
Deep Learning for Direction of
Arrival Estimation

In Massive MIMO Systems

Kasper Steensig Jensen
Signal Processing and Acoustics

Master Thesis

S
T

U

D
E

N
T R E P O R T

Dept. of Electronic Systems
Aalborg University

http://www.aau.dk

Title:
Deep Learning for Direction of Arrival
Estimation in Massive MIMO Systems

Theme:
Direction of Arrival estimation

Project Period:
Master Thesis 2021

Project Group:
Group 974

Participant(s):
Kasper Steensig Jensen

Supervisor(s):
Ramoni Ojekunle Adeogun

Copies: 0

Page Numbers: 50

Date of Completion:
2021-06-03

Abstract:

With the dawn of fifth generation (5G)
cellular networks massive MIMO sys-
tems have become more applicable.
One problem in massive MIMO sys-
tems is pilot contamination caused by
the dense placement of 5G cellular
towers. Therefore it is of interest to
use blind source separation instead to
determine channel parameters. Tradi-
tional methods for blind source sepa-
ration can be slow so alternatives are
of interest. The three methods exam-
ined are deep neural networks, sparse
estimation methods (ISTA based) and
a fusion between the two (Learned-
ISTA based). For direction of arrival
estimation the methods provide com-
parable NMSE at the low end of 10−1

to high end of 10−2. The Learned-
ISTA based methods show promise
and further investigation of training
it, model parameters and peak-finding
algorithms for selecting the directions
of arrival is relevant.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

1 Introduction 4
1.1 Challenges in Channel and DoA Estimation in Massive MIMO Systems 4

1.1.1 Problem Statement & Motivation 6
1.1.2 Related Work . 7
1.1.3 Scope & Contribution . 8
1.1.4 Thesis Organization . 8

2 Deep Neural Networks for DoA Estimation in Massive MIMO Systems 9
2.1 Basics of Deep Learning . 9

2.1.1 Network Architecture . 10
2.1.2 Network Training . 13

2.2 Deep Learning for DoA Estimation . 14
2.2.1 System, Signal and Channel Model 14
2.2.2 DNN Based Methods for DoA Estimation 16

2.3 Simulations and Settings . 17
2.3.1 Data Generation . 18
2.3.2 Metrics . 19
2.3.3 Results and Discussion . 20

2.4 Summary . 24

3 Sparse Channel Estimation 25
3.1 Sparse Channel Model . 25
3.2 Sparse Estimation . 26
3.3 Sparse Channel and DoA Estimation 28
3.4 Simulation and Settings . 29

3.4.1 Data Generation . 29
3.4.2 Metrics . 30

3.5 Results and Discussion . 30
3.6 Summary . 31

ii

Contents 1

4 Model-based DNNs for DoA Estimation 32
4.1 Learned-ISTA and Learned-BISTA . 32
4.2 LBISTA for Channel and DoA Estimation 34
4.3 LBISTA-Toeplitz for Channel Estimation 35
4.4 Simulation and Settings . 36
4.5 Result and Discussion . 37
4.6 Summary . 38

5 Conclusion 39
5.1 Future Works . 40

Bibliography 41

A Learning Curves for RBN, CBN and Autoencoder 44

B Learning Curves for LISTA, LBISTA, LISTA-Toeplitz and LBISTA-Toeplitz 49

Acronyms

2G Second Generation. 4

5G Fifth Generation. 4, 5

Adam Adaptive Moment Estimation. 13, 19, 34, 36, 38

BISTA Block Iterative Shrinkage-Threshold Algorithm. 8, 27–36, 39

BS Base Station. 4–6, 14, 15

CBN Classification Based Network. 7, 8, 16–24, 29, 30, 36–39, 44–47

DNN Deep Neural Network. 6, 8–13, 19, 24, 30–33, 37–40

DoA Direction-of-Arrival. 6–9, 15, 16, 18, 19, 24, 25, 29, 30, 34, 35, 37, 39, 40

DoD Direction-of-Departure. 6, 14, 40

IoT Internet of Things. 4

ISTA Iterative Shrinkage-Threshold Algorithm. 7, 8, 27–40

LASSO (Least Absolute Shrinkage and Selection Operator. 26, 27, 31

LBISTA Learned-BISTA. 8, 32–39, 49, 50

LISTA Learned-ISTA. 7, 8, 32, 35–40, 49, 50

LOS Line-of-Sight. 5, 14

MIMO Multiple-Input and Multiple Output. 4, 6, 7

mmWave millimeter wave. 4

NLOS Non-Line-of-Sight. 5

2

Acronyms 3

RBN Regression Based Network. 7, 8, 16–21, 24, 34, 36, 39, 40, 45, 46

ResNet Residual Neural Network. 8, 11, 17, 18, 21, 39, 45

RNN Recurrent Neural Network. 7

SGD Stochastic Gradient Descent. 13, 34, 38

UE User Equipment. 4–6, 14–16

ULA Uniform Linear Array. 14

Chapter 1

Introduction

1.1 Challenges in Channel and DoA Estimation in Massive
MIMO Systems

Over the years cellular network technology has evolved a lot. The modern cellular
networks has its beginnings with the Second Generation (2G) networks that unlike
its first generation predecessor was digital instead of analog. Following the success
of the 2G networks additional generations of cellular networks have been imple-
mented [22]. The purpose of new cellular technology generations is to improve
security [8], data rates and data bandwidth [24].

The current cellular technology referred to as Fifth Generation (5G) aims to
provide data rate up to 100 Mbps average data rate [22]. To achieve this, one of the
key enabling technology is massive Multiple-Input and Multiple Output (MIMO)
technology [24]. Massive MIMO involves the deployment of a large number of
antennas, e.g., (16 to 64 or higher) [9] at the transmitter and receiver. This increase
in the number of antennas will provide a massive increase in achievable capacity
due to the possibility of transmission over multiple streams concurrently [24].

Massive MIMO allows multiple User Equipment (UE) to transmit signals si-
multaneously to the Base Station (BS) because of the spatial multiplexing. It also
enables the BS to use beamforming for simultaneous transmission to the UE [24].
However, the limited form factor of wireless devices poses a constraint on the max-
imum number of antennas. To this end, effort has been on utilizing massive MIMO
technology in the higher frequency region of the electromagnetic spectrum. A pop-
ular example is the millimeter wave (mmWave) spectrum from 30 GHz to 300 GHz
which allows the deployment of a larger number of antennas within limited area
due to its low wavelength [25].

An issue with 5G is its increase in energy consumption per gigabit. This poses
a problem as Internet of Things (IoT) devices are expected to contribute to a great
increase in data transmission on the 5G networks [14]. According to Verizon, Voda-

4

1.1. Challenges in Channel and DoA Estimation in Massive MIMO Systems 5

fone and Telefonica 85% to 89% of energy consumption in cellular networks comes
from the BS and switching equipment [26]. In practice 5G networks provide up
to 90% more energy efficiency than the previous generation. The improvement in
energy efficiency leads to a predicted 160% increase, instead of a 1600% increase,
in energy consumption from cellular networks in 2030. Most of the energy opti-
mization in 5G networks come from better power management of the amplifiers
in the network [26]. Additionally, Huawei claims that the use of beamforming in
5G results in the transmission power per bit being a tenth of what it’d be without
beamforming [13].

The high frequencies used in 5G are easily reflected by buildings and cars,
meaning BSs in cities must be placed closer to each other. However, this can re-
sult in the problem of pilot contamination. In the uplink scenario pilot signals
are orthogonal pre-determined signals transmitted from the UE to BS. These pre-
determined signals can then be used to estimate the wireless channel which is
necessary for signal estimation and indirectly beamforming. The maximum num-
ber of orthogonal pilot signals in a one millisecond coherence interval is estimated
to be 200 [18]. This makes it very likely for the same pilot sequence to be reused
by nearby UEs in cities where the BS are placed in close proximity.

One alternative to using pilot signals is to use blind signal separation [4]. Blind
signal separation consists of separating various signals from some mixture of sig-
nals without observing the original signals. This would completely do away with
pilot signals as they are not needed if the signals can be separated blindly.

Consider Figure 1.1 depicting two UEs transmitting to a BS. Each signal from
the UEs has two paths, one is a Line-of-Sight (LOS) path and the other is a reflection
path. In practice there would be many more reflection and perhaps not even LOS.
If there is not LOS it is referred to as Non-Line-of-Sight (NLOS).

Figure 1.1: Wireless communication in a city

1.1. Challenges in Channel and DoA Estimation in Massive MIMO Systems 6

A channel in Figure 1.1 has four parameters of interest: Direction-of-Arrival
(DoA), Direction-of-Departure (DoD), path loss and delay. The DoA is the angle
which a signal came from relative to the BS, DoD is the angle which a signal departs
from relative to the UE, path loss is the attenuation of the signal caused by the air
and objects the signal has reflected off, and delay describes the delay between
transmission and arrival in a given path. If the system does not include reflections
then DoD and delays are not as important. The DoD becomes unimportant because
it can be determined based on the DoA if there are no reflections. Furthermore,
the delays are not as important because the same signal does not impinge multiple
times with different delays.

