
Solving Complex Problems with Deep Multi-Level Skill Hierarchies

Nicolaj Casanova Abildgaard, Tobias Lambek Jacobsen
{nabild16, tlja16}@student.aau.dk

Advisor: Chenjuan Guo
cguo@cs.aau.dk

Spring Semester 2021

Abstract

The notion of using pre-trained skills to reduce training time and to facilitate lifelong learning in Deep
Reinforcement Learning (DRL) has been around for a long time. However, the number of skills required to
work in an environment goes up as the amount of tasks in the environment increases. As a consequence, the
complexity of the action space increases and agents will need to train for longer in order to conquer all tasks.
In this paper we propose a framework for Deep Multi-Level Skill Hierarchies (D-MuLSH) as a solution to this
problem. This framework is an extended version of the Hierarchical Deep Reinforcement Learning Network
(H-DRLN) that adds the ability to arrange the skill hierarchy with multiple levels. Simple skills are grouped
into complex categories, by use of pre-trained Major Skill Networks (MSN), and agents only need to learn
when to use each category, rather than learn when to use each individual skill. We show that D-MuLSH
improves training time in the ViZDoom environment compared to the H-DRLN.

1 Introduction
Lifelong learning is concerned with the continued learn-
ing of tasks over the course of a lifetime, and is an
open problem in the field of general purpose machine
learning agents. In a machine learning setting, (Sil-
ver et al., 2013) suggests the following essential ele-
ments for a lifelong learning agent: (1) the retention
of learned knowledge; (2) the selective transfer of prior
knowledge when learning new tasks; and (3) a systems
approach for the effective and efficient interaction of
the retention and transfer elements.

A machine learning approach to lifelong learning will
have to overcome the problem of dimensionality, as the
state and action spaces of an environment increases as
new tasks are introduced. A challenging environment
that contains many of the elements related to lifelong
learning is the Doom environment. Doom is a First
Person Shooter (FPS) game first introduced in 1993
in which the player has to navigate a series of chal-
lenging 3D environments whilst fighting enemies, col-
lecting items and avoiding hazardous obstacles. While
many machine learning agents are developed within
the Doom domain, most of these are focused on solving
challenges in specific domains, such as death-match or
maze navigation (Wu and Tian (2017) and Parisotto
and Salakhutdinov (2018) can be seen as examples of

this). Although agents such as these have shown good
performances in their respective domains, they lack
the structure to retain and reuse the knowledge they
obtain from their respective single-task learning set-
tings, in order to perform as a lifelong learning system.
Developing a single agent for solving all the challenges
the Doom domain has to offer becomes a more complex
problem requiring new approaches. A likely solution to
this could be a divide-and-conquer approach in which
an agent learns to solve sub-problems in the domain
and use its combined knowledge to solve more com-
plex problems. In this approach an agent can acquire a
knowledge base consisting of different skills that can be
reused when encountering different problems through-
out its lifetime.

A single level in Doom can be naturally decomposed
into a series of repeated sub-problems. An example of
this could be a level in which the player has to nav-
igate a maze of tight corridors that leads to an open
room with enemies, with the exit located behind a
closed door at the far end of the room. This level can
be completed by solving the sub-problems of: navigat-
ing the corridors, targeting and shooting the enemies,
locating the exit and interacting with the door. Rep-
resenting each sub-problem as a separate skill taught
to the agent means that the agent can in the future
solve a different level entirely by reusing these skills.

1

However, learning these skills and understanding when
to use them is a non-trivial problem.

