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Abstract:

An electromagnetic Finite Element Method
(FEM) simulator is implemented for multi-
port homogeneous waveguide networks.
A mathematical and theoretical description of
FEM is discussed. Principles of reference tri-
angles and numerical integration are utilized
to implement the algorithm. The application
Gmsh is used to generate a single order tetra-
hedron mesh used by the FEM algorithm.
Scattering parameters and electric fields are
constructed for the FEM implementation cre-
ated in this thesis. The S-parameters and E-
field from the developed implementation are
compared with the analytical solution of a
TE10 perfect conductor waveguide, the Finite
Integration Technique (FIT), and the FEM al-
gorithm from CST Studio Suite by Dassault
Systems.
In the passband region for S21, it is found that
the magnitude attained from our implementa-
tion has an error of -71.56 dB and -70.26 dB
for CST-FEM and CST-FIT, respectively.
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1 Introduction

An increase in demand for wireless communication services has increased the utilization
of the shared frequency spectrum. The demand for wireless communication is expected
to rise to a large extent in the near future. The International Telecommunication Union
(ITU) predicts that the data usage in 2030 will reach 5016 Exabyte (1018 byte) per month.
This is a considerable rise from 62 Exabyte in 2020 [1].

For wireless devices to coexist and transfer a vast amount of data using the wireless
medium, some form of sharing of this medium is needed [2]. Sharing of the wireless
resources is enabled through, but not limited to, the following properties: time, frequency,
space, power, polarization, and coding [2]. Regulatory rules and mass production
capabilities limit the use of the frequency spectrum. Technologies need to be mature
enough to enable mass production in terms of unit cost, production time, and size. Similar
parameters limit the transmitter power levels as the frequency spectrum. These parameters
include regulatory requirements and mass production capabilities. Additional requirements
for transmitter power levels arise for mobile devices. Mobile devices have limited power
available, as most mobile devices are battery-powered. The frequency spectrum is typically
used for the separation of different systems/communication standards and allows for more
efficient use of the spectrum [2].

In order to utilize these parameters efficiently, the ability to precisely control the elec-
tromagnetic properties in a communication system is essential. These properties include
but are not limited to return loss, coupling, beam pattern, impedance, and power levels.
Systems where these are applicable, are filters, couplers, multiplexers, antennas, etc. No
universally applicable analytical method exists to calculate the electromagnetic fields and
currents of an arbitrary structure. With an increase in the uses of wireless systems and
their complexity, an efficient method of simulating the electromagnetics of these circuits
with the use of numerical methods is needed to efficiently and precisely develop such sys-
tems.

The thesis aims to develop a computational electromagnetic (CEM) tool optimized to
simulate highly resonant homogeneous waveguide structures, with three main functional
objectives. These objectives being the three-dimensional modeling of electric fields, multi-
port simulation on homogeneous waveguides, and the emulation of scattering parameter
measurements.

1



1.1. Computational Electromagnetics Aalborg University

1.1 Computational Electromagnetics

The increase of computational capabilities over the last decades has resulted in the
advent of computational electromagnetics (CEM) [3]. A set of partial differential
equations describes the behavior of electromagnetic fields. Partial differential equations
are complicated to solve for simple structures and not possible (or very complicated) for an
arbitrary structure. Some analytical solutions do exist for simple structures. CEM solvers
based on numerical methods have enabled researchers and designers to model the EM
characteristics of RF circuits before production. Before CEM methods existed, researchers
and designers had to produce and test multiple prototypes to validate their designs. This
process was both costly and time-consuming.

With an increase in the uses of wireless systems and their complexity, an efficient and
accurate method of simulating these systems electromagnetics is needed to develop such
systems efficiently. The better the CEM model, the fewer prototypes need to be produced,
making it cheaper and faster to develop complex systems.

1.2 Motivation:

With the advent of electromagnetic (EM) simulations, radio frequency (RF) designs have
become accessible to the general electronic engineer.

High precision simulation is needed for developing complex mmWave EM structures. One
solution to this is the implementation of the Finite Element Method (FEM) simulator,
which enables accurate modeling of oblique and curved structures [3]. FEM is chosen due
to its ability to accurately model complex structures, whereas other methods, such as the
Finite Difference Time Domain (FDTD) method, utilizes the staircase approach, which is
not as accurate [4]. The FEM method complements the FDTD method, as each simula-
tion method is good for different usages and structures. RF and mmWave engineers utilize
electromagnetic simulation tools without detailed understandings of their inner workings.
Developing and implementing the theory behind the FEM algorithm to a detailed extend
allows the reader to understand the workings of the tools used daily by an RF and mmWave
engineer.

1.3 Organization:

The report structure is as follows: the current chapter presents an introduction to
the subject of computational electromagnetics and the motivation thereof. Chapter 2
introduces the essential Maxwell equations, wave equation, and the fundamentals of
electromagnetism. Chapter three introduces the fundamental properties and uses of
waveguides and cavity resonators and the modes associated with them. Chapter 4
introduces the most used simulation algorithms and the most common commercial software
tools available. Special attention is given to the FEM since this is the method of interest,
arguments for the selection of FEM are presented. Chapter 5 goes into detail with the
theory of FEM. FEM for the three-dimensional and the two-dimensional case are analyzed
for the structure volume and ports. Both a cavity resonator and a simple waveguide are
analyzed. The features to be implemented in the software are introduced in chapter 6.
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1.3. Organization: Aalborg University

Chapter 7 presents the implementation of the FEM algorithm in Matlab, presenting main
implementation aspects differing from the theoretical analysis in chapter 5. Chapter 8
compares the developed EM simulator with existing simulators, specifically the frequency
and time domain methods in the commercial electromagnetic simulator software CST
Studio. Lastly, the results are analyzed, and a conclusion is formed. The conclusion of the
thesis is presented in chapter 9; future research and improvements are discussed in chapter
10.
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2 Electromagnetic Fundamentals

This chapter is divided up into three sections. First, an overview of the theory for Maxwell’s
equations, including the terms and mathematical operators used, is presented. Secondly,
a section on partial differential equations and how they relate to electromagnetism
and Maxwell’s equations are given, and lastly, common boundary conditions used for
electromagnetism are discussed.

2.1 Maxwells Equations

Maxwell’s equations are a collection of four equations. These equations can be written in
either differential or integral form. Equations (2.1) to (2.4) are expressed in chronological
order: Gauss’s law, Gauss’s law for magnetism, Maxwell–Faraday equation and Ampère’s
circuital law [5].

∇ ·E =
ρ

ε
(2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B

∂t
(2.3)

∇×B = µ

(
J + ε

∂E

∂t

)
(2.4)

Variable Description
∇ Differential operator, defined as ∇ =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
B Magnetic field vector
E Electric field vector
J Current
ρ Charge density
ε Permittivity
µ Permeability
t Time

The nabla (∇) operator is used to calculate the properties of the vector fields. The gradient
of a function is calculated by element-wise use of the nabla operator on the vector, ∇E. It
can be used to calculate other properties of the vector function. Because of the vector-like
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2.1. Maxwells Equations Aalborg University

definition of the operator, it can be used with the dot (·) and cross product (×) operators.
When the nabla ∇ operator is used with the dot product, it is expressed as ∇ · E. The
dot product results in the divergence of the function; this is illustrated in Fig. 2.1. The
divergence of a vector function results in a scalar function. The divergence is illustrated
in Fig. 2.1b. Figure 2.1a shows a sample vector field. The divergence operator outputs
a scalar for each input, where the input is a vector. An example use case can be seen
in Gauss’s law as shown in Eq. (2.1). The electric field flux is dependent on the charge
density and the distance to it. It defines the amount of flow resulting from the charges,
which is characterized with a scalar quantity with no direction. Gauss’s law for magnetism
Eq. (2.2), defines the divergence of a magnetic field. The divergence of a magnetic field
and the magnetic flux in any area is always zero. This is due to no magnetic charges
existing. The magnetic flux is balanced; the amount of magnetic flux going into a volume
is the same as the amount of magnetic flux going out of the volume.

(a) Vector field (b) The divergence of the vector field

Figure 2.1: Illustration of the vector field (a), the divergence of a vector field
(b) is a scalar value and not a new vector field.

The equation used for Fig. 2.1 is the electric field of a point charge. The divergence is
found by executing the operation ∇ ·E, and can be expanded to form Eq. (2.5).

∇ ·E =

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)
(2.5)

When using the nabla operator (∇) with the cross product operator as presented,∇× E,
it results in the curl of a function. The curl of a vector field is a new vector field.
Equation (2.5) illustrates how the magnetic field can create an E-field and vice versa.
Two examples of a curl of a vector field is demonstrated in Figs. 2.2 and 2.3, where the
vector fields are shown in Fig. 2.2a and Fig. 2.3a and the curls are shown in Fig. 2.2b and
Fig. 2.3b [5] .

The curl of two vector fields is demonstrated in Figs. 2.2 and 2.3.

The full calculation is presented in Eq. (2.6).

∇×E =

((
∂Ez
∂y
− ∂Ey

∂z

)
,

(
∂Ex
∂z
− ∂Ez

∂x

)
,

(
∂Ey
∂x
− ∂Ex

∂y

))
(2.6)

The Maxwell-Faraday equation expressed as Eq. (2.3) states that where there is a changing
E-field, there is a magnetic field. If a magnetic field exists, a current or displacement current

5



2.2. Differential Equations Aalborg University

(a) Vector field. (b) The curl of the vector field.

Figure 2.2: Illustration of the curl of a vector field. The left image displays a
vector field. The right images displays the curl of the vector filed on the left.
The curl of the vector field is a new vector field. Fig. 2.2a

(a) Vector field. (b) The curl of the vector field.

Figure 2.3: Illustration of curl on a vector field.

exists where a displacement current does not have a charge. An example of a displacement
current is the current flow through a capacitor [5].

2.2 Differential Equations

The two primary differential equations utilized in the analysis of EM fields are the wave
equation and the Laplace equation. The Laplace equation is defined in Eq. (2.7).

∇2f = 0 (2.7)

The Laplace equations describe the steady-state of a system or process. Laplace equation
can be generalize into the Poisson equation. Poisson equation for electromagnetism, is the
solution to electrostatics and is given by the equation is shown in Eq. (2.8).

∇2E =
ρ

ε
(2.8)

When no charges are included in the domain used, Eq. (2.8) simplifies to Eq. (2.9).

∇2E = 0 (2.9)

6



2.2. Differential Equations Aalborg University

To illustrate Eq. (2.7), Eq. (2.8) and Eq. (2.9), an example use case is constructed,
consisting of two parallel plates with a potential of 10 and 0 V. It is desired to find
the field distribution between the two plates. Three discrete voltage points are selected as
shown in Figure 2.4. The boundary values are set to a fixed voltage range, 10 V and 0 V.
The second-order derivative defines that the difference of the differences of the surrounding
points is 0 if in steady-state; however, the derivative can have other values than 0 in a
non-steady case. The difference between the 10 V and the center point is the same as
the difference between 0 V and the center point. In Figure 2.4a, it can be seen that the
center point has a value of 0 V, resulting in the difference in the differences greater than
0 (|10− 0| = 10 and |0− 0| = 0). It can therefore be noted that the system in Figure 2.4a
is not in a steady state. When Poisson’s equation is valid, a steady-state is achieved. A
system in steady-state is illustrated in Fig. 2.4b. Here, it can be noted that the difference
in the differences is 0 (|10− 5| = 5 and |5− 0| = 5, |5− 5| = 0).

Distance

V
ol
ta
ge

0V

5V

10V 1

2 3

(a) The system is not in a steady-state; node two’s
potential will change.

Distance

V
ol
ta
ge

0V

5V

10V 1

2

3

(b) The difference of the differences are the
same, and this system is in a steady-state.

Figure 2.4: Illustration of Poisson/Laplace equation.

The second notable differential equation is the wave equation. For the one-dimensional
case, it is generally given by Eq. (2.10).

∂2f(x, t)

∂t2
= c

∂2f(x, t)

∂x2
(2.10)

Where "t" is time, "x" is position in space, "c" is a constant and f(x, t) is the function
to be found. The wave equation describes how a wave behaves when moving through time
and space. For E-fields in the three-dimensional domain, the wave equation is given by
Eq. (2.11).

∇× (∇×E) = −µ0ε0
∂2E

∂t2
(2.11)

The Helmholtz equation is a time-independent version of the wave equations. The one-
dimensional version is given in Eq. (2.12).

∂2

∂x2
f(x) = −k2f(x) (2.12)

7



2.3. Boundary Conditions Aalborg University

Where f(x) is the function to be found, "k" is a scalar. The Helmholtz equation does not
change with time. It is used to find the resonating frequencies of structures, where constant
standing waves which only change their phase exist. Solving the equation is analogous to
solving eigenvalue problem. A solution to the Helmholtz equation consists of an eigenvalue
and an eigenfunction. The eigenvalue is the frequency associated with the eigenfunction.
The eigenfunction is the function that describes the shape of the solution. For a simple
one-dimensional case with the boundary values of f(0) = 0 and f(a) = 0, the solution
to the problem is A sin(kx) with km = mπ

a . A sin(kx) is the eigenfunction, and in this
case there is only one eigenfunction. km is the associated eigenvalues [3]. This solution is
illustrated for three eigenvalues in Fig. 2.5.

f1f2 f3

A
m
pl
it
ud

e

Space (x)0 a

f(0) = 0

f(a) = 0

Figure 2.5: Illustration of the one-dimensional Helmholtz solution with
boundary values of 0.

A one-dimensional cavity resonator is shown, and the three curves f1, f2 and f3 illustrate
three different solutions. The eigenvalues are the frequency that the functions resonates
with, these are given by k1 = λ

2 , k2 = λ
4 and k3 = 3λ

2 .

2.3 Boundary Conditions

In solving electromagnetic problems, boundary conditions are essential as they are used
to limit the solution domain. The essential boundary conditions describe a perfect electric
conductor (PEC) and an open boundary.

The PEC boundary condition definition states that the E-field is tangential to the PEC
surface and is equal to zero, as any non-zero tangential field at the conductor’s surface
would make electrons move and cancel out the field. In other words, the electric potential
across a PEC has to be 0 [6].

The open boundary condition is used to simulated open boundaries such as antennas
and radiating structures. For the open boundary condition, no reflections occur due to
the surroundings of the structure simulated, and the E-field attenuates as if the E-field
radiates away to infinity [6].

8



3 Waveguides and Cavity
Resonators

This report will utilize cavity resonators and waveguides to illustrate the implementation
of our FEM algorithm. This section gives a deeper understanding of these two structures
and their similarities. Physically realizable waveguides use conductors to guide a wave to
the desired direction. Waveguides have a lower power loss and can handle higher power
levels. This is due to waveguides utilizing a vacuum as a dielectric. It has no loss and the
waveguide will be large preventing arcing. Fig. 3.1.

Port 1

Port 2

Figure 3.1: Illustration of a two-port waveguide. A rectangular tube with
Flanges for mounting.

