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Abstract—Sparsely rewarded environments can be challenging
for deep reinforcement learning to understand and even harder
to master. Hierarchical reinforcement learning shows promising
ways of constructing subgoals, that are more understandable
to the agent. Subgoal construction is a slow process to do
autonomously, we therefore propose a new method of finding
and constructing subgoals. We present a more time-efficient
comparison method for subgoal creation. We propose a novel
distributed training framework to increase the throughput of
the agent. The framework indicates increased data gathering but
decreased learning compared to a non-distributed counterpart.

I. INTRODUCTION

Many new Deep Reinforcement Learning (DRL) algorithms
and methods focus on doing well in both dense and sparse
reward games. As mentioned in previous works, the challenge
is to construct algorithms that will be able to succeed in both
types of games, without hand engineering features or using
underlying game data[17].

Two separate ideas for increasing the state space exploration
are the hierarchical reinforcement learning (HRL) algorithm
Exploration Effort Partition (EEP)[8], and Random Network
Distillation (RND)[7]. Since EEP is hierarchical, the main
idea is to define meaningful subgoals through training. Solving
these subgoals, also called partitions in EEP, should then solve
the overall goal. However, a limitation of EEP is that the parti-
tions are determined through a distance measure on states. This
distance does not take into account the underlying information
in the game, relying only on the pixel data and internally
calculated action probabilities between two states. Later on,
we will also see that computing this distance is very time
consuming. Furthermore, the original EEP algorithm does not
provide a framework for distributed environment interactions,
something that can increase state space exploration.

RND computes the novelty of a state based on what it has
previously seen. Agents taking advantage of this algorithm
should then try to explore these novel states further. However,
since exploration is guided only by the novelty value of a state,
the approach lacks the possibility of creating groups/partitions
of states with similar novelty.

Beyond this we observe that several state of the art solu-
tions within the field are dependent on specialized hardware
solutions, which in many cases are out of reach. Papers like
Agent57 [2], R2D2 [12], and NGU [3] process not only more
updates every second but also more environment interactions
per actor with higher amounts of actors. Even the transitions
they process at higher speeds are of longer sequences and
higher complexity, than what our resources allow us to process.

These factors create a disparity between not only competing
for state of the art performance but also, hinder the repro-
ducibility of such contributions.

We can use the limitations of EEP as a stepping stone for
defining our problem.

First we would like to decrease memory used by the EEP
algorithm, by decreasing the size of each entry in the replay
memory.

Second, we would like to increase the speed of EEP
(decrease the time complexity) by replacing the state distance
calculation with a novelty calculation instead.

Lastly we would like to distribute our work in the continued
legacy of R2D2, Agent57 etc. to use the advantages that
distribution entails.

Combining the above mentioned ideas will result in an
efficient, low hardware requirement, yet competitive agent for
solving the Atari reinforcement learning test suite with good
performance in both reward sparse and dense games.

We expect that the performance of RND alone and partitions
from EEP will compliment each other. While the distribution,
which is decoupled or wrapped around both RND and EEP,
will enable higher throughput without hindrance or overhead.

II. RELATED WORK

The work done in this article relates to subjects such as
active exploration and efficient training.

A. Active exploration

Active exploration is the act of having the agent explore by
its own will, this can be done in multiple ways.

Count-exploration is one of the ways to encourage active
exploration. By counting the number of times an agent has
been in a given state, it can be encouraged to explore rarely
visited areas of an environment [6] [14] [23]. This has been
done using clustering techniques, where states are clustered
together to reduce space complexity[1]. Counting can be based
on uncertainty factors to determine the visitation rate of a state
[15].

Some methods are more curiosity-driven, where models are
made to predict the environment or use the error of models
to determine importance. In the work by Yang et al.[24] they
calculate optical flow estimation and use the error as a novelty.
Within this category of active exploration, there are studies on
how to minimize local exploration and encourage agents to
find diverse states. [11] The noisy-tv problem can be handled
by ensuring that there are several steps between two curiosity
monuments as done by Savinov et al. in [20].
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We will be using both techniques to create a clustering
system, using the error of neural network models as the
uncertainty factor and counting the visits to these clusters.

