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Abstract:

Thermal cameras are used in various
domains where the vision of RGB cam-
eras is limited. Thermographic imag-
ing enables the visualizations of ob-
jects beyond the visible range, which
enables its use in many applications
like autonomous cars, nightly footage,
military, or surveillance. However, the
high cost of manufacturing this type
of camera limits the spatial resolution
that it can provide. Real-World Super-
Resolution (RWSR) is a topic that aims
to solve this problem by using image
processing techniques that enhance
the quality of a real-world image by re-
constructing lost high-frequency infor-
mation. This work adapts an existing
RWSR framework that is designed to
super-resolve real-world RGB images.
This framework estimates the degra-
dation parameters needed to generate
realistic LR and HR image pairs. The
SR model learns the mapping between
the LR and HR domains using the con-
structed image pairs and applies this
mapping to new LR thermal images.
The experiment results show a clear
improvement in the perceptual qual-
ity, which surpasses the performance
of the current SotA method for ther-
mal image SR.







Preface

This report documents a Master’s thesis at the Master’s Programme in Vision,
Graphis, and Interactive Systems (VGIS) at Aalborg University (AAU). The aim of
this thesis is to investigate the possibility of using RGB-based Real-world image
Super-resolution (RWISR) to achieve real-world thermal image super-resolution.
The thesis starts with chapter Introduction that explains the motivation behind the
project and introduces the initial problem formulation. Chapter Problem Analysis
narrows down the initial problem formulation resulting in a final problem formu-
lation at the end of the chapter. The Theory chapter explores some key concepts
in the image processing field as well as the methodology that was utilized during
the project. The Design and Implementation chapter explains the training details
that were taken into consideration when training the utilized method. The Evalua-
tion and Results chapter talks about the experiments that were carried out during
the work and presents the results gathered from the experiments. The Discussion
chapter discusses the results of the evaluation chapter and introduces some ideas
that could be added to the project to improve its quality. Finally, the Conclusion
chapter summarizes the overall conclusion of the thesis.

The citation style used during this thesis is the IEEE reference style. Meaning
that the author’s names are not always visible, but instead, the source is referred
to using square brackets.

I would like to take this opportunity to thank my supervisors Kamal Nasrollahi
and Andreas Aakerberg for the guidance and the feedback that helped me during
the process of writing this thesis.

Aalborg University, June 3, 2021

Moaaz M. J. Allahham
<mallah16@student.aau.dk>
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Chapter 1

Introduction

We have probably all seen one of those movies, where investigators try to identify
a criminal in very low-quality surveillance footage. The next they usually do is
that they seek the help of an IT specialist that, with the use of some image pro-
cessing tools reconstructs a very enhanced image of the person from that footage.
Some of us might think that this is just a science fiction movie, and the zoom and
enhance technology is not reality. However, this is a topic that has been heavily re-
searched for the past two decades or so and is referred to as Super-resolution (SR).
Super-resolution has been an attractive research topic for many years, and it has
been used in real-life applications like regular video information enhancement,
surveillance, medical diagnosis, satellite, and aerial imaging, and other applica-
tions that require image resolution enhancement [51, 32]. In recent years, thermal
imaging has grown considerably and is being used in various domains where a
typical RGB camera can not get the job done, like nightly footage, surveillance, or
in autonomous cars. However, thermal images generally have some shortcomings
like insufficient details and blurred edges, and most importantly considerably low-
resolution. This makes it too hard to observe the structure and recognize objects
in an image as illustrated in figure 1.1.

Figure 1.1: An illustration of the significant difference in structural details observed in three images
of the same building captured with three different resolutions. Figure from [35].

5



6 Chapter 1. Introduction

However, having a thermal camera that is capable of capturing high-resolution
images is not as affordable as using RGB cameras. This is caused by the high cost
of manufacturing this type of camera. Thermal cameras use a larger sensor due
to the larger individual pixels necessary to capture the infrared light that has an-
other wavelength than the light captured by normal RGB cameras. With a larger
sensor, a larger lens is needed, which drives the price of these cameras very high.
Those lenses are most often made of Germanium, which is an expensive material
that can reflect most of the visible light and passes the infrared light. Therefore,
having a higher sensor size leads to larger lenses that are much more expensive
than the ones used in normal RGB cameras [17]. Even the most expensive thermal
cameras, which can vary from $200.00 to more than $20000.00 [36], still can not
deliver sufficient resolutions. To the best of our knowledge, the highest resolution
that a thermal camera can provide as for today is 1920× 1200 pixels for the [42].
Getting back to the problem, enhancing real images captured by thermal cameras
is therefore important. However, although increasing the resolution of a thermal
image with an image processing algorithm would not compensate for the true in-
formation that is not captured by the camera’s sensor, having an enhanced and
higher resolution image makes it easier to recognize objects and structure in an
image. The efficiency of this process can be improved by taking advantage of com-
puter vision techniques that can assist in enhancing these images. Many methods
were developed to perform image Super-resolution, however, most of these meth-
ods perform poorly when used on real LR images. This is because they follow
the approach of downsampling high-quality images to construct Low-resolution
(LR) and High-resolution (HR) pairs and then they super-resolve the LR image to
match the HR image quality. Such methods fail when given a real-world image as
the degradation process is unknown. Therefore recent studies have been working
on developing methods that would be more robust to previously unseen real-world
images that are acquired directly from cameras with unknown degradation param-
eters. This RWSR issue also applies to the thermal imaging domain, making it an
interesting area to investigate since it has not been widely explored. Hence, the
goal of this project is to explore the state-of-the-Art (SotA) SR algorithms that deal
with RGB images and investigate its usability in the thermal imaging domain, and
explore the possibility of tuning these methods to fit the thermal domain.

1.1 Problem Formulation

Based on the current knowledge about the given problem, the initial problem for-
mulation was formulated as follows:

Can the recent advancements in RGB-based real-world super-resolution be applied to the
thermal image domain with the goal of improving the perceptual quality?



Chapter 2

Problem Analysis

The goal of this chapter is to narrow the initial problem formulation down, to
formulate the final problem formulation. The chapter will include a deeper dive
into the different image processing techniques used to handle the super-resolution
problems, and explore the different related studies that have been done in this
field.

2.1 Traditional VS Deep-Learning Super-resolution

Super-resolution is the process of constructing one or more high-resolution images
from their low-resolution counterpart. This means increasing the resolution of
an image by increasing the number of pixels and enhancing details by enhancing
high-frequency components. But, SR is an ill-posed problem, since there exist
many HR images that correspond to a single LR image. Super-resolution methods
can be classified based on the employed domain (Frequency, Spatial), the number
of the LR images (Single, Multiple), and the actual reconstruction method [32]. In
the Frequency domain, images are transformed into frequency distribution prior to
processing the images. The frequency components of images are split into high-
frequency that correspond to edges, and low-frequency that correspond to smooth
regions. Whereas in the Spatial domain, images are dealt with as matrices.

Traditional methods have been around for decades now, however, these meth-
ods have been outperformed by their deep learning-based counterparts[49]. There
are different traditional SR methods, but the standard and most popular methods
that have been used are:

• Nearest neighbour interpolation: replicates the pixels in the super-resolved
image as it scales up.

• Bilinear interpolation: takes the weighted average of the 4 surrounding pix-
els to calculate its interpolated value.

7



8 Chapter 2. Problem Analysis

• Bicubic interpolation takes the weighted average of the 16 surrounding pix-
els to calculate its interpolated value.

As seen in figure 2.1 it is possible to see differences in the performance between
the mentioned traditional SR methods.

(a) Original. (b) Bicubic. (c) Nearest. (d) Bilinear.

Figure 2.1: An example showing the performance of the most common traditional SR methods.

However, researchers have proposed a wide variety of models that use deep-
learning to estimate the extra information to be added to a LR image to generate
an image with a higher amount of high-frequency details. These models are split
into mainly two categories, supervised SR an unsupervised SR.

Supervised SR approaches focus on training the models using pairs of LR im-
ages and their corresponding HR ones. Those LR-HR image pairs are typically
obtained by synthetically reducing the resolution of the HR image using Matlab Im-
resize function, which applies bicubic interpolation with anti-aliasing on the given
image[49]. This is done because it is physically difficult to obtain a pair of LR-
HR images of the same scene with different resolutions. The SR models are then
trained to reverse the process of descaling the image by trying to reconstruct the
original HR image given the LR one. By doing this, the models learn the rela-
tionship between the LR and HR domains and then use this knowledge to super-
resolve a new given LR image. The supervised-SR approach performs well when
applied to LR images that are synthetically produced using a degradation model
that is similar to the one used during training. However, supervised SR algorithms
perform poorly when applied to real LR images because real images are affected
by external factors that are neglected when synthetically generating LR images,
such as blurring, noise, and compression artefacts[49, 41]. These factors can even
vary between images taken by the same camera, where lighting conditions might
differ. Therefore, the degradation parameters are unknown given real LR images.
This is why researchers are leaning more and more towards unsupervised SR, or
so-called Blind super-resolution, approaches to build algorithms that would po-
tentially be more robust when it comes to real-world images. RWSR falls under
this category, where researchers address this problem in different ways. Some [11,
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41, 30, 14] try to exploit the internal image information by utilizing the similarities
within the same image. Some others[23, 48, 46], try to adapt the HR images’ do-
main by learning its characteristics, like high-frequency information, and apply it
to the super-resolved images to make it more realistic.

