
CSGCN - Context and Side-Information
in GCNs

Andreas Stenshøj, Daniel Moesgaard Andersen, Rasmus Bundgaard Eduardsen

Aalborg University
astens16@student.aau.dk dand16@student.aau.dk reduar16@student.aau.dk

June 10, 2021

Abstract

Graph-convolutional neural networks are growing increasingly popular, but most of them limit themselves to simply
considering user-item interactions, even though additional information is often available in datasets such as context
and side-information. In this paper, we present two ways to incorporate side-information and contextual information
into the prediction model of a graph-convolutional neural network named CSGCN-IS and CSGCN-ADJ. Including this
additional information allows us to not only improve density of the graph structure, but also to generate recommendations
for a specific context that the user is currently in. We empirically evaluate the models in both a context-specific setting
as well as a non-context-specific on four different real-world datasets, comparing with several relevant GCN and FM
models. The non-context specific evaluation employs an 80-20% training and test data split, and shows improvements
in performance from 0.07%− 10.01%, as well as a decrease on certain datasets of up to 5.09%. The context-specific
evaluation shows both significant improvements and decreases. An ablation study is also conducted, showing that the
inclusion of context and side-information for CSGCN-ADJ does little to improve performance for the non-context specific
setting. For the context-specific setting, the ablation study shows that the performance of CSGCN-IS increases when
context and side-information are included, whereas CSGCN-ADJ sees little difference.

1. Introduction

Recommender systems (RS) have become an
important part of everyday life on various online
platforms.
With the tremendous amount of information
available to users, finding what you need without
help can be overwhelming. One way RS have
attempted to aid users is through collaborative
filtering (CF), where the preferences and similarities
between users and items are used to generate
recommendations. Graph Convolutional Network
(GCN)-based models have gained high popularity
and also achieved great results [25, 12, 24], due
especially to their ability to aggregate information
from neighbor nodes.
However, most of the GCN models focus purely on
user-item interactions and do not take into account
additional information that will usually be available
in both existing datasets and real life.
This additional information could be from a

user profile including their age and location, or
information about the items such as user-specified
tags for attractions or the genres of a movie. There is
usually also some contextual information available
concerning the interaction taking place, which
may be something as simple as a timestamp, or
information about the current emotional state of the
user.
This side-information and contextual information
can be beneficial for prediction performance [10,
21], as well as assist in alleviating certain issues
such as data sparsity and cold starts [22]. Using
this context information is a sub-genre of RS called
context-aware recommender systems (CARS) [18],
where the associated context of an interaction is
taken into consideration when creating a prediction.
This means that the data sparsity problem is
especially prevalent in CARS since users may not
have interacted with a lot of items in a given context,
leading to sparsity in the data available for the
collaborative filtering process. In this paper, we

1

mailto:astens16@student.aau.dk
mailto:dand16@student.aau.dk
mailto:reduar16@student.aau.dk

mi102f21 • 2021

will investigate how GCNs can be extended to
generate context-aware recommendations while
utilizing this additional information. On top of
this, we will examine whether or not utilizing
this context can improve recommendations in a
regular context-free situation. First of all, we will
examine the problem and define some foundational
knowledge in Section 2.
In Sections 3 and 4 we propose two models,
CSGCN-IS and CSGCN-ADJ, as possible methods
to utilizing context and side-information in a
GCN-based model. We conduct experiments against
a prepared set of research questions in Section 5.
Finally, we look at related work and conclude upon
the paper in Sections 6 and 7.

2. Preliminaries

This section will present some preliminary knowl-
edge and defintions pertaining to the definition of
context and side-information, the components of
a GCN, how to represent data, and higher-order
connectivity in graphs.

2.1 Defining side-information and con-
text

Datasets used for RS are often very sparse, since
not every user will interact with every available
item, leading to learning issues. Sparsity issues
are exacerbated in CARS due to the addition of
contextual dimensions that users only interact with
a few of [29]. The use of side-information can help
alleviate problems with CF in a sparse situation
where the users and items do not have many
interactions [24]. While GCN-based RS perform well
on simple recommendation tasks that include only
user-item interactions [25, 12], combining them with
the utilization of context is largely unexplored to the
best of our knowledge. However, side-information
has been used in some GCN-based RS such as
KGAT through the use of knowledge graphs [24].
A common problem when researching CARS is that
context and side-information are vaguely defined or
have overlapping definitions in various papers. For
clarity, the following are the definitions of context

and side-information used in this paper:

Context: The context definition used in this
paper is identical to the one found in [7], where
context is any information that can be used to characterize
the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction
between a user and an application, including the
user and the applications themselves. An entity in
the case of an RS is either a user or an item to
be recommended. The context would thus be
information about the conditions at the time of the
interaction between the user and the item, meaning
it would be associated with the interaction. For
example, a Christmas movie may be more likely to
be a relevant recommendation during the winter
months than in the summer, and a bar may be a
better recommendation on a Saturday night than a
Tuesday morning.
Throughout this paper, we will refer to context in
the three following levels of granularity:

All possible context values, C, e.g.:

C = {spring, · · · , winter}∪{morning, · · · , midnight}

Context values for a given interaction, C′, e.g.:

C′ = {winter, midnight}

A single context value, c, e.g.

c = winter

Side-information: The side-information definition
used is based on the description in [22], where dif-
ferent types of side-information include information
such as user networks, user profiles, and item de-
scriptors. For users, this could be information like
their age or occupation, which may have an influ-
ence on their preferences. For items, it is information
about the item such as the genre of a movie, which
may be helpful since it can help capture user pref-
erences, such as a user displaying a preference for
action movies.

2.2 The components of a GCN

GCNs are variants of convolutional neural networks
(CNN) used on graph-based data [16]. GCNs learn

2

mi102f21 • 2021

a representation of each node in a graph through
multiple graph convolution layers. For layer l of
the graph convolution, the node representations
that were output from the previous layer l − 1 are
used as input. For each layer, the representations
of the nodes in the graph are aggregated with
the representations of their neighbor nodes. A
nonlinear activation function is also traditionally
applied at each layer to introduce non-linearity to
the model [16]. Representations are propagated
with information about their neighbors in each
graph convolution layer through three steps: feature
propagation, linear transformation, and nonlinear
activation. Feature propagation averages features
in the local neighborhood of a node, such that the
representation of each node becomes an aggregation
of its neighbors’ features. This is done for each
node in the graph. The next step is to use a
linear transformation, such as x1 = x0w0 where
the embedding x0 is updated by multiplying it
with a weight w0, thus becoming x1. Doing this
allows the network to find the best fitting set of
parameters through the linear transformation by
training through optimizing a loss function [8].
Finally, a non-linear activation function such as
ReLU is applied to the output, allowing it to better
fit real-world datasets.

While traditional GCN models contain all three
components, several papers [26, 12] suggest that
this is largely caused by the history of GCNs. Wu
et al. present the idea that while most machine
learning algorithms followed a clear path from
an initial simple model to a more complex model
through the needs of more expressivity, this was
not the case of GCNs [26]. Instead, they were
proposed in the recent years of neural networks
where deep learning had gained high popularity,
and as such GCNs were built directly on top of a
complex model. To investigate whether this was
useful, they present simple graph convolution
(SGC), a simplified version of GCNs that could
have preceded GCNs if the traditional path had
been taken. This led them to remove the linear
transformation and nonlinear activation, to reach a
simplified linear model. Interestingly, they proved
that not only does this not degrade performance of
the models, it generally matches or improves both

in terms of performance and speed [26].
This signifies that the expressive power of GCNs
originates primarily from propagation in the
convolution layers, rather than the nonlinear feature
extractions we know from traditional GCNs [26].
Having defined GCNs, their applicability for RS
tasks is now examined in terms of data and its
representation.

2.3 Types of data for RS

Data used for RS can be classified as either implicit
or explicit [17]. Explicit data is provided by the user
of the RS, such as a user providing a rating of an
item. Data provided explicitly by users is commonly
used for the score prediction task, where, as with
traditional matrix factorization (MF) approaches, a
score matrix is reconstructed in order to generate
missing ratings for users. Implicit data, on the other
hand, is not explicitly provided by the user, but
rather collected through their behavior. A user click-
ing a specific item on a web-shop or deciding to
watch a specific movie would be implicit data, defin-
ing an interaction between the user and the item.
Since explicit data requires explicit user involvement,
it is usually more scarce than implicit data. A prob-
lem with implicit data, however, is that it does not
directly encode whether or not the user had a pref-
erence for the given item as is possible with explicit
data, only that they interacted with it. A common
prediction task for implicit data is top-k recommen-
dation, where a list of k items is produced for the
user.

