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Abstract

The goal of this thesis is to design a Linear
Parameter-Varying (LPV) controller for a
Launch vehicle based on the Vega Launch
Vehicle (LV). First a contextual analysis of
the launch, flight and landing of LVs is pre-
sented. Based on the contextual analysis
the objectives are specified to an LPV at-
titude controller for the gravity turn part
of the trajectory. The requirements are set
with performance parameters for stability,
noise, tracking and disturbance rejection.
Subsequently, a state space model of the
rigid body LV is created using the dynamic
equations and the relevant frame transfor-
mations. Using the developed rigid body
model, a two dimensional model for the
pitch plane is extended with models for
bending modes, delay, wind, noise and ac-
tuation. This model is then augmented
with a set of weights that are based on
specified requirements. Next, the model
is successfully used for synthesizing a grid
based LPV controller. Finally, the sys-
tem with the controller is simulated in an
LPV simulation, which verifies that the
controller meets the specified performance
requirements.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.
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Nomenclature

Abbreviations

Abbreviation Definition

AOA Angle Of Attack
DCM Direction Cosine Matrix
DRL Down Range Landing
ECEF Earth-Centered Earth-Fixed
ECI Earth-Centered Inertial
ESA European Space Agency
INS Inertial Navigation System
IQC Integral Quadratic Constraints
LFT Linear Fractional Transform
LPV Linear Parameter Varying
LLA Latitude, Longitude and Altitude
LOV Loss Of Vehicle
LTI Linear Time Invariant
LTV Linear Time Varying
LV Launch Vehicle
MECO Main Engine Cut Off
RTLS Return To Launch Site
S Sensitivity
T Complementary Sensitivity
TVC Thrust Vector Control
VTVL Vertical Takeoff Vertical Landing

Symbols and Notation

CXY - DCM from frame Y to frame X [−]
CL - Aerodynamic lift coefficient [−]
CD - Aerodynamic drag coefficient [−]
Rx, Ry, Rz - Rotation matrices rotating around the respective axis [−]
Qd - Dynamic pressure [Pa]
ρ - Air density [kg/m3]
ρ - (From Ch. 5) Scheduling parameter [−]
Vname,X - Velocity vector in frame X [m/s]
V̇name,X - Acceleration vector in frame X [m/s2]
Ωname,X - Angular velocity vector in frame X [rad/s]
Fname,X - Force vector in frame X [N]
Fname - Force [N]
Mname,X - Vector describing moments in frame X [N m]
Sref - Reference surface area [m2]

v



M - Mach number[−]
αeff - Effective Angle of Attack [rad]
αaoa - Angle of Attack [rad]
αsideslip - Sideslip Angle [rad]
Pname,X - Vector representing a point in frame X [m]
Pname - Vector representing a point [m]
mN - Mass of engine nozzle [kg]
BX - Actuation angle in frame X [rad]
JN - Inertia of engine nozzle [kg/m2]
v̇g - Gravitational acceleration [m/s2]
vw(s) - Velocity of the modelled wind [m/s]
nw(s) - White noise [−]
vwp(h) - Wind speed profile [m/s]
Lh - Turbulence length scale [m]
σh - Standard deviation for Dryden filter [−]
ε - Proportional deviation from nominal thrust [−]
Qα - Load performance parameter [Pa °]
Θ - Vector describing the orientation of the LV [rad]
Ω - Vector describing the angular velocity of the LV [rad/s]
R - Vector describing the position of the LV [m]
V - Vector describing the velocity of the LV [m/s]
xname - State vector [−]
uname - Input vector [−]
yname - Output vector [−]
Aname - Linear dynamics state matrix [−]
Bname - Linear dynamics input matrix [−]
Cname - Linear dynamics output matrix [−]
Dname - Linear dynamics feedthrough matrix [−]
I - Identity matrix [−]
Jf - Jacobian of function f [−]
qi - i’th bending mode state [−]
ωqi - Natural frequency of the i’th bending mode [rad/s]
ζqi - i’th bending mode damping ratio[−]
mN - Mass of the nozzle [kg]
lN - Length from the PVP of the nozzle to its center of gravity [m]
β - Angle of the actuator in the relevant control plane [rad]
ψPVP,i - i’th bending mode lateral movement coefficient [m]
ψ′PVP,i - i’th bending mode rotational coefficient [rad]
Gname - Dynamic model [−]
m - Mass of LV [kg]
∆name - Arbitrary matrix operator[−]
K(s) - Dynamic controller [−]
P (s) - Dynamic plant [−]
Ted(s) - Interconnection used for controller synthesis [−]
Te′d′(s) - Augmented interconnection used for controller synthesis [−]
Wo - Output weight[−]

vi



AAU

Wo - Input weight[−]
γ∗ - Maximum gain of system with optimal controller [−]
γ - Maximum gain of system with sub optimal controller [−]
? - Entry of matrix that will make the matrix symmetric. [−]
Wname - Weight for controller synthesis [−]
τ - Time delay [s]
εNF,i - Depth of the attenuation from the i’th notch filter [−]
ηi - Width of the i’th notch filter [−]
ωBM,i - Center frequency of the i’th notch filter [−]
P (ρ) - Lyapunov function [−]
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Introduction 1
1.1 Motivation

Going to space is one of humanity’s greatest achievements since we took the first small
steps into space. We still keep going and have learned a lot. But it is still one of the
hardest, most dangerous and expensive things we do. Yet we continue to do so because
of all that we can potentially learn and gain from it in the long-term. While there was a
small drop in launches around the turn of the century, in recent years there has been a
renewed interest in space and a significant increase in launches [1] [2] [3].
The interest can likely be attributed to the technology maturing, and commercial
space flight is becoming viable. Thereby accelerating the development of more efficient
spaceflight. A prime example of this is SpaceX and its first of a kind reusable rocket
boosters, which reuses the otherwise discarded boosters. While there have been attempts
at reusability such as the space shuttles, those efforts have been discontinued due to the
high cost of making them operational again after flight [4]. Other companies such as Blue
origin and Rocket lab are just two more examples out of the many new companies looking
to send rockets to space and recover the rockets to greatly reduce the price per launch.
Additionally, organisations such as the European Space Agency (ESA) are also developing
their first fully reusable rocket stage Themis [5].

1.1.1 Advantages of going to space

There is a wide range of advantages from going to space. The first one is scientific. The
Scientific advances from going to space are vast, and can be a part of answering some
of the most interesting questions in science. From helping us find the origin of life, and
whether there is any other life out there, to a better understanding of physics. Going to
space will also help us with astronomy where one of the great advantages in space is having
telescopes outside the otherwise obstructing atmosphere, or directly sending missions to
the celestial object of interest.
Once the technology matures it could allow us to explore entirely new environments of
planets, moons and asteroids. And the difficulties and constraints from going to space will
be forcing us to push limits. Which have so far, and hopefully will continue to, spark new
ideas and lead to innovations. Innovations that will affect us and help us in everyday life
[6].
Most of the technology we use today already rely on the products of space exploration. A
prime example of this are the networks and location services countless people use every
day: all of them are reliant on satellites. And while it is still very energy intensive to go
to space, it can be one of the ways that we can spare our planet from the damage that
comes from heavy industry, mining and the likes [7]. Once enough material has been lifted
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1. Introduction

to space to build a self-sustained base of operation outside Earth’s gravity well, getting
around space is energy efficient. And production of things such as rockets and fuel in space
will have no apparent effect on the Earth’s fragile climate, if handled right. And space
is full of the resources and energy required for industry. Metal for construction is readily
available and otherwise rare and precious metals can be mined and brought back to earth
[7]. However, these are long term goals. Challenges such as reliability and cost will have
to be solved first.

1.1.2 Price of Going to Space

The cost of going to space has historically been astronomically high. While there was a
great reduction in price during the intense years of development during the Space Race,
where competition drove development. The cost leveled off after the competition was over
and the volume of flights reduced. Only recently, the price has been decreasing because
of commercial interests that very much relies on making it economically viable. The cost
is now coming down, and it does so fast. This commercialisation of spaceflight, is mainly
led by companies such as Blue Origin and right now, especially SpaceX [4].

Figure 1.1: The cost over time to get a kg to Low Earth Orbit.[4]

The plot on figure 1.1 shows how the cost of going to space is once again declining in
recent years. The sharp decline in recent years from SpaceX is mainly due to its company
structure. A structure that is closer to a Silicon Valley company rather than a more
bureaucratic government agency according to a paper by NASA [4]. However, they also
conclude that in the longer term the main drivers of price reduction will be the reusability
of the Launch Vehicles (LV).
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1.1. Motivation AAU

1.1.3 Examples of Reusable Launch Vehicles

While SpaceX is currently taking the lead with its progress of reusable LVs there are many
examples of launches to space with reusable vehicles in development. They are all with
pros and cons, and some more successful than others [8]. A few of the currently most
interesting examples will be discussed here.

The first implemented system that is partially reusable is the Space Shuttle as part of
the Space Transportation System. It was a project with great potential. I worked by hav-
ing the main vehicle, the Space Shuttle, that was reusable and could glide to the ground
like a plane and thus save fuel. It, however, had a disposable fuel tank, and disposable
solid state side boosters. Thus, it was only partially reusable and very expensive to get
ready for a new flight. While it was a great success in many ways, it plateaued in price
and was eventually discontinued [9].

One of the earliest companies with the vision of reducing the cost of going to space by
reusing the rockets was the company Blue Origin. Their long-term goal is to make space-
flight cheap and safe, and to move heavy industry and people to space to spare the planet.
And while they were the first to successfully land a suborbital booster, they have not
yet landed an orbital booster. Currently their reusability is intended for suborbital space
tourism, but they have plans to later make reusable orbital LVs [10].

Another example of reusable LVs that is taking a slightly different approach is from the
company Virgin Galactic. Their focus is also suborbital space tourism. While not a
new idea, the strategy employed by Virgin Galactic is the most unique approach towards
reusable LVs in these examples. They use a large carrier plane as the launch platform for
their spacecraft. The spacecraft will then use a solid rocket booster to the edge of space.
This allows the space tourists to float and experience space for a few minutes. For descent
it uses a similar approach to the space shuttle, but at lower speeds. It first aerobrakes,
and then slides down and lands like an airplane [11].

And the final example is SpaceX with its Falcon rockets and the upcoming Starship that
have so far had the greatest success with reducing costs by reusing their boosters. SpaceX
was founded with the long term goal of colonizing the planet Mars. To make that goal
feasible, the cost of getting to space had to be reduced significantly. They also decided to
aim for reusability to make it more affordable in the long run. Their approach is using
both vertical takeoff and landing. SpaceX have successfully landed and reused their falcon
9 rockets multiple times so far. This is one of the reasons SpaceX can get the cost down
as far as they have. Their Starship Rocket takes a slightly different approach: While still
landing vertically, it uses air braking like some of the other examples. It glides down with
the broad side first to get as big of a surface and air resistance as possible. It is controlled
during this phase with large control surfaces that can be adjusted for drag. Then just
in time it uses the boosters to turn vertical and land. This however, has just recently
been successfully demonstrated in a prototype, and is still some time from being used for
commercial flights. Because of the promising development and projected low cost of this
Starship, SpaceX was recently awarded a contract by NASA to use a modified Starship to
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1. Introduction

land personal on the moon [12].

For this project the Vertical Takeoff Vertical Landing (VTVL) approach similar to that
used by the SpaceX Falcon 9 will be further investigated. This is because it seems to be
the most successful one so far and the simplest maneuver. But also because this project is
in collaboration with the ESA. ESA has an interest in a similar case for one of their own
LVs.

1.1.4 Collaboration With European Space Agency

This thesis is in collaboration with Automatic Control Systems Analyst Finn Ankersen
and GNC Systems Engineer Pedro Simplício from ESA. It is a continuation of a project
from the 9th semester[13]. ESA has a specific interest in control of a reusable LV. More
specifically, ESA is interested in the control of a rocket booster using multiple main engines,
how this can be used to control roll and how uncertainties in the thrust of the engines can
be accounted for using Linear Parameter Varying control. In this collaboration, ESA will
assist with external supervision by Finn Ankersen and Pedro Simplício on the project, that
will help with their experience of the subject and help guide the project in a direction that
will also be in ESAs interest. ESA has also provided the following for the project:

• Aerodynamic coefficients for the Vega launcher
• Bending mode data for the Vega launcher
• Trajectory for a mission to low earth orbit
• Thrust requirements for engine clusters

1.1.5 Initial Problem formulation

For this project, an initial problem formulation for guiding the problem analysis and
requirements:

How can a robust LPV controller for VTVL with a LV similar to the Vega launcher with
multiple main engines be designed, while taking into account the parameter uncertainty,
and especially the difference in thrust among the multiple engines.

After the problem analysis a final problem formulation will be stated.
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Contextual Analysis 2
In this contextual analysis the subjects that are relevant to the initial problem formulation
will be investigated. First an introduction to the trajectory of a booster from launch to
landing. Then an overview of the Vega Launcher used for the LV model. In the end
there will be a few sections describing the definitions, dynamics and other background
information used to derive the model in a later chapter.

2.1 Launch and Landing

First this section will investigate the trajectory of a reusable rocket and conclude on what
will be used for this project.

2.1.1 Landing site

When landing the LV after ascent there are two main ways to land. The two, each with
its own pros and cons. The LV can land on a platform down range close to where the
trajectory takes it. This is called Down Range Landing (DRL). Or it can spend fuel on
a boostback burn to accelerate back to the launch site. This is called Return To Launch
Site (RTLS). Both can be seen on figure 2.1 where the red trajectory illustrates a DRL
and the blue a RTLS. DRL has the advantage that it requires less fuel because it does not
have to make the boostback burn. This fuel can then be used to carry a larger payload.
However, the landing is often on a floating platform like the drone-ship SpaceX is using.
And it still requires the LV to be brought back to the Launch site by some other means. It
can therefore be advantageous to fly back to the launch site if the payload is small enough

Main Engine Cut O� 
and stage seperatoin

Gravity turn

Boostback burn

Exo-atmospheric �ight

Exo-atmospheric �ight

Recovery burn
Recovery burn

Lift o�

2nd stage

Launch siteRecovery site Droneship

Figure 2.1: Illustration of the different landing trajectories Down Range
Landing (red) and Return To Launch Site (blue).
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2. Contextual Analysis

that there is enough fuel leftover to do the boostback burn. However, if you break it up in
phases as seen on figure 2.1, the recovery burn is similar in both cases. The only difference
for the booster is what happens between Main Engine Cut Off (MECO) and the recovery
burn.

