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Abstract. Colored Petri nets offer a compact and user friendly repre-
sentation of traditional Petri nets also known as P/T nets. Colored Petri
nets with finite color ranges can be unfolded into traditional P/T nets.
However, this unfolding may produce exponentially larger P/T nets. We
present two novel formal techniques based on static analyses for reduc-
ing the size of unfolded colored Petri nets. The first method identifies
colors that behave equivalent in the colored Petri net and groups them
into equivalence classes representing the colors, producing a smaller quo-
tiented colored Petri net. The second method analyses which colors can
ever exist in any place and excludes colors that can never be present in
a given place. Both methods show great promise individually, but even
more when combined. The combined method is able to reduce the size
of multiple colored Petri nets from the Model Checking Contest com-
pared to state of the art unfolders MCC, Spike and ITS-Tools, while still
remaining competitive in terms of unfolding time. Lastly, we show the
effect of the smaller unfolded nets by verifying queries from the 2020
Model Checking Contest using the unfolded nets from each tool.

1 Introduction

When modelling large systems it is important to verify that the system is working
as intended. Since many systems are under constant change it is necessary to
automate the verification process. One of the most widely used of such verifiable
models are Petri nets introduced by Carl A. Petri in 1962 [26].

Petri nets are most often seen in a classical Place/Transition (P/T) form
and thus most verification techniques have been developed for P/T nets [24].
However, P/T nets often become too large and incomprehensible for humans
to read. Therefore, colored Petri nets (CPN) [16] have been introduced which
are compressed versions of Petri nets, that employ different techniques from
programming such as types, variables and logical expressions.

In CPNs each place is assigned a color domain and each token in that place
has a color from the color domain. Arcs have expressions that define what colored
tokens to consume and produce and transitions have guard expressions that
restrict when a transition may fire.

A CPN can be translated into a P/T net if every color domain is finite
through a process called unfolding, which allows the use of efficient verification
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methods already developed for P/T nets. When unfolding a CPN each place is
unfolded into a new place for each color that a token can take in the place; a
naive approach is to create a new place for each color in the color domain of the
place. Transitions are unfolded such that each binding of variables that satisfies
the guard is unfolded into a new transition in the unfolded net.

The size of an unfolded net can be exponentially larger than the colored net
and therefore requires certain optimizations and analyses to unfold in realistic
time and memory. Several types of analyses have been proposed that consider
especially transition guards and arc expressions [8, 23, 27].

However, even with the optimizations there still exists CPNs that cannot be
unfolded. As an example, the largest instances of the nets FamilyReunion [14, 7]
and DrinkVendingMachine [13, 25] from the Model Checking Contest [21] have
yet to be unfolded. This is the case since the color domains and number of
possible bindings are far too large to be unfolded in realistic time and memory
with current techniques. Even if the net is unfolded it may still be too large to
verify due to the exponential increase in size.

We propose two new methods for statically analysing a CPN to reduce the
size of the unfolded P/T net. The first method called color quotienting uses the
fact that sometimes multiple colors behave the same throughout the colored net.
If such colors exist in the net we can create equivalence classes that represents
the colors with similar behaviour. As such, we can reduce the amount of colors
that we need to consider when unfolding, because we now only have to consider
the equivalence class of colors instead of each color individually.

The second method called color approximation detects which colors may
actually be present in any given place s.t. we only unfold places for the colors that
can exist. This method also allows for invalidating bindings that are dependent
on unreachable colors thus reducing the amount of transitions that are unfolded.

Related work: Several unique approaches for unfolding CPNs effectively have
been proposed. In [23] Heiner et al. analyses the arc- and guard expressions
to reduce the amount of bindings that need to be considered for a given tran-
sition by collecting patterns. The pattern analysis is implemented in the tool
Snoopy [11]. The color approximation method captures the reductions of the
pattern analysis. In [27] the same authors present a technique for representing
and using patterns utilizing Interval Decision Diagrams. This technique is used
in the tools Snoopy [11], MARCIE [12] and Spike [5]. It proved to be generally
faster than the method presented in [23].

In [8] (MCC) Dal Zilio describes a method which he calls stable places. A
stable place is a place that never changes from the initial marking, i.e. every
time a token is consumed from this place an equivalent token is added to the
place. For a place to be stable it has to hold that for each transition the place
is connected to, it is connected by both an input and output arc that have
equivalent arc expressions. As such, it is only a syntactical check, meaning no
further analysis is done. This method is especially efficient on the net BART from
the model checking competition [21]. However, this method is not very general
and does not find places that deviate even a little from the initial marking. The
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color approximation method is a more general form of the stable places and is
able to capture these deviations from the initial marking. In [8] an additional
method called Component Analysis is presented where it is detected that a net
consists of a number of copies of the same component. MCC is used in the TINA
toolchain [2] and to our knowledge in the latest release of the LoLA tool [32].

GreatSPN [10] is another tool for unfolding CPNs, however in [8] it is demon-
strated that MCC was able to greatly outperform GreatSPN and as such we omit
GreatSPN from later experiments.

ITS-Tools [29] has an integrated unfolding engine. The tool uses a technique
we refer to as variable symmetry identification, in which it is analyzed whether
variables x and y are actually permutable in a binding. This allows for invalida-
tion of bindings that are equivalent by constraining x ≤ y. Furthermore, they use
stable places during the binding and they apply analysis to choose the binding
order of parameters to simplify false guards as soon as possible. After unfolding
ITS-Tools applies some post-unfolding reductions that removes orphan places
and transitions and removes behaviourally equivalent transitions should they
make them [31].

In [20] Klostergaard presents the unfolding method implemented in verifypn
revision 226 (untimed engine of TAPAAL [9, 15]), which is the base of our
implementation. The implementation is efficient, but since it is implemented as
the naive approach mentioned earlier, there are several nets which it cannot
unfold such as BART.

Both the color quotienting method and the color approximation method are
advanced static analyses techniques and all of the above mentioned techniques,
except symmetric variables and component analysis, are captured by color ap-
proximation. Color quotienting is a completely novel technique and to our knowl-
edge, no related work perform similar analysis on CPNs.

1.1 Bibliographical Remark

Parts of this thesis are inspired or derived from the work in our 9th semester
project [22]. Specifically, the Abstract and Section 1 are modified and extended
versions from the previous work where especially the related work has been ex-
tended to cover more related tools. Section 2 has been modified s.t. we instead
define bisimulation and define isomorphism as a special case of bisimulation. Sec-
tion 3.2 uses the same syntax and semantics as described in [22] but is described
more informally in this work. Section 5 is a revised and improved version of the
main contribution in [22]. Specifically, we have updated the color expansion to
be a function instead of a transition relation, in order to use fixed point theory.
The rest of the section is adjusted accordingly. Furthermore, we optimize the
color approximation implementation presented in [22]. Lastly, Section 8.1 in-
cludes similar future work as in the previous work, but we extend it to consider
new data structures and the new methods presented in this project.
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2 Preliminaries

Before describing Petri nets and their colored counterparts we first define some
preliminaries. We define the set of all natural numbers excluding zero as N>0

and the set of all natural numbers including zero as N0.
We define a Labeled Transition System (LTS) as a triple (Q,Act,−→) where:

1. Q is a set of states,
2. Act is a finite, non-empty set of actions,
3. −→⊆ Q×Act×Q is the transition relation.

Definition 1. (Bisimulation) A binary relation R over the set of states of an
LTS is a bisimulation iff for (s1, s2) ∈ R and a ∈ Act it holds that:

– if s1
a−→ s′1, then there is a transition s2

a−→ s′2 s.t. (s′1, s′2) ∈ R
– if s2

a−→ s′2, then there is a transition s1
a−→ s′1 s.t. (s′1, s′2) ∈ R

Two states s and s′ are bisimilar, written s ∼ s′, iff there is a bisimulation R
s.t. (s, s′) ∈ R. Furthermore, we say that a bisimulation R is an isomorphism if
R (interpreted as a function) is a bijection. Two states s and s′ are isomorphic
iff there exists an isomorphism R s.t. (s, s′) ∈ R.

A finite multiset over some non-empty set A is a collection of elements from
A where each element occurs in the multiset a finite amount of times. Formally,
a multiset S over a set A is defined as a function: S : A −→ N0, where if a ∈ A
then S(a) is the number of occurrences of element a in multiset S. We represent
multisets by a formal sum: ∑

a∈A S(a)
′(a).

As an example assume multiset S over the set {x, y} s.t. S(x) = 1 and
S(y) = 2. This is represented as the sum 1′(x) + 2′(y). We denote the empty
multiset over a set A by ∅ where ∅(a) = 0 for all a ∈ A. Furthermore, we denote
the set of all finite multisets over A by S(A). We define the following multiset
operations where S, S1, S2 ∈ S(A), a ∈ A and n ∈ N0:

a ∈ S iff S(a) > 0 (membership)

S1 ⊆ S2 iff ∀a ∈ A.S1(a) ≤ S2(a) (inclusion)

S1 = S2 iff S1 ⊆ S2 ∧ S2 ⊆ S1 (equality)

S1 ] S2 =
∑
a∈A(S1(a) + S2(a))

′(a) (summation)

S1 \ S2 =
∑
a∈A(max(0, S1(a)− S2(a)))

′(a) (subtraction)

|S| =
∑
a∈A S(a) (cardinality)

The notion of multisets is based on [17].
We also introduce the notion of a color simplification. A color simplification

is a way of reducing multisets of colors to sets of colors. As such we create a
color simplification over a multiset S as:

set(S) = {a | a ∈ S}

where set(S) is the set of all colors with at least one occurrence in S.
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3 Colored Petri Nets

Colored Petri nets (CPN) are an extension of traditional P/T nets introduced
by Kurt Jensen in 1981 [16], where places are associated with color domains
and colors represent the value of tokens. Consequently, arc expressions describe
what colors to consume and add to places depending on a given binding while
transitions may contain guards restricting which bindings are allowed. This ex-
tension can be translated, known as unfolding, to a traditional P/T net if all
color domains are finite as defined in [18].

