
Summary

This thesis is written by Nikolaj Jensen Ulrik and Simon Mejlby Virenfeldt
within the field of formal verification. The thesis deals with explicit state model
checking of Petri net models using the property specification language Linear
Temporal Logic (LTL). It introduces novel techniques for partial order reduc-
tions using stubborn sets. The idea focuses on the individual states in the
Nondeterministic Büchi Automaton (NBA) which the LTL formula is trans-
lated into. Here we determine a subset of states in the NBA in which we are
able to employ reachability-preserving stubborn set methods. This has the ad-
vantage over classic stubborn set methods for LTL that it works on all LTL
formulae and not only the subcategory of next-free formulae.

The thesis also investigates using guided search in order to increase the per-
formance of the depth first explicit model checking algorithms. Here we adapt
existing methods from reachability analysis and use them on local information
from the NBA to prioritise short-term important information. An alternative
heuristic that penalises transitions that have been fired many times, which we
call the fire count heuristic, is also investigated and combined with the other
heuristics.

All these methods are implemented in the tool Tapaal and evaluated ex-
perimentally against a large and well-established Petri net dataset used in the
annual Model Checking Contest (MCC). Evaluation indicates improved perfor-
mance for the novel reachability-based stubborn method compared to the classic
method. For heuristics they all show better performance compared to not using
guided search, and combining the fire count heuristic with the one based on
local NBA information fares the best.

Finally we compare the entire LTL model checker of Tapaal against the
state of the art model checker ITS-LoLA in the setup of the MCC. The com-
parison shows a significant improvement compared to ITS-LoLA, especially in
queries that contain a counterexmaple.

Automata-Driven Techniques for Partial-Order
Reductions and Guided Search of Petri Nets

Nikolaj Jensen Ulrik and Simon Mejlby Virenfeldt

Master Thesis
Aalborg University, Denmark

{nulrik16,sviren16}@student.aau.dk

Abstract. Automaton-based model checking, in which a system under
verification is paired with a Nondeterministic Büchi Automaton (NBA)
describing illegal behaviour, is the main method of model checking Linear
Temporal Logic (LTL). However, while techniques for optimising the
system under verification or the NBA independently are well known,
there is less knowledge on techniques using both. We present a stubborn
set method and heuristics for guided search, both of which use local
information in the NBA to optimise the process of exploring the state
space of the system being verified. We implement these techniques as
an extension to the open source model checking engine verifypn used
by Tapaal and evaluate them using the dataset from the 2020 edition
of the Model Checking Contest (MCC). We find that the guided search
technique improves performance compared to unguided search, and that
the NBA-based stubborn set method performs better than the classic
stubborn set method. Additionally, we show that the classic method
can be used whenever the novel method does not apply, forming a mixed
method that performs even better. We find that the improvements gained
from combining stubborn sets and heuristics are almost equal to the
sum of the improvements from stubborn sets and heuristics individually.
Lastly, we compare our LTL model checker to ITS-LoLA, the winner of
LTL category of the 2020 edition of the MCC, finding that our model
checker answers 56.8 % of queries that ITS-LoLA did not, corresponding
to a 10.8 % increase in the number of answers.

1 Introduction

The state space explosion problem is one of the main barriers to model checking
large systems. The problem arises because systems descriptions can generate an
exponential number of states, and in the case of Petri nets [33] some descriptions
even generate infinite state spaces. Addressing this problem has been the subject
of much research, with directions including partial order reductions [32,21,43],
symbolic model checking [9,3], guided searches using heuristics [15,16], and sym-
metry reductions [10,35]. Some system description languages afford specialised
techniques in addition to the above. For example, state space explosion of Petri
nets can be addressed with e.g. structural reductions [31,19,7] or unfolding into
occurrence nets [30,17].

2 N. J. Ulrik, S. M. Virenfeldt

Partial order reductions are a family of techniques designed to prune the state
space based on interleaving executions. An important category of partial order
reduction techniques are the ample set [32], persistent set [21], and stubborn set
methods [44]. We focus on stubborn set methods. The goal of the technique is,
given a specific state, to determine a subset of actions to explore such that all
representative executions are preserved with respect to some desired property.
This subset of actions is called the stubborn set of a state. While the technique
does have the potential to exponentially reduce the size of state spaces, more
complex verification questions such as model checking limit the possible reduc-
tion. For example, the portfolio of classic stubborn set methods developed by
Valmari does not allow for Linear Temporal Logic (LTL) formulae containing the
next-step operator X [44]. Stubborn sets and other partial order reduction tech-
niques are supported in several well-established tools, e.g. Tapaal [12], LoLA
2 [48], and Spin [23], and have proven to be useful [7,27,24].

