
Summary This thesis presents a way to decide the synthesis problem for a
given Game Labeled Kripke Structure and a negation-free CTL formula. By
restricting the logic to CTL−, we are furthermore able to synthesize all winning
strategies. Finally, we show how to extract a winning strategy. We do this in 4
steps: first, we reduce the synthesis problem to computing the minimum fixed-
point on a dependency graph, then we convert that dependency graph to a
meta-dependency graph, then we construct the most permissive strategy from
the meta-dependency graph, and finally, we extract a strategy from the most
permissive strategy.

We reduce the synthesis problem for Game Labeled Kripke Structures and
negation-free CTL formulae to computing the minimum fixed-point on depen-
dency graphs by giving encoding rules for all possible variations of CTL formulae.
After defining the encoding rules, we can construct a dependency graph from a
Game Labeled Kripke Structure GS and a CTL formula ϕ by starting with the
pair consisting of the initial state in GS and ϕ. On this constructed dependency
graph, we can compute the minimum fixed-point assignment in linear time.

Calculating the minimum fixed-point of this first dependency graph is not
enough to determine if there exists a strategy or not. The first dependency graph
in itself does not have the capabilities to determine whether or not it contains
a strategy conflict. To accommodate this, we transform the dependency graph
into disjunctive normal form by grouping configurations into clauses. Since we
group configurations into meta-configurations, these resulting graphs are aptly
named Meta-dependency graphs. With some minor fixes to the resulting meta-
dependency graph, we can determine whether or not a meta-configuration re-
quires a strategy conflict to propagate one and reject those configurations. Re-
jecting these meta-configurations, along with some other minor changes, we can
determine whether or not a strategy exists for a Game Labeled Kripke Structures
with a negation-free CTL formula.

We construct a most Permissive strategy (MPS) by presenting a synthesis
algorithm, such that given an MDG as input, constructs the MPS for a particular
Computationtreelogic(CTL)/CTL− formula together with a Game Labelled
Kripke Structure (GLKS) GS. This step alone only returns a strategy automaton
that contains all winning strategies. We extract a strategy from the MPS. We
call this strategy a deterministic instance of the MPS. This is done by using a
technique known as alternating reachability.

Finally, we present PetriGAAL, a tool that implements all algorithms in the
framework mentioned above. In addition, PetriGAAL is also able to represent
all steps in the process graphically.
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Abstract. We investigate the Synthesis Problem in a time-branching
setting and show that it is PSPACE-hard. We encode a GLKS together
with a negation-free CTL formula as a labeled dependency graph, then
calculate the minimum fixed-point. This method is successful in deciding
problems like equivalence checking and model checking. However, since
synthesis in a time-branching setting is not compositional in the structure
of the formula, this method alone is not enough. We solve the Synthesis
Problem by translating the resulting labeled dependency graph into a
Meta dependency graph, which is in disjunctive normal form. To find a
strategy, we first construct the most permissive strategy, a sound and
complete family of strategies (all strategies in the family are winning
strategies and all winning strategies are in the family). Next, we show
how to extract a strategy from the most permissive instance. Finally, we
implement all algorithms in the tool PetriGAAL, along with support for
visualizing all graphical structures contained herein.

1 Introduction

In computer science, formal verification has the distinct role of ensuring that a
system accommodates a given system specification [3]. Given a system modelM
and a system specification ϕ, formally we say that M |= ϕ whenever the model
M satisfies the specification ϕ. We use property logic, such as LTL, CTL, or ATL
[3] [2] to describe the systems behavior and modeling languages, such as Petri
Nets and Kripke Structures [19] [20], to represent the systems model. There are
several approaches with regards to formal verification, these approaches can be
seen as verification problems.

We consider the two formal verification problems, namely Synthesis Decision
Problem and the Synthesis problem. The Synthesis Decision Problem, states:
given a specification ϕ and system model M , does there exist a strategy σ such
that M |= ϕ? Where the Synthesis problem extends the Synthesis Decision
Problem, by not only asking whether there exists a σ such that M |= ϕ, but
seeks to finding this strategy.

When reasoning about system models, we consider them as either being open
or closed. The distinction between these terms is that an open system’s behavior
is determined by the interaction between the system and its environment, over
which the system has no control over, while the state of the system solely decides
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the behavior of a closed system. When examining open systems, we can define
the interaction between the system and its environment as an adversarial two-
player game. The system’s role is to achieve its objective (satisfying a property),
where the environment tries its best to destroy the system’s efforts to do so [16].

The notion that synthesis of open systems correlates to the objective of con-
structing a winning strategy in a game between a system and its environment was
first introduced in [16]. Since then, extensive work has been done with regards
to synthesis of open systems.

In [10], Kaufmann et al. investigate both the model checking problem and
the synthesis problem by presenting a recursive modal logic with semantics over
nonnegative multi-weighted extension of Kripke structures, which they present in
a game-theoretic setting. They tackled synthesizing strategies in branching time,
which is problematic since synthesis in branching time is not compositional in the
structure of the formula. They solved this difficulty by introducing a translation
that transforms the weighted annotated formulas into disjunctive normal form.
They mapped the synthesis problem to the problem of calculating the maximal
fixed-point assignment of a dependency graph. Their solution shows that the
model checking problem is EXPTIME-complete, and the synthesis problem is
2-EXPTIME and NEXPTIME-hard, in size of the Kripke Structure.

In [12], Kupferman et al. worked with the robust-model-checking problem,
which entails that a model M robustly satisfies a property ψ if and only if for
every open system M ′, that acts as an environment of M , satisfies ψ. The sys-
tem models were modeled as non-deterministic Moore machines, where system
properties were specified by the use of the Branching time logics CTL, CTL∗ [3]
and µ-calculus [11]. They show that by using alternating tree automata that the
robust model checking problem for CTL and µ-calculus is EXPTIME-complete,
and for CTL∗ is 2EXPTIME-complete. Interestingly, they separated the time
branching logic formulas into three categories: existential, universal, and a mix-
ture of both. They demonstrated that these classes have different sensitivity
to the robustness requirement. They show that formulas that are not mixed
(Universal and Existential) the robust model checking problem is insensitive to
non-deterministic environments.

Strategies in game theory and controller synthesis are often irrevocable. This
entails that a controller can only commit to a single strategy for a given formula,
in contract to revocable strategies which do not have this restriction (ATL uses
revocable strategies) [1]. In [1], Ågotnes et al. study alternative variants of ATL
where they consider using irrevocable strategies in contrast to the conventional
revocable strategies in standard ATL.

Our Contribution. We present a framework, which aims to solve the Synthesis
Decision Problem and the Synthesis Problem in a branching-time setting. We
check the satisfiability for a given a negation-free CTL formula and a Game
Labelled Kripke Structure by encoding them as labeled dependency graphs where
we calculate the minimum-fixed point. This technique is based on the work
in [13]. However, in a time-branching synthesis setting, this is only an over-
approximation. This approach only gives definitive answers when a strategy does
not exist (the formula does not hold). This problem arises from the fact that
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synthesis in a branching-time setting is not compositional in the structure of the
formula [10].

s2

s0 s1

s3

Sell Rod

Throw Rod Away

Go Fish

Catch Fish

Give Up
Fishing

Fig. 1: A GLKS representing a fishing trip

Consider the the example in Figure 1, where we have a system, representing a
fishing trip, together with the negation-free CTL formula ϕ = (AF s2)∧(AF s1).
The reader should note that given a GLKS, controller actions are depicted with
solid lines, and environmental actions are depicted with dashed lines. For the
formula to hold, we cannot sell the rod and then go fishing, as we do not have
any rod to fish with. However if we evaluate the sub-formulas independently
(AF s2 and AF s1), it is trivial to see that both formulas have a strategy, hence
the entire formula ϕ should hold. However, this is not the case because the
sequence for which the actions are taken matters. If we were to perform the
action "Sell Rod" before taking action "Go Fish," the formula would intuitively
never hold, as we have reached a deadlock, state s2, before satisfying the entire
formula. For the formula to hold, we must first take action "Go Fish," satisfying
the right sub-formula and subsequently take action "Sell Rod," which satisfies
the left sub-formula.

We tackle this problem by converting the labeled dependency graphs into
so-called Meta dependency graphs, which are in disjunctive normal form. These
Meta dependency graphs can handle the problem as mentioned earlier. However,
this solution only solves the Synthesis Decision Problem, that is, does there exist
a strategy. To solve the Synthesis Problem we introduce a restricted version of
negation-free CTL, called CTL−, and two synthesis algorithms. The first algo-
rithm transforms a given Meta dependency graph into the most permissive strat-
egy (strategy allowing all winning behavior). The second algorithm transforms
the most permissive strategy into an instance of the most permissive strategy.

2 Preliminaries

In this section, we are going to introduce the formalisms and specification lan-
guage which will serve as a foundation for the rest of the paper. The transition
system on which we build upon throughout the article is a mixture between
labelled transition systems and Kripke structures, called Labelled Kripke Struc-
ture.
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Definition 1 (Labelled Kripke Structure). A Labelled Kripke Structure
(LKS) is a 6-tuple KS = (S, s0, Act,→, AP ,L) where

– S is a set of states,
– s0 is the initial state,
– Act is a finite set of actions,
– →⊆ S×Act×S is a deterministic transition relation, such that if (s, α, s′) ∈→

and (s, α, s′′) ∈→ then s′ = s′′,
– AP is a set of atomic propositions, and
– L : S → 2AP is a labelling function.

