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Abstract

The focus of this thesis has been to design
a Linear Parameter-Varying (LPV) con-
trol system for the European Launch Vehi-
cle (LV) VEGA. More exactly, the objec-
tive has been to stabilize the LV during its
atmospheric flight from liftoff to Main En-
gine Cut Off (MECO) when disturbances
are present, such as wind gusts, sensor
noise and computational delays. The the-
sis covers a derivation of a 3D LV model
and theory, design, and simulation of an
LPV controller. The LV model is de-
rived from translational and rotational dy-
namic equations affecting a six Degrees
of Freedom (DoF) LV. The LV is simpli-
fied to a 2D model and Jacobian lineariza-
tions are conducted in a systematic man-
ner to derive a linear state space represen-
tation. This report then establishes well-
known requirements for a typical LV dur-
ing ascent. An LPV controller model is
designed with a lower Linear Fractional
Transform (LFT) configuration and is aug-
mented with a selection of frequency de-
pendent filters on the input and output
channels designed to satisfy the require-
ments. Lastly, the LV control system is
simulated through a linear LPV simula-
tion with user specified inputs. The result
from the simulation concludes the LV is
stable and is operating as intended while
satisfying its requirements.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.
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Introduction 1
1.1 Introduction

Modern society is so heavily embossed by the wireless communication between everyday
electronically devices and satellites, that it is hard to imagine living without it. The
almost instantaneous transmission time between devices from all over the Earth makes it
possible to communicate with whoever at any time with various services. These services
include among other telephones, internet, TV, GPS and weather forecasts. Overall, these
services have one thing in common, they are transmitting signals via a satellite. Without
transmitting signals via a satellite, the wireless communication is limited to local signal
coverage. Satellites will continue to contribute to the modern society even more in the
future, not only on Earth, but also for interplanetary communication. However, putting a
satellite into orbit with a Launch Vehicle (LV), has proven to be a challenging process. In
the following section, some of the challenges and why it is such a difficult process will be
elaborated upon.

1.2 Motivation

Since the late fifties, the odds for an LV to have an error to classify it as a failure is
approximately one in ten [1]. Critical failures include e.g., not reaching the desired orbit
in general or loosing communication with the LV and payload. Statistically speaking, these
odds have been improved since the first satellite was launched into space. In Table 1.1 the
success rate for all LVs has been listed for each decade since the first satellite, Sputnik 1,
have been successfully put into orbit by the Soviet Union.

Period [year] Success rate [%]
1957-1959 48.70
1960-1969 78.06
1970-1979 93.45
1980-1989 95.31
1990-1999 92.71
2000-2009 94.09
2010-2019 94.82

Total 89.37

Table 1.1: LV success rate per decade [1] [2]

This table shows that the decade between 1980-1989 has the highest success rate of putting
launchers into space. According to [2] and [3], that was also the decade with most recorded
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1. Introduction

launches. In Figure 1.1 an overview of every LV launched into orbit by country are shown.
It is clear by the data that during the Cold War, the Soviet Union was responsible for
most of the launches.
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Figure 1.1: Graphs showing the number of orbital launches by country [3] [4]

To dive deeper into what makes it so difficult to put a satellite into orbit, an insight
into which part of the LV which causes the most problems have been made. In [5], a
statement was made that from an analysis by Aerospace Corporation that most known
launch failures, are mainly from three causes: Engine failure, stage-separation failure, and
avionics failure. This statement is also in compliance with [6], which is an investigation
of catastrophic failures of LVs. This investigation presents data of number of times that
subsystems have caused a critical failure for LVs from its time published. This data can
be seen below in Figure 1.2
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Figure 1.2: Graph showing number of times subsystems have caused an LV
failure [6]
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1.2. Motivation AAU

Where Propulsion includes most notably of main propulsion components of the LV engine,
nozzle and thrust vector actuator and gimbal mechanism. Structure consist of solid rocket
motor core support structures, fuel tank storage and payload fairing. Avionics contains
onboard software, gyro, attitude sensors and navigation and guidance control equipment.
Separation includes staging of LVs. Electrical contains e.g. electrical power supply. Other
relates to communication and environment etc. [6].

The graph shows the that the propulsion subsystem is the main course for LV failure,
where the avionics and stage separation subsystems are the second and third main causes,
respectively.

When analyzing the subsystem errors mentioned in Figure 1.2, the majority of the failures
are occurring in the very first phase in every ascent profile of LVs, i.e. the atmospheric phase
from liftoff to MECO. In fact, the phase when the LV is flying through the atmosphere, is
the most difficult task to overcome of its journey to space [7]. This is because the avionics
and propulsion system work together against Earth’s gravitational field to not only gain a
high enough altitude, but also a high enough horizontal velocity to stay in orbit. This task
is made substantially more challenging because of Earth’s atmosphere puts a great deal of
structural load on the LV as the velocity increases [8]. At around halfway up through the
atmosphere, the dynamic pressure will be at its highest (max-Q) and the avionic system
will have to steer the nozzle such that the LV experiences as little pressure as possible.
If the structural load becomes too high, the LV will simply not be able to handle the
pressure.

Figure 1.3 presents a simplified overview of a typical ascent profile for an LV. The first
phase starts from liftoff and ends at Main Engine Cut Off (MECO). From there, the
second stage will ignite and continue to carry the payload until Second Engine Cut Off
(SECO). Depending on the LV, a couple of stage separations will continue to happen but
will eventually end with a payload deployment when the desired altitude and velocity has
been reached [9].

Lifto�

MECO

Second stage ignition

Payload deployment Stable orbit

SECO

Satellite
. . .

Max-Q

Figure 1.3: A simplified ascent profile for an LV from liftoff to operational
orbit

In the next section an outline for the rest of thesis is presented.

3



1. Introduction

1.3 Outline of the Thesis

This thesis is motivated by increasing the reliability of LVs successfully deploying satellites
into orbit. In the previous section, it was concluded that propulsion systems together with
avionic systems, are main causes of LV failures. Further it was concluded that the most
challenging part of the ascent is the atmospheric phase, that is from liftoff to MECO.

This thesis will, in collaboration with European Space Agency (ESA), cover a derivation of
the non-linear dynamics for a full three-dimensional LV model. These dynamics are then
used to derive a family of linearized 2D models, which are used to design a controller to
stabilize the non-linear LV model.

The controller will be designed from the family of derived linearized models with well-
known stability and performance requirements considered. With better reliability of LVs
in mind, an uncertain propulsion subsystem, delay model and disturbance model will be
accounted for as well as a wind disturbance model. Furthermore, uncertain dynamics in
the LV model will be analyzed as well.

Additionally, the dynamics for the LV model are expected to change with time as the LV
ascents through the atmosphere, e.g., mass, velocity, air density, etc. To encapsulate all
the varying parameters that make out the dynamics, an optimal choice of controller will
be a Linear Parameter-Varying (LPV) controller. An LPV controller will ensure a better
dynamical solution to the upcoming resulting control problem.

To make a robust LPV synthesis, theory for Integral Quadratic Constraints (IQC) must
to get implemented. Theory about IQC has been considered out of scope for this thesis
and robust LPV synthesis will therefore not be conducted. If robust control had to get
conducted an H∞-controller could considered. This type of controller is supported by
MATLAB via the Robust Control Toolbox [10]. However, it has been chosen to in depth
with on LPV control and not focus on other types of controllers.

For this project, the Vettore Europeo di Generazione Avanzata (VEGA) LV will be
used as a benchmark to get an accurate representation of a real LV as possible. Here,
the dimensions of VEGA’s various components are adopted together with model-specific
parameters.

1.3.1 Simulation and Data

The parameter values used for the LV model, have either been acquired from ESA or
generated by a partly non-linear six Degree of Freedom (DoF) simulation described in
[1]. This non-linear simulation does not support bending modes, nor the Tail-Wags-Dog
(TWD) effect later described in this project. However, when compared with data from
other VEGA mission profiles in [11], the simulation data is assumed to be a sufficient
approximation for this thesis. The data obtained from this simulation is from liftoff at
zero seconds to a hundred seconds (right before MECO) with a total resolution of 4996
data points. The data from the simulation used in this project can be seen in Appendix
A.

Ideally, the resulting closed-loop system would be tested in a complete non-linear
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1.3. Outline of the Thesis AAU

simulation, but this has not been considered a prioritization for the scope of this thesis
and will therefore not be made. Instead, an LPV simulation from the toolbox LPVTools
will be conducted [12] [13]. The results will be analyzed up against the requirements by
testing the closed-loop model in the simulation.

Lastly, the full 3D linearization of the LV model, LPV controller and simulation from this
thesis have been added to a public GitHub repository [14]. Note that the parameter values
acquired from ESA have not been included at their request.
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Problem Analysis 2
This chapter will cover the relevant topics and analyses for finally a deriving a linearized
2D model of an LV.

First and foremost, this chapter will present an overview of the VEGA LV mission profile
and dimensions followed by a description of a typical trajectory profile. Before describing
the relevant dynamics, the necessary reference frames are analyzed in Section 2.3. From
there on, all the rigid-body- and flexible body dynamics used in the full 3D non-linear model
are deduced and presented in their respective reference frames. Jacobian linearization is
then used to linearize the model and is described as two-dimensional model at different
equilibrium points along a preprogrammed trajectory. Lastly, Linear Fractional Transform
(LFT) theory will then be presented and the 2D LV model together with a TVC actuation
model and delay model will then be described in an upper LFT configuration.

2.1 VEGA Launch Vehicle Profile

VEGA is the lightweight launch vehicle under responsibility of ESA and European Launch
Vehicle (ELV), where the latter is the prime contractor. VEGA is the smallest European
launch vehicle with a height of thirty meters, a diameter of three meters (see Figure 2.1)
and weights 138 ton [15]. The VEGA LV is designed to carry relatively small payloads
from 300 kg to 2500 kg [15]. The orbits that VEGA is carrying the payloads up to are
either Low Earth Orbit (LEO) or Sun-Synchronous Orbit (SSO). LEOs are at altitudes
between 160- to 1000 km, but are usually in the lower end of the altitude interval. SSOs
are between 600- and 800 km. Satellites in SSOs are placed in a polar orbit arranged such
that it passes the same spot on Earth the same time every day [16].

VEGA consists of four stages, where the first stage is P80. The P80 is a solid-fuel stage
designed to burn for 114 seconds and achieve a relative velocity of 1.7 km/s. The stage is
jettisoned (MECO) at around 53 km altitude depending on the mission [17]. Besides the
first stage, there are Zefiro 23, Zefiro 9 and AVUM which corresponds to the second, third
and fourth stage, respectively. These stages are activated beyond MECO, so they are not
in the scope of this thesis and thus will be considered as payload henceforth. In Table 2.1
is an overview of the different stages showing the dimensions and average thrust force.
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2.2. Trajectory AAU

Stages Stage 1:
P80

Stage 2:
Zefiro 23

Stage 3:
Zefiro 9

Stage 4:
AVUM

Height [m] 11.7 7.5 3.5 1.7
Diameter [m] 3 1.9 1.9 1.9

Propellant type Solid Solid Solid Fluid
Propellant mass [t] 88 24 10.5 0.55
Motor dry mass [kg] 7330 1950 915 131
Average thrust [kN] 2200 871 260 2.42

Burn time [s] 114 77 120 667
Specific impulse [s] 280 287.5 296 315.5

Table 2.1: Parameters of the different stages on the Vega LV [1] [18]

On the P80 stage the Thrust Vector Control (TVC) system is located. During the
atmospheric ascent phase, the TVC system stabilizes the LV by gimbaling a movable nozzle
with two electromechanical actuators. The TVC system gets its data from measurements
from the Inertial Navigation System (INS) located as shown in Figure 2.1 [19].

Stage 1: P80

Stage 4: AVUM

TVC

Payload

30 m

3 m

INS

Photo: ESA – J. Huart

Figure 2.1: VEGA launch vehicle and its components [1]

2.2 Trajectory

The LV is set to follow a preprogrammed trajectory before launch. However, during
the atmospheric phase of the flight, a crucial objective for the LV is to alleviate the
structural load that originate from the aerodynamic forces. This is the reason why the
guidance system is configured in an open-loop during the atmospheric phase, so that the
LV can deviate from the preprogrammed trajectory in order to reduce the Angle of Attack
(AoA) and thereby reduce the structural load in presence of wind disturbances. Later in
Section 2.5 a performance indicator for this structural load will be introduced. Naturally,
using an open-loop configuration introduces the trade-off that the LV deviate from the
reference trajectory. Any final deviations from the reference trajectory is corrected with
closed-loop guidance in non-atmospheric phases beyond MECO [19].

The pitch- and yaw angle (θy and θz) for the LV for the first 110 seconds of a typical
atmospheric flight has been provided by ESA and can be seen in Figure 2.2. Later in
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2. Problem Analysis

Section 2.6 the planned thrust is presented for the atmospheric phase, when introducing
the TVC dynamics.
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Figure 2.2: Pitch and yaw angle for a typical trajectory provided by ESA

In Figure 2.2 the pitch angle relative to the ground is 90° in the first four seconds. This
is to avoid any collision with the launch pad. After four seconds, a relatively small pitch
over maneuver is initiated for approximately twelve seconds. The maneuver is made so
that the gravitational pull can tip the LV over for the remainder of the flight, which is also
presented in the figure. This gravitation pull is called a gravity turn. The gravity turn is
made to give the LV horizontal velocity naturally without any actuation efforts from the
TVC system while keeping the AoA close to zero [19] [1]. These practical advantages of
the gravity turn will be utilized later when choosing the operating points for linearization
in subsection 2.10.1. The yaw angle is relative to the pitch plane and is theoretically zero
throughout the flight.