2.4 Data representation

In graph-based CF RS, data is typically represented
in the form of a bipartite graph as seen on Figure 1.
This bipartite graph consists of two distinct sets of
nodes: Users U and items I, and a set of undirected
edges E that connect the user and item if they have
interacted with each other. This graph can also be
represented as an adjacency matrix, which is useful
for the implementation of a graph convolutional
layer as it allows for the implementation of graph
convolution through matrix multiplication between
the adjacency matrix and the embeddings of the
graph nodes. This is the case since the values being

3

mi102f21 • 2021

u1

u2

u3

i1

i2

i3

i4

U I

Figure 1: Example of a bipartite graph.

multiplied with the representation are from the
adjacency matrix that defines the neighbor nodes,
thus aggregating the neighborhood.
This could, however, cause issues in terms of
exploding or vanishing gradients, leading to
scenarios where the method ends up unable to
learn. To mitigate this, a degree matrix consisting of
the summation of row entries in the diagonal can
be employed in order to normalize the entries in
the adjacency matrix by the number of neighbors,
to ensure the gradients do not grow too large or
small. This bipartite graph can be extended to
also include nodes that represent side-information,
which are connected to the user and item nodes.
If side-information is represented as nodes in the
graph, they can be included in the adjacency matrix
and the graph convolution such that information can
be passed from these nodes as well. Higher-order
connectivity can be gained by repeatedly doing
convolution operations in multiple layers, meaning
information is passed from neighboring nodes
further away from the central node [26, 16], based
on the number of layers. A two layer GCN would,
for example, be able to pass information from
nodes two steps from the central node, allowing the
collaborative signal to be influenced by nodes that
are further from the central node.

With this preliminary knowledge in place, we
will look at the two proposed models in the
following sections.

3. CSGCN-IS

This section describes the first of our two proposed
models, Context and Side-information GCN with
Item-Splitting (CSGCN-IS), which is a GCN that
incorporates side-information in the graph and con-
siders context as an embedding that is used as a
modifier for an item.

3.1 Model intuition

Before diving into the details of how CSGCN-IS is
modeled, let us examine the intuition behind it. The
goal is to construct a model that can generate a top-k
list of recommendations for a user. To do this, we
start by expressing the available information in a
graph. This mainly includes interactions between
users and items. However, since most RS datasets
are sparse, we want to see if we can alleviate this
problem by further connecting user and item nodes,
to improve the collaborative signals in the model. To
do this, we utilize the fact that most datasets include
some side-information about users and items, which
can be used for further connections by its addition
as nodes in the graph.
Besides side-information, we need to reason about
how to express context in the model. In this model,
we express context by simplifying it to be an embed-
ding that is used as a modifier to an item to signify
whether the item is popular in a given context or not.
For example, we may learn that indoor activities are
generally more popular on a rainy day. This can be
learned by the model through sampling user inter-
actions in various contexts from the ground truth.
For the user and context of the positive sampled
interaction, we see that they interacted with a given
item, which should make the item more likely to be
recommended in that context. A negative interaction
is also sampled for the same user and context, which
should make the item less likely to be recommended
for that context through training, further detailed in
Section 3.6. With this intuition, we will now detail
how this is implemented in the CSGCN-IS model.

3.2 Model architecture

The CSGCN models are based on the observations
made in SGC [26] and the LightGCN model [12]

4

mi102f21 • 2021

about simplifying the models to a linear model. To
facilitate the model architecture, each node in the
graph is represented by a low-dimensional vector
called an embedding. By doing this, the model can
learn the nodes’ properties and capture them in the
embeddings. The model consists of four parts: In-
put, graph convolution layers, layer combination,
and a prediction function.
The input is represented as a quadripartite graph
consisting of users, items, user side-information, and
item side-information. This graph is used as the in-
put for the graph convolution layers, which serve
to capture higher-order connectivities between the
nodes in the graph. Each convolutional layer is
stacked on top of the previous layer, such that each
layer captures information from nodes that are fur-
ther away from the central node. Having passed
through L convolution layers, we are left with an
embedding representation of each node for each
layer, which is then passed to the layer combination
function, taking a weighted sum of each representa-
tion to generate a final representation for each node.
Finally, these combined representations of users and
items are passed to a prediction function along with
a context embedding to calculate a score for the
given user, item, and context combination as de-
scribed in Section 3.1.
These predicted scores are used to generate a top-k
list of recommended items for a user in the given
context.
In the following sections we will further explain how
each of these four parts of the model work.

3.3 Adjacency matrix

As described in Section 2, GCNs used for CF rec-
ommendation typically employ a bipartite graph
structure to represent the user-item interactions. In
CSGCN-IS the extended graph now contains users,
items and edges as well as the set of user side-
information nodes US and the set of item side-
information nodes IS. This allows for the incor-
poration of side-information in the model, whereas
context is later included in the prediction function
defined in subsection 3.5. This graph extension can
be seen on Figure 2. It should be noted that the
distinct sets cannot be self-connected, and edges can
only exist between adjacent sets. Formally, we let

G be a graph consisting of a set of edges E, and
vertices V, where V = US ∪U ∪ I ∪ IS.

EUS ⊆ {(x, y)| x ∈ US, y ∈ U}

EU ⊆ {(x, y)| x ∈ U, y ∈ US ∪ I}

EI ⊆ {(x, y)| x ∈ I, y ∈ U ∪ IS}

EIS ⊆ {(x, y)| x ∈ IS, y ∈ I}

E = EUS ∪ EU ∪ EI ∪ EIS

U IUS IS

Figure 2: Example of the quadripartite graph structure used
for CSGCN-IS.

The quadripartite graph can be represented as an
adjacency matrix A ∈ R|U|×|I|×|US|×|IS|. An entry is
1 if the user has interacted with the item, if the item
has the given side-information or if a user has the
given side-information, and 0 if none of these are
true. A consists of the rating sub-matrix R and its
transpose RT , as well as sub-matrices containing US,
IS, and their transposes, as seen on Equation (1).

0 R US 0
RT 0 0 IS

UST 0 0 0
0 IST 0 0

 (1)

Since there are no direct interactions between users
and other users, the first quadrant is a zero-matrix
of size |U| × |U| where |U| is the amount of users
in the dataset. This goes for all the zero matrices
seen on A, making it mostly sparse. Adding the
side-information to the adjacency matrix allows us
to express the connections between users and items

5

mi102f21 • 2021

and their side-information in the graph, allowing it
to be used in order to gain higher-order connectivity
in the convolution layers.
It is worth noting that, unlike traditional GCNs,
CSGCN does not utilize self-connections since the
layer combination performed after the convolution
layers captures the same effect as self-connections
through the 0th layer [12].

3.4 Convolution layers

A major part of the model is the convolution layer
where the user and item embeddings are propagated
with information about their neighbor nodes’ repre-
sentations by using an aggregation function, which
in this case is a normalized sum. Neighbor nodes
for users are item nodes and user side-information
nodes, and for items the neighbors are user nodes
and item side-information nodes, which can be seen
on Figure 2. For each additional layer, information
is passed from nodes that are further away from a
central node, illustrated on Figure 3. The represen-

U

US

I

I

US

U

U

IS

IS

l=0 l=1 l=2

Figure 3: Information aggregated through layers.

tations at each of the layers are aggregated into a
final representation after L layers. From these final
representations, a score prediction can be calculated
between an item, user and a context which is further
described in Section 3.5. The inputs to the layer is
the adjacency matrix previously described.

e(l+1)
i = ∑

in∈Ni

1√
|Ni|

√
|Nin|

e(l)in (2)

e(l+1)
u = ∑

un∈Nu

1√
|Nun|

√
|Nu|

e(l)un (3)

In Equations (2) and (3) the convolution operation is
shown for respectively item and user embeddings,
where Nu are the neighbor nodes for user u, where
Nu ⊆ US ∪ I, and Ni are the neighbor nodes for
item i where Ni ⊆ IS ∪U.
A user neighbor node is denoted as un ∈ Nu, and
for item neighbors as in ∈ Ni. Nun denotes the set
of neighbors for the neighbor un of node u, and Nin
denotes the set of neighbors for the neighbor in of
node i.
This means that when neighbor nodes’ represen-
tations are being propagated, the normalization
is done with both the number of neighbors for
the central node and the number of neighbors
of the neighbor node that is currently having its
representation propagated.

The convolution layer propagates information
to user and item nodes’ representations by summing
the normalized representations of the neighbor
nodes. All types of nodes are propagated with
information about their neighbors, but since only
the user and item nodes’ representations are used
in the prediction function for our model, their
representations are the only ones that are output
from the convolution layer.

