
Master Thesis (30 ECTS) 
 

Predicting Human Running Kinematics from Joint Angles 
Measured with Stretch Sensors 

 

Written by: 

Lasse Kristoffer Taidal, 20165685 

Niclas Hornbøll Rasmussen, 20163820 

Øjvind Fredsgård Larsen, 20190723 

 

Supervisor: 

John Rasmussen, Professor, Aalborg University 

 

 

 

 

4th semester, Sports Technology 

Aalborg University 

Department of Health Science and Technology 

June 2021 

 

 

2021 June 1



Predicting Human Running Kinematics from Joint
Angles Measured with Stretch Sensors

Lasse Kristoffer Taidal, Niclas Hornbøll Rasmussen & Øjvind Fredsgård Larsen

In collaboration with LEAP Technology ApS
4th semester Sports Technology, Aalborg University

We investigated LEAP Technology’s stretch sensor’s ability to measure joint angles in run-
ning in realistic conditions and the potential to generate a human running model from the
data. From a database of 285 running trials, cross validation was utilized to identify relevant
joint angles and their ability to provide input for Anybody Technology’s running model. Us-
ing three stretch sensors, ankle and knee joint angles were measured and compared to Xsens
MVN Link measurements. Stretch sensor kinematic data of one stride cycle were converted
into Fourier series with 11 coefficients. Based on basic data (BD) and converted joint angles
we sought to predict three running styles represented by 13 important kinematic variables. We
found the relative prediction error (RPE) using BD and joint angle data from the knee stretch
sensor to be 69.0% across 13 variables representing lower body extremities, posture and arms
while RPE was 57.4% using BD and stretch sensor joint angle data from a posteriorly placed
ankle sensor. Using only BD, RPE was 67.3%. In conclusion, based on 13 kinematic mea-
sures important for running, using a stretch sensor placed posteriorly on the ankle measuring
the joint angle provided better predictions from the human running model when combining
the data with BD than using only BD. However, the predictions are not sufficiently accurate.

0 INTRODUCTION

Public health is often mentioned in the context of phys-
ical activity with its health benefits including notable sur-
vival advantages and reduced risk of age-related disabil-
ities [1]. Running is a way to incorporate physical activ-
ity into everyday routines and cardiovascular exercise is a
factor in preventing lifestyle illnesses which cause a socio-
economic burden [2, 3]. However, in a meta-analysis, An-
dersson et al. [4], estimated that 79% of recreational run-
ners experience annual running-related injuries (RRI) in
the lower extremities [4]. The economical cost of RRI in
the Netherlands was estimated by Hespanhol et al. [2] to
the total cost of C173.72 per injury with the direct cost of
health care treatment and the indirect cost of absenteeism
from paid work [2]. Furthermore, it was found that runners
tend to quit running after multiple RRI leading to absence
of the health-related benefits [1, 5]. RRI etiology is well in-
vestigated but results are ambiguous with no single direct
cause identified [2, 3, 4, 6, 7, 8, 9].

The biomechanical influence on RRI is not fully under-
stood. It is established that an accumulated weekly running
distance >65 km per week increases the risk of RRI signif-
icantly [4, 8], indicating a connection between cumulative
load and injury frequency, while stride length and cadence
has an ambiguous impact on RRI with no overall signifi-

cant connection when not associated with other parameters
[6, 9]. Investigations on the influence of foot strike pat-
tern on RRI are inconclusive, since studies were carried
out retrospectively [4, 5]. However, previous studies have
not been able to exclude the biomechanics of running as
a contributor to RRI. Andersson et al. [4] point out that a
combination of the listed parameters contributes to RRI,
and therefore a holistic perspective on running biomechan-
ics is necessary. Therefore, it is still relevant to investigate
the kinematics of running.