An LKS extends the Kripke structures found in [20], with the notion of
labelled transitions, while reducing the set of initial states to a single initial state.
We write path s α−→ s′ whenever (s, α, s′) ∈→, where s, s′ ∈ S and α ∈ Act. The
set of enabled actions in s ∈ S is given by en(s) = {α ∈ Act | ∃s ∈ S . s

α−→ s′}.
A state s is called a terminal state, if en(s) = ∅.

A run in an LKS is a finite or infinite sequence of paths, written π = s0
α0−→

s1
α1−→ s2 . . . , such that si

αi−→ si+1 for all positions i ≥ 0. A run can be concate-
nated with a path such that if π = s0

α0−→ s1
α1−→ . . .

αm−1−−−−→ sm and sm
αm−−→ sm+1

then π ◦ sm
αm−−→ sm+1 = s0

α0−→ s1
α1−→ . . .

αm−1−−−−→ sm
αm−−→ sm+1.

If a run is either infinite or the last state in the run is a terminal state then
it is called maximal. We write πi to denote the i’th state of the run and let Π(s)
denote the set of all runs starting from a state s ∈ S, such that for all π ∈ Π(s)
we have that π0 = s. The sets Πmax(s) and Πfin(s) are similarly defined as the
set of all maximal and finite runs respectively starting from s. Let Π be the set
of all runs, regardless of cardinality or starting state.

We define a function last : Π → S ∪ {⊥} that takes a run as input and returns
the last state of the run if the run is finite and ⊥ otherwise. Let len : Πfin → N0

be a function that given a run returns the total number of states in the run.
Having defined the foundational formalism, we next define the specification

language, which will express the properties of an LKS. We will use the well-
known branching-time logic CTL without negation.

Definition 2 (CTL). We define the set of CTL state formulae Ψ over the set
of atomic propositions AP as follows:

ψ ::= true | α | a | ¬ψ1

where α ∈ Act and a ∈ AP . The set of CTL path formulae ϕ ∈ Φ consists of the
form:

ϕ ::= ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | E ρ | Aρ
ρ ::= X ϕ1 | ϕ1 U ϕ2

where ϕ1 and ϕ2 are CTL formulae. We derive the connectives AF ϕ1 and EF ϕ1

the usual way.
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Definition 3 (Satisfaction Relation). Let KS = (S, s0, Act,→, AP ,L) be
a Labelled Kripke Structure and let s ∈ S be a state in KS. The satisfaction
relation for a formula ϕ ∈ Φ in s is defined as follows:

s |= true

s |= α iff α ∈ en(s)
s |= a iff a ∈ L(a)
s |= ¬ψ iff s 6|= ϕ

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= Eρ iff ∃π ∈ Πmax(s) . π |= ρ

s |= Aρ iff ∀π ∈ Πmax(s) . π |= ρ

For a run π, the satisfaction relation |= for path formulae is defined by:

π |= Xϕ iff π1 |= ϕ

π |= ϕ1Uϕ2 iff ∃i ∈ N0 . πi |= ϕ2 ∧ ∀(0 ≤ j < i) . πj |= ϕ1

Given an KS = (S, s0, Act,→, AP ,L) and a CTL formula ϕ, we write KS |=
ϕ iff s0 |= ϕ. Later we will make use of a restrictive version of CTL which we
call CTL−. In CTL− we regard all formulas which contain both the conjunctive
boolean connective (∧) and the existential path quantifier (E) as invalid. For
example, a formula (EF s1) ∧ (AG α) will be considered invalid.

Since LKSs do not have any notion of an environment, it becomes challeng-
ing describing open-systems using LKSs. Therefore, in the next section, we will
extend LKSs to a gamed setting by introducing a notion of an environment.

3 Game-Theoretic Framework

We extend LKS into a game setting by partitioning the set of actions into con-
trollable and uncontrollable actions, representing a system and its environment
respectively.

Definition 4 (Game Labelled Kripke Structure). A GLKS is a 7-tuple
GS = (S, s0, Act1, Act2,→, AP ,L), where (S, s0, Act1 ] Act2,→, AP ,L) is an
LKS.

We call the controller and the environment for players, each with their own set
of actions, controllable and uncontrollable, respectively. These sets are denoted
Act1 and Act2 for controllable and uncontrollable actions, respectively. These
sets are defined by partitioning the actions into two disjoint sets Act = Act1 ∪
Act2. In a given state in a GLKS, the enabled function en returns the enabled
actions for all players, but since each player has their own set of actions, we
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require functions that produce the enabled actions for a single player. These
functions are en1 and en2 for the controller and the environment, respectively.

Determining whether an open system adheres to a specification or not can be
interpreted as an adversarial game between the controller and its environment.
The environment does everything in its power to prohibit the controller from
achieving its goal (satisfying the specification), and we say that the controller has
a winning strategy if the controller can enforce a winning behaviour, regardless
of what the environment does [16]. We define a strategy as a function that, given
the complete history as a run leading up to the current state, the strategy returns
the controller’s action of choice. Formally we define strategies as follows:

Definition 5 (Strategy). A controller strategy for a GLKS GS = (S, s0, Act1,
Act2,→, AP ,L) is a function σ : Πfin(s0)→ Act1 ∪{⊥} that maps a run to an
action or the special symbol ⊥ such that

– σ(π) = α for some α ∈ en1(last(π)), or
– σ(π) = ⊥ if en1(last(π)) = ∅

The game between these players is helped along by enforced progression.
From Definition 5, if the controller can perform any action, the controller must
suggest an action and not the ⊥ action, forcing the controller to progress. As for
the environment, it can wait for the controller to perform an action, if the con-
troller can; otherwise, the environment must also suggest an action to perform.
When determining the next action, the game first queries the environment for
what action to perform, which the environment may defer to the controller. The
key is that the environment cannot choose to do nothing.

Example 1. Consider the GLKS depicted in Figure 2a with L(s) = {s} and
the formula ϕ = AF s3. A strategy for this GLKS and formula, is to perform
α1 in s0, followed by α4 in s1. This is formalized by the strategy σ, where
σ(s0) = α1 and σ(s0

α1−→ s1) = α4. However this is not a winning strategy
because the environment can loop forever in state s1 by choosing to perform α2

repeatedly, effectively prohibiting the controller from ever reaching s3. However,
a winning strategy for the GLKS and formula, would be to perform α6 in s0,
and if the environment instead chooses to perform α0, then the controller can
simply perform α5 in s2.

Next, we define the GLKS semantics as an unfolding, where we unfold a
GLKS GS into an Labelled Kripke Structure KS, with regards to a controllable
strategy σ. Formally we define the unfolding as follows:

Definition 6 (Unfolding GLKS into LKS). Given a GLKS GS = (S, s0,
Act1, Act2,→, AP ,L) and a strategy σ we define an LKS unfold(GS, σ) = (S′, s0,
Act1 ∪Act2,→′, AP ,L′) where:

– S′ = Πfin(s0),
– L′(π) = L(last(π)), and
– →′=

{(
π, α, (π ◦ (last(π) α−→ s))

) ∣∣ π ∈ S′ and α ∈ en2(last(π)) ∪ {σ(π)}}.
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Note that each state of unfold(GS, σ) is now symbolized by a finite run, as such
that the labelling function is updated to return the set of labels given by the
labelling function of the GS on the last state of the run.

Example 2. Consider the example, in Figure 2b, which illustrates the unfolding
of the GLKS on Figure 2a with the winning strategy from Example 1. By observ-
ing the resulting LKS in Figure 2b, we see that the LKS tree has two branches,
for which both ensure the formula ϕ = AF s3 holds. Most interestingly we see
that the right branch, demonstrates how the controller can recover when the
environment forces the system to state s2, for which the strategy instructs the
controller to take action α5, bringing the system to state s3.

s0

s1 s2

s3

α0α1

α4 α5

α2 α3α6

(a) A GLKS

(s0)

( s0
α6−−→ s3) (s0

α0−−→ s2)

(s0
α0−−→ s2

α5−−→ s3)

(b) Unfolding of the winning strategy

Fig. 2: A GLKS and a winning strategy automata for the formula ϕ = AF s3

Given a model and a formula, determining whether or not a winning strategy
exists and how such a strategy looks is the basis for the Synthesis Decision
Problem and the Synthesis Problem.

Definition 7 (Synthesis Decision Problem). Given a GLKS GS = (S, s0,
Act1, Act2,→, AP ,L) and a CTL ϕ, the synthesis decision problem asks if there
is a strategy σ such that unfold(GS, σ) |= ϕ.

Definition 8 (Synthesis Problem). Given a Game Labelled Kripke Structure
GS = (S, s0, Act1, Act2,→, AP ,L) and a CTL ϕ, the synthesis problem is to find
a strategy σ such that unfold(GS, σ) |= ϕ.

3.1 The Complexity of the Synthesis Decision Problem

It is clear that solving the synthesis problem in turn also solves the synthesis
decision problem. Therefore, in this section, we will demonstrate the complexity
of the synthesis problem only. The method for which we proof the complexity is
by reduction to QSAT.

Definition 9 (QSAT). Let X = {x1, x2, x3, . . . , xn} be a non-empty set of
boolean variables. A literal is either a variable, or a negated variable, i.e. either
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variable x, or negated variable ¬x. Let L ⊆ X ∪ {¬x | x ∈ X} be the set of
literals. A clause is a set of three literals. Let C ⊆ 2L

3

be a set of clauses. Then,
the QSAT problem is deciding the truth value of the equation:

∃x1 . ∀x2 . ∃x3 . . . .∀xn .
( ∧

c∈C

∨
l∈c

l
)

where n is even and xi ∈ X.