In this project the launch and landing will be handled separately. Launch is from takeoff
to MECO, and landing is from recovery burn to Landing

2.1.2 Launch trajectory

The launch trajectory mostly follows a gravity turn. A gravity turn is when the LV is
turning at a rate such that the Coriolis acceleration equals the gravitational acceleration
perpendicular to the body of the LV. Thus, in the body frame there is no acceleration
sideways which means that it will keep the Angle Of Attack (AOA) steady. Such a
trajectory has been provided by ESA which can be seen on figure 2.2

-20 0 20 40 60 80 100 120
Time [s]

20

30

40

50

60

70

80

90

100

P
itc

h[
°]

Pitch trajectory

Figure 2.2: The trajectory given as reference by ESA

This is the pitch in the launch frame which has origin on the launchpad, and the pitch plane
is aligned with the trajectory which means that for a common launch trajectory the yaw
angle will be constant and zero along the entire trajectory. The frames will be explained
in section 2.4. The trajectory is used from takeoff to MECO. The first linear piece of the
graph, the LV, is flying up straight to clear the launchpad. Next piece with constant pitch
rate, it will turn the trajectory away from the launch site in case of accidents. Then after
reaching an AOA of zero, it follows the gravity turn. This trajectory is however open-loop
guidance as the trajectory will not be adjusted under flight and it will only command
the attitude of the rocket during ascent. The reference pitch is predetermined based on
a simulation. Therefore there will be dispersions in the path and speed of the trajectory.
These dispersions have to be small enough that it can be corrected while flying outside the
atmosphere by the other stages of the rocket. The booster is intended to be corrected on
the way down. Additionally, the thrust used for ascent in this project is also provided by
ESA and can be seen on figure 2.3.
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2.2. The Vega Launch Vehicle AAU
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106 Thrust for trajectory

Figure 2.3: The thrust profile for the solid booster on the LV given as
reference by ESA

It is taken from a thrust profile of a solid rocket booster. This is simply to have a good
reference thrust fitting the LV. Meaning that it has to be a realistic thrust level. Since this
controller will not be implemented on a real rocket, the thrust level should be something
that would make sense on a real rocket. Since the reference measurements and the thrust
is from the same rocket, it will be a good fit. This could be changed for a different main
engine system such as liquid fuel engines or similar that could be throttled or restarted for
landing. However, for the attitude control for the ascent this will not be important.

2.1.3 Landing trajectory

The landing trajectory in this project will be considered as using closed loop guidance as it
is very important that the rocket velocity is zero or is within a margin that the rocket can
handle when touching down. It will also have to land within the designated landing area.
For a drone ship like the one used by SpaceX for the Falcon booster, it will be less than
the 50 meters by 50 meters of the ship. With the dispersion from ascent this problem can
be viewed as landing the booster with dispersed initial conditions such as initial position
and velocity relative to the landing pad.

2.2 The Vega Launch Vehicle

For this project, the Vega LV seen on figure 2.4 will be used as a reference. It will be
used as most of the parameters of the LV are publicly available, and ESA can provide the
remaining necessary parameters. The Vega LV has four stages. The first three stages are
using solid fuel. The last is a liquid fuel stage that can be restarted up to four times. The
Vega LV is designed to carry small payloads up to 2500 kg for missions in Low Earth and
Polar orbits [14]. The reference Vega mission is to carry a 1500 kg payload to polar orbit
of 700 km altitude. The parameters for the four stages can be seen on table 2.1. As this
project will mainly focus on ascent and landing of the booster, the last 3 stages will mainly
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2. Contextual Analysis

1st stage:
P80

2nd stage:
Ze�ro-23

3rd stage:
Ze�ro-9

4th stage:
AVUM

Fairing

Figure 2.4: Overview of the stages of the Vega Launch Vehicle[5]

be used to calculate weight and inertia of the LV. As previously stated, this LV will be

Stage Stage 1:
P80

Stage 2:
Zefiro 23

Stage 3:
Zefiro 9

Stage4:
AVUM

Height 11.20 m 8.39 m 4.12 m 2.04 m
Diameter 3 m 1.9 m 1.9 m 2.18 m
Propellant type solid solid solid liquid
Propellant mass 87 710 kg 23 814 kg 10 567 kg 577 kg
Total mass 96 243 kg 26 300 kg 12 000 kg 688 kg
Max Thrust 3 015 kN 1 120 kN 317 kN 2.45 kN
Burn time 109.9 s 77.1 s 119.6 s 612.5 s
Specific impulse 280 s 287.5 s 295.5 s 314.6 s

Table 2.1: Parameters for the stages of the Vega LV[14]

used as a reference. However, for this project there will be modifications as per request of
ESA and to make it possible to land the vehicle.
The first change is that it will be modelled with multiple engines instead of the one on
the reference VEGA LV. This is to control the rotation of the booster with the Thrust
Vector Control (TVC), which is not possible with just one engine. For simplicity and for
the axial symmetry it will be modelled with 4 engines. The 4 engines will have a similar
total thrust to the one on the Vega LV.
Additionally, these engines will have to be reigniteable and throttleable to some degree to
be able to control during descent and with feedback achieve zero velocity on touchdown.
The ascent and landing will be looked at separately and the engines will not be the same.
For ascent, the engines will use the thrust profile of the original P80 as it was used to
calculate the trajectory, and the landing will require throttling.

2.3 Definition of Variables and Parameters

This section will briefly describe the different parameters in relation to the rocket. It will
mainly be described as different reference frames which can be seen on figures 2.5 and 2.6.
These will be used to describe the dynamics of the rigid body.

The Rocket-Frame is used for defining the relative positions on the rigid rocket model
and is static relative to all parts of the rocket. The CG is the origin of the body-frame
to which all forces and moments are converted for the dynamics. The CG is also be used
as the position of the LV in external frames. CP is be used as the origin of the velocity
frame in which the relative air velocity has a constant direction from along the x-axis. This
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2.3. Definition of Variables and Parameters AAU

Figure 2.5: Parameters of the LV model seen from a 3D perspective

Figure 2.6: Parameters of the LV model seen perpendicular to the Y-plane

makes it easier to calculate the forces in the velocity frame and then afterwards convert to
body frame where they are included in the dynamics. The point INS is the origin of the
measurement-frame which is aligned with the body-frame when the rocket is rigid. The
measurement frame describes the frame from where the sensors measure the states of the
rocket. The relative movement of the body-frame and the measurement frame is used to
model what the sensor will measure. The Trajectory Reference is the reference-frame
that is used as the reference in which the model is linearized. When the body-frame aligns
with the reference frame the error will be zero. Finally, PVP points are the origins of the
engine-frames. In the engine-frames the thrust has a constant direction along the x-axis.
The thrust magnitude can be changed, and the frame can be rotated for control.
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2. Contextual Analysis

2.4 Reference frames

This section will briefly explain the general relationship between arbitrary reference-frames
and then afterwards define reference-frames used in this project and their most relevant
conversions.

2.4.1 General Description of Change of Reference-Frame

The two quantities that describe the relationship of two reference frames is their relative
origin and their relative orientation. A change of reference for a point p1 from frame B to
frame A can be described as.

p1,A = CAB · p1,B + pB0,A = CAB · (p1,B − pA0,B) (2.1)

Where p1,A is the point p1 in frame A. p1,B is the point p1 in frame B. CAB is the Direction
Cosine Matrix (DCM) describing the rotation from frame B to A. pB0,A is the origin of
frame B in frame A and pA0,B is the origin of frame A in frame B. Since a vector is just
describing a direction and a magnitude, its origin is not needed when changing frames.
Thus, a vector v1 can change from frame B to A as:

v1,A = CAB · v1,B (2.2)

Where v1,A is the vector v1 in frame A. v1,B is the vector v1 in frame B.

With an additional frame C when the transformation from frame C to frame B is know
the following transformation can be used from frame C to frame A:

p1,A = CAB · (CBC · (p1,C − pB0,C)− pA0,B) (2.3)

And for a vector from frame C to A can be expressed as:

v1,A = CAB · CBC · v1,C (2.4)

From this a rotation directly from frame C to A can be expressed as:

CAC = CAB · CBC (2.5)

It should also be noted that for DCM the transpose is equal to the inverse of the same
matrix, which is also equal to the opposite rotation:

CAB = CTBA = C−1
BA

(2.6)

This is because it is an orthonormal basis, and is therefore orthogonal. Which also leads
to the following relationship:

CABC
T
AB

= CABC
−1
AB

= CABCBA = I (2.7)

Where I is the 3-by-3 identity matrix. These are the equations and the notation that is
used in this text when describing frame transformations.
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2.4.2 Basic rotations

Three basic rotations will be introduced here. They are the rotation matrices describing
a single rotation around a single axis. They will be combined and used to create most of
the rotation used in this text. The base rotations:

Rx(θx) =

 1 0 0

0 cos (θx) − sin (θx)

0 sin (θx) cos (θx)

 (2.8)

Ry(θy) =

 cos
(
θy
)

0 sin
(
θy
)

0 1 0

− sin
(
θy
)

0 cos
(
θy
)
 (2.9)

Rz(θz) =

 cos (θz) − sin (θz) 0

sin (θz) cos (θz) 0

0 0 1

 (2.10)

These are the functions used when referring to Rx, Ry and Rz. They rotate around the
respective axis in the positive mathematical rotational direction.

2.4.3 Earth Reference Frames

When using Earth as a reference frame there are two primary frames used. The Earth-
Centered Inertial coordinate frame (ECI), and the Earth-Centered Earth-Fixed (ECEF)
coordinate frame. As the names suggest they both have their origin at the center of Earth.
The ECI frame is an inertial frame. It is fixed relative to the stars and is useful when
describing the motion of satellites, celestial bodies or spacecrafts in orbit. ECEF is a
non-inertial frame. However, it is fixed to the rotation of Earth and therefore useful when
describing objects on Earth’s surface or in the atmosphere. This also means that you can
convert directly between ECEF and Latitude, Longitude and Altitude (LLA).

Both ECEF and ECI have the z-axis aligned with the north pole. ECIs x-axis is aligned
with the direction of the vernal equinox which is a fixed direction relative to the stars and
the solar system. The ECEF x-axis aligned with the line that goes from the center and
out through point corresponding to latitude 0◦ and longitude 0◦. Both ECI and ECEF’s
y-axis complete the right-handed coordinate system. The relationship between the two
frames can be described as:

CEI (t) = Rz(t · ωE)CEI (0) (2.11)

where ωE is the angular velocity of the earth. CEI (0) is the DCM for t=0

2.4.4 Launch Pad and Landing Pad Reference Frame

The reference frames for launch and landing have origin in the center of the launchpad.
Their orientation is aligned with the trajectory. A simulation would use this frame to
record position and velocity. The position in Launch frame can be calculated from ECI
frame as:

r1,L = CLE (CEI (t)r1,I − rL0,E) (2.12)
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2. Contextual Analysis

The launchpad origin rL0,E can be converted from LLA coordinates. The simulated mission
is flown from the LLA: [5.2◦, 52.8◦, 0 m]. CLE is the frame with the z-plane tangent to the
ground and the x-axis aligned with the trajectory.

2.4.5 Trajectory Reference Frame

The trajectory reference frame is reference for the LV When the body frame is aligned
with this frame the error for the controller will be zero. The orientation of the reference
frame is well defined by the trajectory given by ESA and described in section 2.1.2. The
yaw and roll is set to zero all along the trajectory, and the pitch is following a gravity turn.
The position of the origin is not well defined. It can be described as the path that the
LV would follow if it had the reference orientation, reference thrust, and no disturbances.
This is not measurable under flight. The error will therefore be approximated as the
integral of the velocity perpendicular to the planned flight direction. The velocity will
mainly be an integration of an accelerometer. Therefore, it will be a double integration of
a measurement prone to noise and offset. This can be somewhat rejected by filtering with
some other measurements such as GPS if available. However, this is one of the reasons
it is not a high priority control objective. Nonetheless, it will be taken into consideration
during modelling of the LV dynamics.
The DCM from Launch pad frame to trajectory frame is given by:

CTL(t) = Ry(pitch(t)) (2.13)

2.4.6 Body Frame

The body reference frame has the origin in the CG and is useful for describing the forces
and moments acting on the LV. Because the LV will rotate about CG the moments are
easier to define in the frame. Additionally, because of the LVs axial symmetry in the body
frame, the moment of inertia is also easier to describe. And because the frame rotates with
the LV the inertia is also not changing relative to orientation in the body frame. Which
makes it a lot easier to work with. The position of the origin and the orientation will
usually be described in relation to the launchpad or landing pad in their respective frames.
Or in relation to the trajectory as described in the previous section. The orientation will
be described based on three rotations with the angles referred to as pitch yaw and roll.
Thus, the DCM from body frame to Launch pad frame can be described as:

CBL = Rz(yaw)Ry(pitch)Rx(roll) (2.14)

2.4.7 Relative Air Velocity Frame

The relative air velocity frame is used when calculating the aerodynamic forces. It has
the center in CP. The relative air velocity is the airs relative velocity to the LV. This is a
combination of the velocity of the LV and the wind. With the model used in this project
all aerodynamic forces are applied at CP. The wind at CP from the rotation of the LV
around the CG will be added to the total wind. This is a simplification and is not perfect
as the wind induced load is not uniformly distributed[15]. Thus the rotation will have a
different average load point from the wind. However, this assumption will be used for this
simplified model. When the forces are calculated in this frame the lift and drag can more
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2.5. Dynamics AAU

easily be calculated. The drag will be expressed along the x-axis in the velocity frame.
The x-axis will be parallel with the velocity vector. The lift will be defined perpendicular
to the velocity vector; that is, along the y- and z-axis. Ideally when using symmetric LV
the velocity frame would be defined using aeroballistic wind coordinates [16]. Aeroballistic
wind coordinates use the effective angle of attack α′ and the aerodynamic load angle φ′.
However, the dynamics will have to be linearized around α′ = 0. This would be a problem
as the φ′ would be undefined at this point [16,p.79]. Therefore, the cartesian incidence
angles α and β will be used for the linearization when linearized around zero AoA. Thus,
the transformation from body to velocity frame is as follows:

CVB = Rz(β)Ry(α) (2.15)

And the inverse that is used to get it to body frame from velocity frame:

CBV = CTVB (2.16)

2.4.8 Nozzle Frame

To keep the method consistent for the model, the forces from the engines are defined in the
nozzle frames. The force from the thrust of the engines are applied along the x-axis in the
nozzle frames. The force is also applied in the origin of the frames which is placed at the
pivot points of the engines. These are the PVP points seen in figure 2.5. The actuation
based on the control commands βy and βz will the apply a rotation to these frames defined
as:

CBN = Rz(βz)Ry(βy) (2.17)

2.5 Dynamics

This section will describe the most important dynamics that affect the LV during flight.
The dynamics will here be explained in their respective frames. This section will give an
overview of the dynamics that will later be used to build a model.