On account of significant advances in Deep Reinforce-
ment Learning (DRL) and Deep Q-learning Network
(DQN)s in recent times it is not infeasible to imag-
ine Reinforcement Learning (RL) agent that can not
only learn to solve these sub-problems, but also learn
when to apply different skills based on visual input
alone. Previous works exploring these ideas have been
published in the past. These include amongst others
the FeUdal Networks for Hierarchical Reinforcement
Learning Vezhnevets et al. (2017) and the Hierarchi-
cal Deep Reinforcement Learning Network (H-DRLN)
Tessler et al. (2016). While the FeUdal networks pro-
vide an interesting take on sub-goal discovery the H-
DRLN is an especially interesting work that tries to
tackle the problems of lifelong learning. H-DRLN suc-
ceeds in providing proof of concept that a hierarchi-
cal approach can solve the challenges of lifelong learn-
ing. However, the environments in which they conduct
their experiments are in terms of complexity somewhat
simple and does not sufficiently represent the complex-
ity of a true lifelong learning system. Our multi-level
hierarchical framework contains the necessary struc-
tural depth to sufficiently prove that hierarchical re-
inforcement learning agents are a valid approach in
solving the complexity of lifelong learning.

In order to develop RL agents in the Doom domain
we can use the ViZDoom1 platform which is a mod-
ification of ZDoom, a modern open-source port of the
Doom Engine. ViZDoom allows RL agents to step
through the game, obtain observation data, perform
actions, and receive rewards at each frame. An exam-
ple frame of the ViZDoom environment can be seen in
Figure 1.
Agents in ViZDoom can observe two types of data:

Visual data where resolution of the image can be set
by the environment.

Game data which is a set of variables that hold in-
formation about the player’s health-points, am-
munition count, and more.

For actions, ViZDoom provides 43 possible “buttons”
that can be pressed by the agent. These include but-
tons to move, look around, attack, and switch weapons.

The purpose of this paper is to present a novel rein-
forcement learning agent that is able to complete com-
plicated tasks in a high-dimensional domain, whilst be-
ing able to retain and transfer knowledge in a lifelong
learning setting.

1http://vizdoom.cs.put.edu.pl/

Figure 1: Game sample of a scenario in ViZDoom from
the first-person perspective.

Main contributions: (1) Deep Multi-Level Skill Hi-
erarchy (D-MuLSH): A multi-level hierarchical approach
for using deep reinforcement learning in the ViZDoom
environment. This approach utilizes a hierarchical
framework including a controller network as well as
reusable Deep Skill Network (DSN)s to solve compli-
cated tasks in the ViZDoom environment. The D-
MuLSH framework is designed to function as a truly
lifelong learning framework. (2) We show how reusable
DSNs can be learned and used as knowledge transfer
elements for learning new tasks. (3) We show that
by segregating DSNs into sub-hierarchies denoted as
Major Skill Network (MSN)s and Simple Skill Net-
work (SSN)s we are able to effectively and efficiently
support the retention and transfer of knowledge. (4)
We present empirical results demonstrating our frame-
work’s performance in both simple and complex sub-
domains of ViZDoom as compared to a Double Deep
Q-learning Network (DDQN) baseline and the H-DRLN.

2 Related Work
Non-hierarchical Approaches: These include agents
such as Arnold (Lample and Chaplot, 2018) and F1
(Wu and Tian, 2017) which were both initially devel-
oped for the 2016 ViZDoom competition hosted by
IEEE CIG2. Both of these networks were designed and
trained with the purpose of performing effectively in
a death-match scenario. Arnold consists of two sepa-
rate neural networks, one for navigation and one for
fighting enemies, while F1 uses an actor-critic model
trained using curriculum learning. Both agents per-
formed well in the death-match scenario, but neither
addresses the challenges imposed in lifelong learning
systems.

Our solution differs from these agents as our frame-
work is subjugated to not only perform in a death-
match scenario but also function in broader aspects of
the Doom domain with a more diverse problem set-
ting.

2ViZDoom competition at IEEE Computational Intelli-
gence and Games Conference http://vizdoom.cs.put.edu.pl/
competitions/vdaic-2016-cig.