2.2 Related work in Real-world Super-resolution

The main focus of this section is to explore the current SotA algorithms within
RWSR.

2.2.1 Zero-shot Methods

In 2017, ZSSR[41] was introduced as the first blind SR algorithm (self-learned-
based) that performed SR on LR real-world images without relying on any prior
image examples or prior training. Instead, ZSSR trains an image-specific CNN us-
ing the recurrence of small patches across different scales within the same image at
test time. This was done by downscaling the test image to smaller versions of itself,
then applying data-augmentation (rotations/flip) to the smaller versions to fulfill
the need of having multiple examples as a training dataset. The image-specific
CNN learns to reconstruct the original LR image using the downscaled examples,
then they finally apply the trained CNN to the original test image to construct the
desired HR output. The overall structure of the ZSSR algorithm can be seen in fig-
ure 2.2. ZSSR outperformed external-based SotA methods in some regions when
tested on images with salient recurrence of information. A drawback of ZSSR is the
fact that the learning process fully depends on the internal information in the test
image, which makes it require thousands of back-propagation gradient updates.
This yields slow testing time as well as poor results in some regions compared to
other external-based methods[44].
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Figure 2.2: The overall structure of the ZSSR algorithm. Figure from [41]

"Meta-Transfer Learning for Zero-Shot Super-Resolution" (MZSR)[44] is an-
other zero-shot algorithm that is heavily inspired by ZSSR. The authors of MZSR
utilize the powerful parts of ZSSR and improve upon it by introducing the concept
of Meta-Transfer learning. Without diving deep into how meta-learning works, the
idea behind it is to make the model adapt fast to new blur kernel scenarios by
adding a meta-training step, then utilize transfer-learning by pre-training the SR
network using a large-scale dataset DIV2K[1]. The combination of Meta-transfer
learning and ZSSR exploits both the internal (the test image) and external (the
DIV2k) information. The main advantage that was introduced in the MZSR work,
is the flexibility and fast running time compared to the ZSSR method, as well as
outperforming other supervised SotA algorithms such as CARN[2] and RCAN[53].
Figure 2.3 shows an overview of the different learning steps involved in the MZSR
method.

Figure 2.3: The overall structure of the MZSR algorithm. Figure from [44]
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Dual Super-resolution (DualSR)[14] is another self-learning-based approach that
addresses the RWSR problem in a similar way to the way it was addressed in the
ZSSR work, where they learn the image-specific LR-HR relations by training their
proposed network at the test time using patches extracted from the test image.
Their proposed network is split into mainly two parts as shown in figure 2.4, the
downsampler which learns the degradation process using a generative adversarial
network(GAN), and an upsampler that learns to super-resolve the LR image. Both
the up-sampler and down-sampler are trained simultaneously by improving each
other using the cycle-consistency loss, the masked interpolation loss, and the ad-
versarial loss.

Figure 2.4: The overall structure of the DualSR algorithm. Figure from [14]

2.2.2 Learned Degradation based Super-resolution

Many supervised SR approaches make the assumption that LR images are a bicu-
bicly downscaled version of their HR counterpart, and that Gaussian noise is usu-
ally used to simulate the sensor noise. However, these approaches fail when tested
on real images because those images were not degraded using ideal degrada-
tion operation (bicubic kernel + Gaussian noise). For this reason, Fritsche et al.
[16] introduced DSGAN(the winner of AIM2019 RWSR challenge[31]), which is a
GAN network that learns to generate the appropriate LR images, which have the
same corruptions as the original HR images. DSGAN inspired Umer et al.[46] to
build a Super-Resolution Residual Convolutional Generative Adversarial Network
(SRresCGAN) that exploits the power of DSGAN by combining it with another
GAN network that super-resolve the degraded images generated by DSGAN. A
full overview of the networks is shown in figure 2.5. The authors proposed their
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work at the NTIRE2020 challenge[31] and were able to achieve results that are
competitive with other SotA methods.

Figure 2.5: The SRresCGAN network architecture that was proposed by [46]. Figure from [46]

Bell-Kligler et al.[5] introduced another realistic degradation method Kernel-
GAN, an image-specific Internal-GAN, which trains solely on the LR test image
at test time and learns its internal distribution of patches. The generator of the
network is trained to produce a lower resolution image such that the network’s
discriminator can not distinguish between the patch distribution of the generated
image and the patch distribution of the original LR image. Ji et al.[23] proposed
their method RealSR, which is divided into two stages. They first use Kernel-
GAN to estimate the degradation from the real data and use it to construct the
LR images, and then they train an SR model based on the constructed data. The
degradation process in the RealSR method consists of two steps, first, they utilize
KernelGAN to build a pool of kernels, and then they extract high-frequency noise
patches from the original real-world image. The noise patches are meant to be
used to compensate for the lost high-frequency information that is lost during the
downsampling process. After having the kernel pool and the noise patches, the
LR images are constructed by downsampling the original image using a randomly
picked kernel, and then apply noise injection using the extracted noise patches. Fi-
nally, they train an SR model that is based on ESRGAN[48], using the constructed
paired data. RealSR method was the winner of the NTIRE 2020 challenge [31],
and by the time of doing this work, RealSR is considered to be the SotA in the
real-world super-resolution field for RGB images. An overview of the degradation
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process that RealSR used to construct the image pairs can be seen in figure 2.6.

Figure 2.6: The RealSR degradation proposed by [23]. Figure from [23]

2.3 Related work in Thermal Real-world Super-resolution

All the methods mentioned in 2.2 are examples of super-resolution methods that
deal with images in the RGB spectrum. However, there are only a few studies that
developed methods for super-resolving LR thermal images. This section will be
about exploring the available thermal SR approaches.

A study was conducted by Cho et al.[8] where they tried to enhance thermal im-
ages by training a CNN using different image spectrums aiming to find the best
representation that would fit the thermal domain. They found that a grayscale
trained network provided the best enhancement. Lee et al.[27] proposed a sim-
ilar CNN-based on enhancement for thermal images, where they evaluated four
RGB-based domains with a residual-learning technique. That improved the en-
hancement in comparison to the previous work by [8]. Rivadeneira et al.[9] was
motivated by the two previously proposed methods, so he proposed Thermal En-
hancement Network (TEN), which was the first CNN-based method to be trained
specifically using thermal dataset unlike the two previous proposals by [27, 8].
TEN was based on the SRCNN model[13] that utilizes the residual net and dense
connections technique that is shown in figure 2.7. TEN was able to outperform
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the previously proposed methods, which was due to training the network using
thermal images instead of RGB-based domains.

Figure 2.7: The overall architecture of the TEN method that was proposed by [9].

Recently, Rivadeneira et al.[36] proposed another thermal SR method that is based
on the well-known CycleGAN[54] architecture. The proposed method was de-
signed specifically for thermal images. Two-way generative-Adversarial-network
(CycleGAN) is a technique that is used to map information from one domain to
another. So the authors of [36] used the CycleGAN network to map information
from the LR domain to the HR domain. They trained their proposed network,
which can be seen in figure 2.8 to perform x2 scale SR following two scenarios,
LR to medium-resolution (MR) and MR to HR. It is worth mentioning that they
trained the network on a dataset that was proposed at the same work, and will be
explained in more detail in section 2.4.

Figure 2.8: The CycleGAN network architecture that was proposed by [36].
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Chudasama et al.[10] proposed another method to super-resolve thermal images
by progressively upscaling the LR test image to obtain the final SR image. They
achieve different upscaling factors (x2,x3, and x4) by applying residual learn-
ing. The TherISuRNet network consists of 4 main modules, low-frequency fea-
ture extraction modules, high-frequency feature extraction modules, second high-
frequency feature extraction modules, and finally an image reconstruction module
that is responsible for reconstructing the final SR image. They measured the perfor-
mance of their proposed method by comparing its performance to the most com-
mon SotA methods [30, 53, 9, 29, 34] and bicubic interpolation, and they were able
to surpass all the other methods when testing on thermal images. An overview
of the entire architecture can be seen in figure 2.9. TherISuRNet was the win-
ning method for the Thermal Image Super-Resolution Challenge PBVS 2020, which
makes the TherISuRNet the SotA method for the thermal image SR domain.

Figure 2.9: The TheISuRNET network architecture that was proposed by [10].

2.4 Datasets Exploration

There is a wide variety of available datasets that consist of RGB images and could
be used for RWSR methods that are designed for RGB images. However, only a
few datasets were built using real-world thermal images. This section shows an
overview of the current benchmark thermal image datasets. It also explores the
possibility of utilizing some of these datasets later in this work for both training
and evaluating the performance of the proposed work.