2.5.1 Aerodynamic Forces

The aerodynamic forces are some of the biggest forces acting on the LV outside the main
engines. But while the main engines are controllable, the aerodynamic forces are not
directly controllable. They are usually the main cause of instability as the center of
pressure (CP) generally in front of the CG. The aerodynamic forces are also very hard
to model directly. Therefore, a method to approximate an aerodynamic model has to be
used. For this project, the model is based on measurements or simulations. The result of
these estimates is the lift and drag coefficients, CL and CD which have been provided by
ESA. With good approximations of these, a good model for a fully symmetric LV can be
achieved. Then with the dynamic pressure Qd:

Qd =
1

2
ρ‖Vtotal‖2 (2.18)
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Where ρ is the density of the air. Vtotal is the total air relative velocity. The force in
velocity frame can then be described as:

Fair,V = −Qd · Sref ·

 CD (αeff ,M)

0

CL (αeff ,M)

 (2.19)

Where Qd is the dynamic pressure. Sref is the relative surface area which is used to scale
the forces based on size. CL and CD are the lift and drag coefficients that are used to
capture the shape of the LV. The coefficients are both dependent on the effective angle
of attack which is also used for the aeroballistic coordinate frame. However, this frame is
not defined when the angle is zero as mentioned in section 2.4.7. Therefore, the following
approximation will be used later when differentiating in exactly zero:

Fair,V = −Qd · Sref ·

 CD
(
αaoa + αsideslip,M

)
CL (αaoa,M)

CL
(
αsideslip,M

)
 (2.20)

This approximation only holds when differentiating either αaoa or αsideslip one at a time.
And it only holds, but is also only necessary, when αeff is exactly zero. Additionally, the
lift coefficient should also be zero at this point. Which it will be if full symmetry around
the primary axis is assumed. This is the aerodynamic forces expressed in the velocity
frame. The coefficients can be seen on figure 2.7
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Figure 2.7: Aerodynamic coefficients for Vega LV.

Here it is worth noting that the biggest changes in values is around mach 1. This makes
sense as it is when the LV is trans-sonic

2.5.2 Thrust Vector Control Forces

Having already defined the nozzle frame in section 2.4, defining the thrust in the nozzle
frame is straight forward. It is simply the thrust along the primary axis and can be
described as:

FTVC,N = FThrust ·

 1

0

0

 (2.21)
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Where FThrust is the magnitude of the thrust. This can either be controlled or follow the
thrust profile of the solid rocket booster.

2.5.3 Tail-Wags-Dog Effect

The tail-wags-dog (TWD) effect is from the acceleration of the center of mass of the
main engines. This acceleration requires a force, and therefore there will be an equal and
opposite force on the LV. In the nozzle frame the TWD force can be expressed as:

FTWD,N = PCGN × B̈N ·mN (2.22)

Where FTWD,N is the force on the LV in the nozzle frame. PCGN is the position of the
CG of the nozzle, in the nozzle frame. B̈N is the angular acceleration of the nozzle in the
nozzle frame. mN is the mass of the nozzle. Additionally, there is the angular moment
required to rotate the nozzle, which also acts equally on the LV. It can be expressed as:

MTWD,T = JN · B̈N (2.23)

Where JN is the inertia of the nozzle. withing B̈N is the acceleration in the nozzle frame.

2.5.4 Gravitational Acceleration

The gravitational acceleration will, for the modelling, be expressed in launch frame as:

V̇g,L = v̇g ·

 0

0

1

 (2.24)

Where v̇g is the magnitude of the gravitational acceleration. However, for a more accurate
representation such as a nonlinear simulation, the roundness of the earth can be taken into
consideration. As explained in section 2.1.2 it should be noted that this acceleration will
be cancelled by the Coriolis acceleration during the gravity turn. This will however have
to be taken into consideration when landing.

2.5.5 Coriolis acceleration

The Coriolis acceleration is the apparent acceleration in a frame that is moving and
rotating in an inertial frame. The Coriolis acceleration in the body frame relative to
the approximately inertial launch pad frame. Can be expressed as:

V̇Coriolis,B = 2V × ΩLV,B (2.25)

V̇Coriolis,B is the acceleration from Coriolis effect in the body frame. V is the velocity vector.
ΩLV,B is the angular velocity of the LV in the body frame. This will not be considered
while doing the gravity turn as it will cancel with gravity during the turn.

2.5.6 Moments From Forces

The moments on the LV from the forces can be calculated, based on the force and the
location of the force relative to the point of rotation. Which for the LV is the CG. It can
thereby be described as:

MB = (PForce,B − PCG,B)× FB (2.26)
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2. Contextual Analysis

WhereMB is the moment in the body frame. PForce,B is the point where the force is applied
in the body frame. PCG,B is the center of gravity in the body frame. FB is the force vector
in the body frame. This will be used for all the forces when doing the modeling.

2.5.7 Euler Moments

When a reference frame is rotating with respect to the inertial frame, there will seem to be
forces acting on objects in the frame. The Euler equations of rotating rigid body describe
such moments. [17]

Meuler,B = J × Ω̇B + ΩB × JΩB (2.27)

Meuler,B is the euler moment in the body frame. J is the inertia matrix of the LV. Ω̇B is
the angular acceleration of the LV. ΩB is the angular velocity of the LV. The first term
is resistance to acceleration. Second term is resistance to rotate when already rotating in
another direction. When the rotations are described in the body frame these will have to
be included in the dynamic equations. And when the reference frame rotates these forces
should be added as a disturbance.

2.6 Disturbance, Noise and Parameter Uncertainties

This section will describe the main disturbances, noise and uncertainties relevant for this
project.

2.6.1 Wind Disturbance

One of the main factors when designing a controller for an LV is the effect of the wind
disturbance. The wind can be especially high impact for the first 20 km of altitude, where
it is usually modelled[18]. The model used in this source will be used with the data as it
matches the mission that this project is concerned with. The data can also be found in
[19]. And the model has been used successfully in other places such as [20]. The model is a
filter for coloring white noise. It is a filter that will describe the magnitude and frequency
content of the wind disturbance. The Dryden filter is on the form [18]:

Gw(s) =
vw(s)

nw(s)
=

√
2
π
‖V ‖−vwp(h)

Lh
σ2
h

s+
‖V ‖−vwp(h)

Lh

(2.28)

Where vw(s) is the velocity of the modelled wind. nw(s) is the white noise used as input.
vwp(h) is the wind profile as a function of height. Lh is the turbulence length scale. σh is
the standard deviation. ‖V ‖ is the speed of the LV. These parameters will just be used for
the model and not further explored in this project to limit the scope. However, this model
can be added to the synthesis to better capture the frequency content of the disturbance.

2.6.2 Disturbance from Engine Offset

For this project one of the interests is the effect of uncertainties when multiple engines
are used. When the thrust varies it will have a direct effect on the dynamic model, as it
will have a direct effect of the actuation from the control input. But this effect will be
modelled with the other parameter uncertainties as explained in section 5.1.1. However,
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2.6. Disturbance, Noise and Parameter Uncertainties AAU

when building the model it is assumed that the symmetric placements of the engines will
cancel out the moment on the rocket that they individually produce. As the four main
engines each have associated uncertainty. They can end up having different thrust levels
which will then result in a total moment that will have to be modelled. This will have to be
added as an input to the system. To find the magnitude of this moment,the requirement
for thrust difference within an engine cluster will be used. This is defined for the transient
periods of thrust. That is, when the engines are turning on, and turning off. As this
is where the difference is the largest. Therefore the disturbance should be less during
the flight than defined for the transient part. For startup the requirement is that the
thrust difference is less than 1% and for engine cut off it should be less than 5% based
on numbers from ESA. For this project the assumption is then based on these numbers.
The assumption is therefore that the thrust difference in the cluster is at worst 1% during
flight. The uncertainty will be included as an addition to the magnitude of the force for
the individual engines:

FThrust = FThrust,ref(1 + ε) (2.29)

FThrust is the thrust from equation 2.21. FThrust,ref will for the ascent, be the thrust on
the figure 2.3. And ε proportional deviation from nominal thrust.
This moment will enter the system like the other disturbance from the wind.

2.6.3 Noise

The noise introduced in the system is from the sensors. The magnitude of the noise will
simply be modelled based on the numbers from [18,p.57]. Which is a PhD in collaboration
with ESA about the Vega LV. A further investigation into the noise will not be done for
this project. From this, the numbers used as the standard deviation of noise from the INS
is 0.02 deg and 0.1 deg /s for the attitude measurement. For the drift measurement it is
0.01 m and 0.001 m/s.

2.6.4 Delay

The delay is from the internal processing time in the different components. The data is
taken from [18,p.57] which again uses the same LV model. The following delays are then
taken into consideration. The on-board computer adds 12 ms delay, the sensors add 12 ms

delay and the TVC actuators add 15 ms delay, which adds to a total of 39 ms second delay.
This is with an uncertainty of 10 ms.

2.6.5 Inertial Navigation System

The Inertial Navigation System (INS) is the system that will be providing the
measurements to the controller. It uses accelerometers and gyroscopes. The gyroscopes
will read the orientation of the body frame directly. However, the accelerometers will
read additional translation from the rotation of the LV as it is not placed at the center of
rotation which is CG. The additional movement of the INS from the rotation of the LV
can be captured by the frame transformation described in 2.4 as:

PINS,T = CTB (PINS − PCG) + PCG,T (2.30)
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The additional velocity can be described as:

VINS,T = CTB (ΩB × (PINS − PCG)) + VCG,T (2.31)

2.7 Data Used for Parameter Variations

The data used for this project, as the parameter varies over time, is from a different project
where a nonlinear simulation was implemented[13]. While that simulation was without a
lot of the dynamics that make the rocket more difficult to control such as bending modes
and disturbance. It should still be a good representation of a nominal trajectory. The data
from that simulation has been compared to another paper which also had simulation results
from a nominal flight of the Vega LV[21]. After comparing the data, it was concluded that
the two were close enough that the data from the implemented simulation could be used.
The data can be seen in appendix A.1.
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Requirements 3

3.1 Objectives

This section describes the objectives for this project in a prioritized manner with
argumentation for the objectives and their priority.

3.1.1 Motivational Final Objective

The motivational final objective for this project is to develop a controller that can
control a simulated LV similar to that of the VEGA LV during ascent and landing. The
controller should be designed for a model of the Vega LV that has multiple main engines.
The controller should be designed to take noise, disturbances, parameter variation and
uncertainties into consideration.

3.1.2 Prioritization of Objectives

It was decided to prioritize the different steps towards reaching the final motivational
objective as it is a complex objective and the time for this project is limited. The following
list is a prioritised list of the partial objectives of the project:

1. Controller that stabilize attitude of rigid body model during gravity turn part of
ascent

2. Make the control model more detailed

a) Include Disturbance
b) Include Noise
c) Include Delay model
d) Include Actuation model
e) Include Impact of Multiple Main Engines
f) Include Parameter Variation
g) Include Uncertainties

3. Controller that stabilize attitude for the full ascent trajectory
4. Controller that stabilize attitude during descent
5. Guidance for the descent using MPC

The first priority 1 is because this part of the trajectory seemed like the best first step
and there was a wide range of reference material on a controller for this part. Point 2 is
to prioritize covering more control theory, and to make the problem closer to designing
a controller for a real rocket, as doing simple control for all stages first might limit the
complexity of the control individual controllers. The points 3 and 4 seems like the natural
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next steps. Point 5 relies on the implementation of point 4 and is an entirely new topic,
and is therefore last.
During the preliminary studies it was decided, in agreement with supervisors, that because
of the huge scope of the project, the focus of the thesis should be to work on the first two
objectives. Namely, to make a controller for the gravity turn part of the trajectory that
includes all the sub objectives of point 2. With this in mind the project work from here on
will be limited to this scope. With these objectives in mind the next section will discuss
the requirements for the controller used to verify the success of the objectives.

3.2 Requirements

This section will discuss the requirements for the controllers that will be designed. The
requirements will be explained and there will be defined specific goals for each in bold.
Some of the requirements have opposing goals and thus a balance has to be found.

3.2.1 Stability

The system should be stable. The stability of the system with the controller is the
most important requirement, as any other requirement can not be fulfilled if the system is
unstable. The main way this requirement will be verified is by the stability of the closed
loop system. That is if all the eigenvalues of the system are in the left half plane and
simulations of the system. Additionally the controller should by itself be stable. The
stability of the system can also be gauged by the classical Phase Margin (PM) and Gain
Margin (GM) by looking at some specific signal paths, but can not be directly specified
for the system as a whole. They will be indirectly used for tuning of the weights that will
be used to essentially define the performance requirements for the system. The Gain and
phase margins used as a target will be a GM of 6 dB and PM of 60◦

3.2.2 Performance

The performance for this project will be included as weights in the synthesis process of the
controllers, see section 5.1.3. The controller synthesis will result in a performance indicator
γ. If γ ≤ 1 the requirements will be met based on the defined model with weights.
Additionally the requirements will be tested in simulations.

