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Abstract 

Bees are important in the ecosystem, in their roles as pollinators of various flora, some of which are 

agriculturally relevant. This makes pollinators not only valuable in terms of biodiversity and ecosys-

tem stability, but also financially since growing more, healthier crops without the need for further 

land use is positive for the environment and biodiversity in general. Due to climate change, habitat 

fragmentation and general habitat degradation, bee populations are under pressure and declining, 

making them a key target for conservation efforts. To effectively plan conservation efforts, it is nec-

essary to not only know where the intended target is present now, but also where it has the poten-

tial to be present in the future. Tools such as Species Distribution Models (SDMs) make it possible to 

predict the potential future distribution of species, ensuring that areas targeted for conservation ef-

forts not only help the species currently but will benefit the species going forward. This project looks 

at a 50-year prediction of climate, following two different Shared Socio-economic Pathways (SSPs), 

specifically SSP 1-2.6 and SSP 3-7.0 (Hausfather 2019), to point to potentially beneficial areas for 

conservation of bees, now and in 50 years. Furthermore, this project implements species interac-

tions into the SDMs, strengthening the accuracy of its models. The project found that Northern Eu-

rope, specifically England, the Netherlands, and Denmark, had a higher-than-average bee species 

richness. It also showed that the overall species richness was positively skewed. The countries with 

higher bee species richness should consider conservation efforts towards bees, since they can con-

serve the highest number of species, and these species will soon no longer be able to move their dis-

tribution northwards, due to being blocked by the ocean. Countries with a lower density of species, 

would still benefit from conserving bees, but efforts here might sooner become irrelevant due to 

changes in climate. Denmark is among the countries that have a high bee species richness, meaning 

that Denmark has an opportunity to conserve many species within its borders. The main species 

richness in Denmark is focused on Northern Jutland, with Zealand having lower than average bee 

species richness for areas within Denmark. When considering the distribution of the host plants of 

certain Danish bee species, the models show that the distribution of Danish bee species is restricted 

by the distribution of their host plants. The fact that bee species distribution is limited by the distri-

bution of their host plants, means that any effort to conserve bees must take their host plants into 

consideration to be effective. 
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Introduction 

Bees 

Bees belong to the order Hymenoptera, which also includes wasps, sawflies and ants; females of this 

order develop stingers (Michener 2007). Bees are well known for living in colonies, despite many 

species living solitary lifestyles. Bees primarily feed on plant pollen, which they gather from various 

plants. In doing so they act as pollinators, helping to facilitate plant reproduction (Ollerton, Winfree, 

and Tarrant 2011; Scheper et al. 2014). Some plants would not be able to set seeds without the help 

of pollinating animals, such as bees. In fact 78% of plant species in temperate climates are depend-

ent on animal pollination in order to reproduce successfully (Ollerton, Winfree, and Tarrant 2011). 

This makes this ecological role key to the stability of an ecosystem.  

Agricultural importance 

When considering pollinators’ roles in agriculture, bees are considered the most important for agri-

cultural crops (Schenk, Krauss, and Holzschuh 2018).  While there is not a current shortage of polli-

nation services, agriculture is becoming more pollinator dependent (Aizen et al. 2008). However, 

with a declining population of European bees and a growing demand, it is only a matter of time be-

fore a shortage in pollination services will be a reality, unless efforts are made to prevent the decline 

in pollinator populations. Research has also shown that diversity in pollinators can help increase ag-

ricultural yield, without increases in land use or intensity (Brittain et al. 2013). By utilizing the bees’ 

natural foraging behaviours when in the presence of another species, the likelihood of successful 

pollination increases. This further emphasises the need for conservation of the wild bee species, as 

these might be the key to keeping up with increasing demands in a sustainable way. The presence of 

managed bees can have a negative effect on wild bee populations by introducing pathogens to the 

area, changing the composition of flora, and competing for flowers and nesting resources (Mallinger, 

Gaines-Day, and Gratton 2017). 

Interactions between bees and plants 

Every species of bee has a set of potential feeding plants, they have species specific adaptations to 

better gather pollen from these plants. Simultaneously these plants develop to better take ad-

vantage of the pollinators, ensuring that their genetic material gets deposited and transferred via 

the bees that visit them. This symbiosis is important for the ecosystems, and thus it is important to 

know about these interactions. A Danish study has compiled a list of documented interactions be-

tween bees in Denmark and the flowers that host them (Rasmussen, Schmidt, and Madsen 2016), 

and a study from the Netherlands has looked into how the distribution of host-plants affect the dis-

tribution of the related bee species (Scheper et al. 2014). When looking into the conservation of 
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bees, not paying attention to the composition of flora in the area could result in failure before the 

effort even begins. Not all bee species have access to the same number of host plants, some are 

highly specialised to gather pollen from specific plants (Miller-Struttmann et al. 2015; McAulay, Kill-

ingsworth, and Forrest 2021).  

Threats and population decline 

The decline of bee populations is a well-known problem (Scheper et al. 2014; Klein et al. 2017; Polce 

et al. 2013; Marshall et al. 2018). The use of pesticides can be a major threat to bee populations, 

since they often affect neural pathways important for the complex cognitive challenge of foraging 

pollen (Klein et al. 2017). Another factor in the decline in bee populations is climate change, and 

how sudden changes in climate affects bees. A common response to increasing temperatures, is mi-

grating towards the poles, this response is lacking within bumble bees in Europe and North America 

(Kerr et al. 2015). This lack of adaptation to changing climate means that species’ distribution area is 

shrinking, since the southern boundary is changed due to areas no longer supporting the species ex-

istence there. Another effect of climate change on bee species is desynchronization with interaction 

partners, which can lead to periods of starvation. A study found that a desynchronization of six days 

killed most specimens of the studied species (Schenk, Krauss, and Holzschuh 2018), their experiment 

was based on a study that found the average desynchronization by 2050 to be three days between 

bees and plants (Thackeray et al. 2016). Research also points to a mismatch in functionality, as bees 

specialised toward certain plants, develop more generalist traits to better cope with the pressures of 

a changing climate (Miller-Struttmann et al. 2015).  

From the 185 species with interaction data modelled in this project, 23 are considered endangered 

or worse on the Danish red list (Madsen 2019).  

Biotopes importance to biodiversity 

Biotopes are partially defined by the flora within them, as such they also play a role in determining 

which pollinators are in the area. When looking at areas to focus conservation targeting biotopes 

could be a way to not only conserve bees but their host plants as well. Within Denmark the law of 

nature conservation (Miljø- og Fødevareministeriet 2009) protects the ecosystem, and under that, 

certain biotopes.  The biotopes protected under the law of nature conservation are commonly re-

ferred to as §3 areas, as this is the part of the law that specifies these biotopes. This paragraph 

states that: There are not to be changes made to the condition of natural lakes of more than 100m², 

water streams, heaths, bogs and similar, beach meadows, beach swamps, fresh meadows, or biologi-

cal pastures, when these areas either alone or in conjunction reach an area of 2500m². 
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Species Distribution Model 

Species Distribution Models (SDMs) are a useful tool for conservation work, as it can help point to 

areas where conservation will be more likely to be effective in the future. With most species adapt-

ing their distribution as a responds to climate change, SDMs are vital to knowing where species are 

most likely to be in the future (Swab et al. 2015). Other than predicting the distribution of wanted 

species, SDMs are also used for predicting the movements of potentially invasive species (Jiménez-

valverde et al. 2011). In addition to the climate focused SDM, by adding biological interactions to the 

models, making a Joint Species Distribution Model (JSDM), you add another layer of information to 

the models (Pollock et al. 2014). Such models are very useful when mapping the distribution of spe-

cies with close ties to other species. 