B. Efficient Training

When we develop complex software, we concern ourselves
with how fast it can return the right results and how much
space is needed to do so. The same is said when training an
agent, there is often a tradeoff between these two factors. DQN
is fast but allocates lots of memory in its replay memory [17].
A3C is fast and does not use much memory due to its distri-
bution where each actor has the minimal memory needed[16].
Some methods find importance in the memory and prioritize
the gathered training data e.g. ”Prioritized Experience Replay”
by T. schaul et al.[21]. Newer methods focus on speed with a
shared prioritized memory. Agent57 and MuZero are the two
of the frontrunners by both distributing actors to gather data
faster and by prioritizing the data which lets the learner train
on the most relevant information[2] [22].

In this article, we will be using multiple actors that hold
minimal information, combined with a memory manager that
can make some of the simpler calculations of sampling, to
the learner, so that that individual workers can focus on their
specific task.

C. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning is often used to create
subgoals and/or abstactions for the agent and bring a hier-
archy to the task at hand. Jean Harb et al.[10] introduce
the Asynchronous Advantage Option-Critic (A2OC) algorithm
that learns options with multiple parallel agents as in A3C.
Harb et al. describe options as temporally abstracted actions
with termination conditions. The hierarchy can be thought of
as team cooperation, in [25] where multiple agents learned
the hierarchy of their high-level combined actions from their
low-level autonomous actions and are rewarded for the team
effort.

Our approach will focus more on the progression of the
visual aspect of the game, having its hierarchy linked to the
progression of what is seen on screen and not on what the
specific order of taken actions is.

III. PRELIMINARIES

A. Markov Decision Process

The Markov Decision Process (MDP) is a common mathe-
matical control process that represents the decision process in
an environment [9].

An MDP can represent most Reinforcement Learning prob-
lems as the tuple (S,A, P,R), where S is the set of states,
A is the action set, transition probabilities represented by P
and the reward function mapping states and action to rewards
R : S × A � R [19]. A state s ∈ S consists of values that
uniquely identify a snapshot of the environment at a given
moment. An action a ∈ A represents interactions with the
environment. Taking an action a in a state s will lead to a new
state s′ in deterministic environments, and to a set of states

S ⊆ S in nondeterministic environments. If circular transitions
are part of the environment, the new state s′ can be equal to
the current state s in the deterministic case, and s ∈ S for
nondeterministic environments. P (s′|s, a) is the probability of
transitioning from state s to s′ by taking action a[9][19].

B. The Bellman Equation

The Bellman Equation is a basic principle used when
working with reinforcement learning, Equation 1 shows the
decomposed form [4].

Q(s, a) = E[r + γmax
a′

Q∗(s′, a′; θ)|s, a; θ] (1)

The equation describes how to calculate a Q value from a
state s and an action a. The Q-value is the known reward r
added to the future discounted rewards, calculated using the
next state action pair (s′, a′) and the network with parameters
θ [18].

This equation can be used to calculate the Q-target used to
backpropagate a network.

C. Mixed Monte Carlo

We use the Mixed Monte Carlo technique when training
our networks, because it is a simple addition to the backprop-
agation technique used by DQN, using more of the sampled
information to increase training speed.

The intuition behind this addition is that some of the training
can be done similar to how Monte Carlo Tree Search uses its
simulation phase where each state-action pair can be thought
of as a node in the search tree. The state where a game
terminates can be thought of as the leaf node simulating the
end result for this branch of (s, a) tuples, as illustrated in
Figure 1a [6].

The rewards for each (s, a) are backpropagated to the
root/start state, as it would normally be done in Monte Carlo
search (Figure 1b) and saved at each state as a Monte Carlo
Reward (MCR)[6].

R

(a) Simulation

R

R

R

R

(b) Backpropagation

Figure. 1: Monte Carlo simulation and backpropagation

A run through the environment from start to termination
can be compared to the selection and expansion phases, where
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each walk-through will have slight variances, as illustrated in
Figure 2. At each walk-through, there is a selection on which
action to take. If this action leads to some unknown branch,
we expand and add the branch to the tree.

(a) Selection (b) Expansion

Figure. 2: Monte Carlo selection and expansion

We calculate the normal Q-target using the Bellman equa-
tion, and combine it with MCR to Mixed Monte Carlo (MMC)
target, using a coefficient η. The coefficient η is used to
determine the importance of known (MCR) and self-learned
results (Qtarget) as seen in Equation 2. By using this tech-
nique and combining the Monte Carlo Reward with the more
traditional target, the learning yield more information. The
additional information comes from the practical rewards given
in an episode and backpropagated to the point of training.
This practical understanding of the future reward helps the
theoretical understanding provided by a target network, giving
a better target for the networks’ backpropagation[6].

