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Abstract:

Classical PID control is a widely used
technique in many industrial applications
due to its good performance and rela-
tively low complexity. Nevertheless, these
regulators are not sufficient in some cases.
This project investigates a novel prob-
abilistic interpretation of PID control.
Under this framework, it is assumed that
only sensed variables are accessible. That
is, no prior information of the process
is available (i.e., plant model). Thus,
the controller is furnished with a simple
generative model that tries to deduce the
measurement causes. This model, which
is refined with every new measurement,
permits designing the PID regulator. The
innovation with respect to the classical
approach is that here the controller gains
encode measurement noise properties
that can be inferred. The model enhance-
ment and the applied control law obey
a biological principle known as free energy.

The thesis proposes to implement this
PID regulator in a refrigeration process.
Specifically, it is aimed to control the
evaporator outlet temperature. Simula-
tion results prove good performance when
dealing with changes in the set-point.
The robustness test, however, shows poor
outcomes as the system’s response is
not able to recover from a small input
disturbance. Furthermore, the controller
is sensitive to subtle changes in certain
parameters when tuning, thus leading to
instability.



Preface

This master’s thesis is written by Adrián Rocandio during the 4th semester of the Control
and Automation MSc at Aalborg University.

The thesis is based on a probabilistic interpretation of the PID controller, where the
controller gains encode measurement noise properties. This control framework is founded
on some principles taken from the biological field. The goal of the project is to determine
whether this new type of controller can be implemented in an industrial application,
namely in a refrigeration system. This project was carried out in collaboration with
Danfoss, being Roozbeh Izadi-Zamanabadi their representative at Aalborg University.

Throughout the semester, access to the laboratory was limited due to the COVID-19
outbreak. Furthermore, technical issues were encountered in the refrigeration system
whenever the entrance to the facilities was possible. Hence, this thesis is purely based on
theory and simulations.

I would like to thank my supervisors Henrik Schiøler, Roozbeh Izadi-Zamanabadi and
Basil M. Al-Hadithi for the comments, feedback and guidance during the semester.

I would also like to thank my mother for her unconditional support and help during
difficult times. To my father, for showing me that there is always an opportunity for
learning and improving. To my sister, for her honesty and strong principles. Hope you
can find motivation in this report to overcome your academic doubts.

“The first principle is that you must not fool yourself,
and you are the easiest person to fool.”

— Richard Feynmann

Reading guide

This report is intended to be read in numerical order. References to figures are shown as,
e.g., Fig. 3.1 denoting the first figure of the third chapter. References to equations follow
the same procedure but the term Eq. is employed instead. Additionally, the equation
number is presented between parenthesis, e.g., Eq. (3.1). The variables presented in
this thesis, e.g., state x, are time-dependent, i.e., x(t). However, the latter notation is
disregarded for the sake of clarity. Moreover, time derivatives are expressed with a dot
over the corresponding variable. For instance, considering the variable x, its derivative is
denoted by ẋ and its double derivative by ẍ.
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Nomenclature

Symbols and parameters for the refrigeration system
Symbol/Parameter Description Unit

k1 Nonlinearity gain •
k2 Nonlinearity gain •
fc Condenser fan frequency Hz
fcp Compressor frequency Hz
OD Opening degree of the expansion valve (%) •
OD∗ Nonlinearity input offset (%) •
Pc Condensing pressure bar
Pe Evaporating pressure bar
Q̇c Heat transfer rate in condenser W
Q̇e Heat transfer rate in evaporator W
Tc Condensing temperature ◦C
Tc,i Condenser inlet temperature ◦C
Tc,o Condenser outlet temperature ◦C
Tcr Cold reservoir temperature ◦C
Te Evaporating temperature ◦C
Te,o Evaporator outlet temperature ◦C
T ∗e,o Nonlinearity output offset ◦C
Thr Hot reservoir temperature ◦C
Tsat Saturation temperature ◦C
Tsc Subcooling temperature ◦C
Tsh Superheating temperature ◦C
Ẇcp Compressor power consumption W

Symbols and parameters for the controller design
Symbol/Parameter Description

E(y, x) Laplace-encoded energy: − ln p(y, x)

F Variational free energy
f(x, v) Agent’s dynamical model of hidden states/inputs
g(x, v) Agent’s mapping from hidden states/inputs to observations
p(y, x) Generative density
q(x) R-density, agent’s approximate posterior
v Exogenous inputs: references, disturbances or noise
x Hidden causes of sensory input (hidden states)
y Sensory data (measurements)
z Measurement noise
α Agent’s dynamical model parameter
γ Hyperparameters: measurement and process precisions
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Group 1034

γz Log sensory precisions
εz Measurement error, i.e., y − x
εω Error dynamics, i.e., ẋ− f(x, v)

η Perception learning rate
θ Parameters: α
κ Action learning rate
λ Damping term for hyperparameters update
µ Agent’s states. Encodes beliefs about hidden states
πω Process noise precision (inverse of the variance)
πz Measurement noise precision
ρ Hyperparameters learning rate
σ2
opt R-density’s optimal variance which minimises F
ω Process noise

Abbreviations
EEV Electronic expansion valve
FEP Free energy principle
FOPDT First order plus dead time
KF Kalman filter
KL Kullback-Leibler
PID Proportional-integral-derivative controller
VFE Variational free energy
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1 | Introduction

Control engineering emerged from the necessity of analysing and designing regulatory
mechanisms. Due to its conceptual similarities with biological systems, over the last
decades control engineering has become more relevant in the biological field. In 1948,
the mathematician Norbert Wiener, through his pioneering work on cybernetics, saw a
set of problems, common to both the machine and the living tissue, centered around
questions of communication and control. For instance, regulation issues like maintenance
of cellular behaviours and the appropriate response to environmental signals can only be
achieved by systems that are robust to certain perturbations and sensitive to others. Since
these behaviours demand the use of feedback, tools from control theory provide a good
framework to examine and devise self-regulating systems [Iglesias and Ingalls 2009].

In 2006, Friston proposed that the laws underlying self-organisation or self-regulation in
biological agents like cells, plants or brains obeyed a principle denoted as free energy. This
principle, inspired by Helmholtz’ thermodynamic free energy [C. L. Buckley et al. 2017],
shows that biological systems model their surroundings and act on it so as to reach a
certain stability [Karl Friston 2012]. On the one hand, deviations from these stable states
are measured by an information-theoretic concept known as surprisal. On the other hand,
the biological agent models the environment via Bayesian inference, a statistical procedure
that describes the optimal way to update agent’s beliefs when making new observations
(i.e., receiving new sensory input) [Smith, Karl Friston, and Whyte 2021].

The aforementioned concepts are employed to develop a probabilistic interpretation of a
proportional-integral-derivative (PID) controller for biological systems and whose gains
can be attained optimally [Baltieri and C. Buckley 2019]. Despite its focus on neuronal
activities of the brain, this thesis proposes a nonbiological application, namely an industrial
refrigeration system. The novelty with respect to classical controllers is that here the
agent, apart from furnishing a control law, tries to infer the hidden causes of sensory
input by means of a generative model. This model consists of a set of stochastic differential
equations that best describe the environment according to the agent. This scheme, known
as Variational filtering, estimates the conditional density of hidden states in a similar
manner to the extended Kalman and Particle filters [Karl Friston, Stephan, et al. 2010].
However, the former optimises this density based on generalised coordinates to arbitrarily
high order which eventually allow the construct of the regulator. As opposed to traditional
PID controllers, these gains encode random measurement noise. Therefore, estimating the
PID gains implies inferring the random fluctuations present in the system.
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2 | Problem Analysis

PID control is one of the most employed control algorithms in industrial applications,
with more than 90% of total controllers implementing PID or PI regulation [Baltieri and
C. Buckley 2019]. Its easy implementation, together with a design based on some rules of
thumb makes the PID an appealing regulator for practical purposes (e.g., cruise control
on a car or temperature control in a room). PID control provides a good response in
processes whose dominant dynamics are of second order. Nevertheless, due to its limited
complexity, classical PID regulators are not sufficient in some scenarios. For instance, in
processes of higher-order dynamics, systems with long dead time, oscillatory modes or
non-periodic disturbances [Åström and Hägglund 1995].

This thesis investigates a new approach to PID controller design, namely from a
probabilistic perspective, and tests it on a refrigeration system. The current chapter
is divided into three sections and attempts to present the target of the project. For this
purpose, a brief description of the classical PID control is presented in the first section. The
second section details what the new probabilistic interpretation of PID control consists of.
Finally, the last section analyses what is intended to achieve with this project and ends
up establishing the problem formulation.

2.1 Classical PID Control

PID control is based on a closed-loop strategy with a negative feedback scheme. Negative
feedback methods are founded on the difference between the measured value of the variable
to be controlled (e.g., temperature) and its desired value, known as reference or set-point.
This produces an error which the controller tries to minimise. Eq. (2.1) expresses the
aforementioned in a mathematical way:

e(t) = r(t)− y(t) (2.1)

where e(t) is the error, r(t) the reference and y(t) the value of the measured variable
at time t. The aim of the regulator is to apply a signal to the system to be controlled
such that this difference is minimised. There are numerous controllers which utilise this
scheme. The most simple ones are, for instance, on-off or proportional controllers. The
former applies the maximum/minimum control signal if the error is greater/smaller than
zero, whereas the latter uses a constant to multiply the error. On the one hand, on-off
control increases the oscillations in the output as the system overreacts due to a small
change in the error signal (controllers with hysteresis or dead zone are used instead). On
the other hand, proportional control solves this issue but leads to static or steady state
error [Åström and Hägglund 1995]. PID controllers elegantly deal with both of these
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2.2. PID Control as a Process of Active Inference Group 1034

problems by adding to the standard negative feedback with proportional control, P , an
integral, I, and a derivative, D, term. While the integral term accumulates the error over
time in order to cancel out steady state errors, the derivative term helps to the transient
response by decreasing the amplitude of the oscillations of the controlled signal [Baltieri
and C. Buckley 2019]. The control signal, u(t), generated by a PID controller is usually
expressed in the following form:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dt+Kd

de(t)

dt
(2.2)

where Kp, Ki and Kd are the proportional, integral and derivative gains, respectively,
which are used to tune the effect of the P , I and D terms on the system response. Fig.
2.1 depicts the PID controller in a block diagram.

Plant/Process

Controller

Figure 2.1: Block diagram of a PID controlled process.

Despite PID regulators can be designed analytically, their usefulness emerges when the
mathematical model of the process is unknown1. Nonetheless, as mentioned earlier, there
are some cases where PID is not sufficient. Situations where the dynamics of the process
to be controlled become complicated, a more sophisticated controller may be needed.

This project examines the PID controller from a different perspective. Here, the regulator
not only provides a control law but tries to infer the measurements’ hidden causes by
means of some information-theoretic and probabilistic concepts. Moreover, the PID gains
encode random measurement noise that can be deduced within this framework. Next
section develops these notions so as to provide an overall image of the PID regulator as a
process of active inference.

2.2 PID Control as a Process of Active Inference

The regulator under study rests on the free energy principle. This concept, taken from
the biological field, provides an explanation of how a system behaves in its surroundings.