At the time of MECO the VEGA LV should have made a downrange of 64 km due to the
gravity turn [20].

2.3 Reference Frames

Before describing the dynamics of the LV, the reference frames are important to have
defined beforehand. When describing the motion of an object in space, it is considered
practical to describe it through an inertial reference frame. Additionally from a control
perspective, it can be practical to use the object that is being controlled as the frame of
reference. Below are various reference frames explained which are essential for describing
the six DoF dynamic model of an LV. These reference frames are also explained in [8]. In
Figure 2.3, the upcoming reference frames are illustrated.
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Figure 2.3: Illustrations of different reference frames. (A) shows the ECI-
and ECEF frames and (B) shows the BF frame [1]

Earth-Centered Inertial Reference Frame

The Earth-Centered Inertial (ECI) reference frame can be thought of having its orientation
fixed to the motionless universe around it. It has its origin at the center of the Earth, with
the set of basis vectors {iI , jI , kI}, where iI points at the Sun during vernal equinox at
spring, kI points at the North Pole and jI completes the right-handed coordinate set.
Vernal equinox is when the Sun is directly above the equator of the Earth.

Earth-Centered Earth-Fixed Frame

The Earth-Centered Earth-Fixed (ECEF) frame has the same origin and equatorial plane
as with the ECI frame. It is defined by the set of vectors {iE , jE , kE}, where iE is now
fixed on the Greenwich meridian. kE and jE are oriented the same way as before in
the ECI frame, where kE points towards the North Pole and jE completing the right-
handed coordinate set. This means this frame rotates with the Earth’s angular velocity
corresponding to ΩI = ωEkI , where ωE = 0.7292 · 10−6 rad/s is the rotational velocity of
the Earth [21].

In this thesis, the simulations from the six DoF simulation described in subsection 1.3.1, are
initiated from Europe’s Spaceport located in Kourou, French Guiana. Thereby, the initial
starting point and initial velocity can be calculated by applying the latitude, longitude
and altitude: r(0) = {ψ(0), λ(0), h(0)} ≈ {5.2°,−52.8°, 0 m}.

Body-Fixed Reference Frame

The Body-Fixed (BF) frame has its origin at the LV’s Center of Gravity (CG). This frame
is useful when describing LV rotations and will be used when defining the CG, Center
of Pressure (CP), nozzle Pivot Point (PVP) and other mass and aerodynamic properties
later in this thesis. The BF frame is defined by the set of vectors {iB, jB, kB}, where iB is

9



2. Problem Analysis

pointing along the LV longitudinal axis, kB is perpendicular on the yaw plane while jB is
perpendicular to the LV’s pitch plane completing the right-handed coordinate set.

To transform one coordinate from one reference frame to another reference frame a
Direction Cosine Matrix (DCM) can be used. A DCM transforms one coordinate reference
frame to another. Equation 2.1, 2.2 and 2.3 are DCMs and represent the transformation of
the x, y and z-axis from the ECI reference frame to the BF reference frame, respectively.

Cx =

1 0 0

0 cos θx sin θx
0 − sin θx cos θx

 (2.1)

Cy =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 (2.2)

Cz =

 cos θz sin θz 0

− sin θz cos θz 0

0 0 1

 (2.3)

For the rotational sequence of Cz(θz)← Cy(θy)← Cx(θx) yields the DCM from ECI frame
to BF frame given in Equation 2.4 [22].

CI→B =

 cos
(
θy
)

cos (θz) cos (θx) sin (θz)− cos (θz) sin (θx) sin
(
θy
)

− cos
(
θy
)

sin (θz) cos (θx) cos (θz) + sin (θx) sin
(
θy
)

sin (θz)

− sin
(
θy
)

− cos
(
θy
)

sin (θx)

(2.4)

sin (θx) sin (θz) + cos (θx) cos (θz) sin
(
θy
)

cos (θz) sin (θx)− cos (θx) sin
(
θy
)

sin (θz)

cos (θx) cos
(
θy
)


Velocity-Fixed Reference Frame

For describing the aerodynamic characteristics later in Section 2.5, a Velocity-Fixed (VF)
frame is necessary. The basis set of vectors are {iV , jV , kV }. Here the frame is also fixed
to the LV’s CG, but with iV pointing along the direction relative to the air velocity. Below
is the DCM for transforming from VF frame to BF frame [8].

CV→B(t) =

 cosα(t) cosβ(t) sinβ(t) sinα(t) cosβ(t)

− cosα(t) sinβ(t) cosβ(t) − sinα(t) sinβ(t)

− sinα(t) 0 cosα(t)

 (2.5)

Where α is the AoA and β is the sideslip angle, they will be elaborated upon in Section 2.5.

Now that the necessary reference frames have been explained, the dynamic equations for
an LV are described.

10



2.4. Dynamic Equations AAU

2.4 Dynamic Equations

This section presents an overview of the dynamics of the LV that are described by
the standard six DoF equations of motion which consist of translational and rotational
dynamics. Both the translational and rotational dynamics are summarized below, and
their complete derivation can be found in [23]. Each component of both equations is
evaluated in the sections to come in this chapter. Furthermore, sloshing effect and jet
damping have not been considered for these equations.

The LV’s translational motion is described in Equation 2.6 in the ECI frame.

m(t)r̈I(t) = Faero(t) + FTV C(t) + FN + FF (t) + Fg(t) (2.6)

where:

r̈I(t) is the acceleration. [m
s2
]

m(t) is the mass of the vehicle. [kg]
Faero(t) is the aerodynamic force acting on the vehicle. [N]
FTV C(t) is the thrust vector control acting on the vehicle. [N]
FN (t) is the force from accelerating the nozzle actuator. [N]
FF (t) is the elastic body force acting on the vehicle. [N]
Fg(t) is the gravitational force acting on the vehicle. [N]

Additionally, the rotational dynamics are described in the BF frame in Equation 2.7.

J(t)θ̈B(t) = Maero,B(t) +MTV C,B(t) +MN,B(t) +MF,B(t) +Mg,B (2.7)

where:

θ̈(t) is the angle acceleration with partitioning: [θ̈x θ̈y θ̈z]
T [ rad

s2
]

J(t) is the moment of inertia [kgm2]
Maero(t) is the aerodynamic moment acting on the vehicle. [Nm]
MTV C(t) is the thrust moment acting on the vehicle. [Nm]
MN (t) is the nozzle moment acting on the vehicle. [Nm]
MF (t) is the elastic body moment acting on the vehicle. [Nm]
Fg(t) is the gravitational momentum acting on the vehicle. [Nm]

Note that the rotational motion of the LV happens around its CG. The moment of force
is calculated by taking the cross product between the force and moment arm (the distance
from where the force is applied to the CG):

M = F × (PF − PCG) (2.8)

where PF is the point on the LV where the force is applied and PCG is the point on the
LV where the CG is. The notation of a specific point P is in this thesis expressed by a 3D
vector on the form: P = [x y z]T .

In the following sections, the parts of the translational and rotational dynamics are
explained and evaluated upon in the following order: Aerodynamic characteristics, TVC
forces, dynamics of the nozzle, flexible-body dynamics (elastic forces) and sensor placement
characteristics.

11



2. Problem Analysis

2.5 Aerodynamic Characteristics

Throughout this section various concepts related to aerodynamics relevant for an LV are
going to be explained. First the concept of center of pressure will be explained as this
is fundamental for the concepts yet to come. Then the total wind velocity is explained
followed by the angle of attack and sideslip. The dynamic pressure is then described
before explaining the actual aerodynamic force and momentum introduced in the previous
section. Lastly, a performance indicator between the angle of attack and dynamic pressure
is introduced.

When describing an aerodynamic force acting across the surface of a body, the total amount
of force can be accumulated into a single point called the Center of Pressure (CP). All
aerodynamic characteristics are therefore described in relation to the CP.

The LV’s relative air velocity in the BF reference frame is given by its velocity, vair =

[vx(t) vy(t) vz(t)]
T . When the LV is rotating, the body will get affected by a crosswind

which is stronger the further away from the CG that is being evaluated from. In
Equation 2.9, the total wind including rotational crosswind and regular crosswind at the
CP is described.

vCPtotal(t) = vair(t) + θ̇B(t)× (PCP − PCG)︸ ︷︷ ︸
Rotational crosswind

+ vw(t)︸ ︷︷ ︸
Crosswind

(2.9)

where θ̇B(t) = [θ̇x,B(t) θ̇y,B(t) θ̇z,B(t)]T and vw(t) = [vw,x(t) vw,y(t) vw,z(t)]
T .

An essential concept when describing the aerodynamic forces, is how the LV’s body is
oriented w.r.t. to the wind. The orientation is described with two angles, AoA and
sideslip at the CP.

αCP (t) = arctan2

(
vCPtotal,z(t)

vCPtotal,x(t)

)
(2.10)

βCP (t) = arcsin

(
vCPtotal,y(t)

vCPtotal(t)

)
(2.11)

where AoA is α and is the angle between the longitudinal axis of the LV’s body and the
local airflow at the CP in the pitch plane, and the sideslip angle is β and is the angle
between the longitudinal axis and the local airflow in the yaw plane. Visualizations of the
AoA and the sideslip angle are illustrated in Figure 2.4.

The aerodynamics forces and moments generated by the LV’s main body depend on the
external shape and the dynamic pressure. The dynamic pressure is given by:

Q(t) =
1

2
ρair(t)V

2(t) (2.12)

where:

12
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vtotal

α

β

y

CP

CG
Pitch

Yaw

z

x

Figure 2.4: Visualization of how the angle of attack, α, and sideslip angle, β,
is measured compared to an LV. The blue and the green arrows are the

projected longitudinal axis and air velocity at the CP both in the yaw and
pitch plane [1].

Q(t) is the dynamic pressure. [Pa]
ρair(t) is the atmospheric density [ kg

m3 ]
V (t) is the air relative velocity at the LV’s CP in BF frame [ms ]

where the air relative velocity vector is given by: V (t) =
∥∥∥vCPtotal(t)∥∥∥.

The VEGA launcher is assumed to have an axisymmetric shape. By utilizing this
knowledge, the aerodynamic force in the VF reference frame can be described as:

Faero,V = −Q(t)Sref

CD(αeff (t),M(t))

0

CL(αeff (t),M(t))

 (2.13)

where Sref is a reference aerodynamic area and CD and CL are the drag and lift coefficients,
respectively. The drag and lift coefficients are estimated as functions of the effective angle
of attack, αeff (t), and the Mach number, M(t). They are given in Equation 2.14 and
Equation 2.15, respectively.

αeff (t) = arccos
(

cos(αCP (t)) cos(βCP (t))
)

(2.14)

M(t) =
V (t)

Vsound(t)
(2.15)

where Vsound(t) is the speed of sound at the given atmospheric density, ρair(t).

The data on the aerodynamic coefficients is provided by ESA. These coefficients are for a
full configuration of the VEGA LV from 0° to 12° of effective angle of attack. In Figure 2.5
approximations on the coefficients can be seen as a function of αeff at different Mach
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2. Problem Analysis

numbers. Note that when αeff goes below zero, CL will keep decreasing. (The graphs are
symmetric around CL = 0.) Meanwhile CD is increasing when αeff goes below zero. (The
graphs are symmetric around αeff = 0.)
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Figure 2.5: Aerodynamic coefficients for a VEGA LV

The data has been approximated by the least squares method and the functions will be
interpolated between according to whichever Mach number is closest to the corresponding
data.

In Equation 2.16 is the normal aerodynamic coefficient described. This coefficient is the
sum of the two normal force from CL and CD w.r.t. the longitudinal axis of the LV.

CN (αeff (t),M(t)) = CL(αeff (t),M(t)) cosαeff (t)+CD(αeff (t),M(t)) sinαeff (t) (2.16)

In Figure 2.6 CL, CD and CN are visualized. CN is the sum of the two blue stippled lines
generated from CL and CD. CN will be a relevant parameter in Section 2.10 when the 3D
model is linearized.

V

CL

CD

CN

x

CP

α

Figure 2.6: Sketch that shows the relationship between CN, CL and CD
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2.6. TVC Characteristics AAU

Furthermore, the aerodynamic moment around the CG can be computed from the cross
product between the force and the two points CG and CP:

Maero,B = (PCP − PCG)× (CV→B(t)Faero,V ) (2.17)

A performance indicator Qα is also introduced here:

Qα(t) = Q(t) · αeff (t) (2.18)

This is a useful indicator as it directly evaluates the impact of trajectory and attitude on
induced loads [8]. Later in the requirement specification in Section 3.2, this indicator will
further be evaluated upon as this is desired to be kept as low as possible [8] [1].

Since the Qα is desired to be measured, it will be included in the C-matrix in the state
space representation of the LV that is later derived in Section 2.11. This means in order to
model the Qα, it has to be expressed by rotational and translational variables, since they
are going to be the states of the state space representation.

Qα is dependent on the rotation and velocity through αeff (t). In Equation 2.19
and Equation 2.20 is αeff (t) shown dependent on rotational and translational motion,
respectively. The dependence on time t has been omitted for better readability.

αeff (θy, θz) = θy + θz (2.19)

αeff (vCPtotal,y, v
CP
total,z) =

vCPtotal,y + vCPtotal,z

vCPtotal
(2.20)

Finally, the total dynamic pressure is then given in Equation 2.21.