MMCtarget = (1− η) ∗Qtarget+ η ∗MCR (2)

The Mixed Monte Carlo target can then be used against
an agent’s prediction to calculate loss and backpropagate
the agent’s neural networks. This method of training makes
it easier for the agent to remember rewards over sparsely
rewarded environments[6].

IV. METHODOLOGY

A. The framework

The distributed framework we propose to use is inspired by
Agent57 [2] and Recurrent Replay Distributed DQN [13], with
the 3 different sectors, the actor, learner and memory manager
as seen on Figure 3. The distribution allows for decoupling
of learning and acting, which has been leveraged for per-
formance, throughput and model stability among others, and
has been leveraged by many within the field of reinforcement
learning.

This framework is intended to have multiple actors, one
learner and a memory manager. The actors interact with their
own environment to create data that can be used for training.
The learner only trains the networks and is able to run through
data faster than an agent, doing both acting and learning. The
multiple actors are intended to both fill the replay memory
fast and provide some stochasticity to the training data by

taking paths that are slightly different through the environment.
The stochasticity is provided by the agent’s ε-greedy action
choice that is semi-random according to the declining ε-value
as presented by V. Mnih et al.[17].

DQN

Actor

Environment

Memory Manager

Experience

DQN

RND

Learner

Visited
Partitions

Partition
memory

RND

Visited
Partitions

Partition
memory

Figure. 3: The distributed framework with RND

The framework allows for multiple instances of the envi-
ronment, to be interacted with by actors. Every experience
gained by actors interacting with the environment, is sent
to the replay memory and stored by the manager in the
form: (s, v, a, r, s′, v′). The manager selects and sends the
experiences for the learner to train on. The learner uses the
experiences to update the agent’s networks. Each actor sends a
partition candidate along with its novelty value to the learner.
The learner uses the novelty values to choose the best partition
candidate, adding the candidate with the highest value to
the partition memory. The learner then updates the partition
memory of the actors as well as their network parameters,
represented by θ, Ŝ on Figure 3.

B. Partitions

We start this subsection by giving a formal definition of
the partitions derived from the agents interacting with the
environment:
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Definition 1 (Partitions). A partition p ⊂ S is a set of
states that are close together as determined by a distance
measure. Each partition p has a representative state ŝp ∈ Ŝ.
Furthermore, the partition p to which a state belongs is the
one whose representative state ŝp is closest[8].

Also, a partition is a tuple containing the representative state
of the partition and a visited counter containing the number
of times the partition has been visited.

Actor view

Current partition set Ŝ

p1

p2

p3

s′

s′′

d(s′, Ŝ)

d(s′′, Ŝ)

Figure. 4: Partition candidate construction as seen by the actor.

Learner view

Current partition set Ŝ

p1

p2

p3

p4

pc1

pc2

pc3

Figure. 5: Construction of partition set by the learner from
partition candidates at frequency φ. In this example, each
partition candidate originates from a different actor.

1) Partition Construction: Partitions are constructed at a
frequency φ from a set of partition candidates and added to
the partition memory. The partition candidate from an actor is
the state with the most distance to all other partitions within
the partition frequency φ. We illustrate partition candidate
construction with an example in Figure 4. In this example,
the actor visits new states s′ and then s′′. If the distance from
s′ to the current partition set Ŝ is larger than a threshold Dmax,
s′ will be added as a partition candidate and Dmax = d(s′, Ŝ).
When the actor later visits s′′ the partition candidate will be
overwritten with s′′ and Dmax = d(s′′, Ŝ), since d(s′′, Ŝ) >
d(s′, Ŝ). Note that for any state s, d(s, Ŝ) > Dmax if and
only if ∀ŝ ∈ Ŝ d(s, ŝ) > Dmax.

In Figure 5 we illustrate what the learner sees when it
adds new partitions. In this example, the learner has four

partitions in its partition memory, and has received three
partition candidates pc1, pc2 and pc3 from three different
actors. We see that the learner will add pc2 as the new
partition, since it is furthest away from the current partition-
representation set Ŝ.