1In 1942, Ziegler and Nichols proposed a method to tune the PID gains empirically.
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2.2. PID Control as a Process of Active Inference Group 1034

This conduct is such that minimises an information theory concept known as surprisal
which measures preferred observations deviation. Thus, the controller will act in its
surroundings to modify the outcomes in a way that minimises surprisal. Surprisal is
attained by computing the so-called model evidence or marginal likelihood in Bayesian
inference, see [Smith, Karl Friston, and Whyte 2021]. Since this is often intractable, an
upper bound denoted as variational free energy is employed instead. Hence, minimising
the latter minimises surprisal, see Section 4.2.

In order to choose appropriate actions, the controller needs to know what caused the
observed variables (i.e., measurements). These causes are unknown by the controller
and are commonly referred to as hidden states or observations’ hidden causes. The
controller tries to infer these hidden states by means of a generative model. This
model provides a mathematical description of how the observations were generated
according to the controller. The controller’s beliefs about measurements’ hidden causes
are refined with every new observation in a process known as perception. Furthermore, the
controller chooses actions that change measurements in a way that minimises the aforesaid
variational free energy. This scheme is known as active inference and is depicted in Fig.
2.2.

ControllerPlant/Process

Generative Model

Hidden states Variational Free Energy

Control law Perception

Active Inference

Figure 2.2: Schematic of the active inference framework.

As can be seen, hidden states generate some observations denoted with y. The regulator
receives these measurements and, together with its beliefs about hidden states (i.e.,
perception) and the generative model, the variational free energy is computed. The control
law and perception are updated in a manner that minimises this variational free energy.
The control signal is then applied to the surroundings (i.e., plant or process) which will
generate a new observation. The generative model presented in Fig. 2.2 expresses the
hidden state dynamics model through the function f(·), whereas g(·) is a function that
maps the hidden states into observations. Note that these functions may depend on the
control signal as well. In this report, f(·) and g(·) are considered linear functions (i.e.,
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2.3. Problem Formulation Group 1034

linear generative model). The hidden state dynamics and measurements can be affected
by random fluctuations denoted with ω and z, respectively.

Sections 4.3 and 4.4 show that, by choosing an appropriate linear generative model one
can achieve a PID-like control law that minimises variational free energy. Moreover, these
gains encode measurement noise properties. Therefore, deducing the noise present in
the measurements permits inferring the PID gains and, as a result, attaining an optimal
tuning.

2.3 Problem Formulation

This thesis examines the new PID control approach applied to a nonbiological system,
namely to a refrigeration process. In general, refrigeration systems use PID regulation to
control, for instance, the evaporator outlet temperature. As it is described in Section 3.1,
a proper outlet temperature is crucial for the right functioning of the compressor as it
ensures that no liquid exits the evaporator. Thus, the target of the project is to determine
if this PID interpretation is suitable for industrial applications.

The aforementioned could be summed up in the following problem formulation:

Can PID control as a process of active inference be useful to regulate the evaporator
outlet temperature in a refrigeration process?
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3 | Refrigeration System

Refrigeration systems cover a wide range of industrial applications, from food cooling to
air conditioning [Dincer 2017]. All these follow the same principle: they utilise a vapour-
compression cycle to transfer heat. This chapter outlines the basic concepts that take
part in a refrigeration process. Nonetheless, more detailed information can be found
in [Larsen 2006] and [Kasper Vinther 2014]. The first section of this chapter explains
the different elements that compose the system as well as the phases involved in the
thermodynamic cycle. The second section provides a mathematical model to determine
the outlet temperature of the evaporator given an opening degree of the expansion valve.
This model is based on the test bench provided by Danfoss A/S to Aalborg University.

3.1 The Vapour-Compression Cycle

The goal of a vapour-compression cycle is to remove heat from a cold reservoir (e.g., a
cold storage room) and transfer it to a hot reservoir, usually the surroundings [Larsen
2006]. For this purpose, a refrigerant circulates between two heat exchangers, namely an
evaporator and a condenser, as shown in Fig. 3.1.

Compressor

Evaporator Condenser

Surroundings

OD

Cold storage
room

Fan

Expansion
valve

Figure 3.1: Schematic of a basic refrigeration system.

In order to establish the required heat transfer, the temperature in the cold/hot reservoir
needs to be higher/lower than the evaporation/condensation temperature. This is achieved
by the usage of an expansion valve and a compressor, respectively. While the former
leads to a pressure drop of the refrigerant, the latter circulates the refrigerant from the
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3.1. The Vapour-Compression Cycle Group 1034

evaporator to the condenser by increasing its pressure. Thus, the vapour-compression
cycle consists of four connected processes: compression, condensation, expansion and
evaporation. Fig. 3.2 depicts the entire cycle in a pressure-enthalpy diagram.

Condensation

Evaporation

Ex
pa

ns
io

n

Co
m

pr
es

sio
n

Specific Enthalpy

Pr
es

su
re GasLiquid/GasLiquid

Figure 3.2: Pressure-enthalpy diagram of a refrigeration cycle.

As can be seen, it is assumed an isobaric condensation and evaporation. Next, these four
processes are detailed by following Fig. 3.1 and Fig. 3.2.

1 → 2 Compression: at the compressor inlet, the refrigerant is in gas phase with low
pressure, Pe, and temperature, Te,o. By compressing the refrigerant, the pressure as well
as the temperature increase. In Fig. 3.1, Ẇcp indicates the compressor power consumption
(fcp denotes the frequency at which the compressor operates). It is assumed that no heat
is transmitted to the surroundings during the compression phase (i.e., adiabatic process).

2 → 3 Condensation: the refrigerant is then directed to a condenser unit. Here, the
refrigerant starts to condense at a constant pressure, Pc, changing its phase from gas to
liquid. Usually, a fan blowing air across the condenser facilitates the heat transfer, Q̇e.
Through the last part of the condenser, the refrigerant temperature is lowered below its
condensing temperature so as to ensure that the refrigerant enters the expansion valve in
liquid phase. This step is known as subcooling and is represented by Tsc in Fig. 3.2.

3 → 4 Expansion: the expansion valve separates the high-pressure side, Pc, from the
low-pressure side, Pe. Thereby, the liquid is exposed to a large pressure decrease, provoking
a fraction of the refrigerant to evaporate. This partial phase change causes the temperature
to drop down to the evaporation temperature, Te, determined by the low pressure Pe1.
Since no work is done during the expansion, and considering that the valve is properly
insulated, the enthalpy remains unchanged. From the expansion valve, the refrigerant
flows to the evaporator.

1Refrigerants have the property, along with other fluids and gases, that the saturation temperature,
Tsat, uniquely depends on the pressure [Larsen 2006].
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3.2. Evaporator Model Group 1034

4 → 1 Evaporation: the low temperature in the evaporator inlet, Te, enables a heat
transfer from the cold reservoir to the refrigerant. Hence, the remaining refrigerant in
liquid phase evaporates at a constant temperature. At the evaporator outlet, all of the
refrigerant has evaporated and the temperature, Te,o, has increased slightly above the
evaporation temperature, Te. This temperature increment is known as superheat, Tsh,
and ensures that no liquid gets into the compressor. Superheat is controlled by regulating
the mass flow into the evaporator through the expansion valve and suitable levels are
between 6 and 12 degrees [Kasper Vinther 2014]. The refrigerant has now completed the
vapour-compression cycle and returns to the compressor inlet.

The following section furnishes a mathematical model to describe the behaviour of the
evaporator outlet temperature, Te,o, as a function of the electronic expansion valve (EEV)
opening degree, OD.

3.2 Evaporator Model

The behaviour of the evaporator outlet temperature as a function of the EEV opening
degree is nonlinear. This relationship is illustrated in Fig. 3.3, where Tc,r is the cold
reservoir temperature and Te the evaporation temperature. The evaporator input/output
relationship is almost flat for low opening degrees and then suddenly drops close to the
minimum stable superheat and then flattens again when the evaporator is flooded (i.e.,
high opening degrees) [Kasper Vinther 2014].

Te
m

pe
ra

tu
re

 [º
C

]

EEV opening degree (%)

Figure 3.3: Nonlinear relationship between EEV opening degree, OD, and evaporator
outlet temperature, Te,o.

To model this nonlinearity and the evaporator dynamics, [Kasper Vinther 2014] proposes
a Wiener-Hammerstein model structure given as:

y(t) = (fo ~ f(fi ~ u)) (t) (3.1)

where u is the input to the system, y the output, fi the input dynamics function (whose
Laplace domain transfer function is Fi(s) = L{fo(t)}), f(·) the static nonlinear function,
fo is the function describing the output dynamics (having the Laplace domain transfer
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3.2. Evaporator Model Group 1034

function Fo(s) = L{fo(t)}) and ~ the convolution operator. Fig. 3.4 depicts the Wiener-
Hammerstein model structure.

Input Dynamics Output DynamicsNonlinearity

Figure 3.4: Wiener-Hammerstein model structure.

It is assumed that f(·) is either monotonically decreasing or increasing, time-invariant,
smooth and bounded within the input set a ∈ A ⊂ R. Moreover, the first three derivatives
with respect to a are also bounded and continuous, and f ′(·) is either non-negative or non-
positive bell shaped with a unique extremum. Therefore, the second derivative, f ′′(·) has
a unique zero-crossing. That said, the Wiener-Hammerstein model in Laplace domain is
parametrised by a first-order transfer function:

Fi(s) =
1

Tsysis+ 1
(3.2)

a static nonlinearity:

Te,o = −k1 arctan (k2(OD −OD∗)) + T ∗e,o (3.3)

and a first-order plus dead time dynamics (FOPDT):

Fo(s) =
1

Tsyss+ 1
exp(−sTd) (3.4)

where the gains k1, k2, the time constant Tsys, the delay Td and the maximum slope
point (OD∗, T ∗e,o) of the nonlinear function can be identified using a simple ramp test
and a biased relay feedback test, as shown in [Kasper Vinther 2014]. Furthermore, input
dynamics are assumed to be fast, hence negligible compared to the output dynamics (time
constant, Tsysi, is set to 2) [Vinther et al. 2013]. These tests were conducted in the Water
chiller system located at Aalborg University which operates with the R134a refrigerant.
The obtained parameters can be found in Table 3.1.

Parameter Water chiller
k1 4.89
k2 1.31
Tsys 31.51
Td 26
OD∗ 50.78
T ∗e,o 12.41

Table 3.1: Identified evaporator model parameters for the water chiller system.
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4 | Controller Design

This chapter aims to describe and develop the mathematical foundation of the PID
controller as a process of active inference employing linear generative models. Due to
the unfamiliarity of some of these concepts, the chapter is divided into different sections,
where each of them tries to shed light in every term separately, following a divide-and-
conquer strategy.

The first section starts defining some widely used terms in the machine learning field as
agent or environment and what do they really imply in a control process. The following
section deals with the explanation of the free energy principle. This concept plays a
key role in the interpretation of the controller design since it provides a statement of
how a biological system (an agent) behaves so as to thrive in its medium (environment).
The next section establishes a set of linear equations that best describe the environment
according to the agent (linear generative model). The fourth section handles how the
agent can update its perception of the world by minimising the free energy. The fifth
section furnishes a framework for active inference. That is, how an agent can act on its
surroundings in order to reach some desired states. Finally, the last section puts all these
concepts together to construct the PID controller.