Qα,total = Q
(
αeff (θy, θz) + αeff (vCPtotal,y, v

CP
total,z)

)
(2.21)

Summary

Through this section, the concepts of center of pressure, total wind velocity, angle of
attack, sideslip, effective angle of attack, dynamic pressure, translational force, rotational
momentum and Qα have been explained. All these concepts will be used when building
the final model of the LV.

The next section will describe the characteristics of the main engine mounted on the LV.

2.6 TVC Characteristics

The main engine generates the necessary thrust for the LV to enter the required altitude
for MECO. As mentioned in Section 2.1, the LV has two electromechanical actuators that
operate the movable nozzle in two directions in the BF reference frame: {βTV C,y βTV C,z}.
The two actuators are assumed to be attached 90° apart, and are defined such that βTV C,y
is rotating around the y-axis and βTV C,z is rotating around the z-axis in the BF frame.
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2. Problem Analysis

This concept can be seen in Figure 2.7, where the red angle represents the yaw angle and
the green angle represents the pitch angle. The origin is representing the LV’s bottom
center where the nozzle is attached to the body, also known as the pivot point, PPV P [1].

x

z

y

βTVC,z

βTVC,y

TVC vector

PPVP

Figure 2.7: Visualization of the angles of the movable nozzle affects the TVC
direction [1].

The force from the TVC in the BF reference frame can be deduced by first computing the
direction force of the main engine thruster:

FTV C,T = FTV C(t)

1

0

0

 (2.22)

where FTV C(t) is the thrust force from the main engine and is assumed not to be
controllable since a full thrust is desirable for minimizing time in the atmosphere. The
vector is to indicate that the thrust from the main engine, is only applying thrust in its
own longitudinal direction. In other words, FTV C,T (t) is defined in the reference frame
relative to the thruster itself. By knowing the thruster nozzle can move in two directions,
{βTV C,y βTV C,z}, the rotational DCMs Equation 2.2 and Equation 2.3 derived back in
Section 2.3 can be utilized to transform FTV C,T (t) into the BF frame. This relationship
can be seen in Equation 2.23:

FTVC,B(t) = CzCyFTV C,T (2.23)

= FTVC(t)

 cosβTVC,y(t) cosβTVC,z(t)

− cosβTVC,y(t) sinβTVC,z(t)

− sinβTVC,y(t)


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2.7. Nozzle Dynamics AAU

Furthermore, the moment around the CG of the LV in the BF frame is given by
Equation 2.24.

MTV C,B(t) = (PPV P − PCG(t))× FTV C,B(t) (2.24)

Thrust data of FTV C(t) is provided by ESA and can be seen in Figure 2.8.

0 20 40 60 80 100 120

Th
ru

st
 [N

]

0

0.5

1

1.5

2

2.5

3

Time [s]

106

Figure 2.8: TVC thrust force data provided by ESA

This section has covered the deduction of the TVC force and momentum. The next section
will describe and evaluate the nozzle itself.

2.7 Nozzle Dynamics

This section describes the nozzle dynamics also known as Tail-Wags-Dog (TWD) effect.
Intuitively, when the nozzle needs to gimbal, the TVC system creates a force on the nozzle
to make it move. This force on the nozzle creates a force back onto the LV and creates the
TWD phenomenon.

The acceleration from when an engine gimbals creates inertia forces and torques. This
effect is essential to model, not only for the rigid-body motion but also for the flexible-
body motion described in the next section.

The nozzle dynamics in BF reference frame are given by:

FN,B = −mN lN β̈ (2.25)

MN,B = − (mN lN lCG + JN ) β̈ (2.26)

where:

β̈ is the acceleration of the nozzle actuator. [deg/s2]
mN is the mass of the LV nozzle. [kg]
lN is the distance from the nozzle center of gravity to PPV P . [m]
JN is the moment of inertia of the nozzle engine about PPV P . [kg ·m2]
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2. Problem Analysis

The parameters have been provided by ESA:
mN = 1616 kg, lN = 0.66 m and JN = 1263.4 kg/m2.

2.8 Flexible-Body Dynamics

In the previous sections, it was assumed that the vehicle behaved as a rigid body. However,
in the response to various loads, the vehicle fuselage slightly bends elastically out of shape.
The shape depends on time and bends in and out of shape at a particular frequency. This
means that a certain shape of the beam can be predicted, this is also known as a bending
mode [24].

The particular frequency corresponds with the natural frequency of the LV. An LV has in
practice a combination of several bending modes, where each bending mode successively
has a certain higher frequency. Bending modes can be set in motion by wind gusts or
turbulence with similar frequency of that of the natural frequency of the LV. Successively
higher bending modes have successively lower amplitude [24]. In practice, this means that
a sufficient approximation can be made by only modelling a limited number of bending
modes, since the effect from the higher frequency bending modes will become negligible.

The fuselage classifies as a free-free beam which means the ends are unrestrained. This
classification influences how the bending modes are shaped. In Figure 2.9A, the first two
bending modes of a uniform free-free beam are shown. The blue beam represents the
first bending mode and the green beam represents the second bending mode. Figure 2.9B
illustrates how the same two bending modes are affecting the LV, where the blue and green
beam are added together and the resulting bending mode is represented with the red color.
Note that in a real scenario, mass and aerodynamic forces are distributed non-uniformly
along the fuselage, thus resulting in a different shape than the bending mode showed in
Figure 2.9B.

(A) (B)

First bending mode

Second bending mode Resulting bending mode

Figure 2.9: (A) Illustration of the two first bending modes in w.r.t. to a free
free beam. (B) shows the two bending modes acting together on an LV.

In [23] a thorough modelling procedure of the flexible dynamics has been carried out. The
general dynamical behavior of the ith bending mode can be represented by the following
2nd order model:
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2.8. Flexible-Body Dynamics AAU

q̈i + 2ζqiωqi q̇ + ω2
qi =

∫ L
0 Ftotal(t) dL∫ L

0 m(t) dL
(2.27)

where:

qi is the state of the ith bending mode. [m]
ζqi is the dampening ratio of the ith bending mode. [·]
ωqi is the natural frequency of the ith bending mode. [rad]
Ftotal(t) is the total translational force. [N]
m(t) is the mass of the vehicle. [kg]
L is the length of the vehicle. [m]

The reason for integrating is to evaluate for the practical non-uniform distribution of forces
and mass.

According to [23], the most dominant terms for the flexible dynamics are the thrust
deflection and engine inertia. These are sufficient for purposes of a simplified analysis [19]
[25] [22] [24] [26]. For the simplified analysis, the total force are expressed in Equation 2.28
[19] [25]:

∫ L

0
Ftotal(t) dL = −FTV C,ref (t)ΨPV Pi

t βTV C − (mN lNΨPV Pi
t − INΨPV Pi

r )β̈TV C (2.28)

where:

ΨPV Pi
t is the translational length of the ith bending mode at PPV P . [m]

ΨPV Pi
r is the rotational angle of the ith bending mode at PPV P . [rad]

The mass of the vehicle in Equation 2.27 can be omitted since the mode shapes ΨPV Pi
t and

ΨPV Pi
r are already normalized with respect to the mass [25]. Additionally, βTV C represents

either a pitch or a yaw gimbal angle of the nozzle.

In Figure 2.10 is an illustration showing how the flexible terms, ΨPV Pi
t and ΨPV Pi

r , are
affecting the thrust deflection in the pitch plane w.r.t. the first bending mode. The black
dot represents the LV’s rigid-body pivot point and, as with the previous figure, the blue
color is representing the first bending mode. In the figure the rigid-body pivot point is
bent towards the blue pivot point. As a consequence the lateral displacement ΨPV Pi

t and
angle displacement ΨPV Pi

r occurs.
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Figure 2.10: Flexible body diagram of how the first bending mode is affecting
the thrust deflection

The bending modes add a local rotation and additional transitional force to the commanded
gimbal angle βTV C . In the BF reference frame, both the flexible-body motion force and
moments considering k bending modes are expressed by Equation 2.29 and Equation 2.30,
respectively [19].

FF,B(t) = FTV C,ref

k∑
i=1

ΨPV Pi
r qi (2.29)

MF,B(t) = −FTV C,ref

 k∑
i=1

ΨPV Pi
r qi +

k∑
i=1

ΨPV Pi
t qi

 (2.30)

In this project, there will be modelled two bending modes. This is because the frequency
of the third bending mode is already higher than the Nyquist frequency of the VEGA LV
according to ESA. This makes modelling of bending modes beyond two irrelevant since
they cannot be processed. All the parameters described in this section are model-specific
and ESA has provided all the required values.

The parameters are varying with time due to the changing dynamics throughout the flight.
They are partitioned like so: [xt=0 xt=end], where xt=0 is the value of the given parameter
at liftoff and xt=end is the parameter value at MECO.

ΨPVP1
t = [3.67 9.02] 10−3 m, ΨPVP2

t = [2.26 3.57] 10−3 m

ΨPVP1
r = [−0.94 − 1.55] 10−3 rad, ΨPVP2

r = [−0.97 − 1.76] 10−3 rad

ωq1 = [25.51 37.01] rad, ωq2 = [66.98 84.57] rad

ζ = 0.008

In the project, the minimum and maximum values will be affinely interpolated between as
many times as there are data points in the simulation from [1].

The next section is describing how the bending modes are affecting the sensor
measurements.
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2.9. Sensor Characterization AAU

2.9 Sensor Characterization

The sensors measure the position, velocity, rotation and angular velocity of the LV. In
order to model the output matrix, a definition of the position and orientation of the LV
and its velocities at the location of where the sensors are mounted is defined.

Back in Section 2.3 the DCM CI→B was derived in Equation 2.4. By applying the DCM
on the coordinate of where the sensor is mounted on the LV, the angle w.r.t the sensor can
be defined. Together with the position of the LV’s CG, the exact position and orientation
can be found. This is described in Equation 2.31.

rINS,rigid =

rxry
rz

+ CI→B[PINS − PCG]

=

 rx − cos
(
θy
)

cos (θz) (PCG − PINS)

ry + cos
(
θy
)

sin (θz) (PCG − PINS)

rz + sin
(
θy
)

(PCG − PINS)

 (2.31)

where INS was introduced back in Section 2.1 on page 6 and PINS is the location of the
sensor on the body of the LV.

The motions at the sensor location can be described by the velocity vector and the angular
velocity vector:

ṙINS,rigid =

ṙxṙy
ṙz

+

θ̇xθ̇y
θ̇z

× (PINS − PCG)

=

 ṙx
ṙy − θ̇z (PCG − PINS)

ṙz + θ̇y (PCG − PINS)

 (2.32)

Since the flexible dynamics, from the previous section, are causing the fuselage to bend, the
measurements from the sensors located on the LV are influenced. The measured attitude,
drift and their derivatives are given by [19]:

θINS = θ −
k∑
i=1

ΨINSi
r qi (2.33)

θ̇INS = θ̇ −
k∑
i=1

ΨINSi
r q̇i (2.34)

rINS = r − lINSθ +

k∑
i=1

ΨINSi
t qi (2.35)
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ṙINS = ṙ − lINS θ̇ +
k∑
i=1

ΨINSi
t q̇i (2.36)

where:

ΨINSi
t is the translational length of the ith bending mode at PINS . [m]

ΨINSi
r is the rotational angle of the ith bending mode at PINS . [rad]

θ is the angle vector [θx θy θz]
T [rad]

θ̇ is the angle velocity vector [θ̇x θ̇y θ̇z]
T [rad/s]

r is the position vector [x y z]T [m]
ṙ is the velocity vector [ṙx ṙy ṙz]

T [m/s]
lINS is the distance between PINS and PCG [m]

Below is the parameter data provided by ESA and partitioned like the previous section:
[xt=0 xt=end], where xt=0 is the value of the given parameter at the start of the flight
and xt=end is the parameter value at MECO. PINS is partitioned with coordinates:
[xINS yINS zINS].

ΨINS1
t = [10.22 10.26] 10−3 m, ΨINS2

t = [−6.13 − 5.46] 10−3 m

ΨINS1
r = [1.95 2.27] 10−3 rad, ΨINS2

r = [−2.25 − 2.51] 10−3 rad

PINS = [22.9 0 0] m

The bending modes are also affinely interpolated between for each time step in the
simulation.

Summary

Finally, all the necessary characteristics for the VEGA LV have been deduced and evaluated
in the last several sections. The gravitational force and momentum has not been necessary
to evaluate, which will come clear why in subsection 2.10.1. The next section will describe
how the LV model will be linearized.

2.10 Model Linearization

This section will be covering the method of linearization. Since the launch vehicle is
assumed to be operating in a highly non-linear environment, the LV will be linearized
at several time instances along its trajectory. Eventually, the idea is to design a family
of linear controllers from the LV’s respective state space representations and apply them
at the appropriate operational points. This gain scheduling methodology is a standard
practice to deal with systems with a wide dynamic variation and is also used in control of
LVs [19].

According to [23] and [8], a way to simplify the model substantially without losing too
much accuracy, is to only include the pitch plane and not focus on the yaw plane. This
is possible with the assumption that the LV is axisymmetric around its longitudinal axis.
That way, the pitch and yaw motions can be assumed uncoupled and the task of attitude
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2.10. Model Linearization AAU

control can be performed in a single plane. In this thesis, only the pitch plane will be
analyzed.