3.5 Score prediction

To include context in the score prediction, we model
each pair of items and context values as learnable
embeddings eic. The use of eic is heavily inspired
by Ricci and Baltrunas’ item splitting approach [2],
where a context weight for each item in each context
is calculated. This means that for the set of items
I and the set of possible context values C, there
are |I| × |C| embeddings of item and context value
combinations eic. The objective is to calculate a score
between a user and an item in a given context C′.
The different embeddings eic of a given item i and
context C′ are added to the embedding of i to signify
its popularity in the given context. After the addition
of the eic embeddings to the item embedding ei, the
cosine similarity scores of the user embedding eu
and the item-context additions are calculated and
summed together to produce a score:

ŷ(u,i,C′) = ∑
c∈C′

eT
u (ei + eic) (4)

6

mi102f21 • 2021

As shown in Equation (4), the context embeddings
are not part of the convolution layer but are only
used in the score prediction, meaning that they are
learned directly through their appearance in the
score prediction function.

3.6 Training

For the top-k recommendation task, we utilize nega-
tive sampling and Bayesian Pairwise Ranking (BPR)
loss [20] as the training function, shown in Equa-
tion 5.

Loss = ∑
(u,i,j,C′)∈DT

σ(−(ŷ(u,i,C′)− ŷ(u,j,C′)))+λΘ||Θ||2

(5)
where Θ denotes the trainable model parameters,
which in this case are the 0th layer embeddings for
items e(0)i and users e(0)u , as well as the embeddings
for side-information, eus and eis, and item-context
embeddings eic.
λ denotes the regularization coefficient, and σ(·)
denotes the non-linear activation function, in this
case, the softplus function.
The regularization term λΘ||Θ||2 is included to
prevent overfitting.
DT = {(u, i, j, C′′)|i ∈ I(u,C′) ∧ j ∈ I \ I(u,C′)} denotes
the dataset of training tuples, where I(u,C′) is the set
of observed items that user u has interacted with
in context C′. ŷ is the score prediction defined in
Equation (4) for respectively a positive interaction
(u, i, C′) between a user u and an item i in context
C′, and a negative interaction (u, j, C′) for the same
user in the same context, where j is an item the user
has not interacted with.
The positive interaction is an observed interaction
between a user and an item, which can be found in
the training set. An item that the same user has not
interacted with in this given context is randomly
sampled as a negative sample, with the assumption
that an unobserved interaction is equal to a negative
interaction when working with implicit data.

The model parameters are updated by opti-
mizing the BPR loss function in Equation (5). For a
specific model parameter, this is done by calculating
the gradient of the loss function at each iteration
with respect to the model parameter, and then

updating the parameter according to the gradient
by a step size defined through the learning rate.
The gradient is a vector of partial derivatives which
defines the slope of the function, where a partial
derivative of a function with multiple variables
is the derivate with respect to a single variable
with the remaining variables held constant. The
derivative defines how the output of the function
changes based on changes in the input.
The model parameters can then be updated in the
negative direction of the slope of the function, the
gradient, based on the learning rate in order to
approach a local minima. For CSGCN-IS, the loss
function is optimized using the Adam Optimizer
[15]. Optimizer functions are an essential part of
machine learning, since they are used to tune the
parameters of the neural network to minimize the
loss function. The chosen optimizer can impact
the training speed and final performance of the
model. However, there is no theory that explains
how to decide which optimizer to use [6]. Unlike
simpler optimizers that maintain a single learning
rate throughout training, such as stochastic gradient
descent, Adam utilizes an adaptive per-parameter
learning rate by estimating the mean and the
variance of the gradient and the squared gradient
[15]. Additionally, Adam is reliable for calculating
gradients in sparse situations, which is an important
property for RS, since they often deal with sparse
data.

3.7 Implementing CSGCN-IS

To facilitate the implementation of the GCN layer in
CSGCN-IS, the adjacency matrix representation of
the graph is utilized. The matrix form of CSGCN-IS
is similar to the one described in [12], except for
the adjacency matrix being modified by including
side-information as described in Equation (1). An
embedding matrix is introduced which contains each
of the embeddings of the nodes in the graph. Let
the embedding matrix for the 0th layer be Emb(0) ∈
R(|U|+|I|+|US|+|IS|)×K, where K is the embeddings
size, then the embedding matrix for the next layer
l + 1 can be obtained by:

Emb(l+1) = (D−
1
2 AD−

1
2)Emb(l) (6)

7

mi102f21 • 2021

where l is the current layer and D is a (|U|+ |I|+
|US| + |IS| × (|U| + |I| + |US| + |IS|) degree ma-
trix. Finally, the embeddings from each layer are
combined into the final embeddings that are used in
the prediction.

Emb =
L

∑
l=0

1
L

Emb(l) (7)

The combination of the layers is seen on Equation (7),
and it shows that the final embeddings are an aver-
age of the embeddings from each layer.

4. CSGCN-ADJ

This section describes the second proposed model,
CSGCN with Context in Adjacency Matrix (CSGCN-
ADJ).

4.1 Model intuition

With the second proposed model, context is included
in the convolution by adding context nodes to the
graph, which will be used to represent interactions
between users and items in a given context as a tuple
(u, i, C′), implying that a user u has interacted with
item i in context C′. The adjacency matrix will now
include interactions, which contexts the users have
interacted in, and the contexts in which items have
been interacted with. This approach is unable to
capture which specific context a given interaction oc-
curred in, it only captures whether or not the user or
item has had an interaction in the given context. This
differs from CSGCN-IS since we now model context
in a similar fashion to side-information, where each
context value has a single embedding instead of hav-
ing an embedding for each context value and item
pair. The intuition is that since context is now mod-
eled similarly to side-information by the addition
of nodes, it makes sense to include it in the con-
volution, since they will be present as neighboring
nodes to items and users in the graph. By including
nodes for the contexts in the convolution, their rep-
resentations are propagated with information about
their neighbors, being items and users that have in-
teracted in that context, using a normalized sum
aggregation. This means that through higher-order
connectivity, items and users are propagated with

information about other users and items that have
interacted in the same contexts. Even though the
intuition changes, the model architecture is almost
the same as defined in Section 3.2. The difference is
that the input graph to the convolution layers now
includes context nodes, meaning they are also a part
of the neighborhood aggregations.

4.2 Adjacency matrix

Compared to CSGCN-IS, context is now included in
the graph as nodes and therefore also included in
the adjacency matrix. The graph is similar to the one
in Figure 2, but context nodes are inserted between
the sets of item and user nodes, and edges connect
the nodes that have interacted in the context. This
results in the sets of edges EU and EI being updated
to:

EU ⊆ {(x, y)| x ∈ U, y ∈ US ∪ I ∪ C}

EI ⊆ {(x, y)| x ∈ I, y ∈ U ∪ IS ∪ C}

A new set of edges is also introduced for the context
value nodes in C:

EC ⊆ {(x, y)| x ∈ U ∪ I, y ∈ C}

The new set of edges EC has directed edges from
items or users to context nodes, as well as self-
connections for each context node. For the convolu-
tion, we want to preserve the context’s initial embed-
dings from the first layer through to the last layer,
since we found that this performed better compared
to also propagating information about neighbors to
the context embeddings. Therefore, the transposed
matrices of UC and IC are not inserted into the ad-
jacency matrix. Instead, we add the identity matrix
I to the last quadrant such that the context embed-
dings are only propagated with information about
themselves in each convolution. The matrix is seen
in Equation (8).

0 R US 0 UC

RT 0 0 IS IC
UST 0 0 0 0

0 IST 0 0 0
0 0 0 0 I

 (8)

8

mi102f21 • 2021

4.3 Convolution layers

For the graph convolution layer of CSGCN-ADJ,
the context is incorporated into the aggregation of
neighbors seen in Equations (9) and (10)

e(l+1)
i = ∑

in∈Ni

1√
|Ni|

e(l)in (9)

e(l+1)
u = ∑

un∈Nu

1√
|Nu|

e(l)un (10)

With this convolution, only the number of neighbors
of the node that information is propagated to is
used for normalization. As a result of context being
added as nodes in the graph for CSGCN-ADJ, Nu
also contains the contexts that user u has interacted
in and Ni also contains the contexts that item i has
interacted in. Because the identity matrix was added
to the adjacency matrix under the context columns,
the context embeddings retain their initial values
throughout the convolution layer.

4.4 Score prediction and training

For the score prediction of CSGCN-ADJ, we draw
inspiration from factorization machines and use an
FM-like predictor function that considers pair-wise
interactions between users, items and context values
to provide a recommendation. To do this, we use
the prediction function defined in Equation (11):

ŷ(u,i,C′) = eT
u ei + ∑

c∈C′
eT

u ec + ∑
c∈C′

eT
i ec (11)

Where ec is the embedding representation of the con-
text value c, ei is the embedding of the item i and
eu is the embedding of the user u. In this predictor
function, we calculate the pairwise interaction be-
tween each of the embeddings. The self-interactions
are not calculated since they do not contribute to the
score prediction. The embeddings used for items
and users are the ones output by the convolution
layer while the context embeddings are the initial
values before convolution, since they are only prop-
agated with information about themselves.
Training of CSGCN-ADJ is similar to that of CSGCN-
IS, using the same loss function and the Adam opti-
mizer.