The current gold standard of estimating running kine-
matics is via optical motion-capture-systems in dedicated
laboratory environments. However, it is expensive and in-
convenient to collect data in laboratory environments and
the accessibility for the general sports enthusiast is mini-
mal [10, 11]. A parametric running model [12] was devel-
oped from running data collected with an optical motion-
capture system. Data were then imported to The Any-
body Modeling System (Anybody Technology A/S, Aal-
borg, Denmark) and converted to Fourier series consisting
of 11 coefficients [12, 13]. The running model can via prin-
cipal component analysis (PCA) and quadratic optimiza-
tion predict a running style if some parameters are known
in advance [12]. These parameters can be measured by dif-
ferent wearable devices to enhance the precision of the run-
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ning model. This will make it possible for everyone to get
an estimate of their biomechanics during running.

Mobile biofeedback has been made more accessible by
incorporating wearable technology into everyday routines
[14]. Wearables allow monitoring the impact of different
terrain and running biomechanics [10]. Inertial measure-
ment units (IMU) are used in sports wearables for perfor-
mance monitoring, but also shows potential for injury mon-
itoring. However, to measure joint angles with this tech-
nology, multiple IMU are required, unlike LEAP Technol-
ogy’s stretch sensor [15].

LEAP Technology ApS have developed a wearable
stretch sensor which measures capacitance and has poten-
tial as a motion capture device [16]. The stretch sensor en-
ables possibilities of measuring joint angles as input for
generating the running model along with anthropometric
measurements, running cadence, running speed and age.
Tatora et al. [17] suggested using stretch sensors as wear-
ables for monitoring joint angles. A worst-case root mean
square error (RMSE) of 4° was found when monitoring
knee and ankle movement [17].

The possibility to generate a running model and predict
running style with parameters known in advance combined
with the opportunity to incorporate a user-friendly wear-
able motion capture device is appealing. Therefore, the
purpose of this study was to investigate LEAP Technol-
ogy’s stretch sensor’s ability to measure joint angles in a
real-world environment in relation to generating a human
running model.

1 Method

1.1 Identifying relevant joints for measurement
with stretch sensors

The statistical running model was based on data from
79 subjects (30 females, 49 males) and consisted of 285
running trials spread out on all subjects. The dataset con-
tained anthropometric measures, information about run-
ning cadence and velocity for each trial and 1188 Fourier
coefficients associated with 108 kinematic measures such
as joint angles and accelerations of different parts of the
body. To evaluate the precision of the predictions from the
running model, cross validation was utilized. The valida-
tion set consisted of the trials from one subject at a time
whereas the training set consisted of the remaining trials
from the remaining subjects. To identify relevant joint an-
gles as input for the running model when predicting run-
ning style, cross validation was done 11 times. Basic data
(BD) consisting of running speed, angular stride frequency
(ω), body height, body weight, body mass index (BMI),
gender and age were given as input for every cross valida-
tion. Furthermore, six joint angles were given as input in
different combinations. The joint angles were: Hip-, knee-
and ankle flexion in the sagittal plane for both left and right
leg cf. table 1.

Subsequently, the relative prediction error (RPE) for
each kinematic parameter was calculated as follows:

PEi,l =
∫ 2π

ωi

0
|FSorig,i,l − FSpred,i,l |

RPE(%)l =

n
∑

i=1

PEi,l∫ 2π
ω

0 |FSorig,i,l |

n
· 100%

(1)

where PEi, l is the prediction error for trial i and kinematic
parameter l, ω is the angular stride frequency for trial i,
FSorig,i,l is the Fourier series representing the original kine-
matic data for trial i and kinematic parameter l, FSpred,i,l is
the Fourier series representing the predicted kinematic data
for trial i and kinematic parameter l and n is the number of
trials.

The RPE for each kinematic parameter was further
investigated across three categories; category 1: Lower
extremities, category 2: Posture, category 3: Arms, cf.
Appendix 1. This enabled transparency to which the input
combinations of joint angles estimated different body re-
gions. The cross validation formed the basis of choosing
the joint angles to measure with stretch sensors.

Table 1: Cross validation across three categories (Cat.)
using different joint angles as input for the running model.
Cat. 1 = Lower extremities, Cat. 2 = Posture, Cat. 3 =
Arms, All = Full body, RPE = Relative prediction error
(%), R = Right, BD = Basic data.