There are many different definitions of CPNs from the powerful version de-
fined in [19] that includes the ML language for modelling arcs to less powerful
ones such as the one used in the Model Checking Contest [21]. We now give an
abstract definition of a CPN that includes all of these definitions.

Colored Petri Net Definition

A colored Petri net is a tuple N = (P , T ,C,B, C ,G,W ,WI ,M0) (fixed for the
rest of the paper) where:

1. P is a finite set of places,
2. T is a finite set of transitions s.t. P ∩ T = ∅,
3. C is a non-empty set of colors,
4. B is a non-empty set of bindings,
5. C : P −→ 2C \ ∅ is a place color type function,
6. G : T × B −→ {true, false} is a guard evaluation function,
7. W : ((P × T ) ∪ (T × P )) × B −→ S(C) is an arc evaluation function s.t.

set(W ((p, t), b)) ⊆ C(p) and set(W ((t, p), b)) ⊆ C(p) where p ∈ P , t ∈ T and
b ∈ B,

8. WI : P × T −→ N>0 ∪ {∞} is an inhibitor arc weight function, and
9. M0 is the initial marking where a marking M is a function M : P −→ S(C)

s.t. set(M(p)) ⊆ C(p) where p ∈ P .

The set of all markings for a CPN is denoted M(N ). To avoid the use of
partial functions we allow W ((p, t), b) = W ((t, p), b) = ∅ and WI(p, t) = ∞ for
all p ∈ P and t ∈ T , meaning that if an arc is the empty multiset then the arc
never changes any marking and if an inhibitor arc is infinity it never inhibits any
transition.

Notice that G, W and WI are semantic functions. Given a binding, G and
W translate to a result; a boolean for G and a multiset of colors for W .

Definition 2. Legal Bindings
Let B(t) = {b ∈ B | G(t, b) = true} be the set of all bindings that satisfy the
guard of transition t ∈ T .
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Definition 3. (CPN Semantics)
Let ` : T −→ Act be a labeling function. The semantics of a CPN N is defined as
an LTS (M(N ), Act,−→) where:

1. M(N ) is the set of states defined as all markings on N ,
2. Act is the set of actions, and
3. −→⊆ M(N ) × Act ×M(N ) s.t. M a−→ M ′ iff there exists t ∈ T and b ∈ B(t)

where `(t) = a and

W ((p, t), b) ⊆M(p) for all p ∈ P, and
WI(p, t) > |M(p)| for all p ∈ P, and
M ′(p) = (M(p) \W ((p, t), b)) ]W ((t, p), b) for all p ∈ P.

We denote the firing of some transition t ∈ T in marking M to M ′ as M t−→
M ′. Let −→=

⋃
t∈T

t−→ and let −→∗ be the reflexive and transitive closure of −→.

Remark 1. In order to be able to reason about automatic verification of a CPN,
we need to have a finite representation of a CPN that can be passed as an input
to an algorithm. One way to enforce such a finite representation is to assume
that all color domains are finite and the functions W and G are effectively
computable.

We then define the notion of postset and preset of transitions for some place
p, given as p• = {t ∈ T | b ∈ B,W ((p, t), b) 6= ∅} and •p = {t ∈ T | b ∈
B,W ((t, p), b) 6= ∅} respectively.

We also define the postset and and preset of places for some transition t as
t• = {p ∈ P | b ∈ B,W ((t, p), b) 6= ∅} and •t = {p ∈ P | b ∈ B,W ((p, t), b) 6= ∅}
respectively. Additionally, we define the preset of inhibitor arcs as ◦t = {p ∈
P | WI(p, t) 6=∞}.

3.1 Place Transition nets

A Place/Transition (P/T) net is a CPN N = (P , T ,C,B, C ,G,W ,WI ,M0)
where there exists only one color C = {•}, there is only one binding, bε, s.t.
B = {bε}, every guard always evaluates to true i.e. G(t, bε) = true for all t ∈ T
and every arc evaluates to a multiset of {•} i.e. W ((p, t), bε) ∈ S({•}) and
W ((t, p), bε) ∈ S({•}) for all p ∈ P and t ∈ T .

Figure 1a shows an example P/T net. We see places p1, p2 and p3 shown as
the circles in the figure. We also see a transition t displayed as a rectangle, with
arrows representing the pre arcs from p1 and p2 and the post arc to p3, while
the arrow with a circle represents an inhibitor arc. Notice that the arc from p1
to t consumes 2′(•) corresponding to a weight of two. Arcs with no label have
1′(•) as expression. Likewise, inhibitor arcs with no label have a weight of 1.

Figure 1b shows a firing of the transition t in the P/T net. Notice that we
denote a marking as p1 : 2′(•) + p2 : 1′(•) meaning the place p1 has marking
2′(•) and p2 has 1′(•). We do not denote places with no tokens. This notation
is used in future examples.
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p1

p3

t

p2

2′(•)

(a) Example of P/T net. Note that the multiset of an arc without label is 1′(•)

p1 : 2
′(•) + p2 : 1

′(•) t−→ p3 : 1
′(•)

(b) Transition firing in Figure 1a

Fig. 1: P/T net example

3.2 Integer CPN

An integer CPN is a CPN N = (P , T ,C,B, C ,G,W ,WI ,M0) where all colors
are integer products i.e. C =

⋃
k≥1(N0)k.

We introduce the notion of ranges to describe the place color type s.t. a tuple
of ranges ([a1, b1], ..., [ak, bk]) where ai, bi ∈ N0 for i, 1 ≤ i ≤ k describes a set of
colors given by the following semantics:

J([a1, b1], ..., [ak, bk])K = {(c1, ..., ck) | ai ≤ ci ≤ bi for all 1 ≤ i ≤ k}

As an example, consider the place color type of some place p as C(p) =
J([1, 2], [6, 7])K describing the set of colors {(1, 6), (1, 7), (2, 6), (2, 7)}. For sim-
plicity, we ommit the semantic meaning and simply denote ([1, 2], [6, 7]) as the
colors of J([1, 2], [6, 7])K. We also represent singleton intervals as only one num-
ber, e.g. [2, 2] is represented as [2]. Lastly, note that for a, b ∈ N0 where a > b
then ([a, b]) = ∅.

In integer CPNs variables are used to represent colors. They can be present
on arcs and in guards. We denote the set of all variables as V. Bindings in integer
CPNs denote a concrete value assignment of variables s.t. a binding is defined as
a function b : V −→ C giving the value of a variable under a binding. We denote
a concrete binding of variables {x1, ..., xn} as b = 〈x1 = c1, ..., xn = cn〉 where
b(xi) = ci for all i, 1 ≤ i ≤ n.

In integer CPNs each arc (P×T )∪(T×P ) excluding inhibitor arcs is assigned
an arc expression a given by the syntax:

τ ::= c | x | x± s
a ::= n′(τ1, ..., τk) | a1 ± a2 | n · a

where c ∈ C, x ∈ V, s ∈ N>0, n ∈ N>0 and ± ::= + | −.
The semantics of arc expressions are straight forward and are demonstrated

by an example.
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Example 1. Let a = 1′(x − 1) + 1′(y + 1) + 1′(z) be an arc expression and
b1 = 〈x = 3, y = 3, z = 1〉 and b2 = 〈x = 1, y = 2, z = 2〉 be bindings with range
([1, 3]) over variables x, y and z. The semantics is defined as multisets where
W (a, b1) = 1′(2) + 2′(1) since the colors are cyclic in nature s.t. 3 + 1 = 1 and
W (a, b2) = 2′(3) + 1′(2) because 1− 1 = 3.

Guards in integer CPNs are expressed by the following syntax:

γ ::= true | false | ¬γ | γ1 ∧ γ2 | γ1 ∨ γ2 | τ1 ./ τ2

where ./ ::=< | ≤ | > | ≥ | = | 6=. The semantics of guards are also
straight forward and evaluate to a truth value. They are again demonstrated by
an example.

Example 2. Let g = x > 2 ∧ y = 2 ∨ z + 2 = 3 be a guard and b1 = 〈x = 3, y =
3, z = 1〉 and b2 = 〈x = 1, y = 2, z = 2〉 be bindings with range ([1, 3]) over
variables x, y and z. The semantics is defined as G(g, b1) = true and G(g, b2) =
false.

Figure 2a shows an example of an integer CPN. We see all places are associ-
ated with a set of ranges, i.e. C(p1) = B noted [B]. We also see that there is a
guard on transition t that compares x with the integer 1. Lastly, we see that the
post arc from t to p3 creates a product of the integers x and y, where the value
of x is decremented by one. This means that the value of x − 1 is the previous
color in color set A. Note that the previous color for 0 is 2 as the color sets are
cyclic in nature as mentioned above. Figure 2b shows an example of transition
firing in Figure 2a. The transition may only fire once, as the inhibitor arc from
place p3 to transition t inhibits the transition when there is at least 1 token in
p3.