Theorem 1 (QSAT Complexity [21]). QSAT is PSPACE-complete.

Theorem 2. For a GLKS and a CTL formula the synthesis problem is PSPACE-
hard.

Proof. The proof is by reduction to QSAT. Let X = {x1, x2, . . . , xn} be the
variables of a QSAT problem and let C be the set of clauses. Notice that for
every variable xi with an odd index we have ∃xi, and for every variable xj with
an even index, we have ∀xj . We can think of a QSAT formula as a game with two
players, one for the existential quantifiers and one for the universal quantifiers.
The players then alternate by choosing values for their respective variables. We
start with the existential player who assigns a value to the variable x1 then the
universal player assigns a value to x2 then the existential player responds by
assigning a value to x3 etc. The existential player then has to ensure that for
every choice then universal player makes then the existential player can respond
such that the clauses will hold in the end. We can say that the existential player
has a strategy, denoted f , where given the truth values of all previous choices,
it can produce then a truth value for the next variable. To avoid confusion, let
solutions refer to QSAT formula strategies, and let strategy refer to a GLKS
strategy. With this in mind, we construct the following GLKS:

S = {start} ∪ { xti | t ∈ B ∧ xi ∈ X }
s0 = start

Act1 = {xi | i is odd}
Act2 = {xi | i is even}
→ = {(start , xt1, xt1) | t ∈ B} ∪

{(xti, xt
′

i+1, x
t′

i+1) | xti, xt
′

i+1 ∈ S}
AP = S

L(xti) = {xti}

The resulting GLKS can be represented graphically as shown in Figure 3.
Notice that in GLKS for each action there is a state that is equal to the action.
This is not depicted in Figure 3 for readability.

Let ΦX be a function that given a literal li ∈ c returns the query xtruei if
li = xi and returns the query xfalsei and if li = ¬xi. We construct our formula
ϕ as such:

ϕ =
∧
c∈C

AF
( ∨

l∈c

ΦX(l)
)
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start

xtrue1

xfalse1

xtrue2

xfalse2

· · ·
xtruen

xfalsen

Fig. 3: Resulting GLKS by reduction of QSAT

The construction of the GLKS, ensures that for every variable xi ∈ X in
every maximal run that the run must contain either xtruei or xfalsei but cannot
contain both. Essentially, every run is assigning truth values to every variable, i.e.
if xtruei is visited then xi = true. Notice that the resulting GLKS has the same
semantics as the QSAT game mentioned. Here the controller starts by either
choosing xtrue1 or xfalse1 , then the environment chooses either xtrue2 or xfalse2 , then
the controller responds, etc. The controller tries to choose actions such that ϕ
holds.

Mapping between a history for a solution and a run for a strategy is pretty

straight forward. Given a run start
x
t1
1−−→ xt11

x
t2
2−−→ xt22 . . . then we map it to the

history [t1, t2, . . .] and vice-versa. This makes it easy to map between solutions
and strategies. Given a run (history), for a variable xi if a strategy (solution)
outputs xtruei (true) then the solution (strategy) should output true (xtruei ).

While the QSAT and CTL formula are not the same, they are still equal.
The QSAT formula asks that given every history all clauses hold, and ϕ asks
that all clauses hold on every history, which by the distributive property of the
universal quantifier is the same question.

We will now proof that the QSAT formula holds iff. there exists a strategy
for the resulting GLKS such that start |= ϕ.

– =⇒ : For any solution f , let σ be the corresponding strategy for the GLKS
created from f . Let us assume that this strategy is not winning. Then
there has to be at least one run π where one AF , which corresponds to
a clause c, evaluates to false. If that is the case, then there are three states,
ΦX(li), ΦX(lj), ΦX(lk) where li, lj , lk ∈ c, that are not visited. Since the run
π chose the corresponding truth value provided by f , and given the seman-
tics of AF , then π is a counter-example for why f is not a solution, and
therefore the original QSAT formula cannot hold, which is a contradiction.

– ⇐= : For any winning strategy σ, let f be the corresponding solution for
the QSAT created from σ. Let us assume that f is not a solution. Then
there has to be at least one set of assignments to each even variable such
that there is at least one clause c which evaluates to false, which in turn
means that there are three literals li, lj , lk ∈ c which also evaluate to false. If
that is the case, given the construction of the GLKS, then there would be a
run where none of ΦX(li), ΦX(lj), or ΦX(lk) were visited. If that is the case,
then there would be one AF which could not evaluate to true, which means
that σ could not be winning, which is a contradiction.
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Since the reduction was done in polynomial time, we conclude that the syn-
thesis problem for a GLKS with a CTL formula is PSPACE-hard. ut

4 Solving the Synthesis Decision Problem

For model-checking problems, a natural choice of tool is to use dependency
graphs as presented in [13]. However, for dependency graphs to be useful for us,
some extension is needed.

4.1 Labeled Dependency Graphs

A Dependency graph [13] is a abstract mathematical graphical structure, which
shows causal dependencies between its vertices. Traditionally it consists of a
finite set of configurations and hyper-edges, however we have extended it by
adding labels to the edges.

Definition 10 (Dependency Graph). A Dependency Graph (DG) is a 3-
tuple D = (V,E, P ) where V is a set of configurations, E ⊆ V × 2P×V is a set
of hyper-edges, and P is a set of labels.

Figure 4a shows a dependency graph in graphical form. Let D = (V,E, P )
be a DG, where for each hyper-edge e = (v, T ) ∈ E, we have that v ∈ V is
the source of e and T ⊆ 2P×V the target set of e. We write v p−→ u if there
exists a hyper-edge (v, T ) ∈ E such that (p, u) ∈ T . An assignment on D is
an assignment function A : V → {0, 1} that assigns the value 0 or 1 to each
configuration in the graph, interpreted as false or true respectively. Let AD be
the set of all assignments on D. For two assignments A1, A2 ∈ AD we write
A1 v A2 if A1(v) ≤ A2(v) for all v ∈ V . Clearly (AD, v) is a complete lattice.

We are interested in finding the minimum fixed-point assignment. For this
end we define the function FP : AD → AD as follows:

FP(A)(v) =
∧

(v,T )∈E

∨
u∈T

A(u) (1)

where, by convention, conjunction over the empty set is true while disjunction
over the empty set is false.

An assignment A is a fixed-point assignment iff FP(A) = A. The function
FP is monotonic wrt. v which, by the Knaster-Tarski theorem [22], implies that
there exists a unique minimum fixed-point assignment, which we will denote by
Amin. The assignment Amin on D can be computed by repeated application of
the function FP on the assignment A0 where A0(v) = 0 for all v ∈ V , as shown
in Figure 4. When a configuration v is assigned 1, i.e. A(v) = 1, we say that v
propagates 1.

Theorem 3. [13] There is a linear time (on-the-fly) algorithm to compute the
minimal fixed point of a dependency graph.
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v0

v1 v2 v3 v4

v5

∅

p1 p2

p3

p4 p5

p6 p7p8

(a) Dependency Graph D = (V,E, P )

v0 v1 v2 v3 v4 v5
A0 0 0 0 0 0 0

FP(A0) 0 1 0 0 0 0

FP(FP(A0)) 0 1 1 0 0 0

FP(FP(FP(A0))) 1 1 1 0 0 1

FP(FP(FP(FP(A0)))) 1 1 1 0 1 1

FP(FP(FP(FP(FP(A0))))) 1 1 1 0 1 1

(b) Fixed-point calculation of Amin

Fig. 4: A Dependency Graph D and the fixed-point assignment Amin

4.2 Encoding for GLKSs

As mentioned before, when synthesizing strategies, CTL formulae are not com-
positional. Therefore, inductively constructing a DG that can determine whether
or not a strategy exists for a given GLKS and CTL formula is complicated. In-
stead, we will do this in two steps. First, we will construct a DG, enabling us to
over-approximate whether a strategy exists. Second, we will take this previous
DG and build a new DG that can determine whether a strategy exists. In this
subsection, we will illustrate how we construct the first DG.

The configurations in the constructed DG are defined as V : S × Φ, where
Φ is the set of all CTL formulae, and labels defined as P : S ×

(
Act ∪ {NIL}

)
.

The label is a pair where the first element denotes the state from which we are
transitioning. The second element represents the action taken to get from the
state in the source configuration to the state in the target configuration. That is,
for a target t = (p, v′) where the label is p = (s, α) and the target configuration is
v′ = (s′, ϕ′), we have that s α−→ s′. When the only change between the source and
target configuration is a change in the CTL formula, then the second element in
the pair is NIL.

The construction of the dependency graph requires the use of two functions
next and ∆. Given a configuration v ∈ V the function nexti : V → 2(S×Acti)×V ,
where i ∈ {1, 2}, is defined as nexti

(
(s, ϕ)

)
=
{(

(s, α), (s′, ϕ)
) ∣∣ α ∈ eni(s)∧s α−→

s′
}
. We define next

(
(s, ϕ)

)
=
⋃
i∈{1,2} nexti

(
(s, ϕ)

)
. The intuition is that the

next function takes in a tuple (s, ϕ) and returns a set of targets, one for each
state that the GLKS can reach from state s with one transition. All target
configurations returned from next have the formula ϕ. Given a configuration
v ∈ V , the function ∆ : V → 22

S×Acti×V

is defined as:

∆
(
(s, ϕ)

)
=

{{
next2

(
(s, ϕ)

)}
if en1(s) = ∅{

next2
(
(s, ϕ)

)
∪ {c} | c ∈ next1

(
(s, ϕ)

)}
otherwise

When a CTL formula uses the universal temporal operator (A), then we
need to be able to respond to every action that the uncontrollable can make.
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Therefore all outgoing hyper-edges from the source configuration must include a
target set, containing all states generated by performing player 2 actions, which
is the idea of the ∆ function. It outputs a set of sets where each set combines
a single configuration which contains a successor state generated by a player
1 action, with all the configurations which have successors states generated by
player 2 actions. In the case where player 1 has no action, then only player 2
actions are included.