PBVS[36, 35] This dataset consists of a set of 1021 thermal images, that were ac-
quired using three distinct thermal cameras using three different resolutions, re-
sulting in 3063 thermal images (low-mid-high resolution). The dataset contains a
mixture of indoor and outdoor footage at various lighting conditions at different
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points of time during the day. Table 2.1 shows an overview of the cameras’ pa-
rameters that were used to build this dataset. The cameras were mounted on a
rig while minimizing the distance between them to acquire three identical scene
images.

Image Description Camera Brand Resolution
Low-Resolution Axis Domo P1290 160× 120
Mid-Resolution Axis Q2901-E 320× 240
High-Resolution FC-632O FLIR 640× 512

Table 2.1: This table shows the cameras that were used to collect the PBVS dataset, with their
corrosponding resolutions (Note: The high-resolution images were cropped to 640× 480)[36].

KAIST[20] is an annotated multispectral pedestrian dataset that is mainly used as
a benchmark dataset for pedestrian detection problems. It consists of 95k color-
thermal pairs of urban traffic environment. The dataset was acquired using a
stereo-camera setup that consisted of three main parts, RGB camera (PointGrey
Flea3), thermal camera (FLIR-A35), and beam-splitter hardware that was used to
physically align the footage of the two cameras. The color camera has a resolution
of 640× 480 pixels, where the thermal camera has 320× 256 pixels of resolution,
and both cameras were recording at 20 Hz framerate. As the authors of the dataset
stated in their paper, the data gathering was conducted by mounting the stereo-
camera setup on the roof of a car and roaming the city to capture various traffic
scenes day and night.

FLIR[15] consists of a combination of annotated thermal and non-annotated RGB
images, which were acquired via a thermal and RGB cameras that were mounted
on top of a vehicle. The dataset contains a total of 1̃4.5k annotated thermal images
that have been sampled from short videos. The videos were taken on streets under
clear-sky weather conditions both day and night over a period of 7 months. The
thermal images were acquired using the FLIR Tau2 thermal camera at a resolution
of 640× 512 pixels and a sampling rate of 1-2 images per second (original videos
were captured at 30 frames per second).

2.5 Image Quality Assessment Methods

Image Quality Assessment (IQA) is a simple task that we as humans can accu-
rately perform, at least to some considerable extent. However, this task is not as
simple when it comes to computers due to the lack of perceptual ability that hu-
mans have. This made it challenging for image-processing researchers to assess the
performance of image-processing tasks such as image enhancement, image restora-
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tion, and image quality assessment in general. During the past two decades, few
methods have been developed to fulfill this need. These methods can be split into
mainly two categories, human perception-based subjective evaluation and quality
metrics-based objective evaluation methods[50, 7], which can also be divided into
three: no-reference-based (NIQE, PIQE, BRISQUE), reduced-reference-based and,
fully-referenced based (PSNR, SSIM, LPIPS) methods. As the name suggests, sub-
jective evaluation methods can vary in results based on personal preferences, and
conducting such methods can often be costly and can not be automated. However,
objective-based methods can be more convenient, although different assessment
matrices can give inconsistent results in comparison to other matrices, or when
compared to subjective-based methods. Super-resolution is a field that relies heav-
ily on such quality assessment methods, therefore, for the purpose of this work, we
will be looking at the most common methods that are currently being utilized and
investigate the usability of some of these methods when it comes to the evaluation
phase.

2.5.1 Reference-Based IQA Metrics

Peak-Signal-to-Noise Ratio

Peak-Signal-to-Noise-Ratio (PSNR) is an objective assessment method that is full-
reference metric. It measures the difference between two given images by measur-
ing the ratio between the maximum possible value (255 in our case) and the power
of the noise that affects the quality of a given image. This method relies on having
a set of two images, the processed image and the original image that is used as a
reference. The main idea behind it is that the higher the PSNR is, the closer the
processed image is to the original image[19]. However, this assessment method
does not consider the perceptual quality of the image, and it is very sensitive to
the pixels’ values, as translating the image 1 pixel to any direction can result in a
drastic drop in the PSNR value. Given a test image I and a ground truth image
re f , PSNR is measured in decibel (dB) and calculated as shown in formula 2.1:

PSNR(re f , I) = 20log10(
L√

MSE(re f , I)
) (2.1)

Where MSE(Mean-Squared-Error) is as follows:

MSE(re f , I) =
1

MN

M

∑
i=1

N

∑
j=1

(re f (i, j)− I(i, j))2 (2.2)

Where M,N is the size of the image, and L represents the maximum pixel value
(255 for 8-bit images).
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Structural Similarity Index Measure

Structural Similarity index (SSIM) is a newer image quality assessment method
that is fully-reference-based method. It is based on the combination of three fac-
tors, luminance (l), contrast (c), and structure (s). The first factor, luminance, is a
comparison function that measures the closeness of two images’ mean luminance
(µre f ,µI). The second factor, contrast, is a comparison function that measures the
closeness of two images’ mean contrast (σre f ,σI). The final factor is the structure
comparison function that measures the correlation coefficient between two images
re f and I(σre f ,I). The three factors are defined respectively as:

l(re f , I) =
2µre f µI + C1

µ2
re f + µ2

I + C1
c(re f , I) =

2σre f σI + C2
σ2

re f + σ2
I + C2

s(re f , I) =
σre f ,I + C3
σre f σI + C3

(2.3)
Where C1, C2, and C3 are used to stabilize the division by avoiding null de-

nominator. SSIM takes values in the range [0,1], where a value of 0 means no
correlation between the two images and a value of 1 means that both images are
identical[19]. SSIM is a metric that is less sensitive than PSNR, as it measures the
textural structure of two given images. This makes SSIM a more preferred method
than PSNR, especially in cases where the perceived quality is a key.

Mean Opinion Score

As mentioned before, image quality assessment is split into two main categories,
objective and subjective, where computers can not assess the quality as well as a
human can. For this purpose, subjective methods like mean-opinion-score(MOS)
can be utilized. MOS in general is a numerical measure of human judged overall
quality of an event or experience. This method has been widely utilized within
the image-processing field in cases where other objective measures, such as PSNR
and SSIM, can perform poorly in comparison to the human eye. MOS is expressed
as a single number from 1 to 5 (1-Bad, 2-Poor, 3-Fair, 4-Good, 5-Excellent), that
corresponds to an average opinion score of some observers that are given a set of
images with various distortions/qualities. The observers are usually asked to rate
each image by giving it a score that describes how close

Learned Perceptual Image Patch Similarity

Learned Perceptual Image Patch Similarity (LPIPS) is a full-reference-based learned
metric that was found by Zhang et al.[52]. This metric measures the distance be-
tween two given images by looking at the L2 distance between the reference and
the test images in a deep feature space. LPIPS outperforms the widely used PSNR
and SSIM metrics. Zhang et al. found that deep network activations work well as a
perceptual similarity metric that correlates well with human perceptual judgments.
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The way they discovered that, is that they first created a dataset that contained a
large number of images with had different types of corruption to it. Followed
by that, they picked some off-the-shelf convolutional neural networks, which they
used to classify the images in the created dataset by finding the most similar im-
age pairs (original+corrupted). They found that most of these networks that were
trained in a meaningful manner achieved similar scores to a similar human survey
they conducted. Where they asked the participants had to perform the same task
that the CNNs were asked to do, which was finding the most similar images in the
built dataset. Networks architectures like VGG[43], AlexNet[38], SqueezeNet[21]
provided similar performance and are the most used architectures when using the
LPIPS metric. An illustration showing how the feature space distance is calculated
can be seen in figure 2.10, where it can be seen how x and x0 are fed into CNNs
that create feature stacks. Those features get subtracted and then averaged over
the spatial dimensions, and finally resulting in a single number that represents the
distance between the two input images in the feature space.

Figure 2.10: An illustration showing how LPIPS calculates the distance between two given images x
and x0. Figure from [52].

2.5.2 No-Reference-Based IQA Metrics

Perception based Image Quality Evaluator (PIQE) is a completely blind metric that
does not require a trained model. Instead, it assesses the image quality by estimat-
ing block-wise distortion, by dividing the test image into non-overlapping blocks,
and then it measures the local variance of each block to compute the final quality
score. Natural Image Quality Evaluator (NIQE) is another blind metric that as-
sesses the image quality without knowledge of anticipated distortions or human
opinions of them. Unlike PIQE, NIQE uses a pretrained model that is trained on a
dataset of pristine images. It uses a multivariate Gaussian model to fit quality fea-
tures extracted from images. These features include parameters of the generalized
Gaussian distribution and asymmetric generalized Gaussian distribution that char-
acterize the behavior of image patches. Then the quality of an image is measured
using the distance between the two Gaussian models fitting the evaluated image
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and natural images that the metric was previously trained on. Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) is different from the last two metrics
since it is pretrained on a dataset of images with known distortion parameters.
The problem with this metric is that it can evaluate images that are similar to those
it was pretrained on. Therefore, it is recommended to train a custom BRISQUE
model from a set of quality-aware features, before using it to evaluate test images.

