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Abstract

Graph Convolutional Network (GCN) is a state-of-the-art method used for recommendation. Throughout this
paper we study the effects of modifying the methods used for layer combination in GCN. An ablation study for
GCF is conducted to understand why it outperformed LightGCN on their datasets. We focus on LightGCN
which is a simplified implementation of the Neural Graph Collaborative Filtering (NGCF). LightGCN
outperformed NGCF and other state-of-the-art methods. We propose two new extensions for LightGCN
called Aggressive Layer Combination (ALC) and Balanced Layer Combination (BLC) instead of LightGCN’s
version of weighted summation for layer combination. This showed better results on most datasets compared
to both GCF and LightGCN. We also show that in certain cases only utilizing the embedding from a single
layer showed to outperform ALC, BLC, GCF and LightGCN.

1. Introduction

Recommendation systems aim to alleviate the prob-
lem of information overload when browsing the
web. They are widely used for e.g. online shop-
ping where the number of items available can be
overwhelming. By looking at the data of the cur-
rent user the recommendation system can predict
a certain number of items that the user most likely
would prefer, thereby greatly reducing the unneces-
sary information shown. There are different ways
to achieve this where one of the most common ways
is using collaborative filtering.
Collaborative filtering is based on the concept that
users that act similarly will most likely have the
same preferences, meaning users who have bought
or liked the same items previously will in the fu-
ture most likely have an interest in the same items.
Achieving collaborative filtering is done by learn-
ing latent features of items and users to represent
them, this is also called embeddings. One of the
earlier models for collaborative filtering is Matrix
Factorization (MF) where the users and items are
embedded as vectors and the dot-product of the
vectors is then used to make predictions of which

items users would prefer [15].
More recent collaborative filtering models utilize a
graph convolutional network (GCN) to better cap-
ture the collaborative signals. Models like Neural
Graph Collaborative Filtering (NGCF) integrate the
bipartite graph structure, that is the user-item inter-
actions, into the embedding process to capture the
collaborative signals [24]. A later model called Light-
GCN simplifies NGCF, removing feature transforma-
tion and the activation function. Doing this achieved
state-of-the-art performance, as they showed that
feature transformation and activation functions were
not beneficial for recommendation [8].
One of the major components of a GCN is the layer
combination. The GCN starts with a user-item graph
and performs convolutions on the graph to create
additional embeddings for each layer. In the end,
these layers are combined to create the final em-
bedding, the most common ways to combine these
layers is by using concatenation or weighted sum-
mation. To our knowledge, there has not been done
any work on optimizing this process.
In this paper we have looked into what effect chang-
ing the layer combination method has on the per-
formance of the LightGCN model. We have ex-
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tended LightGCN by proposing two different meth-
ods called Aggressive Layer Combination (ALC) and
Balanced Layer Combination (BLC). These methods
calculate how much weight each layer should have
in the weighted summation when constructing the
final embedding. We have also discovered that uti-
lizing only one layer and disregarding the rest can
also lead to an increase in performance.
In this paper, we have also done an ablation study to
better understand how GCF the non-transfer learn-
ing version BiTGCF can outperform LightGCN in
their paper.
Our implementation is available in GitHub1. These
investigations can be summed up into the following
research questions.

• RQ1: How does changing αk affect the perfor-
mance in LightGCN?

• RQ2: How do different aggregation functions
effect the performance in GCF and LightGCN?

• RQ3: How does adding ALC and BLC to Light-
GCN perform compared to other state of the
art methods?

• RQ4: Is it beneficial to change layer combina-
tion based on the degree of the nodes?

2. Related work

In this section, we look at some related work that is
relevant to our paper. We start by looking at some
work related to collaborative filtering and graph-
based recommenders. Finally, we look at some re-
lated work that also extends LightGCN or builds
upon LightGCN in some capacity.

2.1. Collaborative filtering

Collaborative filtering (CF) is a widely used tech-
nique in modern recommender systems [8]. There
are two main disciplines of CF which are the latent
factor approach and the neighborhood approach
[3, 15, 16]. Neighborhood approaches compute ei-
ther item-item or user-user relationships. Most com-
monly sets of similar items that a user has rated
are computed and a rating is estimated from the
weighted average of the ratings given to those items.
Ratings can then be predicted for other items by
looking at the average rating of their neighbours [3].
Latent factor methods represent users and items as
parameterized vectors and learn these parameters

1https://github.com/SpecialeBajs/LightGCN-ALC-
BLC

by reconstructing historical user-item interaction
data. One of the earliest examples of this is Ma-
trix factorization(MF) which maps users and items
in a joint latent factor space with the same dimen-
sionality and then models the user-item interactions
as inner-products in that space [15]. These repre-
sentations of users and items are also commonly
called embeddings. MF then uses the dot product
of these to predict user-item interactions. These
methods do not require any domain knowledge be-
cause they only represent the users and items by
their ID without any additional information. Newer
methods also use neural networks to improve this
model while still using the older format of embed-
dings. Examples of this are NCF [9] which replaces
the inner product with a deep neural network and
LRML[22] which uses neural networks to improve
the learned embeddings. SVD++ [16] combines the
neighborhood and the latent factor approach while
also taking implicit feedback into account when cal-
culating the predictions.

2.2. Graph-based recommenders

Another research area that is relevant is Graph-
based recommenders. Some of the earlier Graph-
Based Recommenders were PageRank, BiRank and
ItemRank that utilize random-walks for recommen-
dation [5, 7, 20]. ItemRank and BiRank use label
propagation where interacted items are labeled. Rec-
ommended items are then based on the similarity
between targeted items and interacted items [5, 7].
In our paper, we use a simplified version of NGCF
called LightGCN. NGCF uses GCN for collaborative
filtering [8, 24]. Simplified Graph Convolutional Net-
works (SGCN) removed nonlinearities and collapsed
the weight matrices between consecutive layers, but
this method was created for node classification [8,
26]. Other methods like GCN, GC-MC, and Graph-
Sage also utilize graph convolutions to capture the
collaborative signals in the user-item interaction
graph [2, 6, 13]. For GC-MC it only utilizes one
convolutional layer and is focused towards recom-
mendation [2], where GCN and GraphSage are used
for node classification [6, 13]. Other methods like
KGAT and CKAN specialize in using knowledge
graphs for collaborative filtering [23, 25]. KGAT
propagates embeddings from a node’s neighbours
while having a specialized attention mechanism that
discriminates the importance of different types of
neighbors [23]. CKAN has two different propaga-
tion methods, one for collaboration propagation and
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one for knowledge graph propagation, and then
uses a knowledge aware attentive network to dif-
ferentiate the importance of the different types of
relations [25].

2.3. Extensions to LightGCN

There have been multiple extensions to LightGCN
and work created inspired by LightGCN [17, 18, 19,
27]. One of them is LightGCN based Aspect-level
Collaborative Filtering (LGC-ACF), which utilizes
LightGCN and adds side information [19]. The
input to this model is a user-item graph and a user-
side information graph for each type of side in-
formation. These graphs independently use the
propagation method from LightGCN (as seen on
Equation 6). For layer combination, LGC-ACF uses
weighted summation where all of the layers have
equal weights when combining the user-items em-
beddings and the user-side information embeddings.
This is also done with the item embedding [19].
Interest-aware Message-Passing GCN (IMP-GCN) is
an alternative extension to LightGCN [17]. It alle-
viates the problem of GCNs being over-smoothed
by creating clusters within the graph so that all
nodes will not end up being connected. The result
of this method is that it can utilize a higher number
of convolutions with good performance compared
to LightGCN [17]. All of the methods mentioned
change or extend the propagation method in Light-
GCN in some capacity, but none of them try to
optimize the layer combination method. Our meth-
ods could therefore be directly used by the methods
mentioned if they utilize weighted summation.

3. Preliminary

This section contains the preliminaries needed to un-
derstand our contributions to LightGCN and knowl-
edge about similar recommendation models. It ex-
plains how embedding propagation and layer com-
bination is done in NGCF, LightGCN and GCF.

3.1. Brief Review of NGCF, LightGCN
and GCF

NGCF was published in 2019, and was a state of the
art method that utilized a GCN for collaborative fil-
tering [24]. GCN was originally proposed for node
classification where each node has rich attributes,

but for collaborative filtering the nodes only con-
tain node IDs [8, 14, 24]. This is something that
LightGCN took advantage of and simplified NGCF
by removing the nonlinear activation function and
the feature transformation, which showed promis-
ing results in their experiments. Later Meng Liu et.
al created a method called BiTGCF which utilized
GCN and transfer learning between two domains
[18]. They also added GCF which is a degener-
ate version of BiTGCF that does not utilize transfer
learning between two domains, but is a single do-
main method like LightGCN and NGCF. BiTGCF
and GCF remove the feature transformation and
nonlinear activation function of NGCF, which was
inspired by LightGCN, but they choose to keep other
aspects of NGCF. In their experiments Meng Liu et.
al showed that both GCF and BiTGCF had large
improvements over both LightGCN and NGCF. BiT-
GCF only showed smaller improvements over GCF,
which can indicate that high connectivity caused by
GCN has a larger effect on recommendation than
transfer learning between domains has. In this pa-
per we only concentrate on single domain methods,
and therefore will only focus on GCF of these two
methods.

3.1.1 Graph Convolutional Networks

GCN for collaborative filtering can generally be ab-
stracted as [18],

e(k+1)
u = AGG(e(k)u , e(k)i : i ∈ Nu), (1)

where AGG(·) is an aggregation function, and e(k)i

and e(k)u denotes the embeddings for user u and item
i after k convolutions. The embedding propagation
for items can be obtained similarly as the embed-
dings for users by replacing u with i and vice versa.
Nu and Ni denotes the one hop neighbors from user
u and item i respectively [8, 18, 24].
On Figure 1 a generalized illustration of the model
architecture in LightGCN, GCF and NGCF can be
seen. Graph convolutions are conducted on the
initial embeddings, where an embedding function is
used. The graph convolutions are illustrated on Fig-

ure 2 and this figure shows how the signal from e(0)i1

passes through e(1)u3 and e(2)i4
to e(3)u1 . This is how the

graph convolutions are performed on all users and
items. After K convolutions have been conducted,
the embeddings from each layer are given as input
to the layer combination method. The aggregation
function used in the layer combination method is
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Figure 1: Generalized model architecture of NGCF, LightGCN and GCF

Figure 2: Illustration of three graph convolutions for u1

often either concatenation or weighted summation.
An example can be seen on Figure 3, where each
array symbolizes a layer.

Figure 3: Example of weighted summation and concate-
nation as layer combinations.

Following this section we describe the embedding

propagation for users and the layer combination in
NGCF, LightGCN and GCF.

3.1.2 Embedding Propagation in NGCF:

The embedding propagation in NGCF is defined as,

e(k+1)
u = LeakyReLU(m(k)

u←u + ∑
i∈Nu

m(k)
u←i), (2)

where LeakyReLU is the nonlinear activation func-

tion, m(k)
u←i is the message construction from item i

to user u, and m(k)
u←u is the self connection. These are

respectively defined in Equation 3 and Equation 4
[24].

m(k)
u←i =

1√
|Nu||Ni|

(W(k)
1 e(k)i + W(k)

2 (e(k)i � e(k)u )),

(3)

m(k)
u←u = W(k)

1 e(k)u (4)

For Equation 3 and Equation 4 W1 and W2 are the
trainable weight matrices used to perform feature
transformation at each layer. 1√

|Nu ||Ni |
is the graph

Laplacian norm used to normalize the embeddings.
The final embedding is calculated by concatenating
the embedding from each layer as seen on Equa-
tion 5 [24].

eu = e(0)u ||...||e
(k)
u (5)
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3.1.3 Embedding Propagation in LightGCN

The embedding propagation for LightGCN is de-
fined as [8],

e(k+1)
u = ∑

i∈Nu

1√
|Nu||Ni|

e(k)i (6)

As can be seen, LightGCN simplified NGCF by re-
moving the activation function, learnable weight
matrices, the self loop and the inner product be-
tween the user and item embeddings. Additionally
LightGCN changes the layer combination from con-
catenation to weighted summation as shown here:

eu =
K

∑
k=0

αke(k)u , (7)

where K is the total number of layers and αk is a
hyper parameter used to denote the importance of
the k-th embedding [8]. αk is set to 1/(K + 1) for
simplicity. This gives each layer the same weight,
that results in the final embedding being the mean
of all embeddings.