There are two different approaches to making an SDM, the correlative and the mechanistic. Both 

methods are interested in the niche of the species, they simply look for different stages of the niche. 

The mechanistic approach is concerned with the physiological limitations of a species, using these to 

find the niche that a species can occupy within the environment (Kearney and Porter 2009). This ap-

proach requires a tremendous knowledge about the modelled species, and thus is not viable for spe-

cies that have not been thoroughly studied. The other approach, the correlative approach, seeks to 

decern the species niche by looking at where the species occurs. This leads to the realised niche of 

the species, a subset of the conditions that the species could be found in (Pulliam 2000). The correla-

tive method only requires knowledge of where a species is present, and the environmental factors 

that affect that area, most often climate variables. This makes this approach more suited for model-

ling species that have been studied extensively, such as rare or invasive species (Morin and Thuiller 

2009).   

Model improvements 

There are many ways to improve models after the initial run, the simplest of which is to run the 

model again to see whether the results match up. This is commonly done to converge on the most 

accurate model, the replicate runs ensure that the variability of the importance of different variables 

is considered (Manzoor, Griffiths, and Lukac 2018). Another way to improve the model is by simplify-

ing the variables that are put into the model, the fewer variables used to get the same predictive 

power, lessens the risk of overfitting the models (Jiménez-valverde et al. 2011).  

Aim 

The aim of this project is to assess: 1) Where in Europe are the highest species richness for bees, 2) 

How does the species richness shift over time following SSP 1-2.6 and SSP 3-7.0, 3) Where in 
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Denmark has the highest bee species richness, 4) how do interactions between plants and bees af-

fect the bee species distribution, 5) are endangered species present in Danish species richness hot 

spots.   



Side 10 af 45 
 

Method 

This project aims to develop models for the potential distribution of European bee species, along 

with that of Danish bee species and their host plants, for the current climate and that of 2061-2080 

according to GCM CNRM-CM6-1’s SSP 1-2.6 and SSP 3-7.0 scenarios. To do so three sets of climate 

data was acquired, along with occurrence data for the bees and plants relevant to this project. Mod-

els were made using the maxent software through R.  

Getting the data 

Observational data 

Occurrence data was acquired through the Global Biodiversity Information Facility (GBIF), which is a 

database that collects the data of many smaller databases making it easier to gather all the data re-

quired for research such as this.  

Using the families of bees; Andrenidae (GBIF 2020a), Apidae (GBIF 2020b), Colletidae (GBIF 2020c), 

Halictidae (GBIF 2020d), Megachilidae (GBIF 2020e), and Melittidae (GBIF 2020f), a list was compiled 

of all species within these families, for which the GBIF database had occurrence data, meaning veri-

fied sightings of the species. The family Stenotritidae was left out of this project, as it is restricted to 

Australia. This resulted in a list of 693 species of European bees, 605 species had observations that 

fulfilled these criteria:  

- contained decimal coordinates for the observation. 

o which did not match the coordinates of a capital city, the centre of a country or an 

institution. 

o were not equal or zero. 

o fell outside the country the observation was assigned to. 

- Had an uncertainty of 100 km or less. 

- Occurred after 1900. 

These criteria were set to avoid occurrence data where the coordinates were entered incorrectly, 

the uncertainty was too high to get a reliable distribution, or the occurrence was too old to match 

the climate data used in the models, thus giving the model incorrect data. 

Interaction between bee and plant species 

To see whether the potential Danish bee distribution was restricted by the potential distribution of 

their host plants, I decided to use potential distribution of known host plants as a filter for potential 

bee distribution in Denmark. Based on the list of interactions, defined as a bee landing on a plant, 

between bees and plants in Denmark found in Rasmussen, Schmidt, and Madsen (2016), a list of 
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plant species important to the survival of Danish bees were compiled. Only interactions that were 

identified to species level were considered, as a matter of caution as well as to better utilise the re-

sources available to the project. This led to a list of 163 plants that had documented interactions 

with one or more species of bee, out of these plant species, 159 had data that fulfilled the require-

ments described for the bee occurrence data. Furthermore, the interactions are only accounting for 

183 of the bee species, meaning that only those species can be included in the interaction models.  

Climate and soil data  

The 19 climate variables used in the project were obtained from the WorldClim data website (Fick 

and Hijmans 2017)(Table 1), they are based on temperature and precipitation.  

Table 1 descriptions of the 19 climate variables and how they are derived from temperature (T) and monthly precipitation 

(PPT) data, the numeric month (i) is used throughout the calculations. When a calculation aims to select a quarterly value, 

the dataset wraps around into the next year, to calculate all possible quarters in a full year (O’Donnell and Ignizio 2012). 

The variables concerning P, N and pH in topsoil, were used in the modelling of host plants, and based on LUCAS soil survey 

(Ballabio et al. 2019).   

Bioclim annotation Description Unit Calculation Notes on interpretation 

Bio1 Annual Mean Tem-

perature 

°C 
𝐵𝑖𝑜 1 =  

∑ 𝑇𝑎𝑣𝑔𝑖=12
𝑖=1

12
 

The monthly average is averaged 

over the year. This approximates 

the total energy input for an eco-

system. 

Bio2 Annual Mean Diur-

nal Range 

°C 
𝐵𝑖𝑜 2 =  

∑ (𝑇𝑚𝑎𝑥𝑖 − 𝑇𝑚𝑖𝑛𝑖)
𝑖=12
𝑖=1

12
 

The monthly diurnal range is av-

eraged over the year. Help decern 

relevance of temperature fluctua-

tions. 

Bio3 Isothermality % 
𝐵𝑖𝑜 3 =  

𝐵𝑖𝑜 2

𝐵𝑖𝑜 7
𝑥100 

The ratio of the annual mean di-

urnal range to the annual temper-

ature range. This helps quantify 

the day to night fluctuation com-

pared with the summer to winter 

fluctuation. 

Bio4 Temperature sea-

sonality (SD) 

°C 𝐵𝑖𝑜 4 = 𝑆𝐷{𝑇𝑎𝑣𝑔1, … , 𝑇𝑎𝑣𝑔12} The standard deviation of the 12 

mean monthly temperatures. 

Helps decern the changes in tem-

perature throughout a year. 

Bio5 Max Temperature 

of Warmest Month 

°C 𝐵𝑖𝑜 5 = max({𝑇𝑚𝑎𝑥1, … , 𝑇𝑚𝑎𝑥12}) Selecting the highest temperature 

of the year. Helps decern impact 

of warm temperature anomalies. 
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Bio6 Min Temperature of 

Coldest Month 

°C 𝐵𝑖𝑜 6 = min({𝑇𝑚𝑖𝑛1, … , 𝑇𝑚𝑖𝑛12}) Selecting the lowest temperature 

of the year. Helps decern impact 

of cold temperature anomalies. 