2.6 Performance Overview

After having looked at the current RWSR SotA methods for both RGB and thermal
images SR, it is now time to evaluate the performance of some of these methods
to draw a baseline for which method to be utilized during this project. The classic
way to perform a comparison of SR methods is to usually super-resolve an image
using each method and compare the reconstructed image to the ground truth. This
is usually feasible for the supervised method that relay on image pairs, where the
LR images are usually synthetically degraded, and the SR version of these images
is then compared to the original image. However not as simple when working
with RWSR methods since ground truth (GT) images are unavailable in the case of
RWSR. However, even when having the GT images available, as in the PBVS dataset
2.1, those images were captured using different cameras with different resolutions,
which introduced few challenges. Some of these challenges are misalignment,
the sensor’s intrinsic and extrinsic settings, light conditions, and different possible
factors that may affect the acquired images. This makes it hard to compare SR
images with GT images that were taken using a different camera. Hence, the
performance of each method is evaluated using both reference and non-reference-
based IQA methods. For the reference-based methods, PSNR, SSIM and LPIPS will
be used. Where PIQE, NIQE, and BRISQUE will be used the non-reference-based
methods used to assess the quality of the super-resolved images generated using
each of the SR methods. Figure 2.11 shows a visual comparison of three different
resolution thermal images from the PBVS dataset.
The results shown in the PBVS challenge paper [35] are unfortunately not possible
to be replicated when comparing the RWSR methods. This is because the set of
10 images used for evaluation during the challenge are not available to the public.
Therefore, we will be adapting their evaluation method that is shown in figure
2.12, but the PBVS validation set will be used for testing.
The quantitative comparison in terms of PSNR, SSIM and LPIPS measures of both
the SotA thermal SR method and some of the SotA RGB SR are presented in table
2.2. The RealSR DPED, DF2K, DF2K_JPEG are different pretrained models, which
were provided by the RealSR authors, and are pretrained using datasets that consist
of RGB images. Looking at the quantitative results, it is hard to judge which
method performs best in terms of PSNR, SSIM, and LPIPS, and this is because
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Figure 2.11: A comparison showing the visual differences between images acquired with three reso-
lutions using three distinct cameras of the same scene[35].

these different metrics are not positively correlated. For example, if we compare
the SRrescGAn and the RealSR-DF2K, we can see that each of the methods is best
at one of the metrics. Where RealSR-DF2K is given the best PSNR values, and
SRrescGAN gives the best SSIM and LPIPS values (excluding the TherISuRNet, as
it is considered a baseline for comparison). TherISuRNet is considered to be the
baseline for this comparison since it achieved the SotA performance for thermal
imaging SR according to the results reported in the PBVS challenge paper[35].

PSNR↑ SSIM↑ LPIPS↓ PIQE↓ NIQE↓ BRISQUE↓
Bicubic 20.11 0.70 0.4661 67.39 5.55 57.20

RGB SotA SR methods
RealSR-DPED 18.64 0.51 0.4333 36.10 4.10 29.11
RealSR-DF2K 20.26 0.65 0.4219 22.72 3.54 41.66
RealSR-DF2K_JPEG 20.07 0.64 0.4011 19.34 2.59 20.23
DualSR 18.77 0.59 0.4328 56.48 4.18 43.03
ZSSR+KernelGAN 19.01 0.57 0.4404 60.79 5.71 46.14
SRrescGAN 19.98 0.66 0.3416 30.78 3.78 30.94

Thermal SotA SR method
TherISuRNet 20.10 0.71 0.4273 88.69 5.20 55.34

Table 2.2: The quantitative comparison of the SotA methods in both the RGB and Thermal SR
domains in terms of PSNR, SSIM and LPIPS.

Looking at figure 2.13, it is easier to observe the difference in performance be-
tween the different methods. It is fair to say, that the perceived quality can vary a
lot based on the used method, where some methods, like DualSR and K-ZSSR, en-
hance the noise that originates from the camera used to acquire the Domo images
and result in a negative impact on the overall quality of the SR images by intro-
ducing some hallucination and ghosting artefacts to the image. On the other hand,
some methods, like RealSR-DPED, remove most of the high-frequency information
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Figure 2.12: An illustration of the evaluation process performed during the PBVS challenge[35].

in the image, resulting in over-smoothed images. Looking at both table 2.2, we can
see that the Bicubic method delivered one of the best results in terms of PSNR and
SSIM. However, looking at the rest of the metrics that are driven by the percep-
tual quality, the Bicubic method delivered the worst results in comparison to the
other SotA competing methods. Even though both Bicubic and TherISuRNet yield
high PSNR values, they delivered over-smoothed images that lack high-frequency
details. It is arguably fair to say that RealSR, in general, was one of the best per-
forming methods in terms of visual quality, and quantitative results. Which makes
it the most promising method to utilize in this work, and explore the possibility
of tuning it to deliver better perceptual quality results than the TherISuRNet, and
still maintain good fidelity that would match the target GT images.
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Figure 2.13: Qualitative comparison between the SotA methods in both the RGB and Thermal SR
domains.
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2.7 Summary

In this section, the possibility of using existing SR methods that deal with RGB
images to be used with thermal images, was explored. Challenges when deal-
ing with thermal images super-resolution were identified as well. Moreover, the
TherISuRNet method was considered a baseline during this work, since it achieves
SotA results in the thermal domain. RealSR was chosen as the target method to be
tuned to fit the thermal domain. It was also chosen to use the PBVS dataset since
it is the only dataset that offers image pairs with different naive resolutions of the
same scene, which enables the possibility of assessing the super-resolved images
in comparison to the ground-truth target images.

2.8 Final Problem Formulation

Based on the problem analysis, it was found that recent studies have proposed
powerful deep learning-based algorithms that are able to achieve SotA perfor-
mance on LR images. However, the majority of these algorithms have been de-
veloped to deal with visible RGB images, and their performance has not yet been
explored in the thermal imaging domain. Since a very limited number of RWSR
algorithms were designed specifically for thermal images, it was therefore interest-
ing to investigate how SR algorithms that are designed to work with RGB images
would perform on thermal images. It was found that the performance of Re-
alSR[23] pre-trained on RGB images is comparable with the current SotA thermal
SR method. Based on that, the problem formulation was narrowed down into the
following:

Is it possible to surpass the quantitative and qualitative performance of the SotA thermal
RWSR method by adapting the RealSR method to fit the thermal domain?



Chapter 3

Theory

This chapter will explore the theory behind the RealSR method to understand how
to adapt to the thermal domain with to achieve better performance than the SotA
thermal SR algorithm(TherISuRNet). A brief introduction into Deep-learning and
artificial neural networks will also be introduced, as those topics are necessary for
understanding the RealSR.

3.1 Artificial Neural Networks

Neural networks or so-called Artificial Neural Networks (ANN) is a piece of a
computing system that is built to function like the human brain. The general
concept when ANN was designed to utilize the process of training or learning
rather than using handcrafted rules [12]. The building block of ANNs is called
neuron (figure 3.1), which is designed to take input or multiple from a previous
set of neurons forming a set of layers as seen in figure 3.2. At each neuron, a
weighted sum is calculated by multiplying each input by a weight (w) that specifies
how much impact each input will have on the final network’s output. A bias (b)
is then added to the weighted sum before passing it to an activation function ( f )
that calculates the firing rate of each neuron. Finally, the output (o)of the layer is
calculated as follows:

o = f (
n

∑
i=1

xiwi + b) (3.1)

An activation function is chosen based on the specific problem one is trying to
solve. There exist a number of activation functions, but the 5 most used functions
are presented in table 3.1.
Binary Step: This function is suitable for binary problems, where the function can
output a 0 or 1 based on whether the input value is lower or higher than a specific
threshold.

25
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Figure 3.1: An illustration of a neuron that has 3 inputs x1, x2, x3 associated with 3 weights w1, w2, w3,
activation function f and output o

Input layer

Hidden layer 1 Hidden layer 2

Output layer

Figure 3.2: An example of an artificial neural network with 2 fully connected hidden layers.

Sigmoid: This function outputs values that are in the range [0− 1] and is used in
the case of problems that require predicting a probability, like a multi-class classi-
fication problem.
Softmax: This function’s output is very similar to Sigmoid, except that all resulting
probabilities have to add up to 1, where the sum of Sigmoid’s output can be above
1.
Rectified Linear Unit (ReLU): This function has been used within hidden layers
and is probably the most used activation function. It passes the input values if they
are above zero and rectifies values below 0 thereby forcing them to zero.
Leaky ReLU (LeakyReLU): This function has an identical result when compared
to ReLU except that it outputs a small value for any given input instead of out-
putting zero for all the negative values.