A cavity resonator uses a volumetric enclosure constructed using good conductors. The
primary volumetric enclosure has no inputs and outputs. A closed cavity resonator has
oscillating frequencies, which are also known as eigenfrequencies. Each frequency compo-
nent corresponds to a mode; multiple modes can, however, have the same frequency. For
both the cavity resonator and the waveguide to be ideal, perfect electric conductive (PEC)
boundaries must be used. No loss on the boundary/walls of the cavity or waveguide if
it is constructed using PEC. In practical applications, boundaries are constructed using
non PEC materials. Utilizing these materials results in energy loss due to the current
induced on the boundary/waveguide wall. Mathematically waveguides can be described as

9
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cavity resonators with an infinite length in one of the three-dimensions. Waveguides are
practical as they can be used in an extensive frequency range. The bandwidth is typically
defined between the cut-off frequency of the first mode (dominant mode) and the cut-off
frequency of the second mode. A waveguide has a cut-off frequency and thereby functions
as a high pass filter. Typical rectangular waveguides have a width dimension of λ

2 of the
center frequency, and the waveguide height is half the height or less in order to suppress
higher modes.

Waveguides are widely used within the commercial and research areas as a way of guiding
RF signals. Standard waveguide flange connections with specified slot dimensions opti-
mized for a specific frequency are developed. Various dimensions for commonly used square
waveguides are presented in Table 3.1. The presented waveguides have the designation WR.
This designation indicates "Waveguide Rectangular".

Other types of rectangular waveguide dimensions as well as different shapes exist. This
report focuses on rectangular waveguide ports only and will therefore not go into further
detail with other types. Rectangular waveguide ports have been selected due to their
structural simplicity and analytical solution to verify the simulations.

In order to simulate waveguides, input and output ports need to be defined. These ports
are waveguide specific, and this is due to the boundary conditions limiting the possible
fields at the ports. The port E-field is therefore dependent on the waveguide geometry
as well as dimensions. Different types of waveguide ports exist. One such port is a ho-
mogeneous waveguide port. A homogeneous port only consists of the structure boundary,
with the port surface consisting of only one material. Such port has a two-dimensional
analytical solution. Inhomogeneous ports can be applied to any waveguide type, such
as substrate integrated waveguides (PCBs), partial substrate integrated waveguides, and
cables. Inhomogeneous ports simulated using FEM are complex as they do not have an
analytical solution to the port boundary, the theoretical and mathematical formulation is
presented in Appendix A. A two-dimensional simulation of the ports before the system
simulation needs to be conducted. Homogeneous waveguide ports can be calculated using
modes, the Transverse Electric (TE) and Transverse Magnetic (TM) mode. Each of these
categories has multiple modes. A rectangular waveguide can only operate in TE or TM
mode, whereas parallel-plate waveguides, also have a mode consisting of electric and mag-
netic fields called Transverse Electric Magnetic (TEM) mode. Coaxial cables only have

Waveguide [EIA] Dimensions [mm] fc [GHz] Specified f [GHz] Band

WR650 165.1000× 82.5500 0.91 1.12-1.70 L
WR284 72.1360× 34.03600 2.08 2.60-3.95 S
WR187 47.5488× 22.1488 3.15 3.95-5.85 C
WR90 22.8600× 10.1600 6.56 8.20-12.40 X
WR62 15.7988× 7.8994 9.49 12.40-18.00 K
WR42 10.6680× 4.3180 14.05 18.00-26.50 K
WR28 7.1120× 3.5560 21.08 26.50-40.00 K a

Table 3.1: Industry-defined standard waveguide sizes. [7].

10



3.1. Transverse Magnetic Modes (TM) Aalborg University

TEM modes.

3.1 Transverse Magnetic Modes (TM)

The TM mode or Transverse Magnetic mode occurs when Hz = 0 and Ez 6= 0. TM modes
have multiple sub-modes TMm,n, where m ≥ 0 and n ≥ 0. "m" denotes the number of λ2
wavelengths in the Y-direction, where as "n" denotes the number of λ2 wavelengths in the
X-direction. TMm,n modes have a cut-off frequency where no wave passes through below
it. The lowest TM mode is the TM11 mode, the cut-off frequency is defined as Eq. (3.1),

fc11 =
1

2π
√
µε

√(π
a

)2
+
(π
b

)2
(3.1)

where "b" is the width and "a" is the height of the waveguide. At frequencies below
the cut-off frequency (f < fc) an imaginary propagation constant exists [5]. The wave
impedance of the TM modes is defined as Eq. (3.2).

ZTM =
βη

ω
√
µε

(3.2)

Where β is dependent on the mode and can be calculated using Eq. (3.3). η is the intrinsic
impedance of the material in the volume of the waveguide, defined as η =

√
µ
ε [5].

β =
√
k2 − k2c =

√
k2 −

(mπ
a

)2
−
(nπ
b

)2
(3.3)

The wave impedance is real when f > fc and imaginary when f < fc. The TM mode is
not further used within the report and will therefore not be explored further.

3.2 Transverse Electric Modes (TE)

The TE mode or Transverse Electric mode occurs when Ez = 0 and Hz 6= 0. TE modes
have multiple modes "n", where n > 1. TE modes have a cut-off frequency, for TEm,n
modes, the cut-off frequency is defined as Eq. (3.4),

fcmn =
kc

2π
√
µε

=
1

2π
√
µε

√(mπ
a

)2
+
(nπ
b

)2
. (3.4)

The lowest mode for TE modes is the TE10 mode. The cut-off frequency for TE10 can
mathematically be expressed as Eq. (3.5).

fc10 =
1

2a
√
µε

(3.5)

11
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The wave impedance of the TE modes is defined as Eq. (3.6).

ZTE =
k
√

µ
ε

β
(3.6)

Where β is mode number dependent and can be calculate using Eq. (3.4). β is the same
for both general modes, TE and TM .

β =
√
k2 − k2c =

√
k2 −

(mπ
a

)2
−
(nπ
b

)2
(3.7)

β is the propagation constant and defines the speed of phase changes within a material.
Similarly to the TM mode, the wave impedance is real when f > fc and imaginary when
f < fc.
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Figure 3.2: 0.2 by 0.1 mm waveguide impedance.

In Fig. 3.2 it can be seen that the actual impedance has an asymptote at 500 ohms. 500
Ohms is therefore a standard impedance in the waveguide passband. The homogeneous
waveguide port has been selected due to its analytical port formulation. Based on this,
the dominant mode TE10 has been selected to be implemented.

In order to verify the later implemented simulations, an analytical solution to a rectangular
waveguide is desired. A rectangular waveguide is one of the simple structures where an
analytical solution exists. The analytical solution to both a TEmn and TMmn mode are
explored.
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The E-field for the X, Y, and Z directions, formulation for the X direction is presented in
Eq. (3.8).

Ex =
jωµnπ

k2c b
A cos

mπx

a
sin

nπy

b
e−jβz (3.8)

The E-field formulation for the Y direction is presented in Eq. (3.9).

Ey =
−jωµmπ
k2ca

A sin
mπx

a
cos

nπy

b
e−jβz (3.9)

The E-field is defined as Ez = 0 in the Z direction based on the TEmn mode definition.
The "A" in Eqs. (3.8) and (3.9) is an amplitude constant for the E-field. For TE10 mode,
the power flow in the waveguide is given by

P10 =
ωµa3 |A10|2 b

4π2
Re(β). (3.10)

This can be used to find a desired value of A. The H-field for the X, Y, and Z directions
are used. The E-field formulation for the X direction is presented in Eq. (3.11).

Hx =
jωεnπ

k2c b
B sin

mπx

a
cos

nπy

b
e−jβz (3.11)

The H-field formulation for the Y direction is presented in Eq. (3.12).

Hx =
−jωεmπ
k2ca

B cos
mπx

a
sin

nπy

b
e−jβz (3.12)

The H-field is defined as Hz = 0 in the Z direction based on the TMmn mode definition.
The "B" variable is a scaling factor of the H-field.

A CST studio frequency-domain simulation of a 0.2 x 0.1 mm waveguide with a PEC wall
has been conducted. Fig. 3.3 shows S11 and S12 curves of the waveguide.
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Figure 3.3: Two-port S-parameter CST simulation of a waveguide with the
dimensions 0.20 m x 0.10 m x 0.40 m.

The data from Fig. 3.3 and the analytical solution will be used to evaluate the performance
of our implemented system.
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4 Computational Methods

There are three main simulation methods used in the industry. The three methods are
the Finite Difference Time Domain (FDTD), Methods of Moments (MOM), and the
Finite Element Method (FEM). Other methods are used; however, most of them are
modified versions of the previously mentioned methods. This section will be giving a
brief introduction to these three numerical methods.

4.1 Finite Difference Time Domain (FDTD)

Finite Difference Time Domain (FDTD) is one of the most commonly used methods to date
[3]. It was developed by K.S. Yee and is therefore also known as Yee’s method [3]. FDTD
is a time-domain method and utilizes the time-dependent Maxwell’s equations [3]. The
time-domain simulations can be converted to the frequency domain after the simulation
using a fast Fourier transform (FFT). Due to this, a single simulation in the time domain
covers the whole frequency domain. This is one reason that the FDTD method is fast
and efficient. The FDTD method does not naturally handle oblique or curved shapes of
material boundaries; variants of the method for curved surfaces do exist [3].

FDTD utilizes a volumetric mesh, where the entire volume of the simulation domain has
to be meshed [3]. In order to terminate the simulation volume, perfectly matched layer
(PML) or PEC boundary conditions are used; other methods do exist [3]. At each time
step, the FDTD method calculates the electric field at a given discrete point, using the
nearby magnetic field. The electric and magnetic field values are stored at these discrete
points. Electric and magnetic field grids are often separated in time (E, H, E, H). This
"leapfrog" method improves accuracy over having both E and H-field at the same time
instance [3]. This technique is illustrated in Fig. 4.1 when half-time steps between field
types are used. All-time marching algorithms, including the "leapfrog" method, allow for
efficient memory use as the calculations can be done in memory places, where the new
E field replaces the old E field. To calculate the next field from the current, it utilizes
the difference between the nearby points using a Taylor series expansion of Maxwell’s
equations. The E- and H-field are shifted in space relative to each other, the surrounding

Et=1 Ht=1.5 Et=2 Ht=2.5

Step 1 Step 2 Step 3

Figure 4.1: Leapfrogging alternates between the E- and H-field for each step.
The H-field is calculated for half a time step.
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points are used to calculate the new field; this is shown in Fig. 4.2 [4].
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Figure 4.2: An update step in a two dimensional FDTD. Hx- and Hy-field
at time 1.5, used to find Ez-field at time 2. The H-field are at the indicated
arrows, the E-field are at the circles.

The formulation is explicit as future states depend on current states [3]. FDTD is a
popular method for wideband systems as simulations are of the same complexity without
dependence on frequency bandwidth, if the mesh is kept the same size in terms of
wavelength. In exceptional cases where large objects with a large amount of free space need
to be simulated, FDTD is not optimal as it needs to discretize the whole volume, including
the free space in the system. FDTD has some limitations in terms of numerical dispersion
and anisotropy [3]. Numerical dispersion means that the speed of propagation on the
grid varies with frequency. Numerical anisotropy means that the speed of propagation
on the grid changes depending on the direction of propagation. For a square grid, wave
propagation of 45 degrees travels faster than wave propagation at a 90-degree angle to the
grid. The error due to both dispersion and anisotropy increases with increasing frequency
when the mesh size is kept the same.

4.2 Method of Moments (MOM)

The Method of Moments (MOM), also known as Boundary Element Method (BEM),
is a standard method used in commercial simulators [3]. MOM is a frequency domain
algorithm. It utilizes a surface mesh and, thereby, integral equations [3]. For each material,
the surface is meshed. This surface mesh can be both structured and unstructured. When
a structure is constructed of multiple layers, each layer is meshed on its surface/transition
to the next material [3]. All surface boundaries are discretized. The MOM method can be
implemented in two ways, using discrete points or using a basis functions [3].

The MOM method is an implicit method and solves integral equations resulting in matrix
inversion. MOM solves the integral form of Maxwell’s equations. Currents within the
structures are discretized and expressed in terms of basis functions or discrete points.
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MOM is then used to find the constants (amplitudes) for the basis function or discrete
point.

The MOM algorithm is efficient at calculating systems where a low amount of hard
boundaries exist. Hard boundaries are boundaries where a discrete change in material
occurs. MOM can not be used for soft boundaries, i.e., material properties change slowly
over distance. Due to the frequency domain characteristics, the MOM method is primarily
suited for narrowband simulations as each frequency point needs a separate calculation
compared to other methods such as FDTD. MOM is often utilized when the system is
large and contains a vast amount of free space. This is due to MoM being based on surface
meshes; therefore, MoM only needs to calculate the surfaces it does not need to model and
mesh all of free space. It uses the Greens function to calculate the interaction[3].

4.3 Finite Element Method (FEM)

The Finite Element Method (FEM) is a commonly used method in the industry. It is a
universal numerical algorithm used to solve partial differential equations. FEM is used in
many disciplines, some of which are: fluid dynamics, mechanical structure analyses, and
electromagnetics.

FEM solves a linear system of equations. Structures are split up into smaller segments
using unstructured or structured mesh, and these elements are called "Finite Elements" [3].
FEM utilizes basis functions to discretize the simulated structure in space [3]. This results
in a system of equations. FEM then solves for the equation constants. Basis functions
with their constants are then combined to form the solution to the whole problem.

In electromagnetics, FEM is used to find a numerical solution to the wave equation. It has
advantages compared to other algorithms, such as FDTD, to model complex structures,
such as curves. It uses complex grids/meshes to represent these structures. The mesh
can be both structured or unstructured. In an unstructured mesh, each subdivision of the
structure to be simulated can have different sizes. Complex curves require a fine mesh in
order to be accurately simulated. Linear structures can be simulated accurately with a
coarser mesh.

In wideband problems, FEM is CPU and memory-intensive compared to other methods
such as FDTD [3]. The CPU intensity increases due to the method having to compute
each frequency point. This is due to each point having a relationship to all other points.
There are as many equations as there are points, each with as many unknowns as points.

4.4 Other Computational Electromagnetic Methods

The previously mentioned methods are not the only computational electromagnetic (CEM)
methods available; these only represent the most common methods. Other methods based
on the aforementioned one exist as well as other independent methods.

One method based on one of the above is the Multilevel fast multipole (MLFMM) method
which is a version of MOM optimized for large structures [8]. It is less computationally
expensive for very large structures as it has a high computational starting cost but with a
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slow cost growth. Very large structures include structures where elements are separated by
a large amount of free space. The high stating cost makes it unsuited for small structures
[3].

4.5 Subdivision of Structures: Mesh Generation

In order for any simulation algorithm to be able to simulate a structure, the structure has to
be divided into smaller pieces. The simulation algorithm can then solve these pieces. This
section will look at subdivisions using rectangular structures (cubes in three-dimensions)
and triangles (tetrahedrons in three-dimensions).