3.1.4 Embedding Propagation in GCF

The embedding propagation in GCF is defined as
[18],

e(k+1)
u = e(k)u + ∑

i∈Nu

1√
|Nu||Ni|

(
e(k)i + e(k)i � e(k)u

)
(8)

As can be seen GCF adds the self connections and
the inner product between the users and items com-
pared to LightGCN. The purpose of the inner prod-
uct is that the more the user and item nodes have in
common the greater the value will be passed to the
center node [18]. Self connection is used to retain
the information of the original node. Additionally
GCF uses concatenation as layer combination, which
was also used by NGCF as seen in Equation 5.

3.2. Removing αk

To show that αk has an effect in LightGCN we re-
moved it to see what impact this had on the per-
formance of LightGCN. If this did not have any
substantial effect, it could indicate that it would not
be worthwhile trying to optimize the layer combi-
nation method. This was done by changing αk to 1,
which equates to summation of the different layer
embeddings.

eu =
K

∑
k=0

e(k)u , (9)

Figure 4: NDCG@50 of LightGCN and LightGCN-Ak1
on yelp2020

This will make the embeddings scale when they are
combined instead of normalizing them as they do
in LightGCN. The results from running the experi-
ment on the Yelp2020 dataset which is a data set that
LightGCN used for their experiments can be seen
on Figure 4. It shows that removing αk was detri-
mental for the performance. In the initial epochs,
LightGCN αk = 1 (LightGCN-Ak1) performs bet-
ter, but it quickly starts to decline in performance.
The results from Amazon-Book are similar and can
be seen in Appendix A.1. These results indicates
that weighted summation is an important part of
the layer combination, and that summation is not
beneficial for LightGCN.

4. Method

Throughout this section we introduce ALC and BLC
as our contribution to LightGCN. These methods
experiment with different changes to how layer com-
bination is performed in LightGCN.

4.1. Optimizing layer combination

In this subsection we describe the methods used to
answer the following research question:

• RQ1: How does changing αk affect the perfor-
mance in LightGCN?

• RQ3: How does adding ALC and BLC to Light-
GCN perform compared to other state of the
art methods?

LightGCN uses weighted summation as their ag-
gregation function when combining the different
layers, where each layer has the same weight. Our
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hypothesis is that some layers are more important
than others therefore giving each layer the same
weight can be detrimental to the performance of the
model. Instead, we have developed two algorithms
that take into account the performance of each layer
to see if there is a substantial performance gain to be
had when optimizing the layer combination. Given
a dataset, a GCN model will have a number of con-
volution layers. By running separate experiments
we get the performance of each layer. In these exper-
iments we only use the embedding from one of the
layers in the final embedding to see how that layer
performs. The algorithms look at the performance
of each layer compared to the best performing layer.
Based on how much worse the layer performs com-
pared to the best layer its weight when doing sum-
mation will be reduced and the other layers weight
will be increased accordingly.

4.1.1 Getting the performance of each layer

We train the model separately for each layer to find
their respective performance. This is done by per-
forming the graph convolutions and then only using
the embeddings from one of the layers as the final
embedding instead of using layer combination. This
can be seen in Equation 10 where k is the layer that
is utilized in the final embedding. e(0) has zero con-
volutions, e(1) has one convolutions, e(2) has two
convolutions and so on.

eu = e(k)u (10)

This is done for all layers from e(0) to e(K), where K
is the number of convolution layers used.

4.1.2 Aggressive Layer Combination

The algorithm for ALC can be seen on algorithm 1.
Each layer starts out with the same weight. Given a
performance score for each layer, the algorithm cal-
culates in percentages how much worse each layer
performed compared to the best performing layer.
The layers are sorted in ascending order from worst
performing to best performing. The worst perform-
ing layer is removed from the list and can not gain
any weight, as seen when L is popped on algo-
rithm 1. For each layer, the amount of percentage
it has performed worse compared to the best per-
forming layer is subtracted from its weight and re-
distributed among the remaining layers to increase
their weight. Multiple layers can end up with a
weight of zero which means that they are excluded

from the final embedding.
This might not be optimal as layers that did not
perform well on their own can still provide some
collaborative signal. This is seen in experiments
where the 0th embedding was removed and yielded
a worse result even though its individual result was
poor as seen in Section 5.3.2. A more balanced al-
gorithm was also implemented to see if this would
perform better.

Result: A list of how much weight each layer
has on the final embedding

L = Ordered list containing the performance
of each layer

weight = List containing the current weight
for each layer

while i < L.length; i++ do
weight [i] = 100 / L.length

end
while L.length > 1; i++ do

worseP = L.pop()
newWeight = max(Inf[i] - worseP, 0)
while k < L.length; k++ do

weight[k] = weight[k] + ((weight[i] -
newWeight ) / L.length)

end
weight[i] = newWeight

end
return weight.orderBy(layerId)

Algorithm 1: The algorithm for ALC

4.1.3 Balanced Layer Combination

The algorithm for BLC can be seen on algorithm 2.
BLC is similar to ALC but instead of removing a
given layer from the list when its weight has been
reduced, it is instead kept in the list. This mean that
the weight of layers that have been reduced will still
be increased when other layers are reduced. This
insures no layer will ever reach zero weight as can
happen in ALC.
Examples of how ALC and BLC work can be seen on
Figure 5 and Figure 6. In both examples, we have 4
layers starting from layer 0 to layer 3 and each layer
has an initial weight of 25%. Their performance
is color-coded to make it easier to follow which
values are used to calculate the new weight. The
yellow squares mark which layer is getting a lower
weight in the current iteration and green marks
the specific layer’s final weight. Comparing these
two algorithms it can be seen that there is a larger
diversion in ALC than in BLC.
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Result: A list of how much weight each layer
has on the final embedding

L = Ordered list containing the performance
of each layer

weight = List containing the current weight
for each layer

while i < L.length; i++ do
weight [i] = 100 / L.length

end
while i = 0; i < L.length; i++ do

worseP = L.[i]
newWeight = max(weight[i] - worseP, 0)
while k = 0; k < L.length; k++ do

if(k != i) weight[k] = weight[k] +
((weight[i] - newWeight ) /
(L.length-1))

end
weight[i] = newWeight

end
return weight.orderBy(layerId)

Algorithm 2: The BLC algorithm

Figure 5: Example of aggressive splitting of layer weight
based on performance

Figure 6: Example of balanced splitting of layer weight
based on performance

4.2. Model training

LightGCN utilizes Bayesian Personalized Ranking
(BPR) loss, which is a pairwise loss that takes im-
plicit feedback (e.g. clicks or purchased items) and
ranks observed interactions in the prediction higher
than the unobserved interactions [8, 21]. BPR as-
sumes that observed interactions are more reflective
on a users preference than the unobserved interac-
tions, and hereby assigns observed items a higher
value. The loss is calculated by negating the re-
sults from BPR. This loss is used to update the only
learnable parameter, which is E(0) [8].

LBPR = −
M

∑
u=1

∑
i∈Nu

∑
j/∈Nu

ln σ(ŷui − ŷuj) + λ||E(0)||2

(11)
In Equation 11 λ is L2 regularization which uses
linear regression to prevent overfitting. σ is the sig-
moid function. Adams optimizer is utilized and is
used with mini-batches [8, 11]. Adams optimizer
uses momentum and adaptive learning rates in con-
trast to stochastic gradient descent [11]. Adams
requires a batch of randomly sampled triples of
users, observed items and unobserved items (u, i, j)
and utilizes the calculated loss from this to update
E(0). These model parameters are updated by the
gradient of the loss function [11, 24]. E(k) is also
updated, but is simply derived from E(k−1).

5. Evaluation

Throughout this section we perform experiments to
answer the following research questions:

• RQ1: How does changing αk affect the perfor-
mance in LightGCN?

• RQ2: How do different aggregation functions
effect the performance in GCF and LightGCN?

• RQ3: How does adding ALC and BLC to Light-
GCN perform compared to other state of the
art methods?

• RQ4: Is it beneficial to change layer combina-
tion based on the degree of the nodes?

5.1. Experimental Settings

The datasets, baselines, evaluation metrics and pa-
rameter settings used in the experiments are de-
scribed in this subsection.
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Users Items Items/users ratio Interactions Sparsity
Amazon-Book 52,643 91,599 1.74 2,984,108 99.9381%
Yelp2020 24,384 20,091 0.824 594,196 99.8787%
Amazon-Cell-Sport 4,998 36,719 7.347 103,000 99.9438%
Amazon-Cell-Electronic 3,325 57,925 17.42 172,611 99.9103%
Amazon-Cloth-Electronic 15,761 105,174 6.673 363,474 99,9780%
Amazon-Cloth-Sport 9,928 73,613 7.414 200,297 99,9726%

Table 1: Comparisons on the datasets

5.1.1 Datasets

We have used 6 different datasets in our ex-
periments. These are Yelp2020, Amazon-Book,
Amazon-Cell-Sport, Amazon-Cell-Electronic,
Amazon-Cloth-Electronic and Amazon-Cloth-Sport.
The data split is 20% testing and 80% training
where 10% of the training data is used as validation
data. A comparison of the datasets can be seen on
Table 1.
Each dataset has k-core settings applied to it. K-core
means that all users and items with less than k
interactions are removed. This is because users and
items with too few interactions wont have enough
data to compare them to other users and items and
therefore making collaborative filtering ineffective.
Amazon-Book is the largest dataset used with
52,643 users and 91,599 items as seen on Table 1. It
is identical to the one from the LightGCN paper
and only contains ID’s for users and items [8].
LightGCN have used the 15-core setting for users
and 5-core settings for items i.e. removing users
with less than 15 interactions and items with less
than 5 interactions.
Yelp2020 is a dataset taken from kaggle where
we have then filtered out all items that are not a
restaurant 2. This dataset uses 10-core settings for
users and 5-core settings for items. It is the only
dataset that contains more users than items.
Amazon-Cell-Sport, Amazon-Cell-Electronic,
Amazon-Cloth-Electronic and Amazon-Cloth-
Sport are taken from BiTGCF [18]. These datasets
contain two domains because BiTGCF builds an
extension of LightGCN which utilizes a cross-
domain transfer learning recommendation model
[18]. To build a cross-domain dataset first all
the overlapping users were found. Then all the
users with five or more interactions were retained.
Interactions from each domain have been split into
training and testing data before the datasets are
merged. These datasets use 5-core settings for users
and 1-core settings for items. There is an exception

2https://www.kaggle.com/yelp-dataset/yelp-dataset

for Amazon-Cell-Electronic which uses 15-core
settings for users.
These core-settings were chosen based on what
Bit-GCF and LightGCN used for their datasets
[8, 18]. This made the comparisons between the
methods more fair, because we use the same
datasets as they did in their papers.

Interactions in the datasets We expect that there
is a correlation between the degree a node has and
the performance of the convolution layers. There-
fore we look further into the interactions within the
datasets. On Table 2 the average amount of connec-
tions can be seen on each dataset for users and items.
We divide the nodes into degree ranges, where we
look at how many users and items each dataset
has within each degree range, which can be seen
on Table 11 and Table 12 in Appendix B. Users in
Amazon-Book have an average node degree of 45.22
and items have an average node degree of 25.99,
which makes it the dataset with the highest average
node degree compared to the other datasets. For
Yelp2020 the average node degree is 19.04 for users
and 23.31 for items. The other four amazon datasets
have in common that the average node degree for
items is small. Users in Amazon-Cell-Sport have
an average node degree of 17.07 and 2.58 for items.
Amazon-Cell-Electronic has an average node degree
of 42.22 for users and 2.73 for items. Amazon-Cloth-
Electronic has an average node degree of 19.04 for
users and 3.12 for items. Amazon-Cloth-Sport has
an average node degree of 16.72 for users and 2.49
for items.