The Model Checking Contest [21] further includes color types called dots
and cyclic enumerations which are excluded from these definitions, as these can
be trivially translated to tuples of integer ranges. For dots, {•}, it is simply
translated to the color domain ([1]) and for a cyclic enumeration with elements
{e1, e2, ..., en} it is translated to the integer colors corresponding to the indices of
the cyclic enumeration, ([1, n]). Furthermore, the Model Checking Contest uses
.all expressions, which creates one of each color in a color domain. This can be
translated to the multiset with one of each color. As an example, consider the
color set A = ([0, 2]) from Figure 2a then A.all = 1′(1) + 1′(2) + 1′(3).

All our examples will be expressed as integer CPNs from this point forward.

3.3 Unfolding

By Remark 1 we can unfold a CPN to a bisimilar P/T net since all domains are
finite. Each place p is unfolded into |C(p)| places, a transition is made for each
legal binding and we translate the multiset of colors on the arc to a multiset
of •. For each place connected to an inhibitor arc, we create a sum place that
contains the sum of tokens across the rest of the representative places. The sum
place is created to ensure that inhibitor arcs functions correctly after unfolding.
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1′(x− 1, y)
1′(y)

1′(x) t

x < 1

[B]

[A]

[AB]2′(5)

2′(0)
3′(2)

Declarations:
color set A = ([0, 2])
color set B = ([4, 5])
color set AB = A×B
variable x : A
variable y : B

p1

p2

p3

(a) Example of Integer CPN

p1 : 2
′(5) + p2 : (2

′(0) + 3′(2))
t−→ p1 : 1

′(5) + p2 : (1
′(0) + 3′(2)) + p3 : (1

′((2, 5)))

binding: 〈x = 0, y = 5〉

(b) Transition firing in Figure 2a
p2(0) p2(1) p2(2)

p3(sum)

p1(4) p1(5)

p3((0, 4)) p3((0, 5))p3((1, 4)) p3((1, 5))

p3((2, 4)) p3((2, 5))

t(〈x = 0, y = 4〉) t(〈x = 0, y = 5〉)

(c) Unfolding of the CPN in Figure 2a to a P/T net

Fig. 2: Integer CPN and unfolding example
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Definition 4. (Unfolding)
Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN. The Petri net obtained by
unfolding N is the P/T net N u = (Pu, Tu,Cu,Bu, Cu, Gu,Wu,Wu

I ,M
u
0 ) where:

1. Pu = {p(c) | p ∈ P ∧ c ∈ C(p)} ∪ {p(sum) | t ∈ T, p ∈ ◦t},
2. Tu =

⋃
t∈T

⋃
b∈B(t) t(b),

3. Cu = {•},
4. Bu = {bε},
5. Cu(p) = {•} for all p ∈ Pu,
6. Gu(t(b), bε) = true for all t(b) ∈ Tu,
7. Wu((p(c), t(b)), b) =W ((p, t), b)(c)′(•) and

Wu((t(b), p(c)), b) =W ((t, p), b)(c)′(•) for all p(c) ∈ Pu and t(b) ∈ Tu, and
Wu((p(sum), t(b)), b) = |W ((p, t), b)|′(•) and
Wu((t(b), p(sum)), b) = |W ((t, p), b)|′(•) for all p(sum) ∈ Pu and t(b) ∈
Tu,

8. Wu
I (p(sum), t(b)) =WI(p, t) for all p(sum) ∈ Pu and t(b) ∈ Tu, and

9. Mu
0 (p(c)) =M0(p)(c)

′(•) for all p(c) ∈ Pu and
Mu

0 (p(sum)) = |M0(p)|′(•)

where p(c) denotes the unfolded place for color c, t(b) denotes the unfolded
transition for binding b and p(sum) denotes the summation of all tokens regard-
less of color for place p.

Consider the CPN in Figure 2a. The unfolded version of this is seen in Figure
2c. We see that each place of the CPN is unfolded to a new place for every color
in the color type of the place as well as a sum place for p3. Additionally, the
transition is unfolded to a new transition for each legal binding.

Theorem 1 is shown in [6, 20] but we add a small optimization on the sum
places.

Theorem 1 ([6, 20]). Given a CPN N = (P , T ,C,B, C ,G,W ,WI ,M0) and
the unfolded CPN N u = (Pu, Tu,Cu,Bu, Cu, Gu,Wu,Wu

I ,M
u
0 ) then M0 ∼Mu

0

with labeling function `(t(b)) = t for all t(b) ∈ Tu.

4 Color Quotienting

Unfolding a CPN without any further analysis will often lead to many unneces-
sary places and transitions. As an example consider the CPN in Figure 3a, the
unfolded version of this net has five places for both p1 and p2 and two transitions
for t1 and t2. However, we see that in p1 all colors greater than or equal to 3
behave exactly the same throughout the net and can thus be represented by a
single color. We do see however that this is not the case for those less than 3
because of t1 and t2. We can thus quotient the CPN by partitioning the color
domain of each place into a number of equivalence classes of colors s.t. the colors
behaving equivalently are represented by the same equivalence class.

Using this approach we can represent the CPN as a bisimilar CPN seen in
3b where the color ([3, 5]) now represents all colors greater than or equal to 3.
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Note that even if we increase the amount of colors in A to e.g. 10000 instead,
we would still need the same amount of equivalence classes but only increase the
amount of tokens.

p1 [A]

1′(x) 1′(x)

p2 [A]

t1

x < 3

A.all
1′(x)

t2
Declarations:
Color set A = ([1, 5])
variable x : A

x ≤ 1

(a) Example CPN

p1 [A]

1′(x) 1′(x)

p2 [A]

t1

x < 2

1′(1)
1′(2)
3′(3)

1′(x)

t2
Declarations:
Color set A = ([1, 3])
variable x : A

Color 1 represents ([1])
Color 2 represents ([2])
Color 3 represents ([3, 5])

x ≤ 1

(b) Figure 3a tranlated to a bisimilar CPN with color equivalence classes

M1 = p1 : 1′(1) t1−→

M2 = p1 : 1′(2)

M ′1 = p2 : 1′(1)

M ′2 = p2 : 1′(2)
t1−→

M1
δ≡M2 M ′1 6

δ≡M ′2

δ(p1) = {([1, 2]), ([3, 5])}, δ(p2) = {([1]), ([2, 5])}

(c) Example of an unstable partition (δ) and markings showing why it is unstable

δ′(p1) = {([1]), ([2]), ([3, 5])}, δ′(p2) = {([1]), ([2, 5])}

(d) Example of stable partition (δ′) where the interval ([1, 2]) is split into two intervals,
([1]) and ([2])

Fig. 3: Quotienting and partition examples

We thus introduce partitioning over places, which is an approach where all
colors with similar behaviour for a place are grouped into an equivalence class,
denoted as θ.

Definition 5. (Partitioning)
A partition δ is a function δ : P −→ 22

C\∅ that for a place p returns the equivalence
classes of C(p) s.t. (

⋃
θ∈δ(p) θ) = C(p) and θ1∩ θ2 = ∅ for all θ1, θ2 ∈ δ(p) where

θ1 6= θ2.

Definition 6. (Partition Marking Equivalence)

Given a partition δ and markings M and M ′, we write M(p)
δ≡M ′(p) for p ∈ P

iff for all θ ∈ δ(p) it holds that:∑
c∈θM(p)(c) =

∑
c∈θM

′(p)(c).
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We write M
δ≡M ′ iff M(p)

δ≡M ′(p) for all p ∈ P .

We now define the notion of a stable partition.

Definition 7. (Stable Partition)

A partition δ is stable if
δ≡ is a bisimulation.

Consider the CPN in Figure 3a. The partition shown in the Figure 3c is not
stable as demonstrated by the transition firing from M1 and M2 to M ′1 and

M ′2 where M1
δ≡ M2 but M ′1 6

δ≡ M ′2. On the contrary Figure 3d shows a stable
partition over the same CPN. Note that we describe the partition with ranges
in the same manner as with integer CPNs.

4.1 Quotienting a CPN

We now describe how a CPN may be quotiented using a stable partition. Firstly,
we define a notion of binding equivalence under a partition.

Definition 8. (Partition Binding Equivalence)

Given a partition δ, a transition t ∈ T and bindings b, b′ ∈ B(t) we write b
δ,t
≡ b′

iff for all p ∈ •t and for all θ ∈ δ(p) it holds that:∑
c∈θW ((p, t), b)(c) =

∑
c∈θW ((p, t), b′)(c)

and for all p ∈ t• and for all θ ∈ δ(p) it holds that∑
c∈θW ((t, p), b)(c) =

∑
c∈θW ((t, p), b′)(c)

We then define classes of equivalent bindings given a δ which are sets of
bindings that behave exactly the same for a given transition defined as:

Bδ(t)
def
= {[b]t | b ∈ B(t)} where [b]t = {b′ | b′

δ,t
≡ b}

Given a stable partition we can construct a quotiented CPN where the set of
colors is the equivalence classes of the stable partition, meaning that the place
color function translates to a set of equivalence classes, which also requires trans-
lating the initial marking to an initial marking of equivalence classes. Likewise,
the set of bindings is the equivalence classes of bindings. As such, we rewrite the
arc- and guard evaluation functions to instead consider an equivalence class of
bindings, which is possible since each binding in the equivalence class behaves
the exact same for a transition.
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Definition 9. (Quotiented CPN)
Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN and δ a stable partition of
N . The quotiented CPN is the CPN N δ = (P δ, T δ,Cδ,Bδ, Cδ, Gδ,W δ,W δ

I ,M
δ
0 )

where:

1. P δ = P,
2. T δ = T,
3. Cδ =

⋃
p∈P δ(p)

4. Bδ =
⊎
t∈T B

δ(t).
5. Gδ(t, [b]t) = G(t, b) for all t ∈ T δ and [b]t ∈ B(t),
6. Cδ(p) = δ(p) for all p ∈ P δ,
7. W δ((p, t), [b]t) = S where S(θ) =

∑
c∈θW ((p, t), b)(c) for all θ ∈ δ(p) and

W δ((t, p), [b]t) = S where S(θ) =
∑
c∈θW ((t, p), b)(c) for all θ ∈ δ(p)

for all p ∈ P δ, t ∈ T δ and [b]t ∈ Bδ,
8. W δ

I (p, t) = WI(p, t) and
9. M δ

0 (p) = S where S(θ) =
∑
c∈θM0(p)(c) for all p ∈ P and θ ∈ δ(p).