For each partition that is added to the partition memory,
φ is increased by a variable percentage value to increase
the distance between partitions over time. This ensures more
variation in the partitions, increasing the exploration of the
environment.

s′

p1

p2

p3

Figure. 6: Partition visitation. In this example, the agent
reaches a new state s′. The agent will then calculate the
distance between s′ and the representative state ŝp of each
partition p, and visit the partition with the minimum distance,
which is p2 in this example.

2) Partition Visitation: As illustrated in Figure 6, a partition
is visited when the agent is closest to that partition’s repre-
sentative state. We do this by using Equation 5 to determine
the distance between states, visiting the partition that gives the
minimum of all the distances.

ŝ1 ŝ2 ŝ3

On top
platform

Jump over
skull

Top left
platform

ŝ4 si ŝ6

Jump rope Get key Top right
platform

ŝ7 ŝ8 ŝ9

Figure. 7: An example partition hierarchy as seen by the
agent when playing Montezuma’s Revenge. Each level (big
surrounding box) includes up to several subgoals/partitions
(small boxes) that helps the agent to evaluate which areas to
explore in order to solve the overall environmental goal.

We depict the hierarchical partition visitation structure in
Figure 7. As the agent begins interacting with the environment,
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it starts in an initial state ŝ1. Afterwards the agent will
randomly explore the environment, adding new partitions as
they are observed.

When the agent starts to act based on its Q-network, it
should receive rewards for exploring the partitions. At some
point the agent should learn to reach the key from either ŝ1
or ŝ4 and get a small intrinsic reward for reaching either of
these partitions. This should lead to a new area for the agent
to explore so that it after some time should be able to find the
extrinsic reward for finding the key. When the key is found
the agent can exit the room through the top left platform ŝ3
or top right platform ŝ6. Reaching partitions such as ŝ3 and
ŝ6 lets the agent find new areas to explore, and should lead to
the agent exiting the level.

C. Distribution, performance and stability

The following will describe the distribution of the frame-
work, which is used to increase throughput of experiences to
replay memory and stability via stochasticity.

Different processes communicate using queues, the queues
will work according to FIFO. In the final distributed imple-
mentation we have nine queues.

Generally there are three types of queues:
• Network queues pass network parameters from the learner

to the actors, updating their networks to match the
learners.

• Partition queues pass partitions between actor and learner.
• Replay queues pass experiences from actors to the man-

ager.
1) Actors: Each actor will interact with the environment

and add sets of experiences, episode buffers, to the replay
queue. This is done whenever a state has become terminal
and the actor will start a new episode. It should be noted
that an episode is deemed terminal when a life is lost, even
when the actor has more lives left within the environment.
This is done to discourage risky strategies optimizing score
over playing the game as intended. At every network update
frequency step, the actor will check if anything has been put
into the network queues and update accordingly. The agent
will also check for selected partitions. Finally, at every φ step,
the actor will push its current partition candidate as descirbed
in subsubsection IV-B1 to the learner.

2) Manager: The manager is a simple middleman between
actors and learner. It unwraps and stores the episode-buffer’s
transitions from actors to the replay-memory, and samples
them for consumption by the learner.

3) Learner: The learner has a replay memory managed by
the manager. The learner will wait until its replay memory
has been filled by the manager at which point it will start
to process the transitions. Processing consists of creating
batches of experiences, calculating a huber loss between the
network predictions and the MMCtarget and backpropagating
the value. Once it has processed the entirety of the memory
buffer it will again wait for the buffer to be filled and
repeat. Whenever the entirety of the buffer has been processed
it will also push the new network weights to the network
queues for consumption by actors. Furthermore, when every

actor has submitted two partition candidates to the learner,
it will evaluate all candidates. The evaluation is based on the
candidates’ distance to Ŝ when discovered. When the partition
candidate is selected as a partition it is pushed to all actors.

D. RND as a novel distance measure

Our distance measure is inspired by the distance equation
by M. Dann et al.[8] and the novelty measure Y. Burda et al.
presented in [7].

In [8] they use an exploration effort network to determine
the partition spi the agent is in, using Equation 3.

spi = argminspi∈Ŝ
(max
ŝ∈Ŝ

(

max(||EEπm(ŝ, s)− EEπm(ŝ, spi)||,
||EEπm(s, ŝ)− EEπm(spi , ŝ)||)), (3)

where s is the state the agent is in, Ŝ is the partition
reference states, π is the policy and m is the time limit in
steps.

