. View Cam. location FPS

[18] DeepNet Cornell RGB-D 2D Single object Head 0.07
[19] AlexNet* Cornell RG-D 2D Single object Top 50.00
[30] ZF (Conv) CMU RGB 2D Clutter Top
[31] LeNet Custom (BigBird) Pointcloud 3D Clutter Wrist+Side(2)
[32] CNN Custom (Fruits) RGB-D 2D Clutter Top 100.00
[33] DCNN Cornell + Washington RGB-D 2D Clutter Head/Top 7.10
[34] AlexNet Custom RGB 2D Clutter Head
[22] LeNet Custom (BigBird) Pointcloud 3D Clutter Wrist+Side(2)
[35] DGGN Custom RGB-D 3D Single object Head/Side
[23] GG-CNN Cornell, Jacquard Depth image 2D Clutter Wrist 166.67
[36] ResNet-50* Cornell, grasp_multiObject RGB-D 2D Clutter Head 8.33
[37] ResNet-101 Custom (MIT) RGB-D 3D Clutter Multiple 16.67
[38] PointNet++* Custom (ShapeNet) Pointcloud 3D Single object Wrist
[24] GR-ConvNet Cornell, Jacquard n-channel images 2D Clutter Top 50.00
[25] Fully Conv Cornell RGB-D 2D Single object Top 125.00
[27] GQ-CNN Dexnet 4.0 Depth image 3D Clutter Top
[39] PointNet* YCB Dataset Pointcloud 3D Clutter Wrist
[40] ResNet/VGG16 + RPN Custom (VMRD), Cornell, Jacquard RGB 2D Clutter Head 9.10
[41] PointNet++* Custom RGB-D 3D Clutter Wrist 0.40
[29] PointNet++ GraspNet RGB-D/Pointcloud 3D Clutter Wrist
[42] 3D CNN Custom (simple shapes) Pointcloud 3D Clutter Side
[43] DNN + REM Cornell RG-D 2D Clutter Top 50.00
[21] Res-Net-34* Custom (YCB, BigBird, "Shoes") RGB-D 3D Single object Side/Head -
[44] PointNet++ Custom (YCB) Pointcloud 3D Clutter Wrist 79.37
[45] R-FCN + Angle Net Cornell RGB-D 2D Single object Top 17.50
[26] VGN Custom Synthethic 3D voxel grid 3D Clutter Wrist 100.00

Table 2.1: Overview of deep learning grasp generations methods explored for the project. *=modified

9

2.2. Input Modalities Aalborg University

2.2 Input Modalities

Different methods use different input modalities. The two main categories are 2D and 3D
data. The 2D data consists of RGB or grey-scale images; however, in most works, 3D
input data is used. The simplest form is RGB-D data, where also a depth image is used,
although sometimes the data is structured in a point cloud. RGB-D and organized point
cloud data are, given the camera parameters, equivalent[46]. As point cloud data can be
generated from aligned RGB-D images.

In some cases, the blue channel of the image is replaced with the depth information, as
it makes it possible to use existing networks designed for 3-channel images, with minor
loss[19; 43].

The choice of input modality is important as it determines how the data has to be captured.
Furthermore, it also defines the level of detail that can be expected in the output. When
using RGB data solely, a more flat representation of the world is used, which in turn
also impacts the level of detail that can be captured in a grasp. However, when using
point clouds, much more detail is known about the scene, and more intricate grasps can
be generated. Using 2D data is inherently faster than point clouds due to the amount of
data and the level of detail captured. Using RGB-D data is a middle ground where depth
information is included in a somewhat flat data structure, which makes it a good balance
between precision and speed.

2.2.1 Camera Viewpoint

Another important factor to consider is the viewpoint from which the images are taken.
Four main viewpoints are considered: Top, Head, Side, and Wrist. The first three can be
seen in Figure 2.2. Wrist is left out since it is a viewpoint where the camera is mounted to
the wrist of a robotic manipulator, and hence the viewpoint can change and be considered
a combination of the former three.

Figure 2.2: Different camera viewing angles, when observing an object (red cylinder) to be grasped.

10

2.3. Grasp Representation Aalborg University

Some methods work entirely on pre-captured images and do not consider a robotic system,
and hence solely try to optimize performance on a set of data. However, the images in
the data-sets have usually been taken in one of the four configurations. The different
viewpoints used in the referred literature for the report can be seen in Table 2.1.

When designing a system and deciding on a data-set, it is vital to consider the viewpoint.
Having data from a single viewpoint will make it harder for a system to generalize to
other viewpoints if new data is presented like that. It is suggested that the training data
somehow reflects the viewpoint that is used during inference.

2.3 Grasp Representation

For a machine or a robot to understand and use the notion of a grasp, it needs to represented
in a specific way. This representation is used to understand where and how to grasp an
object, based on a set of numbers. Different methods exists and are explored in this section.
Mainly two different methods exist, a planar (2D) method which can be used directly on
images and usually assume that the object is grasped from the top. And a 6-DOF (3D)
methods, which describes both the location and rotation of the gripper in space.

For 2D grasp representation, the rectangle grasp methods is usually used. It was introduced
in [47] along with the Cornell data-set. It consists of the point of the upper left corner
of the rectangle, a width and height and an angle. This representation was modified in
[19] and became the new standard for planer grasp representations, see Figure 2.3. The
representation includes the point at the center of the grasp, the height and width and an
angle, it is usually presented as:

g = {x, y, θ, h, w} (2.1)

Figure 2.3: Rectangle grasp representation. Left: Introduction of the representation[47]. Right:
Modified rectangle representation[19].

This representation is widely used, however, sometimes modified to not include the height
or additionally include a quality3 measure of the grasp [36; 37; 23; 40; 24; 43].

It is also important to note, that the exact way that the rectangles are presented in the
raw data differs between data-sets and methods. Some methods define the coordinates
of the four corners of the rectangle, while other base the data around the center of the
rectangle. However, they can all be converted to the format in equation 2.3.

3Usually denoted q or z

11

2.3. Grasp Representation Aalborg University

The first mayor 3D grasp detection methods arose in [22; 31], and hence the 6-DOF grasp
representation, as shown in Figure 2.4. Usually it consists of two elements: A rotation and
a translation. The translation is always specified as a vector of (x, y, z) which determines
the location in space of the grasp. Furthermore, the rotation gives the orientation of the
grasp/gripper, however, the representation of the rotation differs between Euler angles
(rx, ry, rz) [39; 42], quaternions (x, y, z, w) [26] or 3x3 rotation matrices [16; 41; 38], as
there exist no general standard for 6-DOF grasps.

Figure 2.4: 6-DOF grasp representation as shown in [22].

Furthermore, the rotation and location of the coordinate system of the grasp (see Figure
2.4), also does not have a standard, and hence differs between the methods. Typically, it
is placed as on the figure, however, the z-axis is often pointing the same direction as the
gripper fingers. Some methods also center the grasp between the gripper fingers or at the
object.

2.3.1 Converting Between Representations

For comparing different grasp generation methods, conversion between representations is
necessary. This is also important when dealing with different data-sets as they are not
standardized, and hence have different ways of representing a bounding box. Therefore, a
common format have to be chosen when loading the data, which will be used when loading
data from other data-sets. It can either be specifying the box by the four corners of it,
or basing it around the center and the distance to the edges and an angle. Luckily, the
conversion is easily performed using trigonometry.

In addition, conversion from a planar representation to a grasp in space is needed when a
physical robot needs to actually perform the grasp.

To convert from the 2D representation, firstly both the representation and a notion of the
distance to the object (depth) is needed. This comes naturally for methods that use RGB-
D data as input data. The center point of the grasp can then be deprojected using the
the intrinsic information of the camera used, to get a point in space. When approaching
from the top, the angle can be directly used to rotate the gripper and the grasp can then
be performed.[48]

When trying to fairly compare a 6-DOF presentation with a planer presentation the
opposite conversion can be made. However, some data will be lost and in most practical
examples this is not needed or used. However, the point can be projected to the image

12

2.3. Grasp Representation Aalborg University

with the intrinsic information of the camera. Then it can be assumed that the object is
grasped from the top (like with planar grasping) and the rotation of the approach vector
can be used for specifying the angle θ.

These conversions can also be used for visualising the grasps in the same manner, whether
that be on an image or in space. This is useful for qualitative evaluation and comparison
of different methods.

2.3.2 Visualisation

These conversion methods can be used to make a visualiser that given different grasp
representation can visualise 2D and 3D grasps, for comparison of methods. A general
grasp structure is created, which holds the parameters of both a rectangle and a 6-DOF
grasp. The incoming grasp is then converted, so that both representations are available
and filled into the standardized grasp structure. The general pipeline is shown in Figure
2.5.

Figure 2.5: Outline of the process of the grasps for visualisation.

An example based on Figure 2.5 could be: A grasp generation methods predicts a 2D
rectangle grasp. It is then converted to a 3D 6-DOF grasp using the intrinsic parameters
of the camera. Both the representations are then combined in the same data structure
that contains all the information, which can then be send to different parts of the system,
like the visualizer.

The visualizer is implemented using ROS, and visualisation is done in Rviz. The rectangles
are draw on the image from the camera using openCV and published as a ROS Image,
similarly the 6-DOF grasp is created as a pose and a simple gripper object is drawn using
markers, to represent the grasp. These markers are also published to be visualised in Rviz.

An example of the visualiser in Rviz can be seen in Figure 2.6. On the left the image
from the camera is shown with a grasp rectangle drawn. The center and gripper finger
positions are marked with blue circles and the rectangle is drawn in red. In the top left
of the image, the quality of the grasp is given, if known from the predictor. On the right
the 3D environment is shown, with the robot, the raw point cloud from the camera and a
simple gripper marker at the predicted grasp pose.

13

2.4. Summary Aalborg University

Figure 2.6: Visual representation of 2D and 3D grasps in Rviz. Left: RGB image with grasp
rectangle. Right: 3D grasp in purple shown on point cloud along with LH7.

2.4 Summary

This chapter presented related works in the handovers domain and grasping literature,
with an overview of many state of the art methods, and some methods that shaped the
grasping research.

Furthermore, the input modalities used for grasp detections are explored, and also different
viewpoints which are commonly used for capturing visual data when using a robot.

Finally, different grasp representations are presented, with mainly 2D grasping rectangle
and 6-DOF grasp representations. All of this leading to a grasp visualiser that given any
of these two representations can visualise the grasp on both an image and in space.

14

3 Datasets and Evaluation Metrics

As simple as it is for humans to pick up and grasp everyday objects, it is complex
for robotic systems to grasp objects. In recent years, using deep neural networks for
predicting grasps from RGB-D image and point clouds has emerged[49]. These networks
rely on large amounts of data for training, using supervised learning[50]. Therefore labelled
data is needed, which can be generated by hand with human labelling or automatically
with algorithms for labelling data. Recently, the creation of large and diverse data-
sets have emerged in research. The data-sets consists of scenes containing one object
or cluttered scenes with multiple objects[29; 51]. These scenes are commonly labelled
using the rectangle grasp representation as described in Section 2.3, as well as some newer
adaptations of 6-DOF grasp labelled data.