RPE (%) Cat. 1 Cat. 2 Cat. 3 All
Basic data 42.2 54.7 66.3 53.7
Hips+BD 38.8 54.8 72.3 53.6
Knees+BD 39.4 54.7 70.6 53.8
Ankles+BD 39.8 57.2 70.4 55.4
Hips Knees Ankles+BD 38.7 62.3 84.0 60.2
R Hip Knee Ankle+BD 37.1 57.1 72.7 54.9
R Hip Knee+BD 38.3 54.5 69.6 53.1
R Hip Ankle+BD 43.2 56.5 60.9 53.0
R Knee Ankle+BD 43.5 56.5 61.1 53.1
R Knee+BD 38.7 53.5 66.9 52.4
R Ankle+BD 39.1 54.7 66.4 53.0

1.2 Data collection

Running kinematic data of three healthy male subjects
were collected. All were recreational runners. Subject in-
formation is presented in table 2. The number of partici-
pants was affected by the Covid-19 situation of the time of
data collection, 2021 February-June.
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Table 2: Demographics for participating subjects.

Subject 1 Subject 2 Subject 3
Gender Male Male Male
Age 26 years 25 years 25 years
Height 189 cm 179 cm 187 cm
Weight 90 kg 80 kg 75 kg

Prior to running trials, each subject was equipped with
Xsens MVN Link Lycra suit (full body, 17 IMU) and three
LEAP Technology stretch sensors connected to an elec-
tronic hardware device, which streamed the signal via blue-
tooth, cf. figure 1. For measuring ankle joint angles, two
stretch sensors were used. Dimensions: length of 220 mm
of which the stretchable zone was 100 mm, width of 20
mm and thickness of 0.4 mm. For measuring knee joint an-
gles, a custom made stretch sensor was used. Dimensions:
length of 320 mm, of which the stretchable zone was 200
mm, width of 20 mm and thickness of 0.4 mm. A stretch
of 100% of the stretchable zone was allowed. The hip joint
was excluded due to complications with sensor attachment
and individual soft tissue artifacts.

Fig. 1: Attachment of stretch sensors and a subject wearing
Xsens MVN Link.

The knee joint sensor (K) was placed on the anterior side
of the right knee joint, one end on the tibial tuberosity and
the other end on the thigh, to ensure that the sensor covered
the entire knee joint. The other stretch sensors were placed
on the right ankle joint, one anteriorly and one posteriorly.
The anterior ankle joint sensor (AA) was placed with one
end on the area above the navicular bone and the other
end on the shin. The posterior ankle joint sensor (PA) was
placed with one end on the inferior calcaneus and the other
end on the calf. K was attached with the subject standing
in an upright position with the knee fully extended. AA
and PA were attached when the ankle was fully dorsiflexed
and plantar flexed, respectively. When attached, all sensors
were pre-stretched to ensure no slack.

Subsequently, the subject performed a short self-
organized warm-up followed by a calibration procedure
for both Xsens and the stretch sensors. To calibrate Xsens
all recommended anthropometrics were measured and
Npose+walking was used for calibration [18]. Calibra-
tion of the stretch sensors was performed using Xsens for
measuring joint angles in different positions. Two cali-
bration files were recorded for both the stretch sensors
and Xsens, one for the knee and one for the ankle. For
the knee, the subject was instructed to stand in a position
with the knee fully extended and then change the knee
angle 6-10 times separated by two second intervals. The
procedure for the knee was repeated for the ankle starting
with the ankle fully plantar flexed and the foot on the
ground. Each subject then performed six trials divided into
three running styles; 1) Low knee flexion (LF), 2) High
knee flexion (HF) and 3) Forefoot running (FF), cf. figure
2. The trials were recorded during steady state on a flat,
straight asphalt road in an urban environment. A running
distance of 70 m was recorded. The subjects were free to
choose their running speeds. Data were collected using
MVN Analyze Pro 2021.0 and LEAP Technology Sensor
Electronics Software. Kinematics were recorded with a
sampling frequency of 240 Hz for Xsens and 250 Hz for
the stretch sensors.