4.5 Implementing CSGCN-ADJ

Let the embedding matrix for the 0th layer be
Emb(0) ∈ R(|U|+|I|+|US|+|IS|+|C|)×K, where K is the
embedding size and C is the set of possible context
values. The embedding matrix for the next layer
l + 1 after layer l for CSGCN-ADJ is obtained by:

Emb(l+1) = (D−
1
2 A)Emb(l) (12)

where l is the current layer and D is a (|U|+ |I|+
|US| + |IS| + |C|) × (|U| + |I| + |US| + |IS| + |C|)
degree matrix. We see that for this model, we only
normalize on a row-level by multiplying by D−

1
2

on the left side of the adjacency matrix. This ap-
proach is inspired by a combination of the random
walk Laplacian D−1 A and the symmetrical normal-
ized Laplacian D−

1
2 AD−

1
2 used in CSGCN-IS. We

found that for this model, it gave slightly better
performance compared to these regular normaliza-
tion methods, as evidenced by the results seen on
Figure 4. While this graph only shows the results
for NDCG@20 on the Yelp-NC dataset, the trend is
consistent across datasets and metrics.

50 100 150 200

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

Epoch

N
D

C
G

@
20

D−
1
2 A D−1 A

D−
1
2 AD−

1
2

Figure 4: Effect of various normalizations for CSGCN-ADJ on
the Yelp-NC dataset for HR@20.

9

mi102f21 • 2021

The final embedding matrix after L layers is obtained
in the same way as CSGCN-IS where we take the
mean of the nodes’ representations at each layer.

5. Experiments

Experiments are conducted in this section in order
to answer the following research questions:

• RQ1: How do the CSGCN models compare to
state-of-the-art methods for the task of context-
aware recommendation list prediction?

• RQ2: Can the CSGCN models be used to make
non-context specific recommendations?

• RQ3: Does side-information improve results for
context-aware recommendations?

The section details the experimental settings used,
the datasets, the methods, and the metrics employed
for comparison.

5.1 Datasets

To test the models on datasets with varying sizes
and density, the following datasets were chosen:

Dataset User # Item # Interaction # Context # Sideinfo #

ML1m 6,040 3,377 999,416 1 4

Frappe 546 821 85,541 6 1

Yelp-NC 2,274 2,140 130,627 1 4

Yelp-ON 5,185 5,566 332,291 1 4

Table 1: Statistics of the datasets.

MovieLens 1M (ML1M)

ML1M is a dataset [9] with 1 million interactions
between 6,040 users and 3,377 movies.
We use the following side-information for users:

• Age
• Gender
• Occupation

Side-information for items is genre, which specifies
that an item has one or more of the 18 genres avail-
able in the dataset. For contextual information, the
MovieLens dataset provides a timestamp for when
the interaction took place.

Frappe

The Frappe dataset [3] contains information about
how users have interacted with applications on their
smartphones. The only available side-information is
for items, indicating whether the application is free
or not. However, it contains the following contexts:

• City
• Country
• Weekday
• Time of day
• Whether it is weekend or not
• Weather

Yelp-NC and Yelp-ON

The two Yelp datasets, Yelp-NC and Yelp-ON, are
subsets of the public Yelp dataset [28], where we
take the subset of items located in respectively North
Carolina (NC) and Ontario (ON). Both Yelp datasets
have been pruned such that they include only users
with at least 10 interactions, to facilitate generating
a stratified data split where each user in the test set
is also in the training set.
We use the following side-information about users
for both datasets:

• Yelping since (Year)
• Number of fans
• Average stars

The only side-information about items is the cat-
egories that an item belongs to. For the Yelp-NC
dataset, this is one or more of 80 different categories,
and 75 categories for Yelp-ON.
The contextual information is a timestamp.

5.2 Context dimension selection

When selecting context dimensions to use from the
dataset, some of the context information can benefit
from being discretized. This is the case for contexts
such as a timestamp, as the information about the
interaction is too specific for the model to be able to
learn anything valuable from it. This is because there
are often not enough interactions for a given context
to be able to learn its effect if it is provided in too
much detail, as that creates too much sparsity. For
timestamps, this problem would occur since each

10

mi102f21 • 2021

second or minute is modeled differently, meaning
the context would only match for the exact same date
and second. Therefore, we discretize context that
can have too many different values to avoid these
sparsity problems. Since most of the datasets include
a timestamp as contextual information, we discretize
these into the following context dimensions:

• Month
• Day of week
• Hour
• Time of day

Where time of day is a further discretization of the
hour dimension, split into 5 intervals:

• Night (0 to 4)
• Early morning (4 to 8)
• Late morning (8 to 12)
• Evening (12 to 16)
• Afternoon (16 to 20)
• Late night (20 to 24)

For the Frappe dataset, we instead make use of the
6 contextual values available in the dataset.

For the side-information, we use the dimen-
sions mentioned in Section 5.1 for both users and
items with some discretization. The Yelp datasets
provide a "yelping since" dimension, which is a
timestamp for the creation of the user. This is
discretized to include only the year that the user has
been created.
Additionally, the dimension "fans" is discretized
into four intervals:

• < 50 fans
• 50− 100 fans
• 100− 500 fans
• > 500 fans

5.3 Compared methods

In the experiments, the CSGCN models are com-
pared against the following methods for context-
specific recommendations:

• Factorization Machine (FM) [19]
• Convolutional Factorization Machine (CFM)

[27]
• Neural Factorization Machine (NFM) [11]

FM is a relatively simple model that models all
interactions between variables using factorized
parameters. It is often used for comparison in
context-aware papers, since it is able to predict a
score based on information about a given interaction
including contextual information. CFM uses a
combination of a CNN and an FM, which is similar
to CSGCN in that it is capable of producing a
context-aware top-k recommendation list. It is
included since it is an alternative way to handle
contextual information in CNNs. We also compare
against NFM, which uses a multi-layer perceptron
(MLP) on top of the factorization machine to learn
higher-order interaction signals.

To compare the performance of the models in
a non-context specific setting, we compare against
the following methods:

• Neural Graph Collaborative Filtering (NGCF)
[25]

• Light Graph Convolutional Network (Light-
GCN) [12]

• Knowledge Graph Attention Network (KGAT)
[24]

• Bayesian Personalized Ranking (BPR) [20]
• Top Pop

NGCF is a model proposed by Wang et al. as a
way to utilize the GCN model proposed in [16]
for recommendation purposes. It makes use of all
three parts of a GCN described in Section 2, and
utilizes BPR loss with negative sampling for rank-
ing purposes. LightGCN was later proposed by the
same authors and is mainly focused on performing
an ablation study similar to the one done in [26],
where the linear transformation and non-linear ac-
tivation between layers are removed to provide a
simpler model, while still presenting competitive
results. Both the CSGCN models and LightGCN
extend the codebase of NGCF, so they are naturally
included in the comparison to show that adding
side-information and contextual information hope-
fully improves the accuracy of these methods.
KGAT is a state-of-the-art graph-based method that
utilizes side-information in the form of a knowledge
graph. BPR utilizes implicit feedback to generate a
personalized top-k list of items using the proposed
BPR-optimizer to train the model, providing a sim-

11

mi102f21 • 2021

pler method for comparison. Finally, a we include
a simple baseline, Top Pop, which simply recom-
mends the k most popular items for all users.

5.4 Parameter settings

To fairly compare the performance of the models,
we train all of them by optimizing the BPR loss with
Adam. The learning rate is either set to the value pre-
sented in the respective papers, or searched between
[0.1, 0.01, 0.001, 0.0001] if a default is not available.
The batch size is set as 1024 for all datasets except
Frappe, where it is set to 512 due to its size. The
embedding size is set to 64, and for the models us-
ing regularization terms, this is searched between
[0.01, 0.001, 0.0001] if a default value is not provided.
For CFM and NFM we follow the approach pre-
sented in the original papers and feed them with
weights from a pretrained FM model which has run
for 500 epochs with the settings presented in the
CFM paper. All methods are run for a maximum
of 1000 epochs with an early stopping mechanism
triggered when the HR@20 or Recall@20 has not
improved for 5 evaluations (100 consecutive steps),
except for CFM which is run for 300 epochs based
on the default values.

5.5 Evaluating the models

The objectives of the models in the experiments are
to produce top-k lists of items for a user. Different
methods for evaluating the performances of the
models were considered, specifically the fold-out
and leave-one-out methods. These methods interact
with the context in different ways. For the fold-out
method, the datasets are split into a training set
and a test set, where the model is trained on the
training set and evaluated on the test set. This split
is generated such that each user in the test set is also
found in the training set. Using this stratified split
method, we decided to use a split of 80% training
and 20% test split. Because of this split, a single
user can have multiple ground truth entries across
multiple contexts.
A problem to consider with fold-out for context-
aware evaluation is that when the context is part of
the input to the model, a score must be calculated
for each combination of item and context due to

the multiple ground truth contexts, which can be
computationally expensive. A single context cannot
be guaranteed for the user for all ground truths, and
thus every context needs to be evaluated.