The main approach to LTL model checking is automata-based model check-
ing, which is based on a translation of LTL formulae into Nondeterministic Büchi
Automata (NBAs), which are then synchronised with the system being verified.
The goal is then to find a reachable accepting cycle in the synchronised system.
While much research has been done on optimising NBAs [47,1,18], and much
work has been done on state space reductions as described above, few state
space techniques take the automaton into account. For example, the aforemen-
tioned next-free LTL preserving method by Valmari is based on the syntax of the
formula and is completely agnostic to the choice of verification algorithm [45].
Some of the work done within the field of stubborn sets includes a specialised,
automaton-driven approach for a subclass of LTL formulae called simple LTL
formulae [27], and more recently an automaton-based stubborn set approach for
arbitrary LTL formulae [28], although to the authors’ knowledge the latter does
not have an implementation as of writing. This idea of automaton-driven tech-
niques is interesting and worth more research, as the automaton can provide
more detailed local information compared to looking at the entire LTL formula.

In state space exploration, the choice of which successor state to explore
first can have a big impact on the performance of depth-first algorithms such as
Nested Depth First Search (NDFS) [11] and Tarjan’s algorithm [20], which are
important LTL verification algorithms. A poor choice of successor can cause a lot
of time to be wasted exploring executions without relevant behaviour. A way of
addressing this problem is by using heuristics to guide the search in a direction
more likely to be relevant. Previous work in this direction includes [15,14] in
which A∗ is used as a search algorithm with heuristics based on finite state
machine representations, and [25] presents a best-first search algorithm using a
syntax-driven heuristic as a guide for reachability analysis of Petri nets.

We contribute a novel automata-driven stubborn set method and automata-
based heuristics for guided search for model checking LTL formulae on Petri
nets. The stubborn set method is a non-trivial adaptation of the stubborn set
method for reachability analysis presented in [7]. This new method determines a
subset of non-accepting NBA states from which we are able to use the existing

Automata-Driven LTL Model Checking of Petri Nets 3

method, with the goal of leaving non-accepting NBA states earlier than without
our method. The guided search is based on the heuristics of [25] describing the
distance between a state and the satisfaction of a formula. We extend this method
to use in non-accepting NBA states to determine the distance between a state and
a state which is able to leave the current NBA state. Common to our techniques
is a desire to leave non-accepting NBA state as quickly as possible to find a
accepting state earlier than otherwise. We provide an implementation of these
novel techniques as an extension of the open source model checker verifypn

used in Tapaal. We evaluate the performance of the techniques using the LTL
dataset of the 2020 edition of the Model Checking Contest (MCC). We also
compare our model checker to the state of the art Petri net model checker ITS-
LoLA [39,48], answering an additional 10.8 % of LTL queries which makes up
56.8 % of LTL queries that ITS-LoLA could not answer.

The structure of the thesis is as follows. In section 2 the automata-based ap-
proach to LTL model checking is presented as well as the syntax and semantics
of Petri nets. section 3 describes both the classic stubborn set method known in
the literature and a novel approach to stubborn set reductions, alongside the im-
plementation of these techniques for Petri nets. section 4 describes our approach
to guided search and the heuristics used for guided search. Sections 3 and 4
also conclude with experimental evaluation of the presented methods. section 5
evaluates combinations of stubborn sets and heuristics and contains comparison
to a state of the art LTL model checker for Petri nets, ITS-LoLA [39,48]. We
conclude the thesis in section 6.

Related Work Stubborn set methods have been applied to a wide range of prob-
lems outside of the previously mentioned work. In [34] stubborn set methods
are presented for many Petri net properties such as home marking or transition
liveness among others. There are also reachability-preserving stubborn sets for
timed systems [22,4] and more recently for timed games [5]. The stubborn set
methods of [27,28], also mentioned above, represent existing work on automaton
guided stubborn set methods. While our method has similar goals as [28], the
approaches differ. In particular, our method does not explicitly restrict stub-
born sets based on the self-looping formula of NBA states, and we precompute
in which states the method is applicable.

In [15] guided search strategies for LTL model checking using variants of A∗

search are presented. Their guided search addresses situation where an accept-
ing state has been found and a cycle needs to be closed, in contrast with the
heuristics in the present work which guides the search toward any form of state
change in the NBA, and which are not applied in accepting states. However,
they assume that individual processes are given at finite state machines and
have heuristics dependent on being able to compute exact distances to specific
states in individual processes, an approach that is not compatible with Petri
nets. Another approach to guided search was presented in [37] where the state
equations, a system of linear equations that overapproximate the behaviour of a
Petri net, was used to guide the search based on the assumption that the over-
approximation is reasonably accurate. While this work is interesting, it was not

4 N. J. Ulrik, S. M. Virenfeldt

applied to LTL, and solving potentially large linear programs often is a source of
overhead whenever the method does not help. In contrast, we emphasise simpler
heuristics that are fast to compute.