Fig. 2: Test protocol. AA = Anterior ankle joint sensor, PA
= Posterior ankle joint sensor, K = Knee joint sensor, LF =
Low knee flexion, HF = High knee flexion, FF = Forefoot
running.

1.3 Data processing

1.3.1 Initial processing of running kinematics

Xsens data were HD-processed, which included filtering
of the data, and joint angles were exported as .xlsx files
through Xsens’ software, MVN Analyze Pro 2021.0 [19].
Stretch sensor data were saved as .txt files. All data were
imported to MatLab (2021a, The MathWorks Inc, Mas-
sachusetts, USA). In MatLab, stretch sensor data were fil-
tered using a fourth order low-pass bi-directional butter-
worth filter with a cut-off frequency of 15 Hz [20]. Stretch
sensor data were then resampled to 240 Hz in order to time
normalize data.

To convert stretch sensor output from capacitance to
joint angles the calibration files were utilized. For each of
the joint angles measured during calibration, a mean of the
central one second period, of the two second period where
the position was held, was calculated for both the joint an-
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gles measured using Xsens and the capacitance measured
using the stretch sensors. A second order polynomial was
then fitted to the calibration dataset with joint angles as
the dependent variable and capacitance as the independent
variable. The quadratic function for the second order poly-
nomial was then utilized to convert the stretch sensor data
from capacitance to joint angles. This procedure was done
for each sensor measurement on each subject resulting in
nine different quadratic functions. Coefficients of determi-
nation (R2), RMSEs and maximum absolute differences
(MAD) between LEAP and Xsens were calculated for all
three sensor measurements for the calibration files. Subse-
quently, shared start- and end points for both measurement
methods were manually investigated for each trial and used
as reference points for synchronization. From each trial a
typical stride cycle was manually selected. The stride cy-
cle represented the period from right heel strike to right
heel strike. This period was identified using MVN Analyze
Pro. RMSE was calculated for the typical stride cycle for
all running styles. RMSE was used to determine which an-
kle sensor showed the most precise results. Only the ankle
sensor with the most precise results was subject to further
analysis.

The stretch sensor data for the period of the typical stride
cycle was converted to Fourier series using the curve fitting
application in MatLab. Each Fourier series consisted of 11
Fourier coefficients and ω was determined from the time
of the stride cycle [13].

1.3.2 Prediction using running model

The Fourier coefficients were used as input in the run-
ning model [12]. The output from the running model was
used as input in The AnyBody Modeling System to gen-
erate predicted full body kinematics. If the running model
predicted unrealistic full body kinematics, fewer Fourier
coefficients were given as input in the running model until
realistic full body kinematics were present, based on vi-
sual feedback from The AnyBody Modeling System. To
compute the actual full body kinematics, Xsens data were
exported as Biovision Hierarchy (BVH) files and imported
in The AnyBody Modeling System. 13 variables were cho-
sen to evaluate the predicted running kinematics across the
two measurement methods. Variables were flexion for an-
kle, hip, knee, elbow, and shoulder for both right and left
side, relative rotation between pelvis and thorax, relative
lateral bending between pelvis and thorax, and relative ex-
tension between pelvis and thorax. The 13 variables repre-
sented the three categories previously described, cf. section
1.1.

2 Results

2.1 Cross validation

Table 1 presents results from the cross validation. When
excluding the hip joint, the running model made the best
overall predictions of running style using right knee joint +
BD with a RPE of 52.4%, whereas ankles + BD predicted
with a RPE of 55.4%, being the worst prediction. RPE for
category 1 was 38.7% for right knee + BD and 39.1% for

right ankle + BD as the two best inputs. Using BD, RPE
for category 1 was 42.2% and for all parameters 53.7%.