Various algorithms and methods exist to estimate these parameters but there is
a trade-off between computation time and resolution. In the case of DoA estimation
it is necessary to have high resolution to distinguish various UE but the algorithms
providing higher resolution generally require more computation time. The two
classical super resolution methods ESPRIT and MUSIC [23] require an eigenvalue
decomposition, matrix inversion or parameter space search, operations that are not
computationally efficient [23].

However, by using a Deep Neural Network (DNN) it may be possible to learn a
transform between a received signal and channel parameters. This has the benefit
of moving the heavy computations to training the training stage rather than in
production, making it a viable solution. Regarding the resolution a DNN may not
necessarily provide as high a resolution as ESPRIT or MUSIC but if the resolution
is good enough then the computation time can make up for it. In short, using a
DNN will spare the need of using matrix inversions or eigenvalue decompositions
while potentially provide a high enough resolution for massive MIMO systems.

1.1.1 Problem Statement & Motivation

The objective of this thesis is investigating deep learning methods for DoA estima-
tion in massive MIMO systems. The problem statement of this thesis is to imple-
ment and evaluate DNNs for DoA estimation in massive MIMO. The purpose is
to evaluate existing DNNs and determine how they can be improved.

The motivation for DoA estimation in massive MIMO is to be able to do blind
channel estimation as this can solve the pilot contamination problem. Solving
pilot contamination is very important for making massive MIMO systems perform
reliably in cities. Using blind channel estimation also results in less transmission
overhead as the pilot signals are not transmitted in the first place.

For blind channel estimation traditional methods like ESPRIT and MUSIC can
be used. However, ESPRIT and MUSIC require the use of eigenvalue decomposi-
tions and matrix inversions which is not ideal as matrices grow larger. It is instead
of interest to train DNNs to learn some transformation between received signals

1.1. Challenges in Channel and DoA Estimation in Massive MIMO Systems 7

and channel parameters.

1.1.2 Related Work

Huang, et al. introduced a Regression Based Network (RBN) for DoA estimation
[17]. They claim their RBN works for a fixed number of source during training.
The advantages of the method is it provides extremely good precision because each
output of the RBN represents the value of a specific angle. The downside is the
number of sources is fixed for a given network. Changing the number of users
require a change in the output size.

Li, et al. introduced a Classification Based Network (CBN) that would be re-
sistant to pertubations if the antenna array was not perfectly calibrated [19]. Their
method is able to use an arbitrary resolution by increasing the number of parame-
ters and array elements in the model. However, their method is only designed for
a single source which means it is not useful for massive MIMO.

Chakrabarty, et al. [5] introduced a 2D convolutional CBN. The network uses
the phase component of the Short-time Fourier Transformed received signal as an
input. The benefit of using a 2D convolutional neural network is how powerful
its feature extraction is. The disadvantage is how much computation power and
space is required to use 2D convolutions, not ideal if cheap embedded devices are
desired.

Zhuang, et al. [27] introduced a hybrid-method for DoA estimation to ensure
robustness. It uses ESPRIT to create a coarse estimation and then machine learning
methods to refine the coarse estimates. The problem is that ESPRIT requires matrix
inversion and eigenvalue decomposition, making it unfeasible in massive MIMO
systems as the matrices involved can grow too large.

Elbir introduced the DeepMUSIC method [7]. It is a Classification Based Net-
work (CBN) using the vectorized covariance matrix as input and discretized MU-
SIC spectrum as its labels. The advantage is its support for arbitrary number of
sources. The disadvantages are having to compute the covariance matrix and in-
creasing the resolution requires bigger labels because the number of discrete values
in the MUSIC spectrum increases.

Liu introduced a ResNet CBN [20]. It uses the vectorized covariance matrix as
input and a discretized angle space as labels. The labels are 0 at the angles without
any sources and 1 at the angles with sources. The advantage of the method is the
ResNet architecture as it solves the vanishing gradient problem. The disadvantages
of the network are the same as DeepMUSIC, additionally its custom loss function
and how many epochs the network requires to train.

LeCun, et al. introduced Learned-ISTA (LISTA) [12]. It is a Recurrent Neu-
ral Network (RNN) based on the sparse estimation algorithm Iterative Shrinkage-
Threshold Algorithm (ISTA). The advantage is it requires two orders fewer iter-

1.1. Challenges in Channel and DoA Estimation in Massive MIMO Systems 8

ations than ISTA without requiring more computation per iteration. The disad-
vantages are less stability than ISTA and increasing the resolution requires bigger
labels.

Fu, et al. expanded upon LISTA to create the LISTA-Toeplitz [10]. This is
specifically suited for estimation problems like DoA estimation. It has the same
advantages as LISTA while improving performance during training and inference.
It has the same disadvantages as LISTA.

Ahmadi, at al. came up with, in a yet to be peer reviewed paper, a method
called Learned-BISTA (LBISTA) [1]. This paper was published through arXiv but
they have used the method in previous articles that have been peer reviewed. The
advantage is the ability to use multiple snapshots of the received signal which
LISTA does not. The disadvantages are the same as LISTA but amplified by using
more than a single snapshot.

1.1.3 Scope & Contribution

The thesis includes the following contributions.

• Implement and compare basic Classification Based Network (CBN), Regres-
sion Based Network (RBN) and Residual Neural Network (ResNet) for DoA
estimation

• Implement and compare using an autoencoder for feature extraction when
training a CBN compared to the full received signal

• Implement and compare Iterative Shrinkage-Threshold Algorithm (ISTA) with
Block Iterative Shrinkage-Threshold Algorithm (BISTA)

• Expand Learned-BISTA (LBISTA) to LBISTA-Toeplitz with inspiration from
the expansion from Learned-ISTA (LISTA) to LISTA-Toeplitz

• Implement and compare LISTA, LISTA-Toeplitz, LBISTA and LBISTA-Toeplitz

1.1.4 Thesis Organization

Chapter 2 explains the mathematical model of the system and investigates how
simple DNNs can perform DoA estimation. Chapter 3 describe how sparse esti-
mation methods can be used for channel and DoA estimation. Chapter 4 shows
how sparse estimation methods can be transformed into DNNs and be applied for
channel and DoA estimation. Lastly Chapter 5 concludes the results of the thesis.

Chapter 2

Deep Neural Networks for DoA Es-
timation in Massive MIMO Systems

The purpose of this chapter is to introduce simple Deep Neural Network (DNN)
models for DoA estimation and investigate the performance using various inputs.
First an introduction to DNNs is given. This is followed by an overview of the
system model and specific DNN models. Lastly an overview of DNN training
settings and simulation results is given.

2.1 Basics of Deep Learning

Deep learning is a subfield of machine learning based on the application of artificial
neural networks. Artificial neural networks are loosely based on the neuron model
of the brain. The idea is to model individual neurons as non-linear functions and
combining them into more complex models. One of the most popular type of
artificial neural networks is the Deep Neural Network (DNN).

DNNs learn an approximation of a function between some input data and the
corresponding labels. It may be easier to train a DNN rather than handcrafting
an algorithm [3]. Even if an existing algorithm exists the DNN may require less
computational power if the algorithm uses operations of high computational com-
plexity. The challenge to using a DNN lies in picking a good architecture and
ensuring the training data is of good enough quality. Training on data where edge
cases are under represented or over represented decreases the performance of the
network.

Using the fact that DNNs can approximate a non-linear function between in-
put data and labels is the intuition behind why it can be applied to DoA estima-
tion. Rather than using classical DoA estimation methods depending on matrix
inversions and eigenvalue decompositions a DNN can learn an approximation of
a function between the received signal and DoAs.

9

2.1. Basics of Deep Learning 10

2.1.1 Network Architecture

DNNs can be used in both supervised and unsupervised representation learning.
In supervised learning the DNN learns a function approximation between input
data and labels. In unsupervised learning the DNN extracts features without the
use of labels. The two types of DNN introduced are dense DNNs and autoen-
coders. Dense DNNs are supervised while autoencoders are unsupervised [11].

Dense Neural Networks

A dense DNN (also known as fully connected DNN) consists of an input layer,
output layer and one or more hidden layers between them. The purpose of dense
DNNs is learning some representation between input x and label y. The DNN
predicts an output ŷ which deviates from y. How much this deviation means is
determined by the loss function which depends on the type of problem: regression
or multi-label classification [11].

A mathematical description the ith layer in an arbitrary dense DNN is given in
(2.1). The layer produces output from some input z through a weight matrix Wi,
bias bi and activation function hi.

fi(z) = hi(Wiz + bi) (2.1)

Figure 2.1 depicts a dense DNN with four dense layers. Each layer in the DNN
works as in (2.1). For instance, the first hidden layer, which is the second layer in
the DNN, contains two neurons with three inputs and two outputs. This can be
computed using a 3× 2 weight matrix W2 and 2× 1 bias vector b2. If the input
to the 1st hidden layer is denoted z1 then the output z2 of the layer would be
computed as z2 = h2(W2z1 + b2).