2 Preliminaries

We now define basic concepts of LTL model checking in an abstract setting.
Afterwards we introduce Petri nets and their translation to labelled transition
systems. In the following, let N0 denote the natural numbers including zero, let
∞ be such that x < ∞ for all x ∈ N0, and let tt and ff denote true and false
respectively.

2.1 Labelled Transition Systems

We will now introduce Labelled Transition System (LTS), on which we will define
the semantics of LTL. The standard way of defining LTL semantics is with Kripke
structures, but when we introduce our stubborn set methods we need to reason
about the actions taken. Let AP a fixed set of atomic propositions, which are
basic properties exhibited by states. A Labelled Transition System (LTS) is a
tuple T = (S,Σ,→, L, s0) where

– S is a possibly infinite set of states,
– Σ is a finite set of actions,
– → ⊆ S ×Σ × S is a transition relation,
– L : S → 2AP is a labelling function, and
– s0 ∈ S is a designated initial state.

We write s
α−→ s′ if (s, α, s′) ∈ →, and s → s′ if there exists α such that

s
α−→ s′. We write s

ε−→ s where ε is the empty string, and s
αw−−→ s′ if s

α−→ s′′ and
s′′

w−→ s′ for some w ∈ Σ∗. For s ∈ S, if no state s′ exists such that s → s′, we
call s a deadlock state, written s 6→, and if s is not a deadlock state we write s→.
We use →∗ to denote the reflexive and transitive closure of →. We say that α is
enabled in s, written s

α−→, if there exists s′ such that s
α−→ s′, and the set of all

enabled actions in s is denoted en(s) = {α ∈ Σ | s α−→}. For any a ∈ AP we say
that s satisfies a, written s |= a, if a ∈ L(s), and define JaK = {s ∈ S | s |= a}
to be the set of states satisfying a.

Let T = (S,Σ,→, L, s0) be an LTS. A run π in T is a potentially infinite
sequence of states s1s2 . . . such that for all i ≥ 1, either si → si+1 or si is a
deadlock state and si+i = si. An infinite run π = s1s2 . . . induces an infinite word
σπ = L(s1)L(s2) . . . ∈ (2AP)

ω
. We say that words σ, σ′ ∈ (2AP)

ω
are stuttering

equivalent, written σ ≈ σ′, if there exists a word σmin ∈ (2AP)
ω

= A0A1 . . . such
that σ = An1

0 An2
1 . . . and σ′ = Am1

0 Am2
1 . . . for some n1, n2, . . . ,m1,m2 ∈ N+,

i.e. σ and σ′ differ only by finite repetitions of any Ai. For example, the word
abab . . . ≈ aabbaabb . . . since the latter string only differs from the former by
repeating each a and each b once. We define Runs(s) as the set of runs starting
in s, and Runs(T) = Runs(s0) where s0 is the initial state of T . We define the
language of s as L(s) = {σπ ∈ (2AP)

ω | π ∈ Runs(s)}. For a word σ = A0A1 . . .
we define σi = AiAi+1 . . . to be the ith suffix of σ for i ≥ 0.

Automata-Driven LTL Model Checking of Petri Nets 5

2.2 Linear Temporal Logic

The syntax of Linear Temporal Logic (LTL) is given by the abstract grammar

ϕ1, ϕ2 ::= a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 | Fϕ1 | Gϕ1 | Xϕ1 | ϕ1 U ϕ2

where ϕ1 and ϕ2 range over LTL formulae and a ∈ AP ranges over atomic
propositions. An infinite word σ = A0A1 . . . ∈ (2AP)

ω
satisfies an LTL formula

ϕ, written σ |= ϕ, if and only if the following inductive definition is satisfied:

σ |= a ⇐⇒ a ∈ A0

σ |= ϕ1 ∧ ϕ2 ⇐⇒ σ |= ϕ1 and σ |= ϕ2

σ |= ϕ1 ∨ ϕ2 ⇐⇒ σ |= ϕ1 or σ |= ϕ2

σ |= ¬ϕ1 ⇐⇒ not σ |= ϕ1

σ |= Fϕ1 ⇐⇒ ∃i ≥ 0 . σi |= ϕ1

σ |= Gϕ1 ⇐⇒ ∀i ≥ 0 . σi |= ϕ1

σ |= Xϕ1 ⇐⇒ σ1 |= ϕ1

σ |= ϕ1 U ϕ2 ⇐⇒ ∃j ≥ 0 . σj |= ϕ2 and ∀i ∈ [0; j[. σi |= ϕ1

The set of LTL formulae without the X operator is denoted LTLX. Such
formulae cannot distinguish stuttering equivalent words, so we call LTLX the
stuttering-insensitive fragment of LTL. Let T = (S,Σ,→, L, s0) be an LTS. For
a state s ∈ S, we say that s |= ϕ if and only if for all words σ ∈ L(s) we have
σ |= ϕ, and we say that T |= ϕ if and only if s0 |= ϕ.