Bio7 Annual Tempera-

ture Range 

°C 𝐵𝑖𝑜 7 = 𝐵𝑖𝑜 5 − 𝐵𝑖𝑜 6 The range from the lowest yearly 

temperature to the highest. Helps 

decern the impact of ranges of 

extreme temperature ranges. 

Bio8 Mean Temperature 

of Wettest Quarter 

°C 

𝑄𝑃𝑃𝑇𝑚𝑎𝑥 = max

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑃𝑃𝑇𝑖 ,

𝑖=3

𝑖=1

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=12

𝑖=10

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=1

𝑖=11

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

𝐵𝑖𝑜 8 =  
∑ 𝑇𝑎𝑣𝑔𝑖
𝑖=3
𝑖=1

3
 

The three-month period with the 

highest total precipitation is se-

lected, and the average tempera-

ture of those three months are 

averaged. Helps decern how 

much environmental factors im-

pact distribution. 

Bio9 Mean Temperature 

of Driest Quarter 

°C 

𝑄𝑃𝑃𝑇𝑚𝑖𝑛 = min

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑃𝑃𝑇𝑖 ,

𝑖=3

𝑖=1

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=12

𝑖=10

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=1

𝑖=11

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

𝐵𝑖𝑜 9 =  
∑ 𝑇𝑎𝑣𝑔𝑖
𝑖=3
𝑖=1

3
 

The three-month period with the 

lowest total precipitation is se-

lected, and the average tempera-

ture of those three months are 

averaged. Helps decern how 

much environmental factors im-

pact distribution. 

Bio10 Mean Temperature 

of Warmest Quarter 

°C 

𝑄𝑇𝑚𝑎𝑥 = max

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑇𝑎𝑣𝑔𝑖 ,

𝑖=3

𝑖=1

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=12

𝑖=10

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=1

𝑖=11

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

𝐵𝑖𝑜 10 =  
∑ 𝑇𝑎𝑣𝑔𝑖
𝑖=3
𝑖=1

3
 

The Three-month period with the 

highest sum of average tempera-

tures is selected, the average 

temperatures of those three 

months are then averaged. Helps 

decern the impact of prolonged 

warm temperatures on distribu-

tion. 
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Bio11 Mean Temperature 

of Coldest Quarter 

°C 

𝑄𝑇𝑚𝑖𝑛 = min

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑇𝑎𝑣𝑔𝑖 ,

𝑖=3

𝑖=1

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=12

𝑖=10

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=1

𝑖=11

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

𝐵𝑖𝑜 10 =  
∑ 𝑇𝑎𝑣𝑔𝑖
𝑖=3
𝑖=1

3
 

The Three-month period with the 

lowest sum of average tempera-

tures is selected, the average 

temperatures of those three 

months are then averaged. Helps 

decern the impact of prolonged 

cold temperatures on distribu-

tion. 

Bio12 Annual precipitation Mm 
𝐵𝑖𝑜 12 =  ∑ 𝑃𝑃𝑇

𝑖=12

𝑖=1
 

The sum of the monthly precipita-

tion of a year. Helps decern the 

impact of water availability on 

distribution. 

Bio13 Precipitation of 

Wettest Month 

Mm 𝐵𝑖𝑜 13 = max([𝑃𝑃𝑇1, … , 𝑃𝑃𝑇12]) Selecting the month with the 

highest total precipitation. Helps 

decern impact of extreme precipi-

tation on distribution.  

Bio14 Precipitation of Dri-

est Month 

Mm 𝐵𝑖𝑜 14 = min([𝑃𝑃𝑇1, … , 𝑃𝑃𝑇12]) Selecting the month with the low-

est total precipitation. Helps de-

cern impact of extreme lack of 

precipitation on distribution. 

Bio15 Precipitation Sea-

sonality (CV) 

% 
𝐵𝑖𝑜 15 =

𝑆𝐷{𝑃𝑃𝑇1, … , 𝑃𝑃𝑇12}

1 + (
𝐵𝑖𝑜 12
12

) 
𝑥100 

First the standard deviation of the 

monthly precipitation is calcu-

lated, that is then divided with 

the mean monthly precipitation 

plus one, then that value is multi-

plied by 100. Helps decern the im-

pact of variability of precipitation 

of the distribution.  

Bio16 Precipitation of 

Wettest Quarter 

Mm 

𝐵𝑖𝑜 16 = max

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑃𝑃𝑇𝑖 ,

𝑖=3

𝑖=1

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=12

𝑖=10

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=1

𝑖=11

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

 

The three-month period with the 

highest precipitation is found. 

Helps decern the impact of such 

environmental factors on distri-

bution. 
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Bio17 Precipitation of Dri-

est Quarter 

Mm 

𝐵𝑖𝑜 17 = min

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑃𝑃𝑇𝑖 ,

𝑖=3

𝑖=1

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=12

𝑖=10

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=1

𝑖=11

∑ 𝑃𝑃𝑇𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

The three-month period with the 

lowest precipitation is found. 

Helps decern the impact of such 

environmental factors on distri-

bution. 

Bio18 Precipitation of 

Warmest Quarter 

Mm 

𝑄𝑇𝑚𝑎𝑥 = max

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑇𝑎𝑣𝑔𝑖 ,

𝑖=3

𝑖=1

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=12

𝑖=10

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=1

𝑖=11

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

𝐵𝑖𝑜 18 =  ∑ 𝑃𝑃𝑇𝑖
𝑖=3

𝑖=1
 

The Three-month period with the 

highest sum of average tempera-

tures is selected, the total precipi-

tation of those three months is 

calculated. Helps decern the im-

pact of such environmental fac-

tors on distribution. 

Bio19 Precipitation of 

Coldest Quarter 

Mm 

𝑄𝑇𝑚𝑖𝑛 = min

(

 
 
 
 
 
 
 
 
 

|

|

|

|
∑ 𝑇𝑎𝑣𝑔𝑖 ,

𝑖=3

𝑖=1

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=4

𝑖=2… ,

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=12

𝑖=10

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=1

𝑖=11

∑ 𝑇𝑎𝑣𝑔𝑖 ,
𝑖=2

𝑖=12

|

|

|

|

)

 
 
 
 
 
 
 
 
 

 

𝐵𝑖𝑜 19 =  ∑ 𝑃𝑃𝑇𝑖
𝑖=3

𝑖=1
 

The Three-month period with the 

lowest sum of average tempera-

tures is selected, the total precipi-

tation of those three months is 

calculated. Helps decern the im-

pact of such environmental fac-

tors on distribution 

P Phosphorus in top-

soil 

mg/kg From the LUCAS topsoil survey in Eu-

rope 

 

N Nitrogen in topsoil g/kg From the LUCAS topsoil survey in Eu-

rope 

 

pH pH in H2O  From the LUCAS topsoil survey in Eu-

rope 

 

 

The resolution of the climate variable raster was 2,5 minutes, meaning the cells measured 21,44 km² 

at the equator, resulting in models of the same resolution. The climate raster were cropped to Eu-

rope and using the World Geodetic System 1984 (WGS84) to project longitude and latitude onto 

maps. In order to predict the potential distribution of the plants more accurately, soil variables were 

added to the list of variables, specifically soil pH and the content of P and N in the soil (Ballabio et al. 