The construction of a DG from a GLKS GS = (S, s0, Act1, Act2,→, AP ,L)
and a CTL formula ϕ is inductively defined by a set of compositional encod-
ing rules, one for each rule in the abstract syntax for the CTL path formula,
starting with the root configuration (s0, ϕ). Whatever the form of the formula,
the encoding rules specify which hyper-edges should be included in the set of
hyper-edges E.

State formulas When ϕ = ψ we add:{{(
(s, ϕ), ∅

)}
if s |= ψ

∅ otherwise
(2)

Recall that ψ ::= true | α | a | ¬ψ1. Either we add an edge with no targets, if
s |= ψ, or we add no edge, if not. In this way, this configuration only propagates
one iff. s |= ψ.

Disjunction When ϕ = ϕ1 ∨ ϕ2, we add:{(
(s, ϕ),

{(
(s, NIL), (s, ϕ1)

)})
,

(
(s, ϕ),

{(
(s, NIL), (s, ϕ2)

)})}
(3)

In Equation 3, we model disjunction by adding two hyper-edges: one for checking
if ϕ1 holds and one for checking if ϕ2 holds. Observe that even though the formula
changes between the source and target configuration, no GLKS action has been
taken. In cases like these, we use NIL.

Conjunction When ϕ = ϕ1 ∧ ϕ2, we add:{(
(s, ϕ),

{(
(s, NIL), (s, ϕ1)

)
,
(
(s, NIL), (s, ϕ2)

)})}
(4)

Contrary to Disjunction, we model conjunction in Equation 4 by adding only
one hyper-edge but with two targets, one for checking if ϕ1 holds and one for
checking if ϕ2 holds.
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Existential Next When ϕ = EXϕ1, we add:{
∅ if en(s) = ∅{(

(s, ϕ), {c}
)
| c ∈ next

(
(s, ϕ1)

)}
otherwise

(5)

We use the next function in Equation 5 to find each of the next targets and create
one hyper-edge per target. These targets all have the formula ϕ1. This ensures
that if only one of the targets propagates one, then the source configuration will
as well.

Universal Next When ϕ = AXϕ1, we add:{
(s, ϕ)

}
×∆

(
(s, ϕ1)

)
(6)

We use the ∆ function in Equation 6 to create one edge per successor. Each
edge has a target set which includes one target produced by a controller action
and all of the targets produced by environment actions. These targets all have
the formula ϕ1. Thus it requires at least one of the configurations generated
by the controller and all of the configurations generated by the environment to
propagate one.

Existential Until When ϕ = E ϕ1 U ϕ2, we add:{(
(s, ϕ),

{(
(s, NIL), (s, ϕ2)

)})}
∪{(

(s, ϕ),
{(

(s, NIL), (s, ϕ1)
)
, c
}) ∣∣∣∣ c ∈ next((s, ϕ))

} (7)

Since the formula holds if ϕ2 holds the rule shown in Equation 6, then we add
an edge with the only target being ((s, NIL), (s, ϕ2)), which checks whether ϕ2

holds on the current state.
Similar to Existential Next, the second clause of Equation 7 enumerates each

successor configuration, but here we retain the original formula. We add each of
these successor configurations to a set, along with the target ((s, NIL), (s, ϕ1)),
which checks that ϕ1 holds in the current state. Each of these sets then forms
an edge which we add to the dependency graph.

Universal Until When ϕ = Aϕ1 U ϕ2, we add:{(
(s, ϕ),

{(
(s, NIL), (s, ϕ2)

)})}
∪{(

(s, ϕ),
{(

(s, NIL), (s, ϕ1)
)}
∪ n

)∣∣∣∣ n ∈ ∆((s, ϕ))
} (8)



14 Wennerström, Vang, Ragnuson.

The first clause of Equation 8 is the same as in Existential Until, which adds an
edge that checks whether ϕ2 holds on the current state.

Similar to Universal Next, we use the ∆ function in Equation 6 to create one
edge per successor set, but here we retain the original formula. To each of these
successor sets we add the target ((s, NIL), (s, ϕ1)), which checks that ϕ1 holds
in the current state. Finally, each the successor sets are then formed into edges
and added to the dependency graph.

Example 3. When encoding a GLKS GS = (S, s0, Act1, Act2,→, AP ,L) and a
CTL formula ϕ into a dependency graph, we start with (s0, ϕ) as the root config-
uration and then add hyper-edges according to the encoding rules. An example
is given in Figure 5. Highlighted with a thick green border are the configura-
tions which propagate one. In order to keep the labels on the dependency graph
in Figure 5b small, we have replaced the actions in Figure 5a with indexed α
symbols.

s2

s0 s1

s3

α6

α5

α1

α3

α2
α4

(a) A GLKS
(s0, A AF s2 U s3)

(s0, s3)

(s0,AF s2)

(s2, A AF s2 U s3)(s2, s3)

(s3, A AF s2 U s3)

(s3, s3)

∅

(s1, A AF s2 U s3)

(s0, s2)

(s2,AF s2)

(s3,AF s2)

(s2, s2)

∅

(s3, s2)

(s1, s3)

(s1,AF s2)

(s1, s2)

(s0,
NIL)

(s
0 , NIL)

(s
0 , α

6 )

(s
0
, N
IL
)

(s0, α5)

(s0
, N
IL
)

(s
0 , α

1 )(s0 , NIL)

(s0, α6)

(s0
, α

5
)

(s2, NIL)

(s2, NIL)

(s3, NIL)

(s3, NIL)

(s1, NIL)

(s
1
, N
IL

)

(s1, α4)

(s1, α3)

(s1
, NI

L)

(s
1 , α

2 )
(s

1 , α
3 )

(s1, α4)

(s
1
, α

3
)

(s
1
,α

2
)

(s
1
,α

3
) (s

0 , α
1 )

(s1, NIL)

(b) The dependency graph constructed from the GLKS in Figure 5a and the CTL
formula A AF s2 U s3

Fig. 5: Encoding example
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4.3 Over-approximating the Synthesis Decision Problem

After constructing the dependency graph, we compute the minimum fixed-point
assignment. In model checking, the minimum fixed-point assignment assigns 1
to the root of the dependency graph iff the model conforms to the specification.
Dalsgaard et al. use this property in their work [6]. If model checking was our
goal, we could stop here, but this is not enough to solve the synthesis problem.

However, the approach of reducing the synthesis decision problem into com-
puting minimum fixed-point assignments on dependency graphs is an overap-
proximation of the synthesis decision problem. Observe that if the dependency
graph propagates 0, there has to exist some property that does not hold re-
gardless of strategy. But there are cases where the model conforms to certain
specifications, which results in the root of the constructed dependency graph
propagating one where there cannot exist a winning strategy. Consider for in-
stance the dependency graph in Figure 6b constructed from the GLKS shown in
Figure 6a and the CTL formula ϕ = AF s1 ∧ (AF s2 ∨AF s3).

s0s1

s2

s3
α1

α2

α3

(a) A GLKS GS

(s0,AF s1 ∧ (AF s2 ∨AF s3))

(s0,AF s1) (s0,AF s2 ∨AF s3)

(s0,AF s2) (s0,AF s3)(s1,AF s1)

(s2,AF s2) (s3,AF s3)(s1, s1)

(s2, s2) (s3, s3)∅

∅ ∅

(s0, NIL) (s0, NIL)

(s0, NIL) (s0, NIL)(s0, α1)

(s0, α2) (s0, α3)(s1, NIL)

(s2, NIL) (s2, NIL)

(b) A minimized DG D constructed from Figure 6a

Fig. 6: An example where no winning strategy exists but Amin((s0, ϕ)) = 1

Note that the dependency graph in Figure 6b only shows configurations that
propagate 1. The reason why the root configuration propagates 1 is that the left
operand AF s1 and the right (AF s2∨AF s3) are not necessarily evaluated on the
same runs. There exists a run π1 = s0

α1−→ s1 in which AF s1 holds. There also
exists a run π2 = s0

α2−→ s2 in which AF s2 holds and thereby (AF s2 ∨ AF s3)
as well. However it is easy to see that π1 6= π2. Said in other words, in order
for a controller to make (AF s2 ∨ AF s3) hold for the GLKS in Figure 6a the
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controller would need to choose both α1 and either α2 or α3 at the same time,
which obviously can not be done.

When the dependency graph requires a strategy to perform different actions
simultaneously, we call it a strategy conflict. It is, therefore, interesting to deter-
mine whether a dependency graph has any conflicts. A naive method for finding
conflicts is to look at hyper-edges with multiple targets to determine if they con-
tain different actions. However, there are two problems with this method. First,
not all conflicts happen immediately; they may occur much later in the depen-
dency graph. Second, in some cases, the targets may be labeled with NIL, which
is not an action. For instance, in Figure 6b the hyper-edge contains two targets,
each labeled with NIL. The left configuration has an outgoing edge labeled with
the action α1. The right configuration, however, only has outgoing edges labeled
with NIL. Would this be considered a conflict?