5.1.2 Evaluation Metrics

We use the same evaluation metrics as in LightGCN
and NGCF [8, 24]. Each item a user has interacted
with in the test set is considered a positive item,
and those they have not interacted with are negative
items. The evaluation metrics are NDCG@50 and
Recall@50. It utilizes the all ranking protocol, where
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Datasets Users Items
Yelp2020 19.04 23.31
Amzon-Book 45.22 24.99
Amazon-Cell-Sport 17.07 2.58
Amazon-Cell-Electronic 42.22 2.73
Amazon-Cloth-Sport 19.04 3.12
Amazon-Cloth-Electronic 16.72 2.49

Table 2: Overview of the average connections of each
datasets for users and items.

all negative items are candidates. The results from
the NDCG@50 evaluations are used to calculate the
weights in ALC and BLC. NDCG is a measure for
information retrieval where positions are taken into
account [1]. The formula for NDCG is:

NDCG =
DCG
DCG∗

, (12)

where DCG∗ is the ideal DCG. DCG is calculated as
follows,

DCG =
n

∑
i=1

relevancei
log2(i + 1)

(13)

where relevancei is the predicted rating for item i,
and n is the total amount of items [1, 10]. Recall is
calculated as follows [1]:

Recall =
tp

tp + f n
, (14)

where tp is true positive and f n is false negatives.
NDCG is chosen because it is well suited to evaluate
the priority of recommended items for methods.
Recall is chosen because it shows how many of the
positive items are recommended out of all positive
examples in the dataset.

5.1.3 Baselines

To see the effectiveness of our methods we compare
them to the following baselines:

• NGCF [24]: was created for collaborative filter-
ing utilizing a Graph Convolutional Network.
Further description can be seen in Section 3.1.

• LightGCN [8]: was created from NGCF by re-
moving weights, activation function and chang-
ing the layer combination to weighted sum-
mation. Further description can be seen in
Section 3.1.

• GCF [18]: is a degenerate method of BiTGCF
that does not utilize transfer learning. GCF

showed to outperform LightGCN in their ex-
periments. Futher description can be seen in
Section 3.1.4

• GCN [13]: was created with the purpose of
semi-supervised node classification with Graph
Convolutional Networks.

• GC-MC [2]: is a graph-based auto-encoder
framework for matrix completion that pro-
duces latent features for users and items with
message passing. GC-MC only uses 1 convolu-
tion.

5.1.4 Parameter settings

BiTGCF and GCF utilized the binary cross entropy
loss function as this works well for cross domains,
but as we only investigate GCF, we decided to
change this to BPR to be able to compare this with
LightGCN and NGCF. For all experiments the em-
bedding size is 64 and mini batch size is 2048. Be-
cause of the large size of Amazon-Book the mini
batch size is set to 8192 to make it faster to pro-
cess all of the data. LightGCN is optimized with
Adam [12] and the learning rate is set to 0.001 and
dropout is deactivated. The embedding parame-
ters are initialized with Xavier method [4, 8]. The
Xavier method initializes the embedding parame-
ters randomly within a certain range to ensure that
they are not saturated before the training even starts.
Early stopping is used and the maximum number
of epochs is set to 1000.

5.2. GCF ablation study

This subsection focus’ on answering the following
research question:

• RQ2: How do different aggregation functions
effect the performance in GCF and LightGCN?

GCF does in contrast to LightGCN use self connec-
tion, inner product and concatenation in their em-
bedding propagation and layer combination. Meng
Liu et. al does not present an ablation study for
BiTGCF and GCF, which LightGCN showed is im-
portant when studying the different components in
NGCF [8, 18]. GCF outperformed LightGCN on all
datasets used in BiTGCF [18], and we would like
understand which parts of GCF cause the increase
in performance. The GCF aggregation function is
changed by either changing the layer combination to
weighted summation, removing the inner product,
removing self connections or only utilizing the inner
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product. Examples of the changed methods can be
seen in the following equations. GCF-minus-sc can
be seen on Equation 15 where the self-connection
has been removed. On Equation 16 only the inner
product of the neighbour has been preserved, and is
called GCF-only-IP. In Equation 17 the inner prod-
uct has been removed and is called GCF-minus-IP.
There are also examples where GCF utilizes sum-
mation as layer combination as used in LightGCN
which can be seen on Equation 7. The methods that
use weighted summation all start with GCF-sum.
LightGCN with concatenation as layer combination
is called LightGCN-concat. All methods that utilize
summation, would be possible to extend with ALC
and BLC. There is a possibility that GCF-sum with
ALC or BLC could perform better than LightGCN
with ALC or BLC. This was however something that
we decided not to pursuit and can be left as future
work.

e(k+1)
u = ∑

i∈Nu

1√
|Nu||Ni|

(
e(k)i + e(k)i � e(k)u

)
(15)

e(k+1)
u = e(k)u + ∑

i∈Nu

1√
|Nu||Ni|

e(k)i � e(k)u (16)

e(k+1)
u = e(k)u + ∑

i∈Nu

1√
|Nu||Ni|

e(k)i (17)

We did not include equations for all of the methods
to reduce redundancy, but the method names and
descriptions are as follows:

• GCF: The original GCF method as described
in Section 3.1.4.

• GCF-minus-sc: GCF without self connections.
• GCF-only-IP: GCF where e(k)i has been re-

moved in Equation 8, so that GCF’s graph con-
volutions only considers the inner product of
users and items.

• GCF-only-IP-minus-sc: Implemented as GCF-
only-ip but without self connections.

• GCF-minus-IP: GCF where inner product has
been removed.

• LightGCN-concat: LightGCN with concatena-
tion as layer combination.

• LightGCN: Original LightGCN as described in
Section 3.1.3.

• LightGCN-plus-sc: LightGCN, but with self
connections.

• GCF-sum-only-IP: Implemented as GCF-only-
IP except that the layer combination method
used is weighted summation.

• GCF-sum: GCF where the layer combination
has been changed to weighted summation in-
stead of concatenation.

• GCF-sum-minus-sc: Implemented as GCF-
sum but without self connections.

The results can be seen on Table 3, where the bold
results are the best performing and underlined are
the second best performing results. Graphs showing
how the performance of the methods changes over
epochs can be seen in Figure 7, Figure 8 and Figure 9.
These are for the datasets Yelp2020, Amazon-Book
and Amazon-Cell-Sport respectively. More compre-
hensive figures can be seen in Appendix C, where
the summation methods and concatenation methods
are in separate figures.

5.2.1 Concatenation and weighted summation

Looking at Yelp2020 and Amazon-Book on Table 3
the methods that utilize concatenation as their layer
combination method generally perform worse than
the methods that utilize summation. For Yelp2020
the best performing concatenation method is GCF-
minus-ip with 0.09179 in NDCG and the best per-
forming weighted summation is LightGCN with
0.1064 in NDCG. In this case, weighted summa-
tion performs 13.7 % better than concatenation. In
Amazon-Book best concatenation method is GCF-
minus-sc with 0.04108 and the best performing
weighted summation method is LightGCN-plus-sc
with NDCG of 0.04679. In this case, weighted sum-
mation performs 12.2 % better than concatenation.
For Amazon-Cell-Sport concatenation performs bet-
ter than weighted summation. GCF-minus-sc is the
best performing concatenation method with NDCG
of 0.03472 and LightGCN is the best weighted sum-
mation method of 0.033. In this case, concatenation
performs 4.9 % better than weighted summation.
For Yelp2020 as seen on Figure 7 most concatenation
methods learn faster than the summation methods,
but the concatenation methods are also prone to
early stopping because they start to decline in per-
formance. This is also the case for Amazon-Book
on Figure 9, although some concatenation methods
are not prone to early stopping. For Amazon-Cell-
Sport the methods perform differently compared to
Yelp2020 as seen on Figure 8. The summation meth-
ods train for a lower number of epochs compared to
Yelp2020. This could be because Amazon-Cell-Sport
is a smaller dataset than Yelp2020. Generally it can
be seen that GCF and GCF-minus-sc perform better
on Amazon-Cell-Sport compared to the other meth-
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Yelp2020 Amazon-Cell-Sport Amazon-Book
NDCG@50 Recall@50 NDCG@50 Recall@50 NDCG@50 Recall@50

GCF 0.09092 0.1869 0.03398 0.06536 0.04032 0.07035
GCF-minus-sc 0.09084 0.1879 0.03472 0.06656 0.04108 0.07261
GCF-minus-ip 0.09179 0.1881 0.03197 0.06294 0.03977 0.06998
GCF-only-ip 0.07659 0.1587 0.01818 0.03832 0.03765 0.06607
GCF-only-ip-minus-sc 0.08338 0.1712 0.02578 0.05535 0.03777 0.06621
LightGCN-concat 0.0856 0.1735 0.03029 0.05707 0.03798 0.06519
LightGCN 0.1064 0.2106 0.033 0.06278 0.04675 0.08129
LightGCN-plus-sc 0.1031 0.2098 0.03212 0.06261 0.04679 0.08175
GCF-sum 0.09724 0.1988 0.03095 0.06446 0.04075 0.07205
GCF-sum-minus-sc 0.0956 0.1962 0.03075 0.0629 0.04114 0.07261
GCF-sum-only-ip 0.09843 0.199 0.02878 0.06065 0.04114 0.07212

Table 3: NDCG and Recall of the changed methods.

Figure 7: NDCG@50 for Yelp2020.

Figure 8: NDCG@50 for Amazon-Sport-Cell.

ods in Figure 8. LightGCN performs better than
the GCF methods that utilize weighted summation
as their layer combination method. However with
Amazon-Cell-Sport the results vary less between
the methods, although GCF-sum-only-ip is clearly
performing worst.

5.2.2 Inner product

Methods that use weighted summation perform
worse over time when utilizing inner product. The
only exception is Recall@50 on Amazon-Cell-Sport
for GCF-sum which performs better than LightGCN.
This could also simply be because the inner prod-
uct in general is beneficial for datasets where users

Figure 9: NDCG@50 for Amazon-Book.

or items have few connections. For GCF and GCF-
minus-ip it makes an insignificant difference to add
inner product in Yelp2020 and Amazon-Book, how-
ever for Amazon-Cell-Sport the method using inner
product perform 6 % better for NDCG@50 and 3.8 %
better for Recall@50. These results indicate that uti-
lizing inner product could be favorable for datasets
with few connections, but this can’t be concluded
from this as only three datasets were used in this
experiment.

5.2.3 Self connections

When comparing the counter parting methods on
Table 3 that either utilize or do not utilize self con-
nections there is often a minimal difference on the
results. For LightGCN, GCF and GCF-sum, using
self connections makes a insignificant difference. For
LightGCN and LightGCN-plus-sc it varies which
one performs best, but GCF-minus-sc outperforms
GCF by a small amount most of the time. This is
probably dependent on how many connections there
are in the dataset. It seems datasets with few connec-
tions decline in performance by adding self connec-
tions, and datasets with many connections benefit
from adding self connections. This is probably be-
cause when the node has few connections, the self
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Amazon-Cell-Sport Yelp2020 Amazon-Book
NDCG@50 Recall@50 NDCG@50 Recall@50 NDCG@50 Recall@50

Weighted sum (1 con) 0.02804 0.05503 0.0969 0.1955 0.0427 0.07408
Weighted sum (2 con) 0.03132 0.06133 0.1008 0.2015 0.0463 0.08055
Weighted sum (3 con) 0.03237 0.06447 0.1064 0.2106 0.04668 0.08129
Weighted sum (4 con) 0.03253 0.06394 0.1084 0.2157 0.04617 0.08033
Weighted sum (5 con) 0.03285 0.06451 0.1089 0.2177 0.04515 0.07861
e(0) 0.02169 0.04447 0.08177 0.1674 0.03669 0.06373
e(1) 0.02523 0.04859 0.1019 0.2039 0.0458 0.079
e(2) 0.03419 0.06809 0.1086 0.217 0.04487 0.07755
e(3) 0.03483 0.06972 0.09956 0.2001 0.0372 0.06412
e(4) 0.0366 0.07377 0.08863 0.1788 0.03247 0.05607
e(5) 0.03733 0.07318 0.0819 0.1643 0.02923 0.05022

Table 4: Experiment on LightGCN where different layers are used as the final embedding compared with weighted sum.

connection will have a large influence on the embed-
ding. Interestingly gcf-only-ip-minus-sc performs
significantly better than gcf-only-ip on Yelp2020 and
Amazon-Cell-Sport, which can indicate that self con-
nections are harmful for performance, if you only
use inner product in the convolutions. However,
on Amazon-Book it does not make a large differ-
ence, which could be because users and items in
this dataset have a higher number of average inter-
actions.