Figure 2.1: DNN with two hidden layers

2.1. Basics of Deep Learning 11

Popular activation functions include Rectified Linear Unit (ReLU) in (2.2), hy-
perbolic tangent function (tanh) in (2.3) and sigmoid in (2.4) [11]. ReLU is often
used in the hidden layers and has the property of promoting sparsity in the weight
matrices. Its outputs are in the range [0, ∞+].

hrelu(x) =

{
x x > 0

0 otherwise
(2.2)

The hyperbolic tangent function (tanh) does not promote sparsity like ReLU. It
is also not as fast to compute which makes ReLU better in most cases.

htanh(x) =
sinh(x)
cosh(x)

(2.3)

The sigmoid can be used in both hidden layers and output layers. However, it
is not as popular in hidden layers as ReLU and tanh generally perform better. It
produces outputs in the range [0, 1] which is used in both regression and multi-
label classification problems.

hsigmoid(x) =
1

1 + e−x (2.4)

According to the universal approximation theorem a DNN can learn any func-
tion representation with one hidden layer if that hidden layer is wide enough [6]. In
practice deeper networks provide better performance than shallow networks, em-
pirically supported by the DNNs winning ImageNet keep growing deeper rather
than wider. However, when DNNs become deep the vanishing gradient problem
tends to arise. The reason is that activation functions have gradients with a magni-
tude less than 1 and therefore when applying the chain rule in a DNN with many
layers the gradient decays more. By using a Residual Neural Network (ResNet) it’s
possible to mitigate the vanishing gradient problem [16].

ResNets are constructed by combining residual blocks. Figure 2.5 shows a
single residual block with two linear layers (a linear layer being Wx + b), a nor-
malization layer and an activation function h.

Figure 2.2: Single residual block

2.1. Basics of Deep Learning 12

Notice how the input signal has a direct path which is added to the result after
the dense layers. In practice this provides good performance for deep networks
[16].

A single residual block mathematically corresponds to (2.5). Res(·) computes
the residual and N orm(·) normalizes the input. W1 and W2 are the weights from
the first and second layers, b1 and b2 are the biases from first and second layers,
and h is the non-linear activation function.

Res(x) = W2h(W1x + b1) + b2

ŷ = N orm(Res(x) + x)
(2.5)

Autoencoders

Where dense DNNs have dedicated labels, for unsupervised learning there are no
known labels. In the case of autoencoders the input is also used as the labels. The
idea is for the DNN to learn how to extract features and recreate the original signal
from them [11].

Figure 2.3 shows an example of how an autoencoder looks. The encoder is
responsible for extracting features from the input. The latent dimension of the
input signal is generally smaller than its dimension. This means the output of the
encoder is smaller than the input. The decoder learns to recreate an approximation
of the input signal from the features.

Figure 2.3: Autoencoder

Assuming the autoencoder consists of layers numbered 1, . . . , n the autoencoder
is defined as in (2.6) using the definition of a layer in (2.1).

x̂ = fn(· · · f1(x)) (2.6)

When an autoencoder has been trained the encoder and decoder can be split
apart. For instance an encoder may be used to encode an audio signal. Because

2.1. Basics of Deep Learning 13

the latent dimension is smaller than the input dimension it is more efficient to
transmit the features instead. On the receiving end the decoder can then decode
the features to an approximation of the input signal. Another use case is using
the encoder for feature extraction on some data and then train a supervised DNN
using those features. However, this requires the labels are known.

2.1.2 Network Training

The purpose of training a DNN is to minimize the loss function by changing the
weights and biases. This minimization problem is shown in (2.7). The input and
label data set are denoted I and L, and the set of weights and biases for a DNN
are denoted W and B.

min
W,B

`(I, L; W, B) (2.7)

In the case of regression problems the loss function is typically MSE and for
multi-label classification it is binary entropy. In the case of autoencoders MSE is
used [11].

Training a DNN consists of two steps. There is the forward step where the
DNN is applied to the input data. Then the backward step where the loss can
be computed using the predicted outputs and the labels, and then update the
weights and biases based on the loss. The most popular algorithm to update the
weights and biases of DNNs is backpropagation. It makes it feasible to use gradient
descent methods for training with Stochastic Gradient Descent (SGD) and Adaptive
Moment Estimation (Adam) being two popular choices [11].

Three important values for training are the learning rate, batch size and epoch.
The learning rate determine how fast the gradient descent algorithm descents. The
batch size determines how many samples in the training data set that are used in
between each backpropagation. The number of epochs determine the number of
times all the training data is iterated over, one epoch means one iteration over all
the data.

While minimizing the loss function results in better performance on the training
data it may be a result of over fitting. This is why another data set is used during
training, the validation set. A network is not allowed to learn from the validation
set. Instead when the loss function begins to increase for the validation set it
implies the network is over fitting. When the loss function stops improving on the
validation set for a few epochs the training can be stopped. This is also known as
early stopping and is used to dynamically determine the number of epochs.

2.2. Deep Learning for DoA Estimation 14

2.2 Deep Learning for DoA Estimation

2.2.1 System, Signal and Channel Model

Figure 2.4 depicts the system model used. It is a similar model to Figure 1.1
but with K UE and without reflections instead. This means DoD and delays are
considered as they are largely irrelevant.

Figure 2.4: LOS system model with one BS and K UE

The following assumptions are thus made to the system.

1. N receivers, K single transmitter UEs and N > K.

2. All sources are in the far-field region, i.e. all waves are plane waves.

3. The source signals are narrow-band, meaning the frequency response is con-
sidered flat.

4. The antenna array is a Uniform Linear Array (ULA) with distance (d) between
each receiver. Typically the distance is half the wavelength of the carrier wave
as it simplifies mathematical terms in the channel.

5. All antennas are omnidirectional and assuming no transmission loss.

6. The system is defined by a correlation-based channel model, i.e. no mutual
coupling between antennas.

7. Single-path LOS between BS and UEs, i.e. no DoD and delays

Consider Figure 2.5 depicting a single plane wave in a system based on the
previous assumptions. The assumptions and geometry of the problems result in

2.2. Deep Learning for DoA Estimation 15

the antennas receiving the same signal but with a time shift determined by the
distance from the reference antenna. It is possible to determine the received signal
if the DoA is known.

Figure 2.5: System with one impinging wave on the BS with N receivers.

The geometric model in Figure 2.5 is described mathematically by (2.8). Here
y is the receiver vector with N entries, h is the channel vector, x is the transmitted
complex-valued signal from the UE and v is circular Gaussian noise.

y = h(θ)x + v (2.8)

The channel h(θ) is described by (2.9). θ ∼ U
(
−π

2 , π
2

)
is the DoA, α ∼

CN (0, σ2
α) the path loss and λ the carrier frequency.

h(θ) = α
[

h0
θ h1

θ · · · hN−1
θ

]T

hθ = exp
(
−j

2π

λ
d sin θ

) (2.9)

The single source signal model can be expanded to a multi source signal model
in (2.10). This is referred to as the single-vector model. The product between
the channel and signal is now a matrix-vector product rather than a vector-scalar
product. H(Θ) is the channel matrix and x the complex signal vector where each
entry in the signal vector represents a source signal from the K UE.

y = H(Θ)x + v (2.10)

2.2. Deep Learning for DoA Estimation 16

The channel matrix model is defined in (2.11). Now there are multiple angles
Θ ∼ UK

(
−π

2 , π
2

)
and path losses αk ∼ CN (0, σ2

α).

H(Θ) = [hθ1 · · · hθK]

hθk =
[

h0
θk

h1
θk
· · · hN−1

θk

]T (2.11)

While the single-vector model embodies the spatial properties of the system it
lacks the temporal properties. The model can be generalized to include samples in
time too. The single-vector model can be expanded to a multi-vector model for T
realizations with constant a constant channel matrix. This model is described by
(2.12). Now the signal is a matrix with each row belonging to a specific UE. As
there are K UE and T temporal samples the signal matrix is a complex matrix of
dimension K× T.

Y = H(Θ)X + V (2.12)

2.2.2 DNN Based Methods for DoA Estimation

There are three methods examined: Regression Based Network (RBN), Classifica-
tion Based Network (CBN) and CBN with autoencoder.

Regression Based Method

The RBN is based on the work by Huang, et al. [17]. Two types of inputs are used:
single-vector input yt (as Huang, et al. did) and the vectorized covariance matrix
Vec(Cov(Y)). The covariance matrix is computed as in (2.13).

Cov(Y) =
1
T

YYH ∈ CN×N (2.13)

The RBN uses labels Θ containing K DoAs that are min-max normalized as de-
fined by (2.14). min(θk) and max(θk) denotes the minimum and maximum values
θk can attain.

θk −min(θk)

max(θk)−min(θk)
(2.14)

The RBN uses ReLU activation functions in the hidden layers and sigmoid
activation functions in the output layer. The loss function used for training and
evaluation is MSE as defined by (2.15).