Example 2.1. Figure 1a illustrates an LTS T = (S,Σ,→, L, s0) with the set
of actions Σ = {α, β} and the set of atomic propositions AP = {a, b}. States
are annotated with their labels—for example, L(s2) = {a} and L(s1) = ∅. The
sequence of states π = s0s1s0s1(s3)ω is a run starting in s0 which loops in s3
forever, and the induced word of π is σπ = {b}∅{b}∅({a, b})ω. We can see that
σπ satisfies the LTL formula ϕ = FGa, which means “from some point onward,
always a”, since for all i ≥ 5 we have σiπ |= Ga. However, s0 does not satisfy the
formula since π′ = (s0s1)ω is a run starting in s0 that never reaches any of the
states s2 or s3 where a holds. We call π′ a counterexample to the formula ϕ on
the system T .

Example 2.2. The LTS in Figure 1a satisfies ϕ = X¬b, since all the successors
of s0 do not have the label b.

2.3 Nondeterministic Büchi Automata

The standard procedure for verifying whether s |= ϕ for some state s and LTL
formula ϕ is automata-based model checking, see e.g. [2]. This technique seeks to
find counterexamples to ϕ by means of synchronisation with a Nondeterministic
Büchi Automaton (NBA) equivalent to ¬ϕ.

6 N. J. Ulrik, S. M. Virenfeldt

s0

{b}
s1

∅

s2

{a}
s3

{a, b}

α

β

β α

α
α

(a) An LTS T . For state s, the label L(s)
is denoted beside it, and edges are labelled
using the relevant action.

q0 q1

a

¬a

¬a a

(b) NBA A¬FGa equivalent to the formula
¬FGa. The accepting state q0 ∈ F is de-
noted by two circles, and the initial state
q0 ∈ Q0 is denoted by the unconnected
arrow.

〈s0, q0〉 〈s1, q0〉

〈s2, q1〉 〈s3, q1〉

tt

tt

tt tt

tt
tt

(c) The product system T ⊗ A¬FGa.

Fig. 1: Example LTS T and NBA A¬FGa for model checking whether
T |= ϕ = FGa. Since the product system T ⊗ A¬FGa has an accepting run
(〈s0, q0〉〈s1, q0〉)ω, we can conclude that T 6|= ϕ.

Automata-Driven LTL Model Checking of Petri Nets 7

First we introduce the propositions we may find on the guards of the NBA.
We let B(AP) denote the set of propositions over the set of atomic propositions
AP , given by the grammar

b1, b2 ::= tt | ff | a | b1 ∧ b2 | b1 ∨ b2 | ¬b1

where a ∈ AP and b1, b2 ∈ B(AP). We define satisfaction of a proposition b by
a set of atomic propositions A ⊆ AP , written A |= b, inductively as:

A |= tt

A 6|= ff

A |= a ⇐⇒ a ∈ A
A |= b1 ∧ b2 ⇐⇒ A |= b1 and A |= b2

A |= b1 ∨ b2 ⇐⇒ A |= b1 or A |= b2

A |= ¬b1 ⇐⇒ A 6|= b1 .

For any proposition b ∈ B(AP) and any LTS state s ∈ S, we write s |= b if
L(s) |= b. We let the denotation of a proposition be the set of sets of atomic
propositions given by JbK = {A ∈ 2AP | A |= b}

Remark 2.3. We define the equality of propositions based on their denotation.
That is, for any propositions b1, b2 ∈ B(AP), we write b1 = b2 iff Jb1K = Jb2K.

An NBA is a tuple A = (Q, δ,Q0, F) where

– Q is a possibly infinite set of states,
– δ ⊆ Q× B(AP)×Q is a transition relation such that for each q ∈ Q, there

exists only finitely many b ∈ B(AP) and q′ ∈ Q such that (q, b, q′) ∈ δ,
– Q0 ⊆ Q is a finite set of initial states, and
– F ⊆ Q is a set of accepting states.