2.2 Calibration

The second order polynomial fit showed R2-values rang-
ing from 0.981 to 0.999. All R2-values are listed in table
3. Figure 3 illustrates capacitance converted to joint an-
gles compared to the Xsens measurements for subject 3.
RMSE(MAD) for the three sensor placements across all
subjects ranged from 0.68° (1.35°) to 2.99° (10.10°), cf.
table 4.

Table 3: R2-values across calibrations files for all three
subjects. K = Knee joint sensor, PA = Posterior ankle joint
sensor, AA = Anterior ankle joint sensor.

R2-values Subject 1 Subject 2 Subject 3
K 0.995 0.992 0.998
PA 0.999 0.992 0.996
AA 0.996 0.996 0.981

Table 4: Root mean square error (RMSE) and maximum
absolute difference (MAD) for all calibration files. K =
Knee joint sensor, PA = Posterior ankle joint sensor, AA
= Anterior ankle joint sensor.

RMSE(MAD)
(°)

Subject 1 Subject 2 Subject 3

K 2.38 (5.66) 2.99 (10.10) 1.15 (5.33)
PA 1.05 (3.95) 1.15 (4.17) 1.17 (3.33)
AA 1.09 (4.13) 0.68 (1.35) 2.67 (8.07)

2.3 Kinematic measures

Kinematic output for subject 3 collected with the stretch
sensors and Xsens is illustrated in figure 4. Remaining
subject kinematics are presented in Appendix 2. RMSE for
all three sensors across running styles are listed in table 5.
RMSE for K averaged 11.5°, for PA 7.3° and for AA 8.7°.
For K RMSE ranged from 8.7° to 14.7° for LF and HF,
respectively. RMSE ranged from 6.8° to 7.6° for PA for FF
and LF/HF, respectively. RMSE ranged from 7.9° to 9.5°
for AA for LF and HF, respectively. PA had lower RMSE
for all types of running compared to AA.

2.4 Conversion to Fourier series

The transition of kinematic data from time series to
Fourier series is illustrated in figure 5 and shows related
R2-values for PA and K in table 6. R2-values for Fourier
series conversion ranged from 0.980 to 0.996 for subject 1,
from 0.979 to 0.999 for subject 2 and from 0.971 to 0.995
for subject 3.
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(a) Calibration for AA, dorsiflexion. Subject 3.

(b) Calibration for PA, dorsiflexion. Subject 3.

(c) Calibration for K, flexion. Subject 3

Fig. 3: Calibration files. AA = Anterior ankle joint sensor,
PA = Posterior ankle joint sensor, K = Knee joint sensor.
Subject 3.

2.5 Running model predictions

Table 7 presents RPEs for the 13 kinematic variables,
listed in section 1.3.2, for all three running styles individu-
ally and combined. For combined running styles the mean
RPE for all 13 variables was 57.4% for prediction using PA
+ BD, 69.0% for prediction using K + BD and 67.3% for
prediction using only BD. For all running styles, predic-
tions using PA showed lower RPE than predictions using
K. Figure 6 illustrates the kinematics during one stride cy-
cle for the actual running style, predictions using K + BD,
predictions using PA + BD and predictions using only BD.

Table 5: Root mean square error (RMSE) across running
styles for all three sensors. K = Knee joint sensor, PA =
Posterior ankle joint sensor, AA = Anterior ankle joint sen-
sor

RMSE (°) LF HF FF All
K 8.7 14.7 11.1 11.5
PA 7.6 7.6 6.8 7.3
AA 7.9 9.5 8.1 8.7

Table 6: R2-values across Fourier series conversions for
all three subjects. K = Knee joint sensor, PA = Posterior
ankle joint sensor, LF = Low knee flexion, HF = High knee
flexion, FF = Forefoot running.