3.2.3 Attitude tracking

The controller should be able to follow the attitude from the guidance with as high a
bandwidth as possible without coupling with the bending modes. The system should
converge to zero tracking error in steady state with no disturbance. The
bandwidth should also be high enough for tracking but low enough to not have flexible
coupling with bending modes. This will be indirectly enforced by the error and stability
requirements

3.2.4 Load vs. Drift

The aerodynamic loads on the LV can be huge and result in Loss Of Vehicle (LOV). And
the drift of the vehicle during the open loop guidance should be small enough that it can be
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corrected by the closed loop control later in flight. For the drift the requirements are based
on other projects making control for a similar mission[18]. The maximum drift should
be less than 500 m and drift rate less than 15 m/s during the launch trajectory. For
the load, the load parameter will be used to define the requirement.

Load Performance Parameter

The requirement for load on the LV is often described in the literature[20] by an envelope
of a performance parameter Qα given as:

Qα = Qdαeff (3.1)

This performance parameter is simply given by multiplying the dynamic pressure Qd with
the effective angle of attack αeff which the name suggests. An envelope is then specified
for a trajectory as a function of mach number. It is based on what is estimated to be the
critical value that would cause an LOV. This is useful as both these parameters can be
taken into account when building the model and added as an output that is used when
synthesising the controller. As the envelope was not available, and for simplicity, the Qα
requirement have been defined as a constant based on the value at max-Q. Therefore the
maximum value should be 2.6× 105 Pa °.

3.2.5 Actuation

The actuators connected to the main engines can only tilt the main engines by a certain
amount. And it is desired that the total actuation is limited. The engine used as a
reference on the Vega LV can have an actuation angle of up to 6.5° which will be the
requirement for the maximum actuation deflection angle. Additionally, a bound of the
total integrated actuation is set to 250° based on [18].

3.2.6 Disturbance rejection

All the other requirements should be met while being disturbed by wind, bending modes,
and uncertainties. The wind will be defined based on the Dryden model in section 2.6.1.
The bending modes will be included in the model for synthesis 4.7. The uncertainties will
also be included in the model using MATLAB and the LFT model, this will be explained
in section 5.1.1.
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This chapter will explain the steps to make a model of the LV. The reference frames have
been explained in section 2.4. And the forces and moments have been explained in section
2.5. The linear rigid body model has been derived using the following steps that will be
elaborated in this chapter.

1. Derive the 3D nonlinear symbolic dynamic equations for the rigid body.
2. Find the symbolic Jacobian of the dynamic equations.
3. Insert values for the operating point to get state space for the 3D model.
4. Make the 2D model from the 3D model by picking the relevant entries.

This results in a rigid body model of the LV that is used for control. The bending mode
model is made based on the model derived in [22]. The first section will define all the
relevant parameters.

4.1 Parameter Overview

This section will briefly define the parameters and variables that will be used

Angles Θ and angular velocities Ω of the LV:

Θ =

 θx
θy
θz

 ,Ω =

 ωx

ωy

ωz

 (4.1)

Position vector R and Velocity vector V of the LV:

R =

 rx
ry
rz

 , V =

 vx
vy
vz

 (4.2)

Actuation angles B and actuation acceleration B̈ for the main engines.

B̈ =

 β̈x

β̈y

β̈z

 ,B =

 βx

βy

βz

 (4.3)

Here it is noted that there will be no rotation around the x-axis of the actuators. Thus,
the βx and β̈x will not be used. This means that they will practically be set to zero during
modelling, but they are included here for completeness.
The disturbance from the uncertainty in thrust amongst the engines in the cluster will be
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called εn, where n denotes for which engine the uncertainty models.
The Wind velocity vector W is:

W =

 wx

wy

wz

 (4.4)

The point locations PCG, PINS and PCP:

PCG =

 xCG

yCG

zCG

 , PINS =

 xINS

yINS

zINS

 , PCP =

 xCP

yCP

zCP

 (4.5)

For the engines there is the locations PPVP and PCGN for each engine:

PPVP =

 xPVP

yPVP

zPVP

PCGN =

 xCGN
yCGN
zCGN

 (4.6)

The equation for a single engine with arbitrary position will be modelled. This equation
can then be duplicated for each engine.

4.2 Full Dynamic Equations

This section will combine all the dynamic equations that have been defined so far and will
be used for the linearization. The final equations should describe the acceleration of the
states as a function of the other states, that is:

ẋ = f(x, u) (4.7)

y = h(x, u) (4.8)

Where x is the state vector. y is the output vector. f is the function that describes the
rate of changes of the states ẋ u is the external input. h is the output function.

Where x, u and y for the full rigid body system with xRB, uRB and yRB are:

xRB =


Θ

Ω

R

V

 , uRB =


B
B̈
W

εn

 , yRB =


Qα

ΘINS

ΩINS

RINS

VINS

 (4.9)

Where the subscript INS means the measurement at the INS.
This, after a linearization, will result in a linear system on the form:

ẋ = Ax+Bu (4.10)

And the measurements can equally be written as:

y = Cx+Du (4.11)
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4.2. Full Dynamic Equations AAU

For this project, the process of linearization was broken down into a number of smaller
problems. As an example, the A matrix was partitioned in the following way:

A =


AΘ

Θ̇
AΩ

Θ̇
AR

Θ̇
AV

Θ̇

AΘ
Ω̇

AΩ
Ω̇

AR
Ω̇

AV
Ω̇

AΘ
Ṙ

AΩ
Ṙ

AR
Ṙ

AV
Ṙ

AΘ
V̇

AΩ
V̇

AR
V̇

AV
V̇

 (4.12)

Where notation Aa
ḃ
is the A sub matrix that describes the linear effect from a on ḃ. And A

has the dimensions 12× 12. This matrix can be further simplified with and understanding
of the physical system and the dynamic equations to:

A =


0 I 0 0

AΘ
Ω̇

AΩ
Ω̇

0 AV
Ω̇

0 0 0 I

AΘ
V̇

AΩ
V̇

0 AV
V̇

 (4.13)

Where 0 is a zero matrix and I is and identity matrix both of dimension 3 × 3 This
means that only the equation for linear and angular acceleration V̇ and Ω̇ will be needed.
Similarly, the B Bd C D and Dd matrices can be written as:

B =


0 0

BB
Ω̇

BB̈
Ω̇

0 0

BB
V̇

BB̈
V̇

 , Bd =


0 0

BW
Ω̇

Bε
Ω̇

0 0

BW
V̇

0

 (4.14)

C =


CΘ
Qα CΩ

Qα 0 CVQα
I 0 0 0

0 I 0 0

CΘ
R 0 I 0

0 CΩ
V 0 I

 (4.15)

D =


0 0

0 0

0 0

0 0

0 0

 , Dd =


DW
Qα 0

0 0

0 0

0 0

0 0

 (4.16)

The total acceleration in body frame is then given by:

V̇B = V̇g,B + V̇coriolis,B +
FTWD,B + Fair,B + FTVC,B

m
(4.17)

This acceleration can be transferred to trajectory frame V̇T . While most examples using a
similar model is done in body frame such as [18][23], this project will model the position
and velocity of the LV in trajectory frame. This is because these states RT and VT have
a more intuitive interpretation than RB and VB. RT and VT are the speed and distance
perpendicular to the planned trajectory. And while RB and VB are more straightforward
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4. Modeling of LV

to derive in body frame, they are the just sideways motion of the LV in the body reference
frame, and the integration. These, RB and VB, does not have obvious interpretations
that can be used to set requirements. While limiting the states in the body frame can
be an indirect way to limit lateral load, the lateral load can already be fully accounted
for by using the angle and the lateral movement in the trajectory frame. Therefore, the
acceleration used for this model can be described as:

V̇T = CTB V̇B (4.18)

And the angular acceleration can be described as:

Ω̇ = J−1(MTWD,B +MTVC,B +Mair,B +Meuler,B) (4.19)

Which will only be described in body frame as it would otherwise be difficult to model.
But this means that the Euler moments will have to be included as the frame is changing.

With these we have the necessary nonlinear equations. To find the A matrix in equation
4.13 and the B matrix in equation 4.14, we have the nonlinear equations 4.18 and 4.19.
For the output matrices C D and Dd in equation 4.15 and 4.16 we have the nonlinear
equations 2.30, 2.31 and 3.1.

4.3 Dynamic Equations as a Function of states

The dynamic equations have thus far been defined in terms of the variables that directly
affect the system. This is already mostly states. However, the aerodynamics is still
dependent on the AOA. None of the states directly represent the angle of attack. To
have it represented by states the angle of attack can be written as a function of the states.
It is a combination of the angle relative to the nominal trajectory where AOA is assumed
zero, plus any relative sideways wind. The total relative wind velocity is given as:

Vtotal = Vω +W + V (4.20)

where Vω is the wind from the rotation of the rocket. Which is given at CP as:

Vω = Ω× (PCP − PCG) (4.21)

The angle of the incoming wind is then expressed as at CP:

αaoa,v = arctan(
vtotal,z

vtotal,x
) (4.22)

αsideslip,v = arcsin(
vtotal,y

‖Vtotal‖
) (4.23)

If we define the states Θ as the error between the reference and the body frame. And we
assume that the trajectory follows a gravity turn with AOA of zero, we have the following
expression for the total AOA and sideslip that is used in the dynamics.

αaoa,total = αaoa,v + θy (4.24)

αsideslip,total = αsideslip,v + θz (4.25)

These will be substituted into the dynamics before the next step.
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4.4. Jacobian of Dynamic Equations AAU

4.4 Jacobian of Dynamic Equations

For the linearization, the Jacobian method will be used. That is, using the Jacobian of the
dynamic equations as the linearized dynamics. The Jacobian can be written on the form:

Jf (x1, ..., xn) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 (4.26)

Where Jf (x1, ..., xn) is the Jacobian of the vector function f with respect to the values of
x. Where f would be the dynamic equations of the system and x the values about which
the system is linearized. The system will in general have to be linearized at an equilibrium.
This will be elaborated in the next section.
The Jacobian was first found symbolically for the relevant equations. The dynamic
equations that are linearized as described in section 4.2, is for V̇ in equation 4.19 and
Ω̇ in equation 4.18. And similarly for measurements we have the equation 2.30 and 2.31.
And for Qα the equation 3.1. This will give the following Jacobians:

JΩ̇(xRB, uRB),JV̇ (xRB, uRB),JQα(xRB, uRB),JRINS
(xRB, uRB),JVINS

(xRB, uRB), (4.27)

With these, the full symbolic state space for the rigid body was assembled. The symbolic
equation are too long to put in this thesis, but they can be simplified using the next steps.
The next step is to insert the values of the states corresponding to the equilibrium.

4.5 Inserting Operating Points and Known variables

After taking the Jacobians of the full dynamic equations, the symbolic equations are very
long. Because they are difficult to read and would just fill out a lot of pages, they will
not be written in full. However, after inserting the values for the operating point, most of
which are zero, the equations will be much shorter and readable as it will be shown. For
an equilibrium the following should be true:

f(x̄, ū) = 0 (4.28)

Where f is the dynamic equations. x̄ and ū are the states and inputs that satisfy the
equation. With the definitions of the states and for this to be equal to zero, most of the
variables will have to be zero except for the forward velocity, as it will be controlled by
the guidance.
Because the translational control is done in the trajectory frame none of the states will
affect the gravitational nor the Coriolis acceleration. This makes sense as the orientation
that is captured by the states Θ and Ω no longer affects the direction which the forces are
applied with respect to the translational states R and V . These contributions from gravity
and Coriolis are dynamics arising from the rotation of the body frame. If the trajectory
does not follow a gravity turn, such as during the initial liftoff and the descent, these forces
can be added as a known input to the system in a similar manner to a disturbance. The
states that are supposed to be stabilized will have to be at an equilibrium, which will be at
zero. That is except the translational position R which in this model has no effects on any
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4. Modeling of LV

of the dynamics in the model. This will for consistency also be set to zero. As mentioned,
the forward velocity of the LV vx will also not be zero as it will not be controlled by the
attitude controller. Some assumptions will also be used to further simplify the equations.
The position of CG, CP and INS will all be assumed to be centered along the primary axis
of the body frame. That is, the x- and y-coordinates for these will be set to zero. The
full set of variables corresponding to states that will be replaced for a linearization at the
equilibrium along the trajectory is:

V0 =

 vx
0

0

 ,Θ0 = 0,Ω0 = 0, R0 = 0, V0 = 0,B0 = 0, B̈0 = 0,W0 = 0, ε0 = 0, (4.29)

And similarly for the positions of certain frames: Locations PCG, PINS and PCP:

PCG,0 =

 xCG

0

0

 , PINS,0 =

 xINS

0

0

 , PCP,0 =

 xCP

0

0

 (4.30)

Locations PPVP and PCGN :

PPVP,0 =

 xPVP

yPVP

zPVP

PCGN ,0 =

 xCGN
0

0

 (4.31)

Where a vector set to zero means that all entries are set to zero. Once these variables
have been replaced in the Jacobians, the state space is far more manageable. However,
in that form it still has 12 states. Not all of which is intended to be controlled. More
specifically the states rx and vx. These will be taken into account by the guidance. Even
with the remaining 10 states, the control problem is large to work with. Therefore, the
initial control will be in the 3 2-Dimensional planes. These planes will be called the yaw-,
pitch- and roll-planes. The name corresponds to the plane whose center rotates around the
yaw-, pitch- and roll-axis. Getting these controllers will be explained in the next section
using pitch as the example.