1
K
||Θ− Θ̂||22 (2.15)

2.3. Simulations and Settings 17

Classification Based Method

Two types of CBN networks are implemented. The first is a ResNet inspired by the
work from Liu [20]. The other is a basic multi-label CBN to compare the ResNet
with.

The ResNet only uses the vectorized covariance matrix as input. The basic CBN
implementations use vectorized multi-vector input, vectorized covariance matrix
input and single row from covariance matrix input.

The labels used for the CBNs are defined as G = [G1, . . . , GD]
T where each

entry is computed as (2.16). The intuition is that it is a discrete spectrum of length
D where each index in the vector corresponds to an angle in

[
−π

2 , π
2

]
. The value at

an index in G is 1 if a source signal arrives from the angle the index corresponds
to, otherwise it is 0.

Gd =

{
1 d = dk

0 otherwise

dk =

⌊
D

θk +
π
2

2 π
2

⌋
, k = 1, . . . , K

(2.16)

The networks use sigmoid activation functions in the output layers and they
should use binary cross entropy as loss function. The advantage of these CBN
methods compared to RBN is support for varying number of sources. The dis-
advantage is the lower resolution and increasing the resolution requires very tall
labels.

Autoencoder Based Method

Autoencoders can be used in conjunction with both RBNs and CBNs. However, the
autoencoder is only used with the CBN to determine if it is possible to improve the
multi-vector input CBN. The idea is to use the autoencoder to encode the multi-
vector signal and use the encoded signal as input during training the CBN.

The purpose of the autoencoder is two fold. Training the autoencoder can
decrease the training time for the CBN because the input is much smaller. It may
also be able to extract information from the received signal that a small CBN may
not extract.

2.3 Simulations and Settings

To examine the methods the networks are trained using simulated data. First the
data generation procedure is explained. This is followed by an overview of the
model hyper parameters and how the models are trained. Lastly the results of the

2.3. Simulations and Settings 18

simulation are shown. Table 2.1 shows the different configurations used. They use
N receiver antennas, K sources, T realizations and D discrete angles. The labels
for regression is Θ as defined for the RBN and G as defined for the CBN. All input
data to the networks has noise added with an SNR uniformly distributed between
0 and 30 dB.

Model Input Label N K T D
RBN yt Θ 16 {4, 8} 1 -
RBN Vec(Cov(Y)) Θ 16 {4, 8} 16 -
CBN Vec(Y) G 16 {4, 8} 16 180
CBN Vec(Cov(Y)) G 16 {4, 8} 16 180
CBN 1st row of Cov(Y) G 16 {4, 8} 16 180

CBN ResNet Vec(Cov(Y)) G 16 {4, 8} 16 180
CBN autoencoder Vec(Y) G 16 {4, 8} 16 180

Table 2.1: Models with corresponding inputs and labels

Additionally, the networks are configured as the following.

• RBN uses two hidden layers of size 128, output is K tall

• CBN and CBN with encoded input uses two hidden layers of size 128, output
is D tall

• ResNet uses one residual block

The encoder is implemented using three hidden layers of 2NT, 2NT and 2N
height using ReLU activation functions. The output layer of the encoder is of
C = {8, 16, 32} without an activation function. The decoder consists of two hidden
layers of 2N and 2NT with ReLU activation function. Its output layer is of height
2NT using sigmoid activation function.

2.3.1 Data Generation

All the networks use the same basic data generation method followed by some
customization for the given model. The purpose is to generate an input tensor
I ∈ CS×N×T and label matrix L ∈ RS×K. The input tensor consists of S multi-
vector signals with dimensions N × T. The label matrix consists of S vectors with
K DoAs.

The tensor I contains all the data for the single- and multi-vector inputs. All the
multi-vector signals in the tensor can be used to compute the covariance matrices
in CN×N . The CBN labels are computed using the regression labels L and the
conversion in (2.16). The transmitted signals X are all kept constant at 1. The

2.3. Simulations and Settings 19

reason is that determining the DoA does not depend on what the source signal is.
The received signals are all scaled such that the noise can be scaled accordingly to
reach the desired SNR.

Algorithm 1: Generating input and label for the sth sample
Result: Ys, Θs

Θs ← π uniform(K, 1)− π
2

H(Θs)← 1√
N

H(Θs)

ααα← 1√
2
(randn(K, 1) + 1j randn(K, 1))

Vs(SNR)←
√

0.5
10SNR/10 (randn(N, T) + 1j randn(N, T))

zs ← H(Θs)ααα

Zs ← [zs · · · zs] # repeat zs T times
Ys ← Zs + V

The inputs I are scaled by dividing it by the largest element in the tensor. This
results in all values being in the range [−1, 1]. The CBN labels do not require any
normalization, however the RBN labels are min-max normalized to ensure they are
in the range [0, 1].

All networks are trained using S = 200k samples with 10% used as validation
set. For testing 5000 samples are used. The autoencoders are trained with a batch
size of 128 and all the other networks use a batch size of 32.

TensorFlow which is used to implement the DNNs does not work well with
complex inputs. Instead the real and imaginary part of the inputs are stacked into
a single vector of height 2N for the single-vector input, 2NT for the multi-vector
input and 2N2 for the covariance matrix input.

Training the networks is done using the Adam algorithm with parameters β1 =

0.9, β2 = 0.999. An adaptive learning rate as defined by (2.17) is used. The initial
learning rate is lrinitial = 0.001.

lr(epoch) = lrinitial 2−bepoch/10c (2.17)

To ensure overfitting does not occur early stopping is used. The patience is 5
with a threshold of 10−5 for the validation loss. The learning curves for the DNNs
can be found in Appendix A.

2.3.2 Metrics

The RBN and CBN methods can be compared using the normalized MSE in (2.18).
The NMSE of the RBN methods are straight forward to compute while the CBN

2.3. Simulations and Settings 20

methods require some pre-processing.
Converting Gs to Θs can be done doing the inverse of (2.16). Converting Ĝs is

done by thresholding all values below 0.5 to 0. Then the K tallest values are used
to create Θ̂s.

NMSE =
1
S ∑S

s=1 ||Θs − Θ̂s||22
1
S ∑S

s=1 ||Θs||22
(2.18)

To compare the various CBN methods with each other the precision and recall
metrics are used. The true positive (TP), false positive (FP) and false negative (FN)
are used to compute these metrics in (2.19) and (2.20).

Precision =
TP

TP + FP
(2.19)

Recall =
TP

TP + FN
(2.20)

A high precision implies when the network predicts a source at an angle, that
angle is likely correct. A high recall implies that the network is good at predicting
many of the correct angles. Combined they give a better picture of how well a
network performs.

2.3.3 Results and Discussion

CBN vs. RBN

Figure 2.6 shows the RBN improving with SNR when using single-vector signal
inputs and fairly constant performance with the covariance matrix input. Consid-
ering the covariance matrix should contain more information than a single received
vector this indicates a fundamental problem with the method. Another aspect isthe
fact the covariance matrix input version has approximately the same performance
for both 4 and 8 sources.

(a) K = 4 (b) K = 8

Figure 2.6: Normalized MSE of the RBNs

2.3. Simulations and Settings 21

2.7 shows the CBN methods achieving better performance than the RBN meth-
ods. They achieve comparable performance with the ResNet performing slightly
better best. The fact that K = 8 provides a lower NMSE than K = 4 for the CBN
methods indicate the angle selection may be a flawed method, and better peak-
finding methods should be used, or the threshold is not ideal. The expectation
would be for the performance to decrease rather than increase as the number of
sources increase.

(a) K = 4 (b) K = 8

Figure 2.7: Normalized MSE of the CBNs

Figure 2.8 and 2.9 show the precision and recall results respectively. In the case
of K = 4 and high SNR the ResNet is clearly the best. However the recall rapidly
degrades in the case of K = 8 which may indicate both few true positives and a
lot of false negatives. It may be necessary to increase D and N to improve the
performance for the methods to be usable. The precision and recall should both be
high for the methods to be usable.

Figure 2.8: Precision of the CBNs

2.3. Simulations and Settings 22

(a) K = 4 (b) K = 8

Figure 2.9: Recall of the CBNs

CBN vs. Autoencoder CBN

Using the multi-vector input in the previous test resulted in higher precision and
recall. It is of interest to determine if an autoencoder can improve this performance
further. Figure 2.10 shows the reconstruction error measured by NMSE. The NMSE
increases at a higher SNR at C = 8 for unknown reasons.

(a) K = 4 (b) K = 8

Figure 2.10: Normalized MSE of the autoencoder at varying encoding size

Applying the encoder to the input for the CBN produces the NMSE in Figure
2.11. It shows the encoded input does not perform better than the full multi-vector
signal input. The same issue with an increasing MSE at higher SNR happens. This
indicates the autoencoder model is not good. Reasons for this may be that the
autoencoder is overfitting or it may simply not be powerful enough to provide
good enough feature extraction.

2.3. Simulations and Settings 23

(a) K = 4

-

(b) K = 8

Figure 2.11: Normalized MSE of the multi-vector CBN and multi-vector CBN with encoded input

The precision and recall graphs in Figure 2.12 and 2.13 again corroborate how
the selected autoencoder model may be a bad model.