2019). These values were considered static in the 50-year period that the project evaluates. Due to 
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the soil variables only being available for EU member countries, some data points from the database 

were no longer valid, any plant with more than 50% invalid points were not able to be modelled. 

This resulted in 145 plant models. For the future scenarios, the Global Circulation Model (GCM) 

CNRM-CM6-1 (Voldoire et al. 2019) was chosen based on its basis in Europe, furthermore the sce-

narios SSP1-2.6 (Hausfather 2019) was chosen to show the changes in distribution should the global 

temperature increase be kept to a minimum, along with SSP3-7.0 to show what would happen in the 

case we do not attempt to halt the increase in temperature. Models in this project concerns the pe-

riod 2061-2080, and the GCMs all predict the climate up to 2100 including the climate in the period 

of interest (Table 2).  

Table 2 The predicted warming and CO2 emissions by the year 2100 following the two shared socio-economic pathways; 

SSP 1-2.6 and SSP 3-7.0. 

Shared Socio-economic Pathway Warming by 2100 (°C) CO2 Emission by 2100 (Gigatonnes) 

SSP 1-2.6 1,3 – 2,9 -8,62 

SSP 3-7.0 3,0 – 6,2 82,73 

 

Characteristic biotope plants 

To answer the question of which biotope contains the most important host flowers, for the distribu-

tion of Danish bees, lists of flowers from different biotopes are required. In this project the lists were 

based on the field charts meant to determine the quality of the protected §3 areas (Fredshavn et al. 

2009). In order to determine which list contained the flowers that contributed most to the distribu-

tion of Danish bees, each list was cross referenced with the list of host plants used previously. By do-

ing that a list of host plants for each biotope was compiled. In turn every list of biotope host plants 

was removed from the total list of host plants, in order to observe the changes to the distribution as 

a result of removing plant species from each biotope as potential interaction partners. This was done 

for each biotope and each climate scenario to see whether, according to the models presented in 

this project, the importance of each biotope remains constant or changes as a result of climate 

change.  

Building the Models 

The models in this project are made using the R package ‘dismo’ (Hijmans et al. 2020) and the mod-

elling software ‘MaxEnt’ (Phillips, Dudík, and Schapire 2021). The models were made using the de-

fault setting of MaxEnt, with 25% percent of the occurrence data held back to train the model, by 

using them as unknown presences that the model must be able to predict. This meant that species 

with fewer than four occurrences would not be able to be modelled. In this project only one GCM 

was used, and no replicate runs were made of any models.  
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MaxEnt 

MaxEnt is among the most popular tools for species distribution models, with more than 1000 pub-

lished applications in the last 15 years (Merow, Smith, and Silander 2013; Hijmans et al. 2020; Phil-

lips, Dudík, and Schapire 2021). Maxent takes an input in the form of presence-only data, along with 

a set of environmental data. These often come in the shape of raster, which are grid-based maps. It 

is important that the different environmental data raster has the same resolution. The raw output of 

MaxEnt when the occurrence points are changed into a raster, is a probability of presence for each 

cell on the grid map. The model works by taking a group of background cells, where the occurrence 

of a species is unknown, and training the model to differentiate between background cells and oc-

currence cells. This is done through a process known as machine learning, where an algorithm fine 

tunes the importance of different predicting factors until it can tell occurrence from background. 

MaxEnt will by default pick background points completely at random, which assumes that the spe-

cies is equally likely to be anywhere within the area being modelled, this results in the most spatially 

diffuse distribution possible, leading to the largest possible range. Furthermore, MaxEnt builds a set 

of features from the selected predictors, by applying different feature classes such as linear, quad-

ratic, product, threshold, hinge and categorical. By default, the types of features MaxEnt utilizes is 

dependent on number of presences with 80+ presences enabling all feature classes to be used. Reg-

ularization is a feature that ensures that the MaxEnt does not over-fit its models, by ensuring that 

empirical constraints are not too tightly fit, and by penalizing the model based on the magnitude of 

the coefficient. This makes regularization key in reducing the number of features that end up mat-

tering in the final model. By default, the regularization coefficient is set for each feature class. 

MaxEnt assumes that every cell has the same likelihood of being sampled for occurrence, in other 

words that there is no sampling bias in the data, this is however rarely the case as sampling occurs 

more often closer to populated areas.  

Output and evaluation of models 

These models were then applied on the raster stack of variables for the current climate model, as 

well as those for SSP 1-2.6 and SSP 3-7.0. This resulted in three raster with continuous values be-

tween zero and one. To construct species richness maps these raster were converted from continu-

ous values to binary, so that stacking the raster will give a number of species with potential presence 

in each cell. This is done by setting a threshold with values meeting or passing that threshold being 

considered potential presences, and values below that threshold being considered absences. These 

values are then put into a confusion matrix, that takes the known occurrence points and the pre-

dicted occurrence points and compare them: 
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 Predicted NO Predicted YES 

Actual NO TNR FPR 

Actual YES FNR TPR 

 

By shifting the threshold, the rates at which actual occurrence points are predicted as occurrences 

on the binary map changes, along with all the other rates. A cell that contains a known occurrence 

will always land in the ‘Actual YES’ row, but if the threshold is too high, it might fall in the ‘Predicted 

NO’ column, in that case lowering the threshold would put it into the ‘Predicted YES’ column increas-

ing the True Positive Rate (TPR). At the same time lowering the threshold could turn cells that do not 

contain known occurrences from the ‘Predicted NO’ column to the ‘Predicted YES’ column, which 

would lower the True Negative Rate (TNR). To get the most accurate threshold you want a high true 

negative and true positive rate, which is why this project used True Skill Statistic (TSS) to dynamically 

set the most accurate threshold value for each model.  

For each threshold between zero and one a TSS value was calculated using formular:  

𝑇𝑆𝑆 = 𝑇𝑃𝑅 + 𝑇𝑁𝑅 − 1 

Increases in either TPR or TNR will result in an increase in TSS and in a more accurate binary raster, 

by attempting different thresholds for the model we can find the threshold that allows for the high-

est TSS possible for the model, thus the most accurate binary raster.  

Finding the right threshold is thus a matter of trying a series of different threshold, filling the confu-

sion matrix to calculate the TSS, then applying the threshold that resulted in the highest TSS to the 

raster. The Receiver Operating Characteristic (ROC) curve is used to evaluate models independent of 

the threshold, by plotting the TPR as a function of the FPR. If the model is no better than random at 

predicting potential occurrences the Area Under the Curve (AUC) will be 0,5 or lower, but if the 

model is better than random the AUC will be above 0,5.  

A model can only ever return a measure of potential distribution, since there is no guarantee that a 

species is present in a cell that supports it, the only way to truly know whether a species is precent in 

a cell is to physically sight it.  
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Figure 1 flowchart of the making of the predicted occurrence maps using MaxEnt. The inputs are 19 climate variable raster 

and the cells with known occurrences of one species.  