4.6 Rigid-body State Space

Now that the full dynamics have been derived and is on the form:

ẋRB = ARBxRB +BRBuRB (4.32)

yRB = CRBxRB +DRBuRB (4.33)

The controllers for the 3 planes can be derived using the relevant entries from the RB ma-
trices. Therefore, the states that are controlled by the 3 controllers control the following
states.
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4.6. Rigid-body State Space AAU

States xRB,yaw, outputs yRB,yaw and inputs uRB,yaw for the yaw controller:

xRB,yaw =


θz

ωz

ry

vy

 , uRB,yaw =


βz

β̈z

wy

εn

 , yRB,yaw =


Qα

θINS,z

ωINS,z

rINS,y

vINS,y

 (4.34)

States xRB,pitch, outputs yRB,yaw and inputs uRB,pitch for the yaw controller:

xRB,pitch =


θy

ωy

rz

vz

 , uRB,pitch =


βy

β̈y

wz

εn

 , yRB,pitch =


Qα

θINS,y

ωINS,y

rINS,z

vINS,z

 (4.35)

States xRB,roll, outputs yRB,yaw and inputs uRB,roll for the yaw controller:

xRB,roll =

(
θx

ωx

)
, uRB,roll =


βy

β̈y

βz

β̈z

 , yRB,roll =

(
θINS,x

ωINS,x

)
(4.36)

As an example, the state space matrix for ARB,pitch is constructed from ARB with the
entries corresponding to the states used for the pitch control:

ARB,pitch =


aθ,y
θ̇,y

aω,y
θ̇,y

ar,z
θ̇,y

av,z
θ̇,y

aθ,yω̇,y aω,yω̇,y ar,zω̇,y av,zω̇,y
aθ,yṙ,z aω,yṙ,z ar,zṙ,z av,zṙ,z
aθ,yv̇,z aω,yv̇,z ar,zv̇,z av,zv̇,z

 (4.37)

Where the notation aθ,yv̇,z is the matrix entry from ARB corresponding to the effect of θy on
v̇z. The matrix for just the pitch model will end with a similar structure to the simplified
block matrix in 4.13.

ARB,pitch =


0 1 0 0

aθ,yω̇,y aω,yω̇,y 0 av,zω̇,y
0 0 0 1

aθ,yv̇,z aω,yv̇,z 0 av,zv̇,z

 (4.38)

With this method the remaining matrices for the rigid body state spaces were derived.
These separate state spaces will model the dynamics in the three control planes. This is
assuming that the planes are not interacting. When doing the simplification explained in
the section, all the cross terms are not used. These terms could be analyzed to understand
how much the cross terms could affect different planes, and this could be taken into
consideration. The cross terms could also just be used in a full controller with all the 3
control planes in one. This however will greatly increase the complexity of the controller.
And for the purposes of the project, it will not be done.
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4. Modeling of LV

4.7 Bending Mode Model

The flexible dynamics of the LV will be modelled by the first two bending modes. The
model used for the bending modes in this project will be modelled directly in two
dimensions for each of the pitch and yaw planes. Which means that there will be no
modelled interaction between the different control planes. The model is based on the
papers [22] and [20], and is using the same method as in [18]. The model is mainly used
because the data from ESA on bending modes and bending shape consists of the coefficients
used for this model. Since the model is based on separated 2D-planes there is no direct
coupling between the bending modes in different directions. And there is no roll twisting
modelled with this model. This model does however capture the most important flexible
body dynamics for the control synthesis. While the model can include an arbitrary number
of bending modes, for this project only the first 2 bending modes are used. This is because
we want to keep the complexity down, and the frequencies of the remaining bending modes
is of a much higher frequency than the control. The model consists of a 2nd order model
for each bending mode qi:

q̈i + 2ζqiωqi q̇i + ω2
qiqi = −FthrustψPVP,iβ −

(
mN lNψPVP,i − JNψ

′
PVP,i

)
β̈ (4.39)

Where qi is the i’th bending mode state. ωqi is the natural frequency of the i’th bending
mode. ζqi is the i’th bending mode damping ratio. mN is the mass of the nozzle. lN is the
length from the PVP of the nozzle to its center of gravity. JN is the inertia of the nozzle. β
is the angle of the actuator in the relevant control plane. ψPVP,i describes the distance that
the point PVP moves laterally based on the state of the bending mode. ψ′PVP,i describes
the rotation of the nozzle frame based on the state of the bending mode. The parameters
ζqi , ωqi , ψPVP,i, mN , lN , JN and ψ′PVP,i are all parameters provided by ESA.
The distance ψPVP and the rotation ψ′PVP is illustrated on figure 4.1

PVP CG INS CP
CP

CG INS

PVP

CG
CG

PVP

PVP
ψpvp

ψ’pvp

Figure 4.1: Illustration of the effect of the bending and the related
parameters for the PVP frame.

Similar parameters are available for the INS, ψINS and the rotation ψ′INS which will be
used for the measurement matrix. With this behavior of the bending states, the following
forces and moment can be written for the effect of the bending modes on the LV. First the
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4.8. Final State Space for LV AAU

Force from the resulting angle of the nozzle:

FBM,i = Fthrustψ
′
PVP,iqi (4.40)

And the moments:

MBM,i = −Fthrust

(
lCGψ

′
PVP,iqi + ψPVP,iqi

)
(4.41)

Where FBM,i is the force from the i’th bending mode on the LV. MBM,i is the moment
from the i’th bending mode on the LV. Fthrust is the thrust of the relevant engine, and lCG

is the length from the PVP to the CG. Similarly, the contribution from bending modes to
the INS can be written as:

θINS = θINS,RB +

n∑
i=1

φ′INS,iqi (4.42)

ωINS = ωINS,RB +

n∑
i=1

φ′INS,iq̇i (4.43)

rINS = rINS,RB +

n∑
i=1

φINS,iqi (4.44)

vINS = vINS,RB +

n∑
i=1

φINS,iq̇i (4.45)

Where for this project n=2. With the contribution from the bending modes described,
these will be included in the full state space described in the next section.

4.8 Final State Space for LV

With the method for deriving the states space for the rigid body and the bending modes
described in the previous sections of this chapter, this section will formulate the full state
space used for control synthesis in the pitch plane. The combination of the Rigid Body
(RB) and Bending Mode (BM) matrices will have the form:

[
ẋRB

ẋBM

]
=

[
ARB

RB ABM
RB

ARB
BM ABM

BM

]
︸ ︷︷ ︸

ALV

[
xRB

xBM

]
+

[
BRB

BBM

]
︸ ︷︷ ︸

BLV

upitch

ypitch =
[
CRB CBM

]
︸ ︷︷ ︸

CLV

[
xRB

xBM

]
+DRB︸︷︷︸

DLV

upitch

︸ ︷︷ ︸
GLV

(4.46)

Where xRB and xBM are the states for the RB and the BMs. The notation ABM
RB is the

matrix describing the effect from the BM states on the RB states. BRB and BBM describe
the linear effect from the control input upitch on the RB and BM states. CRB and CBM

describe the linear effect of the RB and BM states on the measured output ypitch. DRB

describe the direct effect of the control input on the measured output ypitch.
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Using this form and the modelling described previously in this chapter, it can be written
in its full form:



θ̇y

ω̇y

ṙz

v̇z

q̇1

q̇2

q̈1

q̈2


=



0 1 0 0 0 0 0 0

aθ,yω̇,y aω,yω̇,y 0 av,zω̇,y aq1ω̇,y aq2ω̇,y 0 0

0 0 0 1 0 0 0 0

aθ,yv̇,z aω,yv̇,z 0 av,zv̇,z aq1v̇,z aq2v̇,z 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 aq1q̈1 0 aq̇1q̈1 0

0 0 0 0 0 aq2q̈2 0 aq̇2q̈2





θy

ωy

rz

vz

q1

q2

q̇1

q̇2



+



0 0 0 0

bβ,yω̇,y bβ̈,yω̇,y bw,zω̇,y bεω̇,y
0 0 0 0

bβ,yv̇,z bβ̈,yv̇,z bw,zv̇,z 0

0 0 0 0

0 0 0 0

bβ,yq̈1
bβ̈,yq̈1

0 0

bβ,yq̈2
bβ̈,yq̈2

0 0




βy

β̈y

wz

εn




Qα

θINS,y

ωINS,y

rINS,z

vINS,z

 =


cθ,yQα cω,yQα 0 cv,zQα 0 0 0 0

1 0 0 0 cq1θ,y cq2θ,y 0 0

0 1 0 0 0 0 cq̇1ω,y cq̇2ωy

cθyr,z 0 1 0 cq1r,z cq2r,z 0 0

0 cω,yv,z 0 1 0 0 cq̇1v,z cq̇2v,z





θy

ωy

rz

vz

q1

q2

q̇1

q̇2



+


0 0 dw,y

Qα 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




βy

β̈y

wz

εn



(4.47)

With the coefficients, first for the ALV :
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aθ,yω̇,y = −
Sref ρ vx

2

((
∂
∂θy

Cl

)
+ Cd

)
(xCG − xCP)

2 Jy
(4.48)

aω,yω̇,y = −
Sref ρ vx (xCG − xCP)

(
vx

(
∂
∂ωy

Cl

)
+ (xCG − xCP) Cd

)
2 Jy

(4.49)

av,zω̇,y = −
Sref ρ vx (xCG − xCP) vx

(
∂
∂vz

Cl

)
+ Cd

2 Jy
(4.50)

aθ,yv̇,z = −
Fthrust +

Sref ρ vx
2

(
∂
∂θy

Cl

)
2

m
(4.51)

aω,yv̇,z = −

Sref ρ vx
2

(
∂
∂ωy

Cl

)
2 + Sref ρ vx (xCG−xCP)Cd

2

m
(4.52)

av,zv̇,z = −
Sref ρ v

2
x

(
∂
∂vz

Cl

)
+ Cd

2m
(4.53)

aqiω̇,y =
Fthrust

(
ψ′PVP,i (xPVP − xCG) + ψPVP,i

)
Jy

(4.54)

aqiv̇,z =
Fthrustψ

′
PVP,i

m
(4.55)

aqiq̈i = −ω2
q,i (4.56)

aq̇iq̈i = −2ζq,iωq,i (4.57)

For the the BLV :

bβ,yω̇,y =
Fthrust (xPVP − xCG)

Jy
(4.58)

bβ̈,yω̇,y = −
JN,y − xCG xCG,NmN + xCG,N xPVPmN

Jy
(4.59)

bw,zω̇,y = −Sref ρ vx (xCG − xCP)Cd
Jy

bεω̇,y =
2Fthrust zPVP

Jy
(4.60)

bβ,yv̇,z = −Fthrust

m
bβ̈,yv̇,z =

xCG,NmN

m
(4.61)

bw,zv̇,z = −Sref ρ vxCd
2m

bβ,yq̈i
= FthrustψPVP,i (4.62)

bβ̈,yq̈i
= JNψ

′
PVP,i +mN (xCP − xCG) (4.63)

For the the CLV :

cθ,yQα =
ρ vx

2

2
cω,yQα =

ρ (xCG − xCP)
√
vx2

2
cv,z
Qα =

ρ
√
vx2

2
(4.64)

cθyr,z = xCG − xINS cω,yv,z = xCG − xINS cqiθ,y = ψ′INS,i (4.65)

cq̇iω,y = ψ′INS,i cqir,z = ψINS,i cq̇iv,z = ψINS,i (4.66)
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And the one coefficient for the DLV :

dw,y
Qα =

ρ
√
vx2

2
(4.67)

This is the model GLV that will be used for the control synthesis. It will be used to
make the individual LTI model for different points of the trajectory. The Evolution of the
frequency response and the poles can be seen on figure 4.2 and 4.3.

-100

-50

0

50

M
ag

ni
tu

de
 (

dB
)

From: u(1)  To: y(2)

10-5 10-4 10-3 10-2 10-1 100 101 102 103
-360

-270

-180

-90

0

90

P
ha

se
 (

de
g)

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

T
im

e 
of

 F
lig

ht
 (

s)

Frequency response of G
LV

 (
y
/

y
)

Frequency  (rad/s)

Figure 4.2: Frequency response of GLV (θy/βy) from time 10 s to 90 s
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Controller Design 5
This chapter will outline the design process for the controllers. First a quick summary
of the control theory used for the controller design will be presented. Then the proposed
design for the pitch controller will be presented. Followed by explanations of the design
choices and procedures. The figures in this section are color coded for readability. The
inputs will be coloured blue and the outputs red. The names of the internal signals used
to connect the sub models will be in green.

5.1 Control Introduction

This section will briefly introduce some of the core control theory used for the design of
the controller in this project. First a summary of the Linear Fractional Transforms (LFT)
and the notation that will be used. Then a quick introduction for the H∞ controller that
will be used as a reference and as a natural step towards building the LPV controller. And
then finally the LPV controller, that is the final step that will take the time varying aspect
of the LV into account.

5.1.1 Linear Fractional Transform

The LFTs can generally be used for modeling dynamic systems and will here primarily be
used for uncertainties and for connecting the controller to the system.
The LFT can be used to model a feedback interconnection of two matrix operators. Let
M ∈ C(nd+nu)×(ne+ny) and ∆ ∈ Cny×nu . With M partitioned as:

M =

[
M11 M12

M21 M22

]
(5.1)

Then the two versions of the LFT can be written as:

Fu (M,∆u) = M22 +M21∆u (I −M11∆u)−1M12 (5.2)

Fl (M,∆l) = M11 +M12∆l (I −M22∆l)
−1M21 (5.3)

And the corresponding interconnections can be seen on figures 5.1b and 5.1a
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M
M11 M12

M21 M22

Δu

d 

yu

e

(a) Interconnection of lower LFT

Δl

d 

yu

eM
M11 M12

M21 M22

(b) Interconnection of upper LFT

Figure 5.1: The two common LFT interconnections

The upper LFT is commonly used in control theory to model uncertainties. For this
project the uncertainties will be variations of real numbers and no complex uncertainties.
Uncertainties for a real parameter x can be modelled as:

x = x0 + σxδx (5.4)

Where x0 is the nominal value of x. σx is the magnitude of the uncertainty and δx is
a norm bounded uncertainty flag with ‖δx‖ < 1. This is convenient as the M22 in 5.2
can represent the nominal system and the remaining terms can represent σxδx for any
rational parameter variation. These uncertainties in this project will be taken care of by
MATLAB using the Robust Control Toolbox, but it is important to know the structure
and its limitations. The Lower LFT is most commonly used to model the interconnection
of a controller connected to a system via feedback. A more in-depth explanation can be
found in [24].