(a) K = 4 (b) K = 8

Figure 2.12: Precision of the multi-vector CBN and multi-vector CBN with encoded input

(a) K = 4 (b) K = 8

Figure 2.13: Recall of the multi-vector CBN and multi-vector CBN with encoded input

2.4. Summary 24

Overall the selected autoencoder model provides worse performance when
combined with the CBN and requires further investigation to determine how it
is possible for it to increase the NMSE at higher SNR. Using a convolutional DNN
autoencoder would be of interest to determine if it is the dense DNN model archi-
tecture causing problems.

2.4 Summary

DNNs provide a method to learn representations of functions between some input
and output. This can be useful for situations requiring precise outputs but not
spending too much on computation time. DNNs can learn this approximation of a
function during a training stage and then be fast during inference stage.

One type of DNN, the autoencoder, allows for automatic feature extraction. It
learns some encoding of the input it receives which could potentially be useful for
DoA estimation, to extract features from the received signal.

Various RBN, CBN and CBN with encoded input were trained for DoA esti-
mation. Based on tests the RBN models show worse performance than the CBN
models. Therefore CBN models show more potential. However, the CBNs overall
did not perform well. Using the autoencoder for feature extraction and training
the CBN on that data did not result in better performance. More work has to be
put into investigating better autoencoder models.

Furthermore, more investigation into tuning the DNNs and determine how to
extract the DoAs from the CBNs have to be done.

Chapter 3

Sparse Channel Estimation

The purpose of this chapter is to introduce the sparse channel model and sparse
estimation methods applied to DoA estimation.

3.1 Sparse Channel Model

Recall the single-vector model in (2.10) and multi-vector model in (2.11). They
have a non-linear relationship with the DoA through the exponentials in the chan-
nel matrix. Solving a non-linear inverse problem is generally more difficult than
solving a linear inverse problem. Turning the non-linear channel model into a lin-
ear model can simplify estimation. The first step is to discretize the angle space as
in (3.1). The angle space is separated into D uniformly spaced angles.

φi =

[
iπ

D− 1
− π

2

]
i = 0, . . . , D− 1 (3.1)

Using the D angles, a new sparse channel model of dimensions N×D is defined
by (3.2). The vectors hφi are created using the definition in (2.11).

ΦΦΦ =
[
hφ0 , . . . , hφD−1

]
(3.2)

A sparse signal model can then be constructed using the sparse channel model.
For simplicity the multi-vector model notation is used whenever applicable as the
single-vector model is an edge case for which T = 1 (number of realizations). The
trick is to assume the signal vector/matrix is 0 anywhere but the rows correspond-
ing to the angles in the sparse channel matrix. For instance if the original source
signal came from an angle Ω then the signal would be placed in the row of X cor-
responding to the column in ΦΦΦ containing Ω. This leads to the sparse signal model
in (3.3).

Y = ΦΦΦX + V (3.3)

25

3.2. Sparse Estimation 26

For T = 1 the source signal vector is referred to as sparse and for T > 1 it is
referred to as row sparse. Sparsity refers to a vector having few non-zero values
but in the case of row sparsity it means few rows with non-zero values in them.
For instance consider the signal matrix in (3.4). In the system model assumed
whenever a row in x1 has a non-zero value, that row will also contain the same
non-zero value. Generally it is not required for all values in a row to be identical
but for this system model this happens to be the case.

X = [x1 · · · xT] (3.4)

As the path losses are unknown they are omitted from the sparse channel
model. Instead each non-zero value in the source signal X is multiplied by the
path loss for the given source.

While going from the signal model to the sparse signal model solves the issue
of non-linearity, it is now an under-determined problem (assuming D > N) which
means there are an infinite number of solutions. This means the problem is ill-
posed and requires regularization.

3.2 Sparse Estimation

For now, assume the linear equation in (3.5) where A is a real-valued wide matrix
and x is a real-valued sparse vector and v is Gaussian white noise.

y = Ax + v (3.5)

To estimate x in (3.5) a simple solution is to apply ridge regression (`2-regularization)
defined in (3.6) which has a closed form [15].

min
x

λ||x||2 + ||Ax− b||22 (3.6)

Another solution is to apply (Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression (`1-regularization) defined in (3.7) which does not have a
closed form [2].

min
x

λ||x||1 + ||Ax− b||22 (3.7)

Both problems are convex but since the `2-regularization problem has a closed-
form solution that would be simplest. However, it does not promote sparsity like
`1-regularization does. The intuition behind why minimizing the `1-norm pro-
motes sparsity lies in the `1 geometry. Consider Figure 3.1 graphically showing
how a 2-dimensional solution with either method may look. Both norms are con-
vex but the pointy corners provided by the `1-norm which makes it more likely the
solution contains more zeros, and more zero-components mean more sparsity.

3.2. Sparse Estimation 27

(a) `1-regularization (b) `2-regularization

Figure 3.1

One simple method to approximate a solution to (3.7) is to use Iterative Shrinkage-
Threshold Algorithm (ISTA) described by (3.8) [2]. This is an iterative algorithm
that consists of a simple linear computations and the soft threshold operator de-
fined by (3.9). The shrinkage parameter λ is bounded by 1

µ where µ is must be
larger than the Lipschitz constant of the gradient of ||Ax− y||22. However the Lip-
schitz constant is bounded by ||AT A||F which is simple to compute [2].

x(i+1) = ηλ

((
I− 1

µ
ATA

)
x(i) +

1
µ

ATy
)

, λ <
1
µ

(3.8)

ηλ(z) = sign(z)max{0, |z| − λ} (3.9)

For the sparse multi-vector signal model the group LASSO in (3.10) can be used
instead. Note if X is just a vector it is equivalent to (3.7). The Frobenius norm is a
generalization of the `2 norm and the `2,1 norm is a generalization of the `1 norm
[1].

min
X

λ||X||2,1 + ||Y− AAAX||F (3.10)

Ahmadi, et al. describes an extension to this method called Block Iterative
Shrinkage-Threshold Algorithm (BISTA) [1] which supports row sparse signal re-
construction. BISTA defined in (3.11) is a generalization of ISTA. The difference
lies in the soft block thresholding operator (3.12).

X(i+1) = ηλ

((
I− 1

µ
ATA

)
X(i) +

1
µ

ATY
)

, λ <
1
µ

(3.11)

3.3. Sparse Channel and DoA Estimation 28

The input to the soft block thresholding input uses indices for the row and
columns. The index d is defined for the rows d = 0, . . . , D − 1 and the index t is
defined for columns t = 1, . . . , T.

ηλ(zd,t) = sign(zd,t)max

0, |zd,t| −
λ√

∑T
b=1 |zd,b|2

 (3.12)

3.3 Sparse Channel and DoA Estimation

The previously mentioned ISTA and BISTA work on real-valued problems. This
is a problem as the sparse signal model is complex-valued. This can be solved
by transforming the signal model using (3.13). This results in a larger estimation
problem but ISTA can be applied directly to it.

Φ̃ =

[
Re{Φ} −Im{Φ}
Im{Φ} Re{Φ}

]
Ỹ =

[
Re{Y}
Im{Y}

]
X̃ =

[
Re{X}
Im{X}

] (3.13)

Inserting the redefined received signal, source signal and sparse channel defi-
nitions from (3.13) into BISTA results in (3.14).

X̃(i+1) = ηλ

((
I− 1

µ
Φ̃TΦ̃

)
X̃(i) +

1
µ

Φ̃TỸ
)

(3.14)

BISTA for a single received signal matrix Ys is computed as the following.

Algorithm 2: BISTA
Result: Xs

m = 0
X(0)

s = 0
X̃s ← convert Xs to X̃s

while m < iter do
X̃(m+1)

s ← ηλ

((
I− 1

µ Φ̃TΦ̃
)

X̃(m)
s + 1

µ Φ̃TỸs

)
m ++

end

Xs ← convert X̃(iter)
s to X(iter)

s

3.4. Simulation and Settings 29

Recall as the path losses have been omitted from Θ, X contains the source
signals multiplied by the path losses. As the source signals only consist of ones as
mentioned in chapter 2, this results in the path losses being estimated. Determine
the DoAs from the estimated X can be done by selecting the K positions with the
largest magnitude (absolute value because the values are complex). The reason is
that the sparsity promoting property should ensure anything but the actual signal
is 0.

3.4 Simulation and Settings

Two experiments are conducted. The first compares ISTA and BISTA for a different
number of receivers. The second experiment compares ISTA and BISTA at a fixed
number of antennas with a varying SNR of 5, 10, 15, 20, 25, 30 dB. For testing 1000
samples are used.