The subdivision of structures known as meshing has a significant effect on simulation
performance [9]. A higher degree of subdivision (meshing) will be able to replicate struc-
tures to a greater extent. Meshing can be structured or unstructured. Structured meshing
occurs when all cells are of the same size, whereas unstructured cells can be stretched.
Unstructured and structured cells need all to be of the same basic geometry.

The various simulator algorithms utilize different meshing approaches. Two main ap-
proaches are taken into account, surface meshing and volumetric meshing. The Finite
Element Method (FEM) and Finite Difference Time Domain (FDTD) method utilize a
volumetric mesh, whereas Methods of Moments (MoM) utilizes a purely surface mesh.
Unstructured meshing needs to be consistent. Consistency means that edge endpoints or
nodes need to be shared between different cells. The goal is to create a meshing that is
equivalent to the structure to be simulated. This is achieved by utilizing cells that have
individual edges as close to being equivalent as possible within the same cell [9].

The structure shape of individual cells varies depending on the method of simulation.
Simulation methods often enable the use of different meshing types. Structure shapes that
FEM can utilize in three-dimensions are; cubes, prisms, pyramids, and tetrahedrons. Two
of the most popular structures are the previously mentioned cubes (rectangular in two-
dimensions) and tetrahedrons (triangles).

Errors resulting from the meshing/subdivision have various factors, two of which are den-
sity and structure type. The main error component that occurs from meshing is a result
of selecting a cell structure that is not suited for a specific structure to be simulated.
Structures such as circles require versatile meshing to simulate the curved surface. Curved
complex surfaces are primary sources for error, where cells are often not very accurate at
replicating the structure. Some cell structures are better than others for such purposes.
Triangles are superior to rectangular cell structures in this regard; this can be seen in
Fig. 4.3.
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Figure 4.3: Illustration of rectangular (right) and triangular (left) mesh.

Phase error occurring due to mesh formation is a common issue. The total phase error
is the sum of individual cell phase errors [3]. The phase error is lower for triangular cells
or tetrahedron cells in three dimensions than other cell structures. This is due to the
cancellation of phase error due to random orientations of the individual cells [3]. Triangles
and tetrahedrons can have random orientation and need not be parallel to any axis [9].
Rectangular cells have to be parallel to at least one of the defined axis.

4.6 Implementations

In this section, an overview of existing implementations is presented.In order to explore the
uses for the different methods utilized in the commercial and research sector. This section
will discuss each solution, what methods individual software suites have and what problem
type is recommended for each method. Some implementations are optimized for both high
frequency and low-frequency problems, such as electrostatics, motors, wireless power, and
similar. Other implementations are optimized for high frequencies methods, such as ray
tracing. Individual methods have advantageous properties for different structure types
and desired simulations; they are therefore combined in software packages. The type of
solver can then be selected depending on the problem, its structure characteristics, desired
accuracy, and computation time. The software packages have a domain that they advertise
as their expertise. The software suite will therefore be best suited for that specific domain.

The commercial and open source software discussed in this section is shown in Table 4.1
with their relevant solvers.

CST studio from Dassault Systems and FEKO from Altair focuses on relatively large
structures like antennas, PCBs, humans, vehicles, ships, and planes. Since this is an
extensive range of dimensions, they have multiple methods implemented.

CST utilizes an optimized version of FDTD called the Finite Integration Method (FIT),
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Software Frequency Domain Time Domain

CST FEM, MoM
MLFMM FIT

Feko NA FDTD, FEM
MoM, MLFMM

OpenEMS NA FDTD
HFSS FEM, MoM FEM
Pathwave FEM, MoM[10] FDTD
AWR MoM, FEM NA

Table 4.1: List of CEM software and their solvers.

where Perfect Boundary Approximation (PBA) is utilized. FIT eliminated the staircase
approximation limitation in FDTD. CST recommends the use of the time domain solver for
medium to large structures. Frequency domain solvers are recommended for very resonant
structures. When using the time domain solver for very resonant structures, the field takes
a long time to dissipate and thereby resulting in phase errors due to the iterative approach,
where the next time step is depending on the previous and thereby summing all errors from
each time step [8]. The frequency-domain solver in CST is based on FEM. The Integral
Equation Solver in CST uses MOM, MLFMM, and ACA (adaptive cross approximation)
[8]. MLFMM and ACA are MOM like. MLFMM is recommended for very large structures
with long distances. It is well suited for radar cross-sections and similar problems with far
Field interaction. ACA is good when using a detailed mesh that is small relative to the
wavelength. Therefore. They all utilizes a surface mesh.

Altair FEKO, similar to CST, focuses on antennas, cars, and larger structures. It does
not have the FIT method; it instead utilizes an implementation of the FDTD method.

HFSS from Ansys, Pathwave from keysight, and AWS from Cadence Design Systems focus
on the simulation of PCBs and ICs. They have FEM and MoM in Frequency Domain.
HFSS has the FEM algorithm implemented in the time domain. HFSS advertises its
core abilities for the following structures: "antennas, antenna arrays, RF or microwave
components, high-speed interconnects, filters, connectors, IC packages and printed circuit
boards" [11]. Specialization in IC design and small structures differentiates it from CST.
This explains the use of different solver types. ICs are very small structures in comparison
to the wavelength.

OpenEMS is an open-source FDTD solver. It has two different versions of the FDTD
method. One using a Cartesian grid and one using a cylindrical grid. The cylindrical
grid is optimized for cylindrical structures, such as magnetic resonance imaging systems
(MRI). The software is advertised as a tool for MRI systems, antennas, and PCBs [12]. The
OpenEms software is a command-line tool and does not include a user interface, meshing,
or data displays.

Implementations Summary

In order to solve a specific problem, the structure characteristics associated with this
problem dictate the type of method used. For structures with fine details relative to the
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wavelength like ICs, PCBs, software suites such as HFSS, Pathwave, and AWS use FEM
and MoM as their solvers are well suited for these types of problems. For larger structures,
CST, FEKO, OpenEMS using the FDTD or FIT method is appropriate algorithms. For
very large structures, MLFMM should be used.

4.7 Algorithm Selection

With FDTD, MOM, and FEM introduced in Sections 4.1 to 4.3, a suitable algorithm needs
to be selected for implementation. Depending on the use case, each algorithm is suitable
for different purposes. Our goal is to simulate highly resonant narrowband waveguide
networks, such as filters constructed using complex three-dimensional structures. In this
section, the algorithms will be evaluated based on the examples presented in [13], an
estimate of the computational cost presented in [3] and the previous information given in
this chapter.

In the paper [13], all three methods are used to simulate a Vivaldi antenna from 0.6 to 3
GHz. It concludes that all the methods are equally good at solving the far-field and S-
parameters of the antenna used. The authors in [13] conclude that the primary difference
between the methods can be found in the computation time and memory usage. From the
computation time presented in [13], it can be seen that the FEM algorithm is faster than
FDTD and both faster and more memory efficient than MoM. It can be noted that the
FEM algorithm is the fastest of the three, however, with a substantially larger memory
usage than FDTD but less than MoM.

The number of computations can be analyzed theoretically. For FEM, FDTD and MOM,
the number of computations scales with the frequency. For FEM and FDTD the scaling
factor is f4 [3]. If the frequency is doubled, the amount of computations to be done is
increased by a factor of 16. This applies for one frequency in FEM and all frequency
components up to f in FDTD. For MoM, the scaling factor for the full three-dimensional
problems is f6. However, it can be improved by using only partly three- or two-dimensional
structures [3]. The initial cost of the different methods differs greatly depending on the
specific problem, resulting in a constant multiplication factor of the computational cost.

In [13] all algorithms simulate the same bandwidth; both FDTD and FEM have the same
scaling function of f4, but attain a different computational time. The extra computation
time for FDTD therefore must be due to the constant scaling factor. The constant factor
for FDTD is potentially due to the Vivaldi antenna being a resonant structure, further
indicating that the FDTD is not optimal for very resonant circuits due to the long settling
time and slow dissipation of energy [8].

The FEM algorithm is the most flexible of the methods in terms of meshing of complex
three-dimensional structures using unstructured three-dimensional elements for the mesh
as described in Section 4.5.

In summary, because of the long computation time when using the FDTD method for
resonant structure and the flexibility of FEMs modeling abilities of any three-dimensional
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geometry with a high degree of accuracy and its fast computation time, FEM is chosen as
the algorithm to implement.
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5 Finite Element Method

The Finite Element Method is a numerical approach used by many disciplines to solve
partial differential equations. One such special case is the wave equation used in the
modeling of electromagnetic circuits. FEM can model objects with complex geometries,
such as curves. FEM has the ability to accomplish this with the use of an unstructured
mesh and grid. This chapter will detail the theoretical working of the FEM method, the
general understanding of FEM, the three-dimensional case, and the introduction of two-
dimensional ports. It is primarily based on two books, Computational Electromagnetics
by Anders Bondeson, Thomas Rylander and Pär Ingelström [3] for the implementation
technique and The Finite Element Method in Electromagnetics by Jian-Ming Jin [9] for
the FEM problem formulation.
The mesh utilized by FEM depends on the dimension of modeling. Fig. 5.1 shows the most
utilized structures for mesh generation divided up into the different dimensions, ranging
from the one-dimensional case to the three-dimensional case.

Tetrahedron

Pyramid

Prisme

Cube

LIne

Triangle

Square

Figure 5.1: The most common shapes used to construct a mesh in FEM.

The use of unstructured mesh enables the modeling of complex objects. Unstructured
mesh enables a higher degree of meshing where the most significant change in electric and
magnetic fields occurs.
The FEM method solves a set of linear equations; this is costly, requiring matrix inversion.
The size of these matrices is large and therefore also requires a substantial amount of
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memory.

5.1 The Ideas of FEM

In this section, an intuitive overview of the FEM algorithm is presented. Section 5.2
will dive into detailed mathematical formulations utilized in this report. This section
is primarily based on the books "The Finite Element Method in Electromagnetics"
[9], "Theory and computation of the Electromagnetic Fields" and "The Finite Element
Method: Theory, Implementation, and Applications" [4].

The goal of the Finite Element Method is to discretize partial differential equations,
enabling them to be solved by a computer. In order to discretize an equation, a
representation in terms of discrete numbers instead of continuous functions needs to be
derived. To explain the discretization of a partial differential equation, the discretization
of a function is introduced as an example. An example function is shown in Fig. 5.2.

Figure 5.2: Sample function f to be interpolated.

In Fig. 5.3, an approximation of the function presented in Fig. 5.2 is demonstrated. This
approximation is derived with the use of interpolation. Linear pieces are used to represent
the function; these pieces have start and endpoints at xi; xi are discrete values on the
X-axis. The combined linear pieces create a continuous linear piecewise function that
approximates the original function and can be described uniquely by the discrete values
at xi.

Figure 5.3: Function f, interpolated using continuous linear piecewise function.
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Instead of describing the interpolation function as a continuous piecewise linear function,
it can be described as a sum of weighted basis functions, a linear combination of basis
functions. This is done using the hat basis functions shown in Fig. 5.4 and weights.

Figure 5.4: Hat basis functions.

In order to do so, the weights need to be found. The weights are the sampled values of the
original function at the input of xi; these values are shown in orange on Fig. 5.5.

Figure 5.5: The sampled points at xi of the original function used for the
interpolation method.

The hat basis functions presented in Fig. 5.4 is scaled by the sampled values at the input
of xi of the original function. The sum of the basis functions results in the continuous
piecewise linear function that interpolates the original function, this is demonstrated in
Fig. 5.6, and the result is shown with the orange function.
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Figure 5.6: Demonstration of the hat functions creating a continuous linear
function is shown in orange. The values of hat functions are added together,
forming the result in orange.

An alternate approach to discretization is to make the linear functions follow the function
of interest so that it minimizes the L2 norm between the function and the piecewise linear
function. The L2 norm is minimized when the residual of the piecewise linear function
and the estimated function are orthogonal to the basis functions. This means that there is
nothing left in the function f that the basis functions can describe. This is analogous to
conduct a projection from a three-dimensional space to a plane; the part of the removed
vector should be orthogonal to all of the projected space [6]. This is illustrated in Fig. 5.7.

Orthogonal
residual

Projected
result

Original/wanted
Function

New smaller
function space

Figure 5.7: Illustration of the analogy in vector space described using the
problem of function spaces.

Therefore it is called the L2 projection. It represents a projection from one function space
to another in the shortest possible distance. Finding the L2 projection for the function f
is given in Eq. (5.1),
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∫
I

f −
 n∑
j=0

ξjϕj

ϕi dx = 0, i = 0, 1, . . . , n (5.1)

where f is the function to estimate,
∑n

j=0 ξjϕj is the piecewise linear function made from
weighted basis functions, ξj is the weights associated with the basis functions ϕj . ϕi
represents the basis functions from 0 to i. I is the line for x0 < x < x5. There are n
equations since Eq. (5.1) have to be true for all basis functions. Equation (5.1) can be
expressed as: ∫

I
fϕidx =

∫
I

 n∑
j=0

ξjϕj

ϕidx

=
n∑
j=0

ξj

∫
I
ϕjϕidx, i = 0, 1, . . . , n

(5.2)

Equation (5.2) results in "n" equations with "n" unknowns and can be rewritten in the
matrix form,

Mξ = b (5.3)

where the indexes of the matrix are calculated as:

Mij =

∫
I
ϕjϕidx (5.4)

bi =

∫
I
fϕidx. (5.5)

The values for the variables ξj are found and the piecewise linear function is given by∑n
j=0 ξjϕj . The result is shown in Fig. 5.8. As it can be seen, the endpoints of the linear

functions can over and undershoot f . The piecewise linear function estimates the function
f in the least squares sense.

Figure 5.8: Piecewise linear approximation of function f .

In Eqs. (5.6) and (5.7) the "M" matrix, the "b" and "ξ" vector is shown for x0, x1, . . . , x5
equal to 0, 1, . . . , 5. As it can be seen in Eq. (5.6) the "M" matrix is sparse as the value
at a point is only influenced by the surrounding two points. In an implementation it is
therefor advantages to store only the indices of the matrix.

27



5.1. The Ideas of FEM Aalborg University

M =



0.33835 0.16665 0 0 0 0

0.16665 0.6667 0.16665 0 0 0

0 0.16665 0.6667 0.16665 0. 0

0 0 0.16665 0.6667 0.16665 0

0 0 0 0.16665 0.6667 0.16665

0 0 0 0 0.16665 0.32835


(5.6)

b =



0.30428294

0.59994273

0.12453382

0.23561381

0.16996559

0.03644494


ξ =



0.50655841

0.79741315

−0.09667314

0.33661507

0.16383511

0.02784168


(5.7)

The results attained in Eq. (5.7) result in a mean error of 2.4 · 10−14 and a mean square
error of 0.84. In comparison, the interpolation method results in a mean error of −3.59

and a mean square error of 1.422. To solve a partial differential equation with a similar
method, the problem-specific equations for M and b need to be derived. This can be done
using two methods; the Galerkin’s method and the Ritz method.