The non-linear dynamics consist of the aerodynamical, TVC and sensor characteristics
covered in Section 2.5, Section 2.6 and Section 2.9, respectively. These dynamics will
be linearized with Jacobian linearization, where for each equation, a first order partial
derivative w.r.t. either a state or a control signal is evaluated.

The method that was conducted in this thesis, was to solve the Jacobian first and then
inserting operating points corresponding to a point on the trajectory where it was desired
to linearize. This method provided more efficiency computational-wise since the Jacobian
was only required to be solved once, when linearizing at several time instances. Later in
subsection 2.10.1 the operating points are covered.

The general formula for the Jacobian is given in Equation 2.37.

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 (2.37)

Below are the Jacobians split up in states and control variables since none of the control
dynamics are dependent on the aerodynamic forces and vice versa. The Jacobian from the
aerodynamic equations can be seen in Equation 2.38 and the Jacobian from the control
signals can be seen in Equation 2.39. Note that due to readability θy, rz, βTV C,y, vw,z and
Qα,total will now simply be denoted θ, z, βTV C , vw and Qα, respectively.

JA =

∂θ̈aero,B∂θ
∂θ̈aero,B

∂θ̇

∂θ̈aero,B
∂z

∂θ̈aero,B
∂ż

∂r̈aero,B
∂θ

∂r̈aero,B
∂θ̇

∂r̈aero,B
∂z

∂r̈aero,B
∂ż

 (2.38)

JB =

∂θ̈TV C,B∂βTV C
∂r̈TV C,B
∂βTV C

 (2.39)

where JA represents the Jacobian for the dynamics of the LV and JB represents the
Jacobian for the control signals.

The disturbances are also linearized with a Jacobian but w.r.t. to the wind velocity vw(t):

JBd =

∂θ̈TV C,B∂vw
∂r̈TV C,B
∂vw

 (2.40)

The first entry in the output matrix will be the performance indicator Qα introduced back
in Section 2.5. The following entries will be the states of the system and so the Jacobian
will follow the structure:
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JC =


∂Q̇α
∂θ

∂Q̇α
∂θ̇

∂Q̇α
∂z

∂Q̇α
∂ż

∂θ̈aero,B
∂θ

∂θ̈aero,B
∂θ̇

∂θ̈aero,B
∂z

∂θ̈aero,B
∂ż

∂r̈aero,B
∂θ

∂r̈aero,B
∂θ̇

∂r̈aero,B
∂z

∂r̈aero,B
∂ż

 (2.41)

The Jacobian for the direct control method is not needed, since there are no equations
dependent on the control signal βTV C directly, JD =

[
05,1

]
.

The Jacobian for the direct disturbance are, like the control disturbances, evaluated for
w.r.t. vw:

JDd =


∂Q̇α
∂vw

∂θ̈TV C,B
∂vw

∂r̈TV C,B
∂vw

 (2.42)

Now that the Jacobians have been described, the operating points are accounted for in the
next section.

2.10.1 Operating Points

The operating points are chosen in the BF reference frame w.r.t. the gravity turn trajectory
presented back in Figure 2.2 on page 8. From information about the gravity turn in
Section 2.2, practical assumptions can be made. Recall that the gravity turn does not
require any actuation efforts from the TVC system and the AoA is kept close to zero with
the assumption that no wind disturbances are present. Additionally, gravity do not have
to be considered, because the LV already follows a trajectory affected by it.

Table 2.2 shows the operating points used in this project. All the states are set to zero,
since otherwise would mean a deviation from the reference trajectory. The nozzle gimbal is
also set to zero because the LV is assumed to be in steady state [8]. The AoA is also set to
zero and the wind disturbance is set to zero as a consequence of that. All the linearizations
made throughout the atmospheric flight will be w.r.t. the gravity turn and thereby have
these assumptions. Keep in mind that only the lateral position and velocity is set to zero.
The longitudinal x-direction of the LV is still allowed to change.

Operating Points
θ0 θ̇0 z0 ż0 βTVC,0 AoA0 vw,0

0 0 0 0 0 0 0

Table 2.2: Table of operating points applicable for all linearizations made
throughout the flight

The next section will partition the 2D LV model in a state space representation.
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2.11 State Space Representation

This section will present a state space representation of the linearized equations of motion
and sensor dynamics from the previous section.

The partitioning of the matrices in the state space representation is based on [25], where
the rigid- and flexible-body contributions are expressed separately. The partitioning can
be seen in Equation 2.43.

[
ẋR

ẋF

]
=

[
AR ARF
AFR AF

][
xR

xF

]
+

[
BR
BF

]
u +

[
Bd,R
Bd,F

]
ud (2.43)

yLV =
[
CR CF

] [ xR

xF

]
+DR u +DdR ud

where:

AR is the rigid-body dynamics.
AF is the flexible-body dynamics.
ARF is the coupled dynamics between the rigid body and flexible body.
AFR is the coupled dynamics between the flexible body and rigid body.

The LV system will be called GLV and uses four rigid-body states, the pitch attitude angle

θ, the lateral drift z and their respective derivatives: xR =
[
θ θ̇ z ż

]T
. There are also

four flexible-body states, a state q and its derivative for the two first bending modes xF =

[q1 q2 q̇1 q̇2]T . There are five outputs yLV =
[
Qα θINS θ̇INS zINS żINS

]T
.

Here the performance indicator Qα is included in the first entry. Recall that back in
Section 2.5 this performance indicator is of interest, since it evaluates the impact of
trajectory and attitude on induced loads on the LV. θINS , θ̇INS , zINS and żINS are all
measurements from sensors.

GLV will have three inputs u =
[
βTV C β̈TV C

]T
and ud = vw. Here the acceleration of

the nozzle deflection β̈TV C is considered as an input to account for the TWD effect [19].

The matrices of the state space are given as in Equation 2.44 on the next page:
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

θ̇

θ̈

ż

z̈

q̇1

q̇2

q̈1

q̈2


=



0 1 0 0 0 0 0 0

aθ̈θ aθ̈θ̇ 0 aθ̈ż aθ̈q1 aθ̈q2 0 0

0 0 0 1 0 0 0 0

az̈θ az̈θ̇ 0 az̈ż az̈q1 az̈q2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 aq̈q1 0 aq̈q̇1 0

0 0 0 0 0 aq̈q2 0 aq̈q̇2





θ

θ̇

z

ż

q1

q2

q̇1

q̇2



+



0 0

bθ̈β bθ̈β̈
0 0

bz̈β bz̈β̈
0 0

0 0

bq̈1β bq̈1β̈
bq̈2β bq̈2β̈



[
βy
β̈y

]
+



0

0

0

0

0

0

0

0


vw


Qα
θINS
θ̇INS
zINS
żINS

 =


Q 0 0 Q/V

1 0 0 0

0 1 0 0

xCG − xINS 0 1 0

0 xCG − xINS 0 1

0 0 0 0

ΨINS1
r ΨINS2

r 0 0

0 0 ΨINS1
r ΨINS2

r

ΨINS1
t ΨINS2

t 0 0

0 0 ΨINS1
t ΨINS2

t





θ

θ̇

z

ż

q1

q2

q̇1

q̇2



+


0 0

0 0

0 0

0 0

0 0


[
βTV C
β̈TV C

]
+


−Q/V

0

0

0

0

 vw (2.44)

where:

bθ̈β = −FTVC (xCG−xPVP)
Jy

bq̈1β = −ΨPV P1
t FTVC

bz̈β = −FTVC
m bq̈2β = −ΨPV P2

t FTVC

bθ̈β̈ = −Jny+mn ln (xCG−xPVP)
Jy

bq̈1β̈ = Jny ΨPV P1
r −ΨPV P1

t mn ln

bz̈β̈ = −mn ln
m bq̈2β̈ = Jny ΨPV P2

r −ΨPV P2
t mn ln

aq̈q1 = −ωq1
2 aθ̇q1 =

FTVC (ΨPV P1
t +ΨPV P1

r (xCG−xPVP))
Jy

−

aq̈q2 = −ωq2
2 aθ̇q2 =

−FTVC (ΨPV P2
t +ΨPV P2

r (xCG−xPVP))
Jy

aq̈q̇1 = −2ωq1 ζ ażq1 = ΨPV P1
r FTVC

m

aq̈q̇2 = −2ωq2 ζ ażq2 = ΨPV P2
r FTVC

m
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aθ̈θ = −Sref ρair σ1 vx
2 (xCG−xCP)

2 Jy

aθ̈θ̇ = Sref ρair σ1 vx (xCG−xCP)2

2 Jy

aθ̈ż = −Sref ρair σ1 vx (xCG−xCP)
2 Jy

az̈θ = Sref ρair σ1 vx
2

2m

az̈θ̇ = −Sref ρair σ1 vx (xCG−xCP)
2m

az̈ż = Sref ρair σ1 vx
2m

where
σ1 = ∂CN

∂α = ∂(CL cosα+CD sinα)
∂α

For analysis and design purposes, the nominal state space system GLV is used to derive
nominal LTI models at different operating points along the gravity turn trajectory with
the assumption that the parameters are frozen in time. The nominal frequency responses
at different time instants are plotted in Figure 2.11A on the next page. From the frequency
response it can be seen that the magnitude changes during the atmospheric flight. This can
clearly be seen throughout the whole frequency range. This plot also shows the frequency
for each bending mode peak increases with time.

On Figure 2.11B the poles and zeros of GLV can be seen. The launcher has eight poles in
total, four from the rigid-body dynamics and four from the flexible-body dynamics, two
for each bending mode. The control stabilization problem lies mainly in stabilizing the
dynamics, which are dependent on the velocity squared, recall coefficient aθ̈θ, az̈θ and the
relation: Q = 0.5ρairV

2. The dynamic pressure is at its highest at around 50 - 60 seconds
into the atmospheric flight, which is where it can be seen the poles are most unstable.
Besides the stabilization, the performance can also be challenging around this part of the
ascent. At this part, it requires more control actuation in order to counteract the torque
generated by structural loads. As with the translational poles, they require less control
effort to stabilize due to their slow dynamical behavior [19].

Now that the state space representation of the LV (GLV ) has been established and
analyzed, uncertainties in the model will be evaluated for in the next section.
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Figure 2.11: (A) showing the attitude frequency response (θINS(ω)/βTVC(ω)).
(B) showing the pole-zero map of GLV.

2.12 Uncertainty Modelling

Without robust control, a control system is designed to work with a single nominal plant
model. In some cases, this system can be sufficient for its respective application it is
designed for. However, 100 % of the time the nominal plant model is not representing the
actual plant. For any system the stability and performance are affected by many dynamical
perturbations, that is uncertainties. These uncertainties come from external disturbances
as well as modelling inaccuracies. A successful controller must function properly for all
uncertainties within a bounded set [27].

This section begins with the necessary knowledge to integrate uncertainties into the model
of the LV GLV that was introduced in Equation 2.44 in the previous section. In this
section, theory from [19] and [1] will be used to explain the Linear Fractional Transform
(LFT) framework. This is followed by how the uncertainties are described in the model
with a summary of all the relevant uncertain parameters for GLV .

2.12.1 LFT Framework

GLV can be augmented to incorporate uncertainties with LFT theory. The LFT is a
known approach to model the known uncertainties of each parameter in a model. The
LFT representation is used as a mathematical representation of the model of the LV and
the known uncertainties defined by a state feedback interconnection between two matrices,
P ∈ C(nd+nu)×(ne+ny) and ∆ ∈ Cny×nu , where P is traditionally partitioned into four
submatrices [19] [1]. This partitioning can be seen in Equation 2.45.
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[
z

y

]
= P (s)

[
w

u

]
=

[
P11(s) P12(s)

P21(s) P22(s)

][
w

u

]
(2.45)

where:

u is the control variables.
y is the measured variables.
w is the exogenous signals such as disturbances and commands.
z is the so-called error signals which are to be minimized in some sense to meet the

control objectives.

The two types of LFT interconnections are shown in Figure 2.12. Where (A) is showing
the upper LFT interconnection and (B) is showing the lower LFT interconnection.

w

u

z

y

P

Δu w

u

z

y

P

Δl

(A) (B)
Figure 2.12: (A) showing the upper LFT interconnection and (B) showing

the lower LFT interconnection [1]

Here the upper LFT describes the relation between the nominal plant P and the known
uncertainties ∆u. The Fu operator defines the closed loop from the input signal w to the
output signal z. The difinition can be seen in Equation 2.46.

Fu(P,∆u) = P22 + P21∆u(I − P11)−1P12 (2.46)

This representation is often used to model uncertainties in robust control theory. It can be
used to model plants subject to uncertainties through ∆u, where ∆u is a block-diagonal
transfer matrix including all possible perturbations.

Furthermore, the lower LFT interconnection is describing the relation between P and ∆l

through the operator Fl. This relation can be seen in Equation 2.47.

Fl(P,∆l) = P11 + P12∆u(I − P22)−1P21 (2.47)

The lower LFT form will later be used in Chapter 4 for synthesizing a controller for the
LV system.
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As an example for defining an uncertain parameter, assume that a given parameter x has an
uncertainty range σx around its nominal value. This is modelled as an input multiplicative
perturbation through the variation around its nominal value. This is also represented in
Equation 2.48.

x = x0(1 + σxδx), δx ∈ [−1 1] (2.48)

where δx is a bounded uncertainty flag.

With Equation 2.46 in mind, this effect can also be written on LFT form by having in the
nominal system set to:

P =

[
0 1

x0σx x0

]
(2.49)

Every time the uncertain parameter x appears in a linear time-invariant system, it can be
replaced by Figure 2.13 [27].