2

http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/competitions/vdaic-2016-cig
http://vizdoom.cs.put.edu.pl/competitions/vdaic-2016-cig

Hierarchical Approaches:
These solve complex learning tasks using patterns of
divide-and-conquer methodology. Notably (Tessler et al.,
2016) describes a deep hierarchical approach to teach
an agent to do multiple tasks in the game Minecraft.
These tasks consists of: navigating a room, breaking
and picking up an object and placing an object at a
specific location. Each of these tasks are learnt by
a separate Deep Skill Network (DSN) and are repre-
sented as a skill in the network. A DSN is a DQN with
its own policy that has been trained in an environment
specifically designed for learning a single task. The
learnt skills are then later reused when training the
network in a more complex composite environment.
A DSN can be activated by the agent to perform ac-
tions in the complex environment, based on the agent’s
own policy. While the paper uses a DQN architec-
ture for the DSNs, they state that the framework can
in theory function with other underlying architectures
as well. The paper proposes two ways of integrating
DSNs into a larger model:

The DSN array is an array of pre-trained DSNs, where
each DSN is a separate DQN, trained to perform
a single skill. A controller decides when to use a
skill, and which DSN should be used.

The Distilled Multi-Skill Network is a single net-
work that has been trained using policy distilla-
tion to learn multiple skills. Pre-trained DSNs
are used as teacher models for the Multi-Skill
Network.

When employing the DSN array the H-DRLN effec-
tively becomes a 2-level hierarchy in which the top
level network is supplied with Q-values for all DSNs as
well as primitive actions as taken from the Minecraft
environment. A controller module is supplied with
skill policies from the underlying DSNs and either fol-
lows the skill policy of the selected skill or simply takes
the primitive action selected by the top level network.
The paper empirically demonstrates that this frame-
work functions effectively and efficiently in their estab-
lished environments as compared to a baseline DDQN.
A concern with this approach is that this setup may
have difficulties in terms of scaling as more complex
environments would need a lot more DSNs in order to
complete all potential tasks. This increase of DSNs
could severely impact the efficiency of the H-DRLN’s
performance in more complex environments.

While we draw inspiration from H-DRLN and their hi-
erarchical approach our work differs mainly by being
a modular multi-level hierarchical framework in which
our hierarchical structure is configured to provide a
deeper understanding for the agent in how it should

perform in more complex environments.

(Vezhnevets et al., 2017) describes a two-level hier-
archical neural network named FeUdal Networks (or
FuNs) in which the top level network, labeled the Man-
ager, sets goals that the lower level network, theWorker,
learns to reach by producing primitive actions. While
relatively similar in approach to H-DRLN one interest-
ing novelty in FeUdal Networks is the ability for the
Manager to perform sub-goal discovery and learn goal
states internally, while H-DRLN is supplied with goal
states externally. While sub-goal discovery would be
an interesting aspect to consider to take our framework
closer to an end-to-end solution, for now we only con-
sider improving our hierarchical framework in terms of
modularity and depth while supplying the goal states
for our agents externally.

(Song et al., 2019) describes another hierarchical ap-
proach named StarNet, that much like H-DRLN con-
sists of a top level Manager and multiple lower level
Workers each responsible for completing sub-tasks in
the domain. StarNet achieves novelty by introducing
Environmental Awareness into their networks. This
includes a vision network to help guide the agent in
a 3D environment. As StarNet is built with roughly
the same foundational structure as H-DRLN our D-
MuLSH framework differs as before by allowing for
a multi-level hierarchical structure. It is perceivably
beneficial to also introduce StarNet’s Environmental
Awareness for our framework in the future.

3 Background
Markov Decision Process: In a Markov Decision
Process (MDP) an agent is interacting with an envi-
ronment that consists of N states S, and it is in one
of these states at each time step t. At each time step
the agent can take an action that transitions it into
a new state st+1 with some probability. An MDP is
defined by a 4-tuple < S,A, T,R > where S is the set
of all possible states in the environment, A is the set of
all actions, T is the probability of transitioning from
state st to state st+1, and R is the reward function
given a state-action pair. T and R are defined such
that they possess the Markov Property, i.e they are
solely dependent on the state at time t and action at
and not the whole history of states and actions.