We write q
b−→ q′ if (q, b, q′) ∈ δ. We assume a normal form where for any pair

of states q, q′ ∈ Q, if q
b−→ q′ and q

b′−→ q′ then b = b′. This normal form can be

ensured by merging the transitions q
b−→ q′ and q

b′−→ q′ into the single transition

q
b∨b′−−−→ q′. For a state q ∈ Q we define the set of progressing propositions to

be Prog(q) = {b ∈ B(AP) | q b−→ q′ for some q′ ∈ Q \ {q}}, and the retarding

proposition to be Ret(q) = b ∈ B(AP) such that q
b−→ q or ff if no such b exists.

Let σ = A0A1 . . . ∈ (2AP)
ω

be an infinite word. We say that A accepts σ if
and only if there exists an infinite sequence of states q0q1 . . . such that

– q0 ∈ Q0,

– for i ≥ 0, there exists a transition qi
bi−→ qi+1 such that Ai |= bi, and

– for infinitely many i ≥ 0, qi ∈ F .

The language of an NBA A is L(A) = {σ ∈ (2AP)
ω | A accepts σ}.

Automata-based model checking of LTL formulae is possible due to the fol-
lowing theorem relating LTL formulae to NBAs.

8 N. J. Ulrik, S. M. Virenfeldt

q0

q1

qacc

¬a ∧ ¬b

a ∨ b

a

¬a

tt

Fig. 2: NBA Aϕ where ϕ = ((Ga) U (Fa)) ∨ b, featuring more complex edge
propositions.

Theorem 2.4. [2] Let ϕ be an LTL formula. There exists an NBA Aϕ with
finitely many states such that L(Aϕ) = L(ϕ).

Example 2.5. Figure 2 shows an NBA equivalent to the formula ((Ga)U(Fa))∨b.
The set of progressing propositions from q0 is Prog(q0) = {a ∨ b,¬a ∧ ¬b}, and
it has no retarding proposition. The set of progressing propositions of q1 is the
singleton set Prog(q1) = {a}, and the retarding proposition is Ret(q1) = ¬a.

As a corollary to Theorem 2.4, any infinite word σ that satisfies ϕ must be
accepted by Aϕ and vice versa. Recall that an LTS T = (S,Σ,→, L, s0) satisfies
ϕ if and only if for all σ ∈ L(s0) we have σ |= ϕ. Conversely, if there exists a
word σ ∈ L(s0) such that σ 6|= ϕ then T 6|= ϕ, and σ is accepted by A¬ϕ. We
therefore synchronise T with A¬ϕ and look for counterexamples. We define this
synchronisation as follows.

Definition 2.6 (Product). Let T = (S,Σ,→, L, s0) be an LTS and let
Aϕ = (Q, δ,Q0, F) be an NBA. Then the product T ⊗ Aϕ = (Q′, δ′, Q′0, F

′)
of T and Aϕ is an NBA such that

– Q′ = S ×Q,

– 〈s, q〉 tt−→ 〈s′, q′〉 if either s → s′ or s is a deadlock and s = s′, and q
b−→ q′

for some b ∈ B(AP) such that s′ |= b,

– Q′0 = {〈s0, q〉 ∈ Q′ | ∃q0 ∈ Q0 . q0
b−→ q for some b ∈ B(AP) where s0 |= b},

and
– F ′ = {〈s, q〉 ∈ Q′ | q ∈ F}.

The following theorem states the key property of the product construction.

Theorem 2.7. [2] Let T be an LTS with initial state s0, ϕ be an LTL formula
and A¬ϕ be an NBA such that L(A¬ϕ) = L(¬ϕ). Then s0 |= ϕ if and only if
L(T ⊗ A¬ϕ) = ∅.

Automata-Driven LTL Model Checking of Petri Nets 9

In other words, the product construction is suitable for verifying whether
T |= ϕ. The model checking procedure consists of constructing the product
T ⊗A¬ϕ and searching for accepting runs. In practice this becomes a search for
reachable cycles containing accepting states, since such cycles generate infinite
accepting runs. This is an under-approximation of the language emptiness check
since the state space may be infinite, and as such there may be runs which con-
tain infinitely many accepting states without ever looping. We use a specialised
variant of Tarjan’s connected component algorithm described in [20] for model
checking.

Example 2.8. As described in Example 2.1, the LTS T depicted in Figure 1a
does not satisfy the LTL formula FGa. We now derive the same result using
automata-based model checking. Figure 1b shows the NBA A¬FGa equivalent to
the LTL formula ¬FGa, and Figure 1c shows the reachable part of the product
T ⊗ A¬FGa. Since the looping run (〈s0, q0〉〈s1, q0〉)ω visits the accepting state
〈s0, q0〉 infinitely often, we can conclude that T 6|= FGa, and the run (s0s1)ω can
be used as a diagnostic counterexample.