Skewness 

Skewness is a statistical measure of the evenness of a distribution, as well as which side of the mode 

has the more extreme values. The skewness value is either positive, negative or zero, a positive 

skewness means that there are more values to the right of the mode of the distribution, than what 

would be expected from a normal distribution. Skewness is hard to evaluate in small sample set but 

seeing as this project deals in very high numbers of values, it makes skewness easy to calculate. Any 

value +/- 0,179 is considered skewed with a sample size of 500, meaning that any map with a skew-

ness beyond these values can be considered skewed (Doane and Seward 2011). 

Results 

689 models were constructed, 543 bee models and 146 plant models, to answer the questions posed 

in the aim of this project, the following results are all derived from said models. 
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Models of European bee species 

Overview of three climate scenarios 

 

Figure 2 Potential bee species richness in Europe (A,C,E) and Denmark (B,D,F) across three different scenarios; current cli-

mate (A,B), SSP 1-2.6 (C,D) and SSP 3-7.0(E,F). Values under 1 have been coloured white, with values above 0 coloured from 

red to green in increments of 40.  

The maps in Figure 2 are the result of stacking the binary maps of each species and summing the 

stack into one value. This represents the potential bee species richness of Europe and Denmark, 
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each cell has a value between 0 and 400, with these values being designated a colour in increments 

of 40. The green colours are higher on the spectrum and red is lower.  

The species richness map concerning the current climate period makes it clear that the highest po-

tential species richness of bees is found in Southern England, Northern France, Belgium, The Nether-

lands, Germany, and Denmark (Figure 2A).  

When focusing on Denmark it becomes clear that Zealand has the lowest potential bee species rich-

ness in Denmark, with parts of Northern Jutland scoring upwards of 400 potential bee species (Fig-

ure 2B).  

In the SSP 1 model, the species richness is likewise higher in Southern England, Belgium, The Nether-

lands, Northern Germany, and Denmark. Furthermore a few species have started to move into Rus-

sia (Figure 2C). In this scenario we see little change in the distribution of potential bee species rich-

ness in Denmark (Figure 2D).  

In the SSP3 scenario the species richness is highest in Southern England, the Netherlands, and Den-

mark. We also see that more of Russia becomes home to bees, and a patch in Sweden becomes un-

inhabitable to any of the modelled species of bee (Figure 2E). When looking at the Denmark map for 

this scenario there is no change in the distribution compared to the current climate (Figure 2F).   

Table 3 Displaying the mean, median, skewness and total of each of the different climate scenarios for both European and 

Danish bee models. 

European Bee 

Models 

Mean 

Species 

Richness 

Median 

Species 

Richness 

Species 

Richness 

Skewness 

Total Spe-

cies Rich-

ness 

 European 

Bee Models 

in Denmark 

Mean 

Species 

Richness 

Median 

Species 

Richness 

Species 

Richness 

Skewness 

Total 

Species 

Richness 

Current cli-

mate 

55,73 15 1,97 49406108  Current cli-

mate 

293,53 304 -0,68 1076798 

SSP 1-2.6 cli-

mate 

55,60 27 2,03 49287168  SSP 1-2.6 

climate 

306,67 322 -0,71 1121188 

SSP 3-7.0 cli-

mate 

60,91 38 1,94 54000480  SSP 3-7.0 

climate 

308,55 326 -0,86 1128068 
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Changes from current climate to the two future scenarios 

 

Figure 3 Changes in potential bee species richness in Europe (A,B) and Denmark (C,D), going from current climate to two 

different climate scenarios; SSP 1-2.6 (A,C) and SSP 3-7.0 (B,D). Negative changes are coloured red, positive changes are 

coloured green, the colours depict increments of 25.  

To better illustrate where the changes from the current climate to the predicted climate in scenario 

SSP1 and SSP3, maps of the changes in value of each cell were made (Figure 3). The general image in 

Figure 3A is that losses are more prominent than gains, which is confirmed by the total species rich-

ness change (Table 4). Most losses occur in France and Germany.  
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Figure 3B shows the changes in species richness from the Current model to the SSP 3-7.0 model. 

Here we again see losses in France and Germany, as well as in Belgium, Sweden, Lithuania, Latvia, 

Estonia, and Finland. We also see gains in Russia, Norway, Great Britain, and Denmark (Figure 3B). 

When taking the sum of this raster there is a net gain of species richness, most likely due to the 

number of cells with gains in Russia.  

The changes in species richness in Denmark (Figure 3C-D) are barely skewed, which can be seen in 

the balance between gains and losses, but regardless of climate scenario the total species richness 

change is positive (Table 4). 

Table 4 Displaying the mean, median, skewness and total change from current climate to both SSP scenarios for European 

bee models in Europe and Denmark. 

European Bee 

Models in Eu-

rope 

Mean 

Species 

Richness 

Change 

Median 

Species 

Richness 

Change 

Species 

Richness 

Skewness 

Change 

Total Spe-

cies Rich-

ness 

Change 

 European Bee 

Models in 

Denmark 

Mean 

Species 

Richness 

Change 

Median 

Species 

Richness 

Change 

Species 

Richness 

Skewness 

Change 

Total 

Species 

Richness 

Change 

Current to SSP 

1-2.6 climate 

-0,13 1 -1,46 -118940  Current to SSP 

1-2.6 climate 

12,14 12 0,03 44390 

Current to SSP 

3-7.0 climate 

5,18 6 -0,71 4594372  Current to SSP 

3-7.0 climate 

14 13 0,08 51270 
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Figure 4 Histograms of the change in area of predicted potential presence for the 543 European bee species, each bar repre-

sents species that falls within a change of 50.000 km². A illustrates the change from current climate to the climate predicted 

for 2060 according to SSP 1-2.6, with B illustrating the change from current climate to the climate predicted for 2060 ac-

cording to SSP 3-7.0. 

The distribution of the change of predicted distribution of species is clearly skewed (Figure 4, Table 

5), with most species losing distribution cells, but those with the greater change gaining distribution 

area. This effect is noticeable going to the SSP 1-2.6 climate (Figure 4A), since the mean and median 

changes are negative, while the skewness is positive signifying a right skewed distribution. The 

change going from current to SSP 3-7.0 climate (Figure 4B) shows this effect more pronounced, with 

the mean being positive despite half the species losing distribution area (Table 5).  



Side 24 af 45 
 

Table 5 displaying the mean, median and skewness change in distribution area of the 543 European bee species modelled in 

this project.  

 Mean Change in Dis-

tribution (km²) 

Median Change in Dis-

tribution (km²) 

Skewness of Change in 

Distribution 

Current to SSP 1-2.6 -2574 -69889 1,38 

Current to SSP 3-7.0 99418 -61500 1,64 

 

 

Figure 5 Histograms depicting the changes in the northern (A,B) and southern (C,D) boundaries as well as the span (E,F) of 

the predicted distribution off the 543 European bee species. The histograms on the left (A,C,E)  illustrate the change from 

current climate to the climate predicted for 2060 according to SSP 1-2.6, with the histograms on the right (B,D,F) illustrating 

the change from current climate to the climate predicted for 2060 according to SSP 3-7.0. 
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There is a tendency for the predicted boundaries to move north, with all average changes being pos-

itive. Examining the skewness, some species move their northern boundaries southwards to an ex-

treme degree. While the bee species on average travel northward, some fail to do so. On average 

the northern boundaries move north more than southern boundaries do, which leads to an average 

expanse of distribution span. 