For robotic grasping, data-sets are used as a standardization, making it easier for other
researchers to reproduce the results, as it gives access to the same objects, labels and data
in general. Some robotic grasping methods purely train on synthetic data generated in
simulation, while others generate a data-set from real-world objects.

This chapter explores the major data-sets used for training and evaluating deep neural
networks for grasp generation. This includes RGB-D and point cloud data and object
data-sets, which are commonly used to generate synthetic data. Furthermore, only object
and grasping data-sets commonly used in research and publicly available are considered.

3.1 Object Data-sets

Large objects-sets have been shown to be vital [50] for benchmark and generating training
data for grasping methods in the real world and simulation. In recent years, researchers
adopted random objects from the office or the use of a subset of objects from larger object
data-sets like Shapenet [52] or Bigbird, [53] which are graspable to use for training and
benchmark.

The Columbia grasping data-set [54] was one of the first to introduce a 3D object set in
GraspIt1 simulation for generating grasp labels with over 8000 grasps of everyday objects.

Bigbird and YCB [53; 55] introduced two databases of high-quality 3D scans of 75-125 real
everyday objects, which can be used for generating synthetic training data in simulation
for robotic grasping or object detection algorithms.

Shapenet [52] provides researchers with a huge database of 3D shapes and objects spanning
1A grasping simulation software

15

3.1. Object Data-sets Aalborg University

over 55 common2 categories. Commonly researchers choose a subset of objects in a
few categories which contain graspable everyday objects, e.g. bowls, cans, tools, fruit,
etc.[56; 50]

The ACRV Picking Benchmark (APB) [57] created a robotic benchmark challenge for
driving the scientific progress in robotic grasping. The benchmark is designed for
reproducibility and consist of 42 well-defined household objects and methods for evaluating
the researcher’s systems. Each object is well-defined as it has a high-density 3D model.
Furthermore, the objects are described in details so that they can be bought physically.
Finally, the placement of the objects in the world for the benchmark is specified for
reproduction.

Evolved Grasping Analysis Data-set (EGAD) [50] introduces a new robotic grasping data-
set aimed at generating objects which vary in shape complexity and grasp difficulty, as
seen in Figure 3.1. EGAD tries to standardize robotic grasping data-sets by making 3D
object shapes that span the whole spectrum from easy to difficult in grasping objects and
shape complexity. Making the data-set 3D printable makes it easier for researchers to test
their systems instead of buying the physical objects and standardising the objects for other
researchers to reproduce results.

Figure 3.1: A subset of the 3D generated objects from the data-set, increasing in shape complexity
and grasp difficulty [50].

Table 3.1 shows a list of the commonly used 3D object data-sets explained above that are
used for the generation of grasping data for training and benchmarking grasping methods.
The table contains the amount and type of the objects for each data-set. It also includes
the data type of the data and whether it includes grasp annotations.

2vehicles, furniture, household etc.

16

3.2. Grasping Data-sets Aalborg University

Object Dataset Objects Description Data type Grasps
Columbia [54; 58] 8000 Household objects Meshes (.IV, .XML) Yes
Bigbird [53; 59] 125 Household objects RGB-D (.jpg, .h5) No
YCB [55; 60] 75 Household objects Meshes (.URDF, .XML) No
Shapenet [52; 61] 51300 55 Categories of objects CAD (.stl) No
Dex-Net 2.0 [56; 62] 1500 Complex objects Object (.HDF5) Yes
APB [57; 63] 42 Household objects - Yes
EGAD [50; 64] 2282 Simple to complex objects Meshes (.obj) Yes

Table 3.1: Commonly used object data-sets for generating training and testing data. The table
contains references to the paper of the data-sets as well as the link to download the data-set. List
is ordered chronologically.

Table 3.1 shows that household objects are the most common object type used for
generating grasping annotation. Only Dex-Net and EGAD deviates from this and use a
mix of simple and complex shapes. Bigbird, YCB and APB contain fewer objects compared
to the other. It is speculated that this is due to the data being high-quality scans of real
objects, which cost both time and resources to create. Furthermore, they are usually only
used for benchmarks, which might also explain the smaller amount of objects in general.

3.2 Grasping Data-sets

Using the object data-sets mentioned above, researchers created grasping data-sets for
training deep neural networks. However, some researchers create grasping data-set
independently from the object data-sets. They all revolve around using a set of objects to
create scenes of objects, with ground truth bounding box annotations for possible grasps.
The number of objects and grasps per scene vary among the different data-sets. Using
the object data-sets mentioned above, researchers created grasping data-sets for training
deep neural networks. However, some researchers create grasping data-set independently
from the object data-sets. They all revolve around using a set of objects to create scenes
of objects, with ground truth bounding box annotations for possible grasps. The number
of objects and grasps per scene vary among the different data-sets.

This section explores commonly used grasping data-sets among researchers, starting from
the Cornell data-set, which sparked many other works until the newly developed Graspnet
data-set.

The Cornell data-set[47] introduced a grasping data-set with a single object per image and
a new rectangle grasp representation (see Section 2.3) used to label grasps. The data-set
has 8019 grasps in RGB-D images, which were manually labelled by hand; some examples
are shown in Figure 3.2. The idea of using RGB-D data labelled with rectangle grasps
continue in [36; 40] where cluttered scenes are introduced, with multiple objects per scene
to achieve better grasp performance in cluttered scenes.

17

3.2. Grasping Data-sets Aalborg University

Figure 3.2: Examples from the Cornell data-set. Rectangle grasps drawn on raw image[47].

The previously mentioned data-sets were labelled by hand, which is time-consuming and
prone to error. The Jacquard data-set[51] expands on Cornell’s rectangle representation by
automating grasp generation and labelling in a simulated environment. Grasps candidates
are generated across the object and tested in the simulation; if the object could be lifted
from the ground, the grasp was considered correct and annotated accordingly. Finally,
this results in a large data-set with a total of 1.1 million grasps across 54000 images. An
example of grasp annotations from the simulation can be seen in Figure 3.3.

Figure 3.3: Examples from the Jacquard data-set. Rectangle grasps drawn on raw image[51].

Dex-Net 2.0[56] introduces a similar method by simulating the point clouds of 3D objects
and generating grasp candidates based on the synthetic point clouds. However, they use
their own grasp representation and generate the grasps using grasp wrench space[28]. The
grasps calculated are force-closure grasps if all wrenches are compensated for when the
gripper lifts the object off the ground.

Other works, like [65; 34] looked into using between 6 and 14 robots for generating a
grasping data-set from robotic trials where the robots would move to a position to pick
up objects, and if the object was lifted, it was noted as a positive grasp, if not it was
noted as a negative grasp. A similar technique is used in [35], where humans grasp objects
in virtual reality to generate a grasping data-set, which closely relates to how humans
normally would grasp an object.

More recently, [29] introduced the Graspnet 1-billion data-set, which consist of more than
1 billion grasps following the 6 DOF grasp annotation, which can be converted to the
rectangle grasp annotation. Graspnet expands on [36; 40] by using cluttered scenes with
multiple objects and capturing RGB-D images from these scenes. For each scene, images
are captured from two cameras equipped on a robot’s end-effector moving to 256 different

18

3.2. Grasping Data-sets Aalborg University

positions covering the whole scene while recording the robot’s position. Each scene consists
of randomly chosen objects placed in clutter at different angles and position. The first
image from each scene is manually annotated with grasps. In contrast, the rest of the
images are annotated autonomously based on annotation from the first image, where all
annotations are translated and rotated based on the robot’s translation and rotation.
Figure 3.4 shows images from 2 different scenes from Graspnet at varying viewpoints.

(a) Scene 1 from different views.

(b) Scene 2 from different views.

Figure 3.4: Examples of two scenes from the Graspnet data-set[29] shown at different viewpoints.

Table 3.2 Shows a list of commonly used grasping data-sets created from simulation or
captured from a camera. It is a collection of the aforementioned data-sets, including more
specific information about each of them. This includes: The number of objects, grasps
and images; The label type; Whether the data is labelled manually or automatically; and
the modality used to capture the data. Each data-set also contains a reference to its paper
and where to download the data-set.

Grasp Data-set Total
Objs.

Objs.
/scene

Total
Grasps

Grasps
/scene

Total
Imgs. Label Auto

Label Modality

Cornell [47; 66] 240 1 8019 ∼8 1035 Rect. No 1 Cam. RGB-D
Pinto et al. [34] 150 15 ∼50K 1 ∼50K Rect Yes 1 Cam. RGB
Dex-Net2.0 [56; 62] 1500 1 6.7M 1 6.7M Custom Yes Sim. Depth
Vr-Grasping [35; 67] 101 1 4.8M ∼100 10K 6-DOF Yes Sim. RGB-D
Jacquard [51; 68] 11K 1 1.1M ∼20 54K Rect Yes Sim. RGB-D
Multi-Object [36; 69] 31 3∼5 ∼96K ∼100 96 Rect No 1 Cam. RGB-D
Levine et al.[65; 70] 1100 20 800K 1 800K Rect Yes 1 Cam. RGB-D
MIT-Grasp [37; 71] 61 1∼13 - - 1837 Custom No 1 Cam. RGB-D
VMRD [40; 72] ∼100 3∼5 100k ∼20 4683 Rect No 1 Cam. RGB

Graspnet [29; 73] 88 ∼10 ∼1.2B 3∼9 M 97K 6-DOF
/Rect. Yes 2 Cams. RGB-D

Table 3.2: Commonly used grasping data-sets for robotic manipulation. The table contains
references to the paper of the data-sets as well as the link to download the data-set. List is ordered
chronologically. “-” denotes the number is unknown.

19

3.3. Evaluation Metrics Aalborg University

Table 3.2 shows that data-sets created from simulation have more grasp labels than data-
sets captured of physical objects. This is due to the nature of simulation; it is fast and
easy to set up for new objects and labelling. Only Graspnet is an exception to this, which
used a clever labelling technique for reaching 1.2 billion grasp labels of RGB-D images on
a physical object.

After choosing a data-set for training a grasping method, evaluation metrics are needed
to determine if the predictions of the model perform well on the data. Evaluation metrics
are presented below.

3.3 Evaluation Metrics

When a network is trained using the data mentioned above, some metrics have to be chosen
to evaluate the performance of newly seen examples. Many evaluation metrics exist, most
commonly, the rectangle metric is used, or a physical evaluation of the grasp using a robot.
Furthermore, the new contender, Graspnet, is also explored.

3.3.1 Rectangle Metric

The main metric used to evaluate the Cornell and the Jacquard data-set is the rectangle
metric; it is used in most rectangle grasp generation methods and is explained as follows
in [19]:

The rectangle metric considers a grasp to be correct if both:

1. The grasp angle is within 30◦ of the ground truth grasp.
2. The Jaccard index of the predicted grasp and the ground truth is greater

than 25 percent.

Where the Jaccard index is given by:

J(A,B) =
|A ∩B|
|A ∪B|

(3.1)

This is similar to the popular Intersection Over Union known from object detection (e.g.
YOLO[19]), where the intersection and union of the ground truth bounding box and the
predicted bounding box is found, and the ratio between them is calculated.