4.1 The Agent-Environment Interface

This terminology is commonly utilised in the reinforcement learning literature. Reinforce-
ment learning is a class of algorithms in the field of machine learning that aims learning
from interaction to achieve a goal [Sutton and Barto 2018]. The learner and decision
maker is the agent. It interacts, through actions, with the environment which comprises
everything that the agent cannot control [Wiering and Otterlo 2012]. These interact con-
tinuously: the agent selecting actions and the environment responding to these actions
and presenting new situations to the agent. The environment may also give a reward as
feedback. Therefore, the goal of the agent is to perform actions that maximize the reward
over time.

Environment

Agent

ActionRewardState

Figure 4.1: The agent-environment interaction.
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4.2. The Free Energy Principle Group 1034

Fig. 4.1 depicts a block diagram of the above described elements. At every time step,
k = 0, 1, 2, ..., the agent receives some representation of the environment’s state, xk, and,
based on this information, selects an action uk. One time step later, the agent receives a
reward rk+1 and finds the environment in a new state, xk+1. This process is iterated until
the system reaches the target. As it will be seen later, some of these states cannot be
known directly by the agent. They are usually termed as environmental hidden states or
hidden causes. The measurable states are typically referred to as observations or outcomes.

From a control theory perspective, the agent and environment would correspond to the
controller and plant (controlled system), respectively. Specifically, in the case under study,
the agent would correspond to the signal governing the opening degree of the valve while
the environment would be composed of the refrigeration system elements (e.g., valve,
evaporator, etc.). From a biological point of view, the agent could be the brain, whereas
the rest of the body and its surroundings the environment. Hence, the agent-environment
interface is used to describe this interaction so as to reach a desired environment’s state.

4.2 The Free Energy Principle

The free energy principle (henceforth, FEP) provides an explanation to the behaviour
of (biological) agents when interacting with its environment. Furthermore, it supplies
a mathematical framework which, ultimately, permits the design of a controller. The
controller regarded in this report rests upon this principle.

The free energy principle first emerged to provide a unified theory for the brain. However,
FEP soon attempted to extend beyond the brain sciences to account for other biological
processes [C. L. Buckley et al. 2017]. Due to its origins in neuroscience and biology, some
vocabulary from these fields will be adopted throughout this section.

FEP starts with the premise that biological agents resist the dispersion of their sensory
input (i.e., observations) despite fluctuations in the environment. This is characterised
by open1 organisms that exhibit homeostasis2. In other words, biological creatures
must maintain their states within certain bounds [Karl Friston 2012]. Nevertheless, this
statement might lead to the following question: how a biological system, exposed to
random and unpredictable fluctuations in its milieu, can restrict itself to occupying a
limited number of states? The answer proposed is based on free energy minimisation
which asserts that biological systems model their environment, predict what will happen
next and encounter violations of those predictions. By changing their perception of
the environment and acting on it they can limit the number of states they can find
themselves in. Thereby, agents must avoid the occurrence of events which are atypical
in their habitable environment (e.g., a fish out of water). [C. L. Buckley et al. 2017].
The atypicality of an event can be quantified by the negative natural logarithm of the

1In the sense that they exchange energy and entropy with the environment.
2Hómios, similar and stásis, standing still. Is the ability to maintain a relatively stable internal state

that persists despite changes in the environment (e.g., body temperature within limits).
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4.2. The Free Energy Principle Group 1034

probability of its sensory data:

− ln p(y) (4.1)

Where y corresponds to the observations perceived by the agent (sensory data). This term
is commonly known in information theory as self-information or surprisal and measures
the deviation from preferred outcomes. Thus, it can be seen that lower probability events
will generate a higher surprisal (e.g., − ln 0.5 = 0.69 while − ln 0.9 = 0.1). This implies
that maximising the model evidence of the environment, p(y), minimises the surprisal. For
instance, consider the body temperature. Humans can only survive if body temperatures
continue to be observed within the range of 36.5−37.5 degrees Celsius. Hence, the human
body implicitly entails a higher probability of making such observations. If a human agent
perceives that body temperature differs from the expected temperature, it will act on the
environment so as to minimise this deviation (e.g., seek shelter when it is cold). In this
sense, body temperature within survivable ranges are the least surprising [Smith, Karl
Friston, and Whyte 2021]. A different perspective for understanding why an agent must
minimise surprisal is based on the concept of entropy. Consider the mean of the surprisal:

E[− ln p(y)] =

∫
− ln p(y)p(y) dy (4.2)

In information theory, Eq. (4.2) is known as entropy. This means that minimising surprisal
also minimises the entropy or dispersion of sensory outcomes.

As stated in Section 4.1, there are some environmental states that cannot be perceived by
the agent. These correspond to the hidden causes, x, of the sensory input, y. Thus, to
maximise preferred outcomes (minimise surprisal), the agent must maintain a generative
model, p(y, x), of these hidden states that is sufficiently accurate to anticipate and avoid
observations that imply high surprisal. In other words, the agent must have a model of
how these observations were generated. Mathematically, the probability of sensory input
based on a generative model can be expressed, in the continuous case, as:

p(y) =

∫
p(y, x) dx =

∫
p(y | x)p(x) dx (4.3)

Moreover, the joint or generative density (G-density) can be factorised into the likelihood
and the prior probabilities of the hidden states, as shown in the right-hand side of Eq.
(4.3). Assuming that this equation is feasible, the agent can now update its beliefs about
the hidden states by means of Bayesian inference:

p(x | y) =
p(y, x)p(x)

p(y)
=

p(y | x)p(x)∫
p(y | x)p(x)

(4.4)

Hence, given some prior beliefs of the hidden states, p(x), and the generative model, the
agent can infer the posterior probabilities, p(x | y), of the hidden causes that generated the
observations. That is to say, the agent updates its own model of the world (environment)
with every new observation. This step is known as perception.

Unfortunately, Eq. (4.3) is often analytically intractable. In the discrete case, when this
integral reduces to a sum, the number of calculations may grow exponentially with the
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number of states. To deal with this, an auxiliary probability density which represents the
current best guess of the sensory input causes is introduced. This auxiliary density has
been defined as recognition density (R-density), q(x), and tries to approximate the true
posterior, p(x | y) [C. L. Buckley et al. 2017].

To measure the difference between the R-density and the true posterior, the Kullback-
Leibler (KL) divergence is employed:

DKL (q(x) || p(x | y)) :=

∫
q(x) ln

(
q(x)

p(x | y)

)
dx (4.5)

When q(x) matches p(x | y), the divergence becomes zero. Thereby, a recognition density
that minimises the divergence will provide a good approximation to the true posterior.
Nevertheless, since the true posterior cannot be known, the KL divergence cannot be
evaluated either. However, utilising Bayes’ theorem, Eq. (4.5) can be rewritten as:

DKL (q(x) || p(x | y)) =

∫
q(x) ln

(
q(x)p(y)

p(y, x)

)
dx

=

∫
q(x) ln

(
q(x)

p(y, x)

)
dx + ln p(y)

∫
q(x) dx (4.6)

Assuming that the R-density is normalised, that is:∫
q(x) dx = 1 (4.7)

The Kullback-Leibler divergence can be reformulated as:

DKL (q(x) || p(x | y)) =

∫
q(x) ln

(
q(x)

p(y, x)

)
dx︸ ︷︷ ︸

F

+ ln p(y) (4.8)

The first term on the right-hand side is known as free energy or variational free energy
(VFE) and is denoted by F . Thereby, minimising VFE with respect to the R-density will
minimise the KL divergence. Furthermore, the KL divergence is always greater or equal
than zero, see Appendix A.1 for the proof. This leads to the following inequality:

F ≥ − ln p(y) (4.9)

where the right-hand side of the inequality corresponds to the surprisal. As stated
previously, the surprisal cannot be known directly. Nonetheless, as it will be seen later,
VFE can be evaluated directly since q(x) and p(y, x) can be freely specified. Therefore,
VFE provides an upper bound on the surprisal, thus minimising VFE will minimise the
surprisal.

In conclusion, minimising VFE with respect to the recognition density given an
appropriate model for the generative density permits approximating the true posterior.
The following subsection establishes the R-density.

Aalborg University Page: 19 of 50



4.2. The Free Energy Principle Group 1034

4.2.1 R-density

In order to minimise the VFE with respect to the R-density, the latter must be specified. It
is assumed that this density takes Gaussian form. In this scenario, the sufficient statistics
of this Gaussian form (i.e., mean and variance) become parameters which can be optimised
numerically to minimise VFE [C. L. Buckley et al. 2017]. Thereby, the R-density takes
the following form in the univariate case:

q(x) ≡ N (x ; µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(4.10)

where µ and σ2 correspond to the mean and variance, respectively, of a single
environmental variable, x.

Splitting the fraction term in the VFE expression leads to:

F =

∫
q(x)E(y, x) dx+

∫
q(x) ln q(x) dx (4.11)

where:

E(y, x) = − ln p(y, x) (4.12)

By analogy with Helmholtz’ thermodynamic free energy, the first term in Eq. (4.11) is
called average energy and the second term is known as the negative entropy [Adkins 1975].
Substituting Eq. (4.10) into Eq. (4.11) yields:

F = − ln
√

2πσ2

∫
q(x) dx− 1

2σ2

∫
q(x)(x− µ)2 dx+

∫
q(x)E(y, x) dx

= −1

2
ln 2πσ2 − 1

2
+

∫
q(x)E(y, x) dx (4.13)

where the first two terms on the right-hand side of the second step have been simplified by
means of the normalisation property, see Eq. (4.7), and the definition of variance in the
continuous case, respectively. The third term, however, demands further considerations.
It will be assumed that the energy, E(y, x), is a smooth function of x and that the R-
density is sharply peaked at its mean value, µ. In other words, the Gaussian density is
squeezed towards a delta function [C. L. Buckley et al. 2017]. Under these assumptions,
it is noticed that the integration is appreciably nonzero only at the peak. Thus, E(y, x)

can be evaluated around x = µ using Taylor expansion with respect to a small increment,
δx: ∫

q(x)E(y, x) dx ≈
∫
q(x)

(
E(y, µ) +

∂E(y, x)

∂x

∣∣∣∣
µ

δx+
1

2

∂2E(y, x)

∂x2

∣∣∣∣
µ

δx2

)
dx

(4.14)

Applying the normalisation property in the first term and substituting δx = x−µ results
in: ∫

q(x)E(y, x) dx ≈

E(y, µ) +
∂E(y, x)

∂x

∣∣∣∣
µ

∫
q(x)(x− µ) dx+

1

2

∂2E(y, x)

∂x2

∣∣∣∣
µ

∫
q(x)(x− µ)2 dx (4.15)
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The integral in the second term becomes zero since it corresponds to the expectation of a
random variable:

E[X] =

∫
xq(x) dx = µ (4.16)

Furthermore, identifying the expression for the variance in the third term allows
approximating the average energy as:∫

q(x)E(y, x) dx ≈ E(y, µ) +
1

2

∂2E(y, x)

∂x2

∣∣∣∣
µ

σ2 (4.17)

Substituting all the terms derived so far in Eq. (4.13) furnishes an appropriate expression
for the VFE:

F = E(y, µ) +
1

2

(
∂2E(y, x)

∂x2

∣∣∣∣
µ

σ2 − ln 2πσ2 − 1

)
(4.18)

which is now a function of the the sensory input and the Gaussian mean and variance
i.e., F (y, µ, σ2). To simplify further, the variance dependency in Eq. (4.18) is removed by
taking the derivative with respect to σ2 as follows:

∂F

∂σ2
=

1

2

(
∂2E(y, x)

∂x2

∣∣∣∣
µ

− 1

σ2

)
(4.19)

Setting Eq. (4.19) equal to zero and solving for the variance leads to:

σ2
opt. =

(
∂2E(y, x)

∂x2

∣∣∣∣
µ

)−1

(4.20)

where σ2
opt. stands for the optimal variance i.e., the variance that minimises the VFE.