2.4 Petri Nets

A Petri net is a 4-tuple N = (P, T,W, I) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– W : (P × T) ∪ (T × P)→ N0 is a set of arc weights, and
– I : (P × T)→ N ∪ {∞} is a set of inhibitor arc weights.

The semantics of a Petri net N = (P, T,W, I) is given by markings on the
form M : P → N0 and a firing relation → ⊆ M(N) × T × M(N) where
(M, t,M ′) ∈ → if for all p ∈ P we have M(p) ≥ W (p, t), M(p) < I(p, t),
and M ′(p) = M(p)−W (p, t) +W (t, p). We use the following abbreviations.

– M
t−→M ′ if (M, t,M ′) ∈ →,

– M
t−→ if there exists M ′ such that M

t−→M ′,

– M 6 t−→ if not M
t−→,

– M → if there exists t such that M
t−→, and

– M 6→ if not M →.

If M 6→ we say that M is deadlocked. We denote the set of successors of M as

suc(M) = {M ′ ∈M(N) | ∃t ∈ T .M t−→M ′}. We writeM(N) to denote the set
of all markings of Petri net N . If M(p) = n for some marking M we say that p
has n tokens in M . For x ∈ P∪T , we write •x to mean {y ∈ T∪P |W (y, x) > 0},
called the preset, and x• to mean {y ∈ T ∪ P | W (x, y) > 0}, called the post-
set. We straightforwardly extend this to sets X ⊆ T and X ⊆ P such that
•X =

⋃
x∈X

•x and X• =
⋃
x∈X x

•. For a place p ∈ P we define the increas-
ing preset of p as +p = {t ∈ •p | W (t, p) > W (p, t)}, and the decreasing

10 N. J. Ulrik, S. M. Virenfeldt

p1 t1 p22

2

(2, 0)

(1, 2)

t1

Fig. 3: Example Petri net and its state space.

postset of p as p− = {t ∈ p• | W (t, p) < W (p, t)}. The inhibitor postset of
p ∈ P is p◦ = {t ∈ T | I(p, t) < ∞} and the inhibitor preset of t ∈ T is
◦t = {p ∈ P | I(p, t) <∞}

A net N = (P, T,W, I) gives rise to an LTS T = (M(N), T,→, L,M0) where
M0 is a designated initial marking. We call T the LTS of N . The set AP of
atomic propositions is formed using the grammar

a ::= t | e1 ./ e2
e ::= p | c | e1 ⊕ e2

where t ∈ T , p ∈ P , c ∈ N0, ./ ∈ {<,≤, 6=,=, >,≥}, and ⊕ ∈ {·,+,−}. An
atomic proposition in which the predicate p never occurs is called a fireability
proposition, and an atomic proposition in which the predicate t never occurs is
called a cardinality proposition. Likewise, an LTL formula in which there only
appears cardinality propositions is called a cardinality formula, and a formula in
which there only appears fireability propositions is called a fireability formula.
Given a Petri net N = (P, T,W, I), the satisfaction of a marking M ∈M(N) of
an atomic proposition a ∈ AP is given by

M |= t ⇐⇒ M
t−→

M |= e1 ./ e2 ⇐⇒ evalM (e1) ./ evalM (e2)

evalM (p) = M(p)

evalM (c) = c

evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2) .

For t ∈ T , the fireability proposition t can be rewritten into the cardinality
proposition

∧
p∈•t(p ≥W (p, t))∧

∧
p∈◦t(p < I(p, t)) requiring that all pre-places

of t are sufficiently marked and no inhibitor arc of t is sufficiently marked. In
the following we assume that all propositions are cardinality propositions.

Example 2.9. Figure 3 demonstrates the graphical representation of a Petri net
N = (P, T,W, I). The set of places is P = {p1, p2} and the set of transitions
is T = {t1}. The function W is W (p1, t1) = 1, W (t1, p2) = 2 and for all other
x, y ∈ P ∪T we have W (x, y) = 0. The function I is I(p2, t1) = 2 and for all other
p ∈ P and t ∈ T we have I(p, t) = ∞. The initial marking is M0(p1) = 2 and
M0(p2) = 0. In the initial marking t1 is enabled since p1 is sufficiently marked,
i.e. M0(p1) ≥W (p1, t1), and p2 is insufficiently marked for the inhibitor arc, i.e.