R2-values Subject 1 Subject 2 Subject 3
K LF 0.994 0.999 0.993
PA LF 0.980 0.993 0.971
K HF 0.996 0.996 0.995
PA HF 0.985 0.986 0.976
K FF 0.995 0.998 0.995
PA FF 0.987 0.979 0.987

3 Discussion

The aim of this study was to investigate LEAP Technol-
ogy’s stretch sensor’s ability to measure joint angles in a
real-world environment in relation to generating a human
running model. The findings of the current study were that
RPE using K + BD was 69.0% across 13 variables rep-
resenting lower body extremities, posture and arms while
RPE was 57.4% using PA + BD. Using only BD, RPE
was 67.3%, cf. table 7. This shows that using PA + BD
reduced the RPE by 9.9 percentage points, while using K
+ BD increased the RPE by 1.7 percentage points. This in-
dicates that the use of K + BD in the constellation of this
study was not beneficial for generating the human running
model, while PA + BD was beneficial, when looking only
at the 13 variables selected in the current study.

3.1 The relevance of joint angle input in the
running model

When studying table 1 it is clear that RPE for all com-
binations of input were above 50% which means that there
was a large discrepancy between the predictions from the
running model and the actual running style. Furthermore,
it is interesting that a greater amount of input in the run-
ning model, e.g. hip-, knee- and ankle flexion for both sides
combined with BD (RPE = 60.2%), did not provide better
predictions in general. These findings emphasize the im-
portance of the input provided to the running model. How-
ever, combining BD with certain joint angles did provide
better predictions than using only BD. In this study, 10 dif-
ferent joint angle combinations were investigated of which
six combinations provided better overall predictions. As
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Fig. 4: Joint angles histories from subject 3, for all three running styles from stretch sensors (LEAP) and Xsens over a
period of 3.5 seconds. Remaining subject kinematics are presented in Appendix 2. LF = Low knee flexion, HF = High knee
flexion, FF = Forefoot running, PA = Posterior ankle joint sensor, AA = Anterior ankle joint sensor.

Fig. 5: Kinematic data and the corresponding Fourier se-
ries with 11 coefficients for posterior ankle plantar flexion.

mentioned in section 2.1, the right knee + BD provided the
best overall predictions with a RPE of 52.4% being 1.3 per-
centage points better than using only BD (RPE = 53.7%).
When focusing on category 1 the prediction was 3.5 per-
centage points better, cf. table 1.

These predictions were not particularly good. However,
considering the number of subjects (79) and trials (285)
in the running model it becomes clear that the running
model was based on a limited amount of data. Increas-
ing the number of subjects and the number of trials would
most likely provide better predictions. Therefore, the RPE
would decrease when increasing the amount of data and the
relevance of providing joint angle histories in the running
model would presumably increase. Furthermore, kinematic
input from other wearables could in combination with joint
angle histories provide better predictions. If the wearable
could measure kinematics related to either posture of the

2021 June 7



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6: Running model predictions for selected variables from the left side and pelvis-thorax using different input options
plotted against Xsens. Subject 3, high knee flexion, is used for illustration. Remaining data for subject 3 can be found in
Appendix 3.
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Table 7: Relative prediction error, individually predicted using PA, K, or BD as input for the running model. RPE =
Relative prediction error, LF = Low knee flexion, HF = High knee flexion, FF = Forefoot running, PA = Posterior ankle
joint sensor, K = Knee joint sensor, BD = Basic data, PT = Pelvis-Thorax, EX = Extension, LB = Lateral bending, ROT=
Rotation, F = Flexion, R = Right, L = Left.