3.1.1 Backpropagation

We mentioned in the previous section that the special part of neural networks is
the ability to train or learn. This is usually done using an optimizer that tells the
network how to adjust its weights to achieve the desired outcome. In a supervised
learning situation, we usually look at the error of the network’s output, by compar-
ing it to the true class of the input. The idea is to backpropagate the error through
the network to calculate the gradient descent (GD)[37], one way of doing it, that
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Activation Function Equation Range

Binary f (x) =
{

0, i f x < 0
1, otherwise

}
{0,1}

Sigmoid f (x) = σ(x) = 1
1+e−x (0,1)

Softmax f (x) = exp(xi)
∑j exp(xj)

(0,1)

ReLU f (x) =
{

0, i f x < 0
x, otherwise

}
(0,−∞)

LeakyReLU f (x) =
{

0.01 ∗ x, i f x < 0
x, otherwise

}
(−∞, ∞)

Table 3.1: The most used activation functions [33].

can then be used to adjust the network to fit the results better. The amount of how
much that should be adjusted each iteration is controlled by different hyperparam-
eters, that can be set before the training starts. However, optimizers are usually
used for this purpose.

3.1.2 Optimiser

The GD, calculated in the backpropagation, is as mentioned used to adjust trainable
parameters in the network towards a correct output. The optimizer updates the
weights by controlling how they are adjusted for each iteration.

For the GD there are typically defined three different categories: Batch-, Stochastic-
and Mini-batch gradient descent. The batch GD usually referred to as GD, com-
putes the derivatives to decide of how weights and biases should be adjusted. The
3 different versions of GD are based on how often these are calculated. In batch
GD it is only done for each epoch, which is not memory efficient. The stochas-
tic version calculates for each data point, where the mini-batch calculates for each
mini-batch. This means that stochastic- and mini-batch GD converges faster and
uses less memory.

Adam [ADAM] is also an optimization algorithm that can be used instead of the
GD. Instead of keeping a constant learning rate, Adam adjusts the learning rate
during the training and keeps a separate learning rate for each parameter. Typically
you would start with a high learning rate and decay it during training as it is
desired to reach global minima. However, there is a risk of getting stuck local
minima, there is therefore a trade-off between high- and low learning rate. It is not
only Adam that uses the adaptive learning rate a method only for this also exists
called learning rate scheduler, which we will explain later.



28 Chapter 3. Theory

3.1.3 Convolutional Neural Networks (CNN)

CNN is a subcategory of artificial neural networks, it takes its name from the
mathematical linear operation between matrices. CNNs consist of multiple layers,
including convolution layers, max-pooling layers, and fully connected layers, and
are used to take an image as an input and assign different weights and biases to
different parts of the image, in which we refer to as features, and then use them to
differentiate one from another[3].

Convolution

Figure 3.3: A simple LeNet[26] that illustrates the different types of layers used in a CNN.

Convolutional Layer

Convolution is a simple operation that is used to filter a given image by extracting
its features using a feature detector resulting in a feature map. Feature maps sum-
marize the presence of specific features in the input image. Generally speaking,
this can be achieved by handcrafting a kernel that can preserve specific features,
like edges. However, convolutional neural networks learn to calculate those fea-
ture detectors in a way that lets them extract feature maps that are important for
the network. Figure 3.4 illustrates how the feature detector is used as a sliding
window to iterate over the image.

1 1 0 0

0 0 1 0

0 0

0 0

0 1 0 0

1 0 1

0 1 0

1 0 1

4 3 4

1 1

1

1

1

1

1 1

001

1

Figure 3.4: An illustration of the convolution operation with a stride step equal to 1.
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Max Pooling Layer

Max pooling is another essential layer that is often used when building a CNN.
This type of layer is used to reduce the size of the previous layer by preserving
the important information and discarding the rest. Max pooling is performed in
a similar way as the convolutional layer, where a sliding window iterates over a
feature map resulting in a new smaller feature map. The amount of movement
between each step of the kernel over the input image is referred to as the stride,
and it is almost always symmetrical in height and width dimensions. For instance,
figure 3.5 illustrate the pooling operation with a stride step equal to 2.

4 6 0

1 2

4 8

1 1 8

1 2

3

5

1

1

2

8

6 5

8

Max Pooling

Figure 3.5: An illustration of the max pooling operation with a stride step equal to 1.

Flattening Layer

As the name suggests, this type of layer is used to flatten a feature map by convert-
ing a matrix with a size of n rows and m columns to a single-dimensional vector
with a size of m× n dimension as shown in figure 3.6. This step is usually used
to prepare the feature maps for the final layer in the network. For instance, the
flattened layer can be connected to a final layer with two nodes that are used for
binary classification.

3.2 RealSR

RealSR[23] is an unsupervised SR pipeline that was the winner of the Real-World
Super-Resolution NTIRE2020 challenge[31]. This method was designed to over-
come the challenges of real-world super-resolution. Different studies tried to arti-
ficially construct blurry and noise-added data with the aim of furtherly enhancing
the robustness of an SR model, however, it was a requirement to have sufficient
prior about blur and noise, which made the application of such methods limited.
Some of the studies that we have explored in section 2.2 addressed some of these
issues in different ways. However, according to the RealSR authors, most of these
methods paid the price by increasing the interference time drastically, which moti-
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Figure 3.6: An illustration of the flatten operation.

vated the RealSR authors to propose their method that aims for explicitly estimat-
ing the blurring kernel and noise from the input images, and use it to construct
realistic image pairs that can be used to train a more robust SR model. The authors
then utilize ESRGAN[48] to generate images that are upscaled with a factor of 4
using the constructed image pairs.

3.2.1 Realistic Degradation using KernelGAN and Noise Injection

In general, KernelGAN is an image-specific Internal-GAN[40] that trains solely on
a given LR image at test time and learns its internal distribution of patches. Its
generator (G) is trained to generate a downscaled version of the given image, such
that its discriminator (D) can not distinguish between the patch-distribution of the
generated image and the patch distribution of the original image. D is trained to
output a heat map, referred to as D-map, indicating for each pixel how likely is its
surrounding patch to be drawn from the original patch-distribution. The loss is the
pixel-wise MSE difference between the output D-map and the label map. Where the
label map is all the ones in the crops extracted from the original image, and all the
zeros in the crops extracted from the downscaled image[5]. Looking at figure3.7, it
is possible to see how the entire pipeline works, and how the D-map looks like.
According to the RealSR authors, the estimated kernel needs to meet the following:

arg min
k
‖(Isrc ∗ k) ↓s −Isrc ↓s‖1 +

∣∣1− Σki,j
∣∣+ ∣∣Σki,j ·mi,j

∣∣+ |1− D((Isrc ∗ k) ↓s)|
(3.2)

Where (Isrc ∗ k) ↓s is a downsampled LR image with kernel k, and (Isrc ∗ k) ↓s is
the same LR image downsampled with the ideal kernel, therefore encouraging the
downsampled image to preserve low-frequency information. The second term is
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Figure 3.7: KernelGAN trains on patches of a single real image, where D tries to distinguish between
patches cropped from the real image and patches of the image generated by G. G learns to fool D by
generating downscaled images that have the same distribution of images as the input real image[5].

to constrain k to sum to 1. The third term is to penalty boundaries of k. The fourth
and last term D is to ensure consistency of the source domain.

To better understand how the kernel degradation process is achieved, let’s as-
sume an LR image is obtained following the degradation method:

ILR = (IHR ∗ k) ↓s +n (3.3)

Where k denotes the kernel used to blur the image, n denotes the noise added to
the image, and s denotes the downscaling factor. Instead of using ideal kernels
(e.g. Bicubic downscaling), RealSR explicitly utilizes KernelGAN to create a pool
of kernels that can be used to construct the LR-HR image pairs.

Architecture

The architecture shown previously in figure 2.6 illustrates how the overall method
takes an input image and outputs a D-map. However, we can see that the GAN net-
work consists of two main parts, the discriminator D and the generator G. Figure
3.8 shows the architecture of the D used in the KernelGAN network.
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Figure 3.8: Convolutional Patch Discriminator: An input crop of size 32× 32 that is convolved with
a 7 × 7 convolutional filter followed by six 1 × 1 convolutions + Spectral normalization + ReLU
activation, except the last hidden layer using Sigmoid for activation, and it outputs a 32× 32 D-map
with pixel values in the range [0,1].

The other part of the KernelGAN network is the generator G that constitutes the
downscaling model. The generator network shown in figure 3.9 consists of 5 hid-
den convolutional layers with 64 channels each and those layers are without non-
linear activation functions. The first 3 filters are 7× 7, 5× 5, 3× 3 and the rest are
1× 1, which results in a receptive field1 of 13× 13.
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Figure 3.9: The downscaling Generator: An input image is convolved through 5 hidden convolu-
tional layers without any activation functions. The output of the generator is a downscaled version
of the input image with a downscaling factor of 2.