Method N K T D # iterations SNR λ

ISTA {16, 32, 48, 64, 96} 4 1 180 1000 30 dB 0.5/µ

BISTA {16, 32, 48, 64, 96} 4 4 180 1000 30 dB 0.5/µ

Table 3.1: Settings for first ISTA vs. BISTA experiment

Method N K T D # iterations
ISTA 64 {4, 8} 1 180 1000 0.5/µ

BISTA 64 {4, 8} 4 180 1000 0.5/µ

Table 3.2: Settings for second ISTA vs. BISTA experiment

3.4.1 Data Generation

The data generation is similar to the CBN in chapter 2. The difference is that no
normalization is used and rather than using ones in the labels, the path losses
are used. However, the path losses are complex valued so the labels have to be
transformed from real-valued to complex-valued like the received signal, source
signal and sparse channel matrix.

3.5. Results and Discussion 30

3.4.2 Metrics

To evaluate the experiments the NMSE is use (3.15) is used. The evaluation is
similar to how the CBN were evaluated. As mentioned the DoAs are picked by the
2K tallest values.

NMSE =
1
S ∑S

s=1 ||Θs − Θ̂s||22
1
S ∑S

s=1 ||Θs||22
(3.15)

3.5 Results and Discussion

Figure 3.2 shows increasing the number of antennas (N) or temporal realizations
(T) both increase performance.

(a) ISTA (T = 1) (b) BISTA (T = 4)

Figure 3.2: ISTA vs. BISTA NMSE for N ∈ {16, 32, 48, 64, 96}, K = 4 and 30dB SNR

Using a fixed number of antennas and allowing the number of realizations to
increase results in better performance. Therefore, if the number of antennas are
constrained it may be beneficial to using more realizations. However, it shows that
it is possible to obtain better performance using less data as long as the number of
antennas can increase. Another interesting result is how the DNNs achieved lower
NMSE with N = 16 than ISTA and BISTA.

Figure 3.3 shows the performance of ISTA and BISTA. Like the results when
using the DNNs the NMSE is lower when increasing the number of users. This
should not be the case and may indicate better peak-finding has to be applied to
determine the correct DoAs.

3.6. Summary 31

(a) K = 4 (b) K = 8

Figure 3.3: ISTA (T = 1) vs. BISTA (T = 4) NMSE for N = 64

3.6 Summary

It is possible to discretize and linearize the single-vector and multi-vector signal
models. This makes it possible to use regression methods like ridge regression or
LASSO. However, the linearized signal model is sparse which lends itself to LASSO
as it promotes sparsity. Furthermore, LASSO can be extended to the group LASSO
which works for both the sparse multi-vector and single-vector signal models.

Approximating a solution to the LASSO and group LASSO problem can be
done using ISTA and BISTA respectively. Increasing the number of antennas pro-
vide a greater performance increase than increasing the number of temporal real-
izations. However, for a fixed number of antennas the number of realizations can
also be increased to increase performance.

Both ISTA and BISTA did not perform better than the basic DNNs. However,
creating a mix between the two may be of interest as ISTA-based methods are
simple, well-studied and provide good interpretability.

Chapter 4

Model-based DNNs for DoA Esti-
mation

The purpose of this chapter it to introduce model-based DNNs, specifically Learned-
ISTA (LISTA) and LISTA-Toeplitz based methods.

4.1 Learned-ISTA and Learned-BISTA

LeCun, et al. introduced algorithm unrolling ISTA to create Learned-ISTA (LISTA).
Later this was followed by Ahmadi, et al. expanding BISTA into Learned-BISTA
(LBISTA) [1]. Algorithm unrolling isn’t an algorithm or method itself, it is simply
the act of designing and implementing DNNs where each layer corresponds to an
iteration of an iterative algorithm.

DNNs are great at learning function approximations. The issue with DNNs
is that it is hard to interpret how they work. Creating DNNs based on iterative
algorithms can increase performance while keeping the interpretability high [21]
[12].

The focus will be on applying algorithm unrolling on BISTA as ISTA is simply
an edge case of BISTA for which T = 1 (number of realizations in time). The
unrolled BISTA and ISTA are referred to as Learned-BISTA (LBISTA) and Learned-
ISTA (LISTA).

ISTA-based methods exhibit the same structure as a dense DNN. For instance
BISTA consist of linear operations followed by a non-linear activation function
(thresholding) [12]. Regarding the block soft threshold function as an activation
function allows for BISTA to be unrolled into a DNN.

32

4.1. Learned-ISTA and Learned-BISTA 33

To explain how BISTA is unrolled a simple case with real-valued matrices is
explained. Assume the problem in (4.1). Here W is a real-valued over-complete
dictionary and both Y and X are real-valued signals. Note this is merely an exam-
ple.

min
X
||Y−WX||F + λ||X||2,1 (4.1)

BISTA can be used to approximate a solution to the problem. However, using
the weights given by (4.2) can simplify BISTA. Wt and We are referred to as the
mutual inhibition matrix and filter matrix respectively.

Wt = I− 1
µ

WTW

We =
1
µ

WT
(4.2)

Using the mutual inhibition matrix Wt and filter matrix We to simplify BISTA
results in (4.3).

X(i) = ηλ

(
WtX(i−1) + WeY

)
(4.3)

However, for some sparse estimation problem W may be mathematically correct
in the context but it does not necessarily provide the smallest error [12] [10]. The
key idea of algorithm unrolling of ISTA and BISTA is to create a DNN with trainable
parameters Wt, We and λ. Instead of manually determining W and λ by inspecting
the estimation problem, as in ISTA-based methods, a DNN can determine more
optimal values through training. Figure 4.1 depicts a single layer of an LBISTA
network.

Figure 4.1: LBISTA ith layer

Mathematically this corresponds to (4.4) where ηλ is the soft block threshold
operator.

X(i) = ηλ(i)

(
W(i)

t X(i−1) + W(i)
e Y

)
(4.4)

4.2. LBISTA for Channel and DoA Estimation 34

To create an LBISTA network multiple layers are combined until the desired
depth is achieved. The network can then be trained using gradient descent meth-
ods as SGD and Adam, using the true X as a label and Y as input. Loss is measured
using MSE between the true X and estimated X̂ like the RBN previously described
in chapter 2 [12].

Additionally, there are two modes of LBISTA: tied and untied. Untied LBISTA
allows for the mutual inhibition matrix Wt, filter matrix We and shrinkage pa-
rameter λ to vary with each iteration. Tied LBISTA keeps these constant between
iterations. It is possible to mix the two modes, for instance the shrinkage param-
eter can vary while the matrices are kept constant between iterations. Letting the
parameters vary should intuitively improve performance, the downside being the
extra space required.

In the untied case X(0) is initialized to zero while in the tied case it is initialized
as ηλ (WeY). For both cases Wt and We can be initialized with the over-complete
dictionary W used for the BISTA version of the problem [1].

4.2 LBISTA for Channel and DoA Estimation

The previous description of LBISTA assumes real-valued weights and signals.
However, in the DoA estimation problem both the weights and signals are complex.
The previous chapter explaining ISTA and BISTA showed how the complex-valued
problem can be reposed as a real-valued problem.

Assume W is allowed to be complex-valued. This results in (4.5) where Wt and
We are also complex.

Wt = I− 1
µ

WHW

We =
1
µ

WH
(4.5)

Each layer of the LBISTA is then split into a real and imaginary part. The real
part is described by (4.6) and the imaginary by (4.7) [10].

Re{X(i)} = ηλ(i)

(
Re{W(i)

t }Re{X(i−1)} − Im{W(i)
t }Im{X(i−1)}

+Re{W(i)
e }Re{Y} − Im{W(i)

e }Im{Y}
) (4.6)

Im{X(i)} = ηλ(i)

(
Re{W(i)

t }Im{X(i−1)}+ Im{W(i)
t }Re{X(i−1)}

+Re{W(i)
e }Im{Y}+ Im{W(i)

e }Re{Y}
) (4.7)

4.3. LBISTA-Toeplitz for Channel Estimation 35

The real and imaginary parts can simply be added for the full result in (4.8).

X(i) = Re{X(i)}+ Im{X(i)} (4.8)

This method of complex to real transformation is equivalent to what was done
to ISTA and BISTA but rather than combining everything into one big matrix it is
split up into smaller matrices. Furthermore this approach is recommended by Fu,
et. al. [10].

To ensure the loss functions in TensorFlow can compute the MSE, the real and
imaginary parts can be concatenated as

[
Re{X(i)} Im{X(i)}

]
for both the labels

and estimated signals.
Like LISTA and BISTA this results in the path losses multiplied by the transmit-

ted signal to be estimated rather than the DoAs. The DoAs have to be determined
from the estimated signal. They are determined by taking K (number of sources)
indices with the largest magnitude. Although the path losses can be near zero as
they are Gaussian, this method is still used with the reason the threshold function
should ensure anything but the actual signal is zero.

4.3 LBISTA-Toeplitz for Channel Estimation

Fur, et al. expanded the LISTA method into LISTA-Toeplitz [10]. It uses the Toeplitz
property of the mutual inhibition matrix Wt. A matrix-vector product between
a Toeplitz matrix and a vector can be replaced by a convolution. The mutual
inhibition matrix of dimensions D × D can be replaced by a vector of dimension
2D − 1 (D being the resolution of the angular space). Therefore it reduces the
asymptotic size and time complexity of the estimation problem. According to
experiments by Fu, et al. LISTA-Toeplitz achieves higher performance for DoA
estimation than LISTA [10].