RPE (%)
LF

BD+PA
LF

BD+K
LF
BD

HF
BD+PA

HF
BD+K

HF
BD

FF
BD+PA

FF
BD+K

FF
BD

All
BD+PA

All
BD+K

All
BD

PT EX 79.5 99.4 69.0 35.4 43.5 50.3 54.9 72.0 68.9 56.6 71.6 62.7
PT LB 101.6 129.4 153.4 153.3 133.4 148.8 139.4 160.2 147.6 131.5 141.0 149.9
PT ROT 108.5 113.5 99.8 55.2 46.8 53.4 39.1 69.2 29.3 67.6 76.5 60.8
R Shoulder F 88.3 131.9 123.7 63.3 116.1 82.8 76.6 79.5 74.8 76.1 109.2 93.7
R Elbow F 41.6 30.6 35.2 28.7 25.9 24.6 29.9 29.5 26.6 33.4 28.7 28.8
R Hip F 57.1 52.7 56.3 31.0 51.4 48.3 42.3 43.7 45.0 43.5 49.3 49.9
R Knee F 17.0 17.4 22.7 19.7 24.0 18.1 23.1 19.2 12.5 19.9 20.2 17.8
R Ankle F 53.4 80.4 105.7 60.7 101.6 103.5 103.7 110.2 114.3 72.6 97.4 107.8
L Shoulder F 99.7 159.7 155.0 87.5 101.3 85.1 84.8 99.6 92.4 90.6 119.2 110.8
L Elbow F 30.8 20.9 27.1 22.2 15.9 18.9 16.9 14.6 13.8 23.3 17.1 19.9
L Hip F 60.7 49.8 59.1 35.7 47.5 55.4 44.0 45.1 54.0 46.8 47.5 56.2
L Knee F 15.2 21.0 23.2 20.5 24.9 20.7 24.2 22.3 17.0 19.9 22.7 20.3
L Ankle F 47.9 87.8 103.2 56.2 101.9 94.7 89.0 100.2 90.6 64.4 96.6 96.2
Mean RPE 61.6 76.3 79.5 51.5 64.2 61.9 59.1 66.6 60.5 57.4 69.0 67.3

upper body or arms, it would probably be beneficial since
the prediction of these categories have RPEs above aver-
age.

3.2 Cross validation and predictions using
stretch sensor data

108 kinematic measures were evaluated during cross
validation, while only 13 kinematic measures were eval-
uated from the stretch sensor data. Therefore, RPEs in
table 1 cannot be compared directly to RPEs in table 7.
However the 13 kinematic measures represented important
kinematic parameters for the three categories used in the
cross validation. Therefore, it is reasonable to expect the
same ranking of the predictions. When comparing the rank-
ings of the predictions they do not match. From the cross
validation, right knee + BD provided the best predictions
followed by right ankle + BD and then BD. The ranking us-
ing stretch sensor input was right ankle + BD followed by
BD and then right knee + BD. Most likely, this discrepancy
existed because the joint angles measured with the stretch
sensors did not match the gold standard. It will be further
discussed how the stretch sensors performed in relation to
measurement of joint angles.

3.3 Calibration

Figure 3 illustrates the joint angle histories from the
calibration process which visually reflects the results ob-
served in table 3. All nine calibration files both AA, PA
and K performed great R2-values (R2 > 0.9), which cre-
ated a good foundation for translating capacitance mea-
sures to joint angles. However, figure 3(a) indicates no-
ticeable differences between measurement methods. This

can be a result of interference with the shoe tongue, which
could prevent AA from shortening and thereby influence
the quadratic function and hence the accuracy of AA. This
observation is reflected in table 4, where the RMSE(MAD)
of AA (2.67°(8.07°)) was the highest compared to PA
(1.17°(3.33°)) and K (1.15°(5.33°)) for subject 3.

Figure 4(a-c) show the knee flexion measured with
Xsens and K for the three different running styles. For all
running styles it can be observed that peak flexion for K
was underestimated compared to Xsens and that the flexion
during toe-off was overestimated. These differences could
be caused by soft tissue artifacts. The sensor was attached
directly on the skin using tape and velcro fasteners. This
caused the sensor to pull in the skin when stretched. Dur-
ing quasi-static calibration the sensor stretch was constant,
hence the stretch of the skin was constant. When changing
to dynamic motion the stretch changed since the knee flex-
ion changed constantly. Both the skin and the stretch sen-
sor have visco-elastic properties which means that when
stretching the material it does not return to its original posi-
tion in the same way as it was stretched [21]. This could ex-
plain some of the differences between Xsens and K. There-
fore, using a more advanced way of converting capacitance
to joint angles could yield better results.