In addition to the rectangle metric, a common way of splitting the Cornell data-set is
also used. This is the concept of image-wise and object-wise split as seen in [18; 19; 24].
The image-wise technique splits the images randomly, and the object-wise technique splits
the images into groups containing the same objects (or the same type of objects). When
evaluating an image-wise split, the performance of determining the location of the objects
is found. In contrast, object-wise determines the performance for detecting grasps on novel
objects not previously seen. This method helps give a more nuanced picture of how well
the model generalizes to locations and novel object independently.

20

3.4. Summary Aalborg University

3.3.2 Graspnet Metric

Graspnet also introduces a new metric for evaluating grasp generation methods.

The method is based around 6-DOF grasps. Firstly, to determine if a single grasp is
correct, an online evaluation is used. This removes the need for countless ground truths
in continuous space with millions of possible grasps.[29]

Firstly, each predicted grasp is matched with a targeted object. The point cloud between
the gripper fingers is checked for the correct object. A binary label describing the success
of the grasp can then be found by force-closure metric, at a given friction coefficient µ.[29]

However, a single grasp per image is often not sufficient, especially when dealing with
cluttered scenes. Therefore, a precision@k metric is introduced, where the top-k ranked
grasps, are evaluated giving a precision metric.[29]

With this precision metric, APµ can be calculated. That being the average precision at
friction µ. It is calculated as the average Precision@k for k ranging from 1 to 50, given
friction µ. Similarly to MS-COCO[74], APµ is given at different µ. Where µ range from
µ = 0.2 to µ = 1.2, at ∆µ = 0.2 intervals.[29]

Finally, before doing any evaluation, a pose-NMS3 is performed, which eliminated similar
grasps, especially ones that are on the same object.[29]

3.3.3 Physical Evaluation

In addition to the theoretical measure based on the labelled ground truth, a physical
evaluation can take place.

Here, a robot performs the generated grasp to evaluate the performance in a real-world
scenario or simulation. Typically the grasp is executed by making the robot approach the
grasp from the specified vector (or above if an approach is not defined), moving to the
object and closing the gripper. If the robot then successfully lifts the item without dropping
it[23] or delivers it to a designated area/box, the grasp is deemed successful. However, if
the object is not grasped by the gripper fingers or dropped during manipulation, it is
considered a failed attempt.

3.4 Summary

This chapter presented object and grasp data-sets commonly used within grasping research,
starting with an overview of the currently available data-sets and how they are used and
generated. Furthermore, metrics on evaluating grasping networks are presented based on
the rectangle metric, the Graspnet metric and physical robot trials.

With the knowledge of different data-sets and how to evaluate grasping methods, it is
possible to dig deeper into a few methods which show potential for HRI in Chapter 4.

3Non-Maximum Suppression

21

4 Grasping Methods and
Implementation

Throughout this chapter, more detail is given on a set of chosen methods. This includes
a description of how the input images are used to predict bounding boxes. Furthermore,
the pre-processing and loading of the data-sets are explored. Including dealing with vastly
different amount of ground truth bounding boxes. In addition, the cloud computing service
CLAAUDIA used for training is outlined.

Chapter 2 covers a vast variety of grasping methods, and the span of the project
is limited; a subset of methods is chosen for continued work in the project. Namely,
Generative Grasping Convolutional Neural Network (GG-CNN)[23] and Generative
Residual Convolutional Neural Network (GR-ConvNet)[24] is chosen. Furthermore, it is
also chosen to limit the data-sets to the following most commonly used ones: Cornell and
Jacquard. Furthermore additionally, Graspnet is chosen.

The Graspnet data-set is chosen as it has a similar format to Cornell and Jacquard but
offers a vastly different set of data. Firstly, it has changing viewpoints. Secondly, it has a
multitude more bounding box annotations, and lastly, it is new and therefore, not much
research has been performed with it. Furthermore, it is speculated that better performance
of the networks can be achieved with this data-set, as it has more data to learn from, which
ideally would make it better at generalizing.

After discussing the chosen data-sets, the reasoning for the chosen grasp generation
methods can be highlighted. One of the main reasons for choosing GG-CNN and GR-
ConvNet is the inference speed. They both utilize the same pixel-wise method, making
them fast compared to other methods, as seen in Table 4.1. The table shows the inference
speed of 4 of the previously mentioned methods. These methods are the ones that were
successfully modified to run on the LH7 hardware setup using ROS.

Fast inference is desired in HRI, as humans move in real-time, and if the robot is slow, it
will be tedious to interact and cooperate with it.[14] Furthermore, a fast reaction is needed
since the object held by the human, most probably will be moving during the handover as
it is almost impossible to hold an object completely still in a stretched arm[16].

22

4.1. Methods Implementation Aalborg University

GG-CNN GR-ConvNet VGN Graspnet Baseline

FPS ∼ 72 ∼ 23 ∼ 1.3 ∼ 10

Table 4.1: Inference speed on implemented methods using ROS framework.

In addition to the inference speed, using RGB-D images also simplifies the data, as it is in
fewer dimensions and is easier to handle and modify. This, in turn, usually makes these
methods faster during inference.

On the other hand, the limitation also comes from the limited span of the project. Two
similar methods are chosen as they have close to the same structure and are easier to adapt
data-loaders, training and evaluation for. This is also important as custom data-loaders
are needed for the Graspnet data-set, as it has not been used for these networks before.

However, this increased speed also comes at a cost. The representation in 2D of an object
is flat compared to a point cloud. Therefore, the objects are only seen from one viewpoint,
making it hard to determine the rotation of the gripper in space.

4.1 Methods Implementation

GG-CNN[23] introduced pixel-wise grasping from images in the year 2018. GR-
ConvNet[24] expanded the work of GG-CNN in 2019 by introducing a new network
architecture. The pixel-wise grasping backbone is the same between the two methods.

This section explores how the two grasping methods work, including the core concept of
how grasps are computed pixel-wise and how grasp rectangles from data-sets are used for
learning. Furthermore, the section explores how to tune the networks to reach the best
training result.

GG-CNN proposes to use Convolutional Neural Network to solve the problem of computing
grasps of unknown objects from depth images perpendicular to the surface. The proposed
network predicts the quality of grasps and grasps pose at every pixel from a single depth
image as input. GR-ConvNet uses a similar approach, with altered network architecture.

4.1.1 Grasp Representation

The two networks detect grasps from a single channel depth image, and optionally an
RGB image I and defines a grasp in the image as gI = (s, θI , ωI , q), where s = (u, v) is the
center point of the grasp in image coordinates, θI is the rotation of the grasp around the
camera’s frame, ωI is the grasp width in image coordinates (pixels), and q is the predicted
quality of the grasp. Figure 4.1 shows an example of a grasp in the image space.

23

4.1. Methods Implementation Aalborg University

Figure 4.1: Example image of a grasp in the image frame. (u,v) is the center of the grasp in pixels,
θI is the angle of the grasp and ωI is the width of the grasp

The network predicts grasps at every pixel from the depth image by defining a grasps
map called G in the image space as a set of 3 images (angle, width, quality) denoted as
G = (Θ,Ω, Q).

These 3 images Θ, Ω and Q contain values from angle θI , grasp width ωI and grasp quality
q respectively at every pixel as seen in Figure 4.2. This makes it possible to construct a
complete grasp gI at every pixel, as each pixel of the input image is mapped to pixels on
the output images instead of sampling grasp candidates like Dex-net [56].

Figure 4.2: Example of the three images quality Q, angle Θ, and width Ω, representing a grasp at
each pixel. A colormap is applied to the 3 predicted images for visualisation purposes. The best
grasp is drawn as a red rectangle with a blue center dot, on the RGB image.

Q is an image that describes grasp quality with a value between 0-1 at every pixel (u,v);
higher numbers indicate a higher chance of a successful grasp. Θ is an image that describes
the angle of the grasp with a value from −π/2 to π/2 at every pixel. This interval is chosen
as it gives a range of 180◦, and rotating more would not be necessary since the grasp is
symmetric. Lastly, Ω is an image describing the grasping width with a value of 0-150 pixels
at every pixel. The width is capped at 150 pixels to ensure that the grasp is contained
within the cropped image.

The grasp with the highest probability of success can be found by finding the pixel
coordinates (u,v) for the pixel with the highest value in the Q Image. This pixel coordinate
can then be used to index the other two images Θ and Ω, to find the angle θI , and grasp
width ωI at the same pixel resulting in a full grasp, as seen on the rightmost image on
Figure 4.2.

24

4.1. Methods Implementation Aalborg University

4.1.2 Training the Networks

Training the network consists of using the rectangle bounding boxes from a data-set to
construct 3 ground truth images (angle, width, quality) and using the depth image to teach
the network to grasp objects.

The rectangle bounding boxes from the data-set consist of 4 corner coordinates describing
their shape and location in the image. When loading the data, each ground truth grasp
is augmented with the angle of the rectangle relative to the x-axis of the image and with
the width of the rectangle (long side of the rectangle).

To train the network, the ground truth rectangle bounding boxes need to be converted
to a format, similarly to the desired output, three images. To achieve this, the center
third of each rectangle is used to create mask-like images, as seen in Figure 4.3. Only the
center third of the rectangle is used when creating the images, as the object to be grasped
typically would be in this area, due to the rectangle being drawn a bit away from the
objects to leave space for the gripper fingers. The mask-like images are then filled with
the values from the ground truth, θI and ωI for angle and width image, respectively and
all other pixels are set to 0. Finally, the masked area of the Q-image is set to 1, and all
other pixels are set to 0.

Figure 4.3: Example of ground truth rectangles, being converted to ground truth images. The input
depth and RGB image and grasp rectangles are shown on the left. The center third of each rectangle
is used to create 3 new images containing grasping quality, angle and width.[23]

As seen in Figure 4.3 the ground truth angle image Θ is converted into 2 images using the
trigonometric functions Cosine and Sine, which describes the angle in a value range from
-1 to 1. This interval was chosen to make the distribution of values easier for the network
to learn.[23]

Once all 4 ground truth images (Q, Θsin, Θcos, Ω) are constructed, they are fed to the
network with the depth image for training the network. During training random rotation
and zooms are applied to the images to increase real-world robustness. The training takes
place by computing the mean square error from the ground truth images to the predicted

25

4.1. Methods Implementation Aalborg University

images. Once one pass of the data-set has been shown to the network, an evaluation takes
place. The rectangle metric is used to evaluate the network’s performance on the validation
set (10% of the data). Finally, the result is used to save the model if the network performs
better than the previously best model.

Additionally, to make the images clearer to the human eye, a colourmap is applied to the
grayscale images when the images are visualized. Doing this makes it possible to see the
peaks more clearly, as grey images are hard to determine the values of with the human eye.
For this project, a jet colourmap is used, as it has a wide range of colour in a rainbow-like
manner from low valued blue to high valued red.

4.1.3 Tuning Parameters

Different training hyperparameters are tuned when training the model to achieve the best
possible performance. For this project, only a few parameters are considered and tuned.
The chosen most important parameters are as follows:

• Batch size (Default 8)
• Epochs (Default 50)
• Optimizer (Default Adam)

Each of these parameters is explained in more detail below.