M. Dann et al. uses a replay memory where they store
{s, v, a, r̂π, r, s′, v′} for each transition. Additionally to the
states and action sets normally stored in this replay memory
they store the visited partitions v, the auxiliary reward set r̂π

according to the current policy π and visited partition after the
transition.

We devise a novel distance measure using the error from
RND. We calculate the loss between the target and the
predictor as shown in Equation 4, and use it as the novelty
measure for a state. As such, the bigger the calculated error is,
the more novel is the state that was given as input to the target
and predictor networks. We use this measure as the distance,
so the more novel a state is, the farther away it is from a
representative state.

MSE(x) = ||f̂(x; θ)− f(x)||2 (4)

In accordance with the principles of the partitioning scheme
from [8], the EE network calculates the distance between
state s and a state in the partition memory s′ as seen in
Equation 3. As presented in [7], RND does not find the
distance between two states, but finds the novelty of a state.
We propose to use the novelty metric from RND as the
distance measure for generating partitions in EEP. The benefit
of the proposed method is that it requires less memory, since
auxiliary rewards are not stored. A secondary benefit of using
the RND instead of the EE is that the output features do
not need to be tied to the action-space of an environment.
This allows the agent to calculate novelty or distance from
more than what is seen, also from some of the implied rules
of the observed environment. Furthermore it should achieve
at least the same scores as the original EEP algorithm and
some similar partitions. Exchanging the distance measure in
Equation 3 with RND results in Equation 5:

spi = argminspi∈Ŝ
(max(||f̂(s, s′; θ)− f(s, s′)||2,

||f̂(s′, s; θ)− f(s′, s)||2))
(5)
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Since RND works towards a static target, the reference point
ŝ can be omitted, as done in Equation 5, by removing the
nested maximum loop. The target network acts as the arbitrary
reference point that s and s′ relates to. This omission simplifies
distance calculation and the related calculations because the
reference set Ŝ is not used in the calculation.

This change in networks also reduces the needed items in
the replay memory. Since the predictor network trains towards
a static target there is no need to save the auxiliary rewards.
Using Equation 5 instead of Equation 3 to find the partitions
should therefore be faster and more memory efficient.

Theorem 1 (Memory space reduction of RND). Replacing EE
with RND in EEP leads to the reduction in memory usage R
as a linear function with regards to the set of transitions T .

Proof. By replacing EE with RND in EEP, the set of auxiliary
rewards for each transition does not need to be stored. Each
auxiliary reward set is a set of float values, one value for each
possible action. As such, R is defined as

R(|T |) = (|r̂|·F) · |T |, (6)

where F is the size of float on the given machine. It is clear
that R is a linear function of |T |.

V. EXPERIMENT

In this section we present our experiment setting and
environment together with our results. The results are divided
into two parts corresponding to the contribution. The first part
for RND as the distance measure and the second part for the
distributed framework.

The Setting: The approach we have suggested be applied
to 3 sparse- and 2 dense rewarded Atari games. We use the
sparse games Freeway, Montezuma’s Revenge and Venture.
The dense games are Battlezone and Robot Tank. The games
have been chosen to show the new approaches capability
both in traditionally hard and easy to learn environments. The
experiments will be run on the AAU CLAAUDIA cluster on
a virtual system with one Nvidia Tesla v100 GPU and dual
Intel Xeon Platinum 8168, 2.7 GHz, 24-cores CPU.

We benchmark our method against the EEP method pre-
sented by M. Dann et al. in [8]. The two methods use the same
hyper parameter setup. Due to the RND using the training
continuously to calculate novelty, the RND predictor network
had continuous training, whereas the EE network was stopped
after 2 million steps as done in the original paper [8].

Environment: For the environment we use OpenAI’s gym
Atari which builds upon the arcade learning environment by
Bellemare et al.[5]. We use a repeat action probability of 1.00
meaning our selected actions stick for the 4 frames which
are skipped. Furthermore we make it so that a life loss is
deemed terminal, meaning that states where we lose life are
considered terminal states by the learner. Lastly we clip our
rewards between 1 and −1, meaning that positive rewards are
upper bound to 1, negative lower bound to −1 and all else to
0. For more details on hyperparameters see Appendix A.