These problems seem only to occur when we have hyper-edges with more
than one target or when edges are labeled with NIL. We can eliminate hyper-
edges with more than one target by transforming the dependency graph into
disjunctive normal form. When in this form, it should be easy to remove targets
with NIL. In that regard, the following section introduces Meta Dependency
Graph that do precisely this.

4.4 Meta Dependency Graphs

In this section we demonstrate how to convert dependency graphs into Meta
Dependency Graph (MDG). An MDG MG = (V,E, P ) is defined just like the
dependency graphs are defined in Subsection 4.1, however the configurations are
defined as V = 2S×Φ. To avoid confusion, we will refer to configurations of a
meta dependency graph as meta-configurations.

The goal is to structure the dependency graph so that it allows us to iden-
tify strategy conflicts and reject those configurations that require them. To do
this, we transform the original dependency graph into disjunctive normal form.
Each meta-configuration then represents a conjunctive clause of the disjunctive
normal form. The meta-configurations allow us to quickly identify when con-
flicts happen, as they will always occur in the immediate successor edges. Along
with some minor corrections, which we will come back to later, removing meta-
configurations that require a strategy conflict will make the meta-dependency
graph propagate one iff there is a winning strategy.

The conversion consists of two algorithms: the dgToMdg algorithm doing the
actual DG to MDG conversion and one auxiliary algorithm Close.

The Close Algorithm The algorithm’s name is inspired by Epsilon Closure of
Non-deterministic Finite Automata [17], where epsilon is removed by combining
some states. The goal of the Close algorithm is the same as Epsilon Closure, but
instead of ε our culprit is NIL. The Close Algorithm is shown in Algorithm 1.
The output Close contains sets of triplets V ×Act× V , where the first element
represents the source configuration, the second element represents the action
taken, and the third element represents the destination configuration.
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Algorithm 1: Algorithm for removing NIL from a DG
Input : A DG D = (V,E, P ) and a set W of configurations
Output: A set of sets of triples V ×Act× V

1 Function Close(D, W):
2 successors = ∅ ;
3 for v = (s, ϕ) ∈W do
4 configSuccessors = ∅ ;
5 for (v, T ) ∈ E do
6 edgeSuccessors = {∅} ;
7 for

(
(s, α), v′

)
∈ T do

8 targetSuccessors = ∅ ;
9 if α = NIL then targetSuccessors := Close(D, {v′}) ;

10 else targetSuccessors :=
{{

(v, α, v′)
}}

;

11 edgeSuccessors := Combine(edgeSuccessors, targetSuccessors) ;
12 end
13 configSuccessors := configSuccessors ∪ edgeSuccessors ;
14 end
15 successors := Combine(successors, configSuccessors) ;
16 end
17 return successors;

Input : Two sets of sets
Output: A set of sets containing all elements of the input sets

1 Function Combine(S1, S2):
2 if S1 = ∅ then return S2;
3 if S2 = ∅ then return S1 ;
4 return {t ∪ k | t ∈ S1 ∧ k ∈ S2} ;

Observing the encoding rules in Subsection 4.2, we see that for every rule,
except for the Universal Next encoding rule, every edge that has more than one
target, it is the case that at least one of these targets contains NIL. To remove
these, we use the disjunctive normal form. For instance, given the DG D from
Figure 6b, and the set {v} where v = (s0,AF s1 ∧ (AF s2 ∨ AF s3)) is the root,
then the Close would return the following:

Close(D, {v}) =

{
{(v, α1, (s1,AF s1)), (v, α2, (s2,AF s2))},
{(v, α1, (s1,AF s1)), (v, α3, (s3,AF s3))}

}
(9)

Note that since the DG D from Figure 6b ignores configurations that do
not propagate one, the above equation does so as well. The full output contains
18 sets. Observing the output, we see that each of the sets have triplets with
different actions, the first has α1 and α2, the second has α1 and α3.

The Close Algorithm is a bit intricate, yet not overly complex. It is a trebly
nested for loop, each managing different sets of sets. When talking about termi-
nation guarantees, then the for-loops are not of concern since all data structures
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in the algorithm are finite. However, there is a recursive call on line 9, but this
is not a problem, as we prove in Lemma 1.

Lemma 1. Given a dependency graph D = (V,E, P ) constructed by the encod-
ing rules in Subsection 4.2 and a set of configurations W ⊆ V , then the Close
function terminates.

Proof. By the dependency graph encoding rules in Subsection 4.2, it is clear that
for v, v′ ∈ V where v = (s, ϕ), v′ = (s′, ϕ′) that ϕ ≥ ϕ′ if there exists (v, T ) ∈ E
where (α, v′) ∈ T . Following the same rules, observe that if v = v′ then we have
α 6= NIL. Finally, if α = NIL then we can see that ϕ > ϕ′. With this in mind, for
any configuration v = (s, ϕ) ∈ W , for any edge (v, T ) ∈ T , and for any action
and target configuration (α, v′) ∈ T where v′ = (s′, ϕ′) we see that the recursion
on line 9 can only happen if ϕ > ϕ′ due to the condition on line 9. Since the
formula is always getting smaller for every time an recursion happens, then the
recursion must eventually stop. Since all sets and formulas involved are finite,
then the function must terminate at some point. ut

By Lemma 1 we know that Algorithm 1 terminates which must mean that
there is no infinite path starting from a configuration in a DG, where every
target configuration along the path has the action (s, NIL) for some s. That is,

there is no two v, v′ ∈ V such that v
(s,NIL)−−−−→ v′

(s′,NIL)−−−−−→
∗
v. This means that for

any v ∈ V there is a finite number of consecutive NIL actions before an action
α ∈ Act must be taken along any path starting with v. We can therefore define
the NIL distance function dist : V → N0 that returns the maximum number of
consecutive NIL actions along any path starting from v and is inductively defined
as dist(v) = max({dist(v′) + 1 | v′ ∈ V and v

(s,NIL)−−−−→ v′}) where max(∅) = 0.
Finally, let Dist(V ) = max({dist(v) | v ∈ V }). Using the dist function, we can
show that Close preserves the minimum fixed-point assignment.

Lemma 2. For a dependency graph D = (V,E, P ) constructed by the encoding
rules in Subsection 4.2 and a set W ⊆ V we have that Amin(w) = 1 for all
w ∈W iff ∃S ∈ Close(D,W ) where Amin(v

′) = 1 for all (v, α, v′) ∈ S.

Proof. The proof is by mathematical induction on Dist(W ) ≤ n. u

For n = 0. We are assured that α 6= NIL for every target and thus only line 10
can be reached. This simplifies the cases a bit. Following the execution of
the algorithm we see that each S ∈ Close(D,W ) is a union between target
triplets from edges, one set for each configuration v ∈ W . Because of this,
if Amin(w) = 1 for all w ∈ W then there must exist an edge from each w
such that all of its targets propagate one, and because of that then there
must exist S ∈ Close(D,W ) such that Amin(v

′) = 1 for all (v, α, v′) ∈ S.
Thereafter, if there exist S ∈ Close(D,W ) such that Amin(v

′) = 1 for all
(v, α, v′) ∈ S then every w ∈ W must have at least one edge where every
target configuration propagates one which in turn means Amin(w) = 1 for all
w ∈W .
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Inductive step. When the if-statement on line 9 is reached and α = NIL, then
by the induction hypothesis Amin(v

′) = 1 iff there exists S ∈ Close(D, {v′})
such that Amin(w

′) = 1 for all (w,α,w′) ∈ S. Therefore, by the time line 13 is
executed, since edgeSuccessors is added to configSuccessors we are sure that
Amin(v

′) = 1 iff. there exists S ∈ configSuccessors such that Amin(w
′) = 1 for

all (w,α,w′) ∈ S. Finally, since configSuccessors is combined with successors
for every w ∈W , then Amin(w) = 1 for all w ∈W iff. S ∈ Close(D,W ) such
that Amin(v

′) = 1 for all (v, α, v′) ∈ S.
Thereby proving that for W ⊆ V we have that Amin(w) = 1 for all w ∈ W iff.
∃S ∈ Close(D,W ) where Amin(v

′) = 1 for all (v, α, v′) ∈ S. ut
We have now proven termination and the preservation of the minimum fixed-

point assignment. The only property left to prove that we are interested in is
the removal of NIL in the labels.
Lemma 3. Given a dependency graph D constructed by the encoding rules in
Subsection 4.2 and a set W ⊆ V , then α 6= NIL for all (s, α, v′) ∈ S ∈
Close(D,W ).