Batch Size

The batch size is considered since it greatly impacts how the network estimates the gradient
of the loss function. The bigger the batch size, the better the estimate of the gradient is,
which in turn makes for a more stable training. However, the disadvantages of using a
large batch size are that it consumes more memory. Furthermore, a large batch size results
in slower training since the network needs more samples to estimate the gradient before
updating the weights. On the other hand, using too small of a batch size can result in
unstable training due to the network having fewer samples to estimate the gradient.[75]

Epoch

An epoch is when all the training data have been presented to the network once. Choosing
the number of epochs a network should train for is not simple. It is complicated as the
network might train for too long and hence start overfitting. However, if the number
of epochs is too small, the network might not train enough and cannot make robust
predictions.[76] Commonly used strategies for early stop training is listed below:

• Stop training if validation loss increases
• Stop training if performance decreases or reaches a plateau
• Stop training if loss reaches a plateau

The strategy of early stop is to prevent training too much as the model would start
overfitting, meaning that the network will not be able to generalize to new data. The
training can be monitored by checking if the validation loss increases or if the performance
accuracy decreases. Another good approach to avoid overfitting the network is to periodical

26

4.1. Methods Implementation Aalborg University

save the model during training. If the model overfits to the training data, it is possible to
retrieve an older model, which might generalize better to new data.[76]

Figure 4.4 shows the training of GG-CNN on the Graspnet data-set over 80 epochs. The
graphs show that the IOU performance of the network does not increase after epoch 23
as well as the training and validation loss seemingly reach a plateau at this point. This
indicates that the network starts to overfit the network to the training data.

Figure 4.4: Performance and loss curves from training GG-CNN on the Graspnet data-set for 80
epochs. Left: The IOU metric performance on 10% validation set. Middle: Training loss. Right:
Validation loss.

Optimizers

Another aspect to consider during training is optimizers, which are essential when training
a neural network. They are used to change the weights of the network and the learning
rate to accelerate learning.

Optimizers have been researched in recent years. Many optimizers exist, each having
advantages and disadvantages[77]. One commonly used optimizer in grasping neural
networks is Adam. It is chosen for training during this project.

Adaptive Moment Estimation (Adam) expands on the idea of Stochastic Gradient Descent
(SGD) with momentum.

Stochastic Gradient Descent (SGD) solves the problem of the traditional Gradient Descent
method, where the entire data-set is used to update the weights, whereas SGD updates
the weights in batches. An addition to SGD is the use of momentum, which uses the
average gradient direction over time. The learning rate increases when the gradients point
the same direction and reduce the learning rate for gradients with changing directions.
This method has the advantage that it uses batches to update the weights, which reduce
memory usage. Furthermore, converging to minima is faster when using momentum.[78]

Adam uses the same idea as introduced in SGD with momentum of considering the average
past gradients, but furthermore, also consider the squared past gradients. These averages
are then used to adjust the learning rate doing training. This ensures that if there is a
significant change in the gradients, the learning rate would be reduced due to the change.
This results in slower training compared to other optimizers, as it searches more carefully
for a minimum. However, momentum might also increase learning speed if the gradients
keep point towards the same direction. Adam has the same advantages that SGD has,
and it converges faster to a global minimum. However, the main disadvantage is that it is
computationally heavy.[79]

27

4.1. Methods Implementation Aalborg University

Figure 4.5 shows the GG-CNN performance and training loss charts with Adam optimizer
in orange and SGD optimizer in blue. From the figure, it can be seen that Adam is faster
at reaching high performance and lower loss compared to SGD.

Figure 4.5: Performance and loss curves from training GG-CNN on the Graspnet data-set with
Adam and SGD optimizers. Orange: Adam. Blue: SGD with momentum.

Throughout this project, the tunable parameters have been tested and evaluated through
trial and error. Training the model using different parameters is evaluated in Section 5.1 in
Chapter 5. For this project, the Adam optimizer has been chosen for training the networks
based on the performance shown.

4.1.4 Inference

The trained network can be used for finding grasps in real-time inference. This section
goes into detail on the steps needed to use the trained models for inference using GG-CNN
and GR-ConvNet.

Firstly, the depth image is pre-processed by cropping the center of the image to a 300x300
pixel image. The image is then processed using inpainting as described in Section 4.2.4,
where the missing values in the depth image are recovered. The processed image is then
used during the forward pass of the network to predict the 3 grasp images (quality, angle,
width). The three predicted images are then post-processed with a Gaussian filter, which
smooths the images.

To find the best grasp from the images, the peak value at a pixel (u,v) from the quality
image is found. This determines the best performing grasp location, and the coordinates
can be used to index the other two images. This makes it possible to construct a grasp in
the image space gI = (s, θI , ωI , q).

Once a grasp has been found in the image space, the grasp can be converted to coordinates
in the world frame for a robot to grasp the object. Knowing the extrinsic and intrinsic
parameters of the camera, the grasp can be transformed into the world frame using equation
4.1, where TRC is a transform from the robot frame to the camera and TCI is a transform
from the camera to the grasp in the image frame.

g = TRC T
C
I (gI) (4.1)

The grasp g in world coordinates is defined as g = (p, θ, ω, q) where the position of the
grasp p is given in Cartesian coordinates (X, Y, Z) in the world frame, Θ is the rotation
around the Z-axis, ω is the width of the grasp in pixels. The grasp width in pixels can be
converted to meters using the intrinsic parameters of the camera.

28

4.2. Data-set Processing and Loading Aalborg University

4.2 Data-set Processing and Loading

This section goes into details on how the data-sets are processed and loaded for training and
evaluation. This includes cropping and resizing the images to fit the network architecture
and also the details of loading the data.

The grasp generation methods chosen for the project are 2D and need input square images
of size 300x300 for GG-CNN and 224x244 for GR-ConvNet. Therefore, processing of the
raw data-set images is needed since they all have different sizes.

4.2.1 Cornell Data-set

To get the raw rectangular images (640x480 pixels) to a size of 300x300 or 224x224 pixels,
a part of the image has to be cropped. Since each image only contains a single object, the
grasping rectangles can be used for cropping the image. Furthermore, since the background
of the image is noisy (the floor outside the white scene is shown), it is decided to crop
out an area around the object, which will result in an image of the object on a white
background.

The crop is based on the mean of the centers of the grasp rectangles. From the center,
it expands 150 or 112 pixels in each direction, resulting in a 300x300 or 224x224 pixels
image, as shown in Figure 4.6.

Figure 4.6: Example image from the Cornell data-set. Area outlined in red is cropped (300x300
pixels) and used for training/testing. Modified image from [47].

4.2.2 Jacquard Data-set

The images from this data-set are already square (1024x1024 pixels) and can be resized to
300x300 or 224x224 pixels, respectively, without the need to crop a square from the raw
data. Furthermore, in contrast to Cornell, it already has a clear white background making
it ideal for resizing without cropping.

29

4.2. Data-set Processing and Loading Aalborg University

4.2.3 Graspnet Data-set

To use the raw rectangular images (1280x720 pixels) from the Graspnet 1-billion data-set
for training, a square needs to be cropped from the images. Since the image is rectangular
and a square is needed, some data will be lost, as the objects typically are spread across the
images. With around 10 objects per image, useful data will likely be lost during cropping.

Two methods can be used to crop the images. Firstly, the middle area can be cropped;
this is fast but might lose unnecessary data if the objects are mostly on the side of the
image, see Figure 4.7a. Secondly, a similar approach to Cornell can be used, where the
crop is based around the mean center of the ground truth bounding boxes, which will keep
the crop centered around most objects, as shown in Figure 4.7b.

For both methods, to maximize the preserved data, a 720x720 pixels square is cropped.
The cropped area is then resized to 300x300 or 224x224 pixels.

(a) Crop centered in image. (b) Crop centered around grasps.

Figure 4.7: Example images from the Graspnet data-set. Area outlined in red is cropped and used
for training/testing. Modified images from [29].

4.2.4 Depth Image Processing

The depth images in the data-set and depth images, in general, have noisy areas due to
the camera not being able to see behind the object, leaving the pixels black. Furthermore,
if the camera gets too close to the object, the depth measuring sensor will not capture the
depth due to hardware limitations.

When loading the depth images, they are processed. The main action taken is inpainting.
A mask is created at all the pixels at or below a certain value. The pixels values are then
replaced by interpolating based on the neighbouring pixels in a radius r around each masked
pixel. For the images from the Cornell and Jacquard data-sets, the mask is created at pixel
values of 0, which are the missing values of the depth image. For the Graspnet data-set
the threshold is set at pixels with values below 0.2 m due to the hardware limitation of
the camera that captured the image. An example can be seen in Figure 4.8.

30

4.2. Data-set Processing and Loading Aalborg University

(a) Before inpaint. (b) After inpaint.

Figure 4.8: Cropped depth image before and after inpaint. Original images from the Graspnet
data-set[29].

As shown in Figure 4.8, the missing values or values that are low creates noise in the image,
which is removed using the inpainting algorithm.

4.2.5 Data-set Splits

For Jacquard and Cornell, all the data is presented equally. When training, the data is split
into two groups, one for training and a validation set, used to monitor the performance of
the training. A split of 0.9 to 0.1 is used, where 10% of the data is set aside for testing
and evaluating the model while training.

However, Graspnet has predesignated data for training and testing. Graspnet consists of
scenes, which each include 256 images with annotations.

The first 100 scenes (scenes 00 - 99) of the data are used for training; these scenes are
designated for training by [29].

Testing has been split into three categories:

• Objects already seen (scenes 100 - 129)
• Objects similar to training (scenes 130 - 159)
• Objects not seen before (scenes 160 - 189)

These groupings can be seen similarly to the concept of image-wise and object-wise splits
seen from Cornell (more information in Section 3.3.1).

4.2.6 Ground Truth Labels

In addition to the cropping and resizing explained above, the ground truth labels are
also processed to match the new image dimensions; this includes resizing the labels and
offsetting them to match a crop of the original image.

One of the main differences from Cornell/Jacquard to Graspnet is the number of ground
truth labels. Whereas the former has sparse labels that roughly covers the objects,
Graspnet has densely labelled objects. This results in an immense amount of data, which
has to be loaded when training with the Graspnet data-set. For simplicity, this difference
is not tackled or handled in any way during training. However, the gap between real robot

31

4.2. Data-set Processing and Loading Aalborg University

evaluation and the rectangle metric is discussed in Section 6.2. Furthermore, the rectangle
metric is discussed in Section 6.3, with one of the focus points being this difference in the
number of labels.

Loading of Grasp Rectangles

When dealing with the Graspnet data-set, the load on the computer when loading the
immense amounts of grasps can cause problems. This can be due to CPU bottlenecks on
the system, where most of the training time is used loading the data with the CPU instead
of training using the GPU. It also loads the data slow, as the amount of data itself takes a
long time to read from the file and load into memory. Therefore, the amount of data can
be limited, which is speculated can be done with a small impact on performance.