Note that for Item 5 and Item 7 we pick a binding b from the equivalence
set of bindings [b]t. However, by Definition 8 we know that it does not matter
which binding from [b]t we pick as they all behave the exact same for transition
t under δ.

Theorem 2. Let N = (P , T ,C,B, C ,G,W ,WI ,M0), δ be a stable partition and
N δ = (P δ, T δ,Cδ,Bδ, Cδ, Gδ,W δ,W δ

I ,M
δ
0 ) be the quotiented CPN then M0 ∼

Mδ
0 .

Proof. Let R = {(M,M δ) |
∑
c∈θM(p)(c) =Mδ(p)(θ) for all p ∈ P and all θ ∈

δ(p)}.
We first notice that (M0,M

δ
0 ) ∈ R by Item 9 in Definition 9. We then show

that R is a bisimulation.
Assume (M,M δ) ∈ R and t ∈ T s.t. M t−→ M ′ under binding b ∈ B(t), we

want to show that Mδ t−→ M δ′ under binding [b]t ∈ B(t) s.t. (M ′,Mδ′) ∈ R. As
such, we need to prove the following:

(a) W δ((p, t), [b]t) ⊆Mδ(p) for all p ∈ P
(b) W δ

I (p, t) > |Mδ(p)| for all p ∈ P
(c) (M ′,Mδ′) ∈ R where Mδ′ = (Mδ(p) \W δ((p, t), [b]t)) ]W δ((t, p), [b]t)

(a) We start by showing W δ((p, t), [b]t) ⊆ M δ(p) for all p ∈ P . Firstly,
because (M,M δ) ∈ R we know that∑

c∈θM(p)(c) =Mδ(p)(θ) for all p ∈ P and all θ ∈ δ(p). (1)

Since W ((p, t), b) ⊆ M(p) we know for all c ∈ C(p) that W ((p, t), b))(c) ≤
M(p)(c) by Multiset Definition of ⊆ which implies that:∑

c∈θW ((p, t), b))(c) ≤
∑
c∈θM(p)(c) (2)

for all θ ∈ δ(p). We then want to show that W δ((p, t), [b]t) ⊆M δ(p) i.e.
W δ((p, t), [b]t)(θ) ≤Mδ(p)(θ) for all θ ∈ δ(p):
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W δ((p, t), [b]t)(θ) = Substitute by Def. 9 Item 7∑
c∈θW ((p, t), b))(c) ≤ By Equation (2)∑
c∈θM(p)(c) = By Equation (1)

M δ(p)(θ)

for all p ∈ P , all θ ∈ δ(p) and b ∈ B(t).
(b) Next we show W δ

I ((p, t), [b]t) > |Mδ(p)|. We know that

WI(p, t) > |M(p)| (3)

by Definition 3 since M t−→M ′. We then show that:

W δ
I (p, t) = Substitute by Def. 9 Item 8

WI(p, t) > Equation (3)
|M(p)| = Multiset Def.∑
c∈C(p)M(p)(c) = Since (

⋃
θ∈δ(p) θ) = C(p)∑

θ∈δ(p)
∑
c∈θM(p)(c) = By Equation (1)∑

θ∈δ(p)M
δ(p)(θ) = Multiset Def.

|Mδ(p)|

for all p ∈ P, θ ∈ δ(p).
(c) Lastly, we show that (M ′,Mδ′) ∈ R. Assume p ∈ P , b ∈ B(t) and

equivalence class [b]t. We know that M ′(p) = (M(p) \W ((p, t), b))]W ((t, p), b)
and Mδ′(p) = (Mδ(p) \W δ((p, t), [b]t)) ]W δ((t, p), [b]t) and we need to show
that

∑
c∈θM

′(p)(c) =M δ′(p)(θ) for all θ ∈ δ(p):∑
c∈θM

′(p)(c) = Substitute by Def. 3∑
c∈θ(M(p) \W ((p, t), b) ]W ((t, p), b))(c) = Substitute by multiset definitions

and by enabledness of t∑
c∈θM(p)(c)−

∑
c∈θW ((p, t), b)(c)

+
∑
c∈θW ((t, p), b)(c)

= Substitute by Def. 9 Item 7∑
c∈θM(p)(c)−W δ((p, t), [b]t)(θ)

+W δ((t, p), [b]t)(θ)
= Since (M,M δ) ∈ R

Mδ(p)(θ)−W δ((p, t), [b]t)(θ)
+W δ((t, p), [b]t)(θ)

= by Def. 3

Mδ′(p)(θ)

We then have to show that the same is the case for the opposite direction s.t.
assume (M,M δ) ∈ R and t ∈ T s.t.Mδ t−→Mδ′, we want to show thatM t−→M ′,
i.e. W ((p, t), b) ⊆ M(p) and WI(p, t) > M(p) for all p ∈ P where b ∈ B(t) and
(M ′,Mδ′) ∈ R. As such, we want to show that:

(d) W ((p, t), b) ⊆M(p) for all p ∈ P
(e) WI(p, t) > |M(p)| for all p ∈ P
(f) (M ′,Mδ′) ∈ R where M ′(p) = (M(p) \W ((p, t), b)) ]W ((t, p), b)

First notice that (e) and (f) can simply be showed by the same argumen-
tation as (b) and (c).
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(d) We show that W ((p, t), b) ⊆M(p) for all p ∈ P . From (a) we know that
W δ((p, t), [b]t) ⊆M δ(p) which implies

∑
c∈θW ((p, t), b))(c) ≤

∑
c∈θM(p)(c) for

all θ ∈ δ(p) and p ∈ P .
Hence observe that there is a marking M1 s.t.

∑
c∈θM1(p)(c) = M δ(p)(θ)

and
∑
c∈θW ((p, t), b)(c) ≤

∑
c∈θM1(p)(c) for all θ ∈ δ(p) and p ∈ P . Clearly t is

enabled in M1 since W ((p, t), b) ⊆M1(p) for all p ∈ P by the multiset definition
of ⊆ and we know the inhibitor arcs do not inhibit the transition by (e).

We then want to show that M1
δ≡ M , i.e.

∑
c∈θM1(p)(c) =

∑
c∈θM(p)(c)

for all θ ∈ δ(p) and p ∈ P . Since (M,M δ) ∈ R we know that
∑
c∈θM(p)(c) =

Mδ(p)(θ) =
∑
c∈θM1(p)(c) for all θ ∈ δ(p) and p ∈ P and thus M1

δ≡ M . And
since δ is stable we know that t is enabled in M .

Thus we know that the opposite direction also holds meaning that R is a
bisimulation.

ut

4.2 Computing stable partitions

With the theoretical foundation of stable partitions and quotienting of a CPN,
we now show how to compute a stable partition for a given CPN. Firstly, we
define a partition refinement criterion as well as a union operator on partitions.

Definition 10. (Partition Refinement)
Given two partitions δ and δ′ we write:

δ ≥ δ′ iff for all p ∈ P and all θ′ ∈ δ′(p) there exists θ ∈ δ(p) s.t. θ′ ⊆ θ

Additionally, we write δ > δ′ if δ ≥ δ′ and δ′ 6= δ.

As an example, consider partitions δ and δ′ from Figure 3a and Figure 3d,
then δ > δ′ since for all θ′ ∈ δ′(p) there exists θ ∈ δ(p) s.t. θ′ ⊆ θ for p ∈ {p1, p2}
and δ 6= δ′.

Note that > is well-founded, as for any δ > δ′ the partition δ′ has more
equivalence classes for some place p ∈ P i.e. |δ(p)| > |δ′(p)|. And since the CPN
is finite there can only be finitely many partitions until the smallest unique
partition δmin with singleton equivalence classes is reached. Note also that δmin
is trivially stable.

Definition 11. Partition Union
Given two partitions δ1, δ2 and p ∈ P let ←→ be a relation over δ1(p)∪ δ2(p) s.t.

θ ←→ θ′ iff θ ∩ θ′ 6= ∅ where θ, θ′ ∈ δ1(p) ∪ δ2(p).

Let ←→∗ be the transitive closure of ←→. Let [θ] def
=

⋃
θ′∈δ1(p)∪δ2(p),θ←→∗θ′ θ

′ where
θ ∈ δ1(p) ∪ δ2(p). We then define t as the partition union operator s.t.