Substituting Eq. (4.20) into Eq. (4.18) one gets the final simplified form of the VFE:

F = E(y, µ)− 1

2
ln 2πσ2

opt. (4.21)

Now, the VFE only depends on the first-order Gaussian statistics (i.e., the mean) of the
environmental variable, x, and the sensory input, y. In other words, the VFE has been
rearranged in terms of a generative density (G-density), p(y, µ), and the R-density’s mean.
The following section tackles how this joint density can be obtained by means of a dynamic
generative model.

4.2.2 G-density

Once the recognition density has been defined, one needs to specify the generative density
so as to evaluate the VFE. For this purpose, the agent needs a model of the environmental
causes of sensory data. In other words, a model of the hidden states and their relation to
the observations perceived by the agent. It is assumed a dynamical generative model that
follows a Langevin-type equation:
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y = g(x, v) + z

ẏ =
∂g(x, v)

∂x
ẋ+

∂g(x, v)

∂v
v̇ + ż

...

ẋ = f(x, v) + ω

ẍ =
∂f(x, v)

∂x
ẋ+

∂f(x, v)

∂v
v̇ + ω̇

...

(4.22)

with x as the hidden states, y as observations and v representing the exogenous inputs3.
Functions g(·) and f(·) map hidden states/inputs to observations and the dynamics of
hidden states/inputs, respectively. Random fluctuations in the dynamics (i.e., process
noise) are denoted by ω, whereas z represents the measurement noise. The dot symbols
denote time derivatives, that is, the higher orders of a variable.

For practical purposes, the nonlinear terms (e.g., ẋ2, ẋẍ, etc.) are neglected under a local
linearity assumption, see [Karl Friston, Mattout, et al. 2007]. Then, Eq. (4.22) can be
rewritten in a more compact form:

ỹ = g(x̃, ṽ) + z̃ ˙̃x = f(x̃, ṽ) + ω̃ (4.23)

where the tilde sign comprises a variable and its higher orders (e.g., ỹ = {y, ẏ, ÿ, ...}). The
stochastic model in Eq. (4.23) can then be described in terms of a generative density:

p(ỹ, x̃, ṽ ; θ, γ) = p(ỹ | x̃, ṽ ; θ, γ)p(x̃, ṽ ; θ, γ) (4.24)

which can be factorised, respectively, into the likelihood and the prior, as shown in the
right-hand side of the equation. Here, θ represents the parameters of the generative model
functions, that is, f(·) and g(·), while the hyperparameters, γ, encode the properties of the
random fluctuations, ω̃ and z̃. Bear in mind that Eq. (4.24) has been defined previously
as p(x, y), but the exogenous inputs, as well as the parameters and hyperparameters are
now included in the joint distribution.

In Subsection 4.2.1, the VFE was determined in terms of the average energy, E(y, µ), and
the R-density’s sufficient statistics (i.e., mean, µ, and the optimal variance, σ2

opt), see Eq.
(4.21). Since free energy needs to be minimised, one can neglect the constant variance
term as it does not affect the optimisation problem. Thus, VFE can be approximated as:

F ≈ E(ỹ, µ̃, ṽ ; θ, γ) = − ln p(ỹ, µ̃, ṽ ; θ, γ) = − ln p(ỹ | µ̃, ṽ ; θ, γ)− ln p(µ̃, ṽ ; θ, γ) (4.25)

Conceptually, this expression suggests that the agent represents only the most likely
environmental causes of sensory data, µ̃, and not the details of their distribution per
se [C. L. Buckley et al. 2017]. Furthermore, it is assumed that z̃ and ω̃ are modelled as
white Gaussian noise:

z̃ ∼ N (0, σ2
z̃) ω̃ ∼ N (0, σ2

ω̃) (4.26)

Therefore, the likelihood and prior in Eq. (4.24) will also follow a Gaussian distribution
with variance σ2

z̃ and σ2
ω̃, respectively. Hence, the likelihood can be expressed as:

p(ỹ | µ̃, ṽ ; θ, γ) =
1√

2πσ2
z̃

exp

(
−(ỹ − g(µ̃, ṽ))2

2σ2
z̃

)
(4.27)

3References, disturbances and noise.
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while the prior is described by:

p(µ̃, ṽ ; θ, γ) = p(µ̃ | ṽ ; θ, γ)p(ṽ ; θ, γ) (4.28)

To simplify the formulation, it will be supposed that there is no uncertainty on the priors
for v, so that p(ṽ ; θ, γ) in Eq. (4.28) becomes a delta function and inputs, ṽ, is reduced
to their prior expectations [Baltieri and C. Buckley 2019]. In other words, it is considered
that the exogenous inputs are known. Rewriting Eq. (4.28) leads to:

p(µ̃, ṽ ; θ, γ) = p(µ, µ̇, µ̈, ... | ṽ ; θ, γ) = p( ˙̃µ | µ̃, v ; θ, γ)

=
1√

2πσ2
ω̃

exp

(
−
(

˙̃µ− f(µ̃, ṽ)
)2

2σ2
ω̃

)
(4.29)

Substituting Eq. (4.27) and Eq. (4.29) into Eq. (4.25) yields the final expression for the
VFE:

F ≈ 1

2

(
πz̃ (ỹ − g(µ̃, ṽ))2 + πω̃

(
˙̃µ− f(µ̃, ṽ)

)2 − ln(πz̃πω̃)
)

(4.30)

where πz̃ and πω̃ correspond to the precisions, that is, the inverse of the variances (e.g.,
πz = 1/σ2

z). These precisions form the set of hyperparameters, i.e., γ = {πz̃, πω̃}, and can
be optimised utilising a gradient-descent technique, see Subsection 4.6.1. In addition, the
constant term that appears when developing Eq. (4.25) has been neglected since it does
not contribute to the VFE minimisation.

Having defined the variational free energy by means of the recognition and generative
densities, the following step is to determine the f(·) and g(·) functions. Next section
provides a mathematical description of these functions which will ultimately permit the
minimisation of the variational free energy and the design of the PID controller.

4.3 Linear Generative Model

To implement the PID control, the agent’s generative model described in Eq. (4.23)
is established as a generalised linear state-space model of second order (i.e., two higher
orders, anything beyond that is zero mean Gaussian noise) [Baltieri and C. Buckley 2019]:

y = µ+ z

ẏ = µ̇+ ż

ÿ = µ̈+ z̈

µ̇ = −α(µ− v) + ω

µ̈ = −α(µ̇− v̇) + ω̇
...
µ = −α(µ̈− v̈) + ω̈

(4.31)

where α ∈ θ is a parameter. As stated previously, the agent models the environmental
causes of sensory data, x, considering only their expected value, µ (R-density’s first-order
Gaussian statistics). Moreover, each dynamical/measurement order receives independent
white Gaussian noise denoted by z, ω, ż, ω̇, .... Thus, the likelihood characterised in Eq.
(4.27) can be redefined as:

p(ỹ | µ̃, ṽ ; θ, γ) = p(y | µ ; γ)p(ẏ | µ̇ ; γ)p(ÿ | µ̈ ; γ)

=
1√

2πσ2
z

1√
2πσ2

ż

1√
2πσ2

z̈

exp

(
− ε2

z

2σ2
z

− ε2
ż

2σ2
ż

− ε2
z̈

2σ2
z̈

)
(4.32)
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For notational simplicity, the terms εz, εż, εz̈ are employed to represent the error in each
measurement order:

εz = y − µ

εż = ẏ − µ̇

εz̈ = ÿ − µ̈

(4.33)

The prior in Eq. (4.29) can be restated in the following form:

p(µ̃, ṽ ; θ, γ) = p(µ̇ | µ, v ; θ, γ)p(µ̈ | µ̇, v̇ ; θ, γ)p(
...
µ | µ̈, v̈ ; θ, γ)

=
1√

2πσ2
ω

1√
2πσ2

ω̇

1√
2πσ2

ω̈

exp

(
− ε2

ω

2σ2
ω

− ε2
ω̇

2σ2
ω̇

− ε2
ω̈

2σ2
ω̈

)
(4.34)

In the same manner, εω, εω̇, εω̈ symbolise the error terms in each dynamical order:

εω = µ̇+ α (µ− v)

εω̇ = µ̈+ α (µ̇− v̇)

εω̈ =
...
µ + α (µ̈− v̈)

(4.35)

Substituting Eq. (4.32) and Eq. (4.34) into Eq. (4.25), the variational free energy in Eq.
(4.30) then becomes:

F ≈ 1

2

(
πz (y − µ)2 + πż (ẏ − µ̇)2 + πz̈ (ÿ − µ̈)2 + πω (µ̇+ α (µ− v))2

+ πω̇ (µ̈+ α (µ̇− v̇))2 + πω̈ (
...
µ + α (µ̈− v̈))2 − ln (πzπżπz̈πωπω̇πω̈)

)
(4.36)

So far, the recognition and generative densities together with the linear generative model
have been used to provide a tractable expression of the VFE. The upcoming sections
furnish a gradient-descent scheme to minimise VFE, thereby diminishing the surprisal,
see Eq. (4.9).

4.4 Variational Free Energy Minimisation

The agent has two ways of minimising VFE and therefore surprisal: by changing its beliefs
or hypothesis (perception) or change the world (action). For instance, a robot may believe
that its limb is raised, but observes it is not, then it can change its belief or raise the limb
[Pio-Lopez et al. 2016]. The current section copes with the VFE minimisation through
perception.

4.4.1 Perception

The linear generative model defined in the previous section describes how the environment
behaves according to the agent. That is, what are the hidden causes of sensory input.
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Since the hidden states cannot be known directly, their expected value, µ̃, is employed
instead. Thus, µ̃ encodes the agent’s beliefs about the hidden states. With every new
observation, these beliefs are refined in a way that minimise VFE, thus making the R-
density a good approximation of the true posterior, see Eq. (4.8). This process where the
internal model (i.e., agent’s model) is updated is known as perception.