Table 6 displaying the mean, median and skewness of changes in northern and southern boundaries as well as changes to 

distribution span in degrees.  

 

  

Northern 

Boundary 

Change  

Mean Median Skewness  Southern 

Boundary 

Change 

Mean Median Skewness  Span  

Change 

Mean Median Skewness 

Current 

to SSP 1-

2.6 

1,74 0,75 -1,53  Current 

to SSP 1-

2.6 

0,66 0,08 1,55  Current 

to SSP 

1-2.6 

1,09 0,38 -1,15 

Current 

to SSP 3-

7.0 

5,18 2,92 -0,59  Current 

to SSP 3-

7.0 

1,19 0,46 1,48  Current 

to SSP 

3-7.0 

3,99 1,71 -0,33 
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Models of Danish bee and plant species 

Overview of three climate scenarios for Danish bee species 

 

Figure 6 Potential Danish bee (A,C,E) and host-plant (B,D,F) species richness in Denmark using three different scenarios cur-

rent climate (A,B), SSP 1-2.6 (C,D) and SSP 3-7.0 (E,F). Values under 1 have been coloured white, with values above 0 col-

oured from red to green in increments of 20. 

When just looking at the species for whom we have interaction data (Rasmussen, Schmidt, and Mad-

sen 2016), there is still higher bee species richness in Jutland and on Fyn, compared to Zealand (Fig-

ure 6 A,C,E). Furthermore, a similar trend is present in the distribution of potential plant species rich-

ness, although the spread over all is more even (Figure 6 B,D,F). When looking at the different sce-

narios Northern Jutland remains an area of high potential species richness regardless of which cli-

mate scenario is modelled. Losses in potential species richness occurs on Zealand along with the 

west coast of Jutland, especially when modelling the SSP 3-7.0 scenario (Figure 6E). In terms of 

 ongitude  degrees 
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potential plant species richness, no overall trend in the changes to the distribution of richness is no-

ticeable, this is backed by the mean, median and skewness being almost unchanged (Table 7) 

 

Table 7 displays the mean, median, skewness and total of the species richness of the Danish bees, and the plants they inter-

act with. 

Danish Bee 

Models 

Mean 

Species 

Richness 

Median 

Species 

Richness 

Species 

Richness 

Skewness 

Total Spe-

cies Rich-

ness 

 Plant Mod-

els 

Mean 

Species 

Richness 

Median 

Species 

Richness 

Species 

Richness 

Skewness 

Total 

Species 

Richness 

Current cli-

mate 

155,26 169 -1,54 567648  Current cli-

mate 

107,28 109 -0,79 366371 

SSP 1-2.6 cli-

mate 

153,66 168 -1,39 561783  SSP 1-2.6 

climate 

108,28 110 -0,80 369782 

SSP 3-7.0 cli-

mate 

143,32 160 -1,27 523996  SSP 3-7.0 

climate 

108,28 110 -0,80 369784 



Side 28 af 45 
 

Including host plant distribution as restricting factor for bee distribution 

 

Figure 7 The Danish bee species richness when restricting the bee species distribution to cells containing at least one of its 

host plants (A,C,E), along with the changes going from unrestricted Danish bee species distribution to distribution restricted 

by distribution of host plants (B,D,F). the maps correspond to current (A,B), SSP 1-2.6 (C,D) and SSP 3-7.0 (E,F).   

When looking at the maps of how interactions change the potential species richness distribution in 

Denmark, it is apparent that the distribution pattern remains unchanged, with the higher bee spe-

cies richness in Jutland compared to Zealand (Figure 7 A,C,E). When examining the changes in each 

cell value from not accounting for interactions, to accounting for interactions, Jutland sees a larger 
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loss of species due to interactions in the current climate than it would in any of the scenarios (Figure 

7 B,D,F), while Zealand seems unaffected by interactions in the current climate, though the losses 

become more potent in the future scenarios. 

Changes in distribution area correlates to number of interaction partners 

 

 

Figure 8 Scatterplot of the spearman correlation between number of interaction partners and change in distribution area in 

km². Each dot represents a bee species with a number of known interaction partners between 1 and 28. Each of the plots 

depicts the changes in distribution for one of the climate scenarios SSP1 (A) and SSP3 (B). the black line represents the linear 

regression between the two variables, with the grey shadow displaying the confidence interval.  

To investigate the association between loss of distribution area and number of host plants, the cor-

relation between specialisation of the bee species and the changes is their distributions area was 

computed. The species that have more interaction partners also saw the biggest losses in terms of 

distribution area due to changes in climate, both for the SSP1 (p = 1,3e-05, rho = -0,32) and SSP3 (p = 

9,1e-07, rho = -0,35) scenario. We do see that there is a higher variety of responses within the spe-

cies with a lower number of interaction partners. 
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Importance of certain biotopes on bee species richness across Denmark 

 

Figure 9 The values of the raster when removing the characteristic plants for the §3 protected biotopes, wetland, fresh 

meadow, beach meadow, heath, pasture and dune, the box labelled standard is the raster with all the plants. The three 

plots are depicting the three scenarios: Current (A), SSP 1-2.6 (B), and SSP 3-7.0 (C). 

A boxplot consists of three elements, the box which contains the middle 50% of data from the 25th 

percentile to the 75th with a line inside the box marking the average value, the tails marking the 25% 

of data either side of the box, and the outliers, here represented with circles, these are data that fall 

outside of 1,5 times interquartile range. The biotope that is most important for upholding the spe-

cies diversity of Danish bees seems to be fresh meadow, though that effect seems to be diminished 

in the future scenarios. Pasture seems to be consistently important as well, both biotopes are types 

of grassland. The changes in species richness are significant no matter which of the biotopes are 

eliminated, this is true for all the scenarios.   

  



Side 32 af 45 
 

Changes from current climate to the two future scenarios 

 

Figure 10 Histograms of the change in area with predicted presence of the 185 Danish bee species, each bar represents spe-

cies that fall within a change of 500 km². A illustrates the change from current climate to the climate predicted for 2060 

according to SSP 1-2.6, with B illustrating the change from current climate to the climate predicted for 2060 according to 

SSP 3-7.0. 

When looking at the different bee species changing their distribution from current climate to the 

two climate scenarios, the changes are small and normally distributed around zero going to SSP 1-

2.6. The changes for going to SSP 3-7.0 is leaning towards a loss in distribution, with the average, 

median, and skewness being negative.  

Table 8 displaying the mean, median and skewness change in distribution area of the 185 Danish bee species modelled in 

this project. 

 Mean Change in Dis-

tribution (km²) 

Median Change in Dis-

tribution (km²) 

Skewness of Change in 

Distribution 
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Current to SSP 1-2.6 -376,6 0 -0,02 

Current to SSP 3-7.0 -2802,8 -857,8 -0,51 

 

 

Figure 11 Histograms of the change in area with predicted presence of the 163 Danish plant species, each bar represents 

species that fall within a change of 500 km². A illustrates the change from current climate to the climate predicted for 2060 

according to SSP 1-2.6, with B illustrating the change from current climate to the climate predicted for 2060 according to 

SSP 3-7.0. 