(δ1 t δ2)(p) =
⋃
θ∈δ1(p)∪δ2(p){[θ]} for all p ∈ P.
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For example, assume some place p s.t. C(p) = {([1, 5])} and partitions δ1 and
δ2 s.t. δ1(p) = {([1, 2]), ([3, 4]), ([5])} and δ2(p) = {([1]), ([2, 3]), ([4]), ([5])} then
(δ1 t δ2)(p) = {([1, 4]), ([5])}.

Lemma 1. (Smallest Union)
Given two partitions δ1 and δ2 then δ1 t δ2 ≥ δ1 and δ1 t δ2 ≥ δ2.

Proof. From Definition 11 we see that [θ] is the union of any θ′ that overlaps
with θ and δ1 t δ2 just collects all such unions for every θ. As such, it is trivial
that for any θ ∈ δ1(p) there exists θ′ ∈ δ1(p) t δ2(p) such that θ ⊆ θ′ for all
p ∈ P i.e. δ1 t δ2 ≥ δ1. The same is the case for δ2. ut

Lemma 2. (Stable Union)
Let δ1 and δ2 be stable partitions then δ1 t δ2 is also a stable partition.

Proof. Let δ = δ1 t δ2. Assume M and M ′ s.t. M
δ≡M ′ i.e. for all p ∈ P and all

[θ] ∈ δ(p) it holds that
∑
c∈[θ]M(p)(c) =

∑
c∈[θ]M

′(p)(c) by Definition 7.
Assume p ∈ P . From Definition 11 we can gather that for each [θ] ∈ δ(p) then

for all c, c′ ∈ [θ] there exists c1, ..., ck ∈ [θ] s.t. it holds that c, c1 ∈ θ1∧...∧ck, c′ ∈
θk where θi ∈ δ1(p) ∪ δ2(p) and k ∈ N>0 for all i, 1 ≤ i ≤ k.

We use this information to show thatM andM ′ are bisimilar. LetMi(p)(ci) =∑
c∈[θ]M(p)(c) andMi(p)(c) = 0 for all c ∈ [θ], c 6= ci for some [θ] ∈ δ(p). We can

then create a chain M(p)
δj1≡ M1(p)

δj2≡ M2(p)
δj3≡ ...

δjn≡ M ′(p) where ji ∈ {1, 2}
which implies M(p)

δ≡M ′(p).
The same process can then be applied to all p ∈ P s.t. M(p)

δ≡ M ′(p) for

all p ∈ P meaning that M
δ≡ M ′ by Definition 6. And since both δ1 and δ2 are

stable both
δ1≡ and

δ2≡ are bisimulation relations implying that M and M ′ are
bisimilar and δ is stable.

ut

Theorem 3. (Maximum Stable Partition)
Given a CPN N , there is a unique maximum stable partition δ of N s.t. for all
stable partitions δ′ of N it holds that δ ≥ δ′.

Proof. We prove this by contradiction. Assume two maximum stable partitions
δ1 and δ2 where δ1 6= δ2. We know from Lemma 2 that δ1 t δ2 is stable and by
Lemma 1 we know that δ1 t δ2 ≥ δ1 and δ1 t δ2 ≥ δ2. Thus δ1 and δ2 cannot
both be maximum stable partitions. ut

In order to compute a stable partition we require a bounded marking set to
guarantee termination. As such, we define the max arc size over a CPN N as
the function:

max(N ) = max
p∈P,t∈T,b∈B

(|W ((p, t), b)|, |W ((t, p), b)|).
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The set of all markings smaller than the max arc size over N is defined as:

Mbounded(N ) = {M ∈M(N ) | |M(p)| ≤ max(N ) for all p ∈ P}

As such, Mbounded(N ) is a finite set of all bounded markings of N with
cardinality less than or equal to max(N ). In order to compute stable partitions
we need to show some properties for markings in Mbounded(N ).

Lemma 3. Let N be a CPN and δ a partition. Then for all t ∈ T it holds that

(a) if there exist M1,M2 ∈ M(N ) s.t. M1
δ≡M2, M1

t−→ and M2 6
t−→ then there

exist M3,M4 ∈Mbounded s.t. M3
δ≡M4, M3

t−→ and M4 6
t−→, and

(b) if there exist M1,M2 ∈M(N ) where M1
δ≡M2 and there exists M ′1 ∈M(N )

s.t. M1
t−→ M ′1 and for all M ′2 ∈ M(N ) where M2

t−→ M ′2 it holds that

M ′1 6
δ≡ M ′2 then there exists M3,M4 ∈ Mbounded(N ) where M3

δ≡ M4 and
there existsM ′3 ∈Mbounded(N ) s.t.M3

t−→M ′3 and for allM ′4 ∈Mbounded(N )

where M4
t−→M ′4 it holds that M ′3 6

δ≡M ′4.

Proof. Recall that max(N ) is defined as largest cardinality of all arc multisets
in N , i.e. |W ((p, t), b)| ≤ max(N ) for all p ∈ P and b ∈ B(t).

(a) Let M1,M2 ∈ M(N ) s.t. M1
δ≡ M2, M1

t−→ and M2 6
t−→. We construct a

marking M3 s.t. M3(p) =W ((p, t), b) for all p ∈ P and some b ∈ B(t) where
it clearly follows that |M3(p)| ≤ max(N ) for all p ∈ P . Hence notice that
M3 ∈ Mbounded(N ). We see that M1(p) = M3(p) ]M3(p) since M3(p) ⊆
M1(p) for all p ∈ P where M3(p) describes the remaining tokens in M1(p)
that are not in M3(p). We know that no inhibitor arc can be the reason
M2 is not enabled, as that would mean M1 is not enabled either because
M1

δ≡M2. We also know that M2(p) 6⊆W ((p, t), b) for at least one p ∈ P for
all b ∈ B(t).

We pick a marking M4 where M4
δ≡ M3, M4(p) 6⊆ W ((p, t), b) for at least

one p ∈ P and M2(p) = M4(p) ]M4(p) for all p ∈ P s.t. M4
δ≡M3. Notice

that M4 ∈ Mbounded(N ). We know that M4 exists because M2
δ≡ M1 and

M2(p) 6⊆ W ((p, t), b) meaning that M4(p) ]M4(p) 6⊆ W ((p, t), b) and thus
M4(p) 6⊆W ((p, t), b) for some p ∈ P .

(b) Let M1,M2 ∈ M(N ) s.t. M1
δ≡ M2 and M ′1 ∈ M(N ) s.t. M1

t−→ M ′1 then

for all M ′2 ∈M(N ) where M2
t−→M ′2 we know that M ′1 6

δ≡M ′2. We construct
a marking M3 exactly as before s.t. M3(p) = W ((p, t), b) for all p ∈ P and
some b ∈ B(t) and M1(p) =M3(p) ]M3(p) for all p ∈ P .
We then pick a marking M4 where M4

δ≡ M3, M4(p) ⊆ W ((p, t), b) and

M2(p) = M4(p) ]M4(p) for all p ∈ P and b ∈ B(t) s.t. M4
δ≡ M3. We

know that M4 ∈ Mbounded(N ) since M4
δ≡ M3. Let M ′3 ∈ Mbounded(N ) s.t.
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M3
t−→ M ′3, which is possible because M3(p) ⊆ M1(p) for all p ∈ P s.t.

no inhibitor arc can inhibit M3. For the sake of contradiction now assume
there exists a marking M ′4 ∈ Mbounded(N ) s.t. M4

t−→ M ′4 and M ′3
δ≡ M ′4.

Then notice that we can let M ′1(p) = M ′3(p) ] M3(p) where M1
t−→ M ′1

since M3(p) ⊆ M1(p) for all p ∈ P and let M ′2(p) = M ′4(p) ]M4(p) where

M2
t−→ M ′2 since M4(p) ⊆ M2(p) for all p ∈ P . But since M ′3(p)

δ≡ M ′4(p)

and M3(p)
δ≡ M4(p) it means that M ′3(p) ]M3(p)

δ≡ M ′4(p) ]M4(p) for all

p ∈ P , i.e. M ′1
δ≡ M ′2. However, this contradicts the conditions of (b), and

as such M ′3
δ≡M ′4 cannot hold. ut

We then define the procedure for computing a stable partition over some CPN
shown in Algorithm 1. We start with initial partition where every color in the
color domain is in the same equivalence class for each place. The algorithm is then
split into two parts. The first part from line 4 to 11 creates the initial partition
applying the guard restrictions to the input places of the transitions. The second
part from line 13 to 23 back propagates the guard restrictions throughout the
net s.t. only colors that behave the same are quotiented together.

Theorem 4. Given a CPN N then Stabilize(N ) terminates and returns a stable
partition of N .

Proof. We first prove that Stabilize(N ) terminates. Notice that each iteration
produces a new δ according to the > operator, and since the operator is well-
founded we know that the algorithm terminates.