0 1
x0σx x0

δx

u ux

Figure 2.13: LFT representation of an arbitrary uncertain parameter x

2.12.2 Uncertain LV Model

In Table 2.3 on the next page are all the uncertain parameters’ respective nominal
values and uncertainties are listed. The nominal values are imported from the simulation
explained back in subsection 1.3.1 and the uncertainties have been provided by ESA. The
parameters are split up in rigid-body parameters and flexible-body parameters. All the
values have been gathered from fifty seconds into the flight, as this is where the maximum
dynamic pressure will be at its highest and therefore corresponds to where the uncertainties
are considered to be most severe [19].
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Variable Symbol Units Nominal Uncertainty

Thrust force FTV C kN 2510.6 10 %
Longit. velocity vx m/s 834.6 10 %
Air density ρair Pa 0.1323 10 %
Longit. CP coordinate xCP m 29.8 10 %
Longit. CG coordinate xCG m 9.4 2 %
Total RLV mass m kg 79275 2 %
Pitch inertia Jy kg ·m2 46 · 105 2 %

1st natural freq. ωq1 rad 5.4132 [-20 15]%
2nd natural freq. ωq2 rad 12.3287 [-25 20]%
1st PVP trans. length ΨPV P1

t m 0.0069 [-40 30]%
2nd PVP trans. length ΨPV P2

t m -0.0057 50 %
1st PVP rot. angle ΨPV P1

r rad -0.0013 [-40 30]%
2nd PVP rot. angle ΨPV P2

r rad -0.0014 50 %
1st INS trans. length ΨINS1

t m 0.0102 [-40 30]%
2nd INS trans. length ΨINS2

t m -0.0057 50 %
1st INS rot. angle ΨINS1

r rad 0.0021 [-40 30]%
2nd INS rot. angle ΨINS2

r rad -0.0024 50 %

Table 2.3: Table showing all the parameters’ nominal values and
uncertainties. The parameters are split up in rigid-body parameters and

flexible-body parameters [8]

All the parametric uncertainties introduced in Table 2.3 are presented in a similar way
as in Figure 2.13. Here the uncertainty block is partitioned as a diagonal matrix with
all the uncertainty flags from the rigid-body dynamics listed first followed by the flexible-
body dynamics: ∆LV = diag(∆LV,R,∆LV,F ). ∆LV represents the ∆u-block shown back
in Figure 2.12A and ∆LV,R and ∆LV,F are given in Equation 2.50 and Equation 2.51,
respectively. I• is the identity matrix of size •, where • represents the number of times a
given uncertain parameter is present in the state space representation. For example the
uncertain parameter mass, m, occurs six times in Equation 2.44, hence I• will be a 6× 6

identity matrix represented by the notation I6. In this thesis the parameters are defined
using the Robust Control Toolbox provided by MATLAB [10]. The resulting VEGA LFT
model has 87 dimensions when counting the parameters and their repetitions.

∆LV,R = diag
[
I24δvx, I12δxCG, I8δJy, I6δxCP , I6δm, I6δρair, I3δTTV C

]
(2.50)

∆LV,F = diag[I2δωq1, I2δωq2, I3δΨ
PV P1
r , I3δΨ

PV P2
r , I2δΨ

PV P1
t ,

I2δΨ
PV P2
t , I2δΨ

INS1
r , I2δΨ

INS2
r , I2δΨ

INS1
t , I2δΨ

INS2
t ] (2.51)

In Figure 2.14 the upper LFT representation of GLV can be seen. Here the two commands
βTV C and β̈TV C can be seen as input, Qα, θINS , θ̇INS , zINS , żINS can be seen as output
and ∆LV as the uncertainty block.

31



2. Problem Analysis

u y

ΔLV

βTVC

βTVC¨
GLV

zINS
zINS.

θINS
θINS
.
Qα

Figure 2.14: Upper LFT representation of GLV

To illustrate the effect from the perturbations on the LV model, the frequency response at
t = 50 s is plotted in Figure 2.15 with the nominal values represented by the red line and
scattered responses in gray. Over the whole frequency range, this plot clearly shows the
impact of uncertainties for the θINS(ω)/βTV C(ω) channel. Note that each plot consists of
random samples from the uncertainties and does not necessarily represent the worst-case
response.
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Figure 2.15: Bode plot of the upper LFT of θINS(ω)/βTVC(ω) at 50 seconds

This section concludes the theory for the LV model, that has been present throughout the
whole chapter. To conclude the chapter as a whole, a model for the TVC actuation system,
a delay model and a wind disturbance model will be made in the next three subsections,
respectively.
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2.12.3 Uncertain TVC Actuation Model

The dynamics of the TVC actuators are characterized by the TVC actuator model. The
model in this thesis is an approximation from [27] and [19]. There, the TVC actuator has
been obtained from Hardware-In-the-Loop (HWIL) simulations. As with the LV model, the
TVC actuator model is also described by an upper LFT configuration: Fu(GTV C ,∆TV C),
where there has been given an uncertainty on 10 % on its dynamics. The nominal frequency
response together with the dispersed response can be seen in Figure 2.16. Additionally,
the upper LFT configuration for the TVC actuation model can be seen in Figure 2.17B.
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Figure 2.16: Frequency response the TVC model

2.12.4 Uncertain Delay Model

Delays in the overall system also needs to be modelled. These delays originate from TVC
actuators, sensors and digital processing from on-board computers in general. In [19], each
of these subsystems have a delay on 15 ms, 12 ms and 12 ms, respectively. This makes the
total delay in the system 39 ms with ± 10 ms uncertainty [19]. This is represented by
τ = τ0 + στδτ , where τ0 = 39 ms and στ = 10 ms. Figure 2.17A on the next page shows
the upper LFT representation of the delay model, Gτ (s), where:

∆τ = I4δτ (2.52)
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uτ yτ

Gτ

Δτ
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ΔTVC

(B)

βcβĉ
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GTVC

Figure 2.17: (A) showing the upper LFT representation of Gτ (s) and (B)
showing the upper LFT representation of GTVC(s).

In Figure 2.18, a 2nd order Padé approximation is designed to simulate the delays in the
system, where the red line is representing the nominal delay in the system, and the gray
lines are representing dispersed responses. Here it can be seen the gains are approximately
0 dB and provides overall good convergence with respect to pure time delay within the
frequency range of interest for analysis and design.
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Figure 2.18: Nominal and dispersed frequency response of the delay model

2.12.5 Dryden Filter

The Dryden filter [28] is a mathematical model that is used to represent atmospheric
turbulence. It colours white noise by transforming it into wind gusts where it treats it as
spatially varying stochastic processes [29]. In Equation 2.53 the transfer function of the
Dryden filter is shown [1] [8].
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Gwind (s) =
vw(s)

nw(s)
=

√
2
π
Vw(h)
Lw(h)σ

2
w(h)

s + Vw(h)
Lw(h)

(2.53)

where Lw(h) is the turbulence scale and σw(h) is the standard deviation of the wind
turbulence. In [19] and [30], Lw(h) and σw(h) can be found in tabular form and can also
be seen in Table 2.4. Here the standard deviation of the wind turbulence is defined for
three wind conditions: Light, moderate, and severe. In this thesis, the standard deviation
is set for light weather conditions, but will be scalable later in Section 4.4 when assigning
weights to the LV models.

Altitude Turbulence length scale Wind standard deviation σw [m/s]
h [km] Lw [m] Light Moderate Severe

1 832 0.17 1.65 5.70
2 902 0.17 1.65 5.80
4 1040 0.20 2.04 6.24
6 1040 0.21 2.13 7.16
8 1040 0.22 2.15 7.59
10 1230 0.22 2.23 7.72
12 1800 0.25 2.47 7.89
14 2820 0.26 2.62 6.93
16 3400 0.24 2.44 5.00
18 5000 0.22 2.21 4.07
20 8640 0.23 2.26 3.85

Table 2.4: Turbulence length scale and wind standard deviation at different
altitudes [19]

Vw(h) is defined by a vertical profile of wind velocity. In this project, this wind profile
has been inspired by [19] and can be seen in Equation 2.54. Beyond twenty kilometers the
wind disturbance is not considered to have a significant impact on the LV anymore and
the wind is therefore set to zero. For low altitudes the wind amplitude is not considered
to be of any significance but gradually builds up with an exponential leading edge until
h = 2000 m altitude. During intermediate altitudes between 2000 m ≤ h ≤ 17500 m, the
gust amplitude has been set to a constant of 14 m/s as this is also used in [19]. For the
trailing edge, Vw(h) decreases with a "1-cosine" function until the Vw(h) reaches zero at
h = 20000 m.

Vw(h) =



10A

[(
h

Hl

)0.9

− 0.9
h

Hl

]
for 0 ≤ h < Hl

A for Hl ≤ h ≤ Hf −Hu

A

2

[
1− cos

(
π

Hu

(
h−Hf

))]
for Hf −Hu < h ≤ Hf

0 for h > Hf

(2.54)

where Hl = 2000 m, Hu = 2500 m, Hf = 20000 m and A = 14 m/s.
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2. Problem Analysis

Figure 2.19A shows how the Vw(h)-coefficient changes over relevant altitudes. According
to the simulation explained in subsection 1.3.1, the LV reaches twenty kilometers altitude
at sixty seconds. Therefore Figure 2.19B shows the resulting Dryden filters from a time
range between five to sixty-five seconds, as the Dryden filters above sixty seconds will just
be zero.
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Figure 2.19: (A) shows the development of Vw(h) from zero to twenty
kilometers. (B) shows the resulting Dryden filters from different time

instants of the LV flight.

2.13 Summary

Throughout Chapter 2 a model of an LV has been deduced with the VEGA launcher
as a benchmark. In the beginning of this chapter, an overview of the VEGA LV model
was introduced, and a trajectory profile provided by ESA was presented for the LV to
follow. The necessary reference frames were described to later deduce the translational
and rotational dynamic equations for an LV model in 3D. All the dynamical equations
were evaluated by data representing the VEGA LV and was provided by ESA.

For simplicity, the 3D LV model was converted to a 2D model and Jacob linearizations were
conducted in a systematically manner on the dynamic equations. The earlier introduced
trajectory profile was then used for determining operating points so the linearization could
be gridded along the trajectory profile. A state space system was established and frequency
responses of LTI systems at different time instants concluded that the dynamics of the LV
changes throughout the flight. The chapter ended with introducing uncertainties to the
LV model, a TVC actuation model and a delay model with an upper LFT configuration.
A wind disturbance model was also modelled in the end.

The next chapter will present technical requirements along with establishing performance
requirements for the total LV system.
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Requirement Specification 3
In the previous chapter the model of the LV was derived as well as the TVC model and the
delay model. In this chapter the stability requirements and the performance requirements
will be analyzed and evaluated upon.

3.1 Technical Requirements

In [1] [8] [19] and [27] there are descriptions of typical technical requirements for what a
control system should achieve for an LV system. A summary of these requirements have
been listed below and will be evaluated in the next section:

• Stability :
First and foremost the control system should be stabilized when accounting for
disturbances.

• Attitude Tracking :
The control system should track attitude commands such that the error converges
to zero.

• Load and Drift Management :
The control system should reduce the dynamic pressure and drift from the
preprogrammed trajectory.

• Actuation Minimization:
TVC actuation during the flight should not reach its deflection and bandwidth limits.

• Disturbance Rejection:
Rejecting disturbances such as wind gusts, noise on sensors and internal dynamics
such as bending modes.

Some of the requirements mentioned above are contradicting each other. For example, in
order to minimize the aerodynamic load on the vehicle, the control system must pitch in the
direction of the wind field, but in doing so makes the LV drift away from its preprogrammed
trajectory. Therefore, a trade-off balance between load and drift is required [1].

3.2 Performance Requirements

As previously mentioned, the structural load is crucial for the LV to keep low. Recall
Equation 2.18 on page 15 where the performance indicator Qα was introduced: Qα(t) =

Q(t) ·α(t). A performance requirement is made to keep its value below a certain envelope
during the atmospheric flight. In Figure 3.1 this envelope can be seen, where Qα is plotted
as a function of the Mach number. The graph is an approximation from [19] and is assumed
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3. Requirement Specification

to be sufficient to function as an upper bound of dynamic pressure and AoA for this thesis.
In Figure 3.1, the bound on Qα rises at around one and two Mach, which corresponds with
where the dynamic pressure is at its highest during the flight.

Note that Qα is sensitive to wind disturbances due to its dependency on the AoA.
Therefore, the control system must be robust against wind gusts to keep the structural load
below the certain threshold. Thereby, the load requirement also sets an indirect natural
maximum limit on the AoA at different Mach numbers throughout the atmospheric flight.
Therefore, there will be no requirement on a specific degree of maximum AoA.
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Figure 3.1: Qα envelope [19]

To keep the structural load low, the LV will be allowed to drift from its predetermined
trajectory. Requirements for the lateral drift and drift rate (z, ż) have been made to ensure
that even if the LV drifts from its predefined trajectory, it will only do so within a certain
range.

Lastly, a performance requirement is made to limit the actuation effort of the TVC
actuators. This performance requirement ensures efficiency of fuel consumption by
converting it into longitudinal velocity along the reference trajectory instead of gimbaling
the LV.

The performance requirements are summarized in Table 3.1.