For the leave-one-out method, the newest in-
teraction for each user is removed from the training
set and used as the test set, as per [27, 20]. This
means that when a top-k list is produced for a
user, only a single item amongst the recommended
items can be relevant, and thus there is only
one context within which the ground truth had
occurred. This approach is largely inspired by
sequential recommendation systems, where the
newest interaction from each user is left out and the
next item in the sequence is predicted based on the
sequence of the previous interactions by the user [1].
This approach limits the number of different metrics
that can be used for this evaluation method due to
the single interaction available for testing.

For comparisons we conduct an experiment
using fold-out for models that produce a top-k
recommendation list and conduct a separate
leave-one-out evaluation for models that produce a
context-aware top-k recommendation list. The met-
rics used for the fold-out evaluation are Precision,
Recall, and Normalized Discounted Cumulative
Gain (NDCG), while the leave-one-out experiments
report Hit Rate (HR) and Mean Reciprocal Rank
(MRR).

Evaluation metrics explained

The top-k recommendation problem is the task of
recommending a list L(u) to an active user u con-
taining k items. Evaluating the quality of a method
can be done by splitting the set of items I into a
training set Itrain and a test set Itest for each user.
Let T(u) be the the set of items that the user has inter-
acted with in the test set. Precision can be calculated
according to Equation (13), and recall according to
Equation (14). Precision defines the proportion of
relevant items among the predicted items, while re-
call is the proportion of items that were correctly
predicted according to the ground truth.

Precision@N(L) =
1
|U| ∑

u∈U

|L(u) ∩ T(u)|
|L(u)| (13)

12

mi102f21 • 2021

Recall@N(L) =
1
|U| ∑

u∈U

|L(u) ∩ T(u)|
|T(u)| (14)

Another metric to be used is NDCG [14]. Assuming
each user u has a gain gui from being recommended
item i, the average DCG for a list of J items is defined
in Equation (15), where ij is the item at position j in
the list, and the logarithm base b is 2 to ensure all
positions are discounted. This metric rewards lists
that frontload relevant items.

DCG@N =
1
|U|

|U|

∑
u=1

|J|

∑
j=1

guij

logb(j + 1)
(15)

NDCG is defined in Equation (16), where iDCG
is the ideal DCG, which is defined by sorting the
recommended items such that the relevant items
appear at the start of the list, resulting in the largest
possible DCG value.

NDCG@N =
DCG
iDCG

(16)

MRR [23] is employed for the leave-one-out evalua-
tion, defined in Equation (17). For each user u ∈ U,
MRR is calculated by finding the rank ru of the first
relevant recommendation for each list, and then tak-
ing the mean of these ranks. For example, if three
items are recommended to a user and the third rec-
ommendation is relevant, a rank of 1/3 is attained
for this user. If the recommendation for another user
contains a relevant item as the first item of the list, a
score of 1/1 is attained. With this, the final MRR@3
score is (1/3 + 1/1)/2 = 0.66.

MRR@N =
1
|U| ∑

u∈U

1
ru

(17)

The final metric used is HR. If a relevant item for a
user appears in the top-k list, the HR(u) for that user
is 1, otherwise it is 0. The final HR score is calculated
by taking the mean of all users’ individual HR scores,
as seen in Equation (18).

HR@N =
1
|U| ∑

u∈U
HR(u) (18)

5.6 Performance Comparison with Con-
text (RQ1)

For the first research question we want to examine
how the CSGCN models compare to state-of-the-art

methods within context-aware recommendation list
prediction. To investigate this, the leave-one-out
method presented in Section 5.5 is used, such that
a single interaction is left out for each user, and
a list is produced based on the context that this
interaction took place in. For the tables investing
results in all of the section pertaining to the
research questions, Sections 5.6 to 5.8, we use the
convention of highlighting the best performing
method through bold text, and highlighting the
second best performing method that is not either
of the CSGCN methods through underlined text.
The results for this experiment can be seen on
Table 2. It is easily seen that both CSGCN-IS and
CSGCN-ADJ outperform the various factorization
machines on most datasets. The exception is Frappe,
a dataset that is fairly unbalanced in terms of
which items have been interacted with. The twenty
most popular items have between 640 and 6,634
interactions, which is quite a large number for a
dataset only containing 85,541 interactions, meaning
that almost every 13th interaction will involve the
most popular item, whereas all items have a mean
of 104 interactions.

From this, we can assume that the CSGCN-IS
and CSGCN-ADJ methods work best on fairly
balanced datasets, whereas factorization machines
seem to have an advantage on datasets with highly
popular items.

Another interesting observation from the data
is that even though CFM is run on pretrained FM
data as described in their paper, it generally per-
forms worse than the traditional FM. Additionally,
the runtime of CFM is significantly higher than
any of the other methods. Running 300 epochs
on an NVIDIA DGX-2 cloud takes several days,
while CSGCN-ADJ can perform the same amount
of epochs in just a matter of hours. Due to the
sheer amount of time required to fine-tune the
hyperparameters, CFM has been run only once with
the settings presented in the original paper.
We are not able to fairly compare with the results
presented in the CFM paper [27], since they
perform a different split of the data to perform their
leave-one-out evaluation. According to their paper,
they take the latest interaction of each user - but

13

mi102f21 • 2021

Dataset Metric FM NFM CFM CSGCN-IS CSGCN-ADJ Impr.

Yelp-NC

HR@20 0.0075 0.0142 0.0070 0.0625 0.0761 435.92%
HR@50 0.0198 0.0240 0.0163 0.1143 0.1464 510.00%
MRR@20 0.0022 0.0030 0.0037 0.0127 0.0158 327.03%
MRR@50 0.0025 0.0033 0.0040 0.0143 0.0179 347.5%

Frappe

HR@20 0.6590 0.3516 0.3242 0.0458 0.0604 -90.83%
HR@50 0.8004 0.4945 0.4560 0.1062 0.1245 -84.45%
MRR@20 0.2895 0.1117 0.1032 0.0128 0.0184 -1,473.37%
MRR@50 0.2942 0.1166 0.1074 0.0146 0.0204 -1,342.16%

Yelp-ON

HR@20 0.0083 0.0085 0.0073 0.0399 0.0534 528.24%
HR@50 0.0133 0.0152 0.0133 0.0714 0.0997 251.32%
MRR@20 0.0019 0.0021 0.0019 0.0091 0.0123 485.71%
MRR@50 0.0020 0.0023 0.0021 0.0101 0.0137 495.65%

ML1M

HR@20 0.0874 0.0937 0.0974 0.1402 0.1652 76.31%
HR@50 0.1856 0.2005 0.1964 0.2603 0.2982 48.73%
MRR@20 0.0199 0.0209 0.0203 0.0336 0.0372 77.99%
MRR@50 0.0229 0.0242 0.0234 0.0373 0.0413 70.66%

Table 2: Results for context-specific recommendations.

looking at the actual datasets they provide, their test
datasets are significantly larger than the number
of users, meaning that their evaluation must be
different.
In conclusion, the performance of the CSGCN
models depends on the dataset characteristics, and
the models perform significantly worse than simpler
models on the Frappe dataset.

5.7 Performance Comparison without
Context (RQ2)

Since the CSGCN models use context to generate
a top-k list in each context for each user, we argue
that this context information can be useful even for
non-context-specific settings. Imagine that your sys-
tem is recommending businesses to users, and you
have a business that is only open on Christmas. On
Christmas night, millions upon millions of users in-
teract with this item, but it is never interacted with
in any other context. In a regular RS this would be
considered a popular item, since a lot of users have
interacted with it. However, looking at the context,
we are able to infer that it is only in this exact context
it is popular. This leads to the item having a high

likelihood of being recommended in exactly one con-
text, but a low likelihood in any other. With this in
mind, we will try to answer RQ2 about whether the
models can be used to make non-context specific
recommendations through aggregations by investi-
gating various types of aggregations of the scores
as well as through a performance comparison with
several methods. The simplest solution to aggregate
scores would be to take the highest score for an item,
regardless of the context that it was recommended
for. However, this may prove problematic, since an
item may score highly in a single context but poorly
in any other context, as in the example before.
Instead, we propose to take an average score across
all contexts. With this, the item that is only inter-
acted with in exactly one context has its score low-
ered by a factor of the number of contexts observed.

The results for the non-context-specific recommen-
dation task can be seen in Table 3. Generally, we
see that both CSGCN methods are among the best
performers across all metrics on the datasets, with
CSGCN-ADJ outperforming CSGCN-IS on all met-
rics. The main exception is on the Frappe dataset,
where BPR and KGAT perform significantly better.
We suspect that this is due to the density and small

14

mi102f21 • 2021

Dataset Metric LightGCN KGAT BPR NGCF TopPop CSGCN-IS CSGCN-ADJ Impr.