We then show that for δ = Stabilize(N ), δ is a stable partition of N . Recall,

a partition δ is stable iff for any markings M1
δ≡ M2 whenever M1

t−→ M ′1 for

some t and M ′1 then M2
t−→M ′2 for some M ′2 s.t. M ′1

δ≡M ′2.
We prove by contradiction. Assume δ is not a stable partition. As such there

must exists markings M1,M2 ∈ M(N ) s.t. M1
δ≡ M2 and exist marking M ′1 ∈

M(N ) s.t. M1
t−→M ′1 for some transition t where for all M ′2 ∈ M(N ) s.t. M2

t−→
M ′2 then M ′1 6

δ≡M ′2.
This is exactly the property stated in the if statement on line 17 and we know

from Lemma 3 that if the property is satisfied with two markings from M(N )
then there exists two markings from Mbounded(N ) that also satisfy the property.
Thus the algorithm did not terminate. ut

4.3 Stable Partition Algorithm for Integer CPNs

The Stabilize computation presented in Algorithm 1 can be used to find a stable
partition for any finite CPN. However, implementation-wise it is inefficient to
represent every color in a given equivalence class individually. As such, we also
represent an equivalence class as a tuple of ranges as in Section 3.2. For small
examples this representation may not seem important, but as some nets from
the Model Checking Contest [21] have thousands of colors it becomes significant.
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Algorithm 1: Stabilize(N )

1 Input: N = (P , T ,C,B, C ,G,W ,WI ,M0)
2 Output: stable δ
3 let δ(p) := {C(p)} for all p ∈ P
4 for t ∈ T do
5 for p ∈ •t do

6 while ∃M1,M2 ∈ Mbounded(N ).M1(p)
δ≡M2(p) ∧M1 6

t−→ ∧M2
t−→ do

7 pick δ′ s.t. M1(p) 6
δ′≡M2(p), δ > δ′ and δ(p′) = δ′(p′) for all p′ ∈ P \ {p}

8 δ := δ′

9 end
10 end
11 end
12 let Q := P //Waiting list of places
13 while Q 6= ∅ do
14 let p ∈ Q
15 Q := Q \ {p}
16 for t ∈ •p do

17 if ∃M1,M2 ∈ Mbounded(N ).M1
δ≡M2.∃M ′1 ∈ Mbounded(N ).M1

t−→

M ′1 ∧ ∀M ′2 ∈ Mbounded(N ).M2
t−→M ′2 ∧M ′1(p) 6

δ≡M ′2(p) then

18 pick δ′ s.t. M1 6
δ′≡M2 and δ > δ′ and δ′(p′) = δ(p′) for all p′ ∈ P \ •t

19 Q := Q∪ {p′ | δ′(p′) 6= δ(p′)}
20 δ := δ′

21 end
22 end
23 end
24 return δ

As an example of computing stable partitions with Algorithm 1, consider the
CPN in Figure 4. Table 1 shows the different stages that δ undergoes in order
to become stable. From iteration 0 to 1 the guard restrictions are applied from
the first for loop.

As an example of what happens in the following iterations consider itera-
tion 1. In this iteration we pick p3 as our place. We then look at the input places
for t1 i.e. p1 and p2. We see that there exist markingsM1 = p1 : 1′(4)+p2 : 1′(4)

and M2 = p1 : 1′(3)+ p2 : 1′(4) where M1
δ≡M2. If we fire t1 from the markings

M1
t1−→ M ′1 and M2

t1−→ M ′2 then M ′1 = p3 : 2′(4) and M ′2 = p3 : 2′(3) where

M ′1(p3) 6
δ≡ M ′2(p3) since 3 and 4 are not in the same equivalence class for δ(p3).

Therefore, we let δ(p1) = {([1, 3]), ([4])} s.t. M1 6
δ≡M2.

Since the marking for p3 is not dependent on the value of y, we do not modify
δ(p2) in this iteration. After all iterations are done a stable partition is computed.

In practice we do not iterate every bounded marking since that is inefficient.
Instead we statically analyze the places, arcs and guards in order to partition
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p1 t1

t2

1′(x)

1′(y) 1′(x, y)

1′(x, y)1′(y + 1)

t3

2′(x)

1′(x)

x ≤ 3

y ≥ 3

t4
1′(x, y)

y < 2

Declarations:
Color set A = ([1, 4])
Color set AA = A ×A
variable x : A
variable y : A

[A]

[A]

[A]

[AA]

1′(1)

1′(3) p2

p3

p4

Fig. 4: Example CPN

Iteration p1 p2 p3 p4 Q

0 {([1, 4])} {([1, 4])} {([1, 3]), ([4])}
{([1, 4]× [1]),
([1, 4]× [2]),
([1, 4]× [3, 4])}

{p1, p2, p3, p4}

1, p = p3 {([1, 3]), ([4])} - - - {p1, p2, p4}

2, p = p4 - {([1]), ([2]),
([3, 4])} - - {p1, p2}

3, p = p2 - - -

{([1, 4]× [1]),
([1, 4]× [2]),
([1, 4]× [3]),
([1, 4]× [4])}

{p1, p4}

4, p = p4 - {([1]), ([2]),
([3]), ([4])} - - {p1, p2}

5, p = p2 - - - - {p1}
6, p = p1 - - - - {}

Table 1: Stages of δ throughout Algorithm 1 for CPN in Figure 4. The 0th
iteration is the state of δ just before the while loop begins. If a field has a ’-’ it
indicates that the value is the same as the previous row.

Iteration p1 p2 p3 p4
0, α = α0 {([1])} {([3])} {} {}
1, t = t1, b = 〈x = 1, y = 3〉 - - {([1])} {([1], [3])}
2, t = t2, b = 〈x = 1, y = 3〉 - {([3, 4])} - -
3, t = t1, b = 〈x = 1, y = 4〉 - - - {([1], [3, 4])}
4, t = t2, b = 〈x = 1, y = 4〉 - {([3, 4]), ([1])} - -
5, t = t1, b = 〈x = 1, y = 1〉 - - - {([1], [3, 4]), ([1], [1])}
6, t = t2, b = 〈x = 1, y = 1〉 - {([1, 4])} - -
7, t = t1, b = 〈x = 1, y = 2〉 - - - {([1], [1, 4])}

Table 2: Stages of α when computing the fixed point of E for the CPN in Figure
in 4. If a field has a ’-’ it indicates that the value is the same as the previous
row.
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the color sets. Each partitioning is then propagated back through the net. Addi-
tionally, we do not simply pick a new partition, but rather calculate equivalence
classes containing as many colors as possible while satisfying the constraints of
Line 7 and 18 in Algorithm 1 by statically analyzing the places, arcs and guards.
As an example, in Iteration 1 of Table 1 we do not split the equivalence classes to
singleton equivalence classes for p1 but instead only split as much as is required
with regards to the partitioning of p3.

Lastly, to reduce the overhead of keeping singleton ranges we introduce a
diagonal flag s.t. if a place is marked as diagonal we do not keep any tuples of
ranges as we know each range is a singleton. In integer CPNs the flag is set if
two variables are compared in a guard or if the same variable is present on two
input arcs to the same transition. If a place is marked as diagonal we perform
no further partitioning on the place.

5 Color Approximation

This section describes a technique for safely overapproximating what colors be
present in each place of a CPN described by a color approximation. Essentially,
we analyze which colors are reachable in each place allowing us to ignore colors
that can never be present in a given place.

Definition 12. (Color Approximation)
A color approximation is a function α : P −→ 2C where α(p) approximates the
possible colors in place p ∈ P s.t. α(p) ⊆ C(p). Let A be the set of all color
approximations.

Notice that α(p) is a complete lattice [1] for all p ∈ P with regards to the
subset inclusion. We now define an expansion of a color approximation.

Definition 13. (Color Expansion)
A color expansion is a function E : A −→ A s.t.:

E(α)(p) =

 α(p) ∪ set(W ((t, p), b)) if ∃t ∈ T.∃b ∈ B(t).
set(W ((p, t), b)) ⊆ α(p)

α(p) otherwise.

A color expansion expands the possible colors that exist in each place. Note
that a color expansion only adds colors and never removes any.

Lemma 4. (Monotonicity)
Let α be a color approximation then α(p) ⊆ E(α)(p) for all p ∈ P .

Proof. For all p ∈ P either E(α)(p) = α(p)∪ set((W (t, p), b)) or E(α)(p) = α(p)
and for both cases α(p) ⊆ E(α)(p). ut

Definition 14. (Marking Inclusion)
Given a markingM and color approximation α, we writeM ⊆ α iff set(M(p)) ⊆
α(p) for all p ∈ P .
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Definition 15. (Initial Approximation)
Let α0 be the initial approximation where α0(p) = set(M0(p)) for all p ∈ P .

Since E is a monotonic function we can compute a minimum fixed point [1]
of E.

Definition 16. (Minimum Overapproximation)
We say α is a minimum overapproximation iff α is a minimum fixed point of E
and α0(p) ⊆ α(p) for all p ∈ P .

We now show that the minimum overapproximation is safe, i.e. we do not
exclude any reachable colors.

Theorem 5. (Safeness) Given a minimum overapproximation α, ifM0 −→∗ M
then M ⊆ α.

Proof. By induction on k we prove if M0 −→k M then M ⊆ α.
Base step. Firstly, in the induction basis step k = 0, we know that M0 ⊆ α

holds trivially by Definition 16.
Induction step. Let M0 −→k M

t−→ M ′ by some transition t with some
binding b ∈ B(t) then we want to show that M ′ ⊆ α. By induction hypoth-
esis we know that M ⊆ α. If M t−→ M ′ for some b ∈ B(t), then M ′(p) =
(M(p) \W ((p, t), b))]W ((t, p), b) for all p ∈ P . Since E(α) is a fixed point then
α(p) = α(p) ∪ set(W ((t, p), b)) for transition t under binding b for all p ∈ P i.e.
set(W ((p, t), b)) ⊆ α(p) for all p ∈ P . Thus we get M ′ ⊆ α. ut

Overapproximating a CPN Given a minimum overapproximation, we can
construct a safely overapproximated CPN that has possibly reduced color do-
mains.