5.2.4 Conclusion

The best performing methods is dependent on the
dataset. GCF-minus-sc is the best performing on
Amazon-Cell-Sport, which is the smallest dataset
and has the lowest average number of interactions.
LightGCN and LightGCN-plus-sc perform well on
all three datasets and are the third-best performing
methods on Amazon-Cell-Sport. We assume that a
combination of inner product and concatenation is
beneficial for learning on small datasets or datasets
with few interactions between users and items. But
on the larger datasets, LightGCN and LightGCN-
plus-sc are the best performing methods.

5.3. Changing αk

In this subsection, we experiment with only utiliz-
ing one layer, and removing the 0th embedding.
The following research question is answered in this
subsection:

• RQ1: How does changing αk affect the perfor-
mance in LightGCN?

5.3.1 Utilizing only one layer

We experimented with removing the layer combi-
nation, and only utilizing the embedding from a
specific convolution layer. This method is described
in Section 4.1.1. e(0), e(1), e(2), e(3), e(4) and e(5) are
used as the final embeddings in each experiment.
The performance of these is compared to LightGCN
with weighted summation.

As can be seen on Table 4 the results vary a lot
depending on the dataset. For Amazon-Cell-Sport
only considering e(4) and e(5) gives the best results
which perform around 13 % better than weighted
sum with 5 convolutions. This could be because
Amazon-Cell-Sport consists primarily of users and
items with few interactions, and therefore the later
convolutions have the largest impact. 90 % of all
items within this dataset have 5 interactions, which
is one of the reasons that the later convolutions
perform so well. For Yelp2020 the best results were
weighted summation with 5 convolutions closely fol-
lowed by e(2). This dataset varies more in terms of
the number of interactions that the users have. For
Amazon-Book weighted summation with 3 convolu-
tions performs best and this could be because there
is a large variation of how many interactions the
users have. One of the advantages of weighted sum-
mation seems to be that it stabilizes the results. This
might have a positive effect in some cases compared
to our method where we only use the embedding
from one of the layers. From this we can conclude
that for some datasets, it is worth considering using
the embedding from a single layer instead of using
weighted sum.
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Recall@50 NDCG@50
Method 5 con average E(0) removed 5 con average E(0) removed
Amazon-Cell-Sport 0.06451 0.06726 0.03285 0.03460
Yelp2020 0.2177 0.21289 0.1089 0.10641
Amazon-Book 0.08129 0.07715 0.04668 0.04470

Table 5: Results from experiment where we remove 0th layer embedding

5.3.2 Removing 0th layer

In this experiment we used the normal layer combi-
nation method used in LightGCN, but we did not
include the 0th layer embedding in the final em-
bedding as seen in Equation 18 where k starts at 1
instead of 0.

eu =
K

∑
k=1

αke(k)u , (18)

K is the number of layers and αk is set to 1/K. In this
subsection we show results from the experiments
done with this method.

The results for the experiments can be seen on
Table 5. While Amazon-Cell-Sport has an improved
performance when the 0th embedding is removed,
the other datasets see a decrease in performance.
The 0th embedding represents the original graph
without convolutions and is the only learnable
parameter in LightGCN. For Amazon-Book and
Yelp2020 this embedding is beneficial for the perfor-
mance. However for Amazon-Cell-Sport the nodes
in the original graph have too few connections that
it is likely beneficial to remove the 0th embedding.

5.4. Performance Comparisons

In the following subsection experiments are con-
ducted to answer the following research question:

• RQ3: How does adding ALC and BLC to Light-
GCN perform compared to other state of the
art methods?

Table 6 and Table 7 shows the results of our ex-
periments with NDCG@50 and Recall@50 respec-
tively. For e(i) the number within the bracket is
the embedding layer. We compare our method to
NGCF, LightGCN, GCF GC-MC and GCN. All exper-
iments were done with 5 convolutions. LightGCN
on Amazon-Book actually performed better with 3
convolutions, but because ALC and BLC were calcu-
lated using 5 convolutions we decided to compare it
with Amazon-Book using 5 convolutions. ALC and
BLC could possibly perform better on Amazon-Book

with fewer convolutions. The primary observations
from the experiments are:

• ALC, BLC and e(i) generally perform bet-
ter than all other methods, except for on
Amazon-Cell-Electronic and Amazon-Cloth-
Sport. Amazon-Cell-Electronic differentiates
from other datasets because it has an item/user
ratio of 17.42, while other datasets have an
item/user ratio below 8. Amazon-Cloth-Sport
is similar to Amazon-Cell-Sport in terms of
item/user ratio, however, it has twice as many
users and items.

• ALC and e(i) often perform better than BLC
in NDCG@50, but BLC often performs better
than ALC in Recall@50. For NDCG@50 e(i)

seems to either be best performing or close to
performing best in most of the cases, except for
on Amazon-Cloth-Sport.

• LightGCN outperforms all other baseline meth-
ods, except for GCF in Amazon-Cell-Sport. We
seem to be unable to reconstruct that GCF out-
performs LightGCN consistently as seen in
their paper [18]. This could be because BiT-
GCF uses cross-entropy as their loss function
for all methods while we use BPR. Another
reason could be because they utilize the evalua-
tion protocol of "Leave-one-out" and LightGCN
uses "All-Ranking" protocol [18, 8]. GCF con-
sistently outperforms NGCF and NGCF out-
performs GCN and GC-MC most of the time.
Between GCN and GC-MC it differs on the best
performing depending on the dataset.

• We have not found any layer combination
method that consistently can perform better
than any other method. There is still work to
be done to find a layer combination method
that can take the dataset into account when
combining the layers.
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NDCG@50 NGCF LightGCN GCN GC-MC GCF ALC BLC e(i)

Yelp2020 0.08502 0.1089 0.07594 0.07947 0.09092 0.10953 0.11015 0.1086 (2)
Amazon-Book 0.03811 0.04515 0.03268 0.03364 0.04032 0.04574 0.04537 0.0458 (1)
Amazon-Cell-Sport 0.02476 0.033 0.02087 0.01709 0.03398 0.0356 0.03516 0.03733 (5)
Amazon-Cloth-Sport 0.05826 0.06749 0.00996 0.01074 0.07556 0.05945 0.06356 0.06392 (2)
Amazon-Cell-Electronic 0.03399 0.05413 0.02589 0.0180 0.05424 0.05094 0.05399 0.05422 (3)
Amazon-Cloth-Electronic 0.00912 0.01710 0.01384 0.00829 0.01272 0.01941 0.01792 0.02074 (5)

Table 6: Performance comparison on NDCG@50 with different state of the art methods.

Recall@50 NGCF LightGCN GCN GC-MC GCF ALC BLC e(i)

Yelp2020 0.17535 0.2177 0.15317 0.16341 0.1869 0.21809 0.21917 0.217 (2)
Amazon-Book 0.06714 0.07861 0.05578 0.05826 0.07035 0.07919 0.08066 0.079 (1)
Amazon-Cell-Sport 0.05312 0.06451 0.04119 0.03723 0.06536 0.07002 0.06928 0.07377 (4)
Amazon-Cloth-Sport 0.08501 0.10482 0.02070 0.02817 0.10385 0.10240 0.10567 0.10541 (2)
Amazon-Cell-Electronic 0.05248 0.07738 0.03668 0.02633 0.07165 0.07355 0.07846 0.07909 (3)
Amazon-Cloth-Electronic 0.01863 0.03225 0.02575 0.01690 0.02948 0.03760 0.03506 0.04061 (5)

Table 7: Performance comparison on Recall@50 with different state of the art methods.

Figure 10: NDCG performance for the individual embedding
layers on Yelp2020

Figure 11: NDCG performance for the individual embedding
layers on Amazon-Book

Figure 12: NDCG performance for the individual embedding
layers on Amazon-Cell-Sport

5.5. Degree dependent layer combina-
tion

In this section we experiment with applying ALC
and BLC on the different node degree ranges de-
scribed in Section 5.1.1. The users are divided into
groups by their number of interactions, and each
group is then evaluated separately. This includes in-
vestigating how the different layers perform on their
own within each group and then calculating differ-
ent weights used in the layer combination for each
group using ALC and BLC. The following research
question is answered through these experiments:

• RQ4: Is it beneficial to change layer combina-
tion based on the degree of the nodes?

5.5.1 Only utilizing one layer

To be able to test ALC and BLC on different node
degree ranges, we first had to investigate how the
different node degree ranges performed when only
using one layer. Graphs showing the NDCG results
can be seen on Figure 10, Figure 11 and Figure 12 for
Yelp2020, Amazon-Book and Amazon-Cell-Sport re-
spectively. Tables showing more detailed results for
each node degree range can be found in Appendix G.
All of the recall results from all of the experiments
can also be found in Appendix G. For Amazon-
Cell-Sport the results on Figure 12 showcase that for
nodes with less than 46 connections E(5) is usually
the best performing embedding. For nodes with
more than 46 connections a lower number of convo-
lutions than E(5) performs better. The results seen in
Figure 10 and Figure 11 from Yelp2020 and Amazon-
Book did not seem to be dependent on the degree of
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Amazon-Cell-Sport Yelp2020 Amazon-Book
5 con ALC BLC 5 con ALC BLC 5 con ALC BLC

NDCG@50 0.03285 0.03515 0.03414 0.1089 0.10792 0.10843 0.04518 0.04688 0.04610
Recall@50 0.06451 0.07117 0.06621 0.2177 0.21553 0.21725 0.07874 0.08120 0.07974

Table 8: ALC and BLC based on node degrees.

the nodes. Almost all node degree ranges either per-
form best or second best in E(1) and E(2). This could
be because the nodes from both of these datasets
have above 19 connections on average and there-
fore the number of collaborative signals increases
much faster for each node in the graph compared
to Amazon-Cell-Sport which has an average node
degree of 17 for users and 2.5 for items.
As no direct link between the number of connections
a user has and its performance was found, it could
be interesting to look further into the number of im-
plicit connections a user has once the convolutions
have been performed. We expected to see a larger
difference between the number of connections, and
how well each layer would perform. But if we look
at which embeddings performed best we see that
nodes with over 100 connections often perform sim-
ilarly to nodes with a lower number of connections.

5.5.2 Degree dependent ALC and BLC

In the following section we use ALC and BLC to
optimize the layer combination based on the results
from Section 5.5.1 to see what effect this has.

Table 8 shows the combined results from ALC
and BLC based on node degrees. The results within
the splits can be seen in Appendix D on Table 13
and Table 15.

ALC As can be observed on Table 8 Yelp2020 has
a 1% decrease in NDCG from 0.1089 to 0.10792
and a 1% decreases in recall from 0.2177 to 0.21553.
Amazon-Book has a 3.62% increase in NDCG from
0.04518 to 0.04688 and 3.02% in recall from 0.07874
to 0.08120. Amazon-Cell-Sport has a 6.5% increase
in NDCG from 0.03285 to 0.03515 and 10% in recall
from 0.06451 to 0.07117.

BLC As seen on Table 8 Yelp2020 has a 0.5% de-
crease in NDCG from 0.1089 to 0.10843 and a 0.2%
decrease in recall from 0.2177 to 0.21725. Amazon-
Book has a 2% increase in NDCG from 0.04518 to
0.04610 and a 1.25% increase in recall from 0.07874
to 0.07974. Amazon-Cell-Sport has a 3.7% increase

in NDCG from 0.03285 to 0.03414 and 2.5% in recall
from 0.06451 to 0.06621.

Conclusion Looking at these results we see that
ALC and BLC generally improve the performance
of LightGCN, except for on Yelp2020 which has a
small decrease in performance. ALC seems to show
larger improvements than BLC for Amazon-Book
and Amazon-Cell-Sport, but also has a larger de-
crease in performance for Yelp2020 compared to
BLC. Compared to the baseline experiments seen
in Section 5.4 it can be observed, that doing layer
combination on Amazon-Cell-Sport and Yelp2020
without considering node degrees shows a larger
increase in performance than utilizing node degrees.
A reason for this could be that doing different layer
combinations for different users and items will dis-
turb the collaborative signal. For example user A
with 5 interactions could be similar to user B with 20
interactions and hereby user B’s interactions could
be good candidates for recommendations. However,
as two different layer combinations are used for
user A and user B, the embeddings will differentiate
more than they otherwise would have. This does
not seem to be the case for Amazon-Book, as we see
a larger improvement when we take node degrees
into account when we calculate the different layer
effects using ALC or BLC. This could be because
Amazon-Book is a substantially larger dataset. It
could be interesting to run this experiment on a
dataset that is larger than Amazon-Book to see what
effect this would have.