1"Receptive field is defined as the region in the input space that a particular CNN’s feature is
looking at (i.e. be affected by)"[18]
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Noise Extraction

In addition to creating the kernel pool, RealSR introduces a simple filtering rule
for extracting noise patches from source images. The idea behind extracting these
noise patches is to inject them into the degraded images (LR) so both HR and LR
have similar noise distribution. The filtering rules used to choose the relevant noise
patch is using the following rule:

σ(ni) < v (3.4)

Where σ(·) denotes the function used to calculate the noise variance, and v is the
max value of variance.
Having created a series of kernels {k1, k2 · · · kl} and a series of noise patches
{n1, n2 · · · nm}, the degradation process is performed as follows:

ILR = (IHR ∗ ki) ↓s +nj, i ∈ 1, 2 · · · l, j ∈ 1, 2 · · ·m (3.5)

Where s denotes the sampling stride. Figure2.6 summarises how the image pairs
are constructed following the workflow explained above. It is also worth mention-
ing that the Clean-up process is a simple method that is used to generate sharper
images that are noise-free by applying a bicubic downsampling operation which
tends to make images sharper. Another point that can be noticed, is that the noise
injection step is not visible in the image-pairs construction pipeline as the noise in-
jection is combined during the degradation training phase. This, according to the
authors, makes the noise more diverse and regularises the SR model to distinguish
content from noise.

3.2.2 Super-Resolution Model

As mentioned in section 2.2.2, RealSR consists of two phases, the first is construct-
ing the realistic image pairs using KernelGAN and the second phase is training the
SR model that is based on ESRGAN with some modification. To understand the
RealSR SR backbone, we need to first understand how ESRGAN work, and then
understand how RealSR adjust the ESRGAN architecture to make it more flexible
to different image sizes.

ESRGAN

ESRGAN[48] stands for Enhanced Super-Resolution Generative Adversarial Net-
works, which is a generative adversarial network that is based on SRGAN. SRGAN
is a GAN network that is capable of generating realistic textures during single-
image SR, where its discriminator aims aim is to make its prediction based on
perceptual quality. However, ESRGAN improves SRGAN by adjusting the SRGAN
architecture where they introduce their Residual-in-Residual Dense Block (RRDB)
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without batch normalization, as well as improving the SRGAN discriminator by
making it judge whether an image is more realistic than another rather than judg-
ing whether an image is real or fake. ESRGAN improvement over SRGAN resulted
in sharper and more visually pleasing results[48] as shown in figure 3.10.

Figure 3.10: Qualitative comparison showing how ESRGAN outperforms SRGAN in sharpness and
details[48].

From the name Enhanced Super-Resolution GAN, we can tell that the archi-
tecture should contain the two main modules, discriminator D and generator G
networks. The G network takes a low-resolution image (LR) as input, and it passes
it through a 2D convolutional layer (Conv1)with small 3×3 kernels and 64 feature
maps. It is then passed through 23 Residual in Residual Dense Block (RRDB). The
image is then passed through another convolutional layer (Conv2) in which its out-
put is summed with the output of the first (Conv1). At this stage, the image gets
upscaled with a factor of 4 by passing it through an upsampling block that consists
of two convolutional layers for reconstruction, with LeakyReLU (LReLU) activation
(α = 0.2) on each layer. After upsampling, the image is passed through another
convolutional layer (Conv3) with LReLU activation (α = 0.2). Finally, the image
is passed through the final convolutional layer (Conv4) that final super-resolved
image. An overview of the G network can be seen in figure 3.11.
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Figure 3.11: Full architecture of the ESRGAN G network, where the upper part is the network that
takes a LR image as input, and generate an HR image (SR).

The other part of the network is the discriminator D, and to be more specific it
is called the Relativistic Discriminator[24]. The ESRGAN authors have chosen to
use this specific discriminator rather than using the standard discriminator used
by the SRGAN author. This is because the relativistic discriminator estimates the
probability that a real image xr is relatively more realistic than a fake one x f . Where
a standard discriminator estimates only whether an image x is natural enough to
be real. Figure 3.12 shows the difference between the relativistic and a standard
discriminator.

Figure 3.12: Difference between standard discriminator D and a relativistic discriminator RaD.

Where D(xr) denotes the standard discriminator and DRa denotes the relativis-
tic discriminator shown in figure 3.13. α is the sigmoid function used to obtain
a probability in the range of [0, 1], and C(x) is the non-transformed discriminator
output
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Figure 3.13: Full architecture of the ESRGAN D network, which takes an input image, and outputs
a probability of whether the image is a real HR image or a SR image.

RealSR adapted the ESRGAN structure and trained it using the constructed
paired data{ILR, IHR}. Several losses were used during the training including:

• Pixel loss L1: or so called Mean Absolute Error (MAE), which measures the
mean absolute pixel difference of all pixels in two given images.

• Perceptual loss Lper: proposed to enhance the visual quality by minimizing
the error in feature space instead of pixel space. It uses the inactive fea-
tures of VGG-19[43] and aims to enhance the visual quality of low-frequency
information like edges.

• Adversarial loss Ladv This loss is used to enhance the texture details to make
the image look more realistic.

The final loss function was the weighted sum of all the above losses as follows:

Ltotal = λ1 · L1 + λper · Lper + λadv · Ladv (3.6)

Where λ1, λper, and λadv are constants used to specify the weight of each of the
losses on the total loss.

PatchGAN Discriminator

The RealSR authors reported that the discriminator (VGG-128) used in the ESR-
GAN may introduce many artefacts, so instead, PatchGAN [22] was used instead
for two reasons. The first reason is that VGG-128 used by ESRGAN limits the size
of the generated image to 128, making multi-scaling training not as simple. The
second reason is that the VGG-128 fixed fully connected layer makes the discrimi-
nator pays more attention to the global features and ignore the local ones. Where
the PatchGAN has a fully convolutional structure that maintains a fixed receptive
field that restricts the discriminator’s attention to the local image patches. The
structure of PatchGAN only penalizes structure at the scale of patches, meaning
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that it tries to classify if each N × N patch in an image is real or fake. The re-
sponses of all patches get averaged afterward forming the final D output to guar-
antee global consistency, then gets fed back to the generator. PatchGAN has a very
simple structure (figure 3.14), as it consists of three hidden convolutional layers,
each of them followed by a batch normalization layer and LeakyReLU is used for
activation.
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Figure 3.14: The architecture of the PatchGAN used by RealSR as a substitute for the ESRGAN’
discriminator.

3.3 Image Registration

Image Registration is the process of overlapping images that could be taken at
different times and from different viewpoints of a scene. The differences between
such images are the result of different imaging conditions[55]. The topic of image
registration is not within the scope of this work, therefore, a brief explanation of
how it was done to serve this work will be explained. Given the two images Ii and
Ire f the process of registering the two images can be divided into 4 main steps that
can be seen in figure 3.15 and are as follows:

• Feature Descriptors: First, distinctive objects, edges, lines intersections, con-
tours, or any key features that can be shared by the two given images (Ii, Ire f )are
extracted. Then descriptors are used to find the similar features between the
two images.

• Feature Matching: This step is about finding the correspondences between
the features found in Ii, and those found in the reference image (Ii) using the
features descriptors.

• Mapping Function: The parameters needed to build a function that can be
used to align the established feature correspondence are computed at this
step.

• Image Transformation: The mapping functions are then used to transform
Ii.

There exist a wide variety of feature detection algorithms, one of which is Ori-
ented FAST and Rotated BRIEF (ORB). ORB was chosen as the feature descriptor
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(a) Features extraction.

(b) Features matching

(c) Features mapping and transformation

Figure 3.15: An illustration showing the steps followed to register two given images.

to be used for the purpose of this work, as it is one of the most standard used
methods nowadays. Based on multiple experiments that were done during this
work, ORB was also proven to perform best in comparison to other popular meth-
ods like SIFT[25], SURF[4], BRISK[28]m and BRIEF[6]. ORB uses the combination
of FAST[47] key point detector and BRIEF descriptor. It uses FAST to extract key
points, then it uses harris corner measure[45] to find top N points among them.



Chapter 4

Design and Implementation

This chapter describes both the design of the system and its implementation pro-
cess. It also goes through the considerations made to achieve the proposed system.

4.0.1 Data Preprocessing

In section 2.7, we chose to use the PBVS dataset during this work. The dataset
has three subsets modules called Domo, Axis and GT with different resolutions that
were reported in table 2.1. For this work, the Axis subset is discarded, and the
Domo & GT subsets are used as the source and target domains respectively. Each
of these subsets includes a total of 951 training images and 50 images for valida-
tion. The reason behind discarding the Axis subset, was because the goal of this
work is to super-resolve a given resolution with an upscaling factor of s = 4 and
later evaluate the performance by comparing it to the ground-truth, which has a
native resolution that matches the SR output images. So the plan was to super-
resolve the input images (Domo validation subset) and compare the output with
the ground truth (GT validation subset). However, one of the problems with the
PBVS dataset is the limited number of images in each subset, which is considered
too little to be used for training a neural network. Therefore, it was decided to use
the augmented version of the PBVS dataset, which was provided by the authors
of the TherISuRNet[10]. The augmentation operations they apply on the original
dataset are horizontal flipping, 180°rotation, and two affine operations. An exam-
ple of these augmented images can be seen in figure 4.1.