5.1.1 Galerkin’s Method

Galerkin’s method is a method for discretely solving partial differential equations.
Galerkin’s method is a weighted residual method, where the equation to be solved have
there residual set to 0. An example where Galerkin’s method can be utilized is with the
one-dimensional Poisson equation, as shown in Eq. (5.8).

− ∂2u

∂x2
= f (5.8)

Equation (5.8) is solved for I, which is the line for 0 < x < L with the boundary values of
u(0) = 0 and u(L) = 0. Eq. (5.8) can also be rewritten as Eq. (5.9).

f +
∂2u

∂x2
= 0 (5.9)

Replacing the exact solution of "u" by the estimate,
∑n

j=0 ξjϕj , as shown in Eq. (5.10),
the residual is no longer equal to zero, due to the inaccuracies in the estimate.

r =f +
∂2

∂x2

 n∑
j=0

ξjϕj

 6= 0

r =f +

 n∑
j=0

ξj
∂2ϕj
∂x2

 6= 0

(5.10)
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In Eq. (5.10) the variable ϕj is called the weighting function as it is the basis function that
is weighted in order to find the solution. The best solution to the problem is, therefore,
one that satisfies Eq. (5.11), so that the residual is orthogonal to the basis functions.∫

I
ϕir dx = 0, i = 0, 1, . . . , n (5.11)

ϕi is the test function, as it is used to tests for orthogonality. Inserting Eq. (5.10) into
Eq. (5.11), Eq. (5.12) is attained.

∫
I
ϕi

f +

 n∑
j=0

ξj
∂2ϕj
∂x2

 dx = 0, i = 0, 1, . . . , n (5.12)

Rewriting Eq. (5.12) using integration by parts and enforcing the boundary conditions,
Eq. (5.13) is attained.

∫
I
ϕif dx =

∫
I
ϕi

 n∑
j=0

ξj
∂2ϕj
∂x2

 dx

=

∫
I

∂ϕi
∂x

 n∑
j=0

ξj
∂ϕj
∂x

 dx

− ∂ϕi(L)

∂x

 n∑
j=0

ξjϕj(L)

+ ϕi(0)

 n∑
j=0

ξj
∂ϕj(0)

∂x



=

∫
I

∂ϕi
∂x

 n∑
j=0

ξj
∂ϕj
∂x

 dx

=

n∑
j=0

ξj

∫
I

∂ϕi
∂x

∂ϕj
∂x

dx, i = 0, 1, . . . , n (5.13)

The system of equations to be solved can be written up in matrix form as presented in
Eq. (5.14),

Mξ = b (5.14)

where the matrices are given by Eqs. (5.15) and (5.16)

Mij =

∫
I

∂ϕi
∂x

∂ϕj
∂x

dx (5.15)

bij =

∫
I
ϕif dx (5.16)

Galerkin’s method is often utilized due to its simplicity.

5.1.2 Ritz Variational Method

Like Galerkin’s method, the Ritz variational method is a method for discretely solving
partial differential equations. The method is based on calculus of variation, which is similar
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to ordinary calculus, but instead of working with functions, it works with functionals. A
functional function maps functions to a scalar, whereas a standard function maps a scalar
to a different scalar. These can, in a similar way as functions, be used to find stationary
points. Stationary points are the points that describe minimums, maximums, and saddle
points. Instead of finding a number, it finds a function which minimizes, maximizes, or
finds a saddle point of a problem. It is desired to find the function that minimizes the
error (the orthogonality) of the approximation to the real solution. A stationary point is
found by setting the derivative equal to zero; this is shown in Eq. (5.17) for a functional,
F of u.

δ

δu
F (u) = 0 (5.17)

The method is demonstrated by finding the formulation for the one-dimensional Poisson
equation Eq. (5.18).

− ∂2u

∂x2
= f (5.18)

The problem is rewritten in terms of a functional. The result of this is given by Eq. (5.19)
[9],

F (ũ) =
1

2

∫
I

∂2ũ

∂x2
ũ dx− 1

2

∫
I
ũf dx− 1

2

∫
I
fũ dx (5.19)

where ũ is the estimate of u, given by Eq. (5.20).

ũ =

n∑
j=0

ξjϕj (5.20)

Inserting this into Eq. (5.19) results in Eq. (5.21).

F (ũ) =
1

2

∫
I

n∑
j=0

ξj
∂ϕj
∂x2

n∑
j=0

ξjϕj dx−
1

2

∫
I

n∑
j=0

ξjϕjf dx−
1

2

∫
I
f

n∑
j=0

ϕjξj dx

=
1

2

n∑
j=0

ξj

∫
I

∂2ϕj
∂x2

ϕi dx ξi −
n∑
j=0

ξj

∫
I
ϕjf dx, i = 0, 1, . . . , n

(5.21)

The derivative of the functional with respect to ξ, as this is the desired value, is set to
zero.

δ

δξ
F (ũ) =

1

2

n∑
j=0

ξj

∫
I

∂2ϕj
∂x2

ϕi +
∂2ϕi
∂x2

ϕj dx−
∫
I
ϕjf dx, i = 0, 1, . . . , n (5.22)

The same basis function for the test and weighting variables are utilized, (∂2ϕj/∂x
2)ϕi =

(∂2ϕi/∂x
2)ϕj resulting in the final form Eq. (5.23).

δ

δξ
F (ũ) =

n∑
j=0

ξj

∫
I
ϕj
∂2ϕi
∂x2

dx−
∫
I
ϕjf dx, i = 0, 1, . . . , n (5.23)

The final form can be formulated as the matrix system shown in Eq. (5.24),

Mξ = b (5.24)
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where the indices of the matrices are given by Eqs. (5.25) and (5.26).

Mij =

∫
I
ϕi
∂2ϕj
∂x2

dx (5.25)

=

∫
I

∂ϕi
∂x

∂ϕj
∂x

dx−
∫
I
ϕi(0)

∂ϕj(0)

∂x
dx−

∫
I

∂ϕi(0)

∂x
ϕj(0) dx

=

∫
I

∂ϕi
∂x

∂ϕj
∂x

dx

bij =

∫
I
ϕif dx (5.26)

For this specific problem, the Ritz method results in the same formulation as Galerkin’s
method. Galerkin’s method and the Ritz variational method can be used to find a system
of equations for the vector wave equation and the wanted boundaries.

5.2 3D FEM Formulation

In this section, the three-dimensional FEM formulation is considered. A meshing structure
consisting of first-order tetrahedrons is utilized. These can be structured or unstructured.
Higher-order tetrahedrons can be utilized but will not be discussed in this report.

The tetrahedron structure can be described in terms of elements, nodes, and surfaces.
These are shown in Fig. 5.9.

Nodes

Figure 5.9: Single Tetrahedron element. It has 4 nodes, 6 edges, and 4 faces.

Nodes are the coordinates of the structure’s endpoints. An element is one complete tetra-
hedron and will be indexed with the variable "e" throughout the report. The faces of a
tetrahedron consist of four triangles, each constructed between three nodes. These char-
acteristics will later be used to calculate the electromagnetic fields numerically.

In the majority of FEM implementations, a reference-element is utilized [3]. The struc-
ture to be simulated is represented in an (x, y, z) domain, whereas the reference-element
is represented in an (u, v, w) domain [3]. These reference-elements can then be used to
perform all operations. The result is then mapped from the reference-element (u, v, w do-
main) to the physical-element (x, y, z domain) [3]. The mapping occurs with the use of a
transformation. A basis function, as well as a numerical integration, is applied before the
transformation to the reference element [3]. Figure 5.10 shows the reference tetrahedron
element utilized in this report.
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Figure 5.10: Illustration of a reference tetrahedron in its corresponding
coordinate system.

When integration is needed on the physical domain, the integration is first conducted on
the reference element and then transformed to the physical domain. This mapping is only
applicable when the reference element is of the same structure as the physical element
(Both structures have to be a tetrahedron). For the FEM system, the basis function is
utilized to discretize the solution space.

A tetrahedron has four points or nodes, four surfaces or triangles, and six edges or lines.
The reference tetrahedron has nodes in the coordinates shown in Eq. (5.27).

r1 = [0, 0, 0],

r2 = [+1, 0, 0],

r3 = [0,+1, 0],

r4 = [0, 0,+1].

(5.27)

The corresponding basis functions are as shown in Eq. (5.28).

ϕ1 = 1− u− v − w,
ϕ2 = u,

ϕ3 = v,

ϕ4 = w

(5.28)

It can be noted that each node has its own basis function and therefore results in 4 basis
functions. The basis function for each face of the tetrahedron can be constructed and is
expressed in Eq. (5.29).

M1 = 2
(
ϕ3∇̃ϕ2 × ∇̃ϕ1 + ϕ2∇̃ϕ1 × ∇̃ϕ3 + ϕ1∇̃ϕ3 × ∇̃ϕ2

)
= 2[uû+ vv̂ + (w − 1)ŵ]

M2 = 2
(
ϕ1∇̃ϕ2 × ∇̃ϕ4 + ϕ2∇̃ϕ4 × ∇̃ϕ1 + ϕ4∇̃ϕ1 × ∇̃ϕ2

)
= 2[uû+ (v − 1)v̂ + wŵ]

M3 = 2
(
ϕ2∇̃ϕ3 × ∇̃ϕ4 + ϕ3∇̃ϕ4 × ∇̃ϕ2 + ϕ4∇̃ϕ2 × ∇̃ϕ3

)
= 2[uû+ vv̂ + wŵ]

M4 = 2
(
ϕ3∇̃ϕ1 × ∇̃ϕ4 + ϕ1∇̃ϕ4 × ∇̃ϕ3 + ϕ4∇̃ϕ3 × ∇̃ϕ1

)
= 2[(u− 1)û+ vv̂ + wŵ]

(5.29)
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Similarly, the 6 edges each have a basis function as shown in Eq. (5.30).

N1 = ϕ1∇̃ϕ2 − ϕ2∇̃ϕ1 = (1− w − v)û+ uv̂ + uŵ

N2 = ϕ2∇̃ϕ3 − ϕ3∇̃ϕ2 = −vû+ uv̂

N3 = ϕ3∇̃ϕ1 − ϕ1∇̃ϕ3 = −vû+ (u+ w − 1)v̂ − vŵ
N4 = ϕ1∇̃ϕ4 − ϕ4∇̃ϕ1 = wû+ wv̂ + (1− v − u)ŵ

N5 = ϕ2∇̃ϕ4 − ϕ4∇̃ϕ2 = −wû+ uŵ

N6 = ϕ3∇̃ϕ4 − ϕ4∇̃ϕ3 = −wv̂ + vŵ

(5.30)

Where, elements with "ˆ" represent unit vectors. In the Fig. 5.11 an illustration of the
N1 basis function is shown. A three-dimensional cut of the basis function is shown in
Fig. 5.11.

Figure 5.11: Illustration of the basis function N1.

5.2.1 Reference to Physical Element

It is assumed that a meshing structure consisting of three-dimensional tetrahedrons is
utilized in the FEM algorithm. Each tetrahedron used to construct the model structure is
assigned an index "e". A relation between the reference element and the physical element
needs to be constructed, this is done with the mapping re = re(u, v, w) and is extended
in Eq. (5.31).

re(u, v, w) = x̂xe(u, v, w) + ŷye(u, v, w) + ẑze(u, v, w)

=
N∑
i=1

reiϕi(u, v, w)
(5.31)

For tetrahedron, N = 4 as it consists of 4 nodes (points). re(u, v, w) can be expressed as
Eq. (5.32).

re(u, v, w) = (1− u− v − w)re1 + u · re2 + v · re3 + w · re4 (5.32)

The volume of the reference element Ṽ , is bound by the conditions in Eq. (5.33).
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0 > u > 1− v − w
0 > v > 1− w
0 > w > 1

(5.33)

The translation of nodes results in the entire reference-element being transformed to
the physical domain. This includes edge-elements and face-elements as they can be
expressed as a function of nodes. The transformation utilizes linear basis functions, and
the transformation is, therefore, a linear transformation.

5.2.2 Reference Element Integration

All operations are conducted on the reference element and then transformed to the physical
element. Therefore, the integration is conducted on the reference element. The integration
of the reference element with the transformation can be expressed as a change of bases
and can be seen in Eq. (5.34).

∫
V e

f(x, y, z) dx dy dz =

∫
Ṽ
f(u, v, w) det(Je) du dv dw (5.34)

Where det(Je) is the determinant of the Jacobian. The Jacobian is presented in Eq. (5.35).
The volume V e represents the volume of the physical element at index "e". The volume
Ṽ represents the volume of the reference element.

Je =

 ∂xe/∂u ∂ye/∂u ∂ze/∂u

∂xe/∂v ∂ye/∂v ∂ze/∂v

∂xe/∂w ∂ye/∂w ∂ze/∂w

 (5.35)

The Jacobian Je is calculated under the assumption of the mapping re = re(u, v, w) [3].

5.3 Cavity Resonator: E- and H-Field Method

A cavity resonator is explored as it has the same mathematical formulation as a waveguide
without ports. A cavity resonator is the equivalent of a Quasi-Static weak form
formulation. The Quasi-static weak form eigenvalue problem is often used to solve the
eigenfrequencies ω of a specified resonator [3]. The Quasi-static form utilizes parts of
the Maxwell formulation, specifically Amperes and Faraday’s law. These are shown in
rewritten form to include the conductivity Eq. (5.36),

∇× E = −jωB

∇× B

µ0
= (σ + jωε)E

(5.36)

where epsilon (ε) is the permittivity, sigma (σ) is the conductivity, and micro (µ) is the
permeability, B is the magnetic flux given by B = H/µ. These two equations need to be
bounded in order to be able to be solved numerically. For a perfect electric conductive
(PEC) surface, the boundary condition is given by Eq. (5.37),

n̂×E = 0. (5.37)
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This results in complex eigenfrequencies, where the real part represents the frequency
component, and the complex part represents the dampening at a specific frequency [3].

In order to modify Eq. (5.36) to the weak form, the entire volume V of the structure
to be simulated, needs to be taken into account. Eq. (5.36) is therefore modified to the
volumetric integrals shown in Eq. (5.38) and Eq. (5.39).

∫
V
W FL

i · (∇×E)dV = −jω
∫
V
W FL

i ·BdV (5.38)

∫
V
WAL

i · (∇×B)dV = µ0

∫
V
σWAL

i ·EdV + jωµ0

∫
V
εWAL

i ·EdV (5.39)

The superscript FL represents Faraday’s law, and AL, represents Ampere’s law.
Equation (5.38) and Eq. (5.39) differ from Eq. (5.36) by weights WAL

i and W FL
i . The

volumetric integral is used in order to utilize the bulk of the structure. Part of Eq. (5.39)
(
∫
V WAL

i ·(∇×B)dV ) can be further simplified, and is simplified with the use of integration
by parts, with the use of the identity presented in Eq. (5.40).