Requirements Metrics Bounds
Load performance Qα < Qα envelope

Lateral control performance Position (z)
Velocity (ż)

< 500 m
< 15 m/s

Actuation performance β
Integrated β

< 6.5°
< 250°s

Table 3.1: Performance requirements for the control system [1] [19] [31]
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3.2. Performance Requirements AAU

The technical requirements for a typical LV system have now been explained and the
performance requirements have been described and evaluated. The next chapter will be
about establishing a framework LV system and design a controller with the requirements
from this chapter in mind.
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Linear Parameter-Varying
Control Design 4

This chapter will present the control system theory and design for the LV model derived
back in Section 2.11 using the Linear Varying-Parameter synthesis. First, an introduction
on why gridded LPV control is preferred over H∞ and other gain scheduling methods.
Next, the modelling of the LPV in the LFT framework is introduced, then a brief overview
of quadratic and robust stability is explained. Then the controller synthesis is described
with a theorem, followed by assigning the time-varying parameter. An affine interpolation
approach is presented before a weighted LFT-framework is designed for the LV system.

4.1 Introduction to LPV Theory

There exist different methods of designing an LPV controller. These include a grid-based
LPV model and LFT-based modelling method that captures the behaviour of the time-
varying parameters. Another approach is to have the system on polytopic form. This
includes having the state space matrices that are depended on the time-varying parameter
on affine form [32]. In this thesis the grid-based approach will be used.

As mentioned back in Section 2.10, the gain scheduling methodology is a standard practice
to deal with systems with a wide dynamic variation and is also used in control of LVs [19].
The procedure is to have a number of linear designs at different operational points over
the course of the atmospheric flight and design local linear controllers for each operational
point. Then, a global controller will interpolate between the local controllers as the
LVs dynamics change during the flight. The main drawback with gain scheduling, is
that between the operational points there is no guarantee for stability. This is where
linear parameter-varying control theory can be considered to extend the gain scheduling
theory by guaranteeing stability. LPV control problems can be established by Linear
Matrix Inequalities (LMIs) and Semidefinite Programming (SDP) is then used to solve the
problems. By using LMIs the feasible solution to the control problem is also convex [33].

The LPV framework is in many ways, very similar to the standard H∞ framework. Firstly,
they use the same LFT interconnection presented back in subsection 2.12.1. They both
use control techniques that provide optimality and robustness. The LPV approach can be
used for gain scheduling like the H∞ framework does. Since the LPV approach takes time-
varying parameters in the system into account to establish the LMIs, it can be considered
an augmentation of the H∞ approach.
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4.2. LPV Modelling AAU

4.2 LPV Modelling

A system with one or more varying parameters can be represented as a state space, but
where the matrices are dependent on the varying parameters ρ(t). In Equation 4.1 such a
system can be seen.

[
ẋ(t)

y(t)

]
=

[
A(ρ(t)) B(ρ(t))

C(ρ(t)) Dρ(t))

][
x(t)

u(t)

]
,

ρ ∈ P
ν ≤ ρ̇ ≤ ν

(4.1)

where P ⊂ Rnρ is a known compact set which ρ belongs to. A, B, C and D are the
continuous state-space matrices [1].

The varying parameter(s) are time-dependent. These parameters are defined as changing
and initially unknown but causal, meaning they can be measured in real-time. Depending
on the stability, the varying parameters ρ(t) can also have defined bounds on their rate
they are changing with: A minimum rate ν and a maximum rate ν [32].

When designing a controller with LPV synthesis, the objective is to find a linear controller
K(ρ), such that the Multiple-Input and Multiple-Output (MIMO) plant P (ρ) meets
the requirements specified back in Chapter 3. When designing the controller, the
interconnection is the same as a lower LFT configuration, which also was introduced back
in Figure 2.12 on page 29.

w

u

z

y

P(ρ)

K(ρ)

Figure 4.1: LPV control problem formulation [1]

The plant P (ρ) is partitioned as shown below:

 ẋ

z

y

 =

 A(ρ) B1(ρ) B2(ρ)

C1(ρ) D11(ρ) D12(ρ)

C2(ρ) D21(ρ) D22(ρ)


︸ ︷︷ ︸

P (ρ)

 x

w

u

 (4.2)

where x is the state vector of P , x ∈ Rnx , y ∈ Rny , w ∈ Rnw and z ∈ Rnz .

The controller K(ρ) with nx states can be written as:
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4. Linear Parameter-Varying Control Design

[
ẋc
u

]
=

[
Ac(ρ) Bc(ρ)

Cc(ρ) Dc(ρ)

]
︸ ︷︷ ︸

K(ρ)

[
xc
y

]
(4.3)

The controller can, together with the LPV model in Equation 4.2, be represented as the
closed-loop system in Equation 4.4 [19].

[
ẋclp
z

]
=

[
Aclp(ρ) Bclp(ρ)

Cclp(ρ) Dclp(ρ)

]
︸ ︷︷ ︸
Tzw(ρ)=Fl(P (ρ),K(ρ))

[
xclp
w

]
(4.4)

The induced L2 norm can be used as a performance metric that describes the maximum
amplification of energy from the exogenous input w to the exogenous output z within the
admissible set of scheduling time-varying parameters [19] [32]. In Equation 4.5, the L2

norm is expressed in terms of an LPV system [32]:

∥∥Tzw(ρ)
∥∥
L2→L2 = sup

ρ ∈ P
ν ≤ ρ̇ ≤ ν̄

sup

w ∈ L2

‖w‖L2 6= 0

‖z‖L2
‖w‖L2

(4.5)

The LPV synthesis problem then becomes choosing a controller K(ρ) that minimizes the
induced L2 norm subject to the time-varying parameters and the rate of change of these
time-varying parameters. This control problem can be seen in Equation 4.6.

min
K(ρ)

∥∥∥Fl (P (ρ),K(ρ)
)∥∥∥
L2→L2

; subject to
ρ ∈ P
ν ≤ ρ̇ ≤ ν̄

(4.6)

Notion of Stability

The system is said to be quadratically stable if the problem is solved without the rated
bounds on the time-varying parameters, meaning that −∞ ≤ ρ̇ ≤ ∞. Then the synthesis is
performed by finding a single Lyapunov function [32]. To find a system that is quadratically
stable is one of the simplest ways for LPV-control synthesis. However, the solution to the
control problem is rather conservative compared to the robust synthesis. This is because
stronger conditions requires to be satisfied before quadratic stability is achieved compared
to the robust stability [32].

If the control problem in Equation 4.6 is rate-bounded, then a robust synthesis is carried
out. Here, parameter dependent Lyapunov functions are employed to find an equal amount
of parameter dependent controllers. This approach reduces the conservatism of the solution
but is also a more complex and computationally demanding optimization process [19].

In Figure 4.2 an overview of stability is presented. Both quadratic stability and robust
stability implies exponential stability. The quadratic stability is a special case of robust
stability, hence quadratic stability implies robust stability, but not the other way around.
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4.3. LPV Synthesis AAU

There exists systems which are Hurwitz but are not quadratically stable. The reader is
advised to consult [32] for more information about stability of LPV systems.

Exponentially Stable

Quadratically Stable Robustly Stable

Hurwitzx Time independent

Figure 4.2: Overview of quadratic and robust stability

4.3 LPV Synthesis

In this section the controller synthesis is explained. The design strategy will be to design
a robustly stable family of controllers with the gridding method for gain scheduling.

The LV system GLV in Equation 2.44 on page 26 has a dynamic output, hence the
according synthesis will be accounted for. As mentioned in Section 4.1, the control problem
in Equation 4.6 can be described as an LMI problem. The optimization with robust
stabilization by dynamic output feedback consists by employing parameter-dependent
Lyapunov functions to find parameter-dependent controllers such that the theorem from
[32] below is satisfied:

Theorem

Consider the LPV system together with the dynamic output feedback controller:

ẋ(t) = A(ρ(t))x(t) + E(ρ(t))w(t) +B(ρ(t))u(t)

z(t) = C(ρ(t))x(t) + F (ρ(t))w(t) +D(ρ(t))u(t)

y(t) = Cy(ρ(t))x(t) + Fy(ρ(t))w(t)

(4.7)

ẋc(t) = Ac(ρ(t))xc(t) +Bc(ρ(t))y(t)

u(t) = Cc(ρ(t))xc(t) +Dc(ρ(t))y(t)
(4.8)

where u ∈ Rm, w ∈ Rp, z ∈ Rq and y ∈ Rr.
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4. Linear Parameter-Varying Control Design

Let M and the full-rank matrices NY (ρ) and NX(ρ) be defined by:

[
Cy(ρ) Fy(ρ) 0r×q

]
NX(ρ) = 0, NY (ρ)T

 B(ρ)

D(ρ)

0p×m

 = 0, (4.9)

M(ρ) =

[
X1(ρ) I

? Y1(ρ)

]

where ? means its transposed symmetric counterpart in the matrix and NX(ρ) and NY (ρ)

are chosen such that the span of vectors they are representing becomes the nullspace of
the vectors in Equation 4.9.

The system in Equation 4.7 is robustly stabilizable by a dynamic output feedback
controller on the form of Equation 4.8 if and only if there exists differentiable maps
X1(ρ), Y1(ρ) : ∆ρ → Sn�0 such that the LMIs:

N(ρ)TX

 He
(
X1(ρ)A(ρ)

)
+ Ẋ1(ρ) X1(ρ)E(ρ) C(ρ)T

? −γI F (ρ)T

? ? −γI

N(ρ)X � 0 (4.10)

N(ρ)TY

 He
(
A(ρ)Y1(ρ)

)
− Ẏ1(ρ) Y1(ρ)C(ρ)T E(ρ)

? −γI F (ρ)

? ? −γI

N(ρ)Y � 0 (4.11)

where:

He(H) = H+HT ,
Ẏ1(ρ) =

∑
vi
∂Y1
∂ρi

(ρ),

Ẋ1(ρ) =
∑
vi
∂X1
∂ρi

(ρ),

M(ρ) � 0

holds for all (ρ, v) ∈ ∆ρ × vert{∆ν}

To ensure the system in Equation 4.7 is controllable and observable, the LMIs in
Equation 4.10 and Equation 4.11 must hold, respectively.

The performance is given by:∥∥Tzw(ρ)
∥∥
L2→L2 ≤ γ ∀(w ∈ L2, ρ ∈ Pν),Pν = {ρ ∈ P|ρ̇ ∈ ∆ν} (4.12)

Once X1 and Y1 have been found from the LMIs, a procedure for computing the dynamic
output feedback controller in Equation 4.8 can be found in [32] in proposition 3.3.8. This
procedure must be done for each ρ ∈ ∆ρ, hence one needs to grid ∆ρ in order for it to be
implementable [34].

The robust synthesis is implemented in the MATLAB toolbox LPVTools [12] with the
function lpvsyn with rate bounded conditions, which will be used in this project.
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4.3. LPV Synthesis AAU

4.3.1 Choosing the Varying Parameter

In [1] an analysis was carried out to investigate which parameter of an LV has the biggest
impact on the state space model. This was done to strategically assign parameters with
most impact as the time-varying parameters. Since assigning all the changing variables as
time-varying parameters will add a lot of complexity to the synthesis process and increase
the computation time exponentially [32]. The way the analysis was carried out, was first to
define the smallest and largest value of each parameter, and then changing a parameter’s
smallest value to its largest value for each parameter. The parameter with the largest
relative change in singular value was found through all possible combinations. This analysis
is assumed sufficient for the purpose of finding the parameters with most impact on the
LV. Note that not all combinations of parameters of smallest and largest values are realistic
for an ascent of an LV. For example, minimum air density and maximum mass is not a
realistic scenario.

The parameter with the largest relative change in singular value was found to be the
velocity. This is in line with back in subsection 2.12.2, where the velocity, vx, was found to
be the parameter that occurred most times in GLV with a total of 24 times, where some of
them were squared. For more information on the analysis, please consult to the reference.

A table with parameters that have the most relative effect on the singular value ranked
from most to least can be seen in Table 4.1.

Parameter
Maximum Relative effect on σ

(without single outlier) Nr
Velocity 250e3 1
Inertia 10e3 2

Air density 2e3 3
Center of Gravity 19 (1.5) 4

Pitch 2.5 (1.3) 5
Mach number 1 6

Center of Pressure 0.35 7
Mass 0.2 (0.01) 8

Gravity 0.1 (0.02) 9

Table 4.1: Parameters which are affecting the LV system listed from most to
least [1]

In this thesis, only the velocity, vx(t) = ρ(t), have been chosen as the time-varying
parameter due to simplicity and because it has 25 times as large relative effect on the
singular value compared to the second largest effect from the inertia. Choosing the velocity
is in good accordance with the VEGA LV, which also has the velocity as the varying
parameter [19].

4.3.2 Controller Synthesis

The velocity has been gridded nine times:
ρ = [96, 229, 352, 468, 625, 835, 1103, 1425, 1771] m/s, which corresponds at the times
t = [10, 20, 30, 40, 50, 60, 70, 80, 90] s. This requires the LTI-models on the grid to
have the same number of inputs and outputs [19].
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4. Linear Parameter-Varying Control Design

From previous data of the partially non-linear simulation from [1], the velocity and the
corresponding acceleration have been gathered. The data from this simulation is assumed
to be representative for a typical VEGA LV model. The acceleration throughout the ascent
from one second to a hundred seconds lies between 5.4 m/s2 < ρ̇ < 36.4 m/s2.
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Figure 4.3: Velocity and acceleration from non-linear simulation

As mentioned earlier, the synthesis is carried out through the command lpvsyn with the
MATLAB toolbox LPVTools. The rate variation of the velocity in the x-direction vx, is
included in the basis functions of Xρ and Yρ. In this project, these basis functions are on
quadratic form: Xρ = X0 +X1ρ+X2ρ

2 and Yρ = Y0 + Y1ρ+ Y2ρ
2. Through iterations of

testing, quadratic basis functions have been found to yield good performance while keeping
a relative low complexity for computational reasons. Furthermore, the critical dynamic
pressure parameter, Q, depends on the square of the velocity.