It is suggested that agent’s beliefs change in such a way that they implement a gradient-
descent scheme on VFE [C. L. Buckley et al. 2017]:

µ̃τ+1 = ˙̃µτ − η∇µ̃F (4.37)

where τ represents each time point when the agent’s states are updated and η stands for
the learning rate. The ∇µ̃ operator denotes the gradient of the VFE with respect to the
agent’s states, that is:

∇µ̃F =
∂F

∂µ̃τ
=

[
∂F

∂µτ
,
∂F

∂µ̇τ
,
∂F

∂µ̈τ

]>
(4.38)

Note that Eq. (4.37) is slightly different from the traditional gradient-descent expression.
This is due to the minimisation of the generalised state components that represent a
trajectory rather than a static state. As a result, this minimisation is achieved when the
temporal dynamics of the gradient descent match the hidden states estimates, so that
µ̃(τ+1) = ˙̃µ rather than µ̃(τ+1) = 0 [Baltieri and C. Buckley 2019].

Applying Eq. (4.37) to each agent’s state (estimates) yields:

µτ+1 = µ̇τ − η
(
−πz

(
y − µτ

)
+ πωα

(
µ̇τ + α

(
µτ − v

)))
µ̇τ+1 = µ̈τ − η

(
−πż

(
ẏ − µ̇τ

)
+ πω̇α

(
µ̈τ + α

(
µ̇τ − v̇

))
+ πω

(
µ̇τ + α

(
µτ − v

)))
µ̈τ+1 =

...
µ τ − η

(
−πz̈(ÿ − µ̈τ ) + πω̈α

(...
µ τ + α

(
µ̈τ − v̈

))
+ πω̇

(
µ̈τ + α

(
µ̇τ − v̇

))) (4.39)

Computing these equations with every new observation updates the agent’s beliefs about
the hidden states and, as a consequence, VFE is minimised. Nevertheless, as mentioned
earlier, the agent can also minimise VFE by acting on the environment, thus changing
sensory input. This is known as active inference and is dealt in the following section.

4.5 Active Inference

Perceptual inference, described in previous section, minimises VFE by changing the agent’s
states to better predict sensory data (i.e., perception). Active inference, however, modifies
observations through action so as to fit better sensory predictions. In this section, it is
proposed a gradient-descent scheme analogous to the aforementioned, but for action.

4.5.1 Action

To minimise VFE via active inference, the agent needs an inverse model of how
observations change with action, since VFE does not explicitly depend on action, see
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Eq. (4.36). For instance, for a single agent’s state, µ, the inverse model could be written
as y = y(u), where u represents the action and y is a single sensory channel. Thus, given
an inverse model, one can evaluate how the VFE changes with respect to action by means
of the chain rule:

∂F

∂u
≡ ∂F

∂ỹ

∂ỹ

∂u
(4.40)

The assumption that agents have innate knowledge about the mapping between actions
and observations seems problematic. Nonetheless, under the free energy principle, it is
considered that the execution of motor control in biological agents (e.g., brain) depends
only on proprioceptors4 (i.e., internal sensors) which can be satisfied by reflex arcs [C. L.
Buckley et al. 2017].

Thereby, applying the gradient-descent technique to calculate the action which minimise
VFE yields:

uτ+1 = −κ
∑ ∂ỹ

∂uτ
∇ỹF (4.41)

where κ represents the learning rate for action. In this case, ∇ỹ computes the gradient of
the VFE with respect to the observations, ỹ:

∇ỹF =
∂F

∂ỹ
=

[
∂F

∂y
,
∂F

∂ẏ
,
∂F

∂ÿ

]>
(4.42)

As a result, developing Eq. (4.41) leads to the following control law:

uτ+1 = −κ
(
πz
(
y − µ

) ∂y
∂uτ

+ πż
(
ẏ − µ̇

) ∂ẏ
∂uτ

+ πz̈
(
ÿ − µ̈

) ∂ÿ
∂uτ

)
(4.43)

Nevertheless, partial derivatives ∂ỹ/∂u are still unspecified. To achieve PID-like control,
it is assumed that the agent adopts the simplest (i.e., linear) relationship between the
action and its effect on sensory input across all orders [Baltieri and C. Buckley 2019]:

∂y

∂u
=
∂ẏ

∂u
=
∂ÿ

∂u
= 1 (4.44)

Hence, Eq. (4.43) can be rewritten as:

uτ+1 = κ
(
πz
(
µ− y

)
+ πż

(
µ̇− ẏ

)
+ πz̈

(
µ̈− ÿ

))
(4.45)

which is consistent with the expression of a traditional PID controller. Here, πz, πż, πz̈
would correspond to the integral, proportional and derivative gains, respectively.

Eq. (4.44) provides a linear relation between sensed inputs and action. Specifically,
positive actions increase the observations linearly, whereas negative actions decrease
them. However, an action may not be able to change the observation y and its higher
orders in the same manner (e.g. action cannot change position, velocity and acceleration
identically). [Baltieri and C. Buckley 2019] argues that these derivatives only encode

4Any receptor (as in the gut, blood vessels, muscles, etc) that supplies information about the state of
the body.
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sensorimotor5 dependencies that allow for sub-optimal control, in the same way as classical
PID controllers are only approximate solutions.

Next section deals with the optimal tuning of the PID gains (i.e., measurement precisions)
and provides an algorithm to implement the PID controller as a process of active inference.

4.6 Controller Implementation

Thus far, it has been explained how a linear generative model furnishes a model of
the environment to the agent which ultimately, along with the recognition density,
permits attaining the VFE expression. Minimising VFE through perception and action
approximates the R-density to the true posterior probability density and, as a result,
surprisal decreases. While perception implies modifying the agent’s beliefs about the
world, action interacts with the environment so as to seek preferred observations. In
this section, the algorithm to implement perceptual and active inference is detailed.
Nonetheless, action and perception include some hyperparameters (i.e., measurement
and process precisions) that need to be specified first. These precisions can be adjusted
manually by trial and error or can be inferred by employing a gradient-descent approach.
The following subsection describes how the hyperparameters, γ = {πz̃, πω̃}, can be tuned
optimally. This would correspond to deducing the process and measurement noise of the
system.

4.6.1 Optimal Tuning of Hyperparameters

In statistics, a hyperparameter is a parameter from a prior distribution; it captures
the prior belief before data is observed. In this report, it is considered to be
the set containing all the measurement and process precisions. In this subsection,
hyperparameters are estimated by means of a gradient-descent approach. In order to
infer these hyperparameters, some assumptions must be made. First, it is supposed that
hyperparameters, γ, change in a much slower time-scale with respect to agent’s states, µ.
Second, changes in γ with respect to a small time interval have a much smaller effect on
VFE than µ, that is:

∂F

∂γ

dγ

dt
� ∂F

∂µ

dµ

dt
(4.46)

The latter entails that, from the gradient-descent perspective, what is relevant for γ is
not the VFE, but the accumulation (i.e., the integration over time) [C. L. Buckley et al.
2017]:

S =

∫
F (ỹ, µ̃, ṽ ; θ, γ)dt (4.47)

Hence, applying the gradient-descent method leads to:

γτ+1 = −ρ∇γS (4.48)
5Of or relating to both the sensory and motor functions of an organism or to the nerves controlling

them.
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where ρ is the learning rate for the hyperparameters update and ∇γS is the gradient of
S with respect to γ. However, the implementation of Eq. (4.48) requires the explicit
integration of VFE over time. This can be solved by applying temporal differentiation on
both sides:

γ̇τ+1 = −ρ∇γF (4.49)

which leads to a second-order online update scheme. For practical purposes, Eq. (4.49)
is reduced to a simpler set of first-order differential equations (with ρ = 1) [Baltieri and
C. Buckley 2019]:

γτ+1 = γ̇τ

γ̇τ+1 = −∇γF − λγ̇τ
(4.50)

where γ̇ is a prior on the motion of hyperparameters which includes a damping term, λ.
Since the derivative of the free energy with respect to hyperparameters is strictly positive
(i.e. ∂F/∂γ > 0), it does not provide a steady-state solution for the gradient-descent. This
damping term stabilises the solution by reducing oscillations around the real equilibrium
of the system [Baltieri and C. Buckley 2019].

Although Eq. (4.50) can be applied to infer process noise precisions, πω̃, only updates
on sensory precisions are regarded in this report. Henceforth, γz̃, is utilised to denote
the measurement precisions hyperparameters. Since precisions need to be positive (i.e.,
variances can only be positive), the following constraint is included:

πz̃ = exp(γz̃) (4.51)

This exponential mapping makes measurement precisions strictly positive. Substituting
Eq. (4.51) into the VFE expression, Eq. (4.36), and applying the gradient-descent
algorithm described in Eq. (4.50) for each precision order yields:

γτ+1
z = γ̇τz

γ̇τ+1
z = − ∂F

∂γz
− λγ̇τz = −1

2

(
exp(γz) (y − µ)2 − 1

)
− λγ̇τz

γτ+1
ż = γ̇τż

γ̇τ+1
ż = − ∂F

∂γż
− λγ̇τż = −1

2

(
exp(γż) (ẏ − µ̇)2 − 1

)
− λγ̇τż

γτ+1
z̈ = γ̇τz̈

γ̇τ+1
z̈ = − ∂F

∂γz̈
− λγ̇τz̈ = −1

2

(
exp(γz̈) (ÿ − µ̈)2 − 1

)
− λγ̇τz̈

(4.52)

These hyperparameters are updated online until convergence. Then, the inferred sensory
precisions can be obtained by applying the mapping shown in Eq. (4.51):

πz̃ =
[
exp(γz) exp(γż) exp(γz̈)

]>
(4.53)

Once it is established how the PID gains can be tuned optimally, one has the necessary
tools to implement the PID controller under the free energy principle.
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4.6.2 Algorithm

Until now, it has been proposed a gradient-descent scheme to update the agent’s states
(i.e., beliefs), action and sensory precisions. However, it has not been explained how these
three relate to each other. This subsection puts these concepts together so as to construct
the algorithm employed for simulation.

Fig. 4.2 provides an schematic of how perception and action work together to minimise
VFE and, as a consequence, surprisal. Firstly, the agent receives some sensory input, ỹ,
generated by some (unknown) environmental hidden states, x. These measurements are
utilised to update agent’s beliefs about the world (i.e., perception, µ̃). Then, observations
and perception are employed to infer sensory precisions and upgrade the control law (i.e.,
action, u). Action is applied to the environment which will change the observations in the
following time instant. This process is iterated until the agent’s states and the observations
follow the desired set point introduced through the exogenous inputs, ṽ 6.

AgentEnvironment

Observations

Perception

Hidden
States

Action

Sensory
Precisions

Figure 4.2: Connection between sensory input, ỹ, perceptual inference, µ̃, active inference,
u, and tuning of hyperparameters, πz̃.

In Section 4.3, the agent’s states dynamics in the linear generative model included a
parameter denoted by α. One could also have applied a gradient-descent approach to
infer this parameter, see [C. L. Buckley et al. 2017]. Nevertheless, in this report, the
decay parameter, α, is treated as a large constant (theoretically, α → ∞) [Baltieri and
C. Buckley 2019].