6. Future work

We have several ideas for future work. The weights
in weighted summation could be calculated differ-
ently than how we currently do it with ALC and
BLC. Different ways to distribute the weights be-
tween the layers could also be experimented with.
Additionally, the distribution of these weights could
be based on statistics of the dataset so that it was
not necessary to run each layer individually before
being able to calculate the weights. But this would
require a more exhaustive analysis of tendencies
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and patterns in the different datasets which could
then be linked to which layers perform best. Al-
ternatively the layer combination can be based on
recall or an alternative evaluation measurement in-
stead of NDCG@50 as we have used. These weights
could also be parameters that could be learned. We
tried adding one weight matrix to LightGCN and
experimented with different layer combination meth-
ods in Appendix E to see if we were able to learn
the weights used in the layer combination, but this
method did not show good results.

7. Conclusion

In this work, we changed the design of the layer
combination method in LightGCN and showed
through experiments that our method improved
the performance of LightGCN. We proposed two
methods called ALC and BLC, which on some
datasets showed large improvements and on
other datasets showed small differences. ALC
and BLC change the weight for each layer in the
layer combination based on how well that layer
performed in previous single layer runs. We also
showed that in some cases it is better just to use
the embedding from one of the convolution layers
as the final embedding instead of combining the
embeddings from all of the layers. ALC and BLC
were also tested with different values based on the
degree of the nodes so that nodes with different
amounts of interactions would have different
weights used in their layer combination. This did in
some cases show improvements over regular ALC
and BLC.
A GCF ablation study was also conducted to
investigate which combination of propagation
function and layer combination would perform best
on different datasets. It was inconclusive which
of the methods was the optimal one, as it was
dependent on the dataset. LightGCN with either
the ALC or BLC extension was however able to
outperform GCF most of the time.
We believe that ALC and BLC can be used as
inspiration for future research into optimizing
layer combination, as it showcases that there is
room for improvements on different datasets. The
improvements are in some cases quite significant,
which indicates that choosing which method to use
for layer combination can have significant impact
on the performance of the model. This does not
necessarily only apply for LightGCN, but might
also have importance for other model.
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Appendices
A. Changing αk

This section contains the other results from remov-
ing αk and removing the 0th layer embedding as
described in Section 3.2 and Section 5.3.2

A.1. Removing αk

Figure 13 shows the recall results for LightGCN
and LightGCN-Ak1 on Yelp2020. Figure 14 and
Figure 15 shows LightGCN and LightGCN-Ak1 on
Amazon-Book with NDCG and Recall respectively.

Figure 13: Recall@50 of LightGCN and LightGCN-Ak1
on yelp2020

Figure 14: NDCG@50 of LightGCN and LightGCN-
Ak1 on amazon-book

Figure 15: Recall@50 of LightGCN and LightGCN-Ak1
on amazon-book

A.2. Removing 0th layer embedding

On Table 9 and Table 10 the impact of removing E(0)

can be seen. This also includes the impact within
the different node degrees, where it in Amazon-
Cell-Sport generally increases performance, but for
Yelp2020 and Amazon-Book makes performance de-
crease.

B. Interactions in datasets

This section contains the overview of how many
connection users and items have for all of the
used datasets. Yelp2020, Amazon-Cell-Sport and
Amazon-Book can be seen on Table 11 and Amazon-
Cell-Electronic, Amazon-Cloth-Sport and Amazon-
Cloth-Electronic can be seen on Table 12.

C. Recall results from the GCF
ablation study

This section contains the recall results for the exper-
iment described in Section 5.2. Additionally, some
figures have been split up to only include the meth-
ods utilizing summation or concatenation to more
easily compare the methods. Figure 16, Figure 17
and Figure 18 shows the results for Recall@50 for
Yelp2020, Amazon-Cell-Sport and Amazon-Book re-
spectively. Figure 19 and Figure 20 shows the NDCG
and Recall for Yelp2020 with the summation meth-
ods. Figure 21 and Figure 22 shows the NDCG
and Recall for Yelp2020 with concatenation meth-
ods. Figure 23 and Figure 24 shows the NDCG and
Recall for Amazon-Cell-Sport with the summation
methods. Figure 25 and Figure 26 shows NDCG and
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NDCG@50 Amazon-Cell-Sport Yelp2020 Amazon-Book
Degree 5 con average E(0) removed 5 con average E(0) removed 3 con average E(0) removed
6-10 0.01972 0.02280 0.10095 0.09961 0.0 0.0
11-15 0.02984 0.02908 0.10408 0.10154 0.0 0.0
16-20 0.03701 0.03631 0.11451 0.11107 0.04929 0.04727
21-25 0.04438 0.04278 0.11790 0.11299 0.04831 0.04731
26-30 0.04815 0.04921 0.11909 0.11805 0.04778 0.04625
31-35 0.07514 0.07547 0.12833 0.12237 0.04825 0.04769
36-40 0.05475 0.05488 0.12711 0.11891 0.04493 0.04473
41-45 0.07634 0.07772 0.11638 0.11260 0.04301 0.04220
46-50 0.10074 0.10644 0.12537 0.12101 0.04368 0.04393
51-60 0.08827 0.09111 0.12459 0.12090 0.04210 0.04066
61-70 0.07718 0.09565 0.12377 0.11745 0.03972 0.04052
71-80 0.05834 0.06106 0.13007 0.12483 0.03923 0.04026
81-90 0.07351 0.07645 0.11042 0.10217 0.03551 0.03591
91-100 0.08968 0.08920 0.14010 0.13954 0.03781 0.03954
101-150 0.11290 0.10939 0.12676 0.11947 0.03334 0.03405
151-200 0.09668 0.10142 0.11889 0.11728 0.02932 0.03080
201-250 0.0 0.0 0.11999 0.10884 0.03242 0.03392
251-300 0.0 0.0 0.21693 0.22622 0.03617 0.03480
301+ 0.16771 0.16028 0.23305 0.20351 0.04130 0.04380
All nodes 0.03285 0.03460 0.1089 0.10641 0.04668 0.04470

Table 9: Embedding 0 removed and the best performing methods.

Recall@50 Amazon-Cell-Sport Yelp2020 Amazon-Book
Degree 5 con average E(0) removed 5 con average E(0) removed 3 con average E(0) removed
6-10 0.04706 0.05126 0.23023 0.22913 0.0 0.0
11-15 0.06429 0.06349 0.22722 0.22057 0.0 0.0
16-20 0.07557 0.07393 0.22093 0.21492 0.09968 0.09483
21-25 0.08262 0.07504 0.21102 0.20208 0.09102 0.08864
26-30 0.08784 0.08678 0.19883 0.19412 0.08366 0.08086
31-35 0.10000 0.09767 0.20093 0.19318 0.08022 0.07995
36-40 0.08603 0.08265 0.19039 0.17958 0.07347 0.07213
41-45 0.09644 0.10171 0.16928 0.16031 0.06621 0.06521
46-50 0.14301 0.15499 0.17777 0.17284 0.06414 0.06438
51-60 0.09665 0.10110 0.16653 0.16318 0.06002 0.05816
61-70 0.08252 0.09962 0.15473 0.14972 0.05359 0.05446
71-80 0.08231 0.09158 0.16026 0.15303 0.05036 0.05139
81-90 0.07068 0.08068 0.12724 0.12089 0.04557 0.04482
91-100 0.10312 0.10375 0.14825 0.14837 0.04576 0.04648
101-150 0.12200 0.11793 0.13183 0.12333 0.03746 0.03794
151-200 0.10173 0.11455 0.11065 0.10754 0.02945 0.03103
201-250 0.0 0.0 0.10450 0.09882 0.02762 0.02864
251-300 0.0 0.0 0.15278 0.18056 0.02463 0.02383
301+ 0.07792 0.06494 0.09083 0.08452 0.01763 0.01839
All nodes 0.06451 0.06726 0.2177 0.21289 0.08129 0.07715

Table 10: Embedding 0 removed and the best performing methods.

Recall for Amazon-Cell-Sport with the concatena-
tion methods. Figure 27 and Figure 28 shows NDCG
and Recall for Amazon-Book with the summation
methods. Figure 29 and Figure 30 shows NDCG and
Recall with Amazon-Book with the concatenation
methods.

Figure 16: Recall@50 on the Yelp2020 dataset.
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Yelp2020 Amazon-Cell-Sport Amazon-Book
Degree Users Items Users Items Users Items
1-5 0 0 % 5185 26.02 % 0 0 % 30152 91.31 % 0 0 % 4393 4.79 %
6-10 7298 29.92 % 4652 23.34 % 1190 23.80 % 1677 5.07 % 0 0 % 20562 22.44 %
11-15 7175 29.42 % 2505 12.57 % 1890 37.81 % 565 1.71 % 0 0 % 21561 23.53 %
16-20 3862 15.83 % 1622 8.14 % 936 18.72 % 270 0.817 % 17098 32.47 % 12092 13.20 %
21-25 1742 7.14 % 1135 5.69 % 396 7.92 % 137 0.41 % 8234 15.64 % 7638 8.33 %
26-30 1160 4.75 % 814 4.08 % 211 4.22 % 78 0.23 % 5257 9.98 % 5092 5.55 %
31-35 749 3.07 % 624 3.13 % 115 2.30 % 44 0.133 % 3722 7.07 % 3791 4.13 %
36-40 664 2.72 % 487 2.44 % 78 1.56 % 27 0.081 % 3154 5.99 % 2891 3.15 %
41-45 380 1.55 % 398 1.99 % 46 0.92 % 19 0.057 % 2029 3.85 % 2301 2.51 %
46-50 243 0.99 % 323 1.62 % 31 0.62 % 14 0.042 % 1591 3.02 % 1775 1.93 %
51-60 409 1.67 % 475 2.38 % 36 0.72 % 13 0.039 % 2581 4.90 % 2407 2.62 %
61-70 200 0.82 % 316 1.58 % 19 0.38 % 5 0.015 % 1664 3.16 % 1662 1.81 %
71-80 126 0.51 % 271 1.36 % 13 0.26 % 6 0.018 % 1379 2.61 % 1183 1.29 %
81-90 102 0.41 % 199 0.99 % 5 0.10 % 4 0.012 % 954 1.81 % 883 0.96 %
91-100 71 0.29 % 145 0.72 % 6 0.12 % 0 0 % 745 1.41 % 619 0.67 %
101-150 127 0.52 % 434 2.17 % 23 0.46 % 6 0.018 % 2120 4.02 % 1528 1.66 %
151-200 52 0.21 % 179 0.89 % 2 0.04 % 1 0.003 % 892 1.69 % 553 0.60 %
201-250 17 0.06 % 64 0.32 % 0 0 % 0 0 % 469 0.89 % 251 0.27 %
251-300 1 0.004 % 36 0.18 % 0 0 % 0 0 % 254 0.48 % 146 0.15 %
300+ 7 0.028 % 61 0.30 % 1 0.02 % 0 0 % 500 0.94 % 271 0.29 %
Avg con 19.04 23.31 17.07 2.58 45.22 25.99

Table 11: Amount of nodes within a certain node degree for Amazon-Cell-Sport, Amazon-Book and Yelp2020. The Avg
connection shows how many connections each user or item have on average

Figure 17: Recall@50 on the Amazon-Sport-Cell dataset.

Figure 18: Recall@50 on the Amazon-Book dataset.

D. ALC and BLC based on node

degree

D.1. ALC based on degrees

The NDCG@50 results can be see on Table 13 and
Recall@50 can be see on Table 14.

Figure 19: NDCG@50 for the compared methods that
utilize summation as layer combination on
the Yelp2020 dataset.

D.2. BLC based on degrees

The NDCG@50 results can be see on Table 15 and
Recall@50 can be see on Table 16.