The number of labels can be limited by either:

• Discard based on the µ force-closure measure
• Discarding labels outside cropped image
• Simply discarding a percentage of labels
• Pre-converting and sorting of the data, so that smaller files are loaded real-time

Each grasp of the Graspnet data-set has a quality measure associated. This measure is
based on force-closure. A friction coefficient µ is used to sort out grasps with bad quality.
Depending on the value of µ, a different amount of labels are removed. Figure 4.9 shows
the average amount of grasps per image at different values of µ.

Figure 4.9: Bar chart showing the average amount of grasps per image at different values of µ.

As can be seen from the chart in Figure 4.9, choosing a higher friction coefficient µ keeps
more grasps, and vice versa. In the Graspnet API1, an example is given where µ = 0.2 as
a default value2. A visual representation from one of the images in the data-set is shown
in Figure 4.10, to give an idea of which grasps are removed using the friction coefficient.

1Graspnet is an open-source project, for robotic object grasping
2lhttps://graspnetapi.readthedocs.io/en/latest/example_loadGrasp.html

32

lhttps://graspnetapi.readthedocs.io/en/latest/example_loadGrasp.html

4.2. Data-set Processing and Loading Aalborg University

(a) µ = 0.0, 0 grasps (b) µ = 0.2, 468 grasps

(c) µ = 0.4, 1709 grasps (d) µ = 0.6, 3757 grasps

(e) µ = 0.8, 6068 grasps (f) µ = 1.0, 7645 grasps

Figure 4.10: Scene 0, image 0 from Graspnet data-set. Grasps are sorted based on different values
of µ and drawn on the images. Modified images from [29].

From Figure 4.10, it can be seen that the labels are not evenly distributed across the
objects at different friction coefficient values. E.g. at µ = 0.2, objects like the shampoo,
screwdriver and toy camel have no grasps. Grasps on these objects are, however, shown
at µ = 0.6.

In addition to using the friction coefficient, after cropping the image, the labels outside
the now cropped image are discarded. Furthermore, the grasps can be sorted by simply
only considering part of the labels. E.g. only using 10% or 50% of the available labels.

The three measures can be combined in any way and are used when training different
models as tuning parameters.

Finally, to alleviate some pressure on the CPU while loading the data, due to conversion
between grasp representations (see Section 2.3.1), the bounding boxes are sorted and
converted and saved in the new format (A format similar to Cornell). This new format
can then be used in real-time when training, ultimately making training faster due to less
computation in real-time.

33

4.3. Cloud Computing using CLAAUDIA Aalborg University

4.3 Cloud Computing using CLAAUDIA

To deal with the vast amount of data that especially Graspnet introduces, the CLAAUDIA3

cloud computing service at Aalborg University is used. It has powerful GPU capabilities
designed for AI and deep learning.

CLAAUDIA made training faster on the Graspnet data-set since more CPU cores were
available to load the data-set. CLAAUDIA allowed the use of up to 20 CPU cores and 1
GPU instead of using our home computers with a maximum of 4 CPU cores available for
training. This sped up the training significantly as well as not using the entire of our own
computer for training which was used for other project-related work. Only the Graspnet
and Jacquard data-sets were used for training on CLAAUDIA due to the amount of data
and the time required to train them. The Cornell data-set could be trained on our own
computers in a few hours, whereas Graspnet and Jacquard took days.

One problem encountered and pointed out by CLAAUDIAs employee is that during
training, the CLAAUDIA server used all 20 CPU cores while training but used only 1
CPU core while validating each epoch. This resulted in the validation on only 10% of the
data taking longer to validate than the network training on the rest of the data-set. This
problem was never resolved.

4.4 Summary

This chapter limited the selection of grasp generations methods to GG-CNN and GR-
ConvNet. These methods were describe in detail, including the concept of grasp generation,
the different parameters used when training and information about running inference.
Furthermore, data-set processing and loading are discussed as well as details on grasp
rectangles loading and processing. Finally, the cloud computing service CLAAUDIA is
described. This leads to Chapter 5, where extensive evaluation and testing of the methods
are performed.

3https://www.claaudia.aau.dk/

34

https://www.claaudia.aau.dk/

5 Evaluation

This chapter presents the main evaluations and tests conducted for the project, including
training the network model using different hyperparameters. Furthermore, a custom
viewpoint data-set is created to evaluate the invariance of the models and networks for
different viewpoints.

5.1 Training Parameter Tuning

This section covers the results of tuning the training parameters. To find an optimal model
for each architecture, the network is trained using different parameters. Each trained model
can then be evaluated quantitatively using the grasp rectangle metric on different data-sets.

The model chosen for this test is GG-CNN. It is trained on the three data-sets: Cornell,
Jacquard and Graspnet. Each at batch sizes: 8, 16, 32 and 64. They are all trained using
Adam as the optimizer during learning. For the Cornell and the Jacquard data-sets all
other parameters are default. However, for Graspnet, the image is cropped around the
object’s mean, as explained in Section 4.2.3. Furthermore, the friction coefficient µ is set
at 0.4, and all ground truth bounding boxes are kept at this value (see explanation in
Section 4.2.6).

The results from the evaluation with the rectangle metric are presented in Table 5.1. Each
row shows a different set of data used for evaluation, while each column represents a model
trained on a specific data-set at different batch-sizes. The Graspnet metric (see Section
3.3.2) is not used as the predicted grasps are rectangle grasps, and the Graspnet metric is
based around 6-DOF grasps in point clouds.

35

5.2. Qualitative Evaluation of Q-Images During Inference Aalborg University

Data-set Cornell Jacquard Graspnet
Batch size 8 16 32 64 8 16 32 64 8 16 32 64

Cornell (0.9) 86 72 82 90 51 19 11 16 5 23 24 9
Cornell (0.0) - - - - 49 27 18 24 10 23 28 14
Jacquard (0.9) 44 48 17 59 86 88 87 87 39 44 35 47
Jacquard (0.0) 44 48 18 57 - - - - 39 45 36 48
Graspnet (0.9) 58 58 60 61 83 81 79 81 98 97 99 98
Graspnet seen 59 55 64 66 78 73 72 73 95 96 94 96
Graspnet similar 59 53 59 64 78 73 72 73 96 96 94 96
Graspnet novel 59 55 65 65 78 73 72 73 87 90 87 89

Mean 58 56 52 66 72 62 59 61 58 64 62 62

Table 5.1: Results from rectangle evaluation (%) on different data, for model trained with different
data-sets at different batch-sizes. The best model per evaluation data-set split of each model from
each data-set is marked in bold.

The table shows the evaluation results from the parameter tuning testing. From the average
precision from each model, the best model for each data-set can be found. For training on
the Cornell data-set the best accuracy is found if using a batch-size of 64. The best model
training on the Jacquard data-set was trained using a batch-size of 8. Finally, when using
the Graspnet data-set, the best average performance is seen using a batch-size of 16. As
seen from the table, the network trained on Jacquard performers better on Graspnet than
the network trained on Cornell.

5.2 Qualitative Evaluation of Q-Images During Inference

With the previous test, shedding light on the effect of the tuning parameters during training
using quantitative measure, this test revolves around a qualitative measure by looking at
the q-images during inference. The best performing model from Section 5.1, trained on
each of the 3 data-sets, are used. This can be used to see how well the networks performs
on new data in real-time and show the networks’ generalisation.

Figure 5.1 shows how the network predicts grasps if no object is present in the scene.
As can be seen, the 3 networks predict grasps with low grasp quality since no object is
present. The network trained on Graspnet has some small artefacts around the edges of
the Q image resulting in a higher grasp quality than the other two networks.

(a) Model trained on Cornell (b) Model trained on Jacquard (c) Model trained on Graspnet

Figure 5.1: Q-images and resulting grasp prediction on RGB image, for models trained on different
data-sets, given an empty scene.

36

5.3. Data-set Invariance to Changes in Viewpoint Aalborg University

Figure 5.2 shows how well the networks predicts grasps while an object is present in the
scene. The network trained on the Cornell data-set has a clean Q image while predicting a
desirable grasp on the object, with limited artefacts present. The network trained on the
Jacquard data-sets predicts barely any grasps while looking like no object is present in the
Q image. This is speculated to be cause by the distance to the object since if the object
is moved closer to the camera, the network would start predicting grasps. The network
trained on Graspnet shows some artefacts in the Q image similar to that shown in the
scene with no object present; however, predicts desirable grasps.

(a) Model trained on Cornell (b) Model trained on Jacquard (c) Model trained on Graspnet

Figure 5.2: Q-images and resulting grasp prediction on RGB image, for models trained on different
data-sets, given a scene with a single object.

Figure 5.3 shows q-images and predicted grasps during a handover scenario. Compared to
the previously presented q-images, these are noisier. Even though the q-images all show
areas with high quality grasps, the resulting grasp is not ideal for any of the instances.
The grasps are either in an undesired location on the object or around the arm or hand.

(a) Model trained on Cornell (b) Model trained on Jacquard (c) Model trained on Graspnet

Figure 5.3: Q-images and resulting grasp prediction on RGB image, for models trained on different
data-sets, during a handover scenario.

In general, Graspnet shows promise in all the presented scenarios, despite having small
artefacts. Similarly, the model trained on the Cornell data-sets shows promise, but
especially in the scene with the object on the flat surface. Finally, Jacquard falls flat
and is greatly outperformed by the other models.

5.3 Data-set Invariance to Changes in Viewpoint

In this test, the invariance to different viewpoints is tested. Three data-sets are created
with the same scenes/objects seen from different viewpoints, namely, top, head and side,
as shown earlier in Figure 2.2. It is speculated that the models trained on Cornell and
Jacquard will perform better on top and head view, whereas models trained on Graspnet
will be less impacted by the viewpoint due to how the data-sets are created.

When creating the viewpoints data-set, objects are picked from a pool of 15 objects,
ranging from everyday objects to tools. All the objects can be seen in Figure 5.4. The
data-set is freely available to download1.

1https://www.kaggle.com/runegrnhj/cornell-inspired-multiview-grasping-dataset

37

https://www.kaggle.com/runegrnhj/cornell-inspired-multiview-grasping-dataset

5.3. Data-set Invariance to Changes in Viewpoint Aalborg University

Figure 5.4: The pool of 15 objects used for viewpoint test.
Including: Hammer, hand broom, soda can, Allen keys, headset, LEGO structure, saw, screwdriver,
pliers, controller, remote, measuring tape, tape, pill bottle and deodorant.

The objects above are combined in scenes. The data-set consist of 50 scenes. The first
15 scenes include a single object, while the rest contains a random selection of 3 of the
objects. Each object is represented in a scene a total of 8 times. Examples are shown in
Figure 5.5, where a single-object scene is shown at the top and a scene with 3 objects at
the bottom.

(a) Scene 1 from different views.

(b) Scene 18 from different views.

Figure 5.5: Examples of two scenes from the viewpoint data-set. Shown at the three viewpoints.

Each scene is labelled similarly to the Cornell data-set. The images can either be loaded
like Cornell, where the center is cropped from the image, or like Graspnet, where the
largest possible center is cropped and then resized to capture more of the scene.