∇ ·
(
WAL

i ×B
)

=
(
∇×WAL

i

)
·B −WAL

i · (∇×B) (5.40)

The identity presented in Eq. (5.40) can be rearranged to form Eq. (5.41).

WAL
i · (∇×B)dV =

(
∇×WAL

i

)
·B −∇ ·

(
B ×WAL

i

)
(5.41)

The integral is used to simplify
∫
V WAL

i · (∇×B)dV as shown in Eq. (5.42).

∫
V
WAL

i · (∇×B)dV =

∫
V

[(
∇×WAL

i

)
·B −∇ ·

(
WAL

i ×B
)]
dV

=

∫
V

(
∇×WAL

i

)
·BdV −

∫
S

(
WAL

i ×B
)
· n̂dS

=

∫
V

(
∇×WAL

i

)
·BdV −

∫
S

(
n̂×WAL

i

)
·BdS

=

∫
V

(
∇×WAL

i

)
·BdV

(5.42)

On the boundary, the boundary condition states that n̂×WAL
i = 0 on the surface of the

structure i.e the surface is PEC [3]. Based on this, the final problem formulation is shown
in Eq. (5.43).

∫
V
W FL

i · (∇×E)dV = −jω
∫

W FL
i ·BdV∫

V

(
∇×WAL

i

)
·BdV = µ0

∫
V
σWAL

i ·EdV + jωµ0

∫
V
εWAL

i ·EdV
(5.43)

5.4 Matrix Assembly

For ease of implementation, Eq. (5.43) can be represented in vector form as shown in
Eq. (5.44).

Az = λLz (5.44)
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Equation (5.44) can be expressed as Eq. (5.45),

(
0 −C

CT −Z0M
(σ)

)[
c0B

E

]
=
jω

c0

(
M(1) 0

0 M(εr)

)[
c0B

E

]
(5.45)

where each of the matrix and vector-elements are expressed as Eq. (5.46).

Cij =

∫
V e

M e
i ·
(
∇×N e

j

)
dx dy dz

M
(1)
ij =

∫
V e

M e
i ·M e

j dx dy dz

M
(εr)
ij =

∫
V e

εrN
e
i ·N e

j dx dy dz

M
(σ)
ij =

∫
V e

σN e
i ·N e

j dx dy dz

(5.46)

and E represents the electric field. The variable B represents the electric flux. Both
the magnetic and E-field variables are unknowns. The wave impedance Z0 is defined as
Eq. (5.47).

Z0 =

√
µ0
ε0

(5.47)

The eigenvalue λ is defined as λ = jω
ε0
. Elements presented in Eq. (5.46), can be expressed

in terms of reference element transformations. The physical basis functions for the edges
N e
i are constructed from the reference element Ni as shown in Eq. (5.48).

N e
i = [Je]−1Ni (5.48)

The reference element is transformed with the use of the Jacobian. The Jacobian is
presented in Eq. (5.35). Eq. (5.48) can be expanded to apply to the curl of the physical
element as shown in Eq. (5.49).

∇×N e
i =

[Je]T

det (Je)
∇̃ ×N i (5.49)

The facesM e
i need to be mapped from the reference element to the physical element. This

is done with the use of the Jacobian as presented in Eq. (5.50).

Me
i =

[Je]T

det (Je)
M i (5.50)

Inserting the above transformations into Eq. (5.46) results in Eq. (5.51).

Cij =

∫
Ṽ

(
[Je]T

det (Je)
M i

)
·

(
[Je]T

det (Je)
(∇×N j)

)
det (Je) du dv dw

M
(1)
ij =

∫
Ṽ

(
[Je]T

det (Je)
M i

)
·

(
[Je]T

det (Je)
M j

)
det (Je) du dv dw

M
(εr)
ij =

∫
Ṽ
εr

(
[Je]−1N i

)
·
(

[Je]−1N j

)
det (Je) du dv dw

M
(σ)
ij =

∫
Ṽ
σ
(

[Je]−1N i

)
·
(

[Je]−1N j

)
det (Je) du dv dw

(5.51)
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Eq. (5.51) is only valid if the transformation follows the mapping re = re(u, v, w). The
mapping also applies to conductivity and permittivity. The weak form presented above
can be solved with the use of the previously described FEM method.

5.5 Cavity Resonator: E-Field Method

The solution to the eigenvalue problem can also be computed with the use of only the
E-field. Instead of using the first-order equations for both the E-field and the H-field, their
equations are combined to form a single second-order equation as shown in Eq. (5.52),

∇×
(

1

µr
∇×E

)
− k20εrE = 0 (5.52)

where, k0 =
√
λ, k0 ensures the frequency dependence of the formulation. Theoretically,

solving Eq. (5.52) results in the same solution as solving the two first-order equations indi-
vidually. From the resulting E-field, the H-field can be directly calculated. When utilizing
this method, only the edge-elements are used.

First, the variations formulation of the problem is set up, including the boundary val-
ues. In Eq. (5.53) this is done with the boundary of PEC.

δF (E) = 0

n̂×E = 0 on cavity wall
. (5.53)

The variational function formulation is presented in Eq. (5.54).

F (E) =
1

2

∫
V

[
1

µr
(∇×E) · (∇×E)− k20εrE ·E

]
dV (5.54)

The E-field of a single element is given by Eq. (5.55).

Ee =

n∑
i=1

Ne
iE

e
i = {Ee}T {Ne} = {Ne}T {Ee} (5.55)

In order to attain the solution of the E-field for all elements, Eq. (5.55) is substituted into
Eq. (5.54). An solution for the single element E-field is then attained in Eq. (5.56),

F (Ee) =
1

2

M∑
e=1

(
{Ee}T [Ae] {Ee} − k20 {Ee}

T [Be] {Ee}
)

(5.56)

where A and B are defined in Eq. (5.57) and Eq. (5.58).

[Ae] =

∫
V e

1

µer
{∇ ×Ne} · {∇ ×Ne}T dV (5.57)

[Be] =

∫
V e

εer {Ne} · {Ne}T dV (5.58)

The entries in the element matrix are then given by Eq. (5.59) and Eq. (5.60).
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[
Aeij
]

=

∫
V e

1

µer
{∇ ×Ne

i} ·
{
∇×Ne

j

}
dV (5.59)

[
Be
ij

]
=

∫
V e

εer {Ne
i} ·

{
Ne
j

}
dV (5.60)

In order to calculate the matrices A and B, they are expressed in terms of the reference-
elements and then transformed into the physical element with the use of the Jacobian as
illustrated in Eq. (5.61) and Eq. (5.62).

[
Aeij
]

=

∫
V e

1

µer

(
[Je]T

det (Je)
(∇×N i)

)
·

(
[Je]T

det (Je)
(∇×N j)

)
det (Je) du dv dw (5.61)

[
Be
ij

]
=

∫
V e

εr

(
[Je]−1N i

)
·
(

[Je]−1N i

)
det (Je) du dv dw (5.62)

The final form of the weak form is presented in Eq. (5.63),

F =
1

2

(
{E}T[A]{E} − k20{E}T[B]{E}

)
(5.63)

where [A]{E} = k20[B]{E}.

5.6 E-Field and H-Field against Only E-Field

In order to get an understanding of the two different methods, a comparison of
the resonance frequency is made. A simulation is constructed consisting of a
200 mm× 200 mm× 400 mm rectangular cavity resonator. The results for the implemented
E-field only method and E and H-field method are compared. In addition, the CST version
of the E-field only and E and H-field is also included in the comparison shown in Table 5.1.

CST (GHz) E and H Only E (GHz) CST - E and H (GHz) CST - E (GHz)

0.83795 0.83626 0.83626 0.00169 0.00169
0.83795 0.83749 0.83749 0.00046 0.00046
1.05993 1.05076 1.05076 0.00917 0.00917
1.05993 1.05492 1.05492 0.00501 0.00501
1.05993 1.05579 1.05579 0.00414 0.00414
1.12422 1.10884 1.10884 0.01538 0.01538
1.12423 1.11370 1.11370 0.01052 0.01052
1.29815 1.28013 1.28013 0.01801 0.01801
1.29815 1.28201 1.28201 0.01614 0.01614

Table 5.1: Resonance frequency comparison of the E- and H-field method with
E-field only, comparing CST with our implementation.

Our Implementations of FEM are shown in Table 5.1 as "E and H" and "Only E". From
Table 5.1 it can be noted that the two methods have the same accuracy in their calculations
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of the resonant frequency. Both of the methods have the same error. This indicates that the
error originates from the meshing structure and not from the two different FEM methods.
The difference between the two methods lie in the the computation time. The method
using only the E-field is faster than the method using both the E- and H-field. This
is due to the smaller number of variables needed to be solved by the eigenvalue solver.
Using Matlabs eigenvalue solver, the computation time for the two methods is presented
in Table 5.2.

E and H field 7.922 seconds
Only E field 0.789 seconds

Table 5.2: Computation time of the Different methods.

The noted computational time only considers the time taken for the eigenvalue solver to
find the eigenvalues. The computational time presented does not include the mesh gen-
eration or assembling of the matrices to be solved. For demonstrational purposes, only
60 eigenvalues are solved. Only the actual solving of the system is taking into account as
the rest is implementation-specific. The E-field only method has a smaller matrix to be
assembled and is faster than the E- and H-field method.

A disadvantage of the E-field only method is that only the E-field is calculated. The
H-field can be calculated in post processing with the E-field. Due to the computational
advantages of the E-field only method, this method is utilized for the remainder of the
thesis.

5.7 Two port E-Field Homogeneous Waveguide

In order to analyze microwave components such as waveguides and filters, a method of
emulating a device with multiple inputs and multiple outputs needs to be found. In
this section, a discontinuous homogeneous waveguide will be analyzed. A homogeneous
waveguide is a waveguide constructed using PEC or other metalized materials, where the
ports need to be homogeneous. Scattering (S) parameters will later be used to analyze the
resulting E-fields at the port surfaces. A discontinuous waveguide is illustrated in Fig. 5.12
with two ports S1 and S2.
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a

Figure 5.12: Illustration of a two port waveguide with the two ports S1 and
S2. The height of the waveguide is "a" and the width is "b". The ports should
behave has if the waveguide continued, this is illustrated by the extra length
beyond the ports.

A waveguide is constructed with the use of PEC for boundaries/walls. The waveguide is
filled with a dielectric substrate, in this case, vacuum. The waveguide is bounded at both
ends with the surfaces S1 and S2. Some assumptions need to be made for the boundary
conditions. These assumptions consist of the system only operating in its dominant mode
(TE10), and no attenuation is present [9].

The E-field at both ports can be described as a dominant wave (TE10) and a reflected
wave due to impedance mismatch. This is expressed mathematically in Eq. (5.64).

E(x, y, z) = Einc(x, y, z) + Eref(x, y, z)

= E0e10(x, y)e−jkz10z +RE0e10(x, y)ejkz10z
(5.64)

where, E(x, y, z) represents the E-field at a given point and can be calculated at the two
ports. Einc represents the known incident wave applied to the port and Eref represents the
unknown reflected wave from the port. The power of the applied E-field is expressed as E0

and R is the reflection constant. For the dominant mode (TE10), e and kz are expressed
as Eq. (5.65) and Eq. (5.66) [9].

e10(x, y) = ŷ sin
πx

a
(5.65)

kz10 =

√
k20 −

(π
a

)2
(5.66)

Eq. (5.64) can be expressed with the use of the curl of the E-field as shown in Eq. (5.67).

n̂× (∇×E) = −ẑ × (∇×E)

= −jkz10E
inc + jkz10E

ref

= jkz10E− 2jkz10E
inc

(5.67)
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Eq. (5.67) can then be further simplified to form Eq. (5.68),

Uinc = n̂× (∇×E) + γn̂× (n̂×E) (5.68)

where,
γ = jkz10

Uinc = −2jkz10E
inc .

(5.69)

In the case analyzed here, it is assumed that an E-field is applied to S1 resulting in a
reflected field and an incident field. The reflected wave is a result of a mismatch in port
impedance. In this example, the second surface S2 is assumed only to absorb the incident
wave and is simplified by removing the reflected component.

The E(x, y, z) expressed in the previous derivation is for surface S1. The second surface
S2, is constructed in a similar approach as to S1, however without the reflected component
as shown in Eq. (5.70) and Eq. (5.71).

E(x, y, z) = Etrans(x, y, z)

= TE0e10(x, y)e−jkz10z
(5.70)

n̂× (∇×E) + γn̂× (n̂×E) = 0 (5.71)

The boundary conditions for the surfaces are defined in Eq. (5.68) and Eq. (5.71).

It is desired to know which parts of the incident wave are reflected and which are
transmitted. In order to find the transmitted wave, the integral of port 2 is calculated.
The transmitted wave is divided by the integral of the incident wave to determine the ratio
of incident to transmitted wave.

In order to isolate the amount of a specific mode present in the received field (port 2), the
analytical formulation of the desired mode is included in the integral of the received field.
This is shown in Eq. (5.72) where e10 is the formulation of the TE10 modes field.

At port 1, the incident and reflected wave are present. The field at port 1 is found similarly
to port 2. The reflected wave is then determined by subtracting the incident wave from
the field at port 1. The coefficients R and T are used for the reflection coefficient and the
transmission coefficients. These are shown in Eq. (5.72).

T =
2ejkz10z2

abE0

∫
S2

E (x, y, z2) · e10(x, y)dS (5.72)

R =
2e−jkz10z1

abE0

∫
S1

E (x, y, z1) · e10(x, y)dS − e−2jkz10z1 (5.73)

For a lossless system such as the system analyzed, R2 + T 2 = 1 needs to be upheld, as
all power can only be reflected or received. The final boundary condition for a system
consisting of a two-port waveguide with a PEC wall, the boundary can be expressed as
Eq. (5.74),

δF (E) = 0

n̂×E = 0 on waveguide wall,
(5.74)
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where, the function F is expressed as Eq. (5.75) for the two port waveguide.

F (E) =
1

2

∫
V

[
1

µr
(∇×E) · (∇×E)− k20εrE ·E

]
dV

+

∫
S1

[γ
2

(n̂×E) · (n̂×E) + E ·Uinc
]

dS

+

∫
S2

[γ
2

(n̂×E) · (n̂×E)
]

dS.

(5.75)

The surface E-field (Es) is calculated by separating the surface into "faces". This process
is conducted during the meshing of the structure. Only the triangular faces from the
tetrahedron need to be taken into account for analyzing the fields on the surface. This
process is illustrated in Eq. (5.76).

n̂×Es =

ns∑
i=1

SsiE
s
i

= {Es}T {Ss}

= {Ss}T {Es}

(5.76)

In Eq. (5.76) the exponent "s" represents the face indices of all triangular surfaces
associated with a specific port surface. Where "S" is the cross product of the normal
vector and the basis function Ssi = n̂ ×Ns

i . Where Ns
i are the the basis functions of the

edges associated with the specified port surface. The function F (E) can then be expressed
as Eq. (5.77).