E. LightGCN - One weight matrix

added

The core difference between NGCF and LightGCN
is that LightGCN does not utilize learnable weight
matrices and does not utlize an activation function
[8, 24]. Our intuition behind adding a learnable
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Amazon-Cell-Electronic Amazon-Cloth-Electronic Amazon-Cloth-Sport
Degree Users Items Users Items Users Items
1-5 0 0.0 % 46183 89.94% 0 0.0 % 85169 88.81 % 0 0.0 % 61217 91.85 %
6-10 0 0.0 % 3072 5.982% 3345 21.22 % 6505 6.783 % 2331 23.479 % 3603 5.406 %
11-15 0 0.0 % 990 1.928% 5625 35.68 % 1944 2.027 % 3675 37.016 % 979 1.468 %
16-20 538 16.180 % 477 0.928 % 2957 18.76 % 862 0.898 % 1853 18.664 % 364 0.546 %
21-25 685 20.601 % 204 0.397 % 1358 8.616 % 429 0.447 % 916 9.226 % 168 0.252 %
26-30 477 14.345 % 128 0.249 % 774 4.910 % 243 0.253 % 443 4.462 % 110 0.165 %
31-35 334 10.045 % 63 0.122 % 458 2.905 % 170 0.177 % 244 2.457 % 56 0.084 %
36-40 250 7.518 % 61 0.118 % 295 1.871 % 131 0.136 % 149 1.500 % 53 0.079 %
41-45 177 5.323 % 42 0.081 % 208 1.319 % 97 0.101 % 95 0.956 % 32 0.048 %
46-50 146 4.390 % 29 0.056 % 157 0.996 % 63 0.065 % 64 0.644 % 17 0.025 %
51-60 194 5.834 % 40 0.077 % 186 1.180 % 67 0.069 % 62 0.624 % 23 0.034 %
61-70 144 4.330 % 16 0.031 % 107 0.678 % 51 0.053 % 37 0.372 % 6 0.009 %
71-80 98 2.947 % 12 0.023 % 83 0.526 % 41 0.042 % 16 0.161 % 4 0.006 %
81-90 60 1.804 % 13 0.025 % 48 0.304 % 29 0.030 % 17 0.171 % 5 0.007 %
91-100 44 1.323 % 7 0.013 % 37 0.234 % 15 0.015 % 11 0.110 % 2 0.003 %
101-150 100 3.007 % 8 0.015 % 68 0.431 % 45 0.046 % 10 0.100 % 5 0.007 %
151-200 41 1.233 % 2 0.003 % 37 0.234 % 14 0.014 % 4 0.040 % 0 0.0 %
201-250 16 0.481 % 0 0.0 % 12 0.076 % 11 0.011 % 0 0.0 % 0 0.0 %
251-300 10 0.300 % 0 0.0 % 2 0.012 % 2 0.002 % 1 0.0100 % 0 0.0 %
300+ 11 0.330 % 1 0.0019 % 4 0.025 % 7 0.007 % 0 0.0 % 0 0.0 %
Avg con 42.22 2.73 19.04 3.12 16.72 2.49

Table 12: Amount of nodes within a certain node degree for Amazon-Cell-Electronic, Amazon-Cloth-Electronic and
Amazon-Cloth-Sport. The Avg connection shows how many connections each user or item have in average

NDCG@50 Amazon-Cell-Sport Yelp2020 Amazon-Book
Method 5 con average Aggressive split 5 con average Aggressive split 5 con average Aggressive split
6-10 0.01972 0.02311 0.10095 0.09988 0.0 0.0
11-15 0.02984 0.03009 0.10408 0.10242 0.0 0.0
16-20 0.03701 0.03567 0.11451 0.11396 0.04848 0.05092
21-25 0.04438 0.04658 0.11790 0.11625 0.04789 0.05020
26-30 0.04815 0.04567 0.11909 0.11749 0.04679 0.04883
31-35 0.07514 0.07264 0.12833 0.12879 0.04798 0.05101
36-40 0.05475 0.06066 0.12711 0.12394 0.04501 0.04451
41-45 0.07634 0.08189 0.11638 0.11574 0.04221 0.04452
46-50 0.10074 0.09847 0.12537 0.12302 0.04414 0.04423
51-60 0.08827 0.09507 0.12459 0.12300 0.04081 0.04137
61-70 0.07718 0.08675 0.12377 0.11828 0.04019 0.04145
71-80 0.05834 0.06132 0.13007 0.12939 0.03881 0.04043
81-90 0.07351 0.07105 0.11042 0.11079 0.03665 0.03646
91-100 0.08968 0.09289 0.14010 0.13728 0.03825 0.03763
101-150 0.11290 0.12259 0.12676 0.12056 0.03335 0.03391
151-200 0.09668 0.07744 0.11889 0.11263 0.02972 0.03071
201-250 0.0 0.0 0.11999 0.12578 0.03370 0.03304
251-300 0.0 0.0 0.21693 0.16507 0.03642 0.03269
301+ 0.16771 0.17331 0.23305 0.20845 0.04245 0.03747
Combined 0.03285 0.03515 0.1089 0.10792 0.04518 0.04688

Table 13: ALC, where it was used within each node range.

weight matrix would be that we could learn how to
perform the optimal layer combination, as there are
learnable weights for each layers. The equation can
be seen on Equation 19. Therefore we experimented
with three different layer combinations: sum (Equa-
tion 20), average (Equation 21) and concatenation
(Equation 22). As can be seen on Table 17 the re-
sults were quite poor compared to our performance

comparisons as seen in Section 5.4.

E(k+1) = ∑
i∈Nu

1√
|Nu||Ni|

(
e(k)i W(k)

)
(19)

eu =
K

∑
k=0

e(k)u , (20)

eu =
K

∑
k=0

1
k

e(k)u , (21)
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Recall@50 Amazon-Cell-Sport Yelp2020 Amazon-Book
Method 5 con average Aggressive split 5 con average Aggressive split 5 con average Aggressive split
6-10 0.04706 0.05378 0.23023 0.22890 0.0 0.0
11-15 0.06429 0.06966 0.22722 0.22293 0.0 0.0
16-20 0.07557 0.07333 0.22093 0.22095 0.09857 0.10161
21-25 0.08262 0.08910 0.21102 0.20792 0.09043 0.09335
26-30 0.08784 0.07973 0.19883 0.19240 0.08254 0.08657
31-35 0.10000 0.09876 0.20093 0.20205 0.07953 0.08292
36-40 0.08603 0.09450 0.19039 0.18901 0.07294 0.07280
41-45 0.09644 0.11017 0.16928 0.16868 0.06382 0.06830
46-50 0.14301 0.13470 0.17777 0.17703 0.06507 0.06494
51-60 0.09665 0.11614 0.16653 0.16318 0.05791 0.05980
61-70 0.08252 0.08625 0.15473 0.14868 0.05407 0.05648
71-80 0.08231 0.09063 0.16026 0.15602 0.05031 0.05222
81-90 0.07068 0.08120 0.12724 0.12421 0.04638 0.04538
91-100 0.10312 0.11007 0.14825 0.14708 0.04553 0.04496
101-150 0.12200 0.13196 0.13183 0.12312 0.03758 0.03852
151-200 0.10173 0.08696 0.11065 0.10791 0.03002 0.03085
201-250 0.0 0.0 0.10450 0.11461 0.02872 0.02807
251-300 0.0 0.0 0.15278 0.11111 0.02509 0.02331
301+ 0.07792 0.06494 0.09083 0.08441 0.01797 0.01617
Combined 0.06451 0.07117 0.2177 0.21553 0.07874 0.08120

Table 14: ALC, where it was used within each node range.

NDCG@50 Amazon-Cell-Sport Yelp2020 Amazon-Book
Method 5 con average Balanced split 5 con average Balanced split 5 con average Balanced split
6-10 0.01972 0.02286 0.10095 0.10044 0.0 0.0
11-15 0.02984 0.02870 0.10408 0.10300 0.0 0.0
16-20 0.03701 0.03568 0.11451 0.11406 0.04848 0.04949
21-25 0.04438 0.04344 0.11790 0.11598 0.04789 0.04966
26-30 0.04815 0.04862 0.11909 0.11967 0.04679 0.04719
31-35 0.07514 0.06530 0.12833 0.12783 0.04798 0.04994
36-40 0.05475 0.05198 0.12711 0.12307 0.04501 0.04505
41-45 0.07634 0.07724 0.11638 0.11635 0.04221 0.04384
46-50 0.10074 0.11057 0.12537 0.12446 0.04414 0.04411
51-60 0.08827 0.09087 0.12459 0.12510 0.04081 0.04108
61-70 0.07718 0.09168 0.12377 0.12513 0.04019 0.04099
71-80 0.05834 0.05655 0.13007 0.13010 0.03881 0.04071
81-90 0.07351 0.08833 0.11042 0.11115 0.03665 0.03719
91-100 0.08968 0.08644 0.14010 0.13593 0.03825 0.03756
101-150 0.11290 0.11696 0.12676 0.12106 0.03335 0.03374
151-200 0.09668 0.10719 0.11889 0.11737 0.02972 0.03049
201-250 0.0 0.0 0.11999 0.11911 0.03370 0.03357
251-300 0.0 0.0 0.21693 0.24310 0.03642 0.03435
301+ 0.16771 0.15199 0.23305 0.21718 0.04245 0.03946
Combined 0.03285 0.03414 0.1089 0.10843 0.04518 0.04610

Table 15: BLC where it was used within each node range.

eu = e(0)u || · · · ||e
(K)
u , (22)

F. Individual layer performance

Table 18 and Table 19 shows the performance of the
individual layers with LightGCN.
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Recall@50 Amazon-Cell-Sport Yelp2020 Amazon-Book
Method 5 con average Balanced split 5 con average Balanced split 5 con average Balanced split
6-10 0.04706 0.05126 0.23023 0.23082 0.0 0.0
11-15 0.06429 0.06120 0.22722 0.22526 0.0 0.0
16-20 0.07557 0.07342 0.22093 0.22179 0.09857 0.09908
21-25 0.08262 0.07950 0.21102 0.20644 0.09043 0.09329
26-30 0.08784 0.08014 0.19883 0.19817 0.08254 0.08219
31-35 0.10000 0.08747 0.20093 0.19979 0.07953 0.08191
36-40 0.08603 0.08109 0.19039 0.18953 0.07294 0.07266
41-45 0.09644 0.10325 0.16928 0.16834 0.06382 0.06738
46-50 0.14301 0.15474 0.17777 0.17783 0.06507 0.06518
51-60 0.09665 0.11461 0.16653 0.16909 0.05791 0.05879
61-70 0.08252 0.08625 0.15473 0.15936 0.05407 0.05503
71-80 0.08231 0.08636 0.16026 0.15796 0.05031 0.05238
81-90 0.07068 0.09073 0.12724 0.12955 0.04638 0.04635
91-100 0.10312 0.11070 0.14825 0.14240 0.04553 0.04524
101-150 0.12200 0.12476 0.13183 0.12318 0.03758 0.03793
151-200 0.10173 0.12542 0.11065 0.11029 0.03002 0.03040
201-250 0.0 0.0 0.10450 0.10263 0.02872 0.02847
251-300 0.0 0.0 0.15278 0.18056 0.02509 0.02425
301+ 0.07792 0.06494 0.09083 0.08911 0.01797 0.01713
Combined 0.06451 0.06621 0.2177 0.21725 0.07874 0.07974

Table 16: BLC where it was used within each node range.