Automata-Driven LTL Model Checking of Petri Nets 11

M0(p2) < I(p2, t1). Firing t1 yields M0
t1−→M where M(p1) = 1 and M(p2) = 2

since the arc W (t1, p2) produces 2 tokens. The new marking M is deadlocked
since although M(p1) ≥ W (p1, t1), we have M(p2) ≥ I(p1, t1), inhibiting the
firing of t1.

3 Partial Order Reductions

Partial order reductions are techniques that address the state space explosion
problem by reducing the number of interleavings of concurrent actions. When a
state has many actions that are concurrent, the state space can contain states for
any permutation of these actions, even when each permutation leads to the same
state. Thus choosing only a representative permutation can result in exponential
reductions in the size of the state space (for examples of this see e.g. [44,46]).
We consider techniques that accomplish this by selecting in each state a subset
of available actions for exploration. Such techniques include ample sets [32],
persistent sets [21], and stubborn sets [44,45]. Of these we consider the stubborn
set technique.

3.1 Classic Stubborn Set Method

We will now present the classical LTLX-preserving stubborn set method, which
is due to Valmari [44,45].

Definition 3.1 (Reduction). [44] Let T = (S,Σ,→, L, s0) be an LTS. A re-
duction is a function St : S → 2Σ, and the reduced LTS of T given by St is
TSt = (S,Σ,→St, L, s0) where s

α−→St s
′ iff s

α−→ s′ and α ∈ St(s).

The goal of the method is to find a suitable reduction St such that for any
LTLX formula ϕ, T |= ϕ iff TSt |= ϕ, i.e. the reduction preserves LTLX.

Definition 3.2 (COM and KEY). Let T = (S,Σ,→, L, s0) be an LTS and
let St be a reduction on T . The commutation rule COM and key transition rule
KEY are defined as follows for all states s ∈ S:

COM For all s′ ∈ S, if s
α1α2...αnα−−−−−−−→ s′ where α ∈ St(s) and αi /∈ St(s) then

s
αα1α2...αn−−−−−−−→ s′.

KEY If en(s) 6= ∅, then there is some key action αkey ∈ St(s) such that for

all n ≥ 0, if α1, . . . , αn /∈ St(s) and s
α1...αn−−−−−→ sn then sn

αkey−−−→, otherwise
St(s) = Σ.

The COM rule forms the core of stubborn set methods. It asserts that a
sequence consisting of non-stubborn actions and a stubborn action will lead to
the same destination state regardless of when the stubborn action is taken. By
exploring only the execution where the stubborn action is taken first, we reduce
the number of interleavings in the state space. The rule KEY ensures that if
there is some enabled action in s then St(s) also contains some enabled action

12 N. J. Ulrik, S. M. Virenfeldt

(let n = 0). This rule functions as a starting point for stubborn set generation.
Normally, the main property of these rules is a deadlock preservation theorem—
any deadlock state in the full state space is reachable and a deadlock state in the
reduced state space, and vice versa [43]. However, since we assume deadlock-free
semantics this property is not relevant to us.

To preserve LTLX it is important to ensure that a run π in the full state
space has an equivalent run π′ in the reduced state space such that the induced
words σπ and σπ′ are stuttering equivalent. To ensure this, we require a notion
of visible transitions.

Definition 3.3 (Visibility). Let T = (S,Σ,→, L, s0) be an LTS and let ϕ be
an LTL formula. We say that α ∈ Σ is a visible action wrt. ϕ if there exists
states s, s′ ∈ S such that s

α−→ s′ and for some atomic proposition a mentioned
in ϕ, either s 6|= a ∧ s′ |= a or s |= a ∧ s′ 6|= a. A set Σϕ ⊆ Σ is a visible set if
for all actions α ∈ Σ that are visible wrt. ϕ, α ∈ Σϕ.

An action is visible if it can change the truth value of an atomic proposition.
The set Σϕ is not required to be exactly the set of visible actions for ease
of implementation. The following rules ensure that the reduced state space is
stutter-trace equivalent with the full state space.

Definition 3.4 (VIS and IGN). Let T = (S,Σ,→, L, s0) be an LTS, let St
be a reduction on T and let ϕ be an LTL formula. The visibility rule VIS(ϕ)
and non-ignoring rule IGN(ϕ) are defined as follows for all states s ∈ S.

VIS(ϕ) If St(s) contains an enabled, visible action α ∈ Σϕ, then St(s) = Σ.

IGN(ϕ) If s0
α1−→St s1

α2−→St . . . is an infinite execution for some s0, s1, . . . ∈ S,
then for each visible action αvis ∈ Σϕ there must be i such that αvis ∈ St(si).