38

5.4. Model Invariance to Changes in Viewpoint Aalborg University

The best performing models from Section 5.1 are used. That being the model trained on
Cornell with a batch size of 64, the model trained on Jacquard with a batch size of 8 and
the model trained on Graspnet with a batch size of 16. Each model is evaluated on the
three different views to measure the relative difference in performance with scenes seen
from different angles. The results are presented in Table 5.2

Data-set Top-view Head-view Side-view

Cornell 62% 4% 10%
Jacquard 54% 20% 18%
Graspnet 62% 46% 18%

Table 5.2: Performance using the rectangle metric, for models trained on different data-set,
evaluated on custom data-set at three different viewpoints.

The table shows that the top and head view has the best comparative results and that the
performance on the side-view is poor. Furthermore, the model trained on the Graspnet
data-set outperforms the model trained on the Cornell and Jacquard data-set.

5.4 Model Invariance to Changes in Viewpoint

To further examine the impact that the training data has, during evaluation and inference,
another test revolving around the viewpoint of the training data is conducted.

Here a model is trained on one viewpoint (Top, Head or Side) of the previously mentioned
custom data-set (Section 5.3). After a network is trained for each viewpoint, it is evaluated2

on the two remaining viewpoints, to determine if it is invariant to changes in viewpoints.
In addition, it is also evaluated on the viewpoint it is trained on. This would be unfair as
a general evaluation metric but is shown here as a reference value to compare the other
views against.

The test is conducted with two different networks, GG-CNN and GR-ConvNet.

The results are presented in Table 5.3 for GG-CNN and Table 5.4 for GR-ConvNet, where
each column shows the result for a model trained on a different viewpoint. Furthermore,
the diagonal showing the unfair metrics are used for comparison and are italicized.

Trained on:
Top-view Head-view Side-view

Top-data 78% 58% 18%
Head-data 0% 60% 12%
Side-data 0% 34% 48%

Table 5.3: Rectangle metric results during evaluation on different viewpoints. Tested on models
trained on the three different viewpoints, using GG-CNN.

2Using the rectangle metric

39

5.5. Summary Aalborg University

Trained on:
Top-view Head-view Side-view

Top-data 48% 52% 34%
Head-data 28% 50% 26%
Side-data 6% 26% 38%

Table 5.4: Rectangle metric results during evaluation on different viewpoints. Tested on models
trained on the three different viewpoints using GR-ConvNet.

From Table 5.3 it can be seen that training on data shown from the Head view is most
invariant to changes in viewpoints, whereas data-sets with objects seen directly from the
top lack any ability to generalize to different viewpoints. A similar pattern is shown in
Table 5.4; however, the model trained on the top view images show better performance
on other views using GR-ConvNet. This suggests that either the GG-CNN models are
overfitted or that GR-ConvNet, in general, generalizes better to novel data. This is
discussed further in Section 6.1.4.

5.5 Summary

This chapter showed the results from tests on the system. The results and the project, in
general, is discussed in the following Chapter 6.

40

6 Discussion

This chapter discusses the report’s main finding, including the results of the evaluation
and other elements for discussion from, e.g. the methods chapter. Finally, it also ends by
mentioning future direction for the project and possible improvements to be made that
was not realized within the project’s time span.

6.1 Testing/Evaluation

In this section, each of the tests in Chapter 5 are discussed. The speculations from before
the tests are confirmed and denied, and the results are explained based on the findings in
the tests.

6.1.1 Parameter Tuning

Firstly, the parameter tuning test does not exhaust all possible tuning parameters. This
is mainly due to the limited time of the project and helps to keep an overview of all the
trained models. However, if more time was given, more parameters could be used for
tuning to get a more extensive evaluation of the impact of tuning the parameters.

As shown in the test in Section 5.1, when evaluating a model trained on the Cornell data-
set on the Jacquard data-set, poor performance is shown, especially the other way around.
Two aspects mainly cause this. The first one is shown in Figure 6.1, where the ground
truth images are shown next to the q-images. The q-image is almost entirely blue, meaning
close to 0 value for the quality. This means no peak is found as a threshold is set at 0.2 to
remove grasp predictions in low-quality scenes.

41

6.1. Testing/Evaluation Aalborg University

(a) First example image

(b) Second example image

Figure 6.1: Ground truth and q image. The q-image is almost entirely blue and no grasp is
predicted.

The other problem is the size of the ground truth bounding boxes having a great impact
on the model’s performance during evaluation. If the model is trained on small bounding
boxes closely fitted to the objects, the model will be penalized during evaluation (Jaccard
index metric) on data with large bounding boxes. Although the grasp might have the
correct orientation and center, the model will be penalised if the gripper width is too
different. Although, in a real grasping scenario, the grasp might be successful. This
problem becomes apparent when training on the Cornell data-set, which has big bounding
boxes, going "far" from the objects and using the Jacquard data-set for evaluation, which
have smaller bounding boxes closer to the objects. Two examples are shown in Figure 6.2.

42

6.1. Testing/Evaluation Aalborg University

(a) Small rectangle prediction

(b) Tiny rectangle prediction

Figure 6.2: Ground truth and depth image with grasp prediction as a blue rectangle. The predicted
rectangle is too small compared to the ground truth and hence it is deemed as a failed grasp.

In general, when evaluating the Graspnet data-set, similar performance is shown across
all the different splits. The only exception to this is the novel objects when shown to
the models trained on Graspnet. This is explained by simply being novel objects, which
impacts Graspnet a bit, whereas all the splits include novel objects for models not trained
on Graspnet.

6.1.2 Qualitative Evaluation of Q-Images During Inference

The images shown in the test are captured during live inference. However, only snapshots
are given as a live inference video is difficult to show. The still images, however, fairly
represent the general picture seen during live inference.

It can also be seen from the handover scene that the performance during handover is
not ideal for implementation directly to HRI scenarios. The steps needed to be able to
successfully perform human-to robot handovers are discussed in Section 6.4.

Furthermore, a test video of a handover scenario was made using the 3 chosen models to
evaluate the performance in a handover scenario. The scene in the video was cluttered
and noisy. The model trained on Cornell was very noisy and did not predict the grasp
on the object that often. The model trained on Jacquard was better in some cases when
the object was moved closer to the camera but failed when the object was too far from
the camera. The model trained on Graspnet outperformed Cornell and Jacquard and
predicted grasps more often on the object at multiple distances to the camera. However,
as described, this test was performed in a cluttered environment, so more extensive testing
should be performed, as described in Section 6.4.

43

6.1. Testing/Evaluation Aalborg University

6.1.3 Data-set Invariance to Changes in Viewpoint

From Table 5.2 in Section 5.3 it is clear that models trained on the Graspnet data-set
are most invariant to changes in viewpoints. This is likely due to the nature of how the
data-set is captured, including many different viewpoints of the same scenes.

In general, the models have poor performance on the side viewpoint. This is to be expected
at the objects are typically flat, and therefore not much of the object is captured in the
image. Another problem that is found with the head and side viewpoints is the slant of
the table and the depth of the background, which is explained and shown with examples
in Section 6.1.4

6.1.4 Model Invariance to Change in Viewpoint

As shown in Table 5.3 in Section 5.4, when training on our custom data-set from the
top viewpoint, it completely fails at generalizing to other viewpoints. Similarly, poor
performance is shown in Table 5.4. This, however, can be explained using the resulting
q-images during evaluation. Figure 6.3 shows some examples.

(a) Evaluation on side view (b) Evaluation on head view

Figure 6.3: Examples of grasping and q-images from the model trained on top viewpoint.

As can be seen in the figure, the slant of the table and the fact that the background is not
all flat (as it is when viewing the object from the top) creates the illusion of an object that
totally overpowers everything else on the q-image, resulting in useless grasp predictions.

This also leads to big grasping rectangles, as seen in the figure, as it attempts to grasp the
seemingly huge object in the background.

44

6.2. Grasp Generation and Grasping Aalborg University

6.2 Grasp Generation and Grasping

This project revolves mostly around grasp generation. However, for grasp generation to
make sense in a robotic application, a physical grasp has to take place.

As grasp generation is the theoretical part of grasping, a natural gap is introduced between
how the bounding box determines if a grasp is successful and how a real-life grasp would
be deemed correct if it were to be performed using a robot.

In addition to the work performed and presented in the report, real robot grasping tests
would be desired to conduct. It would help shed light on the gap between the grasp
predictions and the real-world scenarios. Furthermore, it would indicate whether the found
methods would be feasible in a handover scenario and how well it would perform compared
to the theoretical results. However, this was not possible at the time of the project due to
the world situation, as physical work was heavily limited.

The grasp quality measure is only an estimation of the true performance of the grasping,
and therefore real grasping using a robot is needed to determine the performance of such
a system conclusively. Some theoretical grasp predictions might be able to successfully
grasp object using a robot.[23]

Furthermore, according to the creators of the Jacquard data-set [51], the rectangle metric
can produce many "visual" false positives, that being, grasps that look bad to the human
eye but is determined as good by the rectangle metric. The opposite is also present, false-
negatives, where seemingly good looking grasps are predicted as bad using the rectangle
metric. To deal with this problem, a simulation approach is introduced in [51], where a
grasp can be evaluated in simulation in addition to the rectangle metric to determine the
real performance of the grasp.

6.3 The Rectangle Metric

As presented in the previous section, Section 6.2, it is determined that there is a gap
between the theoretical evaluation metric and grasping using a physical robot.

Therefore, the accuracy of the rectangle metric is questioned. It could possibly be improved
to give a better representation of reality, or a new metric might be needed altogether.

One big problem encountered during the project is the difference in the number of bounding
boxes between the Cornell and Jacquard data-set compared to the Graspnet data-set.
The rectangle metric is designed around the Cornell/Jacquard data-sets, and is created
loosely to compensate for the sparse labels[51] and is designed similarly to that of object
detection (e.g. YOLO[20]). However, in grasping, the ground truth is not as well defined
as in object detection. In object detection, the extremities of the object can be defined,
and the bounding box can be fitted closely around the object. However, for grasping, the
possibilities are almost endless, as there are copious amounts of ways to grasp one specific
object.

45

6.4. Future Works Aalborg University

So, when introducing a data-set with densely labelled scenes, the metric might not be
strict enough for it to learn sufficiently; such a loose metric might not be needed as more
of the ground truth labelled area is covered directly in the data-set by it being sparse. On
another note, having a dense data-set comes with complications as more data inherently
makes handling, processing and training on the data heavier, simply due to the amount of
data.

On another note, when training GG-CNN or GR-ConvNet, it creates 3 ground truth images
with the values of the grasp on each image. Each grasp is masked into the images one at
a time (see Section 4.1.2). The problem of having densely labelled data is that many of
the grasps are overlapping each other. This result in a lot of the data lost due to it being
overwritten by other grasps masked onto the images, as seen in Figure 6.4.

Figure 6.4: Loading of grasp rectangles. Left: Raw grasping rectangles on RGB image. Right:
Grasp rectangles converted to binary Q-image for training.

6.4 Future Works

Firstly, more work could be conducted with training for the best model, changing different
parameters (data augmentation, learning rate, stricter evaluation criteria, tweaking layers
of models etc.) or looking into the strategy of training and opting for a different approach
like, e.g. k-fold cross-validation or similar methods.