Amazon-Cell-Sport Yelp2020 Amazon-Book
Layer combination Concat Sum Mean Concat Sum Mean Concat Sum Mean
NDCG@50 0.02381 0.01867 0.02075 0.03144 0.07482 0.08514 0.03144 0.03376 0.03624
Recall@50 0.04777 0.03910 0.04241 0.05345 0.15509 0.17398 0.05345 0.05828 0.06197

Table 17: Results for LightGCN with different layer combinations, where one weighted is added to the embedding
propagation

NDCG@50 e(0) e(1) e(2) e(3) e(4) e(5)

Amazon-Book 0.03669 0.0458 0.04487 0.0372 0.03247 0.02923
Yelp2020 0.08177 0.1019 0.1086 0.09956 0.08863 0.0819
Amazon-Cell-Sport 0.02169 0.02523 0.03419 0.03483 0.0366 0.03733
Amazon-Cloth-Sport 0.03092 0.06054 0.06392 0.05979 0.05928 0.05208
Amazon-Cell-Electronic 0.03211 0.04403 0.05204 0.05422 0.05331 0.05158
Amazon-Cloth-Electronic 0.00659 0.01429 0.01688 0.01915 0.02005 0.02074

Table 18: NDCG@50 results for all datasets utilizing only 1 layer in LightGCN

Recall@50 e(0) e(1) e(2) e(3) e(4) e(5)

Amazon-Book 0.06373 0.079 0.07755 0.06412 0.05607 0.05022
Yelp2020 0.1674 0.2039 0.217 0.2001 0.01788 0.1643
Amazon-Cell-Sport 0.04447 0.04859 0.06809 0.06972 0.7377 0.07318
Amazon-Cloth-Sport 0.05190 0.09885 0.10541 0.10066 0.09930 0.09109
Amazon-Cell-Electronic 0.04706 0.06518 0.07587 0.07909 0.07623 0.07584
Amazon-Cloth-Electronic 0.01324 0.02724 0.03223 0.03721 0.03876 0.04061

Table 19: Recall@50 results for all datasets utilizing only 1 layer in LightGCN
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Figure 20: Recall@50 on the compared methods that uti-
lize summation as layer combination on the
Yelp2020 dataset.

Figure 21: NDCG@50 for the compared methods that
utilize concatenation as layer combination on
the Yelp2020 dataset.

Figure 22: Recall@50 for the compared methods that uti-
lize concatenation as layer combination on
the Yelp2020 dataset.

Figure 23: NDCG@50 for the compared methods that
utilize summation as layer combination on
the Amazon-Cell-Sport dataset.

Figure 24: Recall@50 on the compared methods that uti-
lize summation as layer combination on the
Amazon-Cell-Sport dataset.

Figure 25: NDCG@50 for the compared methods that
utilize concatenation as layer combination on
the Amazon-Cell-Sport dataset.
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Figure 26: Recall@50 for the compared methods that uti-
lize concatenation as layer combination on
the Amazon-Cell-Sport dataset.

Figure 27: NDCG@50 for the compared methods that
utilize summation as layer combination on
the Amazon-Book dataset.

Figure 28: Recall@50 on the compared methods that uti-
lize summation as layer combination on the
Amazon-Book dataset.

Figure 29: NDCG@50 for the compared methods that
utilize concatenation as layer combination on
the Amazon-Book dataset.

Figure 30: Recall@50 for the compared methods that uti-
lize concatenation as layer combination on
the Amazon-Book dataset.
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G. Results from Degree dependent

layer combination

Extensive results from the experiments done in Sec-
tion 5.5 can be found in this section. The individual
layer combination performance can be seen on Ta-
ble 20, Table 21 and Table 22. Recall results from
all of the experiments can also be found here on
Table 23 and Figure 31 for the Yelp2020 recall results.
Table 24 and Figure 32 for the Amazon-Book recall
results. Table 25 and Figure 33 for the recall results
for Amazon-Cell-Sport.

Figure 31: Recall results for Yelp2020

Figure 32: Recall results for Amazon-Book

H. LightGCN results

This section shows the performance of LightGCN
on Yelp2020, Amazon-Book and Amazon-Cell-Sport
with one to five convolutions. The performance of
different node degrees is also evaluated. This was
conducted to gain an understanding of how well the
different node degrees perform in LightGCN with
its standard layer combination. Yelp2020 can be seen

Figure 33: Recall results for amazon-cell-sport

on Table 26 and Table 27. Amazon-Book can be seen
on Table 28 and Table 29. Amazon-Cell-Sport can
be seen on Table 30 and Table 31.
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Node degree E(0) E(1) E(2) E(3) E(4) E(5) 5 con
6-10 0.07550 0.09271 0.09136 0.09211 0.08228 0.07408 0.10095
11-15 0.07677 0.09607 0.09444 0.09531 0.08449 0.07642 0.10408
16-20 0.08704 0.1069 0.10575 0.1043 0.09354 0.08562 0.11451
21-25 0.09096 0.1104 0.10892 0.1066 0.09455 0.08720 0.11790
26-30 0.08578 0.1137 0.10933 0.1092 0.1000 0.09431 0.11909
31-35 0.09420 0.1196 0.12151 0.1151 0.1021 0.09489 0.12833
36-40 0.09886 0.1195 0.11764 0.1108 0.09965 0.09326 0.12711
41-45 0.09512 0.1071 0.11056 0.1049 0.09713 0.09181 0.11638
46-50 0.09113 0.1162 0.11447 0.1147 0.1057 0.1011 0.12537
51-60 0.09782 0.1095 0.11560 0.1128 0.1059 0.1048 0.12459
61-70 0.09618 0.1133 0.11338 0.1125 0.1024 0.09921 0.12377
71-80 0.1067 0.1251 0.12072 0.1145 0.1096 0.1067 0.13007
81-90 0.09104 0.1019 0.10477 0.09683 0.09489 0.09547 0.11042
91-100 0.1045 0.1334 0.13189 0.1303 0.1177 0.1157 0.14010
101-150 0.09488 0.1168 0.11731 0.1142 0.1077 0.1092 0.12676
151-200 0.08451 0.1066 0.11441 0.1117 0.1065 0.1133 0.11889
201-250 0.1231 0.1217 0.11866 0.1009 0.09105 0.09490 0.11999
251-300 0.2238 0.2224 0.17787 0.2538 0.2806 0.2917 0.21693
301+ 0.1752 0.1989 0.21585 0.2093 0.1719 0.1880 0.23305
Combined 0.08177 0.1019 0.1086 0.09956 0.08863 0.0819 0.1089

Table 20: NDCG@50 for Yelp2020 where only one convolution layer is used and compared with the best performing
LightGCN convolution for Yelp2020.

Node degree E(0) E(1) E(2) E(3) E(4) E(5) 3 con
16-20 0.03965 0.04851 0.04722 0.03762 0.03287 0.02911 0.04929
21-25 0.03903 0.04862 0.04807 0.03788 0.03323 0.02964 0.04831
26-30 0.03767 0.04751 0.04624 0.03755 0.03335 0.03014 0.04778
31-35 0.03772 0.04873 0.04728 0.03865 0.03434 0.03163 0.04825
36-40 0.03412 0.04506 0.04495 0.03730 0.03227 0.02911 0.04493
41-45 0.03597 0.04391 0.04282 0.03607 0.03218 0.02916 0.04301
46-50 0.03436 0.04350 0.04413 0.03784 0.03357 0.03111 0.04368
51-60 0.03273 0.04205 0.04077 0.03380 0.02959 0.02719 0.04210
61-70 0.03214 0.04109 0.04054 0.03401 0.03117 0.02972 0.03972
71-80 0.03135 0.03986 0.03958 0.03445 0.03160 0.02981 0.03923
81-90 0.02832 0.03567 0.03624 0.03140 0.02928 0.02747 0.03551
91-100 0.02885 0.03814 0.03882 0.03163 0.02884 0.02717 0.03781
101-150 0.02675 0.03351 0.03332 0.02927 0.02652 0.02522 0.03334
151-200 0.02594 0.03037 0.03049 0.02728 0.02518 0.02423 0.02932
201-250 0.02613 0.03228 0.03312 0.03096 0.02925 0.02914 0.03242
251-300 0.03153 0.03682 0.03492 0.03594 0.03508 0.03581 0.03617
301+ 0.03219 0.03874 0.04227 0.04137 0.04169 0.04207 0.04130
Combined 0.03669 0.0458 0.04487 0.0372 0.03247 0.02923 0.04668

Table 21: NDCG@50 for Amazon-Book
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Node degree E(0) E(1) E(2) E(3) E(4) E(5) 5 con
6-10 0.00995 0.02156 0.02250 0.02173 0.02441 0.02355 0.01972
11-15 0.01814 0.02845 0.02901 0.02986 0.03154 0.03376 0.02984
16-20 0.02378 0.03269 0.03737 0.03739 0.03674 0.03923 0.03701
21-25 0.03508 0.04174 0.04424 0.04620 0.04727 0.04907 0.04438
26-30 0.03584 0.04281 0.04606 0.04663 0.04928 0.04967 0.04815
31-35 0.05091 0.06659 0.07622 0.06981 0.07514 0.07544 0.07514
36-40 0.04884 0.05221 0.06001 0.05867 0.05855 0.06266 0.05475
41-45 0.6337 0.07144 0.07698 0.07592 0.08052 0.08197 0.07634
46-50 0.09049 0.10755 0.11442 0.1030 0.1067 0.1083 0.10074
51-60 0.05128 0.07620 0.08498 0.09005 0.1005 0.09309 0.08827
61-70 0.07796 0.08878 0.08324 0.08425 0.09537 0.09270 0.07718
71-80 0.04767 0.05050 0.05611 0.05930 0.05158 0.05406 0.05834
81-90 0.03265 0.07549 0.06440 0.06200 0.08332 0.08163 0.07351
91-100 0.06619 0.07376 0.07435 0.09016 0.08820 0.08012 0.08968
101-150 0.08542 0.11063 0.11732 0.1151 0.1130 0.1156 0.11290
151-200 0.07992 0.08619 0.10778 0.08642 0.09375 0.08577 0.09668
201-250 0.0 0.0 0.0 0.0 0.0 0.0 0.0
251-300 0.0 0.0 0.0 0.0 0.0 0.0 0.0
300+ 0.11521 0.16210 0.12260 0.1752 0.1786 0.1680 0.16771
Combined 0.02169 0.02523 0.03419 0.03483 0.0366 0.03733 0.03285

Table 22: NDCG@50 for Amazon-Cell-Sport where only one convolution layer is used.

Node degree E(0) E(1) E(2) E(3) E(4) E(5) 5 con
6-10 0.1766 0.2139 0.21017 0.2125 0.1905 0.1717 0.23023
11-15 0.1713 0.2107 0.20798 0.2087 0.1847 0.1672 0.22722
16-20 0.1740 0.2091 0.20607 0.2038 0.1843 0.1675 0.22093
21-25 0.1673 0.1957 0.19795 0.1895 0.1723 0.1599 0.21102
26-30 0.1489 0.1854 0.18368 0.1830 0.1712 0.1601 0.19883
31-35 0.1543 0.1884 0.18999 0.1807 0.1602 0.1486 0.20093
36-40 0.1541 0.1781 0.17817 0.1687 0.1528 0.1459 0.19039
41-45 0.1395 0.1562 0.16017 0.1534 0.1456 0.1347 0.16928
46-50 0.1354 0.1643 0.15675 0.1639 0.1501 0.1420 0.17777
51-60 0.1340 0.1509 0.15542 0.1554 0.1432 0.1420 0.16653
61-70 0.1279 0.143 0.14453 0.1440 0.1299 0.1274 0.15473
71-80 0.1288 0.1537 0.14475 0.1418 0.1347 0.1313 0.16026
81-90 0.1112 0.1214 0.12355 0.1119 0.1089 0.1068 0.12724
91-100 0.1182 0.1407 0.13647 0.1370 0.1325 0.1300 0.14825
101-150 0.09917 0.1153 0.12302 0.1174 0.1144 0.1155 0.13183
151-200 0.08331 0.1025 0.10502 0.1045 0.1053 0.1132 0.11065
201-250 0.1035 0.09954 0.09160 0.09430 0.08280 0.08620 0.10450
251-300 0.1667 0.1667 0.13889 0.1944 0.1806 0.1944 0.15278
300+ 0.07180 0.0803 0.09024 0.08523 0.06765 0.06990 0.09083
All nodes 0.1674 0.2039 0.217 0.2001 0.01788 0.1643 0.2177

Table 23: Recall@50 for Yelp2020
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Node degree E(0) E(1) E(2) E(3) E(4) E(5) 3 con
16-20 0.07856 0.09708 0.09492 0.07688 0.06712 0.05949 0.09968
21-25 0.07259 0.09056 0.0895 0.07192 0.06258 0.05611 0.09102
26-30 0.06510 0.08314 0.08181 0.06617 0.05848 0.05270 0.08366
31-35 0.06404 0.07888 0.07923 0.06632 0.05816 0.05369 0.08022
36-40 0.05481 0.07316 0.07235 0.06066 0.05222 0.04680 0.07347
41-45 0.05572 0.06625 0.06567 0.05713 0.04960 0.04508 0.06621
46-50 0.05072 0.06469 0.06536 0.05670 0.04990 0.04589 0.06414
51-60 0.04664 0.06012 0.05824 0.04883 0.04301 0.03945 0.06002
61-70 0.04275 0.05449 0.05477 0.04623 0.04170 0.03952 0.05359
71-80 0.04068 0.05224 0.05174 0.04564 0.04162 0.03902 0.05036
81-90 0.03445 0.04458 0.04545 0.03973 0.03678 0.03381 0.04557
91-100 0.03458 0.04517 0.04575 0.03872 0.03462 0.03189 0.04576
101-150 0.02960 0.03731 0.03732 0.03326 0.02979 0.02815 0.03746
151-200 0.02537 0.03047 0.03086 0.02760 0.02582 0.02442 0.02945
201-250 0.02193 0.02781 0.02824 0.02672 0.02493 0.02436 0.02762
251-300 0.02276 0.02480 0.02437 0.02438 0.02351 0.02418 0.02463
301+ 0.01397 0.01689 0.01768 0.01783 0.01797 0.01796 0.01763
All nodes 0.06373 0.079 0.07755 0.06412 0.05607 0.05022 0.08129

Table 24: Recall@50 for Amazon-Book where only one convolution layer is used.