The controller can be implemented as depicted in Algorithm 1. Firstly, one needs to
initialise the agent’s states, the parameters and hyperparameters. Furthermore, the
exogenous inputs, ṽ, which here correspond to references, must be set. Then, the agent
receives sensory input at every sample. These observations are utilised to update agent’s
states (see line 4), as shown in Eq. (4.39). Perception latest update along with sensory
input are employed to compute action which will be applied to the environment (lines 11

and 12), as established in Eq. (4.45). When the agent’s states are settled and follow,
6Although exogenous inputs can include disturbances and noisy terms, in this report only references

are regarded.
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approximately, the desired set points, hyperparameters can start to be updated (lines 5

and 6). These updates are then mapped to sensory precisions (line 7) through Eq. (4.51)
and introduced in action and perception.

Algorithm 1: Active Inference PID Controller
1: initialization: µ̃, ṽ, θ, γ
2: repeat
3: Receive observations, ỹ
4: Perception: update agent’s states, µ̃
5: if µ̃ ≈ ṽ then
6: Update sensory hyperparameters, γz̃
7: Modify agent’s sensory precisions, πz̃ = exp(γz̃)
8: end if
9: Action: update agent’s control law, u

10: Apply action to the environment
11: until task done

To construct the PID regulator, however, one needs to have access up to second-order
derivatives of the sensory input (i.e., ẏ, ÿ). In most cases, these higher-order derivatives
are not measurable as they require adding extra sensors to the physical setup. In the
evaporator case, the derivatives must be estimated since the only measured variable
is the evaporator outlet temperature. Moreover, the evaporator model developed in
[Kasper Vinther 2014] includes input and output quantisations and therefore discrete
differentiation will lead to noisy estimates. In this report, the Kalman filter algorithm is
considered instead. Fig. 4.3 depicts how the Kalman filter is utilised in order to apply
the PID control.

Evaporator
Model

Kalman
Filter

Active Inference
PID

Figure 4.3: Block diagram representing the role of the Kalman filter in the active inference
framework.

Kalman filter outputs, ŷ, ˙̂y and ¨̂y denote the measurement estimate and its two higher-
order derivatives, respectively. Evaporator outlet temperature is also estimated so as to
remove the errors due to quantisation. Appendix A.2 introduces the theory related to the
Kalman filter and describes how this algorithm is implemented.

Next chapter describes how simulations are conducted and presents the attained results.
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The current chapter deals with the simulation of the PID controller applied to the
evaporator model developed in [Kasper Vinther 2014]. This model provides the evaporator
outlet temperature given an opening degree of the expansion valve. The chapter is
arranged as follows. First, the simulation is run considering fixed PID gains. That
is, measurement precisions are determined by trial and error and without updating the
hyperparameters. Second, the PID gains are tuned optimally following the procedure
shown in Subsection 4.6.1. The simulations are carried out in the MATLAB and Simulink
environment. Details regarding the implementation and the generated code can be found
in Appendix A.3.

5.1 Fixed PID Gains

This subsection analyses the attained results for fixed measurement precisions, πz̃ (i.e., the
PID gains). As in the classical control approach, these remain fixed over the simulation
and are determined by the designer. However, some parameters need to be specified first.
Table 5.1 shows the chosen values for the simulation.

Description Value
Sampling time Ts = 1 s
Opening degree OD = 51 %

Outlet temperature reference Tref = 11 ºC
Process precisions πω̃ = 10−9[1 1 1]

Measurement noise standard deviation σz̃ = [0.1 0.08 0.005]
Linear generative model parameter α = 105

Perception learning rate η = 0.01
Action learning rate κ = 0.01

Hyperparameters learning rate ρ = 0.1
Hyperparameters damping term λ = 0.9

Table 5.1: Simulation parameters.

The chosen opening degree of the EEV is close to the maximum slope point so that the
outlet temperature can be clearly determined. It is assumed that no process noise is
added to the system. Measurement noise, with standard deviation σz̃ is added to the KF
estimates.
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The system is simulated with the following measurement precisions:

πz̃ =
[
exp (−2) exp (−3) exp (−4)

]
(5.1)

where each element of the vector corresponds to the integral, proportional and derivative
gains, respectively. Fig. 5.1 depicts the simulation results for the measured and the
perceived temperature and the opening degree of the expansion valve. Higher-order terms
are not plotted as they oscillate around zero.
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Figure 5.1: Left: measured evaporator outlet temperature, Te,o. Top right: temperature
perception, µ. Bottom right: opening degree of the EEV (action).

As can be seen, the outlet temperature flattens for low opening degree values of the EEV
and starts dropping after 40%, approximately. Moreover, agent’s belief, µ, is able to follow
the desired reference. Nevertheless, there is a small error that is removed through action.
This is the essence of active inference: by acting on the environment and bringing sensory
input to the desired value (i.e., Tref = 11 ◦C), the agent state becomes equal to its desired
state. The obtained control signal, however, does not seem suitable as requires more than
4000 seconds to drive the outlet temperature to the established set point.

The employed learning rates are determined by trial and error, considering that higher
learning rate values provide more relevance to the updates. That is, larger higher rates
entail a faster response but at the cost of potentially generating oscillations.

The next step is to determine the effect of the PID gains on the system. For this purpose,
three different measurement precisions are applied where each order (i.e., πz, πż, πz̈) is
changed separately. The utilised gains are as follows:
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π
(1)
z̃ =

[
exp (−1) exp (−3) exp (−4)

]
π

(2)
z̃ =

[
exp (−2) exp (0) exp (−4)

]
π

(3)
z̃ =

[
exp (−2) exp (−3) exp (0)

] (5.2)

Fig. 5.2 shows the attained results, where superscripts denote the gains employed in each
case, see Eq. (5.2).
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Figure 5.2: Comparison between different measurement precisions.

Increasing the measurement precision associated with temperature (i.e., πz) leads to a
faster response, see y(1) in the figure. The response presents a small overshooting due to
the appearance of small fluctuations in the control signal around the operating point (u(1)

in Fig. 5.2). Since the chosen reference, Tref , is close to the maximum slope point, small
variations in the opening degree of the EEV alter the temperature considerably (see Fig.
3.3). In this situation, agent’s perception, µ(1), tries to follow the measurements.

When the measurement precisions related to the temperature derivatives increase, no
significant differences can be perceived in the control signal or outlet temperature response.
Nonetheless, agent’s state µ exhibits more overshooting and noise when increasing the
first-order derivative gain, πż. This is related to augmenting the influence of the first-
order derivative error in perception (i.e., ẏ− µ̇), thus implying a more aggressive response.
Furthermore, more noise is coupled since the first-order derivative of the temperature
contains a higher standard deviation, see µ(2) in Fig. 5.2. The aforementioned derivative
error also appears in the control law expression but has barely any effect as the action’s
learning rate is small enough to compensate for it.

The simulations regarded so far, assumed larger measurement than process precisions.
This entails that the agent has a higher confidence in sensory input than in its internal
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model (i.e., linear generative model). Now, it is analysed how changing process
precisions affect the system response. Fig. 5.3 illustrates the outlet temperature and
its corresponding agent’s state for three distinct values of the process precision πω.
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Figure 5.3: Comparison between different process precisions.

As can be observed, larger process precision entails an expected low uncertainty on the
dynamics leading to a faster response of the outlet temperature. What is more, allows
the agent’s state to settle faster. Smaller process precisions, however, account for higher
variance/uncertainty and thus changes in the agent’s states dynamics are to be expected,
making the transitions to reference values slower [Baltieri and C. Buckley 2019].

5.2 Optimal Tuning of PID Gains

So far, it has been shown the effect that different parameters have on the system’s response.
In this scenario, the PID gains remained fixed throughout the entire simulation. The
current section displays how these PID gains (i.e., measurement precisions, πz̃) can be
tuned online in an automated and optimal manner. Hence, the reasoning exposed in
[Baltieri and C. Buckley 2019] for the optimal tuning of PID gains is followed. Thus, PID
gains are maintained fixed until the agent settles around the desired state as described in
Algorithm 1. Then, sensory precisions are updated online until convergence.

The simulation parameters chosen in this case are presented in Table 5.2. The selected
initial measurement precisions are:

πz̃ =
[
exp(−1) exp(−3) exp(−4)

]
(5.3)

The hyperparameters start to be updated after 4 · 103 samples and stop at 12 · 103.
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Description Value
Sampling time Ts = 1 s
Opening degree OD = 51 %

Outlet temperature reference Tref = 11 ºC
Process precisions πω̃ = 10−9[0.05 1 1]

Measurement noise standard deviation σz̃ = [0.1 0.08 0.005]
Linear generative model parameter α = 105

Perception learning rate η = 0.1
Action learning rate κ = 0.01

Hyperparameters learning rate ρ = 0.005
Hyperparameters damping term λ = 0.9

Table 5.2: Simulation parameters.

Simulation results are illustrated in Fig. 5.4.

0 5000 10000 15000
time [s]

0

2

4

6

8

11

14

16

18

20

T
em

pe
ra

tu
re

 [
ºC

]

Sensory input and perception

(a)

0 5000 10000 15000
time [s]

-3

-2

-1

0

1

2

3
dT

/d
t [

ºC
/s

]
Sensory input and perception

(b)

0 5000 10000 15000
time [s]

0

10

20

30

40

51

60

O
pe

ni
ng

 d
eg

re
e 

(%
)

Action

(c)

0 5000 10000 15000
time [s]

-4

-3

-2

-1

0

1

2

3
Log-sensory precisions

Fixed Adaptation Control

(d)

Figure 5.4: Hyperparameters optimisation. This simulation depicts the control of the
evaporator outlet temperature during the optimisation of log-sensory precisions, γz̃. (a)
Measured temperature and its corresponding agent’s state. (b) Measured temperature
derivative and its corresponding agent’s state. (c) Action. (d) Log-sensory precisions (i.e.,
hyperparameters) optimisation.
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Fig. 5.4a and 5.4b show how agent’s states (i.e., µ and µ̇) are modified and become noisy
signals when updating the hyperparameters online. When hyperparameters are settled,
agent’s states encode the noise that have been inferred, see Fig. 5.4d. That is, now
perception includes the precision that the controller thinks is present in the sensory input.
The attained hyperparameters in closed-loop are:

γz̃ =
[
1.80 1.26 2.23

]
(5.4)

which corresponds to the log-PID gains, see Eq. (4.51). Closed-loop here refers to the
fact of updating the hyperparameters and modifying the controller gains while running
the simulation. Converting the added measurement noise, σz̃, into log-sensory precisions
so as to compare with Eq. (5.4), one gets:

ln
(
1/σ2

z̃

)
=
[
4.60 5.05 10.59

]
(5.5)

Agent’s perception of temperature is relatively accurate as can be seen in the last simulated
samples of Fig. 5.4a. Higher order derivatives, however, are not that precise (see Fig.
5.4b). In any case, the goal of this simulation is to find the optimal gains that furnishes
the best system’s response in closed-loop. If one wants to deduce the noise encoded in
sensory input, the hyperparameters update should be inferred in open-loop. That is to
say, hyperparameters are updated but PID gains remain unchanged. This is depicted in
Fig. 5.5, where measurement precisions are updated in open-loop employing the gains in
Eq. (5.3) and the parameters shown in Table 5.2.
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Figure 5.5: Hyperparameters update without modifying the PID gains.