Furthermore, grasp generation has to be utilized in handover scenarios in an industrial
setting.

6.4.1 Towards Handovers in an Industrial Setting

As explained in the introduction of the report, the idea of developing a robust real-time
grasp generation method is to achieve human to robot handovers. Despite the promising
results of the grasp generation, it is not sufficient for handover scenarios, as shown in
Section 6.1.2.

Therefore, the already existing system of the LH7 robotic platform has to be utilized in
combination with the grasp generation system. As explained in Chapter 1, the safety
aspects are also existing in the system. Furthermore, action recognition can be utilized to
initiate the handover action and start the grasp generation.

Moreover, performing grasp generation in real handover scenarios might require the removal
of the hand/arm (as suggested in Section 6.1.2 and Section 5.2) to be able to achieve the
final goal of human to robot handovers in an HRC/HRI setting. This is also suggested in

46

6.4. Future Works Aalborg University

[14], where GG-CNN is used for human to robot handovers. However, a hand detection
algorithm is used to crop out the human hand in the images to achieve grasps solely on
the object in the hand.

Furthermore, in [14] a virtual plane is inserted behind the object to simulate a tabletop
surface to increase the performance of the grasp generation. The reason for that is that
GG-CNN is designed for grasping objects on a tabletop surface viewed from above. This
virtual plane might not be needed by training GG-CNN on the Graspnet data-set since
the network is trained on multiple viewpoints. Therefore, it is speculated that it might
generalize better to objects in free space instead of on a tabletop surface.

Additionally, object detection or object segmentation (e.g. YOLO[19]) could be used to
detect objects. The detected object could then be used as the center for cropping the
image for inference. This would limit the area shown for inference and give a more focused
view on the objects of importance. This concept is successfully utilized in [14].

Finally, the most important aspects are a thorough evaluation of the robotic system during
handover scenarios. This includes testing and tweaking each sub-system to achieve optimal
performance. In addition, a user study would be required to tune the system for HRI.

47

7 Conclusion

The grasp generation methods explored in this project shows potential in generating
robust rectangle grasps from visual data images. Standardized conversion between grasp
representations is also presented implemented in ROS and using Rviz.

The challenging problem of detecting 2D grasping rectangle in a cluttered environment is
tackled. Many different methods, models, data-sets and training parameters are tried and
tuned to achieve the best possible results within the span of the project. Two methods,
GG-CNN and GR-ConvNet, are chosen for extensive evaluation.

As part of the evaluation, a multi-object viewpoint data-set is also introduced to shed light
on the invariance to viewpoint changes of different models training on different data-set.
The introduction of training on the Graspnet data-set showed better invariance to varying
viewpoints than the data-sets used initially.

The grasp generation methods found at the end shows promise for use as a basis for human
to robot handovers in future works as described in Section 6.4. Which mainly revolves
around implementation with existing systems on the robotic platform and extensive testing
and user studies.

48

Bibliography

[1] V. Ortenzi, A. Cosgun, T. Pardi, W. Chan, E. Croft, and D. Kuli´ckuli´c, “Object
Handovers: a Review for Robotics,” arXiv, 2020.

[2] D. W. A. Maria Bauer and M. Buss, “Human-robot collaboration: a survey,” I. J.
Humanoid Robotics, vol. 5, pp. 47–66, 2008.

[3] G. Humblot-Renaux, R. Grønhøj, and J. K. Jørgensen, “Safe robot operation in a
shared workspace - human pose estimation and tracking,” tech. rep., Aalborg
University, Aalborg, DK, Semester Project, 2020.

[4] J. F. Buhl, R. Grønhøj, J. K. Jørgensen, G. M. Martins, D. R. Pinto, and J. K.
Sørensen, “Little helper 7 - robot integration,” tech. rep., Aalborg University,
Aalborg, DK, Semester Project, 2018.

[5] J. F. Buhl, R. Grønhøj, J. K. Jørgensen, G. M. Martins, D. R. Pinto, and J. K.
Sørensen, “Little helper 7+ - disassembly of mobile phones,” tech. rep., Aalborg
University, Aalborg, DK, Bachelor Project, 2019.

[6] G. Humblot-Renaux, R. Grønhøj, J. K. Jørgensen, G. M. Martins, J. K. Sørensen,
and L. Væhrens, “A natural language assisted dual-arm robot system for
collaborative object manipulation,” tech. rep., Aalborg University, Aalborg, DK,
Semester Project, 2020.

[7] D. Vogt, S. Stepputtis, B. Jung, and H. B. Amor, “One-shot learning of
human–robot handovers with triadic interaction meshes,” Autonomous Robots,
vol. 42, no. 5, pp. 1053–1065, 2018.

[8] K. Strabala, M. K. Lee, A. Dragan, J. Forlizzi, S. S. Srinivasa, M. Cakmak, and
V. Micelli, “Toward seamless human-robot handovers,” J. Hum.-Robot Interact.,
vol. 2, p. 112–132, Feb. 2013.

[9] A. Moon, D. M. Troniak, B. Gleeson, M. K. Pan, M. Zheng, B. A. Blumer,
K. MacLean, and E. A. Croft, “Meet me where i’m gazing: How Shared Attention
Gaze Affects Human-Robot Handover Timing,” ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pp. 334–341, 2014.

[10] C.-M. Huang, M. Cakmak, and B. Mutlu, “Adaptive Coordination Strategies for
Human-Robot Handovers,” in 2015 Robotics: Science and Systems Conference, 2015.

49

Bibliography Aalborg University

[11] M. K. X. J. Pan, E. Knoop, M. Bächer, and G. Niemeyer, “Fast Handovers with a
Robot Character: Small Sensorimotor Delays Improve Perceived Qualities,” 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019.

[12] H. Nemlekar, D. Dutia, and Z. Li, “Prompt Human to Robot Handovers by
Estimation of Object Transfer Point based on Human Partner ’ s Motion,” IROS,
pp. 1–4, 2018.

[13] J. Krüger, T. Lien, and A. Verl, “Cooperation of human and machines in assembly
lines,” CIRP Annals, vol. 58, no. 2, pp. 628–646, 2009.

[14] P. Rosenberger, A. Cosgun, R. Newbury, J. Kwan, V. Ortenzi, P. Corke, and
M. Grafinger, “Object-independent human-to-robot handovers using real time
robotic vision,” IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 17–23,
2021.

[15] R. Rasch, S. Wachsmuth, and M. König, “A joint motion model for human-like
robot-human handover,” 2018 IEEE-RAS 18th International Conference on
Humanoid Robots, 2018.

[16] W. Yang, C. Paxton, M. Cakmak, and D. Fox, “Human grasp classification for
reactive human-to-robot handovers,” 2020.

[17] J. Lambrecht and S. Nimpsch, “Human Prediction for the Natural Instruction of
Handovers in Human Robot Collaboration,” 2019 28th IEEE International
Conference on Robot and Human Interactive Communication, RO-MAN 2019, 2019.

[18] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research, vol. 34, no. 5, pp. 705–724, 2015.

[19] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional neural
networks,” Proceedings - IEEE International Conference on Robotics and
Automation, vol. 2015-June, no. June, pp. 1316–1322, 2015.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779–788, 2016.

[21] T. Tosun, D. Yang, B. Eisner, V. Isler, and D. Lee, “Robotic grasping through
combined image-based grasp proposal and 3D reconstruction,” arXiv, 2020.

[22] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp Pose Detection in Point
Clouds,” International Journal of Robotics Research, vol. 36, no. 13-14,
pp. 1455–1473, 2017.

[23] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic Grasping: A
Real-time, Generative Grasp Synthesis Approach,” Robotics: Science and Systems
XIV (2018), 2018.

50

Bibliography Aalborg University

[24] S. Kumra, S. Joshi, and F. Sahin, “Antipodal Robotic Grasping using Generative
Residual Convolutional Neural Network,” 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020.

[25] S. Wang, X. Jiang, J. Zhao, X. Wang, W. Zhou, and Y. Liu, “Efficient fully
convolution neural network for generating pixel wise robotic grasps with high
resolution images,” IEEE International Conference on Robotics and Biomimetics,
ROBIO 2019, pp. 474–480, 2019.

[26] M. Breyer, J. J. Chung, L. Ott, R. Siegwart, and J. Nieto, “Volumetric Grasping
Network: Real-time 6 DOF Grasp Detection in Clutter,” arXiv, no. CoRL, 2021.

[27] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and
K. Goldberg, “Learning ambidextrous robot grasping policies,” Science Robotics,
vol. 4, no. 26, 2019.

[28] J. Weisz and P. K. Allen, “Pose error robust grasping from contact wrench space
metrics,” Proceedings - IEEE International Conference on Robotics and Automation,
pp. 557–562, 2012.

[29] H. S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-scale
benchmark for general object grasping,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 11441–11450, 2020.

[30] D. Guo, F. Sun, T. Kong, and H. Liu, “Deep vision networks for real-time robotic
grasp detection,” International Journal of Advanced Robotic Systems, vol. 14, no. 1,
pp. 1–8, 2016.

[31] M. Gualtieri, A. T. Pas, K. Saenko, and R. Platt, “High precision grasp pose
detection in dense clutter,” IEEE International Conference on Intelligent Robots and
Systems, vol. 2016-Novem, pp. 598–605, 2016.

[32] D. Guo, T. Kong, F. Sun, and H. Liu, “Object discovery and grasp detection with a
shared convolutional neural network,” Proceedings - IEEE International Conference
on Robotics and Automation, vol. 2016-June, pp. 2038–2043, 2016.

[33] Z. Wang, Z. Li, B. Wang, and H. Liu, “Robot grasp detection using multimodal deep
convolutional neural networks,” Advances in Mechanical Engineering, vol. 8, no. 9,
pp. 1–12, 2016.

[34] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50K
tries and 700 robot hours,” Proceedings - IEEE International Conference on Robotics
and Automation, vol. 2016-June, pp. 3406–3413, 2016.

[35] X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson, and
H. Lee, “Learning 6-DOF grasping interaction via deep geometry-aware 3D
representations,” 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3766–3773, 2017.

[36] F.-J. Chu, R. Xu, and P. A. Vela, “Real-world Multi-object, Multi-grasp Detection,”
IEEE Robotics and Automation Letters, 2018.

51

Bibliography Aalborg University

[37] A. Zeng, S. Song, K. T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor,
M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Holladay, I. Morona, P. Q. Nair,
D. Green, I. Taylor, W. Liu, T. Funkhouser, and A. Rodriguez, “Robotic
pick-and-place of novel objects in clutter with multi-affordance grasping and
cross-domain image matching,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3750–3757, 2018.

[38] A. Mousavian, C. Eppner, and D. Fox, “6-DOF GraspNet: Variational grasp
generation for object manipulation,” Proceedings of the IEEE International
Conference on Computer Vision, vol. 2019-Octob, pp. 2901–2910, 2019.

[39] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and J. Zhang,
“Pointnetgpd: Detecting grasp configurations from point sets,” 2019 International
Conference on Robotics and Automation (ICRA), 2019.