The convolution used is defined as (4.9).

(hg ∗ x)[n] =
2D−1

∑
m=−2D−1

hg[n] · x[n−m] (4.9)

The result of the convolution used is defined by (4.10). Note this operation
should be used instead of Wt, meaning it also has to be split into a real and imag-
inary part.

hg ∗ x =
[
(hg ∗ x)[0] · · · (hg ∗ x)[D− 1]

]
(4.10)

However, this only works for LISTA, i.e. LBISTA when T = 1. For T > 1 this
method has to be modified. To solve this the average of a 1D convolution over the
signal matrix is used instead. Note that X = [x1, . . . , xT] which then leads to the
operation defined as (4.11).

4.4. Simulation and Settings 36

hg ∗T X =
1
T

T

∑
t=1

hg ∗ xt (4.11)

The reason for using an average is because the signal matrix has constant values
in the rows representing a source signal. This ensures that property. Following the
averaged 1D convolution the resulting vector can be tiled multiple times as in
(4.12). However, this operation has to be used in the same place as Wt and should
therefore be split up into a real and imaginary part accordingly. That is simply a
matter of replacing Wt by hg and insert ∗T between hg and the various real and
imaginary parts of X.

X′ =
[
hg ∗T X · · · hg ∗T X︸ ︷︷ ︸

T elements

]
(4.12)

4.4 Simulation and Settings

The simulation data is generated as it was for ISTA and BISTA. That means no
normalization is used, unlike the CBN and RBN. Eight networks are trained, four
different types with the number of sources either at K = 4 or K = 8. Table 4.1
show the settings for all the networks. The methods are a mix of tied and untied:
Wt and We are kept constant, λ is allowed to change with the layer.

Method N T K D # of layers
LISTA 64 1 {4, 8} 180 3

LBISTA 64 4 {4, 8} 180 3
LISTA-Toeplitz 64 1 {4, 8} 180 3

LBISTA-Toeplitz 64 4 {4, 8} 180 3

Table 4.1: Network settings

The training and evaluation is done using the following settings.

• 200k training samples

• 5000 testing samples

• Adam with same settings as for the CBN and RBN

• Evaluation using NMSE which is computed like it was for the CBN

4.5. Result and Discussion 37

4.5 Result and Discussion

The learning curves for the networks can be found in Appendix B. Figure 4.2 shows
the NMSE of the LISTA and LBISTA. The LBISTA methods are referred to as LISTA
with T = 4. Note the LISTA-Toeplitz for K = 8 and T = 1 is not included because
it gave NaN results during training. The reason is probably that the input data and
labels have not been normalized as ISTA does not utilize normalization. The data
and labels can be normalized but requires both are normalized such that scaled
labels can be used to compute normalized data input.

(a) K = 4 (b) K = 8

Figure 4.2: NMSE of LISTA and LBISTA.

The results show some configurations obtaining better performance at the higher
SNR end than ISTA and performing similarly to the CBN networks. However the
expected result was better than comparable performance. The LISTA based DNNs
may improve a lot as they are deeper.

Surprisingly the LISTA-Toeplitz did not perform better than the regular LISTA.
It may arise from the method used for picking the DoAs if the estimated signals
are not very sparse. If this is the case a peak-finding algorithm may be better and
perhaps improve performance for both LISTA and LISTA-Toeplitz. In the case of
K = 4 both of them do not seem to perform better at higher SNR while the LBISTA
methods do, indicating it may be something else than the implementation as LISTA
and LISTA-Toeplitz simply use the LBISTA implementations but with T = 1.

The LBISTA-Toeplitz showed an improvement over the regular LBISTA for both
K = 4 and K = 8 which is what was expected. However the regular LBISTA in the
K = 8 case show the same problem as the LISTA and LISTA-Toeplitz for K = 4.

The fact that the performance increases with the number of sources indicates
the DoA selection method is flawed. Further tests with peak-finding algorithms
should be conducted to determine if this is what causes it. Furthermore, an in-
crease in resolution should be investigated as it plays a vital role in how sparse the
signals are.

4.6. Summary 38

Not included is the computation time of evaluating on the test set, it was many
times faster to use the LISTA-based methods compared to the ISTA-based meth-
ods. Which is not surprising considering it is only three layers compared to 1000
iterations.

4.6 Summary

It can be hard to interpret why a DNN works for some task. Creating DNNs based
on iterative algorithms can help decrease computation time (not including training
of network) while being able to interpret why the DNN works.

The key idea is to view the matrices and shrinkage parameter in the ISTA-
based methods as trainable parameters in a DNN. This can be done using gradient
descent methods such as SGD and Adam.

The ISTA-based estimation methods for the sparse signal model introduces
Toeplitz property to one of the matrices. It is possible to replace the matrix with
a convolution which should provide better asymptotic space and time complexity,
and in the case of LBISTA providing better performance. However, for LISTA it is
hard to determine how it affected performance because of other factors (missing
results and potentially flawed peak-finding).

Overall the performance was similar to CBN and the ISTA-based methods
where better performance should have been achieved. Better peak-finding, train-
ing data normalization and higher resolution may be worth investigating with the
goal of improving performance.

Chapter 5

Conclusion

The purpose of this thesis was to investigate various DNNs for DoA estimation.
The methods include basic DNNs, ISTA-based methods and LISTA-based methods.

First the basic Classification Based Network (CBN) and Regression Based Net-
work (RBN) were examined, showing the CBN performed better than the RBN.
The basic DNN results showed that using a ResNet CBN had the potential for bet-
ter performance at higher SNR. It also showed using a single row vector of the
covariance matrix as input had the same performance as the full covariance matrix
as input. Additionally, using the received signal as an input performs similarly to
the covariance matrix as input.

To examine the possibility of feature extraction from the received signal, an
autoencoder for various encoding sizes were trained on the received signal. The
encoded signal from the encoder could then be used to train CBNs with smaller in-
puts. This performed worse than using the pure received signal. As the row vector
covariance input showed that a dimensionality reduction is possible, it indicates
the specific autoencoder does not necessarily extract usable features.

None of these methods utilize the underlying sparsity of the angular spectrum.
To examine how the sparsity can be used sparse estimation methods were applied.
First the ISTA and its multi-signal vector version the BISTA were applied. The
sparse estimation methods showed potential and therefore algorithm unrolling on
these methods was examined.

Algorithm unrolling is transforming iterative algorithms into DNNs and then
allow the weights in the algorithms to be optimized by training the DNNs. Do-
ing this for ISTA and BISTA resulted in Learned-ISTA (LISTA) and Learned-BISTA
(LBISTA). Furthermore, the sparse channel model allowed for replacing one weight
matrix with a convolution instead, which asymptotically should improve perfor-
mance and decrease space usage. Using the convolution instead transforms LISTA
into LISTA-Toeplitz and LBISTA into LBISTA-Toeplitz.

The algorithm unrolled DNNs show potential but do not outperform the basic

39

5.1. Future Works 40

DNNs. Suspected causes being lack of depth in the unrolled networks, lack of nor-
malization of training data and a potentially flawed peak-finding method. Further
work would have to be conducted to determine the cause.

5.1 Future Works

For future works an RBN should be trained using the same labels as the LISTA
based DNNs as it would make the comparison much better. Instead of using the
DoAs it would be possible to simply estimate the signals multiplied by the path
loss directly. Identical peak-finding methods can then be applied to both the basic
DNNs, ISTA-methods and LISTA-methods. Various peak-finding algorithms could
be examined. Additional experiments with the LISTA-based methods could be
conducted, examining the resolution, depth and how training data normalization
affects the performance.

An important task would be to estimate the path losses as they are necessary
to fully determine the channel in the examined model. Ensuring the methods
can estimate the channels on simulated data should then lead to testing on real
data. However, real data would include reflections which causes DoD and delays
to happen. Expanding the channel model to include reflections is therefore of
interest.

For real antenna arrays there may be imperfections and therefore it may be of
interest to use the methods on data with small pertubations in the array element
positions. This would further ensure the viability of the methods in practice.

Bibliography

[1] Samim Ahmadi et al. Learned Block Iterative Shrinkage Thresholding Algorithm
for Photothermal Super Resolution Imaging. 2020. arXiv: 2012.03547 [cs.CV].

[2] Amir Beck and Marc Teboulle. “A Fast Iterative Shrinkage-Thresholding Al-
gorithm for Linear Inverse Problems”. In: SIAM J. Img. Sci. 2.1 (Mar. 2009),
183–202.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learn-
ing: A Review and New Perspectives”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 35.8 (2013), pp. 1798–1828.

[4] J.-F. Cardoso. “Blind signal separation: statistical principles”. In: Proceedings
of the IEEE 86.10 (1998), pp. 2009–2025.