4.1 Training Details

This section explains the different modules that RealSR consists of, as well as the
adjustments that were done to achieve the final results. Figure 4.2 shows the system
pipeline, and how the individual modules are connecting.
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(a) Original (b) Affine1 (c) Affine2

(d) 180°Rotation (e) Horizontal flip

Figure 4.1: Examples showing the augmentation operations that were applied on both the Domo
and GT subsets.

4.1.1 Kernel Estimation and Noise Injection

The used methods have been previously explored in section 3.2. However, an
explanation of the implementation will be covered in this section.
The KernelGAN network was trained on a total of 740 images out of the original
Domo subset using the settings shown in table 4.1 resulting in a pool of kernels
that contains 740 kernels. Some of these kernels are shown in figure 4.3.

Parameter Value
Iterations 3000

Learning rate 2e−4

Learning rate decay 0.1 every 750 iterations
Optimizer ADAM(β1 = 0.5, β2 = 0.999)

Table 4.1: The parameters’ values used during the KernelGAN network training for each image.
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Figure 4.3: Few examples showing the different estimated kernels using KernelGAN associated with
their corresponding images from the LR Domo subset.

Noise Collection

The next step was to create a pool of noise patches from the Domo subset (source
domain) and use it during the noise injection step as shown in step 2 in figure
4.2. This was done using a simple rule that was proposed by the RealSR authors
as explained in section 3.2.1 (σ(ni) < v). The main strategy behind choosing the
right noise patch was to extract patches of smooth areas such as walls, sky, or any
area that does not have any patterns that would be confused with noise. After ex-
perimenting with different variance ranges and different patch sizes, the following
values were chosen:

• Patch size = 70× 70

• Max variance value = 70

• Min variance value = 0

It is worth mentioning that those values can be different based on the given im-
ages. Looking at figure 4.4 we can see some noise patches that were extracted using
the above variance range. Another thing to keep in mind is that the noise injection
step was not done simultaneously with the downsampling operation. The noise
injection step was done during the training phase of the SR model, as this makes
the noise more diverse and it regularises the SR model to distinguish between the
noise and the content.

Figure 4.4: Few examples showing the different noise patches that were extracted from the Domo
subset.
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4.1.2 Super-Resolution Model

Step 3 in figure 4.2 is the step where the constructed image pairs are used to train
a SR model. As discussed before in section 3.2.2, ESRGAN is used as the backbone
for training the SR model while replacing its discriminator with the PatchGAN
discriminator. All experiments were done with a scaling factor of ×4 between
the constructed LR and HR images. The mini-batch size was set to 16, where the
size of the cropped HR patches used during the training was set to 128 × 128.
The ESRGAN authors suggested in their paper that the network can benefit from
using a larger patch size, as a larger patch size can help the network capturing
more semantic information. However, using higher mini-batch and patch sizes
was not an option due to the limited resources utilized during this work1. All the
trainings done during this work was split into two stages. For the first training,
the models’ weights were initialized using the PSNR-oriented pretrained RRDB,
and the objective of the network was set to use the pixel loss (L1) only. This was
done to fine-tune the RRDB model to the thermal images, as the RRDB model
was trained on RGB images only as reported in the [48]. The learning rate was
initialized as 1× 10−4 and decayed by a factor of 2 every 5× 103 iteration. This
model was trained for 250 epochs2 and then used as initialization for the next
training. The second training’s objective was changed to be focused towards better
perceptual quality by change the training objective to the loss function in Eq. 3.6
with λ1 = 1× 10−2, λper = 1 and λadv = 5× 10−3. For optimisation, ADAM with
β1 = 0.9, β2 = 0.999.

1All the experiments were performed on a computer with a Ryzen 7 5800X processor @3.8GHz
x16 running on 32GB RAM and an NVIDIA GeForce 3070 with 8GB of memory.

21 epoch = ≈ 300 iterations). The number of iterations is calculated by dividing the total number
of image pairs 4755 on the mini-batch size.
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Figure 4.2: The figure presents an overall overview of the different modules that RealSR consists of,
and how the final super-resolved images are obtained. 1. The Domo subset is used to extract the
blurring kernels and the noise patches from the source domain. 2. The extracted kernels and noise
patches are used to generate realistic low-resolution images (GTLR) that are used to create image
pairs (LR-HR). 3. The image pairs are then used to train an SR model (ESRGAN). 4. The pretrained
SR model is used to super-resolve LR images.





Chapter 5

Evaluation and Results

To evaluate the performance of the adapted RealSR in comparison to the other
methods, different experiments have been carried out. Detailed analyses of the
experiments are presented in this section. The overall evaluation process, which
was adapted from the PBVS challenge1 was done following the pipeline shown in
figure 5.3, which will be explained in details in section 5.1.1.

5.1 Testing

In section 2.6, the challenges that are present with the utilized dataset were ex-
plained. These challenges varied from different camera settings, light conditions,
different sensor noise, resulting in differences in brightness and contrast, and most
importantly the misalignment. When addressing these issues, it was important to
be careful not to manipulate the images in a way that would change the content
of these images. Especially since the evaluation methods used to evaluate the per-
formance of the SR models, and modifying the content of the images will result in
wrong results. However, the only problem to be addressed without modifying the
images was the misalignment and addressing it was considered to be the most im-
portant issue to be fixed before evaluating the different methods. Hence, the first
step before being able to acquire the quantitative results of the trained SR models
was to apply the image registration to align SR images with the GT images. The
ORB detector (explained in section 3.3) with a target number of features N=5000
was used to align the super-resolved images, using the GT validation dataset for
reference. Despite the efforts to achieve the best image alignment possible, it was
observed that the chosen image registration method did not always give the most
satisfactory results, and in some cases, the registration failed. If we look at figure

1The evaluation process according to the PBVS challenge paper is to register the GT image and
use the SR image for reference, but the opposite is done in this work, where the GT image is used as
a reference instead.
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5.1 we can see few examples where the registration was successful. However, other
SR images like those shown in figure 5.2 the registration operation completely
failed to align the two images due to the lack of key points in the input image.

Figure 5.1: Examples of successfully registered SR images, where the magenta and blue colours
indicate the good and bad image matching respectively.

Figure 5.2: Examples showing the failed registration process, where the magenta and blue colours
indicate the good and bad image matching respectively.

To keep the comparison fair and to avoid bias to any of the SR methods, the
failed registration cases were accepted, as the poor registration was considered
to be due to the poor performance of the specific algorithms. Especially that the
same images that were super-resolved using another algorithm had no registration
problems.
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5.1.1 Results

After having the registered sets of images, it was decided to use a combination
of both the reference-based and non-reference-based IQA methods. The reason
for this decision was the imperfect alignment of the super-resolved and ground-
truth images. A method such as PSNR, will penalize the performance in case the
registered image is shifted one pixel in any direction, and we know for sure that
this is most likely the case with our data. Therefore, utilizing non-reference-based
IQA methods would give a better idea about the performance in this context in
terms of image quality. The image quality was evaluated on the central crop (50%)
of both the SR and GT images. This was done to discard the empty areas (black
background) in the registered images as illustrated in figure 5.3.

GT

SR

SR

LR

Register 
To GT

x4

Evaluate

50%

50%

Figure 5.3: The evaluation pipeline used to evaluate the super-resolved LR image in comparison to
the GT.

The quantitative results for the best model we trained, as well as the SotA meth-
ods in terms of the reference and no-reference-based metrics, is shown in table
5.1. The results for the competing methods were obtained by either retraining
the models as the authors of each method suggested, or in case of the methods
like DualSR and ZSSR-KernelGAN training were not required. As DualSR and
ZSSR-KernelGAN are trained during the inference phase. For ESRGAN, we use
the pre-trained weights provided by the authors. Figure 5.4 shows random crops
that were extracted from some of the super-resolved images to get a closer look at
the differences in the visual quality reconstructed by the different SotA as well as
the adapted method. The crops from our model show significant improvement in
the perceptual quality in terms of sharpness and image clarity. It was explained
in section 2.5 that the no-reference-based metrics as well as the LPIPS measure the
perceived image quality unlike the PSNR and SSIM that measure how similar the
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two given images to each other (the SR and GT in our case), which explains the
contrast in the quantitative results.

Backbone PSNR↑ SSIM↑ LPIPS↓ PIQE↓ NIQE↓ BRISQUE↓
Bicubic 20.11 0.700 0.46 67.39 5.55 57.20
DualSR[14] 18.77 0.591 0.43 56.48 4.18 43.03
ZSSR-KernelGAN[5] 19.01 0.572 0.44 60.79 5.71 46.14
ESRGAN[48] 20.18 0.664 0.42 64.34 6.44 55.52
TherISuRNet[10] 20.10 0.719 0.42 88.69 5.20 55.34
RealTISR#4 18.78 0.520 0.37 36.33 3.31 34.31

Table 5.1: Comparison between the best performing model we trained and the SotA methods that
have been tested. The best values are in bold text.