Proof. If for some ((s, α), v′) ∈ T we see that α = NIL then the algorithm
recurses on line 9. However if α 6= NIL then a triplet (v, α, v′) is added on
line 10. This does not change however often the algorithm recurses. Because of
this no triplet (v, α, v′) can be added where α = NIL. ut

The dgToMdg Algorithm The Close Algorithm allows us to remove NIL edges
and quickly identify strategy conflicts. One would think that we should recur-
sively call Close to transform the whole dependency graph to achieve our goal.
However, this is unfortunately not quite enough. The issue this time around is
the uncontrollable actions. To illustrate the issue, consider the dependency graph
in Figure 7b constructed from Figure 7a. Calling Close with this DG and the
root produces the following set:{{

((s0,AF s2), α1, (s1,AF s2)), ((s0,AF s2), α2, (s1,AF s2)),
((s0,AF s3), α1, (s1,AF s3)), ((s0,AF s3), α2, (s1,AF s3))

}}
(10)

This set has only one element, which has four triplets. However, these triplets
do not agree on which action is taken; the first triplet has α1, the second has α2,
the third triplet has α1, and finally, the fourth has α2. This disagreement allows
the controller to react to the same action twice, which is not what we want as
this enables the controller to reach a conflict. Furthermore, the controller should
not respond to configuration changes but rather actions that are taken. So, if we
feed this element to Close, the result will be a set of four sets, where each set
has two elements:

{((s1,AF s2), α3, (s3,AF s2)), ((s1,AF s3), α3, (s3,AF s3))},
{((s1,AF s2), α2, (s2,AF s2)), ((s1,AF s3), α2, (s2,AF s3))},
{((s1,AF s3), α3, (s3,AF s3)), ((s1,AF s2), α2, (s2,AF s2))},
{((s1,AF s2), α3, (s3,AF s2)), ((s1,AF s3), α2, (s2,AF s3))}

 (11)
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s0 s1

s2

s3

α1

α2

α2

α3

(a) A GLKS with uncontrollable ac-
tions

(s0,AF s2 ∧AF s3)

(s0,AF s2) (s0,AF s3)

(s1,AF s2) (s1,AF s3)

(s2, s2) (s3, s3)

(s2,AF s2) (s3,AF s3)

∅ ∅

(s0, NIL) (s0, NIL)

(s0, α1)(s0, α2) (s0, α1)(s0, α2)

(s1, α2) (s1, α3)

(s2, NIL) (s3, NIL)

(b) A minimized DG D constructed from
Figure 7a

Fig. 7: An example GLKS with a resulting DG

Notice that the last two sets have both α3 and α2 which are fired in Equa-
tion 11. This makes the meta-dependency graph propagate 1 when there is a
conflict. To mitigate this, we group each element of the result of Close by the
source state, action taken, and controllability of said action.

The dgToMdg Algorithm uses the queue queue to manage the configuration it
has yet to process, while V ′ functions both as the set of meta-configurations for
the MDG and as the set of already processed meta-configurations. The algorithm
repeatedly calls Close on line 8, groups each of its sets by controllability on
line 14 and line 15, and by state and action on line 17 and line 18. Finally,
dgToMdg adds edges to each of these groups on line 25.

This brings our algorithm to a close, as it now has tackled every issue we can
throw at it. First, the following proof will show that the algorithm terminates,
subsequently, we show that the algorithm does not include hyper-edges with
more than one target. Unfortunately, the final theorem remains to be proven.

Lemma 4. Given a finite dependency graph D constructed by the encoding rules
in Subsection 4.2, the root configuration r of the dependency graph D, and the
minimum fix-point assignment Amin of D, the algorithm dgToMdg, described in
Algorithm 2, terminates.

Proof. From Lemma 1 we know that any call to Close terminates. The line
where the queue grows is line 22. This line requires target to not be an element
V ′. This element is then added to V ′ on line 24. Notice that target ⊆ V . Since V ′
never decreases in size, and the maximum size it can be is 2V , then the if-criteria
on line 22 will eventually become, and remain, false, when V ′ cannot grow any
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Algorithm 2: Meta Dependency Graph without NIL
Input : A DG D = (V,E, P ), the root configuration r, and the minimal

assignment Amin

Output: A new dependency graph (V ′, E′, P ) which only propagates one if
there exists a strategy

1 Function dgToMdg(D, r, Amin):
2 queue := ∅ ;
3 V ′ := {{r}} ;
4 E′ = ∅ ;
5 enqueue({r}, queue) ;
6 while queue 6= ∅ do
7 W := dequeue(queue) ;
8 for successor ∈ Close(D, W ) do
9 if ∃(v, α, v′) ∈ successor . Amin(v

′) 6= 1 then continue;
10 if successor = ∅ then
11 E′ := E′ ∪ { (W, ∅) } ;
12 continue;
13 end

14 edges1 :=
{
(v, α, v′) ∈ successor | α ∈ Act1

}
;

15 edges2 := successor \ edges1 ;

16 if
∣∣{(s, α) | ((s, ϕ), α, v′) ∈ edges1

}∣∣ > 1 then continue;

17 grouped1 =
{ { (

(s, ϕ), α, v′
)
∈ edges1

}
| s ∈ S ∧ α ∈ Act1

}
;

18 grouped2 =
{ { (

(s, ϕ), α, v′
)
∈ edges2

}
| s ∈ S ∧ α ∈ Act2

}
;

19 for edges ∈ grouped1 ∪ grouped2 do
20 if edges = ∅ then continue;

21 target := {v′ | (v, α, v′) ∈ edges};
22 if target 6∈ V’ then enqueue(target, queue) ;

23 (s, α) ∈
{
(s′, α′) |

(
(s′, ϕ), α′, v′

)
∈ edges

}
;

24 V ′ := V ′ ∪ {target} ;
25 E′ := E′ ∪

{ (
W,
{ (

(s, α), target
) } ) }

;
26 end
27 end
28 end
29 return (V ′, E′) ;
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more. Because of the polling on line 7, the queue must eventually become empty,
which in-turn makes the algorithm terminate. ut

Lemma 5. Given a dependency graph D constructed by the encoding rules in
Subsection 4.2, the root configuration r of the dependency graph D, and the
minimum fix-point assignment Amin, the meta dependency graph generated from
D′ = dgToMdg(D, r,Amin) has no hyper-edge with more than one target.

Proof. The only place where E′ is updated is on line 25. On this line, the edge
added only has a single target. Since this is the only place where E′ is updated,
it must be the case that all added edges only have a single target. ut

Theorem 4. Given a GLKS GS = (S, s0, Act1, Act2,→, AP ,L), a CTL for-
mula ϕ, a dependency graph D constructed from GS and ϕ by the encoding rules
in Subsection 4.2, the root configuration r = (s0, ϕ) of the dependency graph D,
and the minimum fix-point assignment Amin, the meta dependency graph gener-
ated from D′ = dgToMdg(D, r,Amin) propagates one iff. there exist a strategy σ
such that unfold(GS, σ) |= ϕ.

From here on out, in order to avoid confusion, we will use the logic CTL−,
as the next sections will focus on the synthesis problem.

5 Strategy Automata

Albeit strategies take complete runs in, representing these strategies as simple
maps can require an infinite amount of memory. This is because the runs can
be arbitrary long. Another way of describing strategies is by using automata,
which allows us to express arbitrary runs with a finite amount of memory. A
natural choice of an automaton to represent strategies are Mealy machines [14].
We formally define Strategy automates for GLKS as Mealy machines as follows:

Definition 11 (Strategy Automaton for GLKS). A strategy automaton for
a GLKS GS = (S, s0, Act1, Act2,→, AP ,L) is a 5-tupleM = (Q,Σ, Γ, δ, q0) such
that:

– Q is a finite, non-empty set of states,
– Σ = S is the input alphabet,
– Γ = Act is the output alphabet,
– δ : Q×Σ → Q× Γ is a transition function, such that δ(q, s) = (q′, α)∧ α ∈

en1(s) if en1(s) 6= ∅ and δ(q, s) = (q′,⊥) if en1(s) = ∅, and
– q0 ∈ Q is the initial state.

To determine the next action to take, at any given state in a strategy automa-
ton M , we introduce an output function outM , which when given a automaton
state q ∈ Q and a input string w ∈ Σ+, returns an action α ∈ Act1. We say that
a strategy produced by the strategy automaton M is called σM .
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Definition 12 (Strategy Automaton Output). The output of a strategy
automaton M = (Q,Σ, Γ, δ, q0) is defined by a function outM mapping a state
and an input string to an output outM (q, w) ∈ Γ . The function outM is defined
inductively on the length of the input w as follows:

outM (q, a) = α where (q′, α) = δ(q, a)

outM (q, a · w) = outM (q′, w) where (q′, α) = δ(q, a)

where a ∈ Σ and w ∈ Σ∗.

In Figure 8b we graphically illustrate a strategy automatonM for the GLKS
GS shown in Figure 8a. The transition q0

s0/α1−−−−→ q1 denotes that when M is
in automaton state q0 and gets the state s0 from GS as input, then M should
propose action α1 . Given that the transition function is total, then transitions
for all automaton state and GLKS state pairs are define. This means that, e.g.,
when q0 reads s1 as input, then M must propose α3. In order to show correct
strategy automata, these transitions must technically be included when graphi-
cally showing the strategy automaton. However a valid run in GS would never
start with the state s1 and therefore it would never be the case that the transi-
tion q0

s1/α3−−−−→ q1 would be taken. Including these transitions when showing the
strategy automaton graphically (transitions such as q0

s1/α3−−−−→ q0 and q0
s2/⊥−−−→ q0)

would distract the reader from seeing the transitions that are of importance. In
Figure 8b, we denote these transitions by a

∗/∗−−→ transition and in the sequel, we
omit these loops and assume their existence.

Figure 8c shows the input/output relation specified in M from q0. The intu-
ition is the same for all other states in the strategy machine. Note that when we
have input string x = s0

α1−→ s1
α3−→ s3, we should perform ⊥ (the do nothing

action), due to s2 being a terminal state.

s0 s1

s2

α1

α2

α
3

(a) GLKS GS

q0 q1 q2
s0/α1 s1/α3

∗/∗ ∗/∗ ∗/∗

(b) Strategy Automaton M

Run Output
x outM (q0, x)

s0 α1

s0
α1−−→ s1 α3

s0
α1−−→ s1

α3−−→ s2 ⊥

(c) Strategy output for GS Fig-
ure 8a

Fig. 8: A GLKS GS with a Strategy Automaton M and output function

Some strategies require infinite memory, while others are finite. The amount
of memory that a strategy may use is called its bound. For strategy automata,
memory is given in states. We say that a strategy that uses k states is k-bounded.
Formally k-bounded strategies are defined as follows:
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Definition 13 (k-bounded Strategy). Given a GLKS GS = (S, s0, Act1,
Act2,→, AP ,L), a strategy σ is k-bounded if there exists a strategy automa-
ton M = (Q,Σ, Γ, δ, q0, γ) where |Q| = k such that σ(π) = outM (q0, π) for every
π ∈ Πfin(s0).