Semi Markov Decision Process: In a MDP the
state transitions occur at discrete time steps. How-
ever, as skills are a temporal abstraction they cannot
be planned using MDP theory. Instead we use Semi
Markov Decision Process (SMDP)s as they are a gen-
eralized version of MDPs that allow state transitions

3

to occur at irregular times. Using this theory, after
an agent takes an action a in state s the environment
remains in state s for a time d. In our framework there
are only two possible values for d, defined by the set
D = {1, k} where k is the number of time-steps that
skills are active for if they are activated by the agent.
d is determined for each chosen action by whether it
is a primitive action or a skill:

d =

{
1 if a is a primitive action
k otherwise

A SMDP is defined by a 5-tuple < S,A, T,R,D >
where T , R and D possess the Markov property and
A in our case is a set of both skills and actions.

Reinforcement Learning: The purpose of RL is
for an agent to learn to approximate an optimal pol-
icy that maximizes the expected return. This policy,
defined as π : S → ∆A, is a mapping of states s ∈ S
to a probability distribution over actions A. In basic
RL, at time t the agent observes a state st ∈ S, selects
and action at ∈ A and receives a reward rt discounted
by a discount factor γ.

The action-value function

Qπ(s, a) = E [Rt|st = s, at = a, π]

represents the expected return of taking action a given
state s based on policy π. Rt represents the return as
the sum of future discounted rewards at time t de-
fined as Rt = Σ∞k=tγ

k−trt. The optimal action-value
function Q∗ is the action-value function of an optimal
policy π∗ which always chooses the most optimal ac-
tion. This action-value function obeys the Bellman
equation as defined:

Q∗(st, at) = E
[
rt + γmax

a′
Q∗ (st+1, a

′)
]

Deep Reinforcement Learning: DRL is the com-
bination of RL and Deep Learning. With DRL we can
expand Q learning into a DQN that approximate the
optimal action-value function by optimizing the net-
work weights θi at iteration i such that the Temporal
Difference (TD) error of the optimal bellman equation
is minimized (Mnih et al., 2015). During training, the
optimal target values

y∗ = r + γmax
a′

Q∗(st+1, a
′)

are substituted with approximate target values

y = r + γmax
a′

Q(st+1, a
′ : θ−i)

using parameters θ−i from some previous iteration.

Experience Replay Memory (ER): ER is a tech-
nique for offline learning in which the agent’s experi-
ences at each time step, et = (st, at, rt, st+1), is stored
in a data set Dt = {e1, ..., et}. During Q-learning up-
dates these experiences are sampled following some
normal distribution. (Tessler et al., 2016) proposes
a modified version of Experience Replay in their pa-
per called Skill-Experience Replay (S-ER). The S-ER
can store skill trajectories as a transition over k time-
steps, from st to st+k along with the discounted re-
ward r̃. Thus, it stores the skill tuple (st, σt, r̃t, st+k),
where σt is the skill executed by the agent at time-step
t. Additionally, the S-ER uses Prioritized Experience
Replay as described in (Schaul et al., 2016).

Double Deep Q-Learning: The max operator in
the DQN algorithm uses the same values to both select
and evaluate an action. This leads to overoptimistic
value estimates, as the selected values are most likely
overestimated. To mitigate this problem, DDQN de-
couples the selection from evaluation. Action selection
is done using the current network parameters θ, and
action evaluation is done using the target network pa-
rameters θ′. This new target can then be written as:

yDDQNt = Rt+1 + γ ·Q
(
st+1,max

a′
Q (st+1, a

′; θt) ; θ′t

)
as opposed to the original target of:

yDQNt = Rt+1 + γ ·max
a′

Q
(
st+1, a

′; θ−i
)

(Hado van Hasselt and Silver, 2015).

Skills: (Sutton et al., 1999) defines a skill (also called
an option) as an algorithm that is capable of perform-
ing temporally extended actions. A skill σ consists of
three components: an action policy π, an initiation set
I ⊂ S, and a termination condition β : S+ → [0, 1]. I
is the set of states where the skill can be initiated, and
β is the set of states where the skill will be terminated.
A skill-based agent performs actions according to a
skill policy µ : S → ∆Σ which maps states to a prob-
ability distribution over skills.
The skill-value function

Q(s, σ) = E

[∞∑
t=0

γtRt|(s, σ), µ

]
represents the expected return of selecting skill σ in
state s based on skill policy µ. The skill reward Rσs =
E
[
rt+1 + γrt+2 + · · ·+ γk−1rt+k|st = s, σ

]
is the dis-

counted reward that a skill accumulates over k time-
steps.
The optimal skill-value function

Q∗Σ(s, σ) = E
[
Rσs + γk max

σ′∈Σ
Q∗Σ (s′, σ′)

]

4

is the skill-value function of the optimal skill policy
µ∗.