Parametric Dependency on ρ

Traditionally, the other parameters in the state space matrix are independent of the velocity
and therefore considered constant when gridding the state spaces. However, as mentioned
back in Section 2.2 on page 7, the trajectory of the LV is predetermined in the atmospheric
ascent phase. This makes the other parameters have a one-to-one relationship with the
velocity and therefore possible to forecast what the other parameters are at any given
velocity. This way, the other parameters can be considered functions of the velocity and
the LPV model can account for the dynamics of all the parameters. This allows to grid the
LTI-models presented back in Figure 2.11 on page 28 as they are with only one time-varying
parameter.

Affine Interpolation

When the local controllers from the LTI models have been obtained, it has been chosen to
make an affine interpolation between controllers between the given grid points. The affine
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4.4. Weighted Interconnection AAU

controllers are computed live as the LV ascents through the atmosphere. The resolution
of affine controllers will be as high as the Nyquist frequency allows. The intention is
to approximate a closer representation of controllers that would have been if a higher
resolution than nine points were used. This is an attempt to get better performance
while avoiding the disadvantages from more grid points, such as further conservatism and
possible numerical problems from additional LMIs.

ρ

K(ρ)
A�ne approximation
Continous unknown controller

Gridded controller

Figure 4.4: Illustration of affine interpolation between gridded controllers

The affine interpolation is made by obtaining data points from the longitudinal velocity vx
from the simulation mentioned back in subsection 1.3.1 to simulate measured data from
a sensor. Then an affine regression is made between each of the nine gridded velocity
points that are placed along the trajectory. The affine relationships between each gridded
line are then used to interpolate between the controllers, resulting in the same number of
controllers as there are data points between ten and ninety seconds of simulation.

4.4 Weighted Interconnection

In this section, the design of weights for the control system are explained with the intention
of satisfying the established performance requirements from Chapter 3.

w

u

z

y

P(ρ)

K(ρ)

Wi(ω) Wo(ω)

Figure 4.5: Weighted interconnection of the nominal LPV system

The lower LFT framework showed in Figure 4.1, can be augmented with input and output
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4. Linear Parameter-Varying Control Design

weights that are frequency dependent. The input and output weights are represented by
the gray boxes Wi(ω) and Wo(ω) respectively in Figure 4.5.

These weights are designed to manipulate the overall open-loop system P (ρ) such that
the performance requirements stated back in Section 3.2 can be satisfied. Furthermore,
the weights are going to be chosen, such that the performance on the system is scaled.
According to [35], a useful scaling approach is to make the magnitude of the variables less
than one. This can be achieved by dividing each variable by its maximum expected/allowed
change. In Equation 4.13, an example for how to scale the exogenous output is shown.

z =
ẑ

ẑmax
(4.13)

where ẑ is the unscaled exogenous output and zmax is the largest expected value.

On Figure 4.6, the weighted interconnection for the LPV system can be seen. This
interconnection consists of five main blocks, the parameter dependent controller K(ρ), the
parameter dependent LV model GLV (ρ), the actuator model GTV C ,the delay model Gτ
and the Dryden filter Gwind. The LV, TVC, delay and wind model have all been described
back in subsection 2.12.2, subsection 2.12.3, subsection 2.12.4 and subsection 2.12.5,
respectively. The gray boxes represent weights that are frequency dependent filters.
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Figure 4.6: Weighted interconnection of the nominal LPV system [1]

There are a total of 16 weights used in the interconnection, 9 input weights and 7 output
weights. The input weights consist of four command weights on each state signal, Wc, four
weights on the noise from sensors, Wn and a weight on the wind disturbance acting on the
LV, Ww. The output weights consist of a weight on the pitch error, Wθe , a weight on the
actuator signal Wβ , a weight on the performance indicator Qα, Wα and four weights on
the state outputs, Wz [1] [19].

Figure 4.6 can be formulated as the augmented LFT model as in Figure 4.5. With the LFT
framework, the input and output weights have been encapsulated with the plant P (ρ) to
form M(ρ).
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Figure 4.7: LFT closed-loop interconnection with weights

The input and output weight blocks have their weights partitioned as a diagonal in the
LFT frame. This is shown in Equation 4.14 and Equation 4.15. The weights with four
signals, i.e. Wc, Wn and Wz, have also their respective signals partitioned in a diagonal.

Wi =

Wc 0 0

0 Ww 0

0 0 Wn

 (4.14)

Wo =


Wθe 0 0 0

0 Wz 0 0

0 0 Wα 0

0 0 0 Wβ

 (4.15)

Furthermore, this results in the closed-loop system of the lower LFT framework to be:

z = Fl(M(ρ),K(ρ))w (4.16)

4.5 Weighting Function Selection

Now that the interconnection of the weights has been accounted for, the selection of weights
are evaluated. The weights will be chosen with the performance requirements in mind.
Only the initial weights will be evaluated for, since the weighting function selection is
typically an iterative process. The initial weights will be tuned until a desired response
of the states have been met [19]. When choosing the weights, it is practical to use the
same units for what comes into the weights and out of the weights. In this thesis, degrees
and meters have been chosen for the angular and distance units for input and output
signals respectively, since they are the same units given in the performance requirements.
However, within the system radians will be used as angular units for designing the
frequency dependent weights. Furthermore, since the LV in itself is already a complex
system, the order of the weights have been kept low in order to reduce the complexity of
the system M(ρ) and ease the tuning in general. The theory of the weight selection have
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been influenced from [1] and [19]. In the next two sections, the input weights and outputs
weights are evaluated along with what the function of each weight is.

4.5.1 Input Weight Selection

Command Filters

The first weight to be considered is the command weight Wc, which have been placed on
the input command wc of the system. The command weights determine the maximum
input a system can have. In this thesis the initial maximum commands for each signal has
been set one:

Wc =


Wθc 0 0 0

0 Wθ̇c
0 0

0 0 Wzc 0

0 0 0 Wżc

 =


π

180 0 0 0

0 π
180 0 0

0 0 1 0

0 0 0 1

 (4.17)

Noise Filters

The noise on the sensors, Wn, have been provided by ESA and are set to 0.02° on the
pitch, 0.01° per second on the pitch rate, drift noise is 0.01 m and for the drift rate the
noise is 0.001 m/s [19].

Wn =


π

1800.02 0 0 0

0 π
1800.01 0 0

0 0 0.01 0

0 0 0 0.001

 (4.18)

Wind Disturbance Filter

Ww is placed on the disturbance channel going into Gwind. The wind disturbance weight
Ww scales the number of standard deviations of the velocity of the wind gusts produced by
the Dryden filter [19] [36]. The number of standard deviations of wind gusts has been set to
a constant of three across the whole trajectory, Ww = 3. Even though wind disturbances
occur at relative low frequencies, it has been chosen to not implement a low-pass filter in
Ww due to simplicity in the model

4.5.2 Output Weight Selection

For the output weight selection, the scaling introduced in Equation 4.13 is used. This
means that the output weights will have the largest desired value of their respective
parameters inverted in order to normalize the output to one: z = ẑ

ẑmax
.

Sensitivity and Complementary Sensitivity filters

The first weights to be considered are Wθe and Wθz . These two weights are designed
together and will be used to impose upper bounds on the sensitivity function Sθ(s) and
the complementary sensitivity Tθ(s) function on the attitude channel, respectively. In this
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design method, the so-called waterbed-effect will be utilized. This effect comes from the
relationship: Sθ(s) + Tθ(s) = 1, which means that if the gain of Tθ(s) goes up, the gain
of Sθ(s) is forced to go down in order to sum to one [35]. In this design, Wθe will be set
to a constant and design a filter for Tθ(s) that vary over frequencies and having the gain
of Sθ(s) vary in response of Tθ(s) [19]. By only having one transfer function with states
reduces the complexity of the overall system.

Wθe penalizes the difference between the weighted commanded attitude input signal and
the measured pitch signal θe = θc − θm. Wθe will be designed to enforce stability on the
attitude channel by setting a bound on the sensitivity function, Sθ(s), of that channel.

Lower values of Sθ(s) at low frequencies improves the reference tracking performance when
disturbances are present. According to [37] and [19], sensitivity can be characterized by
the nominal sensitivity peak:

∥∥Sθ(s)∥∥L2 .
As a consequence of penalizing the sensitivity function, Wθe is set to be:

Wθe =

(
π

180

∥∥Sθ(s)∥∥L2
)−1

(4.19)

Where the inverse of the sensitivity function comes from the normalization of output
demonstrated in Equation 4.13. The inverse of Wθe (W−1

θe
) will then impose an upper

bound on Sθ(s). Normally when designing Sθ(s), W−1
θe

would have been chosen as a high-
pass filter in order to keep the steady state tracking error low. Due to simplicity, Wθe is
kept constant at 10 dB over all frequencies instead.

Wθe =

(
π

180
3.16

)−1

(4.20)

As for the inverse of the weight on the output on the attitude channel (W−1
θz

), the weight
impose an upper bound on the complementary sensitivity function, Tθ(s) on that channel.
W−1
θz

is then shaped like a low-pass filter to limit the complementary sensitivity function
at high frequencies.

Wθz(s) =

(
π

180

hθs+ ωθ
s+ ωθ

lθ

)−1

(4.21)

To limit the tracking bandwidth, the crossover frequency is set to 10 rad/s: ωθ = 10 rad/s.
An attenuating high-frequency gain on −40 dB is implemented, in order to reduce the noise
contribution from the sensors: hθ = 0.01. Lastly, the 10 dB gain of from the sensitivity
function has been chosen on the low frequencies: lθ = 3.16.

The reason for using the gain of 10 dB at the low frequencies, is the relationship:
Sθ(s) + Tθ(s) = 1. The sensitivity function Sθ(s) is forced to be under −10 dB at low
frequencies because the Tθ(s) is 10 dB at low frequencies. This creates the desired trait of
the sensitivity function of rejecting of disturbances [35].
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LV State Filters

Regarding the weight on the attitude rate channel Wθ̇, there have been no requirements
to this signal. As a consequence the weight on the channel has been set to zero: Wθ̇ = 0.

The weights for the drift and drift rate are Wz and Wż, respectively. Their inverse impose
an upper bound for the maximum allowed value for drift and drift rate. Restricting the
condition on these weights, will have the LV system lowering the total lateral drift, but
will increase the structural load on the vehicle as a consequence. The initial values have
been taken directly from the performance requirements in Section 3.2 since they are the
largest allowed output [19]:

Wz = 500−1, Wż = 15−1 (4.22)

All the weights on the output have been covered and are partitioned in Wz like shown in
Equation 4.23

Wz =


Wθz 0 0 0

0 Wθ̇z
0 0

0 0 Wzz 0

0 0 0 Wżz

 (4.23)

Qα Performance Filter

WQα(ρ) is the weighting function on the load requirement and is placed on the Qα output
channel from GLV . For this weight, the dynamic pressure is updated for each gridded state
space model, meaning it will be dependent on ρ. The purpose of this weight will restrict
the maximum allowance on the AoA, which will be set to three degrees:

WQα(ρ) =

(
π

180
Q(ρ)αmax

)−1

=

(
π

180
3Q(ρ)

)−1

(4.24)

Actuation Filter

Finally, the weight Wβ is placed on the actuation channel. This weight will be designed
to penalize the actuator saturation and thereby increasing fuel consumption efficiency.
Moreover, by designing it like a low-pass filter, high frequency actuation is reduced.

LPβ(s) =
hus+ ωu
s+ ωu

lu

(4.25)

where hu and lu are high and low frequency asymptotes and ωu is the actuation bandwidth.
The low frequency asymptote, lu is set to the maximum allowed actuator deflection:
lu = βmax = 6.5°. βmax was stated in the performance requirements in Section 3.2 [19].

Additionally, to reduce the coupling between the actuator and the two bending modes,
two notch filters have been designed to cancel out the bending modes. These notch filters
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have been set in series with the low-pass filter. Since the frequency of the bending modes
change for every flight instant, the notch filters have been designed to change along with the
bending modes. The bandwidth of the two notch filters corresponds with the bandwidth
of the first (ωq1(ρ)) and second bending mode (ωq2(ρ)), respectively.

The resulting actuation weight can be seen in Equation 4.26.

Wβ(ρ) =

 π

180

s2 + 0.5s+ ωq1(ρ)2

s2 + 70s+ ωq1(ρ)2
· s

2 + 0.5s+ ωq2(ρ)2

s2 + 70s+ ωq2(ρ)2
· 0.01s+ ωq1(ρ)

s+
ωq1(ρ)

6.5

−1

(4.26)

where the actuation bandwidth has been set equal to the bandwidth of the first bending
mode: ωu = ωq1(ρ). The frequency response of Wβ(ρ)−1 can be seen in Figure 4.8.
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Figure 4.8: Frequency response of Wβ(ρ)−1. The low-pass filter and notch
filters vary as the bending mode frequencies change over time.