5.2 Ablation Study

In this work, the goal was to surpass the performance of TherISuRNet by adapt-
ing the RealSR pipeline to fit the thermal domain. As we have seen in table 5.1,
RealTISR surpassed the performance of TherISuRNet in terms of perceptual qual-
ity metrics. To understand the reason behind the superiority of RealTISR, extra
experiments were needed.

• If we revise the differences between the two methodologies, we can see that
the two methods use different degradation techniques. Where RealTISR uses
realistic noise injection and kernel estimation, and TherISuRNet uses Gaus-
sian noise and bicubic downsampling, which are factors that can affect the
performance. To get an understanding of the influence of each of these factors
on the final performance, several scenarios were considered. We alternate be-
tween the two degradation techniques, as well as trying to enable and disable
the noise injection and the perceptual loss. Regarding the perceptual loss, it
was explained in section 4.1.2 how the models were trained with two stages
by first setting the objective loss of the network to be PSNR oriented to tune
the pretrained RRDB model provided by the ESRGAN authors. Then the net-
work’s loss function was set to Eq.3.6 to let the SR model focus on generating
images with better perceptual quality.

• The first experiment was about checking the influence of the degradation
technique on the models that we trained. However, this experiment is about
testing the effect of the degradation technique on the TherISuRNet. This was
done to determine whether the difference in performance was a result of the
different degradation techniques or due to the different SR backbones. The
experiment was about training the TherISuRNet using the image pairs that
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were constructed using the realistic degradation pipeline. The results of this
experiment are visible in figure 5.4 where we can see how the sharpness of the
images generated by TherISuRNet increased significantly when we trained
using the realistically degraded image pairs, which shows the downside of
training a model using ideal downsampling operations like bicubic interpola-
tion. The models trained using the realistically degraded image pairs became
more robust to new unseen images.

Figure 5.5 contains image crops that were obtained from the different models
that we trained while conducting the ablation Study, and the quantitative results
for those models are reported in table 5.2.

Backbone D
Initialisation

Model
Noise Injection PSNR↑ SSIM↑ LPIPS↓ PIQE↓ NIQE↓ BRISQUE↓

Bicubic - - No 20.11 0.700 0.46 67.39 5.55 57.20
TherISuRNet SD - No 20.10 0.719 0.42 88.69 5.20 55.34
TherISuRNet RD - No 19.06 0.640 0.44 85.82 5.72 53.88
RealTISR#1 SD RRDB Yes 19.71 0.718 0.46 89.81 6.41 55.24
RealTISR#2 SD RealTISR#1 Yes 19.63 0.714 0.40 51.31 3.86 51.17
RealTISR#3 RD RRDB Yes 19.17 0.670 0.42 85.89 5.35 53.14
RealTISR#4 RD RealTISR#3 Yes 18.78 0.520 0.37 36.33 3.31 34.31
RealTISR#5 RD RRDB No 19.24 0.636 0.58 84.59 5.85 51.21
RealTISR#6 RD RealTISR#5 No 17.65 0.397 0.58 26.30 3.90 35.34

Table 5.2: Comparison between the different training scenarios that have been tested. The best values
are in bold text. (D) stands for degradation, where (SD) and (RD) stand for synthetic degradation
and realistic degradation respectively.
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(a) Bicubic.

(b) DualSR.

(c) ZSSRKernelGAN.

(d) ESRGAN perceptual quality oriented pretrained model.

(e) TherISuRNet trained using synthetically degraded image pairs.

(f) RealTISR#4.

(g) GT.

Figure 5.4: Qualitative comparison of SotA methods for x4 SR of LR images from the Domo valida-
tion subset.
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(a) TherISuRNet trained using synthetically degraded image pairs.

(b) TherISuRNet trained using realistically degraded image pairs.

(c) RealTISR#1.

(d) RealTISR#2.

(e) RealTISR#3.

(f) RealTISR#4.

(g) RealTISR#5.

(h) RealTISR#6.

(i) GT.

Figure 5.5: An overview of all the trained models that were shown in table 5.2.





Chapter 6

Discussion

The following sections discuss the results obtained during the evaluation chapter
5, and some optimizations that could be added to the adapted method to achieve
better performance.

Based on the results reported in section 5.1.1, it was uncovered how the proposed
RealTISR was able to achieve SotA results in terms of perceptual quality. The pro-
posed method delivers images with sharper edges,a more defined image structure,
a balanced level of noise, and not over-smoothed images. Since images that are
super-resolved using some competing methods like ZSSR+KernelGAN and Du-
alSR suffered from high amount of noise that had a very negative impact on the
perceived image quality.

After conducting the experiments, it became clear how PSNR and SSIM metrics
do not correlate with the perceptual quality of an image. Hence, choosing the
best-performing model based on these two metrics, as done at the beginning of
this work, should be reconsidered. Another observation was that high PSNR and
SSIM values correlate with blurry images that lack high-frequency details. This
observation is illustrated in figure 5.5 where it is possible to see that the most
blurry reconstructed images were generated with the models that achieved the
highest PSNR and SSIM values (e.g. TherISuRNet(SD), RealTISR#1, RealTISR#2,
and most importantly the bicubically interpolated images). All the mentioned
models were trained using the synthetically degraded image pairs, which explains
one of the reasons achieved high PSNR and SSIM values in the first place. A
challenging problem that was faced during this work was related to the utilized
dataset. The Domo and GT subsets were captured using different cameras, which
introduced a couple of problems, the first being the misalignment issue. However,
another issue that adds to the overall low PSNR and SSIM values obtained during
this work is the brightness and contrast gap between the two subsets. Since these
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two metrics measure the absolute difference between images [39].

6.1 Improvements

We explained in section 2.5 the reason behind choosing each of the IQA metrics
to be utilized in this work when evaluating the performance of each model that
was tested during this work. We have mentioned as well, how no-reference-based
methods as well as the LPIPS metrics, were designed and trained on RGB images.
To the best of our knowledge, there are no IQA metrics that were designed specif-
ically for evaluating thermal images, which made it a tough decision to select the
best overall performing model out of both the SotA and the proposed RealTISR.
Instead, we chose to evaluate the models based on the qualitative results, where
the image quality was judged by how close the reconstructed images were to the
ground-truth images. The downside of this choice is the subjectivity of our evalua-
tion, and to account for that, it would have been more valid to utilize the MOS and
MOR metrics. This generalizes the amount of subjectivity on how super-resolved
images are perceived.

6.2 Future Work

This section discusses some ideas and additions that can be added to the overall
solution, which might improve the quality of the reconstructed images.

In the last chapter, we mentioned the challenges that were faced working with the
PBVS dataset, which was mainly the misalignment, brightness, and contrast be-
tween the Domo and GT subsets. One way to account for these challenges is to
pre-register the two subsets and use them directly as image pairs for training the
RealSR method. This would introduce the model to both domains, encouraging the
model to become better at mapping images from the Domo domain to the GT. In
case of succeeding with integrating this into the RealSR pipeline, it would replace
the need of using the realistic degradation pipeline.

Another idea that is still related to the alignment issue is to investigate the possi-
bility of integrating an alignment module in the RealSR SR model, which would
make the method more flexible and robust to new data that is not perfectly aligned.

The current IQA metrics utilized during this work are not designed to work specif-
ically with thermal images. So, finding a method that would measure thermal
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images more accurately can probably give a better understanding of how to evalu-
ate the thermal image SR methods.





Chapter 7

Conclusion

In this work, we investigated the possibility of adapting RGB based SotA RWSR
methods to fit the thermal imaging domain. The goal was to achieve a higher
perceptual quality that would surpass the performance of TherISuRNet, which is
the SotA thermal super-resolution method. The final problem statement was:

Is it possible to surpass the quantitative and qualitative performance of the SotA thermal
RWSR method by adapting the RealSR method and tuning it to fit the thermal domain?

Based on that, we utilized the RealSR pipeline for this matter. We trained the
mentioned method using a dataset that consists of multiple subsets of thermal
images taken of the same scene, but with different image resolutions. and we were
able to partially reconstruct images that have a better perceptual quality than those
reconstructed using TherISuRNet.

In the evaluation phase, we were able to achieve quantitative results that did not
fully surpass the thermal SotA results. However, the reconstructed images were
sharper and more enhanced, which was considered satisfactory. Especially that it
was found during the work that not all the utilized IQA matrices were suitable, at
least not for this type of images.

With that said, we find our results promising, as it is an initial step towards build-
ing a solution that would surpass the SotA thermal super-resolution methods both
quantitatively and qualitatively. Section 6.1 introduces few ideas that can be taken
into consideration to improve the quality of this work. The next chapter will ex-
plain few new ideas that can be a potential step towards a better thermal super-
resolution method.
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