Definition 17. (Safely Overapproximated CPN)
Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN and α be a minimum overap-
proximation of N . The safely overapproximated CPN is the CPN
Nα = (P, T,C,B, Cα, G,W,WI ,M0) where Cα(p) = α(p) for all p ∈ P .

Theorem 6. Let N be a CPN and α a minimum overapproximation of N .
The reachable fragments from M0 of the LTSs generated by N and Nα are
isomorphic.

Proof. By Theorem 5 we know that for any reachable marking M ∈M(N ) that
M ⊆ α. Since the reachable fragments of N and Nα are exactly the reachable
markings we know that the reachable fragments are isomorphic. ut

5.1 Computing a Minimum Overapproximation on Integer CPNs

As with color quotienting, presenting each color individually becomes inefficient
when the CPNs become sufficiently large. We thus also introduce the notion of
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ranges over a minumum overappoximation s.t. for a place p the approximation
is a set of tuples of ranges. As an example, consider the approximation α where
α(p) = {(1, 2), (2, 2), (3, 2), (5, 6)}. This can be represented by the set of tuples
of ranges {([1, 3], [2]), ([5], [6])}.

However, computing the minimum overapproximation using ranges is not as
trivial as using complete color sets. To do so, we need to compute new ranges
depending on arcs and guards. To demonstrate this we revisit the example from
Figure 4. We now compute the minimum overapproximation using ranges. The
full computation can be seen in Table 2. Notice that computing the minimum
overapproximation using ranges may expand the number of tuples of ranges. As
an example consider Iteration 4. The amount of tuples of ranges in p2 is increased
from 1 to 2.

If we instead represent the ranges of p2 by [1, 4] we use at most 1 tuple of
ranges to describe the approximation. This is a granularity constant, k, that can
be used to tune the precision of the approximation at the trade-off of time and
memory overhead by using more ranges. Essentially, k denotes how many ranges
at most can be kept for any given place at any point in time. As an example
assume k = 3 for the sets of tuples of ranges {([1], [1]), ([2, 3], [1, 2]), ([4, 5], [2])}.
If we change the granularity constant s.t. k = 2 then the ranges can be repre-
sented as {([1, 3], [1, 2])([4, 5], [2])}. As such the color (1, 2) is now present in the
approximation even though it was not for k = 3.

The value of the granularity constant is quite important depending on the
net, as some nets benefit from a large value because it makes the approximation
more precise and thus reducing the amount of possible bindings, while other
nets benefit from a low granularity because most colors are present anyways so
the high granularity only adds overhead to the computation of the minimum
overapproximation. For example, for the BART nets from the Model Checking
Contest [21] k = 250 is a good compromise, while with k = 5 it cannot be un-
folded. Oppositely, for the BridgeAndVehicles nets, where all colors are present,
k = 5 is good and anything larger gives a significant slowdown. For k = 250 it
takes around 192 seconds to unfold the largest instance of BridgeAndVehicles
while for k = 5 it takes 4.1 seconds.

6 Implementation

We implement the quotienting method presented in Section 4 and the color
approximation method presented in Section 5 in C++ as extensions for the
verification engine verifypn[15] from the TAPAAL toolchain [9].

Since both methods can potentially take a very long time depending on the
net we add timeouts for both methods. For quotienting reaching the timeout
means creating singleton intervals for every color in the color domain of the place.
For color approximation reaching the timeout means lowering the granularity
constant thus losing precision but computing faster.

We implement the notion of variable symmetry identification inspired by
ITS-Tools mentioned in related work [31]. The technique works by identifying
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Fig. 5: Flowchart of a CPN through verifypn

whether two variables of a binding are permutable to avoid creating equivalent
bindings.

For example, assume variables x, y, z with range [1, 3] and an arc expression
1′(x) + 1′(y) + 1′(z). Assuming that there are no restrictions on these variables
from guards or arcs there are 33 = 27 possible bindings. However, if the variables
are detected as symmetric bindings such as 〈x = 1, y = 1, z = 2〉 and 〈x = 2, y =
1, z = 1〉 are equivalent and we only need to consider 10 of the 27 bindings.

In Figure 5 a flowchart diagram of the process of unfolding and verifying a
CPN can be seen. We parse the CPN, process the net with the different static
analysis techniques and then use the information gained to unfold the CPN into a
P/T net which can then be verified. Since the different static analysis techniques
are independent any of the techniques can be disabled e.g. it is possible to only
do color quotienting and color approximation and skip detection of symmetric
variables. For more details on the verification process refer to [4].

6.1 Correctness of our implementation

We check the correctness of our implementation on the colored nets and queries
provided in the 2020 Model Checking Contest [21]. The correctness is tested
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by verifying 16 queries in each of the following categories: ReachabilityCardi-
nality, ReachabilityFireability, CTLCardinality, CTLFireability, LTLCardinality
and LTLFireability per net for 213 colored nets (of which we unfold 207). All
together we test 20448 queries of which we provide an answer for 16368 queries.

We compare query answers to the Oracle database, which is a database of
agreed upon answers by tools from the Model Checking Contest [30]. For the
above mentioned categories there are 10096 answers where we answer consis-
tently on all of them.

6.2 TAPAAL GUI Support

For the development of our methods and implementation we made use of the
recently developed and soon to be released colored GUI of TAPAAL [28]. The
GUI supports the integer CPNs described in Section 3.2 and has helped us
refining and debugging our implementation.

7 Experiments

In this section we describe experiments performed with the quotienting method
presented in Section 4, and the color approximation method presented in Sec-
tion 5. We perform experiments between several different approaches; the quo-
tienting method (Method A), the color approximation method (Method B),
the combined quotienting, symmetric variables and color approximation method
(Method A+B) against the tools MCC [8], ITSTools [29] and Spike [5]. Spike is
used as a representative of MARCIE [12] and Snoopy [11], since they all use the
same IDD based unfolder. As Method A and B are extensions of the TAPAAL
engine verifypn [15], we also compare with verifypn revision 226 which we refer
to as TAPAAL.

We compare on number of unfolded nets, size of unfolded nets, unfolding
time and amount of queries answered for the unfolded nets on competition nets
from the 2020 Model Checking Contest [21].

The experiments are conducted on a compute cluster, running Linux version
5.8.0-2, where each experiment is conducted on a AMD Epyc 7551 processor
with a 15 GB memory limit and 5 minute timeout. A full repeatability package
for the experiments is seen in [3].

7.1 Methodology

Size To measure the size differences we use the size ratio defined as
size1
size2

where

the size for a given net is |P | + |T | where |P | is the number of places and |T |
is the number of transitions. Since we work with division we make the following

rules:
size1
NaN

= 0 and
NaN

size2
= 1000 where NaN is the size value for a net that

has not been unfolded. Lastly, if neither can unfold the value will be 1.
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Time When discussing unfolding time, we only measure pure unfolding time in
seconds (and post-processing reduction time in the case of ITS), which means
we exclude time used on reading, parsing, outputting etc. We make a rule that
if the unfolding did not complete, the unfolding time will be set to 1000 seconds.

Cactus Plots We present the results for unfolding time and size using cactus
plots. A cactus plot is a graph for which each method has their values sorted
from lowest to highest, i.e. the first element is the one with the lowest value for
a given method. As such, two points with the same x-value for different methods
may not be for the same net.

Options For Method A we set the timeout to 5 seconds. For Method B we set
the granularity constant to 250 and let it go down to 5 after 10 seconds.

7.2 Comparison of Tools

Number of unfolded nets Firstly, we look at how many nets each tool can
unfold. This can be seen in Table 3b, where the Total column represents the total
number of unfolded nets by the all the tools combined. The single net we cannot
unfold with Method A+B is the net FamilyReunion3000 which was unfolded by
MCC, though we can unfold it given 3 more minutes. In turn, Method A+B can
unfold 3 nets that no other tool can unfold; DrinkVendingMachine48, 72, 96.
This can be directly attributed to Method A.

Tools Unfolder
TINA MCCLoLA
ITS-Tools ITS
TAPAAL TAPAAL
Spike

SpikeSnoopy
Marcie

(a) Different tools and
what unfolders they use

Spike TAPAAL A ITS B MCC A+B Total
Unfolded 172 174 199 202 204 205 207 208

(b) Number of unfolded nets for each tool

Table 3: Summary of how many nets each tool unfolds

Size comparison In this section we illustrate the size reduction gained by the
advanced analysis presented in this paper. For this we analyze size ratios between
Method A+B and the other tools. In Figure 6 all size ratios where at least one
comparison was not equal 1 are shown. We see that Method A+B has a smaller
size ratio versus all tools for many nets, reducing some nets by more than a 1000
%. In total the size of 88 of the 208 unfolded nets are reduced compared to all
other tools. Only ITS-Tools is able to sometimes unfold to a smaller net than
Method A+B due to the post-reductions they employ. This is most prevalent on
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Fig. 6: Size-ratios(
size1
size2

) that are not equal to 1 for all tools

the net VehicularWifi from the Model Checking Contest, which they unfold to
a size of 38429 while Method A+B unfolds to a size of 85835. This is also the
only net where Method A times out. Note also that the one model MCC unfolds
that we do not, is seen at the end of the A+B/MCC line where it goes out of
bounds.

In Table 4 the median size ratio for each type of model is presented. We see
that Method A+B is better on over half of the models, and is able to reduce
the size to a fraction of what the other tools can for many nets. However, we
again see that ITS slightly outperforms Method A+B on a few models due to
the post-reductions.