F =
1

2

M∑
e=1

{Ee}T [Ke] {Ee}+
1

2

Ms∑
s=1

{Es}T [Bs] {Es} −
Ms1∑
s=1

{Es}T {bs} (5.77)

where,M is the amount of elements within the volume,Ms is the number of elements for all
surfaces, andMS1 is the number of elements for surface S1. The function in Eq. (5.77) can
be expressed in matrix form [K]{E} = {b}. Where the elements are defined in Eq. (5.78).

[Ke] =

∫
V e

[
1

µer
{∇ ×Ne} · {∇ ×Ne}T − k20εer {Ne} · {Ne}T

]
dV

[Bs] =

∫
Ss

γ {Ss} · {Ss}T dS

{bs} =

∫
Ss

{n̂× Ss} ·UincdS

(5.78)

The ports can not be placed close to any internal structure in the waveguide if accurate
results are to be attained. The ports are formulated for the TE10 mode, any other mode
generated from internal structures inside the waveguide has to die out before the field at
the port is measured. This results in a higher computational cost as a larger structure
needs to be meshed and analyzed [9].

5.8 Two-dimensional Port Formulation

The ports assigned to the analyzed waveguide are surfaces; due to this, a three-dimensional
FEM formulation can not be used on these surfaces directly. For the port surfaces, a two-
dimensional FEM formulation needs to be constructed.
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Similar to the three-dimensional FEM formulation presented in Section 5.2, the two-
dimensional case utilizes a reference-element [3]. The basics for utilizing a reference element
will not be described here, as they have already been described in Section 5.2. A reference
triangular element is presented in Fig. 5.13.

1

0.5

0
0 0.5 1

V

U

Figure 5.13: Reference triangle with the corner nodes in (0,0), (0,1) and (1,0).

A triangle has 3 points or nodes, 1 surface and 3 edges or lines. The reference triangle has
nodes in the coordinates shown in Eq. (5.79).

r1 = [0, 0],

r2 = [+1, 0],

r3 = [0,+1]

(5.79)

The corresponding basis functions are as shown in Eq. (5.80).

ϕ1 = 1− u− v,
ϕ2 = u,

ϕ3 = v

(5.80)

It can be noted that each node has its own basis function and therefore results in 3 basis
functions.

The three edges each have a basis function as shown in Eq. (5.81).

N1(u, v) = ϕ1∇̃ϕ2 − ϕ2∇̃ϕ1 = û(1− v) + v̂u

N2(u, v) = ϕ2∇̃ϕ3 − ϕ3∇̃ϕ2 = −ûv + v̂u

N3(u, v) = ϕ3∇̃ϕ1 − ϕ1∇̃ϕ3 = −ûv + v̂(u− 1)

(5.81)

Where, elements with ’ˆ’ represent unit vectors. Similarly to the three dimensional case, a
mapping function is defined, re = re(u, v) [3]. This mapping function maps the reference
element in the u,v domain to the physical element x,y domain [3]. This is done according
to Eq. (5.82).

re(u, v) = x̂xe(u, v) + ŷye(u, v)

=
N∑
i=1

reiϕi(u, v),
(5.82)
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A triangle has 3 nodes and thereby N = 3. By inserting the basis function in Eq. (5.82),
Eq. (5.83) is attained.

re(u, v) = (1− u− v)re1 + ure2 + vre3 (5.83)

The conditions apply for the reference domain. The conditions are presented in Eq. (5.84).

0 > u > 1− v
0 > v > 1

(5.84)

In order to conduct the mapping, the Jacobian is utilized to map from reference element
to physical element [3]. The two-dimensional Jacobian is presented in Eq. (5.85), it must
be noted that the Jacobian is constructed in three dimensions, with the third dimension
being equal to zero. This enables the simple integration of two-dimensional elements in a
three-dimensional system.

Je =

 ∂xe/∂u ∂ye/∂u 0

∂xe/∂v ∂ye/∂v 0

0 0 1

 (5.85)

Based on the previously mentioned Jacobian, the integration mapping can be derived as
shown in Eq. (5.86).

∫
Se

f(x, y)dxdy =

∫
S̃
f(u, v) det (Je) dudv (5.86)
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6 Software Features

This chapter describes the abilities of our FEM implementation. FEM algorithm. The
implemented features are listed below:

• Three dimensional modeling of electric and magnetic fields using FEM.
• Multi-port simulation of homogeneous waveguides.
• Emulation of scattering parameter measurements.

The developed code is written in Matlab and requires a mesh input. Mesh generation
is conducted with the use of the meshing software Gmsh. The Python Application
Programming Interface (API) of Gmsh is utilized. A structure can be constructed with
the use of the Gmsh user interface.
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7 Implementation

In this section, the implementation of the Finite Element Method (FEM) code is analyzed
and explained in relation to the FEM mathematical formulation. Only the core of the
developed software will be analyzed. The core aspects of the implementation include
GMSH meshing, numerical integration, matrix assembly for both volumetric and port
structures, and scattering parameters. These functions and features are implemented in
the general case, enabling the simulation of an arbitrary structure. The software has been
implemented in a combination of Matlab and Python. The FEM algorithm has in its
entirety been implemented in Matlab. Python has been used for mesh generation and
export of mesh information to a Matlab readable format.

7.1 GMSH Mesh Generation

A mesh from a three-dimensional structure needs to be generated, which can be utilized
by our FEM algorithm. Meshing algorithms are outside of the scope of this thesis, and an
external meshing solution has been selected. The selected meshing tool is the open-source
GMSH application. GMSH is a three-dimensional meshing tool developed for general
purpose FEM simulations and not specifically for electromagnetic implementations [14]. It
enables meshing using tetrahedrons and can be used for both structured and unstructured
meshes, with the mesh density being user-definable [14]. Structures can be created using
the integrated user interface with parametric modeling and can be exported to GMSH
specific files (.geo). Similarly, surfaces can be selected and defined for port specifications.
The GMSH software user interface is shown in Fig. 7.1.
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Figure 7.1: Three port power divider meshed in the GMSH software.

A three-dimensional tetrahedron meshed three-port power divider can be seen in Fig. 7.1.
GMSH features various programming application programming interfaces (API), of which
the Python API is utilized. The Python API is used to mesh the specific .geo files
and export the information needed for our Matlab implemented FEM algorithm. The
parameters needed from the mesh for our FEM implementation are presented in Section 7.1.

Varible Description

ed2no_all Edge id to node ids for all
ed2no_pec Edge id to node ids for PEC
el2ma Element id to material id
el2no Element id to node id all
fa2no_all Face id to node id all
no2xyz node id to x, y, z coordinates
port_fac2no_list port triangles ids to nodes ids

Table 7.1: FEM algorithm-specific meshing variables exported from Python
to Matlab readable file.

Similarly, parameters needed for the purpose of plotting only are presented in Section 7.1.

Variable Description

ed2no_port Edge id to node id for port surfaces

Table 7.2: Plot specific meshing variables exported from python to Matlab
readable file.

Other meshing applications can be utilized as long as they can supply the input parameters
listed in Section 7.1.
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7.2 Numerical Approximation of Integrals

Integration for both the volumetric as well as the port formulation is needed in our FEM
algorithm implementation. Numerical integration is conducted on the reference element; in
order to do this, the quadrature rule is utilized. The quadrature rule is defined in Eq. (7.1)
for the three-dimensional case.

∫
V
f(u, v, w) du dv dw ≈

N∑
i=1

ωif(ui, vi, wi) (7.1)

The variable ωi is the weight associated with the quadrature rule and ui, vi, wi are the
quadrature points [3]. The weights and constants (ui, vi, wi) can be seen in Table 7.3.

i u -coordinate v -coordinate w -coordinate Weight

1 0.5854101966249685 0.1381966011250105 0.1381966011250105 0.0416̄
2 0.1381966011250105 0.5854101966249685 0.1381966011250105 0.0416̄
3 0.1381966011250105 0.1381966011250105 0.5854101966249685 0.0416̄
4 0.1381966011250105 0.1381966011250105 0.1381966011250105 0.0416̄

Table 7.3: Quadrature weights associated with the quadrature points [3].

An illustration of these points is shown in Fig. 7.2.

Figure 7.2: Two viewers of the quadrature points, the points where the function
that is going to be integrated, should be sampled in the tetrahedron.

The quadrature rule is only a valid approximation if the function can be represented by a
2n − 1 degree polynomial, where "n" is the number of samples taken of the function. As
a result, the quadrature rule is valid for our implementation.

7.3 Matrix Assembly

The matrix for the complete system (port surfaces, volume, and PEC boundary) is
implemented based on the theory presented in Section 5.7. The matrix assembly procedure
is separated into two; the three-dimensional volume and the two-dimensional ports. The
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system of equations to be solved are combined in matrix form, as shown in Eq. (7.2).
K11 . . . K1M

...
. . .

...
KM1 . . . KMM

+

B11 . . . B1M
...

. . .
...

BM1 . . . BMM



E1

...
EM

 =

 b1...
bM

 (7.2)

The index "M" represents the number of edges in the meshed structure. In order to solve
the FEM formulation for the complete system, the individual equations within the system
need to be constructed. These are the "K" matrix, "B" matrix, and "b" vector. For the
"K" and the "B" matrix, individual entries represent the relationship between two edges,
the column, and the row index represent all edges. The E vector describes the E-field at
each edge. Similar to E, there is a "b" entry for each edge. E represents the scaling factor
by which the edge basis function needs to be scaled in order to attain the correct solution.
In order to know the location of each edge, it is assigned a unique edge ID in the range of
1 to M. This edge ID is used for the indexing of the matrices and vectors.

7.3.1 Volumetric Matrix Assembly

A matrix needs to be derived to relate the propagation properties to the system’s volume,
which is done by the "K" matrix. Since each edge only has a relationship with edges that
are part of the same tetrahedron, the global matrix can be calculated in smaller element
matrices, representing individual tetrahedrons. These smaller matrices are constructed
using local edge ID numbers. The local ID numbers are integers from 1 to 6, as there are
6 edges in a tetrahedron. The global edge number must be used to assemble the global
matrix, as the individual calculated element matrix values are inserted into the global
matrix. The majority of edges are part of multiple elements, and if indices from multiple
element matrices are to be added to the same entry in the global matrix, they have to be
summed. The process is illustrated in Fig. 7.3.

49



7.3. Matrix Assembly Aalborg University

Global Matrix Asemble

For all relevant
elements

Generate element
matrix

Add to global
matrix using
edge ID’s

Done
no

Yes

Figure 7.3: Flow diagram of assembling the global matrices from element
matrices.

The values in the element matrix are calculated based on the equations in Eq. (5.78). In
order to do so, the equations are expressed in terms of individual elements within the
matrices. This is shown for the "K" matrix in Eq. (7.3).

[
Ke
ij

]
=

∫
V e

[
1

µer
{∇ ×Ne

i} ·
{
∇×Ne

j

}
− k20εer {Ne

i} ·
{
Ne
j

}]
dV (7.3)

The element basis function, Ne, is unknown and needs to be transformed from the
reference-element into the element basis function. The transformations are conducted
as described in Section 5.2.1, with the use of the Jacobian and the determinant of the
Jacobian. Due to this, the basis functions are initially defined in terms of the reference
function. Only the points used in the numerical integration are used since these are the
ones needed for the integration procedure. The nodal functions are shown in Listing 7.1.

up{1} = 1 - q2u(1,:) - q2u(2,:) - q2u(3,:);
up{2} = q2u(1,:);
up{3} = q2u(2,:);
up{4} = q2u(3,:);

Listing 7.1: Nodel basis fucntions ϕ.

The variable "q2u" is the u, v, and w coordinate for the individual points used for the
integration in the reference tetrahedron. The first index in the matrix q2u represents the
u, v, and w (1 - 3) coordinate of the integration point, whereas the second index represents
which integration point, out of four, in the tetrahedron is selected. The gradient of the
node basis functions are constant and are found as shown in Listing 7.2.
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ug{1} = [-1 -1 -1]’;
ug{2} = [+1 0 0]’;
ug{3} = [0 +1 0]’;
ug{4} = [0 0 +1]’;

Listing 7.2: gradient of node basis functions ∇ϕ.

The edge basis functions are defined by the reference tetrahedron and are shown in
Listing 7.3.

uin{1} = ug{2}*up{1} - ug{1}*up{2};
uin{2} = ug{3}*up{2} - ug{2}*up{3};
uin{3} = ug{1}*up{3} - ug{3}*up{1};
uin{4} = ug{4}*up{1} - ug{1}*up{4};
uin{5} = ug{4}*up{2} - ug{2}*up{4};
uin{6} = ug{4}*up{3} - ug{3}*up{4};

Listing 7.3: Creation of the element matrix.

An illustration of "N1" (uin{1}) is shown in Fig. 7.4. A single cutting plane is illustrated
where the "w" coordinate is zero. The points utilized in the integration code are highlighted
in the figure by the black arrows. These are used with the quadrature rule to integrate as
discussed in Section 7.2.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1 N for quadrature rule
N

Figure 7.4: The edge basis functions with the integration point highlighted for
a cutting plane of the tetrahedron, where w = 0.

The curl of the "N" basis functions are implemented in Listing 7.4.
ouTmp = ones(size(q2w));
ucn{1} = 2*cross(ug{1},ug{2})*ouTmp;
ucn{2} = 2*cross(ug{2},ug{3})*ouTmp;
ucn{3} = 2*cross(ug{3},ug{1})*ouTmp;
ucn{4} = 2*cross(ug{1},ug{4})*ouTmp;
ucn{5} = 2*cross(ug{2},ug{4})*ouTmp;
ucn{6} = 2*cross(ug{3},ug{4})*ouTmp;

Listing 7.4: curl of edge basis functions ∇×N .

In order to attain the basis function for the desired physical element, the basis functions for
the reference-element needs to be transformed; this is done using the Jacobin. It is derived
based on the points and the gradient of the nodal basis function, as shown in Listing 7.5.
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jac = zeros(3);
for iIdx = 1:4

jac = jac ...
+ [xyz(1,iIdx)*ug{iIdx}, ...

xyz(2,iIdx)*ug{iIdx}, ...
xyz(3,iIdx)*ug{iIdx}];

end

Listing 7.5: curl of edge basis functions ∇×N .

The Jacobian is utilized to find the transformations of the "N" and the ∇ × N basis
functions.
map_ccs = inv(jac); % mapping for curl-conforming space
map_dcs = jac’/det_jac; % mapping for div-conforming space
for iIdx = 1:6

gin{iIdx} = map_ccs*uin{iIdx};
gcn{iIdx} = map_dcs*ucn{iIdx};

end

Listing 7.6: Transformation from reference space (u,v,w) to physical (x,y,z).

After the transformation from the reference-space to physical-space, the basis function
shown in Fig. 7.5 is attained. The basis function is shown for w = 0. Since this is a larger
triangle than the reference, the vectors values are small relative to the triangle and still
need to be adjusted. This is due to the transformation only being a transformation of the
input space and not its function. This means that in order for the integral to be correct,
the function needs to be scaled by the change of volume. The determinant of the Jacobian
gives this change of volume.