Yelp-NC

Recall@20 0.1069 0.1064 0.0971 0.0923 0.0625 0.1115 0.1143 6.92%
Recall@50 0.1959 0.1935 0.1802 0.1748 0.1226 0.2020 0.2058 5.05%
Precision@20 0.0540 0.0513 0.0482 0.0458 0.0308 0.0547 0.0575 6.48%
Precision@50 0.0402 0.0388 0.0362 0.0355 0.0247 0.0410 0.0425 5.72%
NDCG@20 0.0953 0.0843 0.0765 0.0786 0.0489 0.0995 0.1020 7.03%
NDCG@50 0.1265 0.0994 0.0907 0.1079 0.0588 0.1315 0.1341 6.01%
F1@20 0.0717 0.0692 0.0644 0.0612 0.0413 0.0734 0.0765 6.69%
F1@50 0.0666 0.0646 0.0603 0.0589 0.0411 0.0682 0.0704 5.71%

Frappe

Recall@20 0.1101 0.1279 0.1404 0.1029 0.3787 0.1054 0.1129 -70.19%
Recall@50 0.1414 0.1700 0.1762 0.1340 0.5175 0.1376 0.1417 -72.62%
Precision@20 0.0553 0.0495 0.0591 0.0501 0.1687 0.0506 0.0576 -65.86%
Precision@50 0.0306 0.0289 0.0311 0.0284 0.0968 0.0291 0.0304 -68.60%
NDCG@20 0.1141 0.0978 0.1340 0.0986 0.3695 0.0997 0.1207 -67.33%
NDCG@50 0.1203 0.1085 0.1377 0.1057 0.3775 0.1073 0.1245 -67.02%
F1@20 0.0736 0.0714 0.0832 0.0674 0.2335 0.0671 0.0763 -67.32%
F1@50 0.0503 0.0495 0.0529 0.0468 0.1632 0.0480 0.0501 -69.30%

Yelp-ON

Recall@20 0.0748 0.0700 0.0658 0.0603 0.0360 0.0751 0.0809 8.16%
Recall@50 0.1354 0.1321 0.1227 0.1157 0.0681 0.1378 0.1477 9.08%
Precision@20 0.0425 0.0395 0.0380 0.0342 0.0200 0.0432 0.0456 7.29%
Precision@50 0.0311 0.0297 0.0285 0.0267 0.0156 0.0316 0.0335 7.72%
NDCG@20 0.0699 0.0610 0.0570 0.0554 0.0303 0.0713 0.0769 10.01%
NDCG@50 0.0909 0.0703 0.0656 0.0755 0.0356 0.0928 0.1000 10.01%
F1@20 0.0542 0.0505 0.0481 0.0436 0.0258 0.0549 0.0583 7.56%
F1@50 0.0506 0.0485 0.0463 0.0433 0.0255 0.0514 0.0547 8.10%

ML1M

Recall@20 0.2481 0.2465 0.2642 0.2291 0.0827 0.2550 0.2675 1.25%
Recall@50 0.4144 0.4125 0.4330 0.3874 0.1633 0.4185 0.4351 0.48%
Precision@20 0.2885 0.2874 0.3015 0.2663 0.0864 0.2923 0.3013 -0.07%
Precision@50 0.2110 0.2099 0.2189 0.1965 0.0734 0.2125 0.2180 -0.41%
NDCG@20 0.3754 0.3971 0.4184 0.3443 0.1044 0.3822 0.3971 -5.09%
NDCG@50 0.3966 0.3874 0.4087 0.3662 0.1144 0.4027 0.4178 2.23%
F1@20 0.2668 0.2654 0.2816 0.2463 0.0845 0.2724 0.2834 0.64%
F1@50 0.2797 0.2782 0.2907 0.2608 0.1013 0.2819 0.2905 0.07%

Table 3: Results for the non-context-specific experiment.

15

mi102f21 • 2021

0 50 100

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Epoch

N
D

C
G

@
20

Mean Max
Min Median

Figure 5: Effect of aggregation functions for CSGCN-IS on the
Yelp-NC dataset for NDCG@20.

size of the dataset. Frappe has a density of 18.9%,
compared to the others that range between 1.1%
and 4.8%, allowing for simpler methods like BPR
to perform better relative to other datasets, whereas
complex methods like NGCF struggle to learn prop-
erly. Even more interesting in the Frappe dataset
is the performance of TopPop, which outperforms
all other methods on all metrics. This is most likely
caused by the dataset including some very popular
items as described in Section 5.6. All of these re-
sults are based on using the mean aggregator, but
for the sake of completeness, let us compare the
performance for the Yelp-ON dataset across various
aggregators of context on CSGCN-IS.
Figure 5 shows how the choice of aggregation affects
the CSGCN-IS model. This shows that using a mean
aggregation function provides the best results, fol-
lowed by the median. The simple solution of taking
the lowest or highest score across the contexts per-
forms the worst.
This supports the previous assumption that while a
single item might be more likely to be recommended
in one context, it does not necessarily mean that it
is a good recommendation overall, which is better

captured through the mean or median aggregations.
While the results are only shown for NDCG@20 for
this dataset, they have proven consistent across all
the metrics.

Ablation study for non-contextual recommenda-
tion

To test whether context and side-information
actually increase performance in a non-context
specific setting, CSGCN-ADJ is evaluated using
different inputs for the datasets Yelp-NC and ML1M
and the performance is measured with NDCG@20.
First of all, CSGCN-ADJ is evaluated with both side-
information and context. Then side-information is
removed, followed by removing context, and finally
both context and side-information are removed.
Figure 6a shows the performance on NDCG@20 of
CSGCN-ADJ with different input. It shows that
the more input the model receives, the longer it
takes to converge to its best performance. Overall,
the performance does not change drastically with
the different types of input. Having only side-
information as input achieves the best performance,
but it is only marginally better than not having
side-information and context at all. Having both
context and side-information actually degrades
performance slightly, compared to just having
side-information as the input, and having just
context as input improves performance slightly. To
conclude from the study on the Yelp-NC dataset,
the usage of context is not able to provide better
recommendations in a non-context-specific setting.
Side-information, however, performs the best on
NDCG@20 on this dataset, which suggests that
side-information in CSGCN-ADJ is able to slightly
improve results compared to having no extra input.

On Figure 6b the NDGC@20 results of ML1M
are shown for CSGCN-ADJ with different types
of input. For this dataset, the model that uses
neither the context nor side-information for the
input is actually the best performing version. Side-
information and context are not able to improve
the performance of CSGCN-ADJ on ML1M in a
non-context-specific setting. Since both Figures 6a
and 6b show that the model is worse with context
included, it can be concluded that context does

16

mi102f21 • 2021

50 100 150
8 · 10−2

8.5 · 10−2

9 · 10−2

9.5 · 10−2

0.1

0.11

Epoch

N
D

C
G

@
20

Sideinfo + context Sideinfo
Context Nothing

(a) The performance on NDCG@20
of CSGCN-ADJ on the Yelp-NC

dataset with different types of
input.

20 40 60 80 100 120

0.375

0.380

0.385

0.390

0.395

Epoch

N
D

C
G

@
20

Sideinfo + context Sideinfo
Context Nothing

(b) The performance on NDCG@20 of
CSGCN-ADJ on the ML1M dataset with

different types of input.

Figure 6: Ablation study for the input of CSGCN-ADJ on Yelp-NC and ML1M.

not increase the performance of CSGCN-ADJ in
a non-context specific setting. Side-information,
however, was able to increase performance of the
model in a non-context specific setting on Yelp-NC,
but for ML1M, it only makes the results worse
compared to having no extra input.

5.8 Ablation study of model extensions
(RQ3)

To investigate whether side-information improves
the results for context-aware recommendation,
we performed an ablation study on the Yelp-NC
dataset. In the study, the CSGCN models were
evaluated with and without side-information to test
the effect it has on the performance. Additionally,
the experiment was conducted on the context input
to examine how much it affects the performance
in a context-specific setting. Figure 7a shows the
HR@20 for CSGCN-ADJ on Yelp-NC with different
combinations of input. The results show that

when side-information is included in the input for
CSGCN-ADJ it does not influence the performance
much compared to excluding it. Another interesting
thing to note is how the model performs worse
when context is included in the input, even though
it is a context-specific setting. This could be because
the CSGCN-ADJ model does not actually model
context in a way that fits the definition of context
defined in Section 2.1. In CSGCN-ADJ, context can
instead be viewed as a type of side-information
since it is modelled in a similar way. Each user and
item node is connected with the context value nodes
of the contexts they have interacted in, just as they
are connected to the nodes of their side-information
values.