3.4 Sources of interference

Table 5 shows RMSE across running styles for all three
sensors. When comparing AA to PA, all RMSE-values for
AA were larger than all RMSE-values for PA. When look-
ing at figure 4(d-i) it can also be observed that a larger
discrepancy, between the two measurement methods, was
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present for AA compared to PA. Based on that information
AA was not further analysed.

Heel strike for both PA LF and PA HF seem to have been
affected by external factors, cf. figure 4(d,e). It seems rea-
sonable that this discrepancy was caused by the heel cap
of the shoe, extending the stretch sensor causing an ele-
vation of capacitance for every heel strike. This theory is
supported when observing PA FF, cf. figure 4(f). PA FF
do not seem to have been influenced by the same eleva-
tion when landing. However, PA seemed able to reliably
distinguish between LF/HF and FF. To fully investigate the
stretch sensor’s struggle of measuring heel strike, a bare-
footed run might provide nuanced information.

Despite obvious differences between Xsens data and
stretch sensor data, it cannot be rejected that BD and data
from stretch sensor can provide better predictions than us-
ing only BD. Both K and PA showed patterns similar to
Xsens, cf. figure 4, hence some of the information given
to the running model will be correct. Therefore, it was de-
cided to make predictions with the stretch sensor data to
test this assumption.

3.5 Predicting using stretch sensor data

The conversion from time series data to Fourier series
is seen in figure 5 and table 6. These illustrate the conve-
nience of translating joint angle output into Fourier series.
It is fair to state that the conversion to Fourier series using
11 coefficients was successful with R2-values between
0.971 and 0.999, cf. table 6. This provided a valid foun-
dation in the further assessment of the usability of stretch
sensor data in the running model. However, the running
model produced unrealistic full body kinematics. In figure
4 it can be observed that the measurement from the stretch
sensors were not completely correct. Providing the model
with erroneous joint angle histories resulted in unrealistic
full body kinematics. It was chosen to reduce the number
of Fourier coefficients, given as input in the running model,
until realistic full body kinematics were present based on
visual feedback from The AnyBody Modeling System.
Reducing the number of coefficients given to the model
allowed it to predict the remaining coefficients, meaning
that the main features of the joint angle history were given
as input and that the model predicted the features which
the stretch sensor did not measure correctly. No trials
needed less then five Fourier coefficients based on stretch
sensor conversions. By doing this, this study followed the
suggestions of using 11 Fourier coefficients to accurately
capture joint angles [13], but varied the amount of coeffi-
cients that were based on stretch sensor conversions and
coefficients predicted by the running model. Whether this
created running model predictions of better or worse qual-
ity is uncertain, but it allowed running model predictions
using PA + BD as input to predict with lower RPE than
BD, cf. table 7.

3.6 Conclusion

In conclusion, the LEAP Technology stretch sensor did
not, in this setup, have the ability to correctly measure right
knee- and right ankle joint angles but showed similar pat-
terns in joint angles histories, when compared to Xsens
MVN Link. However, using a stretch sensor placed posteri-
orly on the ankle measuring the joint angle provided better
predictions from the human running model when combin-
ing the data with BD than using only BD based on 13 kine-
matic measures important for running.

In the current setup, using joint angles measured with the
stretch sensors as input in the running model, the predic-
tions are not sufficiently accurate for estimating trial spe-
cific biomechanics. It is worth noting, that RPE for the hu-
man running model with perfectly measured joint angles
was above 50%, cf. table 1, meaning that further develop-
ment of the human running model is needed to produce
more accurate predictions.

3.7 Future studies

To gain further knowledge of which variables are
needed, as input in the human running model to obtain
precise predictions, a cross validation study combining
various inputs would be useful. This knowledge could give
rise to new wearables measuring the variables identified
as being the best input. The LEAP Technology stretch
sensor could also be used to measure other joint angles,
e.g. the elbow, if these measures would provide better
input. Furthermore, it would be interesting if other more
advanced calibration methods or implementation of the
stretch sensor in smart textile would provide more precise
joint angle measurements during dynamic motion such as
running.
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