5.1.2 H∞ and structured H∞ Control

The H∞ control problem is usually formulated in the following way. Using the
interconnection of the plant P (s): ẋ

e

y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22


︸ ︷︷ ︸

P (s)

 x

d

u

 (5.5)

And the controller K(s) as seen on figure 5.2

P(s)
T(s)

B2

D12

D22

A B1

C1

C2

D11

D21

d 

d 

y

y

u

u
e

x

e
x

K(s)

Figure 5.2: Standard H∞ interconnection.
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Where the goal is to minimize

min
K(s)

∥∥Ted(s)∥∥∞ = min
K(s)

max
ω∈R

σ̄
(
Ted(jω)

)
= γ∗ (5.6)

This can be done in multiple ways. The two main ways this is done is either by directly
solving a two-Riccati formulae [25], or solving the same Riccati equation set up as LMIs
[26]. Using a numerical method it is solved iteratively, as solving directly for optimal
solution γ∗ is hard. Instead, it is easier to solve for any solution that is better than some
γ. That is some γ∗ ≤ γ. Then keep solving for a lower γ until it is no longer solvable.
This will result in a high order controller that is of the same order as the system. This
can be undesirable.
A major advantage of the H∞ synthesis is that it can also take uncertainties into
consideration when modelled with LFTs by using the small gain theorem [27]. This is
usually done in an iterative algorithm called DK-iteration where there are two steps. First
the synthesis of theH∞ controller, then another step called µ-analysis. That is a robustness
analysis that will give some scaling matrices that can be used to synthesise a more robust
controller, and then with this controller the analysis can be done again and so on [27].
The result is that this process converges towards a more robust controller. This can also
be done for the structured H∞ controller.
The structured H∞ control synthesis is a similar problem to the H∞ synthesis but has its
own pros and cons. The main advantage is the option to decide the controller structure.
This allows for better understanding of the inner workings and structure of the controller
which can be very useful, it also allows for the design of less complex controllers which can
be very useful when implementing. However, the main problem with the structured H∞
controller is that it requires Bilinear Matrix Inequalities which makes the optimization
problem non-convex [28]. This means that the optimization is not guaranteed to find
a global optimal controller. However, with a combination of random initial starting
conditions and an understanding of the expected controller behavior, a good controller
can usually be found.

5.1.3 Weighting Functions

Weighting the inputs and outputs of the system is a common way to make the design
process simpler[27]. For the designs based on norms it is essential that the input output
relations are normalized as the synthesis will assume a normalized system. This weighing
will define what is the normalized inputs and outputs. That is, the input weights, Wi(s)

defines what is the expected maximum input, and the output weights, Wo(s), define
the maximum outputs that fulfill the performance requirements. The system with these
weights is called the augmented system and the interconnection can be seen on figure 5.3
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Figure 5.3: Augmented H∞ interconnection.

Where the new plant to be optimized is Te′d′(s) with input output relation:

e′ = WoFl(P,K)Wi︸ ︷︷ ︸
Te′d′ (s)

d′ (5.7)

With these weights the performance parameter indicates how well the performance
requirements are fulfilled with γ ≤ 1 is fulfilled. Additionally, with the LFT representation
of uncertainties and all the uncertainties pulled out in ∆ the robust problem can be set
up as:

min
K(s)

max
∆∈∆R

∥∥Te′d′(s,∆)
∥∥
∞ (5.8)

With the interconnection as seen on figure 5.4
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Figure 5.4: Augmented robust H∞ interconnection.
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These interconnections can be used for both H∞ and structured H∞. This structure is
also what will be used for the LPV synthesis, the only difference being that the matrices
are no longer constant, but depend on some parameter ρ.

5.1.4 Linear Parameter Varying Control

For this project, the dynamics of the system varies significantly over time. Mainly the
velocity, the air density and the weight of the rocket. The velocity and air density
greatly affects the aerodynamic effects, and the weight influences most of the dynamics.
The previously presented controller syntheses have been for Linear Time Invariant (LTI)
systems. These methods can be used with gain scheduling by switching or interpolating and
can usually, in practice, give a good controller the parameters that vary slowly. However,
such gain scheduling does not guarantee performance nor stability when the parameters
are varying in time. This is why the LPV controllers are used as they can guarantee
stability and performance when the parameters are varying in time. LPV is also a type
of gain scheduling. However, the synthesis takes the effect from changing the variables
into account based on some measurable parameters ρ. The LPV controller can guarantee
stability and performance for linear combination of the gridded points and is generated in a
single step. The LPV control synthesis can be seen as a generalization of theH∞ control. It
uses the same framework as the H∞ control, which is why both have been explored during
this project. The LPV systems is very similar to Linear Time Varying (LTV) systems.
In fact, the first iteration developed for this project is made using time as the scheduling
parameter and is thus technically an LTV system [29]. This is because the controller
is developed for the planned part of the trajectory. Where the system has predictable
dynamics at each time instance. Thus, the dynamics will develop in a predictable manner
with respect to time during this period, and time can be used as a scheduling parameter.
For a controller for the descent or any other part where the trajectory is not predictable,
another scheduling parameter is needed, as the dynamics will not develop in a predictable
manner. For the ascent, the controller can also be scheduled based on the velocity. Using
velocity for scheduling will therefore be more robust towards dispersions in velocity which
is one of the main sources of uncertainty for the LV dynamics [21] .
While LPV synthesis does not yet have any official support in MATLAB, there is a third
party toolbox called LPVTools that can do some LPV synthesis[30]. The LPVTools toolbox
will be used for the final synthesis of the LPV controller in this project.

LPV summary

An LPV system is in many ways similar to an LTI system. The only difference is that the
matrices used to describe the system can depend on some parameters over time and can
be written as: [

ẋ(t)

y(t)

]
=

[
A(ρ(t)) B(ρ(t))

C(ρ(t)) D(ρ(t))

][
x(t)

u(t)

]
,

ρ ∈ P
ν ≤ ρ̇ ≤ ν̄

(5.9)

Where ρ(t) is a vector of time varying parameters ρ(t) =
[
ρ1(t), . . . , ρnρ(t)

]T that can take
any value within P. ρ̇ is the imposed rate of change of ρ and can change within the defined
limits ν ≤ ρ̇ ≤ ν̄. These constraints on ρ capture a set of admissible parameter trajectories
of ρ that the synthesis will consider. The time dependence will be omitted for readability.
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5. Controller Design

There are three main ways to work with LPV systems[31], polytopic, LFT based, and grid
based. Polytopic description relies on affine parameter dependence on ρ in the matrices.
LFT based LPV use LFT theory to capture the variation of the parameters. Finally, the
grid based LPV is similar to traditional gain scheduling as it uses a series of LTI models
gridded according to the scheduling parameter and is straightforward to use even with
complex systems. The last two methods are implemented in the LPVTools toolbox and
the grid based method will be used for this project.
The synthesis of the LPV controller uses a similar interconnection to H∞ controllers but
with parameter dependent dynamics. The standard interconnection is used as seen on
figure 5.5.

P(s,ρ)

T
ed
(s,ρ)
T
e'd'
(s,ρ)

d 

yu

ed’ e’ 

K(s,ρ)

Wi(s,ρ)Wi(s,ρ)

Figure 5.5: LPV interconnection used for synthesis.

Were the plant P (ρ) has the dynamics described by: ẋ

e

y

 =

 A(ρ) B1(ρ) B2(ρ)

C1(ρ) D11(ρ) D12(ρ)

C2(ρ) D21(ρ) D22(ρ)


︸ ︷︷ ︸

P (ρ)

 x

d

u

 (5.10)

And the controller K(ρ) described by:[
ẋK

u

]
=

[
AK(ρ) BK(ρ)

CK(ρ) DK(ρ)

]
︸ ︷︷ ︸

K(ρ)

[
xK

y

]
(5.11)

Closing the loop with the controller will result in the following system:[
ẋcl

e

]
=

[
Acl(ρ) Bcl(ρ)

Ccl(ρ) Dcl(ρ)

]
︸ ︷︷ ︸
Ted(ρ)=Fl(P (ρ),K(ρ))

[
xcl

d

]
(5.12)

The objective of the synthesis is then to minimize the L2 gain of Ted(ρ) with K(ρ):

min
K(ρ)

∥∥Ted(ρ)
∥∥
L2→L2 ; subject to

ρ ∈ P
ν ≤ ρ̇ ≤ ν̄

(5.13)
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5.2. Control Problem Formulation AAU

Where the L2 gain is a more general version of the H∞ norm. For an LTI system the L2

gain and H∞ norm is the same. However, the H∞ norm is not defined for LPV systems.
The L2 gain can be used as a performance metric that describes the maximum amplification
of the energy from inputs d to outputs e of Ted in equation 5.12 with the defined limits for
the trajectory of ρ. It can be expressed as for an LPV system[18][31][30]:

∥∥Ted(ρ)
∥∥
L2→L2 = sup sup

‖e‖L2
‖d‖L2

ρ ∈ P d ∈ L2

ν ≤ ρ̇ ≤ ν̄ ‖d‖L2 6= 0

(5.14)

An LPV system can be either quadratically stable or robustly stable. Quadratic stability
is very conservative and relies on finding a single Lyapunov function P that proves stability
for all values of ρ. The system is said to be quadratically stable if it satisfies the following
LMI:  Acl(ρ)TP + PAcl(ρ) PBcl(ρ) Ccl(ρ)T

? −γI Dcl(ρ)T

? ? −γI

 < 0 (5.15)

Where the matrices are from 5.12. And the ? represents matrices that will make the LMI
symmetric. γ here represents an upper bound of the L2-norm from equation 5.14:

∥∥Ted(ρ)
∥∥
L2→L2 ≤ γ (5.16)

The robust stability allows for the Lyapunov function P (ρ) to change with the scheduling
parameter ρ and can be far less conservative. The inclusion of the dependence of ρ on the
Lyapunov function increases the complexity of the synthesis. This is in part because one
has to consider the derivative of the Lyapunov function with respect to the parameter ρ.
The system is said to robustly stable if it satisfies the following LMI: Acl(ρ)TP (ρ) + P (ρ)Acl(ρ) +

∑
ρ̇i
∂P
∂ρi

(ρ) P (ρ)Bcl(ρ) Ccl(ρ)T

? −γI Dcl(ρ)T

? ? −γI

 < 0 (5.17)

The derivative can be taken into consideration in a linear system by taking the worst cases
into consideration. That is, the limits defined for ρ̇, ν and ν̄. The process and the LMI’s
are described in [32]. The specific synthesis used by the LPVTools toolbox in this project is
for a robust dynamic output feedback controller using gridding. Note that the robustness
of the LPV refers to the variable Lyapunov function and not robustness to uncertainties.
Synthesis taking uncertainties into account are not yet a part of the toolbox, however a
method is discussed here [33]. It uses Integral Quadratic Constraints (IQC) and has a
similar procedure to the DK-iteration for LTI systems. However, this is out of scope for
the project.

5.2 Control Problem Formulation

On figure 5.6 an overview of the controller structure used for synthesis is seen.
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Figure 5.6: Proposed controller structure for synthesis

Besides the main model of the LV, GLV, the controller system also includes models for the
actuation of the main engines, GTVC, and for delay, Gτ . There are also input and output
weights included. These include weights to limit the sensitivity of the pitch channel, Wθ,e.
The weight Wβ(ρ) to limit the actuation command. The weight WQα(ρ) to limit the
load. The set of weights Wθ, Wω, Wr and Wv is to limit the maximum deviation of the
states for which there were requirements set. The Wθ weight also is used to limit the
complementary sensitivity of the θ channel. For the input weights the Wc is based on
the expected commands. The input weight Ww defines the expected wind level into the
Gw(ρ) that defines the wind shape for the different instances of the flight. Wε defines the
expected uncertainty in the thrust. The weight Wn defines the magnitude of the noise in
the different channels. The K block represents the controller in the system. And finally,
the δ blocks represent uncertainties modelled in the connected blocks. These blocks will all
be explained in the following subsections. The system will be rearranged using MATLAB
to the general form needed for synthesis. For the structured H∞ synthesis it will be
structured as illustrated on figure 5.4. And for the LPV synthesis it will be arranged as
seen on figure 5.5.

5.3 Control Sub-Models

This section will describe the different models used to construct the full model
interconnection.

5.3.1 LV Model

The LV model GLV was derived in chapter 4. Uncertainties were added to the model using
the LFT framework in MATLAB. The uncertainties of the parameters is defined in table
5.1
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Variables Uncertainty
Qd,Cd,Cl 20 %

vx,FTVC,xCP 10 %
Jy,m,xCG 2 %
ωBM,1 20%
ωBM,2 25%

ψBM,1,ψ′BM,1 40%
ψBM,2,ψ′BM,2 50%

Table 5.1: Uncertainties for GLV

The uncertainties for the RB model are based on [18] where the same launcher was modelled
in cooperation with ESA. For the bending modes the numbers were provided by ESA. The
frequency response of the θy/βy channel of the model at t=55 with random samples of the
uncertainty parameters is seen on figure 5.7 The time t=55 was chosen as it is at the time
of the highest dynamic pressure and the most critical instance of the model.

5.3.2 Delay model

The delay model is a Pade-approximation with an uncertain parameter τ specifying the
time delay. The state space used is:

ẋτ =

[
0 1

−12/τ2 −6/τ

]
xτ +

[
0

−12/τ

]
uτ

yτ =
[

0 1
]
xτ +

[
1
]
uτ

(5.18)

Where τ is the delay that the model approximates. The nominal value of τ is 40 ms

and the uncertainty is 40 % based on numbers from [18] as discussed in section 2.6.4.
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Figure 5.7: Frequency response of the model GLV at t=55 with random
samples of the uncertainty parameters. Red response is the nominal response.
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Figure 5.8: Frequency response of the model Gτ with random samples of the
uncertainty parameter. Red response is the nominal response.

The frequency response is plotted on figure 5.8. The time delay does not vary with the
scheduling parameter.