4 Methodology
D-MuLSH architecture: Figure 2 shows the D-
MuLSH architecture of the top level of our frame-
work, with DSNs abstracted away by the pink box
in the architecture. This architecture takes as in-
put game states from the environment, and provides
outputs that correspond to either primitive actions
(a1, a2, ..., an) or DSNs (DSN1, DSN2, ..., DSNm). Each
DSN is itself a pre-trained network with its own poli-
cies that either execute primitive actions in the envi-
ronment or activates another DSN situated in a lower
level in the hierarchy. The set of primitive actions di-
rectly available from the top level Q-network (Atop) is
a subset of the complete action space A of the envi-
ronment (Atop ⊆ A). A controller unit is responsible
for determining the final policy for our agent based on
the Q-values of the output layer. As seen in the box
labeled Control in Figure 2, if the greatest Q-value in
the output layer constitutes a primitive action then
the final policy is set to execute the action with the
highest Q-value by:

π(s) = max (Q(s, a1), ..., Q(s, an)) .

Otherwise, if the greatest Q-value constitutes a DSN,
the controller sets the policy π to follow the supplied
skill policy of the DSN with the greatest Q-value as
defined by:

π(s) = max (Q(s,DSN1), ..., Q(s,DSNm)) .

This means that if the greatest Q-value in the output
layer is Q(s,DSN2) then the controller sets the policy
π(s) to follow the supplied skill policy πDSN2

(s).

Figure 2: Architecture of the top level of the frame-
work

If the controller determines to execute a primitive ac-
tion at at time step t, then this action is executed
directly in the environment for a single time step. If
the controller determines to use a DSN at time step t
then control of the agent is handed over to the policy of
the chosen DSN (πDSNi(s)) for k time steps. The DSN
modules output their respective skill policies given the
game state from the input layer.

Deep Skill Networks: Figure 3 illustrates the DSN
architecture. Each skill network is given input in the
form of game states from the environment. Simple
Skill Networks (SSN) use this input to generate sim-
ple skill policies (πSSN1

(s)) with outputs correspond-
ing to a set of primitive actions (a1, a2, ..., ai). Each
SSN can have access to a different configuration of
primitive actions from the overall environment action
space, meaning that the action space of a SSN ASSN
is a subset of the complete action space A of the envi-
ronment (ASSN ⊆ A).

Figure 3: DSN modules architecture

Major Skill Networks (MSN) decide which of their
linked DSNs should be given control based on the cur-
rent input. MSNs can be linked to both SSNs as well
as other MSNs. Each MSN contains a controller unit
that is supplied with the policies of the relevant DSNs,
and uses its own policy to choose which sub-skill to ac-
tivate. As seen in the box labeled Control For MSN1

in Figure 3, the policy of the MSN (πMSN1) is set to
follow one of the supplied skill policies based on the Q-
values of its output layer. The final skill policy πMSN1

is supplied to the controller at the top level of the
hierarchy together with policies from other DSNs con-
nected to the top level. The top level controller will
itself decide which policy to follow as explained earlier.

MSNs do not have outputs that corresponds to primi-
tive actions, and can only affect the environment through
the use of other skill networks. When a controller de-
cides to execute a skill policy, control of the agent is
handed over to the DSN for one time step, after which

5

the policy of the MSN will choose another skill or re-
linquish control back to the top level controller.