One important property of Method A+B is the ability to have constant size
scaling on certain nets. This means that no matter how many extra colors are
added to the color domains, the unfolded net will be the same size. As such, we
can go from an increase in size with each new instance to no increase at all. The
nets where this is the case can be seen in Table 5.

In general we see that Method A+B has a large effect on the sizes of the
unfolded nets, and reduces the size considerably compared to the other unfolders
with a few exceptions compared to ITS.

Time comparison In this section we measure the time needed to unfold. In
Figure 7 the 80 slowest cases for each tool are shown. From the figure it can be
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Name A+B/ITS A+B/MCC A+B/Spike
DrinkVendingMachine <0.001 <0.001 -
GlobalResAllocation 0.003 <0.001 <0.001
Referendum 0.021 0.021 0.021
Airplane 0.023 0.018 0.018
Bart 0.051 0.032 -
PermAdmissibility 0.074 0.045 0.045
DotAndBoxes 0.281 0.207 0.207
CSRepetition 0.463 0.463 0.463
Sudoku-COL-A 0.576 0.576 -
Sudoku-COL-B 0.632 0.632 -
FamilyReunion 0.686 0.685 0.686
QuasiCertifProtocol 0.947 0.947 0.947
PolyORBNT 1 0.446 0.446
PolyORBLF 1 0.557 0.557
LamportFastMutEx 1 0.807 0.807
BridgeAndVehicles 1 1 1
DatabaseWithMutEx 1 1 1
Philisophers 1 1 1
PhilisophersDyn 1 1 1
TokenRing 1 1 1
SharedMemory 1.007 1 1
SafeBus 1.009 0.997 0.997
NeoElection 1.04 0.057 0.077
Peterson 1.047 1 1
VehicularWifi 2.234 0.174 -

Table 4: Size-ratios on the median models for all tools. A ’-’ indicates that the
median net was not unfolded by the tool

seen that ITS, MCC and Method A+B are close in performance and follow the
same development, while Spike is slower. We see that ITS is generally fast on the
nets that are unfolded in less than 10 seconds, however it becomes slower and
has problems unfolding the larger nets. We see that MCC and Method A+B are
very similar in performance, but Method A+B edges ahead on the largest nets.
Overall we see that our advanced analyses with Method A+B adds very little
overhead, but decreases the size of the unfolded nets significantly compared to
the other unfolders.

Effect on Queries Answered In these experiments we examine which unfold-
ing engine allows for the most query answers on their unfolded net. To allow
for a fair comparison, we let each tool unfold and output the net to a PNML
file. Regarding queries, both Method A+B and ITS-Tools can already output
the unfolded queries, but for MCC we implement our own translation from the
colored queries to the unfolded queries for the given nets. For Spike we were not
able to construct a query unfolder that worked consistently, for which reason
Spike is excluded from these experiments.



Unfolding of Colored Petri Nets by Color Quotienting and Approximation 29

A+B ITS MCC Spike
AirplaneLD-COL-0010 55 145 177 177
AirplaneLD-COL-0020 55 265 327 327
AirplaneLD-COL-0050 55 625 777 777
AirplaneLD-COL-0100 55 1225 1527 1527
AirplaneLD-COL-0200 55 2425 3027 3027
AirplaneLD-COL-0500 55 6025 7527 7527
AirplaneLD-COL-1000 55 12025 15027 15027
AirplaneLD-COL-2000 55 24025 30027 30027
AirplaneLD-COL-4000 55 48025 60027 60027
BART-COL-002 447 668 1410 -
BART-COL-005 447 1670 3117 -
BART-COL-010 447 3340 5962 -
BART-COL-020 447 6680 11652 -
BART-COL-030 447 12509 17342 -
BART-COL-040 447 13360 23032 -
BART-COL-050 447 16700 28722 -
BART-COL-060 447 20040 34412 -
DrinkVendingMachine-COL-02 22 76 96 96
DrinkVendingMachine-COL-10 22 28780 111280 111280
DrinkVendingMachine-COL-16 22 248352 1118752 1118752
DrinkVendingMachine-COL-24 22 1685232 8309232 -
DrinkVendingMachine-COL-48 22 - - -
DrinkVendingMachine-COL-76 22 - - -
DrinkVendingMachine-COL-98 22 - - -
Referendum-COL-0010 7 52 52 52
Referendum-COL-0015 7 77 77 77
Referendum-COL-0020 7 102 102 102
Referendum-COL-0050 7 252 252 252
Referendum-COL-0100 7 502 502 502
Referendum-COL-0200 7 1002 1002 1002
Referendum-COL-0500 7 2502 2502 2502
Referendum-COL-1000 7 5002 5002 5002

Table 5: Nets with constant size scaling. A ’-’ indicates that the net was not
unfolded by the tool
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Fig. 7: Worst 80 cases for the unfolding time

Since we are testing the effect of the unfolding and not the verification en-
gine, we use verifypn (r. 238 to include LTL queries as well) to verify the queries.
We verify queries in the following categories from the Model Checking Contest:
ReachabilityCardinality, ReachabilityFireability, CTLCardinality, CTLFireabil-
ity, LTLCardinality and LTLFireability. There are a total of 20032 queries to be
answered1. The results can be seen in Table 6.

We see that using Method A+B to unfold nets allows for answering more
queries in every category due to the generally smaller nets it unfolds to. In total
we are able to answer 4.8 percentage points more queries using the unfolded
nets of Method A+B compared to using the unfolded nets of MCC and 5.6
percentage points more compared to ITS. It should be noted that there may
have been an issue with the interaction between the queries unfolded by ITS in
the LTLFireability category and the verifypn LTL engine, causing an explosion
in the number of atomic propositions resulting in increased complexity [31]. This
might explain the low number of queries answered in the LTLFireabilty category
for ITS, though we still see the effect of the smaller nets on the cardinality
categories.

1 We disregard the LTL catagories for Peterson and LamportFastMutEx as there are
syntactical errors in the queries.
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Cardinality Queries
A+B MCC ITS

Solved % Solved % Solved %
ReachabilityCardinality 3009 88.2 2880 84.5 2894 84.9
CTLCardinality 2900 85.1 2740 80.3 2789 81.8
LTLCardinality 2778 86.8 2606 81.4 2690 84.1
Total 8687 86.7 8226 82.1 8373 83.6

Fireability Queries
ReachabilityFireability 2664 78.2 2529 74.2 2659 78.0
CTLFireability 2546 74.7 2379 69.8 2314 67.8
LTLFireability 2471 77.2 2267 70.8 1904 59.5
Total 7681 76.6 7175 71.6 6877 68.6
Total query answers 16368 81.7 15401 76.9 15250 76.1

Table 6: Number of queries answered for the unfolded nets of each tool. The
% column describes how many percent of the total available queries in each
category was answered

8 Conclusion

We presented two independent methods, color quotienting and color approxi-
mation, for translating colored Petri nets (CPN) into reduced CPNs. The first
method analyzed the CPN in order to create equivalence classes of colors that
contain colors that behave the same throughout the net. We used these equiv-
alence classes to construct new symbolic colors for the net thus reducing the
amount of bindings which in turn reduces the size of the unfolded Place/Transition
net. We proved that this method produces a quotiented CPN that is bisimilar
to the original CPN.

The second method once again analysed the CPN in order to construct a
color approximation that described the possible colors that can exist in any
given place. This allowed us to ignore colors that can never exist thus removing
possible bindings and reducing the size of the unfolded net. We proved that
this method produces a safely overapproximated CPN that is isomorphic to the
original CPN.

We implemented the methods in the tool verifypn which is part of the
TAPAAL tool family, as an extension of the naive unfolding method already
implemented.

Experimental results showed that both the methods greatly increase the num-
ber of nets from the Model Checking Contest that can be unfolded compared
to the naive approach. Furthermore, the methods in conjunction unfold more
nets than either of the methods individually. Comparing with other state of the
art unfolding tools the methods in conjunction unfolds 88 of 208 CPNs to a
smaller Place/Transition nets and in 51 cases to a net that is under half the size
compared to the competition, while still remaining competitive on time used.
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Lastly, we performed experiments on the unfolded nets showing that the
smaller nets allowed for more cardinality and fireability query answers than any
other tool with 4.8 percentage points more query answers than the second best
tool.

8.1 Future Work

There are multiple interesting prospects of colored Petri net unfolding for future
development.

Firstly, for the combined color quotienting and color approximation method
we currently only apply each computation once i.e. we first compute the quo-
tiented CPN and then the safely overapproximated CPN. It may be interesting
to continuously pass the CPN back and forth between the two methods as this
may decrease the size of the unfolded net even further.

To speed up the stable partition algorithm it is a possibility to create a data
structure that keeps track of what places are dependent of what places, thus
when a change is made it is immediately possible to know which places are
affected. This may be more efficient than using the CPN structure directly.

Instead of only using the static analysis for unfolding, we can also use it
for answering queries directly. For example, we can tell just from the color ap-
proximation of a given net whether a place can ever receive tokens of any color.
Additionally, we are able to tell if a transition t can fire by checking if the color
approximation of each of the output places of t is empty. This can be used to sim-
plify the query prior to the unfolding, which is interesting to investigate further,
to see if it will reduce the verification time.

To further reduce the size of the net and speed up the unfolding process,
structural reduction directly on the colored Petri net can be explored. For ex-
ample, on the model FamilyReunion from the Model Checking Contest we see
potential reductions. In particular in combination with the methods presented
in this paper, as removed places and transitions can have a big impact on the
equivalence classes of the CPN as well as the colors that may exist.
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