During our experiments we measure the step count for each
episode, the total score, time pr. step, current partition number,

the average score pr. 100 steps and the epsilon value. However,
some of this information will not be used as a comparative
measure, but was gathered to observe internal behavior. As
seen in Figure 8 and Figure 9, we use the step count and
average score as the evaluation metrics when comparing our
results on different games.

A. Results

The graphs show the average score for the agent in some
environments, unfortunately, the graphs show no results pro-
duced by an agent using the distributed framework, further
explained in subsection V-B.

The graphs in Figure 8 and Figure 9 show the scores for
each game as obtained by our implementation of the original
EE and our RND solution. These scores are low compared to
the results presented by M. Dann et al.[8].

However contrary to many of the other games, we see that
we consistently underperform compared to the baseline in
Venture as seen in Figure 8a, rather than following it.

This may be surprising considering that, when we look at
our partitions for RND (Figure 11) compared to the baseline
(Figure 10), we see that the baseline explores fewer rooms.

(a) Overwolrd partitions

(b) Single room being explored partitions

Figure. 10: A selection of partitions illustrating the EE agents
exploring only a single room, although more thoroughly than
NRD as seen in Figure 11

(a) Overworld partitions

(b) More varied rooms explored by RND

Figure. 11: A selection of partitions illustrating the RND
agents exploring many different rooms. Most rooms only have
a single partition, thus the agent visits the room without
exploring it as thoroughly as with EE in Figure 10

Thus it would seem that the EE agent, in Venture, expe-
riences less rooms than RND. But since the objective for
extrinsic rewards are within the rooms, not just at the entrance,
we see that EE still performs better. This could again be
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(a) Venture
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0.0 2.0 4.0 6.0 8.0 10.0
Steps in millions

0

5

10

15

20

25

Av
er

ag
e 

sc
or

e 
pr

. 1
00

 e
pi

so
de

s Montezuma's Revenge
EEP
RND

(c) Montezuma’s revenge

Figure. 8: Average score for the last 100 episodes over steps taken for three sparse reward games by non-distributed agents
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(a) Battlezone
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(b) Robot Tank

Figure. 9: Average score for the last 100 episodes over steps taken for two dense rewarded games by non-distributed agents

related to the noisy-tv problem. Rather than getting stuck, we
prioritize finding rooms, rather than learning them and getting
their respective rewards.

Interestingly though we see an, albeit relatively weak but
nonetheless consistent, pattern that could indicate negative
learning. We see in Figure 8a that the peaks are consistently
becoming lower. Even though the data for RND contains a
slightly higher episode top score, we are much less consistent,
contributing to the low average score.

On Figure 8b we see that the partitions encourage the agent
to explore. The agent using RND as distance measure is more
stable in the middle of its training but spikes at the end. The
sudden fall afterward seems to be because of the agents’ two
newest partitions where the game character got run over. These
new partitions produce relative high rewards and will therefore
be explored for a bit. They will however be ignored over time,
due to overall loss resulting from termination.

Both models presented in Figure 8c are able to get scores
in Montezuma’s Revenge, which is one of the hardest games
in the Atari 2600 test suite. But they could use some more
hyper parameter tuning to increase learning in the later stages
of training. Partitions generated using RND and EEP seem
similar, both generating good and bad partitions that leads to
extrinsic rewards.

The two graphs on dense reward games on Figure 9 indicate
improvement from the beginning to the middle of the training
period and negative learning for the rest of the training. This
is the case for both Battlezone and Robot Tank. We argue
that this is because the partitions made in these games mostly
seem to be a few states away from a terminating state. These
types of partitions indicate an issue related to the noisy tv-

problem because the agent is presented with a lot of visual
noise at states right before termination. This visual noise will
be interpreted as novel by the RND network.

Figure. 12: A partition made in Robot Tank

About 90% of the generated states are variations of Fig-
ure 12. Because the agent seeks the partitions to gain points,
it will be in a state of no return when such a state is found.
The agent using the exploration effort to make partitions is
not as explosive in its result, but has a more stable increase.

All the agents show that there is room for improvement
in both hyper parameter tuning and some more conditions
on when to make partitions. They are able to get better
scores than just taking random actions. The partitions made
using RND instead of EE use a smaller amount of memory
dependent on the action space and the data type used to store
the auxiliary rewards used to train the EE calculation as shown
in Theorem 1. In the end, we also manage a memory saving
in the range of 2 bits to 1152 bytes pr. transition, depending
on whether the auxiliary reward is saved as bits or float64 for
the 2 to 18 actions in the environment.