Hierarchy Configuration: A powerful aspect of
the D-MuLSH framework is the modularity of its hi-
erarchy configuration. In contrast to H-DRLN which
employs a 2-layer hierarchy solely using DSNs equiva-
lent to our SSNs, D-MuLSH employs a highly modular
multi-level configuration using both SSNs and MSNs.
This difference is visualized in Figure 4 where exam-
ple configurations for both H-DRLN and D-MuLSH is
presented.

Figure 4: Example of how the hierarchy can be struc-
tured in the H-DRLN and the novel architecture. D-
MuLSH allows an arbitrary number of levels in the
hierarchy.

The configuration of the D-MuLSH framework can by
following certain structural rules be customized to fit
to an agent’s needs. The structural rules are as follows:

• The controller at the top level can be supplied
with policies from any type of DSN situated in
the layer directly below.

• The top level network can output a subset of
primitive actions without accessing a DSN.

• Any MSN can be supplied with policies from any
DSN situated in the layer directly below.

• Any SSN can execute a subset of primitive ac-
tions in the environment.

• MSNs cannot execute primitive actions.

• SSNs cannot be supplied with policies from other
DSNs.

5 Experiments
We train 2 major skills and 6 simple skills. The two
major skills are navigation and combat. Navigation
governs four simple skills: navigating narrow corridors,

navigating open spaces, walking around obstacles, and
picking up items. Combat governs the remaining two:
shooting enemies and dodging enemy attacks. We
choose these particular skills, as they cover many of
the tasks necessary to play the original Doom game.
Figure 5 shows the specific configuration of the D-
MuLSH framework used in experiments.

Figure 5: The hierarchy configuration used in experi-
ments.

Simple skill domains: The four simple navigation
domains, shown in Figure 6 (a-d) are inspired by the
domains detailed in (Tessler et al., 2016). The agent
starts in a random spot, facing a random direction and
must reach the goal, using only 3 actions: walking for-
ward, turning left and turning right. All four domains
give the agent a small penalty at each time step to
encourage speed, and a positive reward when the goal
is reached.
In the shooting domain (Figure 6e), the agent must
turn to face enemies and shoot them. The goal is
reached when the agent has killed both enemies. En-
emies cannot attack or move, and they die in one hit.
The agent is rewarded every time it kills one. There is
a small penalty at every step to encourage speed, and
every shot that doesn’t hit is penalized as well.

(a) Corridor (b) Item pickup (c) Open room

(d) Obstacle room (e) Combat

Figure 6: Environments used for training simple skill
networks. Environments (a)-(d) are used for naviga-
tion and (e) is used for combat.

The dodging domain uses the same room as the shoot-
ing domain. Here the agent must dodge incoming
attacks from multiple enemies using only movement

6

actions (moving forwards, backwards, left and right).
The goal is to survive for 100 time steps. The agent
is given a small reward at every time step in order to
encourage long survival time, and there are penalties
for taking damage and dying.

Major skill domains: The complex navigation do-
main, shown in Figure 7, has the agent run through
the four simple domains in sequence. Just like the
simple navigation domains, the agent is given a small
penalty at every time step, and is rewarded for suc-
cessfully exiting each room and picking up the item.
It must pick up the item before exiting the final room
in order for the episode to count as successful.

Figure 7: Map of complex navigation domain

The complex combat domain uses the same room as
the simple combat domains (Figure 6e), with some ex-
ceptions. There is only 1 enemy present at any time.
The enemy can move and attack as normal, and it
takes several shots to kill. When an enemy dies, an-
other one is spawned in the room. The goal is to kill 3
enemies within a time limit of 375 time steps and with-
out dying or running out of ammunition. The agent
is rewarded only when an enemy is killed. There is a
small penalty at every time step, and a large penalty
for taking damage.

The complex domain: This domain combines the
navigation and the combat domains into one, as shown
in Figure 8. The goal is to get to the exit after killing
all enemies and picking up the item. Two enemies
spawn when the agent enters the combat room. They
each take multiple shots to kill. When they are killed,
the door to the next room appears. The agent is re-
warded every time it exits a room, when it kills an en-
emy and when it picks up the item. There is a penalty
for taking damage and for shooting when the enemies
are dead. The agent is also penalized at every time
step when there are no enemies present.