[5] Soumitro Chakrabarty and Emanuël A. P. Habets. “Multi-Speaker DOA Es-
timation Using Deep Convolutional Networks Trained With Noise Signals”.
In: IEEE Journal of Selected Topics in Signal Processing 13.1 (2019), pp. 8–21.

[6] Balázs Csanád Csáji. “Approximation with Artificial Neural Networks”. MA
thesis. Faculty of Sciences; Eötvös Loránd University, Hungary, 2001.

[7] A. M. Elbir. “DeepMUSIC: Multiple Signal Classification via Deep Learning”.
In: IEEE Sensors Letters 4.4 (2020), pp. 1–4.

[8] Ericsson. A guide to 5G network security. 2021. url: https://www.ericsson.
com/en/security/a-guide-to-5g-network-security.

[9] Ericsson. Massive MIMO. 2021. url: https : / / www . ericsson . com / en /
portfolio/networks/ericsson-radio-system/radio/massive-mimo.

[10] R. Fu et al. “Compressed LISTA Exploiting Toeplitz Structure”. In: 2019 IEEE
Radar Conference (RadarConf). 2019, pp. 1–6.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[12] Karol Gregor and Yann LeCun. “Learning Fast Approximations of Sparse
Coding”. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. 2010, 399–406.

41

https://arxiv.org/abs/2012.03547
https://www.ericsson.com/en/security/a-guide-to-5g-network-security
https://www.ericsson.com/en/security/a-guide-to-5g-network-security
https://www.ericsson.com/en/portfolio/networks/ericsson-radio-system/radio/massive-mimo
https://www.ericsson.com/en/portfolio/networks/ericsson-radio-system/radio/massive-mimo
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 42

[13] Richard Griffiths. The Wonders of 5G Beamforming. 2021-05-26. url: https:
//blog.huawei.com/2020/08/17/the-wonders-of-5g-beamforming/.

[14] GSMA. Internet of Things in the 5G era. 2019. url: https://www.gsma.com/
iot/wp-content/uploads/2019/11/201911-GSMA-IoT-Report-IoT-in-the-
5G-Era.pdf.

[15] et al. Hastie. An Introduction to Statistical Learning. Springer, 2013.

[16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770–778.

[17] H. Huang et al. “Deep Learning for Super-Resolution Channel Estimation
and DOA Estimation Based Massive MIMO System”. In: IEEE Transactions
on Vehicular Technology 67.9 (2018), pp. 8549–8560.

[18] E. G. Larsson et al. “Massive MIMO for next generation wireless systems”.
In: IEEE Communications Magazine 52.2 (2014), pp. 186–195.

[19] Qinglong Li, Xueliang Zhang, and Hao Li. “Online Direction of Arrival Es-
timation Based on Deep Learning”. In: 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2018, pp. 2616–2620.

[20] Wanli Liu. “Super resolution DOA estimation based on deep neural net-
work”. In: Scientific Reports 10.1 (2020), p. 19859.

[21] V. Monga, Y. Li, and Y. C. Eldar. “Algorithm Unrolling: Interpretable, Effi-
cient Deep Learning for Signal and Image Processing”. In: IEEE Signal Pro-
cessing Magazine 38.2 (2021), pp. 18–44.

[22] Qualcomm. Everything you need to know about 5G. 2021. url: https://www.
qualcomm.com/5g/what-is-5g.

[23] R. Roy and T. Kailath. “ESPRIT-estimation of signal parameters via rotational
invariance techniques”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 37.7 (1989), pp. 984–995.

[24] Mutar Shukair. How 5G massive MIMO transforms your mobile experiences. 2019.
url: https://www.qualcomm.com/news/onq/2019/06/20/how-5g-massive-
mimo-transforms-your-mobile-experiences.

[25] Phillip Tracy. What is mmWave and how does it fit into 5G? 2021-05-26. url:
https : / / www . rcrwireless . com / 20160815 / fundamentals / mmwave - 5g -
tag31-tag99.

[26] John Walko. Putting the Heat on 5G Networks’ Energy Dilemma. 2020-12-18. url:
https://www.eetimes.com/putting-the-heat-on-5g-networks-energy-
dilemma/.

https://blog.huawei.com/2020/08/17/the-wonders-of-5g-beamforming/
https://blog.huawei.com/2020/08/17/the-wonders-of-5g-beamforming/
https://www.gsma.com/iot/wp-content/uploads/2019/11/201911-GSMA-IoT-Report-IoT-in-the-5G-Era.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/11/201911-GSMA-IoT-Report-IoT-in-the-5G-Era.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/11/201911-GSMA-IoT-Report-IoT-in-the-5G-Era.pdf
https://www.qualcomm.com/5g/what-is-5g
https://www.qualcomm.com/5g/what-is-5g
https://www.qualcomm.com/news/onq/2019/06/20/how-5g-massive-mimo-transforms-your-mobile-experiences
https://www.qualcomm.com/news/onq/2019/06/20/how-5g-massive-mimo-transforms-your-mobile-experiences
https://www.rcrwireless.com/20160815/fundamentals/mmwave-5g-tag31-tag99
https://www.rcrwireless.com/20160815/fundamentals/mmwave-5g-tag31-tag99
https://www.eetimes.com/putting-the-heat-on-5g-networks-energy-dilemma/
https://www.eetimes.com/putting-the-heat-on-5g-networks-energy-dilemma/

Bibliography 43

[27] Zhihong Zhuang et al. “Machine-learning-based high-resolution DOA mea-
surement and robust directional modulation for hybrid analog-digital mas-
sive MIMO transceiver”. In: Science China Information Sciences 63.8 (2020),
p. 180302. issn: 1869-1919.

Appendix A

Learning Curves for RBN, CBN and
Autoencoder

(a) K = 4 (b) K = 8

Figure A.1: Learning curves for CBN using covariance input

(a) K = 4 (b) K = 8

Figure A.2: Learning curves for CBN using received signal input

44

45

(a) K = 4 (b) K = 8

Figure A.3: Learning curves for CBN using row from covariance matrix

(a) K = 4 (b) K = 8

Figure A.4: Learning curves for ResNet CBN using covariance matrix

(a) K = 4 (b) K = 8

Figure A.5: Learning curves for RBN using single-vector received signal

46

(a) K = 4 (b) K = 8

Figure A.6: Learning curves for RBN using covariance matrix input

(a) K = 4 (b) K = 8

Figure A.7: Learning curves for CBN with encoded input at C = 32

(a) K = 4 (b) K = 8

Figure A.8: Learning curves for CBN with encoded input at C = 16

47

(a) K = 4 (b) K = 8

Figure A.9: Learning curves for CBN with encoded input at C = 8

(a) K = 4 (b) K = 8

Figure A.10: Learning curves for autoencoder at C = 32

(a) K = 4 (b) K = 8

Figure A.11: Learning curves for autoencoder at C = 16

48

(a) K = 4 (b) K = 8

Figure A.12: Learning curves for autoencoder at C = 8

Appendix B

Learning Curves for LISTA, LBISTA,
LISTA-Toeplitz and LBISTA-Toeplitz

(a) K = 4 (b) K = 8

Figure B.1: Learning curves for LISTA (T = 1)

(a) K = 4 (b) K = 8

Figure B.2: Learning curves for LBISTA (T = 4)

49

50

(a) K = 4

Figure B.3: Learning curves for LISTA-Toeplitz (T = 1), K = 8 missing

(a) K = 4 (b) K = 8

Figure B.4: Learning curves for LBISTA-Toeplitz (T = 4)

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Challenges in Channel and DoA Estimation in Massive MIMO Systems
	1.1.1 Problem Statement & Motivation
	1.1.2 Related Work
	1.1.3 Scope & Contribution
	1.1.4 Thesis Organization

	2 Deep Neural Networks for DoA Estimation in Massive MIMO Systems
	2.1 Basics of Deep Learning
	2.1.1 Network Architecture
	2.1.2 Network Training

	2.2 Deep Learning for DoA Estimation
	2.2.1 System, Signal and Channel Model
	2.2.2 DNN Based Methods for DoA Estimation

	2.3 Simulations and Settings
	2.3.1 Data Generation
	2.3.2 Metrics
	2.3.3 Results and Discussion

	2.4 Summary

	3 Sparse Channel Estimation
	3.1 Sparse Channel Model
	3.2 Sparse Estimation
	3.3 Sparse Channel and DoA Estimation
	3.4 Simulation and Settings
	3.4.1 Data Generation
	3.4.2 Metrics

	3.5 Results and Discussion
	3.6 Summary

	4 Model-based DNNs for DoA Estimation
	4.1 Learned-ISTA and Learned-BISTA
	4.2 LBISTA for Channel and DoA Estimation
	4.3 LBISTA-Toeplitz for Channel Estimation
	4.4 Simulation and Settings
	4.5 Result and Discussion
	4.6 Summary

	5 Conclusion
	5.1 Future Works

	Bibliography
	A Learning Curves for RBN, CBN and Autoencoder
	B Learning Curves for LISTA, LBISTA, LISTA-Toeplitz and LBISTA-Toeplitz