B. Distribution results

Preliminary results from the distribution are unfortunately
worrying.
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Figure. 13: The amount of backpropagations as a function
over time, performed by the distributed and non distributed
framework

Our intuition as to why the backpropagation is slower com-
pared to non-distributed, considering implemented functions
are identical, is related to processor scheduling, this can be
seen on Figure 13. The results of this test show the difference
in amount of backpropagation batches the agent runs through
as a function of time. Even though calculations are done on
GPU, the method for doing so and fetching of data etc. is
CPU bound. Meaning the speed still relies on process time.
Furthermore, considering the amount of data fetches may also
impact its process priority due to I/O waits. The process may
very well have low priority compared to actors with low I/O.
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Figure. 14: The efficiency of each actor, as measured by how
many frames they can process each second compared to a
single actor.

Although we see an increase in throughput for every actor
we add to the system, the gain does not scale linearly. With
the distributed EEP implementation we tested the throughput
as frames processed pr. second for different amounts of actors.
From the test results in Figure 14 we see that the efficiency
from adding actors peaks earlier than expected, at around four
actors, while Figure 15 show that total throughput peaks at
fourteen. The results were gathered using the CLAAUDIA
servers as mentioned earlier and efficiency tests were run
for fifteen minutes before actors were expected to have filled
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Figure. 15: The total throughput of all actors combined,
compared to that of a single actor.

replay memory. Although we still get more throughput from
adding actors, we see them gradually become less efficient, as
we add actors.

However, we also encountered many hard- and software
related problems.

First off, we have experienced numerous issues with regards
to shared memory management when running code on the
CLAAUDIA server cluster.

Beyond this, we also had problems with utilization, at seem-
ingly random times we would encounter, what we theorize to
be a livelock in our code. Our repeated code analysis could
not identify a situation that should allow for this, however,
we would consistently encounter the error. In the situation,
the manager and learner would stop progressing, seemingly
in a livelock, with each other, while actors could unhindered
continue to progress.

Considering results from non-distributed section and pre-
liminary non-conclusive results from the distributed section
we would expect test performance to be the same. However,
we cannot say anything conclusive about the throughput
performance of our implementation.

Lastly, we have collected some issue trackers and informa-
tion on the problems, see Appendix B

VI. CONCLUSION

We have shown that using Random Network Distillation as a
novel distance measure to make partitions did not significantly
improve test scores over the exploration effort implementation.
Contrary in Venture and Battle Zone the game scores were
worse than the baseline. However, using RND results in
fewer network propagations in the training. Using the novelty
measure as the distance formula instead of the exploration
effort also decreased the complexity of the distance formula
used to find and make partitions. During our experiments,
RND almost halved the training time when compared to
exploration effort. Using RND as distance also seemed to
worsen the agents performance over time, while the agent
using EE was stable and increasing in performance.
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The distribution framework did likewise show an increase
in environment interactions, however, as described in subsec-
tion V-B presented its own suite of problems and complexity
to the solution as a whole. One of the biggest problems being
the decreased amount of backpropagations. Though some of
these may prove trivial to solve with more experience

A. Future Work
A future improvement could be having multiple learners

with a shared model such as PPO or A3C does, to have both
multiple actors and multiple learners. In addition to this, a meta
controller or process manager could be implemented to better
balance the load between manager, learner(s) and actors.
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APPENDIX A
HYPERPARAMETER TABLES

Hyperparameter table
Training steps 10.000.00 The amount of steps an agent is allowed to run before termination
Partition discovery frequency 20.000 The amount of steps before a new partitio nwill be added (base)

Partition discovery frequency multiplier 0.2 The multiplier for steps before a partition is added (multiplied at every
partition addition

Partition start 2.000.000 Delay in frames before we start to create partitions

Partition memory size 100 The upper bound amount of partitions that can be present in agents
memory

Replay memory size 1.000.000 Upper bound for transitions in replay memory

Discount factor 0.99 Future reward multiplier controlling that due to uncertainty we cannot
weigh predicted rewards as much as current

Batch size 32 Transistions taken from memory passed to network*
Distribution specific parameters

Partition candidate push frequency 10.000 The freqency (in steps) at which actors push partition candidates to
learner