Figure 7b shows HR@20 for CSGCN-IS on
Yelp-NC with different inputs. For CSGCN-IS,
there is a slight increase in performance when
side-information is included, compared to excluding
it. This shows that CSGCN-IS is able to use the

17

mi102f21 • 2021

50 100 150 200

5 · 10−2

5.5 · 10−2

6 · 10−2

6.5 · 10−2

7 · 10−2

7.5 · 10−2

Epoch

H
R

@
20

Sideinfo + context Sideinfo
Context Nothing

(a) The performance on HR@20
of CSGCN-ADJ on the
Yelp-NC dataset with

different types of input.

50 100 150 200

4.5 · 10−2

5 · 10−2

5.5 · 10−2

6 · 10−2

Epoch

H
R

@
20

Sideinfo + context Sideinfo
Context Nothing

(b) The performance on HR@20
of CSGCN-IS on the
Yelp-NC dataset with

different types of input.

Figure 7: Ablation study for the input of CSGCN-ADJ and CSGCN-IS on Yelp-NC in the context-specific setting.

side-information to better connect user and item
nodes, increasing the collaborative signal. We also
see that for this model, including context in the
input does make a significant different for the
performance in a context-specific setting. This is
because context is modelled with finer granularity
than in CSGCN-ADJ, meaning that each item and
context value combination has an embedding. The
result of this finer granularity is that context can
have different effects on the various items, resulting
in more accurate context-specific recommendations.

In general, side-information can have a slight
effect on the results depending on the type of model.
However, the context seems to have a lot larger
effect on the performance of the models, as would
be expected for context-aware recommendation.
Additionally, it may be worth noting that the context
used for these experiments is mainly based on
discretized values from timestamps, which might
not be a useful contextual dimension due to time

zone differences. We do not see any overwhelming
evidence that side-information is able to improve
context-aware recommendations.

6. Related work

This paper draws inspiration from two primary
sources: Graph Convolution Networks (GCN) and
Factorization Machines (FM).
This section of the paper will briefly present some
methods belonging to those categories and how they
relate to our work.

6.1 GCN-based methods

Neural Graph Collaborative Filtering (NGCF) [25]
employs a graph neural network to learn embed-
dings of users and items through an integration of
a bipartite graph structure. This structure captures
the collaborative signal through high-order connec-
tivity by stacking multiple embedding propagation

18

mi102f21 • 2021

layers. LightGCN [12] argues that the reasons for the
performance of GCN for recommendation purposes
are not well understood, and that previous models
such as NGCF incorporate unnecessary complexity.
LightGCN thus proposes to remove feature transfor-
mation and nonlinear activation from NGCF, finding
that they contribute little to the performance. Light-
GCN learns user and item embeddings by linearly
propagating them on the bipartite graph structure
and uses the weighted sum of the embeddings as the
final embedding used for score prediction. Knowl-
edge Graph Attention Network (KGAT) [24] extends
the NGCF model by incorporating side-information
through a hybrid graph structure of a knowledge
graph containing side-information and a user-item
bipartite graph, meaning attributes on items can be
propagated as nodes, and be used to refine embed-
dings.

6.2 Factorization Machines

FMs [19] model second-order feature interactions by
calculating the inner product. One of the advantages
of using FMs is that computations can be done in
linear time, while it can also be applied to a variety
of prediction tasks such as regression, binary classifi-
cation and ranking [19]. Convolutional Factorization
Machine (CFM) [27] extends FM to the domain of
CARS through modeling second-order interactions
with an outer product to capture correlations be-
tween embeddings, and applying convolution to
learn high-order interaction signals. Like CFM, Neu-
ral Factorization Machine (NFM) [11] extends the
FM model to combine the linearity of FMs with
the non-linearity in neural networks. The model
extends FMs by adding a number of hidden layers
between the bi-interaction layer and the prediction
function, such that it should be able to capture both
second-order interactions like regular FMs, but also
higher-order feature interactions.

7. Conclusion

In this paper, we have proposed two ways to include
context and side-information in graph convolution
neural networks. Through a series of experiments,
we have attempted to answer the following research
questions:

• RQ1: How do the CSGCN models compare to
state-of-the-art methods for the task of context-
aware recommendation list prediction?

• RQ2: Can the CSGCN models be used to make
non-context specific recommendations?

• RQ3: Does side-information improve results for
context-aware recommendations?

While there are not many competing methods
available for comparison in context-specific recom-
mendation scenarios, we have shown that compared
to both traditional FMs and deep learning versions
of those, the CSGCN models outperform them
across three of four real world datasets, ranging
from an improvement of 70.66% to 510.0% using a
leave-one-out evaluation approach. On the Frappe
dataset the CSGCN models are outperformed by
84.45% to 1, 473.37%. The large fluctuations in
improvements and decreases are likely caused by
the evaluation methodology where the models
attempt to predict a single relevant item amongst
every item in the dataset, as well as the small size of
the Frappe dataset causing learning difficulties.

To answer whether the models could be generalized
to make non-context specific recommendations,
we have shown how the context can be handled
using a simple mean aggregator and used in a
general recommendation scenario with competitive
results compared to state-of-the-art methods. The
CSGCN models improve performance in a range
of 0.07% to 10.01%, while being outperformed on
Frappe once again and on the precision metric for
ML1M, in a range of 0.04% to 72.62%. The large
decrease on Frappe is caused by the data split,
which inadvertently facilitated the simple baseline
Top Pop. Some items in Frappe are so popular
that almost every 13th interaction in the dataset is
with these items. While this is a perfect scenario
for TopPop, it proved to be a challenge for more
advanced methods such as the CSGCN models.
Finally, an ablation study was performed to see how
much side-information improves performance for
context-aware recommendations. Through these
experiments, we see that adding side-information
does increase connectivity in the input graph,
but it does not consequently improve or worsen
recommendations.
In summary, the CSGCN models show im-

19

mi102f21 • 2021

provements over compared methods in both
context-specific and non-context specific situations
across most of the datasets used, and serve as
a base for further research on using GCNs for
context-specific recommendations.

7.1 Future work

The most prominent future work is further con-
templation on how to express context in a way
that is compatible with GCN models. Our pro-
posal is to look into ways to represent context
as edge information in a feasible way. While
writing this paper, we attempted to model it in
a way such that there was an embedding for
each (user, item, context) tuple. However, this
quickly proved infeasible since the number of em-
beddings explodes with just a few contexts available.

The CSGCN models make use of negative
sampling for calculating loss. While this is a regular
way to handle BPR loss, it is known to be biased [5,
4] and sensitive to the number of negative samples
[13]. Fluctuations in the sampled negative item can
cause difficulties in converging, and even sampling
more negative items can increase performance.
Chen et al. [5] propose to learn FM models without
negative sampling to improve ranking performance
for context-aware recommendation, and increase
stability due to considering all samples in each pa-
rameter update. However, using negative sampling
can be necessary since using non-sampling not
only requires the method to look at each observed
interaction from the dataset, but also to consider
each non-observed interaction as a negative data
point. Because of this consideration, CSGCN-IS
uses negative sampling for training, and, due to
employing BPR loss, only one negative sample is
used. For future work on the methods, it may be
interesting to look into other ways to calculate the
loss that are less reliant on hitting good samples.

Additionally, throughout the experiments it
was shown that not all contexts are equal in terms
of importance. Due to this, it could be beneficial
to include an attention mechanism that is able to
learn the importance of each context or context
combination for the convolution layer. This kind of

attention idea could also be applied to layers. More
noise will be introduced to the convolutions as the
amount of layers in a GCN is increased. To counter
this, it may be beneficial to look into more advanced
weighting mechanisms for layers, such that nodes
further away from the root node are less influential
in the layer combination operation.

Finally, both CSGCN methods are based on
the simplified models of GCNs which are gaining
popularity. For this paper, we have performed
limited experimentation on extending this with
various components from traditional GCNs, such as
re-adding linear transformation and non-linear acti-
vation, without success. In recent months, several
new papers on GCNs have been published which
present new extensions to GCNs. These extensions
include new layer aggregation functions and various
implementations of knowledge graphs, which may
be of interest to improve the performance of the
context-aware models presented in this paper.

References

[1] Charu C Aggarwal et al. Recommender systems.
Vol. 1. Springer, 2016.

[2] Linas Baltrunas and Francesco Ricci. “Context-
Based Splitting of Item Ratings in Collabo-
rative Filtering”. In: Proceedings of the Third
ACM Conference on Recommender Systems. Rec-
Sys ’09. New York, New York, USA: Associa-
tion for Computing Machinery, 2009, 245–248.
isbn: 9781605584355. doi: 10.1145/1639714.
1639759. url: https://doi-org.zorac.aub.
aau.dk/10.1145/1639714.1639759.

[3] Linas Baltrunas et al. Frappe: Understanding the
Usage and Perception of Mobile App Recommen-
dations In-The-Wild. 2015. arXiv: 1505.03014
[cs.IR].

[4] Chong Chen et al. “An Efficient Adaptive
Transfer Neural Network for Social-Aware Rec-
ommendation”. In: Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR’19.
Paris, France: Association for Computing Ma-
chinery, 2019, 225–234. isbn: 9781450361729.