1 1.5 2 2.5 3 3.5
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1.2
1.4
1.6
1.8
2

2.2
2.4
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2.8
3 N for quadrature rule

N

Figure 7.5: The basis function after it has been transformed for the triangle
with the nodes (1,3), (2,1), and (3,2). The change in the area has not scaled
the function vector values.

The code for calculating a single element matrix is given in Listing 7.7.
for iIdx = 1:6

for jIdx = 1:6
er = ma2er(q2x(1,:),q2x(2,:),q2x(3,:));
ipTmp = (1./mu).*sum(gcn{iIdx}.*gcn{jIdx} - (k0^2)*er.*gin{iIdx}.* gin{jIdx});
KElMtx_EE(iIdx,jIdx) = ipTmp * q2w’ * det_jac;

end
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end

Listing 7.7: Creation of the element matrix for the volume.

In order to calculate the integral of Eq. (7.3) in the Listing 7.7, the dot product is used.
The dot product is used due to it being a vector function and it describes how orthogonal
two functions are compared to each other. The dot product is calculated using the sum
function after the vectors have been element-wise multiplied. The final integration across
all triangles is done by the multiplication of "q2w" and "ipTemp", as shown in Listing 7.7,
with "q2w" being the weights generated from the quadrature rule. Furthermore, the result
is scaled with the Jacobian determinant to compensate for the volumetric change.

7.3.2 Two-dimensional Port Boundary Matrix Assembly

Matrices need to be derived to relate the boundary conditions to the surface of the ports
within the system. This is done by the "B" matrix and "b" vector. The "B" matrix
represents the absorbing aspect of the ports and is therefore applied to all ports within the
system. The "b" matrix represents the incident wave aspect of the system and is therefore
only applied to the port which is to be excited. The "B" matrix and the vector "b" hold
information regarding all edges. However, only the edges of which are part of the triangles
used in the port surfaces need to be considered.

Both the "B" matrix and the "b" vector have the dimensions discussed in the introduction
of this section. Elements not included in the surface triangles, however, are zero. These
exist due to the ports being two-dimensional and therefore being triangles and not
tetrahedrons. The element matrix of which the global matrix is constructed is assembled
from single triangles. Similarly, the vector of which the global matrix is constructed is
created from single triangles. For the "B" matrix, the equation for each index is given by
Eq. (7.4).

[
Bs
ij

]
=

∫
Ss

γ {Ssi} ·
{
Ssj
}

dS (7.4)

In Eq. (7.4), the basis function ’S" is utilized and is defined as S = n ×N. The variable
"n" is normal to the port pointing away from the structure, and "N" is the basis function
associated with the specific edge. "N" is found in a similar fashion as previously for
the tetrahedron but only for a triangle. Similarly, "N" is mapped from the references-
element to the physical-element. The transformation is done by using the two-dimensional
Jacobian. There is no need to transform "S" basis function as it is constructed from the
already transformed "N" basis function, as shown in Fig. 7.6.
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Figure 7.6: S basis function.

An illustration of the "S" and "N" basis functions is shown in Fig. 7.6, it can be noted
that the new basis function "S", is a 90° rotation of the "N" basis function. In Listing 7.8
the implementation of the "S" basis function is shown.

usn{1} = cross(n,gsn{1});
usn{2} = cross(n,gsn{2});
usn{3} = cross(n,gsn{3});

Listing 7.8: calculation of the S basis function.

The implementation of the element matrix for the global matrix "B" is similar to the one
used to find the "K" matrix. The dot product of the vectors is utilized, the triangle is
integrated, and the area change scales the triangle.

for iIdx = 1:3
for jIdx = 1:3

ipTmp = sum(usn{iIdx}.* usn{jIdx});
BElMtx_EE(iIdx,jIdx) = gamma* ipTmp * q2w’ * det_jac;

end
end

Listing 7.9: calculation of the element matrix for the global matrix B.

The equations for the entries in the "b" vector are presented in Eq. (7.5). This formulation
includes the cross product "S" with the normal "n".

{bsi} =

∫
Ss

{n̂× Ssi} ·UincdS (7.5)

This can be evaluated directly on the "S" basis function, as shown in Listing 7.10.
usnn{1} = cross(n,usn{1});
usnn{2} = cross(n,usn{2});
usnn{3} = cross(n,usn{3});

Listing 7.10: calculation of the n× S basis function.

An illustration of n× S is shown in Fig. 7.7. The expected result of a 90° turn relative to
"S" can be observed.
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Figure 7.7: n× S basis function.

The implementation of Uinc is a direct implementation of the two-dimensional analytical
E-field. The implementation calculates the values for the E-fields at the integration points
as illustrated in Listing 7.11. It is, however, not scaled to the triangle area; this is done
by the multiplication of the Jacobian in the integration.

Uinc = -2j*k_z10*E0*[0,0,0;...
sin((pi*(q2x(1,:)+offset)) / a );...
0,0,0]...
.*exp(-1j*k_z10*Z); %needs z in exponent

Listing 7.11: calculation of the n× S basis function.

The calculation of the element vector is given in Listing 7.12 and uses the dot product, as
the goal is to find how orthogonal Uinc is to the basis functions.

for iIdx = 1:3
ipTmp = sum(usnn{iIdx} .* Uinc);
bElMtx_EE(iIdx) = (ipTmp * q2w’)*det_jac;

end

Listing 7.12: Element vector for global vector "b".

7.3.3 PEC Boundary

The PEC boundary has to be included in the system matrix. The E-field in a PEC material
is always equal to zero. This can be represented within the system matrix by equating the
equation for the edges, which are PEC, to zero; this is illustrated in Eq. (7.6).



K11 . . . K1N
...

...
0 . . . 1 . . . 0
...

...
KN1 . . . KNN





E1
...

EPEC
...
EN


=



b1
...
0
...
bN


(7.6)

Since the solution for the equations of the PEC structure is known (EPEC can only be
zero), it can be removed from the system of equations without affecting the solution. This
will decrease the computation time of the complete system as fewer variables and equations
need to be solved.
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7.4 Scattering Parameters

Scattering parameters, also known as S-parameters, characterize a linear RF network using
reference impedance matched loads at all ports. S-parameters can be used to characterize
any linear RF network with one or more ports. No information is needed of the circuit
itself other than its ports and its port design impedance. It is, therefore, a black box
testing approach. An S-parameter measurement or simulation is unitless and specifies the
amount of energy transmitted or received and the reflected energy [5]. A sample two-port
linear RF network is presented in Fig. 7.8 and mathematically presented in Eq. (7.8). S-
parameters are part of all commercial CEM software suites discussed in this thesis. Our
solution is optimized for homogeneous waveguide structures, specifically filters, and it has
been decided to include S-parameters in our FEM implementation.

a1

b1

a2

b2Black boks

Figure 7.8: Arbitrary two port linear RF network, where a1 and a2 represents
the incident waves. b1 and b2 represents the outgoing waves.

For a sample two-port device, "a1" represents the incident wave to port 1, "b1" represents
the reflected wave, and "b2" represents the transmitted wave. Similarly, for port 2, if
"a2" represents an incident wave to port 2, "b2" represents the reflected wave, and "b1"
represents the transmitted wave [5]. These can be combined in a S-parameter matrix as
shown in Eq. (7.7).

[
b1
b2

]
=

[
S11 S12
S21 S22

][
a1
a2

]
(7.7)

S11 =
b1
a1

∣∣∣∣
a2=0

S12 =
b1
a2

∣∣∣∣
a1=0

S21 =
b2
a1

∣∣∣∣
a2=0

S22 =
b2
a2

∣∣∣∣
a1=0

(7.8)

Our implementation of FEM, can only simulate S11 and S21. In order to be able to
simulate S22 and S12, one would need to apply the incident wave to port 2 instead of
port 1, meaning that two or more simulation are needed if the structure is asymmetrical
(e.g. three-port power divider). For our FEM implementation, the linear S-parameters
can be calculated using the incident wave and the transmitted wave. To find how much
of the wave is transmitted and reflected the transmission and reflection coefficients from
Eqs. (7.9) and (7.10) are used.

This is expressed in Eqs. (7.9) and (7.10).
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S21 = T =
2ejkz10z2

abE0

∫
S2

E (x, y, z2) · e10(x, y)dS (7.9)

S11 = R =
2e−jκz10z1

abE0

∫
S1

E (x, y, z1) · e10(x, y)dS − e−2jkz10z1 (7.10)

The liner S-parameters are often expressed in dB, therefore both cases are expressed in
this thesis. The dB versions of the S-parameters are expressed in Eqs. (7.11) and (7.12).

SdB11 =20 log(|S11|) (7.11)

SdB21 =20 log(|S21|) (7.12)

Both the linear and dB versions of the S-parameters can directly be compared to S-
parameters generated by commercial software suites.
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8 Performance Analysis

Our implementation of the FEM algorithm is tested and compared with both the
commercially available CST Studio, using CST-FEM, CST-FIT, and the analytical
solution. The test structure to be used is a section of waveguide with the dimensions
0.20 m by 0.10 m, and a length of 0.40 m, constructed with PEC and the interior is a
vacuum, as shown in Fig. 8.1. The incident wave is applied to port 1, and the transmitted
wave is received at port 2.

z
y

x
(x,y,z)

(-0.1,-0.05,0)

(-0.1,0.05,0)
(0.1,0,0.4)

(0.1,-0.05,0)

(-0.05,0.025,0 to 0.4)

Port 1

Port 2

Figure 8.1: Two-port waveguide 0.2 m x 0.1 m x 0.4 m. Along the red line,
the E-field is sampled and studied.

The Y component (Ey) of the E-field is sampled along the red dotted line, as shown in
Fig. 8.1. Some higher-order modes are 0 at the center point of the port, such as TE20. In
order to ensure that the higher-order modes, if such exist, are taken into account, the line
over which the sampling is conducted is off-centered (x=0.1 m, y= 0.05 m, and z=0:0.4
m). Apart from the E-field results, the S-parameters are calculated with the use of each
method (CST-FIT, CST-FEM, Our Implementation) and presented in this chapter.

8.1 Mesh Density Selection

In this section, the waveguides Y component of the E-field calculated by using our
implementation along the dotted line in Fig. 8.1 is used for comparison purposes in this
section. In order to conduct a test of our FEM implementation, the mesh resolution
should be of the right density to ensure low numerical error. In order to find a mesh
with sufficient density, multiple simulations with different mesh are run. Each simulation
instance is run for five frequency points, 0.25, 0.55, 0.85, 1.15, and 1.45 GHz. An initial
simulation consisting of a mesh of 736 unstructured tetrahedrons is conducted. The mesh
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density is increased in steps, the mean square difference to the previous E-field magnitude
is calculated with the current mesh and the previous mesh. Individual samples are shown
with "*", and are calculated according to Eq. (8.1),

C(mesh, f) =
1

N

N∑
i=1

(|Ey,mesh,i,f | − |Ey,mesh−1,i,f |)2 (8.1)

where, C(, f) is the function for the points defining the curves in Fig. 8.2. The E-field
Ey,mesh−1,i,f represents the Y component of the E-field, for the previous mesh for frequency
f at sample i on the red dotted line in Fig. 8.1. The subscript mesh represents a specific
set of tetrahedrons, whereas mesh − 1 represents the previous set of tetrahedrons. Each
curve for the individual frequency is plotted on a log-log graph in Fig. 8.2. Ideally, the
optimal mesh density can be found when the field stops changing or has approached an
asymptote. This can, however, not occur; there will always be a change in the E-field
when changing the mesh. Therefore, a small change in the E-field is an indication that
the E-field has converged to its actual value, and an increase in the mesh density will only
result in small changes.
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Figure 8.2: The amplitude convergence of the calculated E-fields. When the
mesh increases, the E-field changes. The larger the mesh, the smaller the
change in the E-field from mesh to mesh.

It can be observed that the curves for all frequencies have a linear regression, and therefore
it can be concluded that the change in E-field decreases.

The E-field approaches its actual value when the variation of the field becomes negligible
by increasing the mesh and adding more tetrahedrons results in a smaller change per
tetrahedron. A large increase in tetrahedrons, therefore, only results in a minor increase in
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inaccuracy. The blue and the orange curves represent the frequencies 0.25 and 0.55 GHz.
It can be observed that the blue and the orange curves have a greater change in E-field
compared to the passband frequencies. This could potentially be due to them being below
the cut-off frequency. In the range 37000 to 88000 tetrahedrons, a change of 3.5 · 10−4

V 2/m2 occurs in the passband. We have chosen to utilize a mesh with 46831 tetrahedrons.
This mesh size was selected because the commercial FEM implementation in CST utilizes
46948 unstructured first order tetrahedrons; the number 46831 tetrahedrons are selected
for comparison purposes. Selecting a mesh greater than 46831 will only result in a minor
change in the E-field.

8.2 E-field Comparison

In this section, the fields for the different methods Analytical, CST-FIT, CST-FEM, and
Our Implementation will be analyzed and compared with each other using Ey along the
dotted line on the waveguide in Fig. 8.1 at the frequencies; 0.25, 0.55, 0.85, 1.15, and 1.45

GHz for all implementations. The results for the different frequency points obtained at
the four CEM implementations are illustrated in Fig. 8.3.
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Figure 8.3: The E-field magnitude of the Y component for the different
frequencies along the red dotted line, with each graph, represents a different
implementation.

It can be observed from "a", "b", "c" and "d" in Fig. 8.3 that an amplitude difference exists.
The source for the amplitude difference between all implementations is most likely due to
the fact that each implementation uses a different input power. Comparing individual
frequency curves for each implementation suggests a fixed multiplier factor.
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The implementations are tested for a constant multiplication factor. This is done in order
to verify if the implementation can be normalized by a constant multiplier. A potential
multiplication factor function M is found using Eq. (8.2),

M(Ey,f,Imp) =
1

N

(
N∑
i=1

|Ey,Ana,i|
|Ey,Imp,i|

)
(8.2)

The results for M(Ey,f,Imp) in Ey component of the E-field at a specific frequency (f) and
implementation (Imp), are shown in Fig. 8.4. Ey,Ana,i represents the analytical solution
to the Ey field on the dotted line, where Ana represents the analytical solution. Ey,Imp,i

represents the solution to the Ey field for the i’th point on the dotted line for a specific
implementation.
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Figure 8.4: The magnitude ratio between the implementation and the
analytical solution is derived for each implementation and the frequencies of
interest.

The multiplication factor does vary negligibly with the frequency; it does, however, have
a noise component. A maximum noise component for the individual implementations is
0.0187 for CST-FIT, 0.0029 for CST-FEM, and 0.040 for Our-FEM. They are obtained
by calculating the difference between the largest and the smallest factor attained in our
samples. Since the noise is so low, the multiplication factor is considered a constant.

In order to compare the individual implementations, each implementation is normalized
by using the corresponding multiplication factor. In this way, it was possible to compare
different implementations regardless of the input power; this is shown in Fig. 8.5.
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Figure 8.5: Each implementation is normalized using the ratio to the analytical
solution. The individual graphs show the normalized magnitude of Ey along
the dotted line for specific frequencies.