Weight push frequency 1.000 How many transitions are trained before new network weights are
pushed to actors

Non Distribution specific parameters
Update frequency 1.000 Steps before we update target networks

Convelutional network specifications

Layer 1 Layer 2 Layer 3

input→output kernel stride input→output kernel stride input→output kernel stride

Qnet 1→32 8 4 32→64 4 2 64→64 3 1
EEnet 1→16 8 4 16→16 4 2 16→16 3 1

TABLE I: Note that Qnet and RNDnet share convelutional network structures so only 1 is listed

APPENDIX B
PYTORCH IMPORTANT ISSUES

A series of linked issues and open problems with the framework, in no particular or-
der: https://github.com/pytorch/pytorch/issues/17199 https://github.com/pytorch/pytorch/issues/41486
https://github.com/pytorch/pytorch/issues/57401 https://github.com/pytorch/pytorch/issues/53178
https://github.com/pytorch/pytorch/issues/48382

Even with the great help of local helpdesk we could not find any root causes for these runtime complications. Which include
the following:
• RuntimeError: unable to open shared memory object </torch_29919_1396182366>

– Long stading issue with continually closed and reopen status
– https://github.com/pytorch/pytorch/issues/1355
– ulimit er ikke testedt mere endnu

• Generic RunTimeError codes
– 2, no such file or dir
∗ May be related to filesharing startegy which is dependant on file system file handles
∗ https://pytorch.org/docs/stable/multiprocessing.html#sharing-strategies

– 5, queues read write same time even though safe
∗ May be related to queues, though multiprocessing.Queues is documented to be thread and

process safe, and we followed the multiprocessing guidelines and best practice dexcribed
here https://pytorch.org/docs/stable/notes/multiprocessing.html and cuda sharing described here
https://pytorch.org/docs/stable/multiprocessing.html#multiprocessing-cuda-sharing-details

– 1455, shared file mapping
∗ May be related to error code 2, a missing file descriptor handle can cause garbage collection to clean up shared

memory resulting in invalid shared file mappings
• ThByte storage linux python OS error

–

APPENDIX C
PSEUDOCODE
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Algorithm 1 Actor Pseudocode

1: procedure MAIN()
2:
3: Reset variables, s, s′, v
4:
5: // Add representative state for first partition
6: sp1 ← s
7: R← {sp1}
8: tpartition ← 0
9:

10: for Training length do
11: Select a = argmaxa(Q(s, a))
12: Take action a, observe r, s′

13:
14: // Determine the current partition acording to the Equation 5
15: spc ← argminspi∈Rd(s

′, spi)
16:
17: // Update the set of visited partitions
18: v′ ← v ∪ spc
19:
20: Store transition {s, v, a, r, s′, v′} in episode buffer
21:
22: if s′is terminal then
23: Send episode buffer to manager
24: Update all partitions’ visit counts based on v
25: Reset variables, s, s′, v
26: end if
27:
28: // Update the best candidate
29: if d(s′, spc) > Dmax then
30: s̃pn+1

← s′

31: Dmax ← d(s′, spc)
32: end if
33:
34: // Add a new rep. state every Tadd steps
35: tpartition ← tpartition + 1
36: if tpartition > Tadd then
37: SendPartitionToLearner(s̃pn+1

)
38: Dmax← 0
39: tpartition ← 0
40: end if
41:
42: s← s′

43: if Network Update Frequency then
44: Update network parameters with learner parameters
45: Add selected partition form learner to partition memory
46: end if
47: end for
48: end procedure
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Algorithm 2 Memory Maneger Pseudocode

1: procedure MANAGE()
2: while Actors Live do
3: if len(RelayMemory) < minmemory or queue to learner is full then
4: Process episode buffers from actors to replay memory
5: end if
6:
7: if len(RelayMemory) > minmemory and queue to leraner is Empty then
8: Fill queue to learner with transitions from replay memory
9: end if

10: end while
11: end procedure

Algorithm 3 Learner Pseudocode

1: procedure LEARN()
2: while Actors Live do
3: if queue from manager is full then
4: Empty queue to local memory
5: if patition queue from actor is full then
6: Select furthest partition and send to actors
7: end if
8: Qlearn()
9: EElearn()

10: if target network unpdate frequency then
11: Q-taget ← Q-network
12: end if
13: Send networks to actors
14: end if
15: end while
16: end procedure
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