Node degree E(0) E(1) E(2) E(3) E(4) E(5) 5 con
6-10 0.02437 0.05126 0.05000 0.05210 0.05546 0.05420 0.04706
11-15 0.04286 0.06305 0.06067 0.06764 0.07143 0.07213 0.06429
16-20 0.05224 0.06870 0.07192 0.07338 0.07415 0.08123 0.07557
21-25 0.06957 0.07769 0.08148 0.08611 0.08430 0.08944 0.08262
26-30 0.06574 0.07475 0.08599 0.08492 0.08790 0.08176 0.08784
31-35 0.06837 0.09441 0.10828 0.1011 0.1025 0.1050 0.10000
36-40 0.07322 0.07343 0.08794 0.09234 0.09341 0.09957 0.08603
41-45 0.08924 0.09060 0.09939 0.09934 0.1045 0.1030 0.09644
46-50 0.13245 0.15787 0.16085 0.1459 0.1518 0.1577 0.14301
51-60 0.06920 0.09088 0.10339 0.1075 0.1227 0.1163 0.09665
61-70 0.10338 0.08628 0.09633 0.08954 0.1069 0.09962 0.08252
71-80 0.06541 0.07399 0.08256 0.09443 0.08206 0.08658 0.08231
81-90 0.05063 0.07967 0.09073 0.08120 0.09073 0.09020 0.07068
91-100 0.08926 0.08070 0.09555 0.1038 0.09618 0.1031 0.10312
101-150 0.08992 0.11622 0.12334 0.1231 0.1226 0.1228 0.12200
151-200 0.07804 0.08696 0.11455 0.08891 0.1017 0.08891 0.10173
201-250 0.0 0.0 0.0 0.0 0.0 0.0 0.0
251-300 0.0 0.0 0.0 0.0 0.0 0.0 0.0
300+ 0.05195 0.05195 0.05195 0.07792 0.06494 0.06494 0.07792
All nodes 0.04447 0.04859 0.06809 0.06972 0.7377 0.07318 0.06451

Table 25: Recall@50 for Amazon-Cell-Sport
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NDCG@50 1 con 2 con 3 con 4 con 5 con
6-10 0.08704 0.09136 0.09779 0.10049 0.10095
11-15 0.09078 0.09444 0.10038 0.10316 0.10408
16-20 0.10259 0.10575 0.11117 0.11322 0.11451
21-25 0.10777 0.10892 0.11442 0.11546 0.11790
26-30 0.10708 0.10933 0.11892 0.11943 0.11909
31-35 0.11726 0.12151 0.12698 0.12812 0.12833
36-40 0.11146 0.11764 0.12093 0.12457 0.12711
41-45 0.10448 0.11056 0.11495 0.11795 0.11638
46-50 0.10790 0.11447 0.12181 0.12132 0.12537
51-60 0.10763 0.11560 0.12132 0.12431 0.12459
61-70 0.10582 0.11338 0.11768 0.11901 0.12377
71-80 0.12429 0.12072 0.12936 0.12837 0.13007
81-90 0.10092 0.10477 0.11046 0.11017 0.11042
91-100 0.12217 0.13189 0.13780 0.14200 0.14010
101-150 0.11807 0.11731 0.12361 0.12482 0.12676
151-200 0.10340 0.11441 0.11854 0.11968 0.11889
201-250 0.13015 0.11866 0.12730 0.13091 0.11999
251-300 0.20810 0.17787 0.19453 0.22210 0.21693
301+ 0.10245 0.21585 0.20725 0.22121 0.23305
All nodes 0.0969 0.1008 0.1064 0.1084 0.1089

Table 26: NDCG@50 for Yelp2020 with a different number of convolutions

Recall@50 1 con 2 con 3 con 4 con 5 con
6-10 0.20318 0.21017 0.22301 0.23146 0.23023
11-15 0.20017 0.20798 0.21843 0.22592 0.22722
16-20 0.19930 0.20607 0.21462 0.21764 0.22093
21-25 0.19296 0.19795 0.20569 0.20589 0.21102
26-30 0.17911 0.18368 0.19649 0.19852 0.19883
31-35 0.17874 0.18999 0.19433 0.20008 0.20093
36-40 0.16906 0.17817 0.18199 0.18580 0.19039
41-45 0.15245 0.16017 0.16653 0.16778 0.16928
46-50 0.15517 0.15675 0.17168 0.17382 0.17777
51-60 0.14891 0.15542 0.16334 0.16787 0.16653
61-70 0.13905 0.14453 0.15074 0.15043 0.15473
71-80 0.15146 0.14475 0.15470 0.15043 0.16026
81-90 0.12426 0.12355 0.13509 0.15796 0.12724
91-100 0.12518 0.13647 0.14130 0.14878 0.14825
101-150 0.12217 0.12302 0.12738 0.13045 0.13183
151-200 0.09970 0.10502 0.10904 0.11410 0.11065
201-250 0.09952 0.09160 0.10636 0.11138 0.10450
251-300 0.16667 0.13889 0.15278 0.15278 0.15278
300+ 0.07625 0.09024 0.07919 0.08636 0.09083
All nodes 0.1955 0.2015 0.2106 0.2157 0.2177

Table 27: Recall@50 for Yelp2020 with a different number of convolutions
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NDCG@50 1 con 2 con 3 con 4 con 5 con
16-20 0.04677 0.04981 0.04929 0.04726 0.04774
21-25 0.04604 0.04950 0.04831 0.04714 0.04767
26-30 0.04466 0.04776 0.04778 0.04585 0.04632
31-35 0.04617 0.04823 0.04825 0.04742 0.04753
36-40 0.04124 0.04385 0.04493 0.04395 0.04360
41-45 0.04034 0.04341 0.04301 0.04155 0.04249
46-50 0.04083 0.04196 0.04368 0.04336 0.04330
51-60 0.04000 0.04200 0.04210 0.04077 0.04101
61-70 0.03645 0.03943 0.03972 0.03928 0.03846
71-80 0.03374 0.03730 0.03923 0.03788 0.03817
81-90 0.03292 0.03463 0.03551 0.03554 0.03498
91-100 0.03526 0.03658 0.03781 0.03675 0.03603
101-150 0.03062 0.03315 0.03334 0.03284 0.03305
151-200 0.02765 0.02841 0.02932 0.02879 0.02942
201-250 0.02921 0.03217 0.03242 0.03317 0.03272
251-300 0.03205 0.03414 0.03617 0.03607 0.03602
300+ 0.03643 0.03707 0.04130 0.04110 0.04207
All nodes 0.0427 0.0463 0.04668 0.04617 0.04515

Table 28: NDCG@50 for Amazon-Book with a different number of convolutions

Recall@50 1 con 2 con 3 con 4 con 5 con
16-20 0.09394 0.10047 0.09968 0.09623 0.09723
21-25 0.08550 0.09182 0.09102 0.08918 0.09038
26-30 0.07852 0.08425 0.08366 0.08139 0.08185
31-35 0.07506 0.08017 0.08022 0.07843 0.07733
36-40 0.06697 0.07160 0.07347 0.07117 0.07037
41-45 0.06233 0.06649 0.06621 0.06359 0.06514
46-50 0.06091 0.06240 0.06414 0.06442 0.06408
51-60 0.05604 0.06050 0.06002 0.05836 0.05861
61-70 0.04949 0.05242 0.05359 0.05318 0.05278
71-80 0.04396 0.04869 0.05036 0.04861 0.04929
81-90 0.04015 0.04286 0.04557 0.04487 0.04459
91-100 0.04202 0.04338 0.04576 0.04429 0.04359
101-150 0.03416 0.03661 0.03746 0.03711 0.03731
151-200 0.02772 0.02800 0.02945 0.02910 0.02993
201-250 0.02487 0.02713 0.02762 0.02782 0.02757
251-300 0.02279 0.02376 0.02463 0.02485 0.02496
300+ 0.01542 0.01594 0.01763 0.01735 0.01790
All nodes 0.07408 0.08055 0.08129 0.08033 0.07861

Table 29: Recall@50 for Amazon-Book with a different number of convolutions
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NDCG@50 1 con 2 con 3 con 4 con 5 con
6-10 0.01831 0.02004 0.02250 0.02140 0.01972
11-15 0.02448 0.02729 0.02713 0.02884 0.02984
16-20 0.02610 0.03200 0.03603 0.03531 0.03701
21-25 0.03618 0.04034 0.04240 0.04318 0.04438
26-30 0.04344 0.04152 0.04643 0.04587 0.04815
31-35 0.06181 0.06487 0.07105 0.06915 0.07514
36-40 0.05080 0.05420 0.05093 0.05490 0.05475
41-45 0.07061 0.07714 0.07564 0.07637 0.07634
46-50 0.10666 0.10287 0.10973 0.11381 0.10074
51-60 0.08322 0.08399 0.08040 0.08078 0.08827
61-70 0.09955 0.08355 0.08448 0.08521 0.07718
71-80 0.05834 0.05057 0.06090 0.06017 0.05834
81-90 0.03095 0.05879 0.05654 0.06116 0.07351
91-100 0.07926 0.08009 0.10496 0.09765 0.08968
101-150 0.09431 0.10686 0.10512 0.10775 0.11290
151-200 0.04864 0.09700 0.09278 0.08609 0.09668
301+ 0.06569 0.15789 0.17848 0.18099 0.16771
All nodes 0.02804 0.03132 0.03237 0.03253 0.03285

Table 30: NDCG@50 for Amazon-Cell-Sport with a different number of convolutions

Recall@50 1 con 2 con 3 con 4 con 5 con
6-10 0.04496 0.04538 0.05084 0.05084 0.04706
11-15 0.05229 0.05847 0.05644 0.06393 0.06429
16-20 0.05296 0.06519 0.07155 0.06909 0.07557
21-25 0.07538 0.07572 0.07740 0.08018 0.08262
26-30 0.07759 0.07310 0.08362 0.08249 0.08784
31-35 0.08349 0.09110 0.09457 0.09658 0.10000
36-40 0.07398 0.09017 0.08287 0.08990 0.08603
41-45 0.10083 0.10321 0.09576 0.09012 0.09644
46-50 0.15792 0.14027 0.16305 0.15792 0.14301
51-60 0.08950 0.10754 0.10162 0.09975 0.09665
61-70 0.10360 0.08954 0.09048 0.08979 0.08252
71-80 0.08158 0.07376 0.09111 0.07921 0.08231
81-90 0.04110 0.07068 0.07068 0.07068 0.07068
91-100 0.08103 0.08103 0.01182 0.10343 0.10312
101-150 0.09462 0.11410 0.11453 0.12082 0.12200
151-200 0.05435 0.09783 0.09978 0.08891 0.10173
300+ 0.05195 0.06494 0.06494 0.09091 0.07792
All nodes 0.05503 0.06133 0.06447 0.06394 0.06451

Table 31: Recall@50 for Amazon-Cell-Sport with a different number of convolutions
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