Evaluation Process: The agents are evaluated dur-
ing training after each epoch (10000 optimization steps)
using the current network weights. During evaluation

Figure 8: Map of the complex domain

the agent’s performance in terms of success percentage
is averaged over 50 episodes, where success percentage
is the percentage (%) of episodes in which the agent
completes all sub-tasks and reaches the exit.

Training Simple Skill Networks: To train the
different SSNs we use the vanilla DDQN algorithm
(Hado van Hasselt and Silver, 2015). We modify the
original hyper-parameter settings to include less ex-
ploration (epsilon decreased from 1.0 to 0.1 over 100K
time-steps) and a smaller experience replay memory
size of 75000 tuples3. The SSNs are trained in their
respective environments (listed in Figure 6) with both
combat related SSNs using the same environment. Within
100 epochs (1M optimization steps) all agents achieve
success percentages around 100%, as seen in Table 1.

Domain Success Percentage Epoch
Corridor Navigation 100 31
Open Navigation 100 45

Obstacle Navigation 96 91
Item Navigation 100 15

Combat (Shooting) 100 7
Combat (Dodging) 100 80

Table 1: SSN training results. Lists success percent-
ages for each skill network as well as in which epoch
highest percentage was first reported.

Training Major Skill Networks: MSNs were trained
in the complex domains as specified using only the pre-
trained SSNs as available actions. The major skill of
navigation was trained in the complex navigation do-
main using all four navigational SSNs for a total of
200 epochs. A graph of the agent’s evaluation scores
is seen in Figure 9. The agent is able to achieve a
success percentage of 40% already after the very first
epoch, and achieves its highest success percentage of
98% after 150 epochs. Although it takes a relatively

3The replay memory size reduction was a necessity to accom-
modate training on our own lower-end machines.

7

long training time to reach its highest score, it man-
ages to achieve a 96% already around the 50 epoch
mark. In comparison, a vanilla DDQN baseline was
trained in the same environment for 50 epochs with-
out achieving a single successful episode.

Figure 9: Success percentages for navigation MSN dur-
ing evaluations.

The major skill of combat was trained in the com-
plex combat environment using the two combat related
SSNs for 40 epochs. The graph in Figure 10 shows
that the agent achieved its highest success percentage
of 96% at epoch 20. The graph also demonstrated a
highly unstable learning process. This instability may
in part be caused by the inconsistencies of the Doom
AI, as the aggressiveness of the enemies change be-
tween episodes. A longer training time may have led
to a more consistent success rate. A vanilla DDQN
baseline that was trained in the same environment for
100 epochs managed to achieve a success percentage
of 4%.

Figure 10: Success percentages for combat MSN dur-
ing evaluations.

Training a D-MuLSH: The D-MuLSH agent was
trained in the complex domain using both MSNs as
well as the primitive actions of: moving forward, turn-
ing to either side and shooting. The agent was trained
for 100 epochs, in which it reached its first successful
episode at epoch 10, and its highest success percentage

of 96% at epoch 73. In comparison, an agent using
H-DRLN that trained in the same environment for an
equal 100 epochs achieved its highest success percent-
age of 50% at epoch 88, and its first successful episode
at epoch 40. A DDQN baseline failed in achieving a
single successful episode throughout the 100 epochs.
The graph in Figure 11 shows the evaluation scores of
all agents during their respective training sessions.

Figure 11: Success percentages for the final environ-
ment.

The graph in Figure 12 depicts the usage (%) of skills
as opposed to primitive actions during evaluations of
both D-MuLSH (blue) and H-DRLN (green). We can
observe that the D-MuLSH agent exhibits a spike in
skill usage in the first 10 epochs and afterwards levels
out to a steady usage of about 25%. This observation
indicates that using only skills to solve new environ-
ments would lead to sub-optimal solutions, caused by
the skills themselves being sub-optimal in unseen en-
vironments. In our framework the agent is able to use
skills in an exploratory fashion because of the epsilon-
greedy approach used by our network. This explo-
ration with skills allows our agent to lean on the pre-
trained skills for a faster convergence towards an op-
timal solution. Once the algorithm allows for more
exploitation the agent learns to use primitive actions
to refine the skills to better suit the new environment.
In contrast H-DRLN starts with almost no skill usage,
and steadily increases usage to match ours at the end
of training. This may be a cause for H-DRLN’s slow
start to learning in this environment.