5.3.3 TVC Actuator Model

The TVC actuator model for this project is modelled as a low pass filter with a bandwidth
similar to a model used in [20] for the main engine of the Vega LV. While the frequency
response was available but not the model, therefore an approximation was made. The
model is a 4th order Butterworth-lowpass-filter. The model should capture the most
important dynamic of the TVC system which is the bandwidth limitation. The TVC
model can easily be replaced in the full model if a better model becomes available. It was
decided that building a more complex model was not prioritized. The response can be
seen on figure 5.9.

-150

-100

-50

0

M
ag

ni
tu

de
 (

dB
)

100 101 102 103
-360

-270

-180

-90

0

P
ha

se
 (

de
g)

Frequency response of G
TVC

 (
TVC

/ )

Frequency  (rad/s)

Figure 5.9: Frequency response of the model GTVC.
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5.3.4 Dryden wind model

The Dryden wind model described in section 2.6.1 has also been implemented and also
changes along the trajectory. The model has been plotted for every 5 seconds of the
trajectory and can be seen on figure 5.10.
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Figure 5.10: Dryden filter along the flight.

This model will help the synthesis prioritize the response to the wind along the trajectory.

5.4 Weight Selection

This section will discuss the choices and designs of the input weights. When choosing
weights there is a trade off to be made. While it is possible to add frequency dependent
weights, it comes at a cost. Frequency dependency requires more states which will be added
to the synthesis model. The controller will have as many states as the synthesis model.
This means adding more complex frequency information with the weights will result in a
more complex controller and greater compute time both during synthesis but also when
implemented. Therefore frequency dependent weights have been kept at a minimum, and
only used where it was considered significant.

5.4.1 Command Input Weights

The command input weights are used to scale the feedback channels. For the synthesis
they correspond to the maximum command expected. However, for the gravity turn the
command signal will be set to zero. The initial weights used are based on [18] which use
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the same LV. The Weights are as follows:

Wc =


Wθ,c 0 0 0

0 Wω,c 0 0

0 0 Wr,c 0

0 0 0 Wv,c

 =


π

1801 0 0 0

0 π
1802.6 0 0

0 0 15 0

0 0 0 1

 (5.19)

The weights are not necessary for this part of the trajectory, and the input could be
removed entirely. But after talking to our supervisors from ESA, it was decided to use the
weights as they can help with the conditioning for the solver when synthesizing.

5.4.2 Wind Input weights

The wind input filter scales the wind disturbance. As the GW is designed to scale an
normalized input to the wind content within one standard deviation, the weight Ww can
scale the standard deviation of wind speeds included. The weight will be set to 2 for the
purposes of this project which will include about 95% of wind speeds at the severity defined
in the filter:

Ww = 2 (5.20)

5.4.3 Noise Input Weights

The noise input weight is based on the numbers described in section 2.6.3. The number
are constant and Wn will therefore be:

Wn =


Wθn 0 0 0

0 Wθn 0 0

0 0 Wrn 0

0 0 0 Wvn

 =


π

1800.02 0 0 0

0 π
1800.1 0 0

0 0 0.01 0

0 0 0 0.001

 (5.21)

5.4.4 Thrust Uncertainty Input Weight

The thrust uncertainty is based on section 2.6.2 and the value will correspond to a
maximum uncertainty in thrust amongst the main engines of 1 %:

Wε = 0.01 (5.22)

5.4.5 State Output Weights

The state output weights Wθ, Wω, Wr and Wv are used to limit the maximum deviation
of the states from the equilibrium. These weights are first of all used to capture the
requirements for maximum deviation from the trajectory. They are also used to indirectly
affect the complementary sensitivity (T) of the system, and because of the inverse
relationship with sensitivity it will also affect the sensitivity (S). The goal is to get a
low S at lower frequencies where the disturbances influence the system and a low T at
higher frequencies where the noise affects the system. Therefore, a filter is placed at the
output Wθ to shape T as desired. The cut off is set at 20 rad/s to not limit the bandwidth
of the control. The response can be seen of figure 5.11:
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Figure 5.11: Frequency response of Wθ

With this filter the final weight on the states will be:

Wn =


Wθ 0 0 0

0 Wω 0 0

0 0 Wr 0

0 0 0 Wv

 =



(
π

18020.01s+20
s+ 20

2

)−1

0 0 0

0 0 0 0

0 0 (500)−1 0

0 0 0 (15)−1

 (5.23)

Here it should also be noted that the weight on ω is set to zero which will result in no
limit for the rate of rotation. This is because there is no apparent reason to limit it that
is not already taken into account by some other weight.

5.4.6 Error Output Weights

The output weight Wθ,e i used to put an indirect limit on the sensitivity. The maximum
peak of the sensitivity has the following relationship with the GM and PM using classical
control theory [27].

GM ≥
∥∥Sθ(s)∥∥∞∥∥Sθ(s)∥∥∞ − 1

(5.24)

PM ≥ 2 arcsin

(
1

2
∥∥Sθ(s)∥∥∞

)
(5.25)

With this, we can indirectly limit the PM and GM of the most important control channel
eθ/dc,θ. Solving for a gain that will fulfill the targets that was set in the requirements in
section 3 will give a gain of 2. With the input to the channel being set to 1° and a gain of∥∥Sθ(s)∥∥∞ = 2 the weight will be:

Wθ,e = (
π

180
2)−1 (5.26)

5.4.7 Load Performance Weight

The weight WQα is used to limit the structural load on the LV. It is based on the
performance parameter described in section 3.1. For simplicity it is held constant along
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5. Controller Design

the trajectory, and the value used is the limit at the time of highest dynamic pressure.
The value is therefore selected to be:

WQα = (2.6 · 105)−1 (5.27)

For future work the weight should change along the trajectory as the maximum value for
Qα changes a lot. However, it was decided that it should just fulfill the requirement at
max-Q for simplicity.

5.4.8 Command Output Weight

The weight Wβ will be used to limit the actuation signal. It will have multiple functions,
first it is to limit the maximum actuation to 6.5°. Secondly it is used to make the controller
itself stable and to reduce the actuators coupling with the bending modes. This was
achieved by adding a low-pass-filter and two notch filters to the output. The bandwidth
of the low-pass filter was set to start at the first bending mode as well as the frequency of
the first notch filter, the second notch filter was placed at the second bending frequency.
The weight will then be a combination of those requirements:

The filter changes over the duration of the flight. The response of the weight can be seen
on figure 5.12.
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Figure 5.12: Frequency response of output filter

Wβ(s) =

 π

180
6.5

s2 + η1s+
(
ωBM,1

)2
s2 + η1

εNF,1
s+

(
ωBM,1

)2 · s2 + η2s+
(
ωBM,2

)2
s2 + η2

εNF,2
s+

(
ωBM,2

)2 ·
(

0.01s+ ωBM,1

s+
ωBM,1

6.5

)−1

(5.28)
Where εNF,i is depth of the attenuation from the i’th notch filter and ηi is the width of
the notch filter. ωBM,i is the center frequency of the filter. It should be noted that for
the structured H∞ synthesis Wβ is simply π

1806.5 and the filters are instead included as
bending filters.
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5.5. Synthesis of controllers AAU

5.5 Synthesis of controllers

This section will go through the process of synthesizing the controllers. The method of
gain scheduling will also briefly be explained.

5.5.1 Scheduling of the parameters

The scheduling of parameters used in this project will for simplicity be time, from 10
seconds into the flight until 90 second into the flight. With instances at an interval of 10
seconds. This means there will be a total 9 controllers to interpolate between, using gain
scheduling. This interpolation will mean that all systems in between will be estimated.
To illustrate this estimation, two examples of the estimated LTI models and real the LTI
model, for two time instances, have been chosen. The first is for the time t=45. The model
is a linear interpolation between the model at t=40 and t=50. This is around the time
of max-Q which is an important part of the trajectory and was therefore selected as an
example. The comparison can be seen on figure 5.13:
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Figure 5.13: Comparison of interpolated and real model at t=45 where the
LV is under max-Q

This is very good and the worst gain difference is less than 0.5 dB and phase difference
less than 0.5°. The second example is at t=25. This is around the time where the vehicle
is transonic. As described in section 2.5.1, the aerodynamic parameters change the most
around this time. The comparison can be seen on figure 5.14:

51



5. Controller Design

-200

-150

-100

-50

0

50

M
ag

ni
tu

de
 (

dB
)

From: betac  To: e(1)

10-4 10-3 10-2 10-1 100 101 102 103
-180

0

180

360

540

P
ha

se
 (

de
g)

Real
Interpolated

Frequency response of interpolated model and real model at t=25

Frequency  (rad/s)

Figure 5.14: Comparison of interpolated and real model at t=25 where the
LV is transonic.

As expected, the interpolation error is greatest around this time when the vehicle is
transonic. The maximum gain difference is more than 3 dB and the phase more than
10°. Therefore, for further development a more careful selection of grid points, like a
more dense grid around the time the LV is transonic, should be done. This selection is
in itself a large subject and will be considered out of scope for this thesis. For better
performance, one could also: Use a different parameter for scheduling such as velocity,
have more parameters, have more instances or be more selective about what instances are
used for scheduling. This can all potentially improve performance of the controller.

The time period from t=10 to t=90 is approximately the time of the gravity turn and will
be used for this thesis.

5.5.2 Synthesis of the Structured H∞ Controller

The Structured H∞ problem is set up as explained in section 5.1.2. Using the model
explained in section 5.2. To better find the local solutions of the non-convex problem of
the structured H∞ controller, the problem is solved for every second along the trajectory.
This high resolution grid will make it easier to make an initial guess for a controller instead
of using random initial starting conditions for every controller. With a higher resolution,
controllers for adjacent time instances can be used as an initial guess. An example is using
the solution of a controller found for t=55 as the initial guess when solving for the controller
at t=54. The closer these systems are, the greater is the chance that the adjacent controller
is a good guess. Here, one second steps was found to give a good trade off between higher
resolution grid and using more random starts. Starting with controller at the time of max-
Q, the controller is found with 20 random starts from a uniform distribution within the
specified limits for each parameter, to increase the chance of finding the optimal controller.
Then that controller is used as the initial controller when finding the adjacent controllers.
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5.5. Synthesis of controllers AAU

Those controllers will then be used as the initial guess for their adjacent systems in each
direction away from the initial controller. With this iterative method the controllers that
are found are usually better suited for gain scheduling by interpolation and more likely the
optimal controllers. This method will often not give the best controllers at every instance
in the first attempt. But for the cases that seem like outliers, some ad hoc methods can be
used. They are identified by looking at the controllers that seem to be significantly worse
than the rest or break a pattern. Then one can try other adjacent controllers as initial
guesses or try to do more random starts for those specific instances until all the controllers
seem to fit a pattern that will make them suitable for gain-scheduling. When doing random
starts one will also quickly get an idea of what is a reasonable range for the gain. This
can be used to specify a range for the random starts that will greatly improve the chance
of finding the optimal controller. However, making these ranges too small might result in
excluding the optimal controller and should be done with care. All this extra work will
not even guarantee to find a set of controllers that can be gain scheduled and is one of
the disadvantages of the approach. It should be noted that the H∞ control synthesis was
mainly used as a stepping stone to developing a LPV controller and to familiarize with
the weight augmentation structure and procedure. And a gain scheduled H∞ controller
for the final system was not implemented.

5.5.3 Synthesis of the LPV Controller

The control synthesis for the LPV uses the model explained in section 5.2 rearranged to
the standard setup explained in section 5.1.4. The model consists of a gridded structure
of the 9 LTI systems according to 9 time-instances. The 9 time instances are from t=10
to t=90 and every 10 seconds in between. For the synthesis the LPVTools[30] toolbox
for MATLAB will be used. For the synthesis, a basis function for the Lyapunov function
is chosen. The more complex Lyapunov function can make a less conservative controller
but will also significantly increase the computing time for the controller. Since the main
dynamics of the system such as the velocity enters the system via a quadratic relation
to the aerodynamic forces. A good guess for a base function is therefore a second order
polynomial as the base function. That is the function of the Lyapunov P (ρ) function with
respect to ρ will be:

P (ρ) = X1 + ρX2 + ρ2X3 (5.29)

Where X1, X2 and X3 are matrices with the coefficients of the Lyapunov function that
the solver will solve for. The system will be a system of the same order as the weighted
system. For the system designed in this project the controller will therefore have 22 states.

Resulting Controller

The resulting controller has 21 states and is stable. Where the pole closest to the imaginary
axis is -0.07. The γ from the synthesis is 1.09. For a sense of the controller the following
responses will be shown:
The frequency response of the LTI models can be seen on figure 5.15

The step response of the LTI models can be seen on figure 5.16
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Figure 5.15: Frequency response of LTI systems from GK
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Testing 6
This chapter will present the tests and results to verify the performance of the controllers.

6.1 LPV controller

This section will present the results from tests of the LPV controller.

6.1.1 Stability

There are multiple ways to check for stability. The first to look at the upper bound γ

from equation 5.16, of the L2-norm from the synthesis in equation 5.14. With the weights
used for this project, the resulting γ is 1.09. This γ implies that beyond being stable, that
the controller ensures that the L2-gain of the closed-loop system is less than γ for all the
allowed parameter trajectories of ρ. To also verify that the frozen LTI instances of the CL
is stable the rightmost eigenvalue of all the LTI systems was found to be -0.019. Finally
the stability was also verified in an LPV simulation, with the system following a parameter
trajectory and with simulated inputs. This will be explained next.