The horizontal dashed lines belong to noise log-precisions1 added to each measurement
order. As can be noticed, the gradient-descent scheme proposed in 4.6.1 can also be

1Each measurement noise variance is transformed to its corresponding precision and the natural
logarithm is applied next.
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utilised to infer the white noise included in the system. Nevertheless, this open-loop
inference entails high PID gains that lead to unstable responses.

Now, the obtained optimal gains in closed-loop are used to evaluate robustness and
performance. That is, the behaviour when disturbances and set-point changes are added
to the system. Thus, converting the hyperparameters in Eq. (5.4) into PID gains yields:

πz̃ =
[
exp(1.80) exp(1.26) exp(2.23)

]
(5.6)

A new reference of 18 ºC and an input disturbance of 0.01% are applied at 3 ·103 at 6 ·103

seconds, respectively. Fig. 5.6 show the simulation results for this scenario.
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Figure 5.6: System’s response to set-point change and disturbance. (a) Measured
temperature, y, and agent’s state, µ. (b) Action.

On the one hand, the system reacts properly to the reference variation: the control signal
diminishes to increase the outlet temperature while the agent’s state changes fast enough
to follow the sensory input. On the other hand, however, the control signal cannot handle
small disturbances. As a result, y and µ are not capable of returning to the desired set-
point (i.e., 18 ºC). Furthermore, small oscillations can be observed in Fig. 5.6a. This effect
is caused by the waving produced in the control signal, see Fig. 5.6b. As aforementioned,
small changes in the control signal provoke big changes in the outlet temperature since the
system is operating close to the maximum slope point. Action oscillations arise because
the control law update tries to compensate the disturbance. Nonetheless, this update does
not have enough influence to modify the control law significantly. This could be due to a
small action learning rate, κ, or to a small difference between agent’s state µ and sensory
input y, see Eq. (4.45). This could be solved by rather increasing the action learning rate
or the measurement precisions, so as to amplify the difference amongst sensory input and
perception in the control signal and oblige the system to track the set-point. Nevertheless,
these modifications could not be simulated as the system is very sensitive to subtle changes
in parameters which results in instability.

Aalborg University Page: 37 of 50



6 | Assessment

This chapter pretends to evaluate the entire project. Section 6.1 examines some
assumptions regarded in the controller design as well as reflects on simulation results
and the unsuccessful tests performed in the laboratory. In addition, some conclusions
regarding the PID controller performance and robustness are revealed in Section 6.2.
Finally, Section 6.3 contemplates what could be the next steps to take in the project.

6.1 Discussion

The current section delves into the assumptions regarded for the controller design and
analyses the attained simulation results. Furthermore, it is discussed what could have
gone wrong in the laboratory when tests were carried out.

6.1.1 Controller Design

In Subsection 4.2.1, the R-density means to approximate the true posterior probability and
furnishes a first approach to the VFE, see Eq. (4.21). Nevertheless, to reach this expression
it is considered that the energy, E(y, x), is a smooth function of x and that the R-density,
assumed to be Gaussian, is sharply peaked at its mean value. The latter supposition entails
that the R-density’s variance is small which may appear troublesome since it suggests that
no uncertainty is present in the environmental variables (i.e., hidden causes of sensory
input). However, this does not imply that process uncertainty is neglected as it is included
in the G-density via expected process precisions, πω̃, see Eq. (4.30). Intuitively, this means
that the agent encodes uncertainties about its model of how hidden states relate to each
other and to sensory signals [C. L. Buckley et al. 2017]. The principal benefit of adopting
the Gaussian form assumption, known as Laplace approximation, is that it considerably
simplifies the VFE expression.

Subsection 4.5.1 establishes the control law by regarding a linear relationship between
sensory input and action, see Eq. (4.44). Despite this inconsistency, since action may
not change all measurement orders in the same manner, the simple inverse mapping from
sensory input to action can be explained by biological evolution. For instance, the mapping
from proprioception to action could be part of classical motor reflex arcs [Baltieri and C.
Buckley 2019]. What is more, this mapping comprises an approximation in the same way
as classical PID regulators provide inexact, but effective, control solutions.
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6.1.2 Simulation Results

To test the correct implementation of the controller, simulation with fixed parameters
and gains has been considered first. The attained results show that the control signal
(i.e., the opening degree of the EEV) is able to drive the sensory input and the agent’s
states to the desired set-point, see Fig. 5.1. Furthermore, agent’s states are able to follow
the measurements through perception. Hence, a simple linear generative model can be
enough to describe how observations are generated. Then, changes in measurement and
process precisions are made to test the system’s response. On the one hand, increasing
measurement precisions imply more confidence in sensory input (i.e., less variance). As
a result, PID gains rise (i.e., πz̃). Enlarging temperature precision, πz, entails a faster
response, whereas an increment in higher orders of sensory input lead to more oscillations
in agent’s states. On the other hand, higher process precisions provoke agent’s states to
settle faster as shown in Fig. 5.3. In conclusion, larger precisions result in faster transitions
as changes in the signal are less expected.

The second simulation part aims to infer the optimal PID gains. The hyperparameters are
updated online once the agent’s states are settled. That is, measurement precisions are
changed every time hyperparameters are upgraded, thus modifying perception and action
as depicted in Fig. 5.4. This updating scheme, proposed in [Baltieri and C. Buckley
2019] for the cruise control in a car, lead to instability in most of the simulations regarded
in this thesis as subtle changes in the control law result in big changes in the outlet
temperature. When an appropriate set of parameters is found, the system is able to
react to changes in the set-point but cannot handle small disturbances, as illustrated
in Fig. 5.6. Furthermore, it is shown that changing the updating scheme to open-loop
allows inferring measurement noise properties, see Fig. 5.5. In other words, updating the
hyperparameters without modifying the sensory precisions permit deducing the variance
present in the sensory input. These hyperparameters, however, tend to large values and
cannot be utilised for control as the response becomes unstable.

6.1.3 Tests Results

As mentioned in the beginning of this report, successful results in the physical setup
could not be accomplished due to certain technical issues when carrying out the tests.
Specifically, it was found out that in most cases the evaporator inlet temperature was
higher than the outlet. When observing the compressor input and output no pressure
rise was noticed. Moreover, in some other cases the solenoid valve1 closed suddenly as
the superheating temperature was below the 5 ºC threshold, thus impeding the flow of
refrigerant through the evaporator.

Fig. 6.1 shows one of the performed tests, where a step in the opening degree of the EEV is
applied (0−100%). As can be seen, after applying the step, no changes in the temperature
or in the pressure can be noticed. In addition, outlet evaporator temperature, Te,o is lower
than the evaporating temperature, Te. In the same manner, a pressure drop between the

1The solenoid valve is placed after the condenser outlet and before the EEV.
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evaporating and the condensing pressure (i.e., Pe and Pc, respectively) indicates that the
compressor may not be working properly, see Fig. 6.1d. Fig. 6.1b displays that refrigerant
is flowing along the evaporator since the solenoid valve is completely open.

0 50 100 150
time [s]

0

20

40

60

80

100

O
pe

ni
ng

 d
eg

re
e 

(%
)

Expansion valve (EEV)

(a)

0 50 100 150
time [s]

0

0.2

0.4

0.6

0.8

1

O
pe

ni
ng

 d
eg

re
e

Solenoid valve

(b)

0 50 100 150
time [s]

24

24.5

25

25.5

26

26.5

27

27.5

T
em

pe
ra

tu
re

 [
ºC

]

Evaporator inlet and outlet

(c)

0 50 100 150
time [s]

5.85

5.9

5.95

6

Pr
es

su
re

 [
ba

r]

Compressor input and output

(d)

Figure 6.1: Test results after applying a step in the opening degree of the EEV at t = 50 s.
(a) Opening degree of the EEV. (b) Solenoid valve. (c) Evaporating temperature (inlet),
Te and evaporator outlet temperature, Te,o. (d) Evaporating pressure, Pe and condensing
pressure, Pc.

In summary, the measured variables suggest that the compressor may not be working
appropriately since not even simple tests could be carried out (e.g., OD-sweep to check
the nonlinear relationship between the opening degree and the outlet temperature).

6.2 Conclusion

This section pretends to assess qualitatively the controller performance and robustness as
well as extract several conclusions. For this purpose, recall the initial problem formulation:

Can PID control as a process of active inference be useful to regulate the evaporator
outlet temperature in a refrigeration process?
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To determine whether a controller behaves well, at least four requirements must be fulfilled
[Baltieri and C. Buckley 2019]:

• Load disturbance response
• Measurement noise response
• Set-point response
• Robustness to model uncertainties

In the active inference framework, the first two items depend on the measurement
precisions, while the other two rely on process precisions. This new PID approach has
proven that the agent can drive the outlet temperature to its desired state in a noisy
environment. Furthermore, the controller can respond to changes in the set-point. Despite
the absence of process noise, the generative model takes into account uncertainties in
the state’s dynamics. These precisions are almost negligible which entails high process
variance, see Table 5.1. Nevertheless, the system’s response to load disturbances has not
exhibited good behaviour.

Regarding the optimal tuning of the PID gains, the system’s response was sensitive to
subtle changes in the hyperparameters. As opposed to the cruise controller implemented
in [Baltieri and C. Buckley 2019], here small changes in the control signal entail large
variations in the outlet temperature which compromises the system’s stability.

In conclusion, PID control as a process of active inference could be employed in
a refrigeration system. However, further investigation is needed when inferring the
hyperparameters so as to enhance the load disturbance response.

6.3 Future Work

This section includes some additional considerations that could help improving the
attained simulation results as well as providing some ideas for further research.

Throughout this project, the control of the evaporator outlet temperature has been
considered. Nonetheless, as mentioned in Section 3.1, controlling the superheating
temperature is important since ensures the correct functioning of the compressor. Hence,
the target would be to adapt the designed controller to regulate the superheating
temperature instead.

Concerning simulation, the controller has been implemented in one of the simplest
evaporator models: the Wiener-Hammerstein model. Despite obtaining some promising
results, the inability to respond to load disturbances suggests that parameter tuning should
be examined more thoroughly (i.e., learning rates). Moreover, to have a better perspective
of the active inference framework, the regulator should be implemented in more complex
models and compared with the classical PID controller.

Finally, more tests on the laboratory should be carried out to determine what caused the
unsuccessful results. Once it is ensured that the refrigeration system works properly, the
goal would be to prove whether the controller is suitable for this application.
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A | Appendix

A.1 Kullback-Leibler Divergence

This section proves that KL divergence is always greater or equal than zero. First, note
that:

ln a ≤ a− 1, ∀ a > 0 (A.1)

Then, consider:

−DKL (q(x) || p(x)) ≤ 0 (A.2)

which also implies DKL (q(x) || p(x)) ≥ 0. Thus, applying the KL divergence definition:

−DKL (q(x) || p(x)) = −
∫
q(x) ln

(
q(x)

p(x)

)
dx =

∫
q(x) ln

(
p(x)

q(x)

)
dx (A.3)

Applying the inequality in Eq. (A.1), one gets:

−DKL (q(x) || p(x)) ≤
∫
q(x)

(
p(x)

q(x)
− 1

)
dx =

∫
p(x) dx−

∫
q(x) dx (A.4)

It is assumed that densities are normalised, that is, they sum to one. Hence:

−DKL (q(x) || p(x)) ≤ 0 (A.5)
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A.2 Kalman Filter

In this section, the equations related to the Kalman filter (KF) algorithm are presented.
The KF is a state estimator algorithm for observable linear systems that tries to guess
a process state which is not directly measured, or which is measured with a lot of noise.
As explained in Subsection 4.6.2, in order to construct the PID controller one needs the
higher order derivatives of the variable to be controlled.