5.1 Memory Hierarchy

In the following lemmas, we prove the differing expressivity of k-bounded strate-
gies for varying values of k. We let the notation EX k denote that the temporal
operator EX is nested k times. These proofs serve to show that strategies are of
different expressive power depending on how much memory they have.

Lemma 6. Every k-bounded strategy is also (k + 1)-bounded.

Proof. It is easy to see that any (k+1)-bounded strategy automaton can simulate
a k-bounded strategy automaton, by having the k-bounded strategy automaton
being exactly encoded in the (k + 1)-bounded strategy automaton and then
subsequently let one state be disconnected from the rest of the (k+ 1)-bounded
strategy automaton. This state will neither hinder nor help the (k+1)-bounded
strategy automaton. ut

Lemma 7. For every k there exists an GLKS and CTL formula that has a
k-bounded winning strategy but no (k − 1)-bounded winning strategy.

Proof. Consider the GLKS GS in Figure 9 and assume that L(s0) = {s0} and
L(s1) = {s1}. For any k ≥ 0, we can construct a winning strategy automaton

s0 s1

α0

α1

Fig. 9: A GLKS GS

Mk for a formula EX ks1 on the GS as follows: let there be k states in Mk

ordered from qk to q1, with qk as the initial state. Let qn
s0/α0−−−−→ qn−1 be the

transition between qn and qn−1 for all k ≤ n ≤ 2 and let q1 contain the self loop

q1
s0/α1−−−−→ q1.
The construction is shown in Figure 10. Clearly Mk is a winning strategy

automaton for the formula EX ks1 on GS any k ≥ 1. Proving that Mk is the
smallest winning strategy automaton will be proof by contradiction. Assume that
there exists a (k − 1)-bounded strategy automaton Mk−1 for EX ks1. In order
for Mk−1 to be a winning strategy automaton for the formula EX ks1 in GS the
strategy needs to first output the α0 action k − 1 times and then output the
α1 action. Notice that this is also the only winning strategy. In order for Mk−1
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qk qk−1 · · · q2 q1
s0/α0 s0/α0 s0/α0 s0/α0

s0/α1

Fig. 10: The Strategy Automaton Mk

to output α0 and still have the possibility of later outputting α1 the strategy
automaton needs to do so with the transition

s0/α0−−−−→, while transitioning to a
state which has not been visited before. This transition must happen k−1 times,
each time going to a state previously not visited. However with only k − 2 such
transitions possible in Mk−1, then we can conclude by the pigeonhole principle
that one of two things must happen. Either there exist a already visited state in
Mk−1 that is reached by the

s0/α0−−−−→ transition, which will makeMk−1 output the
α0 action infinitely often, or Mk−1 outputs the α0 action fewer than k− 1 times
and then outputs the α1 action and thereby moving GS to s1 too soon. Neither
of these situations is winning for the formula EX ks1 in GS, which implies that
Mk−1 cannot exist. Therefore Mk is the smallest winning strategy automaton
for the formula EX ks1 on GS. ut

5.2 Most Permissive Strategy

In this section, we introduce the notion of nondeterministic strategy automaton.
As mentioned earlier we can use strategy automata to represent strategies, and
we will show how we can use nondeterministic strategy automaton to represent
multiple strategy automata in a single automaton. We shall now formally de-
fine nondeterministic strategy automaton, for which will be the basis for Most
Permissive Strategies (MPS). They are formally defined as follows:

Definition 14 (NSA). A nondeterministic strategy automaton for a GLKS
GS = (S, s0, Act1, Act2,→, AP ,L) is a 6-tuple N = (Q,Σ, Γ, δ, q0, F ) where Q,
Σ, Γ , q0 are defined as in Definition 11 and:

– δ : Q × Σ → 2Q×Γ is a transition function and o = {α | (q′, α) = δ(q, s)},
where o ⊆ en1(s) if en1(s) 6= ∅ and o ⊆ {⊥} if en1(s) = ∅,

– F ⊆ Q is a set of final states.

There are two differences between strategy machines and NSAs. The first is
the nondeterminism. When given a state and input the nondeterminism allows
an NSA to nondeterministically choose between a set of outputs and states. The
second is the acceptance criteria. Alike Nondeterministic Strategy Automata
[17], an NSA N = (Q,Σ, Γ, δ, q0, F ) has a set F of accepting state, which allows
N to accept or reject strings dependending on whether or not N visits a state
in F or not.

To determine whether or not a strategy machine is part of an NSA, we
first need to formally define a relation between both machines. If a machine is
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said to part of an NSA, we say that that machine is an instance of the NSA.
The following definition introduces the notion of simulating a non-deterministic
machine N with a deterministic machine M , ensuring compatibility between M
and N . We define the simulation relation as follows:

Definition 15 (Simulation Relation). A binary relation R ⊆ QM × QN ,
where QM and QN are the set of states for a deterministic and nondeterministic

strategy automaton respectively, is a simulation iff q1Rq2 and if q1
s/α−−→ q′1 then

there exists a transition q2
s/α−−→ q′2 such that q′1Rq′2.

We say that q2 simulates q1, written q1 ≤ q2, if there is a simulation relation
that relates them. Given a deterministic and a nondeterministic strategy au-
tomaton, M = (QM , Σ, Γ, δ

′, q0) and N = (QN , Σ, Γ, δ, q
′
0, F ) respectively, then

N simulates M , written M ≤ N , if q0 ≤ q′0.
Given a strategy automaton, we define a trace w as w = q0q1q2 . . . , such that

for all positions i ≤ 0, there exists a transition
s/α−−→ such that qi

s/α−−→ qi+1. We
let wi denote the i’th state of the trace.

The simulation relation defined in Definition 15 ensures that a deterministic
strategy machine M is compatible with an nondeterministic strategy machine
N . However this is not enough to ensure that a machine M is an instance of N ,
because we have no notion of a acceptance criteria for the simulation. Consider
the example in Figure 11 showing a nondeterministic strategy N in Figure 11a
and a deterministic strategy in Figure 11b. Note that in q1 is a final state of N
depicted. We can quickly see that N can simulateM , however strategyM is not
an instance of N , because strategy M cannot force N to go the the final state
q1.

q0 q1
s0/α1

s1/α0

(a) Nondeterministic
Strategy N

q2

s0/α0

(b) Strategy M

q2 q3 q4
s0/α0 s1/α1

(c) Deterministic instance M ′

Fig. 11: An NSA, a simulation, and an instance

To define acceptance simulation criteria, we must ensure that given a deter-
ministic strategy machine M and deterministic strategy machine that M ≤ N .
After that, we must ensure that for all behaviors in M , at least one simula-
tion forces N to a final state. Finally, we formally define the acceptance as a
deterministic instance:

Definition 16 (Deterministic Instance). A deterministic strategy automa-
ton, M = (QM , Σ, Γ, δ

′, q′0), is a deterministic instance of a nondeterministic
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strategy automaton, N = (QN , Σ, Γ, δ, q0, F ), written M ≤F N , if M ≤ N and
for every infinite trace w in M , there exists a trace w′ in N such that wi ≤ w′i
for all i and w′j ∈ F for some j.

Recall the NSA N from Figure 11a, an instance M ′ of this NSA is shown in
Figure 11c. This alternate M ′ has that, M ′ < N and contrary to the automaton
M in Figure 11b, M ′ forces N to go to the final state q1. Because of this have
thatM ′ adheres to both Definition 15 and Definition 16, and therefore such that
M ′ ≤F N .

We say that a NSA N is winning for a formula ϕ on a GLKS GS if every
deterministic instance M of N is winning. That is, given an N , we say that it is
winning iff M ≤F N =⇒ unfold(GS, σM ) |= ϕ.

The use of most permissive strategies is beneficial when looking for a par-
ticular strategy [4] because we can check whether that strategy is an instance
(contained) of the corresponding MPS; hence the MPS acts as a verification
for the given strategy instance. we formally define a Most Permissive Strategy
Automaton, and is defined as followed:

Definition 17 (Most Permissive Strategy Automaton). An NSA N is the
most permissive strategy automaton for a formula ϕ and a GLKS GS, if every
deterministic instance M of N is a winning strategy for ϕ on GS and if every
M that is a winning strategy for ϕ on GS is a deterministic instance of N .

Now that we have formally defined most permissive strategies and determin-
istic instances, we will in the next section introduce an synthesis algorithm, that
is able to construct a MPS.