6.1.2 Performance

The first way to gauge the performance of the system is again to look at the γ from the
synthesis. With the weights added according to the requirements, the γ should be less than
1 to fulfill the requirements defined by the weights. If the weights and model are good
enough the requirements they are based on should also be fulfilled. While this was not
entirely achieved it should be noted that it is very close, and loosening the requirements
a bit will bring the γ below the 1. Another way to test the requirements is to directly
simulate the system with the controller. Ideally, when a real rocket can not be used, a
full nonlinear 6 degrees of freedom simulation including all the dynamics should be used.
However, this would be a project in itself. Therefore, an LPV simulation available in
the LPVTools toolbox[30], LPVSim, will be used. The LPVSim function lets one specify
the parameter trajectory, initial states and the inputs to the system. For the inputs, the
command signals of dc will be set to zero, as we are concerned with the gravity turn where
all the commands will be zero. The noise will be random samples with zero mean and
variance according to section 2.6.3. For input to the Dryden filter dw the signal will either
be white noise with variance of 2, or it will be a constant of 2. This will simulate the
very unlikely case that the wind is constant at the maximum magnitude. This constant
wind is a typical worst case[18], that the synthesis should have designed for. Same inputs
will be used for the engine cluster uncertainty disturbance dε, but with the magnitude
defined in 2.6.2. Finally the trajectory of ρ which will simply be the current time. The
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simulation will be carried out with a fixed step-size of 0.001 s. There will be multiple tests
for different cases and scenarios to determine the performance. For all of these simulations
the requirements in section 3 should be satisfied.

6.1.3 LPV Simulation with Mixed Disturbance and Initial error

This simulation is used as a scenario that shows the system’s behavior in a likely scenario.
It has an initial error on the pitch channel to show the response of that channel. It
has white noise as the input to the wind channel to show the effect of a random wind
disturbance. It has a constant error on the engine as it is likely that one engine is simply
under performing and therefore constant. The inputs is seen on figure 6.1. Note that while
the input to the Dryden filter is white noise, the input to the rest of the system will be
filtered.

Inputs for Clossed Loop Simulation
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Figure 6.1: Graphs of the input to the closed loop system. The command
signals dc,θ, dc,ω, dc,r and dc,v are kept constant and at zero. There is white
noise on the four noise channels dn,θ, dn,ω, dn,r and dn,v. There is white noise
with variance of 2 at the input to the Dryden filter ddryden. The input to the
offset disturbance, dε, simulate a constant engine cluster difference of 1 %

With these inputs results in the outputs seen on figure 6.2
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Outputs of Clossed Loop Simulation
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Figure 6.2: Graphs of the outputs from the simulation of the closed loop
system with mixed disturbance and an initial error. It shows the performance

parameter Qα. The actuation angle β. The pitch error θ. The angular
velocity error ω. The drift r. The drift velocity v.

This simulation satisfies the following requirements:

Requirement Max Result Satisfied
Max actuation 6.5° 2.7° X

Integrated actuation 250° 8° X
Max Qα 2.6× 105 Pa ° 498 Pa ° X
Max drift 500 m 211 m X

Max drift rate 15 m/s 3.3 m/s X

Table 6.1: Requirements check for simulation with mixed disturbance and
initial error

This simulation shows that under the specified conditions the controller meets the
requirements.
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6.1.4 LPV Simulation with No Disturbance and Initial error

This simulation is used to check if the error will converge to zero if there is no disturbance
as it was a requirement set in section 3. It has an initial error of the pitch channel to show
the response of that channel. It has no input to the wind channel and no constant error
on the engine. The inputs is seen on figure 6.3.

Inputs for Clossed Loop Simulation
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Figure 6.3: Graphs of the input to the closed loop system. The command
signals dc,θ, dc,ω, dc,r and dc,v are kept constant and at zero. There is white
noise on the four noise channels dn,θ, dn,ω, dn,r and dn,v. There is no input to
the Dryden filter ddryden. The input to the offset disturbance, dε, is also set to

a constant of zero for this simulation.

With these inputs, and an initial pitch of 2° and drift of −400 m, the resulting outputs can
be seen on figure 6.4.
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Outputs of Clossed Loop Simulation
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Figure 6.4: Graphs of the outputs from the simulation of the closed loop
system with no disturbance and an initial error on both the pitch and drift.
It shows the performance parameter Qα. The actuation β. The pitch error θ.

The angular velocity error ω. The drift r. The drift velocity v.

This simulation satisfies the following requirements:

Requirement Max Result Satisfied
Max actuation 6.5° 3.2° X

Integrated actuation 250° 2.9° X
Max Qα 2.6× 105 Pa ° 291 Pa ° X
Max drift 500 m 402 m X

Max drift rate 15 m/s 5 m/s X

Table 6.2: Requirements check for simulation with no disturbance and initial
errors

This also shows that the states of the system do converge towards zero error with no
disturbance.
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6.1.5 LPV simulation with random disturbance

This simulation is to test the tracking during random disturbance. It has the random
inputs seen on figure 6.5. Note that while the input to the Dryden filter is white noise,
the input to the rest of the system will be filtered.

Inputs for Clossed Loop Simulation
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Figure 6.5: Graphs of the input to the closed loop system. The command
signals dc,θ, dc,ω, dc,r and dc,v are kept constant and at zero. There is white
noise on the four noise channels dn,θ, dn,ω, dn,r and dn,v. There is white noise
with variance of 2 at the input to the Dryden filter ddryden. The input to the
offset disturbance, dε, simulates a white noise engine cluster difference with

mean of 0% and variance of 1 %.

With these inputs and all zero initial states, the results of the outputs can be seen on
figure 6.6
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Outputs of Clossed Loop Simulation
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Figure 6.6: Graphs of the outputs from the simulation of the closed loop
system with random disturbance and no initial errors. It shows the

performance parameter Qα. The actuation β. The pitch error θ. The angular
velocity error ω. The drift r. The drift velocity v.

This simulation satisfies the following requirements:

Requirement Max Result Satisfied
Max actuation 6.5° 0.02° X

Integrated actuation 250° 0.35° X
Max Qα 2.6× 105 Pa ° 32 Pa ° X
Max drift 500 m 1.1 m X

Max drift rate 15 m/s 0.06 m/s X

Table 6.3: Requirements check for simulation with random disturbance

This simulation verifies that with these random disturbances, the system satisfies all the
set requirements.

6.1.6 LPV simulation with constant disturbance

This simulation with constant disturbance has inputs is seen on figure 6.7. This simulation
is done because a likely worst case is when the wind is constant. When the wind is random
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it will average out the effect on the LV. When it is constant it will keep pushing it off the
trajectory the whole way through. And since it is a part of the scenarios the synthesis
takes into account, it is worth simulating.

Inputs for Clossed Loop Simulation
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Figure 6.7: Graphs of the input to the closed loop system. The command
signals dc,θ, dc,ω, dc,r and dc,v are kept constant and at zero. There is white
noise on the four noise channels dn,θ, dn,ω, dn,r and dn,v. There is a constant
input of 2 at the input to the Dryden filter ddryden. The input to the offset

disturbance, dε, simulates constant engine cluster difference of 1%.

With these inputs and all states initialized at zero, the results of the outputs is seen on
figure 6.8.
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Outputs of Clossed Loop Simulation
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Figure 6.8: Graphs of the outputs from the simulation of the closed loop
system with constant disturbance and no initial errors. It shows the

performance parameter Qα. The actuation angle β. The pitch error θ. The
angular velocity error ω. The drift r. The drift velocity v.

This simulation satisfies the following requirements:

Requirement Max Result Satisfied
Max actuation 6.5° 0.18° X

Integrated actuation 250° 8.2° X
Max Qα 2.6× 105 Pa ° 488 Pa ° X
Max drift 500 m 226 m X

Max drift rate 15 m/s 3.8 m/s X

Table 6.4: Requirements check for simulation with constant disturbance

Additionally this simulation verifies that even though a constant disturbance has a larger
effect on the system, it still satisfies all the requirements.
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6.2 Test Conclusion

All the tests were successful and satisfied the set requirements. The first test shows that
even if there is a small error when starting the gravity turn the controller can correct and
follow the gravity turn while under disturbance. The second test shows that with initial
error and no disturbance the LV will converge to zero. While the drift distance converges
slowly it is not as important as it doesn’t affect the dynamics significantly, but should just
be kept within the 500 meters specified by the requirements. The disturbance tests show
that it can keep the output channels within the specified requirements, both with random
disturbance, and with constant disturbances.
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Conclusion 7
7.1 Discussion

This section will discuss some of the results, decisions and circumstances developed in this
thesis.

7.1.1 ESA Collaboration and Multiple engine Control

This thesis is in collaboration with ESA, due to ESA having specific interests in the subjects
of this thesis. Specifically they are interested in the allocation of the TVC system when
using multiple engines. This is mainly because most other subjects covered in this thesis
have already been explored in previous work[18][23]. The effect of multiple main engines
is therefore explored while developing the modeling. The conclusion is that for the level of
control applied in this thesis, the fact that there are multiple engines does not change the
linear dynamics for the pitch and yaw plane. This can be attributed to the linear control
input for each engine being the same no matter the position on the bottom of the rocket in
the linear model. Thus there is no difference from just having one engine in terms of how
the control signal enters the linear system. This is also concluded with a different method
in a previous project[13]. The disturbance from difference in thrust is however taken into
account. The other potential subjects to explore regarding multiple engines is not explored
in this thesis. The primary subject to be explored would be the control of the roll of the
rocket. This should be straightforward with the model that is build as it included the
states that would be controlled, and the individual engines’ effect on these states. While
the next steps are outlined clearly in theory, implementing this went beyond the scope of
this thesis. In regards to the collaboration, assistance from Automatic Control Systems
Analyst Finn Ankersen and GNC Systems Engineer Pedro Simplício is greatly appreciated.
Both with providing data and material on the relevant subjects, while also sharing their
experience and insights on the subject.

7.1.2 Uncertainties are not Used for Control Synthesis

The uncertainties were modeled using LFTs and were simulated with random samples.
However, it is not possible to make a synthesis using just the small gain theorem that
the LFT modeling is used for. To include uncertainties in a less conservative manner
would require IQC theory that is decided to be out of scope for this project. But even the
early tests using H∞ control already made clear that the compute time quickly reached
impractical levels using the D-K iteration for large LTI systems. Therefore, there is no
real measure of the robustness of the system.
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7.1.3 Prioritization of Objectives

This thesis prioritized including more dynamics into the control, instead of designing a
simpler controller for the whole duration of the flight. This is decided in agreement with
ESA and supervisor, resulting in a more realistic design process, but for a smaller problem.
Therefore, even though the motivation for the project is the design of a controller used for
landing a rocket booster, it is not developed. Instead, a more realistic and wide set control
theory and complex model building is explored successfully.

7.1.4 Simulation

Initially it was planned to develop a nonlinear 6 DOF simulation to verify the controller.
Such a simulation with some of the basic dynamics has already been developed in a
previous project[13]. However, it was advised against spending too much time on this
activity. A simulation would be hard to verify even if it was developed. As with any other
implementation it is also very hard to estimate the development time. Since a simulation
would take time from developing a controller, it was decided to not attempt to develop it
and instead use linear simulations to verify the controller. Using a linear simulation will
not tell if the linear estimates used for the controller synthesis will hold. Simulating the
controller with the same model the controller is synthesised from will also not necessarily
show if there are any mistakes in the modeling because of the nature of the synthesis. It is
therefore to be expected that if the closed loop model is stable, even if the model is wrong,
the controller will perform well. However, this is the nature of working with a subject like
this, there is no way to just test it on a real rocket, and most simulators with the fidelity
needed to test the system are not readily available.

7.1.5 Future Work

Already after the initial problem analysis it became apparent that designing a controller
for a LV is a difficult and complex task. So while a plan with a path to make a controller
for landing a booster was made, it is clearly not possible to realize this within the scope of
this thesis. The implementation is therefore made in a way that changing it or including
the necessary parts for the remaining flight, have been planned in the design. While the
next objective on the list would be to make the controller robust to uncertainties, this
would be an entirely new subject, and seems rather complex with some difficulties already
apparent. The more natural steps would be to first make all the controllers for pitch,
yaw and roll. This should be straightforward as the models are already made, although it
might be time consuming to implement. It should also be straightforward to use the model
containing the states of the pitch, yaw and roll controller, to implement a model with the
states of all three planes in one. This would be instead of designing controllers that would
control the individual planes. This might however result in exponentially longer synthesis
times. For the nonlinear simulation, the core functionality is already implemented, and a
plan for the remaining dynamics was made at the start of the semester. But again this
could end up being very time consuming. Finally, the remaining parts of the trajectory
should be analysed. It should be considered how the dynamics and the scheduling should
be modified when the assumptions that were used during the gravity turn no longer apply.
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7.2 Conclusion

This thesis sought to develop an LPV controller for the altitude control of a rocket booster.
First, an analysis of rocket dynamics and the control problem were done. Based on this
analysis, a prioritized set of objectives was formulated. The objectives were prioritized
towards a controller with more dynamics, but for the gravity turn only.

A rigid-body model was developed using vectors and reference frames that could be used
for all three control planes. This modeling framework makes modifying or adding dynamics
easier, and it is ready for use in a controller that controls the pitch, yaw and roll planes
individually or all at once. The pitch model was first augmented with bending modes. Sub
models for actuation, delay and wind were added to this model. It was then connected
with the relevant inputs for command, noise and disturbances. Then the weights were
added to specify the requirements for the synthesis. While adding weights and more sub
models to the system, the structured H∞ was used to synthesise LTI controllers using the
interconnection as a stepping stone to the LPV. The LPV controller was then synthesized
using a gridded set. The controller was at first internally unstable, to solve this issue, a
weight was added to the output that made the controller internally stable.

The controller was finally tested in an LPV simulation and was proven to be stable. All the
requirements were met in simulation, but the L2-norm upper bound γ was slightly above
one at 1.09. This means that there might be some configuration that was not tested that
could break the requirements a bit. However, with the test results the controller fulfills the
requirements. And thus, an LPV controller for the gravity turn was successfully developed
and tested.
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Appendix A
A.1 Parameter Trajectories

This appendix contains the graphs of the varying parameters of the model.
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Figure A.1: Velocity parameter trajectory from simulation.
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Figure A.2: Air Density parameter trajectory from simulation.
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Figure A.3: Mass parameter trajectory from simulation.
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Figure A.4: Moment of Inertia parameter trajectory from simulation.
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Figure A.5: Center of Gravity parameter trajectory from simulation.
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Figure A.6: Mach parameter trajectory from simulation.
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Figure A.7: Thrust parameter trajectory from simulation.
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