6 Discussion
We have presented D-MuLSH, an extended version of
the H-DRLN. Our framework contains all of the build-
ing blocks necessary for a truly lifelong learning frame-
work, including: Efficient knowledge retention through
Simple and Major Skill Networks; Selective transfer of
knowledge using reusable skills; The effective and ef-
ficient retention and transfer of knowledge through a

8

Figure 12: Skill usage during evaluations.

modular multi-level skill hierarchy with multiple levels
of control units.

While the D-MuLSH framework does increase the over-
all time needed to pre-train skills, our experiments
show that it is only a small increase. The overall time
needed to train both the Navigation and the Com-
bat MSNs to at least 90% success rate was a little
under 1 hour and 30 minutes. Conversely, it also de-
creases the time needed to train the Q-network at the
top level significantly. Both D-MuLSH and H-DRLN
needed about 4 hours and 40 minutes4 to train for 100
epochs, and the trend shown in Figure 11 suggests that
the H-DRLN would need several more training-hours
to reach a similar success rate to D-MuLSH.

Interesting property of MSNs: Both H-DRLN
and D-MuLSH hands over control to a skill network
for k time steps when they activate a skill. However,
if a MSN is activated by D-MuLSH, the MSN will re-
main in control, rather than relegating control to one
of its sub-skills. This means that the MSN can switch
which sub-skill it uses during the k time steps.

The H-DRLN cannot do this, as its skills do not have
sub-skills. This may be part of the reason for why D-
MuLSH performs better than the H-DRLN. For exam-
ple, one activation of the combat MSN in D-MuLSH
can potentially be used to both dodge an attack and
shoot at an enemy within k time steps, whereas the
equivalent approach for the H-DRLN would be to first
use k steps to dodge and then another k steps to shoot.

7 Future work
It may be beneficial to investigate the effect of up-
dating network weights on skills. As of writing, we
only update weights for the Q-network at the top level.
That means that MSNs and SSNs do not update dur-
ing training. However, this should make skills better

4Both agents were trained on the same machine.

at adapting to new environments, making it easier for
the agent to generalize what it has learned.

Bibliography
Hado van Hasselt, A. G. and Silver, D. (2015), ‘Deep
reinforcement learning with double q-learning’, As-
sociation for the Advancement of Artificial Intelli-
gence .

Lample, G. and Chaplot, D. S. (2018), ‘Playing fps
games with deep reinforcement learning’.

Mnih, V. et al. (2015), ‘Human-level control through
deep reinforcement learning’, Nature .

Parisotto, E. and Salakhutdinov, R. (2018), ‘Neural
map: Structured memory for deep reinforcement
learning’.

Schaul, T., Quan, J., Antonoglou, I. and Silver, D.
(2016), ‘Prioritized experience replay’.

Silver, D., Yang, Q. and Li, L. (2013), Lifelong ma-
chine learning systems: Beyond learning algorithms.

Song, S. et al. (2019), ‘Playing fps games with
environment-aware hierarchical reinforcement learn-
ing’.

Sutton, R. S., Precup, D. and Singh, S. (1999), ‘Be-
tween mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning’, Artifi-
cial Intelligence 112(1), 181–211.

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D. J.
and Mannor, S. (2016), ‘A deep hierarchical ap-
proach to lifelong learning in minecraft’.

Vezhnevets, A. S. et al. (2017), ‘Feudal networks for
hierarchical reinforcement learning’.

Wu, Y. and Tian, Y. (2017), ‘Training agent for first-
person shooter game with actor-critic curriculum
learning’.

9

	1 Introduction
	2 Related Work
	3 Background
	4 Methodology
	5 Experiments
	6 Discussion
	7 Future work
	Bibliography