When examining the changes in distribution area of plant species in Denmark, the general trend is 

an increase in distribution area. The general area gain is greater when modelling the SSP 1-2.6 cli-

mate (Figure 11A), with an increased average and skewness. For the SSP 3-7.0 climate a similar trend 

is seen (Figure 11B), although to a lesser degree.  
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Table 9 displaying the mean, median and skewness change in distribution area of the 163 Danish plant species modelled in 

this project. 

 Mean Change in Dis-

tribution (km²) 

Median Change in Dis-

tribution (km²) 

Skewness of Change in 

Distribution 

Current to SSP 1-2.6 1694,8 11,8 0,92 

Current to SSP 3-7.0 1032 0 0,30 

 

Distribution of endangered species with interaction data 

 

Figure 12 illustrates the distribution of the 23 endangered species modelled with interactions between host plant and bee 

species. The highest value on any of these distribution maps is 22, meaning no cell potentially contains all endangered spe-

cies, likewise the lowest value of 2 no cell has no potential presence of an endangered species. 

The distribution of the endangered Danish species, for which interaction data was available, shows 

that they tend to follow the distribution patterns of the general species richness. The endangered 

 ongitude  degrees 
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species extend their distribution hot spot further down into central Jutland, but not as far north of 

the Limfjord, compared to the general distribution. 

Model summary 

 

Figure 13 Boxplot of Area Under Curve (AUC) for both bee models and plant models. 

The Area Under Curve (AUC) is a way to determine whether the models are better than random at 

predicting potential presences, with values over 0,5 signifying a better than random model. The 

models in this project all have an AUC value above 0,7, with most of the models reaching AUC values 

of above 0,85. 
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Figure 14 boxplot of True Skill Statistics (TSS) for both bee models and plant models. 

The True Skill Statistic (TSS) is a result of subtracting one from the sum of the models true positive 

and negative rate, meaning that a TSS of 0,5 means that both true positive rates and true negative 

rates must be at least 0,5. This means that with most bee models having a TSS of above 0,8, can only 

happen when both rates are at least 0,8.   

 

Table 10 Mean percentage contribution of variables on the bee and plant species distribution models, with the standard 

error in parenthesis, ordered by contribution to bee distribution models. 

 
Bee Mean Variable 

Contribution (SE) 

Danish Bee Mean Variable 

Contribution (SE) 

Plant Mean Variable 

Contribution (SE) 

Precipitation Seasonality  

(Bio15) 

13,30% (3,56) 12,59% (2,80) 5,45% (1,36) 

Mean Temp Driest Quarter  

(Bio9) 

12,17% (4,09) 7,59% (0,88) 7,10% (1,82) 

Temp Seasonality  

(Bio4) 

11,21% (2,57) 12,27% (2,24) 13,25% (2,58) 

Temp Annual Range  

(Bio7) 

10,09% (2,97) 17,49% (3,49) 11,79% (2,65) 

Min Temp Coldest Month  

(Bio6) 

8,47% (3,06) 5,71% (1,31) 0,99% (0,40) 
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Mean Temp Wettest Quarter 

(Bio8) 

6,36% (1,84) 5,84% (1,27) 2,96% (0,82) 

Max Temp Warmest Month  

(Bio5) 

4,56% (1,75) 9,13% (2,24) 3,85% (1,36) 

Mean Temp Warmest Quarter 

(Bio10) 

4,22% (1,45) 7,00% (1,43) 8,00% (2,32) 

Isothermality  

(Bio3) 

4,17% (1,78) 1,58% (0,56) 2,88% (0,77) 

Mean Temp Coldest Quarter 

(Bio11) 

4,05% (2,47) 0,91% (0,24) 7,99% (2,41) 

Precipitation Driest Month 

(Bio14) 

4,04% (1,37) 5,15% (1,26) 4,02% (1,97) 

Mean Diurnal Range  

(Bio2) 

3,57% (0,92) 5,57% (1,00) 2,29% (0,85) 

Precipitation Warmest Quarter 

(Bio18) 

3,34% (0,31) 3,19% (0,79) 5,63% (1,62) 

Annual Mean Temp  

(Bio1) 

2,97% (1,86) 1,47% (0,70) 4,11% (1,26) 

Precipitation Driest Quarter 

(Bio17) 

2,47% (1,47) 1,58% (0,75) 4,03% (1,69) 

Precipitation Coldest Quarter 

(Bio19) 

1,80% (1,04) 0,73% (0,24) 1,82% (0,62) 

Precipitation Wettest Month 

(Bio13) 

1,64% (0,70) 1,56% (0,57) 0,45% (0,36) 

Annual Precipitation 

(Bio12) 

0,92% (0,93) 0,23% (0,12) 0,20% (0,11) 

Precipitation Wettest Quarter 

(Bio16) 

0,68% (0,31) 0,41% (0,17) 0,24% (0,09) 

N 
 

 1,73% (0,69) 

P 
 

 6,76% (1,62) 

pH H2O 
 

 4,46% (1,34) 
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Discussion 

European models 

When mapping the distribution of the potential species richness of bees across Europe, it 

becomes clear that the species are not evenly distributed throughout Europe. This is backed 

up by the statistics that show us a left skewed distribution. Specifically we see that species 

richness is accumulating in Northern Europe, which supports research showing losses of 

bumblebees in Southern Europe and gains in Northern Europe (Marshall et al. 2018). The 

study by Marshall et al. (2018) looked at the differences when using climate only models, 

like the models used in present project, and using models that look land use into account. 

They found that climate only models tended to show a greater range gain, compared with 

the other models.  

Research from the Netherlands, looked into correlations between host plant population 

trends and wild bee population trends (Scheper et al. 2014). They found that the population 

trend of the pollen host plants was among the most important factors for predicting the 

population trend of bee populations, with the relationship between the factors being posi-

tive. Research into the distribution of pollinators in England shows that the majority of their 

pollinators were found in the southern part of England (Polce et al. 2013), backing up the 

predictions of this projects models of European bee species. These areas that are predicted 

to have a higher-than-average species richness are important to conserve, as they can serve 

as safe havens for those species. Predictions showing that these areas retain high species 

richness for years to come, further implies that their conservation is a good investment into 

future pollination. 

Similar to the findings of this project, other studies indicate that most species move their 

distribution towards the poles as a result of climate change (Feehan, Harley, and van Min-

nen 2009). However a study done on hoverflies in south-east Europe, found that these polli-

nators were resilient to climate changes effect on their distribution, with some species gain-

ing distribution area and others losing  Miličić et al    18 . This is also seen in the changes of 

distribution in this project, where most of the species’ distribution changed little, although 

the average change was a decline in distribution area. A few species in this project saw a 

massive gain in distribution area, namely moving into Russia, which did not have a large bee 
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presence in the occurrence data, this was partly why some species gained a large amount of 

distribution. Another study done on changes to the distribution of bumblebees, further illus-

trates that certain pollinators are resilient to climate changes, and that this might be to their 

own detriment (Kerr et al. 2015). The study by Kerr et al. (2015) shows that bumblebee spe-

cies that were predicted to change their northern and southern boundaries due to changes 

in climate, did not follow the predicted movements for the northern boundary leading to a 

decreased distribution range as the southern boundary closed in on the northern boundary. 