5.3 Algorithm for finding the most permissive strategy

In this section we introduce the algorithm for finding most permissive strategies.
This algorithm is shown in Algorithm 3. We start by defining the notion for
update, which will be used in Algorithm 3 when creating transitions and states.
We define the update δ as follows:

Definition 18 (Update δ). Given an NSA N = (Q,Σ, Γ, δ, q0, F ) we define

N [q′
s′/α−−−→ q′′] = (Q ∪ q′′, Σ, Γ, δ′, q0, F ) where q′ ∈ Q, s ∈ Σ, and α ∈ Γ such

that:

δ′(q, s) =

{
{(α, q′′)} ∪ δ(q′, s′) if q = q′ ∧ s = s′

δ(q, s) otherwise

What is essentially in happening in Algorithm 3 is that initially we start with
a strategy that has no behaviour N⊥ in line 2, and from here we gradually build
the MPS. The key points are in line 10 where we identify final states an update
N subsequently in line 11, and in 16 where we create a new stateW ′ and update
the corresponding transitioning from W to W ’. The algorithm returns the most
permissive strategy N in line 21, when the queue is empty in line 5.
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Algorithm 3: MPS Synthesis
Input : An MDG D = (V,E, P ), the root meta-configuration r, and the

minimum fix-point assignment Amin of D
Output: A Most Permissive Non-deterministic Strategy Automaton

1 Function Synth(D, r, Amin):
2 N := N⊥ = (Q,Σ, Γ, δ, q0, F ) ;
3 visited := queue := ∅ ;
4 Push(r, queue) ;
5 while queue 6= ∅ do
6 W := Poll(queue) ;
7 Push(W, visited) ;
8 for (W,T ) ∈ E do
9 if T = ∅ then

10 N := N [W
∗/∗−−→W ] ;

11 N := (Q,Σ, Γ, δ, q0, F ∪ {W}) ;
12 continue;
13 end
14 for (s, α,W ′) ∈ T do
15 if Amin(W

′) 6= 1 then continue;

16 N := N [W
s/α−−→W ′] ;

17 if W ′ 6∈ visited then Push(W’, queue) ;
18 end
19 end
20 end
21 return N ;
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Theorem 5. Given as input a dependency graph D = (V,E, P ), constructed
from a GLKS GS = (S, s0, Act1, Act2,→, AP ,L) and a formula ϕ using the
rules in Subsection 4.2, then Algorithm 3 outputs a Most Permissive Strategy
for GS and ϕ.

In order to find an instance of an NSA N = (Q,Σ, Γ, δ, q0, F ) we use a
modified version of the alternating reachability as defined in [5]. The way it
works is by defining a safe set of states. Initially, this is safe = F . We then select
any q ∈ Q such that q

s/α−−→ q′ where q 6∈ F but q′ ∈ F . If for every outgoing
edge from q

α′−→ q′′ that q′′ ∈ safe and α′ ∈ Act2 then we add q′ to safe. If there
are other edges from q with controllable actions, we remove them. When there
are no more edges to add safe we can be sure that the NSA is deterministic.

Finally, this allows us to find an MPS for the running example from Figure 1
with the CTL− formula ϕ = (AF s2)∧ (AF s1), and then to find an instance of
this MPS, allowing us to solve the problem. This MPS is given in Figure 12 and
finally the instance is given in Figure 13.

(s0,AFs1 ∧AFs2 )

(s1,AFs2), (s1,AFs1) (s0,AFs2), (s0,AFs1)

(s0,AFs1)(s1,AFs2) (s2,AFs2)

s0/α1

s1/α2

s1/α3

s0/α4

s1/α3 s1/α2

s0/α1

s1/α2

s1/α3

s1/α4

s0/α6

s1/α4

s1/α4 ∗/∗

Fig. 12: Most Permissive Strategy corresponding to the running example 1

6 Software Implementation

This section presents PetriGAAL (Petri Game Aalborg) [23], our open-source,
cross-platform tool Game Labelled Kripke Structure strategy synthesis. It is
written in Java 16 and is built to be extensible.
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(s0,AFs1 ∧AFs2 )

(s1,AFs2), (s1,AFs1) (s1,AFs2)

(s2,AFs2)

s0/α1

s1/α3

s1/α2 s1/α6

Fig. 13: Strategy Instance corresponding to the running example 1

It uses Petri nets [15] as the model for the GLKS. Petri nets are a graphical
and mathematical modeling tool that has been a topic of interest in the scientific
community for over 50 years. For that reason there exists multiple software
tools for the modeling and automatic verification of Petri nets. One of those
software tools is the TAPAAL [7] tool suite, where we make use of its modeling
capabilities. The reason why we chose TAPAAL is that it is readily available,
the authors of this paper are familiar with it, and it has support for Petri games,
i.e., Petri nets with transitions partitioned into player 1 and 2.

PetriGAAL is capable of taking a GLKS model as input by parsing tapn files,
which is the fileformat used by TAPAAL, and encodes it as a GLKS. This is safe
to do since every Petri game can be encoded as a GLKS, as long as the Petri
game is bounded. PetriGAAL also includes a pnml parser, however in order to
include a player 2, an extra attribute is required on each transition in the pnml
file to denote where the transition belongs.

After taking a GLKS model and a CTL− formula as input, PetriGAAL will
output the most permissive strategy (if it exists), along with a deterministic
instance of that most permissive strategy and all the intermediatary stages,
i.e., the dependency graph and meta dependency graph. The procedure of how
PetriGAAL computes the output is shown in Figure 14.

DG Generator
and Solver 

MDG Generator
and Solver MPS Strategy

Instance

View View View View 

Fig. 14: Flow Chart Petrigaal

Visualizing dependency graphs and meta dependency graphs can be helpful
to determine why no strategy exists. PetriGAAL visualizes both dependency
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graphs and meta dependency graphs along with most permissive strategies and
deterministic instances. We use Cytoscape.js [8] and DOT [9] for rendering and
node-layout, respectively.

When the tool is booted up, the first thing that the user sees is shown in
Figure 15. At the top are 4 different tabs, one for each stage in the procedure.
It is possible to select a model on the left hand side by pressing the Browse
button on the upper left hand corner and then a file browser appears with which
the user can use to find the model. PetriGAAL assumes that the CTL/CTL−

formula is contained in a formula file that resides in the same directory as the
GLKS model. Once the model and the query has been loaded in, then the user
can press the Synthesize button.

Fig. 15: The PetriGAAL homescreen

An example of the meta dependency graph that the tool produces for the
fish running example given in Figure 1 and the CTL− query AF s1 ∧ AF s2 is
shown Figure 16.

The configurations with green borders are the configurations which propagate
1 and therefore it is also possible to see why the root of the (meta) dependency
graph does or does not propagate 1. All the configurations and hyper-edges
on screen can be moved by the cursor, so it is possible to manually change
the layout of the (meta) dependency graph. PetriGAAL can also filter away
all configurations that do not propagate 1. This can be done by checking the
Display only configurations which propagate 1 checkbox. PetriGAAL can also
use the GraphViz rendering engine (the default is Cytoscape.js). Notice also that
the computation time and memory usage is listed to the left of the Synthesize
button.

formula
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Fig. 16: MDG constructed from the running example

The most permissive strategy produced by PetriGaal is shown in Figure 17.
The solid transitions are what actions the controller proposes at a given state and
the dashed transitions are the relevant uncontrollable actions that we observe.
The state with the green border is the final state.

Fig. 17: Most Permissive Strategy for the running example

To recap, PetriGAAL is a almost complete work environment for GLKS
strategy synthesis that graphically renders every stage in the procedure, from
a GLKS and a CTL− formula all the way to a deterministic instance of the
produces most permissive strategy.
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7 Conclusion

We presented a framework that solves the Synthesis Decision Problem and the
Synthesis Problem in a time-branching setting. The framework is able to solve
the Synthesis Decision Problem with the use of Negation-free CTL, however,
the framework requires a restricted version CTL, namely CTL−, to solve the
Synthesis Problem. We demonstrated the difficulties when working with synthesis
in a time-branching setting, as it is not compositional in the structure of the
formula. We solve this complication by introducing Meta dependency graphs
which are in disjunctive normal form. These Meta dependency graphs alone were
able to solve the Synthesis Decision Problem. However, to solve the Synthesis
Problem, we presented an algorithm able to produce the most permissive strategy
for any CTL− formula ϕ together with a GLKS GS. The synthesis algorithm
takes in a most permissive strategy (allows all winning behavior) as input and
returns a strategy instance for a given CTL− formula ϕ together with a GLKS
GS.

Moreover, we presented an implementation called PetriGAAL, which imple-
ments all core concepts in the framework. PetriGAAL is set up with a nice GUI
that visually demonstrates all steps in the verification phase. The tool allows
the user to inspect the resulting Dependency graph, Meta dependency graph,
most permissive strategy, and strategy instance for a given CTL− formula and
a system model. On a final note, we did not prove our main claim, which states
given a Meta dependency graph, the graph only propagates one if and only if
there exists a strategy such that GS |= ϕ. However, we strongly feel that this
claim is true. The feeling is based on the experience we gained in testing the
implementation. However, this remains future work.

7.1 Future Work

We plan to extend our framework to be able to solve the Synthesis Problem
for the full CTL. This work would entail introducing epsilon edges to the con-
struction of most permissive strategies. Furthermore, work on the PetriGAAL
implementation is required to make the tool more useful. For instance, currently,
both the dependency graph generation and evaluation are being done using the
global algorithm [13]. Instead, an on-the-fly approach would probably result in
a significant speed-up. In addition, in [6], Dalsgaard et al. show how to use
multiple threads for dependency graph evaluation. Applying this approach to
PetriGAAL would only require only minor modifications to the algorithm. Cur-
rently, the PetriGAAL implementation only accepts Petri Nets. It would be a
nice feature to add other modeling languages such as Game Labelled Kripke
Structure.

Acknowledgment. We want to thank our supervisors Jiří Srba and Peter
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Bibliographical Remarks The following sections are either taken from or
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– all definitions between Definition 1 and Definition 2,
– Section 3,
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– Subsection 4.1, and
– the next and delta functions in Subsection 4.2
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