[40] H. Zhang, X. Lan, S. Bai, X. Zhou, Z. Tian, and N. Zheng, “ROI-based Robotic
Grasp Detection for Object Overlapping Scenes,” in IEEE International Conference
on Intelligent Robots and Systems, pp. 4768–4775, Institute of Electrical and
Electronics Engineers Inc., nov 2019.

[41] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-DOF Grasping for
Target-driven Object Manipulation in Clutter,” 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6232–6238, 2020.

[42] X. Lou, Y. Yang, and C. Choi, “Learning to generate 6-DoF grasp poses with
reachability awareness,” 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1532–1538, 2020.

[43] D. Park, Y. Seo, and S. Y. Chun, “Real-Time, Highly Accurate Robotic Grasp
Detection using Fully Convolutional Neural Network with Rotation Ensemble
Module,” 2020 IEEE International Conference on Robotics and Automation (ICRA),
pp. 9397–9403, 2020.

[44] Y. Qin, R. Chen, H. Zhu, M. Song, J. Xu, and H. Su, “S4G: Amodal single-view
single-shot SE(3) grasp detection in cluttered scenes,” Conference on robot learning,
no. 3, 2020.

[45] Y. Weng, Y. Sun, D. Jiang, B. Tao, Y. Liu, J. Yun, and D. Zhou, “Enhancement of
real-time grasp detection by cascaded deep convolutional neural networks,”
Concurrency and Computation: Practice and Experience 33.5, no. June 2020,
pp. 1–9, 2021.

[46] K. Chen, Y.-K. Lai, and S.-M. Hu, “3d indoor scene modeling from rgb-d data: a
survey,” Computational Visual Media, vol. 1, no. 4, pp. 267–278, 2015.

[47] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from RGBD images:
Learning using a new rectangle representation,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 3304–3311, 2011.

[48] T. B. Moeslund, “Geometric transformations,” in Introduction to Video and Image
Processing (I. Mackie, ed.), ch. 10, pp. 141–154, London: Springer, 2012.

52

Bibliography Aalborg University

[49] S. Caldera, A. Rassau, and D. Chai, “Review of deep learning methods in robotic
grasp detection,” Multimodal Technologies and Interaction, vol. 2, no. 3, 2018.

[50] D. Morrison, P. Corke, and J. Leitner, “EGAD! An evolved grasping analysis dataset
for diversity and reproducibility in robotic manipulation,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4368–4375, 2020.

[51] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale dataset for
robotic grasp detection,” 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3511–3516, 2018.

[52] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “Shapenet: An
information-rich 3d model repository,” CoRR, vol. abs/1512.03012, 2015.

[53] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “BigBIRD: A large-scale
3D database of object instances,” Proceedings - IEEE International Conference on
Robotics and Automation, no. 5, pp. 509–516, 2014.

[54] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia grasp
database,” Proceedings - IEEE International Conference on Robotics and
Automation, pp. 1710–1716, 2009.

[55] B. Calli, P. Abbeel, S. Member, A. M. Dollar, and S. Member, “The YCB Object
and Model Set :,” International Conference on Advanced Robotics (ICAR),
pp. 510—-517, 2015.

[56] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and
K. Goldberg, “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic
Point Clouds and Analytic Grasp Metrics,” Robotics: Science and Systems (RSS),
2017.

[57] J. Leitner, A. W. Tow, N. Sunderhauf, J. E. Dean, J. W. Durham, M. Cooper,
M. Eich, C. Lehnert, R. Mangels, C. McCool, P. T. Kujala, L. Nicholson, T. Pham,
J. Sergeant, L. Wu, F. Zhang, B. Upcroft, and P. Corke, “The ACRV picking
benchmark: A robotic shelf picking benchmark to foster reproducible research,”
Proceedings - IEEE International Conference on Robotics and Automation,
pp. 4705–4712, 2017.

[58] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The Columbia Grasp
Database,” 2021. http://grasping.cs.columbia.edu/ [Accessed: 2021-4-22].

[59] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “Bigbird Database,” 2021.
https://rll.berkeley.edu/bigbird/ [Accessed: 2021-4-22].

[60] B. Calli, P. Abbeel, S. Member, A. M. Dollar, and S. Member, “YCB Database,”
2021. https://www.ycbbenchmarks.com/ [Accessed: 2021-4-22].

[61] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “shapenet
Database,” 2021. https://shapenet.org/ [Accessed: 2021-4-22].

53

http://grasping.cs.columbia.edu/
https://rll.berkeley.edu/bigbird/
https://www.ycbbenchmarks.com/
https://shapenet.org/

Bibliography Aalborg University

[62] Mahler, Jeffrey and Liang, Jacky and Niyaz, Sherdil and Laskey, Michael and Doan,
Richard and Liu, Xinyu and Ojea, Juan Aparicio and Goldberg, Ken, “Dex-Net 2.0
grasping dataset,” 2021.
https://berkeley.app.box.com/s/6mnb2bzi5zfa7qpwyn7uq5atb7vbztng
[Accessed: 2021-4-22].

[63] J. Leitner, A. W. Tow, N. Sunderhauf, J. E. Dean, J. W. Durham, M. Cooper,
M. Eich, C. Lehnert, R. Mangels, C. McCool, P. T. Kujala, L. Nicholson, T. Pham,
J. Sergeant, L. Wu, F. Zhang, B. Upcroft, and P. Corke, “APB Database,” 2021.
http://juxi.net/dataset/acrv-picking-benchmark/ [Accessed: 2021-4-22].

[64] D. Morrison, P. Corke, and J. Leitner, “EGAD Database,” 2021.
https://dougsm.github.io/egad/ [Accessed: 2021-4-22].

[65] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection,”
International Journal of Robotics Research, vol. 37, no. 4-5, pp. 421–436, 2018.

[66] Jiang, Yun and Moseson, Stephen and Saxena, Ashutosh, “Cornell grasping dataset,”
2021. https://www.kaggle.com/oneoneliu/cornell-grasp [Accessed: 2021-4-22].

[67] Yan, Xinchen and Hsu, Jasmine and Khansari, Mohammad and Bai, Yunfei and
Pathak, Arkanath and Gupta, Abhinav and Davidson, James and Lee, Honglak,
“Vr-grasping-101 grasping dataset,” 2021.
https://sites.google.com/site/deep6dofgeoawaregrasping/ [Accessed:
2021-4-22].

[68] Depierre, Amaury and Dellandréa, Emmanuel and Chen, Liming, “Jacquard grasping
dataset,” 2021. https://jacquard.liris.cnrs.fr/ [Accessed: 2021-4-22].

[69] Chu, Fu-Jen and Xu, Ruinian and Vela, Patricio A, “multi-object grasping dataset,”
2021. https://github.com/ivalab/grasp_multiObject [Accessed: 2021-4-22].

[70] Levine, Pastor, Krizhevsky, Quillen, “Learning Hand-Eye Coordination for Robotic
Grasping with Deep Learning and Large-Scale Data Collection,” 2021.
https://sites.google.com/site/brainrobotdata/home/grasping-dataset
[Accessed: 2021-4-22].

[71] Zeng, Andy and Song, Shuran and Yu, Kuan Ting and Donlon, Elliott and Hogan,
Francois R. and Bauza, Maria and Ma, Daolin and Taylor, Orion and Liu, Melody
and Romo, Eudald and Fazeli, Nima and Alet, Ferran and Dafle, Nikhil Chavan and
Holladay, Rachel and Morona, Isabella and Nair, Prem Qu and Green, Druck and
Taylor, Ian and Liu, Weber and Funkhouser, Thomas and Rodriguez, Alberto, “MIT
grasping dataset,” 2021.
https://vision.princeton.edu/projects/2017/arc/#datasets [Accessed:
2021-4-22].

[72] Zhang, Hanbo and Lan, Xuguang and Bai, Site and Zhou, Xinwen and Tian,
Zhiqiang and Zheng, Nanning, “VMRD grasping dataset,” 2021. http:
//gr.xjtu.edu.cn/web/zeuslan/visual-manipulation-relationship-dataset
[Accessed: 2021-4-22].

54

https://berkeley.app.box.com/s/6mnb2bzi5zfa7qpwyn7uq5atb7vbztng
http://juxi.net/dataset/acrv-picking-benchmark/
https://dougsm.github.io/egad/
https://www.kaggle.com/oneoneliu/cornell-grasp
https://sites.google.com/site/deep6dofgeoawaregrasping/
https://jacquard.liris.cnrs.fr/
https://github.com/ivalab/grasp_multiObject
https://sites.google.com/site/brainrobotdata/home/grasping-dataset
https://vision.princeton.edu/projects/2017/arc/#datasets
http://gr.xjtu.edu.cn/web/zeuslan/visual-manipulation-relationship-dataset
http://gr.xjtu.edu.cn/web/zeuslan/visual-manipulation-relationship-dataset

Bibliography Aalborg University

[73] Fang, Hao Shu and Wang, Chenxi and Gou, Minghao and Lu, Cewu,
“Graspnet-1billion,” 2021. https://graspnet.net/ [Accessed: 2021-4-22].

[74] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision, pp. 740–755, Springer, 2014.

[75] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[76] S. Sinha, T. Singh, V. Singh, and A. Verma, “Epoch determination for neural
network by self-organized map (som),” Computational Geosciences, vol. 14, no. 1,
pp. 199–206, 2010.

[77] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and
H. Arshad, “State-of-the-art in artificial neural network applications: A survey,”
Heliyon, vol. 4, no. 11, p. e00938, 2018.

[78] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in International conference on
machine learning, pp. 1139–1147, PMLR, 2013.

[79] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

55

https://graspnet.net/
http://www.deeplearningbook.org

	Front page
	Titlepage
	Preface
	Reading Guide

	Table of Contents
	Introduction
	Previous Development
	Contributions
	Outline

	Grasp Generation for Human to Robot Handovers
	Related Works
	Handovers in Literature
	Grasping in Literature

	Input Modalities
	Camera Viewpoint

	Grasp Representation
	Converting Between Representations
	Visualisation

	Summary

	Datasets and Evaluation Metrics
	Object Data-sets
	Grasping Data-sets
	Evaluation Metrics
	Rectangle Metric
	Graspnet Metric
	Physical Evaluation

	Summary

	Grasping Methods and Implementation
	Methods Implementation
	Grasp Representation
	Training the Networks
	Tuning Parameters
	Inference

	Data-set Processing and Loading
	Cornell Data-set
	Jacquard Data-set
	Graspnet Data-set
	Depth Image Processing
	Data-set Splits
	Ground Truth Labels

	Cloud Computing using CLAAUDIA
	Summary

	Evaluation
	Training Parameter Tuning
	Qualitative Evaluation of Q-Images During Inference
	Data-set Invariance to Changes in Viewpoint
	Model Invariance to Changes in Viewpoint
	Summary

	Discussion
	Testing/Evaluation
	Parameter Tuning
	Qualitative Evaluation of Q-Images During Inference
	Data-set Invariance to Changes in Viewpoint
	Model Invariance to Change in Viewpoint

	Grasp Generation and Grasping
	The Rectangle Metric
	Future Works
	Towards Handovers in an Industrial Setting

	Conclusion
	Bibliography