20

https://doi.org/10.1145/1639714.1639759
https://doi.org/10.1145/1639714.1639759
https://doi-org.zorac.aub.aau.dk/10.1145/1639714.1639759
https://doi-org.zorac.aub.aau.dk/10.1145/1639714.1639759
https://arxiv.org/abs/1505.03014
https://arxiv.org/abs/1505.03014

mi102f21 • 2021

doi: 10.1145/3331184.3331192. url: https:
//doi.org/10.1145/3331184.3331192.

[5] Chong Chen et al. “Efficient Non-Sampling
Factorization Machines for Optimal Context-
Aware Recommendation”. In: Proceedings of
The Web Conference 2020. WWW ’20. Taipei,
Taiwan: Association for Computing Machin-
ery, 2020, 2400–2410. isbn: 9781450370233. doi:
10.1145/3366423.3380303. url: https://
doi.org/10.1145/3366423.3380303.

[6] Dami Choi et al. “On Empirical Comparisons
of Optimizers for Deep Learning”. In: CoRR
abs/1910.05446 (2019). arXiv: 1910 . 05446.
url: http://arxiv.org/abs/1910.05446.

[7] Anind K. Dey. “Understanding and Using
Context”. In: Personal Ubiquitous Comput. 5.1
(Jan. 2001), 4–7. issn: 1617-4909. doi: 10.1007/
s007790170019. url: https://doi.org/10.
1007/s007790170019.

[8] Jiuxiang Gu et al. Recent Advances in Convo-
lutional Neural Networks. 2017. arXiv: 1512 .

07108 [cs.CV].

[9] F. Maxwell Harper and Joseph A. Konstan.
“The MovieLens Datasets: History and Con-
text”. In: ACM Trans. Interact. Intell. Syst. 5.4
(Dec. 2015). issn: 2160-6455. doi: 10.1145/
2827872. url: https://doi.org/10.1145/
2827872.

[10] Khalid Haruna et al. “Context-Aware Recom-
mender System: A Review of Recent Devel-
opmental Process and Future Research Direc-
tion”. In: Applied Sciences 7 (Dec. 2017), p. 1211.
doi: 10.3390/app7121211.

[11] Xiangnan He and Tat-Seng Chua. “Neural Fac-
torization Machines for Sparse Predictive Ana-
lytics”. In: CoRR abs/1708.05027 (2017). arXiv:
1708.05027. url: http://arxiv.org/abs/
1708.05027.

[12] Xiangnan He et al. LightGCN: Simplifying and
Powering Graph Convolution Network for Recom-
mendation. 2020. arXiv: 2002.02126 [cs.IR].

[13] Xiangnan He et al. Neural Collaborative Filtering.
2017. arXiv: 1708.05031 [cs.IR].

[14] Kalervo Järvelin and Jaana Kekäläinen. “Cu-
mulated Gain-Based Evaluation of IR Tech-
niques”. In: ACM Trans. Inf. Syst. 20.4 (Oct.
2002), 422–446. issn: 1046-8188. doi: 10.1145/
582415 . 582418. url: https : / / doi - org .

zorac.aub.aau.dk/10.1145/582415.582418.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A
Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG].

[16] Thomas N. Kipf and Max Welling. Semi-
Supervised Classification with Graph Convolu-
tional Networks. 2017. arXiv: 1609 . 02907

[cs.LG].

[17] Douglas W Oard, Jinmook Kim, et al. “Implicit
feedback for recommender systems”. In: Pro-
ceedings of the AAAI workshop on recommender
systems. Vol. 83. WoUongong. 1998.

[18] Shaina Raza and Chen Ding. “Progress in
context-aware recommender systems - An
overview”. In: Comput. Sci. Rev. 31 (2019),
pp. 84–97.

[19] S. Rendle. “Factorization Machines”. In: 2010
IEEE International Conference on Data Mining.
2010, pp. 995–1000. doi: 10.1109/ICDM.2010.
127.

[20] Steffen Rendle et al. “BPR: Bayesian Person-
alized Ranking from Implicit Feedback”. In:
Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. UAI ’09.
Montreal, Quebec, Canada: AUAI Press, 2009,
452–461. isbn: 9780974903958.

[21] Timo Schreiner, Alexandra Rese, and Daniel
Baier. “Success Factors for Recommender Sys-
tems From a Customers’ Perspective”. In: 6
(Oct. 2020). doi: 10.5445/KSP/1000098012/
02.

[22] Zhu Sun et al. “Research commentary on rec-
ommendations with side information: A sur-
vey and research directions”. In: Electronic
Commerce Research and Applications 37 (2019),
p. 100879. issn: 1567-4223. doi: 10.1016/j.
elerap.2019.100879. url: http://dx.doi.
org/10.1016/j.elerap.2019.100879.

[23] Ellen Voorhees. “The TREC-8 question answer-
ing track report”. In: (Nov. 2000).

21

https://doi.org/10.1145/3331184.3331192
https://doi.org/10.1145/3331184.3331192
https://doi.org/10.1145/3331184.3331192
https://doi.org/10.1145/3366423.3380303
https://doi.org/10.1145/3366423.3380303
https://doi.org/10.1145/3366423.3380303
https://arxiv.org/abs/1910.05446
http://arxiv.org/abs/1910.05446
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://arxiv.org/abs/1512.07108
https://arxiv.org/abs/1512.07108
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.3390/app7121211
https://arxiv.org/abs/1708.05027
http://arxiv.org/abs/1708.05027
http://arxiv.org/abs/1708.05027
https://arxiv.org/abs/2002.02126
https://arxiv.org/abs/1708.05031
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi-org.zorac.aub.aau.dk/10.1145/582415.582418
https://doi-org.zorac.aub.aau.dk/10.1145/582415.582418
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.5445/KSP/1000098012/02
https://doi.org/10.5445/KSP/1000098012/02
https://doi.org/10.1016/j.elerap.2019.100879
https://doi.org/10.1016/j.elerap.2019.100879
http://dx.doi.org/10.1016/j.elerap.2019.100879
http://dx.doi.org/10.1016/j.elerap.2019.100879

mi102f21 • 2021

[24] Xiang Wang et al. “KGAT: Knowledge Graph
Attention Network for Recommendation”. In:
July 2019, pp. 950–958. isbn: 978-1-4503-6201-6.
doi: 10.1145/3292500.3330989.

[25] Xiang Wang et al. “Neural Graph Collabora-
tive Filtering”. In: Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research
and Development in Information Retrieval (2019).
doi: 10.1145/3331184.3331267. url: http:
//dx.doi.org/10.1145/3331184.3331267.

[26] Felix Wu et al. Simplifying Graph Convolutional
Networks. 2019. arXiv: 1902.07153 [cs.LG].

[27] Xin Xin et al. “CFM: Convolutional Factoriza-
tion Machines for Context-Aware Recommen-
dation”. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intel-
ligence, IJCAI-19. International Joint Confer-
ences on Artificial Intelligence Organization,
July 2019, pp. 3926–3932. doi: 10 . 24963 /

ijcai.2019/545. url: https://doi.org/
10.24963/ijcai.2019/545.

[28] Yelp Open Dataset. https://www.yelp.com/
dataset. Accessed: 2021-05-26.

[29] Penghua Yu, Lanfen Lin, and Jing Wang. “A
novel framework to alleviate the sparsity prob-
lem in context-aware recommender systems”.
In: New Review of Hypermedia and Multime-
dia 23.2 (2017), pp. 141–158. doi: 10.1080/
13614568.2016.1152319.

22

https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3331184.3331267
http://dx.doi.org/10.1145/3331184.3331267
http://dx.doi.org/10.1145/3331184.3331267
https://arxiv.org/abs/1902.07153
https://doi.org/10.24963/ijcai.2019/545
https://doi.org/10.24963/ijcai.2019/545
https://doi.org/10.24963/ijcai.2019/545
https://doi.org/10.24963/ijcai.2019/545
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://doi.org/10.1080/13614568.2016.1152319
https://doi.org/10.1080/13614568.2016.1152319

	Introduction
	Preliminaries
	Defining side-information and context
	The components of a GCN
	Types of data for RS
	Data representation

	CSGCN-IS
	Model intuition
	Model architecture
	Adjacency matrix
	Convolution layers
	Score prediction
	Training
	Implementing CSGCN-IS

	CSGCN-ADJ
	Model intuition
	Adjacency matrix
	Convolution layers
	Score prediction and training
	Implementing CSGCN-ADJ

	Experiments
	Datasets
	Context dimension selection
	Compared methods
	Parameter settings
	Evaluating the models
	Performance Comparison with Context (RQ1)
	Performance Comparison without Context (RQ2)
	Ablation study of model extensions (RQ3)

	Related work
	GCN-based methods
	Factorization Machines

	Conclusion
	Future work

	References