In this project most bee species are predicted to move their northern and southern bounda-

ries northwards. Most species are even predicted to have an expanding distribution range, 

but other studies suggest that pollinators do not adhere to these changes in boundaries, fur-

ther observational studies might be necessary.  

This project found that on average the most important climate variables, for European bee 

species, had to do with seasonality, meaning that species were more impacted by changes 

throughout the year than any specific extreme. The outlier in this being the highest temper-

ature during the driest month, which indicates that dehydration could be a concern for bee 

species in general. A study shows that heat stress can impact the growth and foraging habits 

of bees, particularly more individuals are sent to forage for water (Zhao et al. 2021). With 

this being a response to heat stress, the combination of high temperatures and low precipi-

tation would be a limiting factor for species distribution. 

Danish models 

Other studies have found that the population trends of hostplants, had a great correlation 

with the population trends of the bees that visit them (Scheper et al. 2014). This project 

found that while the lack of potential host plants was a limiting factor for bee distribution, it 

did not dramatically alter the distribution patterns in Denmark. Furthermore, the study by 

Scheper et al. (2014) points out that the level of specialisation of each bee species, does not 

help explain population trends. Present project found that there is a correlation between 

specialisation and climate impact on bees, with those bees that are less specialised losing 

more potential distribution area compared to those that have fewer potential partners. This 

stands in contrast to the findings of Scheper et al. (2014), while they do focus on population 

trends rather than distribution, these two factors are linked. The idea that generalists with a 

higher number of interaction partners, should be more prone to loss of distribution area is 
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counter intuitive, but could be explained by those species having more potential distribu-

tions in the first place. With Denmark using most of its arable land for agriculture, it leaves 

little space for wild bees, with fragmentation and habitat destruction being a major threat 

(Jørgensen 2011). Another concern is whether managed bees, kept by beekeepers to fulfil 

the role of pollinators in agricultural areas, can have a negative effect on the wild bees in an 

area. This is difficult to say for certain, with studies reporting mixed results (Mallinger, 

Gaines-Day, and Gratton 2017). However it has been shown that the presence of native wild 

bees, can benefit agriculture by raising the potential crop yield without a need of increasing 

the intensity (Brittain et al. 2013). It is even possible that native wild bees can function as a 

reserve for pollination efforts, with wild bees being capable of providing more than 90% of 

the pollination service currently provided by managed bees (Winfree et al. 2007). Agricul-

ture does however also provide a great threat to bees, in the form of pesticides. The use of 

pesticides on crops is a threat to wild as well as managed bees, as it can affect the cognition 

of the bees, and seeing as their foraging behaviour is complex and difficult to accomplish 

with an energy gain, the cognitive disturbance of pesticides can have grave impacts on bees 

(Klein et al. 2017). With how present project predicts the potential distribution of bees, both 

European and Danish, it makes sense to focus Danish conservation efforts on Jutland. By 

having areas dedicated to conserving bees and their host plants throughout the Danish 

mainland, we could ensure that a lot of bee species have a migration path at least until 

2060, and this would not even require new areas to be protected but would mainly require 

an additional effort in the meadows and heaths already protected under Danish law. This is 

further backed by other studies that show that arable land is important to certain bee spe-

cies (Marshall et al. 2018) and that grassing, mowing and cutting of grasslands such as 

meadows can artificially end flowering seasons early, which is a detriment to bee species 

with later flight periods (Scheper et al. 2014). Meadows need to be, artificially or trough 

grazing, kept at a stage of high biodiversity (Dahlström, Iuga, and Lennartsson 2013). This 

means that areas like that can provide bees with an abundance of different host plants sus-

taining many different species. Furthermore, the endangered species modelled for Denmark 

in this project, mostly follow the same distribution as the general bee species richness, 

meaning that efforts to protect bees generally will also protect the more vulnerable species. 

It is important to bring up the need for conservation of bees, and insects in general, as they 

are largely overlooked in this regard (Winfree 2010). The distribution of bees shown by the 
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SDMs in this project do not agree with the distribution pattern of Rasmussen, Schmidt, and 

Madsen (2016), they found that the majority of Danish species were present in North-east-

ern Zealand and Bornholm, compared with this project’s findings that the majority of spe 

cies are found in mid to north Jutland. This discrepancy could be a result of Rasmussen, 

Schmidt, and Madsen (2016) not modelling the species distribution, but rather looking at 

the occurrence points and their distribution. This gives them a good idea of the actual and 

historical distribution of the Danish bees, while present project shows the potential and fu-

ture distribution of Danish bees. 

Model summary 

The models crafted in this project have a high AUC, meaning they are better than random at 

predicting potential presences. That said they are potentially overfitted, due to the choices 

made based on time constraints and limited computing power.  

The choice to use the default settings in the maxent program, and thus using all potential 

connections between the prediction variables, can potentially lead to overfitting (Polce et al. 

2013)  But without the time to test whether using settings such as ‘Hinge’, as done in Polce 

et al. (2013), it was decided to use a wider setting. Furthermore, this decision was made due 

to the number of species modelled in this project, with each species having the potential to 

react to different connections between climate variables. Attempting to optimize the model 

to all 543 bee species is impossible and would most likely result in models optimized for the 

more prevalent species. At the same time, making individually optimized models is not pos-

sible for this number of species in the time allowed for this project. Another factor that 

could contribute to potential overfitting of this project’s models, is the use of all 19 climate 

variables as predicting variables. In another papers it is pointed out how lowering the num-

ber of climate variables, without losing much of the variation, is preferable to avoid overfit-

ting (Silva et al. 2014). Again, the paper only looks at the distribution of a single species, 

making the process of eliminating the climate variables that do not affect it easier, com-

pared to the process of trimming climate variables for a much higher number of species. 

Just by looking at the differences between the important variables for the European models 

and the Danish models, the species do not react to all climate variables equally.  
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Conclusion 

Pollinators are in worldwide decline, and simultaneously in increasing demand for agricul-

tural purposes. This means that initiatives to conserve pollinators must be considered. The 

most important pollinator in nature is the bee and this project maps the potential species 

richness throughout Europe, showing that England, Belgium, the Netherlands, and Denmark 

are hotspots for European bee species richness. Furthermore, it was shown that these coun-

tries remain hotspots in future climates, making them ideal for conservation efforts. Diving 

into Denmark it was shown that Jutland is the part of Denmark with the most potential bee 

species richness, and as such should be the focus for conservation efforts. It was also shown 

that interactions do not restrict Danish bee species dramatically, but that efforts should be 

focused on meadows, as this biotope harbours most of the interaction partners for Danish 

bees. Furthermore, the distribution of endangered species was shown to follow the general 

distribution in Denmark, meaning that efforts to help the general species richness would 

also cover habitats potentially housing endangered species.  
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