In the case under study, only the evaporator outlet temperature is accessible. Since this
outcome is quantised and contains measurement noise, discrete differentiation will result
in noisy estimates. Hence, the Kalman filter algorithm is employed instead.

A.2.1 Theory

The KF regarded in this report assumes a discrete time system model with additive white
Gaussian noise, as shown in the following equation:

xk+1 = Φxk + Γuk + ωk, ωk ∼ N (0, Qk)

yk = Hxk +Duk + zk, zk ∼ N (0, Rk)
(A.6)

where xk, yk and uk correspond to the states, measured outputs and control signal at time
step k, respectively. Process and measurement noise are denoted with ω and z. Both are
assumed to be white Gaussian noise with covariance matrices Qk and Rk, respectively.
The KF consists of two steps, namely the measurement update and the time update,
which are detailed next.

Measurement update

Measurement update after receiving yk and uk:

ŷk|k−1 = Hx̂k|k−1 +Duk

ỹk|k−1 = yk − ŷk|k−1

Kk , Pk|k−1H
>
(
HPk|k−1H

> +Rk

)−1

x̂k|k = x̂k|k−1 +Kkỹk|k−1

Pk|k = (I −KkH)Pk|k−1(I −KkH)> +KkRkK
>
k

(A.7)

where Kk is the Kalman gain. The state error covariance matrix is denoted with P . The
subscript k|k − 1 denotes the variable value at time step k given all samples until, and
including, k − 1.

Time update

Time update from k to k + 1:

x̂k+1|k = Φx̂k|k + Γuk

Pk+1|k = ΦPk|kΦ
> +Qk

(A.8)
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A.2.2 Implementation

As stated previously, the measured variable corresponds to the evaporator outlet
temperature, Te,o. To estimate up to second order derivatives, the chosen states are:

x =
[
x1 x2 x3 x4

]>
=
[
Te,o Ṫe,o T̈e,o

...
T e,o

]>
(A.9)

Furthermore, Te,o derivatives higher than second order are assumed to be white Gaussian
noise. Thus, the system model can be expressed as:

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


︸ ︷︷ ︸

A


x1

x2

x3

x4

+


0

0

0

1

ω

y =
[
1 0 0 0

]
︸ ︷︷ ︸

H


x1

x2

x3

x4


(A.10)

However, the system dynamics in Eq. (A.10) are represented in continuous time. To
implement the discrete KF, one needs to discretise the model. In this thesis, the forward
Euler method is regarded. Hence, the state dynamics are as follows:

xk+1 = (I + TsA)︸ ︷︷ ︸
Φ

xk (A.11)

where I is the identity matrix and Ts the sampling time. This leads to the discrete state
matrix, Φ, presented in Eq. (A.6). Considering a sampling time of 1 second, the state
matrix can be determined:

Φ =


1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

 (A.12)

Due to the difficulty of obtaining a model of the noise involved in the process, Qk and Rk
are seen as tuning parameters. After several trials, the chosen values are:

Rk = 10 Qk =


0.1 0 0 0

0 10−4 0 0

0 0 10−4 0

0 0 0 10−4

 (A.13)

Fig. A.1 depicts the attained results for the estimated evaporator outlet temperature and
its two first time derivatives.
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Figure A.1: Kalman filter estimates (blue) given the evaporator outlet temperature (red)
from the evaporator model simulation .

The states plotted in cyan (i.e., x1, x2 and x3) represent the temperature and its
continuous-time derivatives without input and output quantisations so as to compare
with the KF estimates. The evaporator outlet temperature, Te,o, corresponds to the
measured variable. As it can be seen, the temperature estimate, x̂1, follows appropriately
the simulated true state, x1. If one decreases the covariance measurement value, Rk, the
KF filter would trust more the measurements and, thus, the state estimate would follow
the measured temperature, Te,o, leading to a possible overfitting. The second estimate,
x̂2, is able to follow the true value with certain confidence. However, the second time
derivative estimate, x̂3, does not follow reliably x3 during the transient phase. This could
be solved by increasing the diagonal values in Qk, which would imply trusting less the
model (i.e., increase of process’ variances). Nevertheless, this is at the expense of obtaining
noisy estimates (see x̂2 between t = 100 and t = 200 seconds in Fig. A.1).
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A.3 Active Inference Implementation

This section provides some specific information regarding the implementation of the PID
controller as a process of active inference.

A.3.1 Action and Perception Discretisation

The perception and action updates shown in Eq. (4.37) and Eq. (4.41) represent the rate
of change of µ and u, respectively. This is equivalent to taking the temporal derivative of
the mentioned variables. Therefore, to attain the appropriate expressions of µ and u one
needs to integrate. The numerical integration employed in this thesis is the forward Euler
method. Thus, the gradient-descent scheme for perception and action can be written as:

µ̃τ+1 = µ̃τ + Ts
(

˙̃µτ − η∇µ̃F
)

(A.14)

uτ+1 = uτ + Ts

(
−κ
∑ ∂ỹ

∂uτ
∇ỹF

)
(A.15)

As explained in [K.J Friston 2008], it is worth noting the difference between the temporal
derivatives and the higher orders of motion in the generalised coordinates (i.e., µ̃ =

{µ, µ̇, µ̈, ...}). The former can be seen as computing the motion of a point (i.e., the rate
of change), whereas a point in generalised coordinates can be regarded as encoding the
instantaneous trajectory of a variable. However, the rate of change µτ+1, for instance, is
not necessarily the motion encoded by µ̇ (although it will be under Hamilton’s principle
of stationary action).

Another important aspect lies in the relationship between observations and action. Eq.
(4.44) assumes a positive linear interaction (i.e., ∂ỹ/∂u = 1). Nevertheless, in the
evaporator case it is seen that the more the EEV opens the lower the temperature is.
Thereby, this linear relationship needs to be expressed in the following form:

∂y

∂u
=
∂ẏ

∂u
=
∂ÿ

∂u
= −1 (A.16)

A.3.2 Implementation in Simulink

To implement the Kalman filter and the PID controller in the Simulink environment, the
user-defined MATLAB Function block is utilised. Simulations are run with Euler solver
and a fixed-step of size 1 second. Since previous sample values are required to apply
the forward Euler integration method (e.g., action, perception or Kalman estimates),
Unit Delay blocks are employed. Fig. A.2 depicts the block diagram in Simulink of the
evaporator model and the controller. The written code in the MATLAB Function can be
found in Listing A.1.
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1 f unc t i on [ ps i , u , mu_x, x_est , P, hyper , VFE, k ] =
Act i v e In f e r enc e (Teo , u , mu_x, x_est , P, hyper , v , stdz , Ts , simu
, k )

2
3 %% Kalman F i l t e r
4 % Parameters
5 A = [ 0 1 0 0 ; % State matrix
6 0 0 1 0 ;
7 0 0 0 1 ;
8 0 0 0 0 ] ;
9 H = [ 1 0 0 0 ] ; % Output matrix

10 I = eye (4 ) ;
11
12 R = 10 ; % Measurement covar iance
13 Q = [ 0 .1 0 0 0 ; % Process covar iance
14 0 1e−4 0 0 ;
15 0 0 1e−4 0 ;
16 0 0 0 1e−4 ] ;
17
18 % Measurement update
19 y_est = H∗x_est ;
20 y_err = Teo − y_est ;
21 K = P∗H' / (H∗P∗H' + R) ;
22 x_est = x_est + K∗y_err ;
23 P = ( I − K∗H) ∗P∗( I − K∗H) ' + K∗R∗K ' ;
24
25 % Time update
26 x_est = ( I + Ts∗A) ∗x_est ;
27 P = ( I + Ts∗A) ∗P∗( I + Ts∗A) ' + Q;
28
29 %% Active In f e rence
30 % Parameters
31 eta = 0 . 1 ; % Percept ion l e a rn i ng ra t e
32 kappa = 0 . 0 1 ; % Action l e a rn i ng ra t e
33 rho = 0 . 0 0 5 ; % Hyperparameter l e a rn i ng ra t e
34 lambda = 1 . 5 ; % Hyperparameter damping term
35
36 alpha = 10^5; % Linear g ene ra t i v e model parameter
37
38 piw = 1e−9∗[ 0 .05 1 1 ] ; % Process p r e c i s i o n s
39
40 % Measurement p r e c i s i o n s update
41 p i z = exp ( [ hyper (1 , 1) hyper (2 , 1) hyper (3 , 1) ] ) ;
42
43 % Measurements
44 p s i = x_est ( 1 : 3 ) + stdz .∗ randn (3 , 1) ;
45
46 % Percept ion
47 mu_x( 1 : 3 ) = mu_x( 1 : 3 ) + Ts∗(mu_x( 2 : 4 ) − eta∗(−piz ' . ∗ ( p s i − mu_x

( 1 : 3 ) ) + alpha ∗piw ' . ∗ (mu_x( 2 : 4 ) + alpha ∗(mu_x( 1 : 3 ) − v ) ) + [ 0 ;
piw ( 1 : 2 ) ' . ∗ (mu_x( 2 : 3 ) + alpha ∗(mu_x( 1 : 2 ) − v ( 1 : 2 ) ) ) ] ) ) ;
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48
49 % Action
50 u = u + Ts∗kappa ∗( p i z ∗( p s i − mu_x( 1 : 3 ) ) ) ;
51
52 % Action sa tu ra t i on (0−100%)
53 i f u > 100
54 u = 100 ;
55 e l s e
56 i f u < 0
57 u = 0 ;
58 end
59 end
60
61 % Tuning hyperparameters
62 k = k + 1 ;
63 i f k > 4e3/Ts && k < 15 e3/Ts && simu
64 hyper ( : , 1) = hyper ( : , 1) + Ts∗hyper ( : , 2) ;
65 hyper ( : , 2) = hyper ( : , 2) + Ts∗(−1/2∗ rho ∗( exp ( hyper ( : , 1) ) . ∗ (

p s i − mu_x( 1 : 3 ) ) .^2 − 1) − lambda∗hyper ( : , 2) ) ;
66 end
67
68 % Var i a t i ona l Free Energy
69 VFE = 1/2∗( p i z ∗( p s i − mu_x( 1 : 3 ) ) .^2 + piw ∗(mu_x( 2 : end ) + alpha ∗(

mu_x( 1 : 3 ) − v ) ) .^2 − l og ( p i z (1 ) ∗ p i z (2 ) ∗ p i z (3 ) ∗piw (1) ∗piw (2) ∗piw
(3) ) ) ;

Listing A.1: MATLAB Function code.
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