To verify that Wβ(ρ)−1 does indeed cancel out the bending modes, a comparison has been
plotted in Figure 4.9 on the next page. Figure 4.9A shows the open-loop frequency response
of θz(ω)/zβ(ω) without Wβ(ρ)−1 and Figure 4.9B shows θz(ω)/zβ(ω) with Wβ(ρ)−1.
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Figure 4.9: (A) shows the open-loop frequency response of θz(ω)/zβ(ω) of
M(ρ). (B) shows the open-loop frequency response of θz(ω)/zβ(ω) of M(ρ) with

Wβ(ρ)−1.

4.6 Summary

This chapter presented an overview of why gridded LPV control is a more sophisticated
controller over other standard gain scheduling methods. Then the LPV modelling was
described for a lower LFT configuration, together with an explanation that robust
stabilization is preferred over quadratic stabilization for finding feasible solutions to
the LPV control problem. Next, the theorem for output dynamic feedback for robust
stabilization was accounted for. The longitudinal velocity vx was chosen as the time-
varying parameter of the system followed by an argument that the rest of the varying
parameters in GLV were dependent on the velocity with a one-to-one relationship. The
idea of the affine interpolation between the gridded controllers has been presented and,
lastly, the weighted interconnection compared to the requirements for the control system
has been designed and evaluated.

The next chapter will present the results from the LPV synthesis conducted onM(ρ) which
was modelled in this chapter.

54



Results and Analysis 5
This chapter will present an analysis on the results from the robust LPV synthesis with
dynamic output feedback that was conducted on the model designed in the previous
chapter.

5.1 Results

The synthesis, carried out with LPVTools, does not allow to customize the structure
of the resulting controllers. The resulting family of controllers have the structure as in
Equation 4.3 and have 15 states, which is also the same number of states in the weighted
interconnection M(ρ) showed in Figure 4.7. The closed-loop system has 28 states. Note
that the weights are only embedded in the controller and not in the plant used for the
closed-loop system: z = Fl(P (ρ),K(ρ))w.
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Figure 5.1: Poles of the LTI open-loop system and closed-loop system of the
rigid and flexible states of the LV model

Above is a plot of the poles from the nine open-loop LTI systems and the nine closed-loop
systems. The right plot is zoomed in around zero, to show that all the unstable poles have
become stable. The internal poles and poles from the weights are not shown but are also
stable. Note that because they are LTI systems, the closed-loop system is not guaranteed to
be stable in between the gridded systems and therefore the LPV system is not guaranteed
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to be stable either. Nonetheless, the stable LTI systems are a good indication for a stable
LPV system, since they show stability with decent intervals throughout the flight time
range.

Besides the controller, lpvsyn also computes the performance norm which highest possible
value has been computed to be: γ = 0.9807. The performance norm is normalized because
the output weights were normalized. Because the performance norm has been scaled, it
informs if the requirements, represented by the weights, have been complied with. This is
because γ is a supremum, meaning it represents the highest possible gain in the output
channels. Recall back to the definition of the performance norm in Equation 4.12, where
the norm can be lower or equal to γ. If γ ≤ 1 then the requirements have been satisfied.
However, if γ > 1 then it is possible that one or more output channels have been greater
than the highest allowed value.

5.2 Simulation

The closed-loop LPV system Fl
(
P (ρ),K(ρ)

)
is time-varying, so LTI analyses does not

capture the time-varying nature of the model. Optimally, the control system would have
been verified through a non-linear simulation, but as mentioned in Section 1.3, making such
a simulation was not in the scope of this thesis. However, the function lpvlsim provided
by LPVTools [13], makes a linear time-domain simulation for a particular parameter
trajectory, in this case the longitudinal velocity vx. This simulation allows to evaluate
the performance of an LFT controller K(ρ), as the parameter varies with time. The
simulation allows to set the states to initial values and capture the behavior of said state
trajectories over a time period. Additionally, lpvlsim also allows to insert user specified
input to each input channel.

In Figure 5.2 on the next page, user specified inputs to each input channel are shown.
The input on the command signals have been set to zero, meaning the controller will be
feeded only with the output from the sensors. For the wind input, the signal has been set
to a constant one. Lastly, the input signals on the noise have been chosen as Gaussian
distributed signals scaled by their respective weights.

56



5.2. Simulation AAU

0 20 40 60 80 100
Time [s]

-1

0

1

c [d
eg

]

Pitch command

0 20 40 60 80 100
Time [s]

-0.1

0

0.1

n [d
eg

]

Pitch measurement noise

0 20 40 60 80 100
Time [s]

-1

0

1

c [d
eg

/s
]

Pitch rate command

0 20 40 60 80 100
Time [s]

-0.2
0

0.2
0.4

n
[d

eg
/s

]

Pitch rate measurement noise

0 20 40 60 80 100
Time [s]

-1

0

1

z c
 [m

]

Lateral drift command

0 20 40 60 80 100
Time [s]

-5

0

5

zn
 [m

]

10-4 Drift measurement noise

0 20 40 60 80 100
Time [s]

-1

0

1

z c
 [m

]

Lateral drift rate command

0 20 40 60 80 100
Time [s]

-5

0

5

10

zn
 [m

/s
]

10-5 Drift rate measurement noise

0 20 40 60 80 100
Time [s]

0

1

2

w
c 

[m
/s

]

Wind input

θ
θ θ

θ

Figure 5.2: Input signals from the LPV simulation

The initial conditions on the 28 states have all been set to zero, except for the state
representing the pitch angle, θ. This initial condition have been set to two degrees to
simulate the control system align with the reference trajectory when a pitch angle different
from zero is present. This is assumed to be a realistic value, since a separate controller
could have been handled the pitch over manoeuvre and an error in the pitch is possible to
occur when switching to the LPV controller.

The simulation output channels are shown in Figure 5.3. The first output shows the
performance parameter Qα. This parameter satisfies the requirement of not exceeding
the upper bound showed back in Figure 3.1 on page 38. The next four outputs are the
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rigid-body states, θ, θ̇, z and ż. As for their individual performance requirements, the
pitch θ had an indirect requirement of not pitching in a way to make the AoA big enough
to make Qα exceed the maximum allowed value. There were no requirements specified for
the pitch rate θ̇. Sanity checks on both the pitch and pitch rate indicates that they have
values that represent a stable trajectory, since the highest pitch angle w.r.t. the trajectory
is two degrees and highest pitch rate is two degrees per second. The lateral drift z must
not exceed more than 500 m and the lateral drift rate ż must not exceed more than 15 m/s.
Looking at the outputs for the drift and drift rates, these requirements have been satisfied
as the maximum drift from the trajectory is 8 m and the maximum drift rate is 0.4 m/s.

The maximum signal for the actuation system has been measured to zβ = 2.90°, and
thereby does not exceed the maximum allowed actuation angle on 6.5°. Furthermore, the
integration of the actuation signal has been measured to 0.4985 °s and does not exceeded
the requirement on 250 °s.

Moreover, the pitch error output has been plotted and behaves as expected, i.e. it is the
negative value of the pitch angle since the pitch command input is zero.
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Figure 5.3: Output signals from the LPV simulation

The performance requirements from Section 3.2 have been summarized in Table 5.1, where
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the measured values have been added and whether the respective requirements have been
satisfied or not.

Requirements Metrics Bounds Measured X/X
Load performance Qα < Qα envelope −14 554.6 °Pa X

Lateral control performance Position (z)
Velocity (ż)

< 500 m
< 15 m/s

−0.5002 m
0.1221 m/s

X
X

Actuation performance β
Integrated β

< 6.5°
< 250°s

2.9281°
0.4985 °s

X
X

Table 5.1: Performance requirements for the control system

5.2.1 Affine Interpolation

The affine interpolation, mentioned back in Section 4.3, has been carried out by first
obtaining the 4037 data points of longitudinal velocity between ten and ninety seconds.
Then an affine interpolation was carried out between each of the nine gridded velocity
points that were placed along the trajectory.

Two comparisons between an LTI system and an affine approximated LPV system have
been made to ensure the affine model captures the LV dynamics. The comparison can be
seen in Figure 5.4. The comparisons are frequency responses captured at time instants
different than the time instants used for the gridded LPV model. In the two comparisons,
small differences can be seen between the LTI system and affine model at 35 seconds and
55 seconds but are considered negligible.
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Figure 5.4: Affine model validation between LTI and affine models at time
instants 35 seconds and 55 seconds, respectively

The results from the affine LPV model shows the same results as the gridded LPV model
in the previous section. A further analysis of this phenomenon concluded that the function
lpvlsim does in fact also create an affine approximation of the gridded system in order to
simulate the LPV model. Therefore, the exact same responses were given as the same
method is used on the gridded LPV model.
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5.3 Test Conclusion

This chapter presented all the closed-loop system poles for the LTI systems and showed
they were stable. The normalized gain was computed to be less than one and thereby
concluding that the output signals satisfies the requirements introduced in Chapter 3.
An LPV simulation was conducted with specified inputs, where the requirements from
Chapter 3 were verified to be satisfied by analyzing the output channels. Lastly, the affine
LPV model was validated but showed the same results as the simulation with the gridded
LPV model. The conclusion was that the simulation function lpvlsim used the same affine
approximation to run the LPV simulation.

This chapter concludes the results for the LPV control system for this thesis. The next
chapter discusses the methods and choices made and the results in this report and ends
with a conclusion of the overall thesis.
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This chapter presents a discussion of the work done in the overall project and concludes
the thesis in the end.

6.1 Discussion

6.1.1 LV Model

The LV model in this thesis was derived from an intuitive understanding of motions and
rotations of the different dynamics affecting the LV instead of using an LV model from
other scientific articles. Consequently, the LV model used in this project went through a
lot of iterations, because it was forced to understand the individual parameters’ influence
on the overall complex model. This process was time consuming but gave a hands-on
know-how understanding of LVs in general. Overall, the time on designing the model was
well spent, even though more time on control theory might have resulted in a robust control
system.

6.1.2 LPV Control

The LPV control system was synthesized with nine grid points from ten seconds to ninety
seconds. This did not cover the whole flight period from zero to a hundred seconds, meaning
there is no guarantee to have a stable LV outside the gridded time periods. While it is
desirable to include the whole flight, doing so caused problems in finding feasible solutions
to the control problem. The reason for this is expected to come from the radically change
of dynamics at the start and the end of the flight. The thrust force differences between
zero to ten seconds and ninety to a hundred seconds makes it troublesome to find a feasible
solution to the control problem.

Additionally, since the gridding of velocity in this project corresponds with the velocity at
every ten second time instant, the difference of velocity between each grid point increased
due to an increasing acceleration. A more comprehensive way of gridding would have
been to place grid points w.r.t. a certain constant change in velocity to average out the
dynamical changes in the LV model. Unfortunately, it was proved difficult to find feasible
solutions with this approach.

As for finding a feasible solution to the control problem, it was often a matter of tuning
weights enough until a desired solution was achieved. Sometimes that meant a less
conservative solution could be found but changing a decimal in just one of the weights
resulted in an infeasible solution. The design method was to simplify the control problem
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instead, by reducing the number of grid points and coverage of total flight period to allow
a less conservative weight selection.

6.1.3 Extendable and Flexible Implementation of Code in MATLAB

A significant of amount of time has been spent to make MATLAB code easier to extend in
the future. Individual modules such as derivation of the LV model, acquiring LTI models
and LPV synthesis can all work independently of each other. The simulation framework
has also been designed to be extendable for future work. This is also the reason it was
implemented with MATLAB, since ESA work with this programming language.

6.1.4 Future Work

This project can be considered as the first step towards making an LPV control system for
an actual LV. However, there are still some important steps to make before implementing
the control system into an actual LV system.

Firstly, Integral Quadratic Constraints (IQC) theory should be implemented in the LPV
control system model to account for parameter uncertainties and other dispersions. Next,
the control system should be tested in a full non-linear simulation to be certain if the control
system can be implemented on a real LV. Before that is possible, the simulation would have
to get verified. This can be done by testing individual dynamics, where an expected output
is to be reached. A global controller for the gain scheduling will have to get implemented
as well to interpolate between the gridded controllers. Lastly, the sophistication of the
LPV controller can be extended to include the more varying parameters and include the
full flight range from liftoff to MECO.

6.2 Conclusion

This master’s thesis sought to develop an LPV controller, which guaranteed stability from
liftoff to MECO of an LV’s trajectory into orbit. The project was done in collaboration
with ESA, who provided supervision and data from the VEGA LV. A 3D model of an
LV was derived from relevant translation and rotational dynamic equations in the first
half of Chapter 2. A 2D LV model was then linearized with Jacobian linearizations in a
systematic manner. Together with the LV model, uncertain models of the TVC actuation
system and delay model were introduced in an upper LFT configuration in the last part
in Chapter 2. A family of controllers were designed with LPV synthesis in Chapter 4
w.r.t. established requirements of performance in Chapter 3. The closed-loop system
was simulated in a linear simulation in Chapter 5 and showed results that satisfied the
requirements. Thereby concluding the control system to be working as indented on an LV
with the same parameters as the VEGA LV.

An affine LPV model was designed and simulated but showed no different results as
with the gridded LPV model. The conclusion is that the LPV simulation used in this
project uses the same affine approximation on the gridded LPV model when running the
simulation.
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The work done in this thesis can be considered as a springboard for new research in the
future and overall is ESA very satisfied with the thesis.
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Figure A.1: Graphs of all used parameters from the partly non-linear
simulation from [1]
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