The E-fields in Fig. 8.5 "a" and "b" are both exponentially decreasing and represent
the frequency band below the cut-off frequency. Graph "c", "d" and "e" represent
the passband region of the waveguide and illustrates a constant value with a noise
component—all implementations when normalized show high correspondence. A variance
further investigates the noise component.

The variance of the noise component is calculated by Eq. (8.3),

var(Ey,imp,f ) =
1

N

N∑
i=1

(Ey,imp,f,i − Ēy,imp,f )2 (8.3)
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Ēy,imp,f =
1

N

N∑
i=1

Ey,imp,f,i (8.4)

The noise variance at the Y component of the E-field for the individual implementations
are expressed as var(Ey,imp,f ) and the mean of the field at Ey as Ēy,imp,f for a specific
frequency at a given implementation with imp representing the individual implementations.
The noise variances of the three algorithms in the passband are presented in Table 8.1.

0.85 GHz 1.15 GHz 1.45 GHz
CST FEM (V 2/m2) 0.088906 0.072689 0.126604
CST FIT (V 2/m2) 0.003600 0.029259 0.106693
Our FEM (V 2/m2) 0.474482 0.292365 0.251274

Table 8.1: Noise variance for the individual implementations at the passband
frequencies.

The noise component decreases with frequency for our implementation, whereas the
noise increases with frequency for the CST implementations. The noise is low in all
implementations; our implementation, however, has noise an order of magnitude higher
than the CST implementations. Theoretically, the noise should increase with frequencies
as the mesh appears larger for higher frequencies due to the wavelength decreasing with
frequency.

The higher noise in the E-field for our FEM implementation could be caused by the method
of extracting data points. To attain the data points for the comparison, the E-field at the
tetrahedron corners are calculated and interpolated to the specific points along the dotted
line in Fig. 8.1. Equation (8.5) for finding the field at a specific point in the tetrahedron
should be used instead.

Ee =
n∑
i=1

Ne
iE

e
i (8.5)

The desired point is evaluated for the basis functions and scaled with the corresponding
value in Ee and summed.

A noise component for all numerical implementations does exist, but with a negligible
impact on the results. Our solution is designed for linear RF networks, and S-parameters
are therefore of interest. For S-parameters, the ratio between the incident and transmitted
wave is essential, while the magnitude by itself is not. The noise due to inconsistent
sampling is not present in the S-parameters, as the S-parameters utilize the quadrature
rule for integration, where the method in Eq. (8.5) is used to find the quadrature points.

8.3 S-Parameters

S-parameters are one of the primary methods used for characterizing linear RF networks.
The FEM and FIT simulations attained using CST are compared with the results from our
implementation. S21 for our implementation is calculated based on Eqs. (7.9) and (7.10),
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the magnitudes for the CST implementations and our implementation are illustrated in
Fig. 8.6.
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Figure 8.6: S21 parameter attained from CST-FEM, CST-FIT and our FEM.

The sampled band is shown, with significant differences below the cut-off frequency. The
band of interest, however, is only the passband, separated from the cut-off band (for better
visualization) in Fig. 8.7.
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Figure 8.7: S21 parameter for the passband, for CST-FEM, CST-FIT, and our
FEM. The magnitude of S21 is given in (a) while the phase in (b).

The CST-FIT passband shows ripple; this might be due to the FFT of the time domain
solution. The ripple could potentially increase for very resonant circuits if the simulation
time is not adjusted for the time it takes for all power to be dissipated. Analytically, the
passband should be 0 dB; both our implementation of FEM and CST-FEM attain this
very well. Our solution, however, has an offset of 0.005 dB; this offset is minimal and has
a minor effect.
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An important parameter for linear RF networks and, therefore S-parameters, is the phase.
Fig. 8.8 shows the phase for the entire sampled frequency band.
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Figure 8.8: The phase of the S21 parameter from CST-FEM, CST-FIT, and
our FEM.

Below the cut-off frequency, the phase should be 0, and this is achieved. The FIT shows
a high ripple in the band of interest. The passband shows a continuous decreasing phase
for both CST-FEM and CST-FIT. For our implementation, the phase has a positive slope
with a substantially higher phase change. The phase slope is further explored in Fig. 8.9.
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Figure 8.9: S21 unwrapped phase from CST-FEM CST-FIT and our FEM.

An unwrapped version of the passband phase is shown in Fig. 8.9. It shows that our
implementation has a phase in the opposite direction of the CST implementations, the
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phase of our implementation is shown in gray, and a flipped version of the phase is shown
in yellow. When comparing the flipped version of our FEM implementation with the CST
implementations, it can be noted that our implementation has a slope twice the slope of
the CST implementation as well as twice the phase. The phase change and phase velocity
are both defined by the propagation constant. The wrong propagation constant may be
utilized, or an error in implementing the mathematically derived formulation could have
occurred. A wrong propagation constant would explain the lower level of the S21 before
the cut-of frequency in Fig. 8.6. The exponential decay of the field through the waveguide
below the cut-off frequency is determined by the propagation constant.

The S11 curves for the two CST implementations and our implementation are illustrated
in Fig. 8.10.
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Figure 8.10: S11 parameter from CST-FEM CST-FIT and our FEM.

It can be observed that the curves for both implementations have similar characteristics,
where they primarily differ is in the reflection levels. Our implementation has lower re-
flections, with a starting S11 of; −26.60 dB for our implementation, −41.14 dB for the
CST-FEM implementation and −66.55 dB for the CST-FIT implementation, these values
are however all very low. It must be noted that values below −20 dB can be considered
noise. The two curves follow the same shape with an offset until the cut-off frequency;
past the cut-off frequency, the two curves differ. These differences, or more specifically the
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valleys and peaks, are labeled in Fig. 8.10 (a). Below the cut-off frequency, an imaginary
impedance is present, and therefore an imaginary voltage is applied. The ports are de-
fined as perfectly matched, therefore S11 should be −∞ dB over the whole frequency range.

When observing the phase, it can be noted that the phase difference between the CST-
FEM implementation and our implementation is 180°. Past the cut-off frequency, both
phases show individual random behavior. This random behavior is due to noise in the
E-field. Looking at the phase attained from CST-FIT, it can be noted that it follows a
random pattern from below the cut-off to the end of the sampled passband. Therefore it
can be concluded that it has a noise behavior.
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9 Conclusion

The purpose of this thesis was to develop and implement a CEM simulator for waveguide
filter networks and compare the developed implementation with the commercial implemen-
tation in CST Studio by Dassault Systems. This thesis analyzed different computational
electromagnetic simulation methods for waveguides; one method, namely, FEM, was se-
lected to be implemented. The FEM method was implemented with homogeneous ports in
Matlab, utilizing a tetrahedron meshing generated using the open-source Gmsh application
programming interface. We chose to develop the system for waveguide-specific structures,
in particular filters. A test waveguide with an analytical solution was designed and simu-
lated using our implementation of the FEM algorithm. The result generated was compared
to the analytical solution, CST-FEM, and CST-FIT. The purpose of these comparisons
was to determine the performance of the developed system compared to commercial solu-
tions and the analytical solution.

The thesis had three main functional objectives; these are presented in a prioritized order
below.

1. Three dimensional modeling of electric fields using FEM.
2. Multi-port simulation on homogeneous waveguides.
3. Emulation of scattering parameter measurements.

Based on our observations, we found that at similar meshing densities (46000 tetrahedron),
the performance of our implementation is matching in the passband region for S21. It is
found that the magnitude has an error of -71.56 dB and -70.26 dB for CST-FEM and
CST-FIT, respectively.

For S11, our return loss curve has a starting point at −26.60 dB compared to the
CST’s FEM −41.14 dB. For S11 below the cut-off frequency, differences occur with our
implementation and the methods implemented in CST, where our implementation has a
starting point at −54.90 dB compared to the CST’s FEM −27.24 dB. When looking at
the phase between our implementation and the two in CST, our phase has a higher phase
propagation speed at two times CST’s FEM algorithm.

The phase observed for S21 is found to have twice the rate of change and the opposite sign
compared to CST-FEM and CST-FIT.

Based on our observations and simulations, it can be concluded that our implementation
of the FEM algorithm can be utilized to develop homogeneous waveguide multi-port RF
networks with the similar S21 and S11 curves in the passband region.
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10 Future Work

We consider the thesis to have met the three primary functional objectives; three-
dimensional modeling of EM fields using FEM, Multi-port simulation on homogeneous
waveguides, and Emulation of scattering parameter measurements. There are, however,
areas for improvements if the implemented system should be able to numerically have the
same accuracy against commercial implementations such as the FEM simulations in CST
studio. These features are analyzed in this chapter.

10.1 Absorbing Boundary Condition

In a realizable structure, the boundaries are not constructed using a PEC material and
therefore need some form of open boundary condition. Similarly, when applying the
FEM algorithm to radiating structures such as antennas, an open boundary condition
is needed. Future work could be done in implementing Absorbing Boundary Conditions
to our solution. It needs to be able to truncate an infinite open boundary to a realizable
mesh which the computational domain can realize [4]. These conditions should not interfere
with the structure to be simulated and appear like an anechoic chamber lowering or ideally
removing all reflections appearing from the boundary [4].

10.2 Multi Order Tetrahedron Mesh

Multi-order tetrahedrons should be explored for potentially faster and more accurate
simulations. Higher-order elements would reduce the required elements and model complex
structures more accurately. Higher-order tetrahedrons would require more complex
calculations but would potentially reduce memory for a specific accuracy compared to
the single-order equivalent.

10.3 Inhomogeneous Waveguide Ports

The FEM implementation in this thesis is limited to homogeneous waveguide ports and
therefore has limited uses. Future development could be conducted in expanding the
current implementation to inhomogeneous ports. This would enable the implementation
to simulate multiple materials within the port surface, such as PCBs and connectors.
The theory and implementation specifics which differ from the homogeneous solution are
presented in Appendix A.
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10.4 Distributed Computational Implementation

The current implementation is implemented in Matlab and is not optimized for distributed
computing. The parallel computing aspect can be implemented in Matlab or Python.
Future work could be conducted in porting the current version of the software to a lower-
level programming language such as C or Cpp, where individual simulations could be
separated into individual computational tasks enabling multithreaded computations of the
FEM algorithm, increasing the computational efficiency and speed.

10.5 H-field and Surface Currents

In the current form, the implementation only utilizes the E-field for the S-parameter
calculation as it is faster than using both the E-field and H-field. Potential use cases
exist for the utilization of the H-field. Future work could be conducted in implementing
a post-processing feature to our implementation, which calculates the H-field from the
E-field. Engineers often use H-fields plots to study RF structures such as antennas.
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A Inhomogeneous Waveguide
Ports

Some limitations apply to the 2 port model utilized in Section 5.7. These include the
limitation of not being able to place ports directly at waveguide ends due to their ap-
proximation to each other [9] and the use of multiple modes. The approach presented in
this section will take into account more accurate boundary conditions enabling ports to
be placed closer together and a single-mode for the whole waveguide [9]. This method of
implementation also improves computational efficiency due to the port placements.

Inhomogeneous waveguides do not support TE and TM modes. A structure-specific mode
exists in their place [9]. This mode is called a modal function and can not be calcu-
lated analytically [9]. The modal functions need to be estimated numerically using the
FEM method in a two-dimensional domain, using basis functions. In this section, the
pre-calculated modal functions for the ports are defined as em and hm. em is the modal
function for the electric field, and hm is the modal function for the magnetic field. Both
of these modal functions must satisfy Eq. (A.1).

∫∫
S

(hm × en) · (−ẑ)dS =

{
κm m = n

0 m 6= n
(A.1)

Where the propagation direction in is the negative z direction (−ẑ) and the constant km is a
scaling factor. The incident wave in the z direction can be defined similarly to Appendix A
as shown in Eq. (A.2).

Etot = Einc + Eref

= Einc +
∞∑
m=1

amemeγmz

am = −e−γmz

κm

∫
S

[
hm ×

(
Etot −Einc

)]
· ẑ dS

(A.2)
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Variable Description
Etot Total electric field at port surface
Einc Inclining E-field, applied charge to port surface
Eref Reflected E-field
em E-field modal function
hm H-field modal function
γm Phase constant
km Amplitude constant

The variable "am" in Eq. (A.2) can be further simplified with the previously calculated
function in Eq. (A.3).

ẑ × hmeγmz = − 1

jωµ
ẑ × [∇× (emeγmz)]

=
1

jωµ
(γmetm −∇tezm) e−γmz

(A.3)

By inserting Eq. (A.3) into am from Eq. (A.2), a simplified version of am can be found as
shown in Eq. (A.4).

am = − e−γmz

jωµκm

∫∫
S

(γmetm −∇tezm) ·
(
E−Einc

)
dS (A.4)

The curl of Eq. (A.2) is presented in Eq. (A.5).

(∇×Etot) = (∇×Einc ) +
∞∑
m=1

am[∇× em(eγmz)] (A.5)

The cross product of Eq. (A.5) and the normal n̂ results in Eq. (A.6).

n̂× (∇×Etot) = n̂× (∇×Einc ) +
∞∑
m=1

amn̂× [∇× em(eγmz)] (A.6)

From previous calculation Eq. (A.7) is known.

ẑ × [∇× (emeγmz)] = (−γmetm +∇tezm) eγmz (A.7)

By inserting n̂ = −ẑ for the last n̂ in Eq. (A.6), Eq. (A.8) is formed.

n̂× (∇×Etot) = n̂×
(
∇×Einc

)
−
∞∑
m=1

amẑ × [∇× (emeγmz)] (A.8)

Eq. (A.8) can be further simplified by inserting Eq. (A.7) as shown in Eq. (A.9).

n̂× (∇×E) = n̂×
(
∇×Einc

)
+

∞∑
m=1

am (γmetm −∇tezm) eγmz (A.9)

where,
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Variable Description
ezm ẑ part of the E-field modal function
etm Transverse part of the E-field modal function
∇t The gradient of the transverse part

The final port boundary condition for the waveguide can be derived by inserting the
simplified version of am, as derived in Eq. (A.4), into Eq. (A.9) as shown in Eq. (A.10).

Uinc = n̂× (∇×E) + P (E) (A.10)

Where the remaining variables are defined as Eq. (A.11) and Eq. (A.12).

P (E) =
∞∑
m=1

1

jωµκm
(γmetm −∇tezm)

∫∫
S

(γmetm −∇tezm) ·Eds (A.11)

Uinc = n̂×
(
∇×Einc

)
+
∑∞

m=1
1

jωµκm
(γmetm −∇tezm)

∫∫
S (γmetm −∇tezm) ·EincdS

(A.12)

Where,

κm =
J

ωµ

∫∫
S

(γmetm · etm − etm · ∇tezm) dS (A.13)

Similar to the previously described method, this method only utilizes the E-field
calculations. No magnetic field components need to be calculated. The modal functions
em are dependent on frequency and need to be calculated accordingly.
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