VIS(ϕ) ensures that if α, β ∈ Σϕ, i.e. are contained in a visible set, and

both s
αβ−−→ s′ and s

βα−−→ s′, then both interleavings are explored. This is neces-
sary since both orderings are potentially important with respect to ϕ. The rule
IGN(ϕ) ensures, roughly speaking, that visible actions are not perpetually ig-

nored, a situation that could otherwise occur if e.g. St(s) = {α1} and s
α1−→ s. In

this case, IGN(ϕ) would ensure that if some action α2 would result in progress
then it is also taken. IGN(ϕ) is implemented by including all αv ∈ Σϕ in St(s)

when exploring an edge s
α−→ s′ where s′ already occurs in the current depth-first

search path, i.e. when the edge closes a cycle in the state space.
By using rules COM, KEY, VIS(ϕ), and IGN(ϕ), we obtain the classic

LTLX-preserving stubborn set method, the main result of which is the following
theorem.

Theorem 3.5. [44] Let T = (S,Σ,→, L, s0) be an LTS, ϕ be an LTLX formula,
and St be a reduction satisfying COM, KEY, VIS(ϕ), and IGN(ϕ). Then
the reduced LTS TSt = (S,Σ,→St, L, s0) satisfies ϕ iff T satisfies ϕ.

The original proof of the theorem demonstrated that the relative ordering
of visible transitions is preserved in the reduced state space, which means that

Automata-Driven LTL Model Checking of Petri Nets 13

¬b1,¬b2
s

¬b1,b2
s1

¬b1,¬b2
s2

s′
b1,¬b2

s′1
b1,b2

s′′
b1,¬b2

u

α

v

α

u v

(a) Commutation diagram of an LTS. For
each state the satisfied propositions are
denoted.

q0 qacc q2
b1

¬b1 ¬b2

b2

tt

(b) NBA where q0 is a reachability state.

Fig. 4: Motivation for safe actions. If a reduced state space causes the state qacc to
be reached before ¬b2 is satisfied, accepting runs may be lost due to overshooting
accepting states.

any word in the reduced state space is stuttering equivalent with some word in
the full state space. However, the X operator can distinguish between stuttering
equivalent words, meaning that the theorem is only enough to guarantee LTLX

preservation.

3.2 Reachability Stubborn Set Method

The classical approach to stubborn sets for LTLX, presented in Section 3.1,
focuses on the entire LTL formula. In this section we present a stubborn set
approach that depends on local information in the NBA and is applicable to
full LTL. The idea is to apply the reachability-perserving stubborn set method
from [34,7] in non-accepting NBA states q /∈ F where for all A ∈ 2AP there

is a successor q
b−→ q′ where A |= b. To ensure this we look at states q where

given the retarding proposition Ret(q) and progressing propositions Prog(q) we
have Ret(q) ∨

∨
b∈Prog(q) b = tt. With this requirement any state s in the LTS

will have some successor in the NBA, so the only important aspect in q is to
find a state satisfying some progressing proposition. This motivates us to ap-
ply the reachability-preserving stubborn set method with states satisfying some
b ∈ Prog(q) as goal states.

We now define the method formally. We call states in which we can use the
method reachability states.

Definition 3.6 (Reachability states). Let A = (Q, δ,Q0, F) be an NBA. The
set Reach(A) of reachability states in A is the set of all q ∈ Q such that

– q /∈ F and

–
(∨

b∈Prog(q) b
)
∨ Ret(q) = tt where Prog(q) is the set of progressing proposi-

tions of q and Ret(q) is the retarding proposition of q.

Remark 3.7. Determining whether the disjunction of the progressing proposi-
tions and the retarding propositions is a tautology can be done efficiently in
practice using BDDs, which is already the format we use for propositions.

14 N. J. Ulrik, S. M. Virenfeldt

We need to be careful of when we perform the reduction. This example
illustrates why we cannot always reduce if we are in a reachability state.

Example 3.8. Consider the NBA and LTS in Figure 4. Figure 4a shows part of
the LTS T = (S,Σ,→, L, s0), where the propositions satisfied by each state are
noted beside them. Furthermore α ∈ Σ and u, v ∈ Σ∗. The NBA state q0 is a
reachability state since ¬b1 ∨ b1 = tt. We consider the product state 〈s, q0〉. If
we follow the upper transition sequence in Figure 4a we get the product state
sequence 〈s, q0〉

u−→ 〈s1, q0〉
v−→ 〈s2, q0〉

α−→ 〈s′′, qacc〉. Since we can loop in s′′

indefinitely, this is an accepting run. However since q0 is a reachability state we
try to apply the reachability stubborn method in s. If we determine the action
α to be stubborn and that none of the actions in u and v are stubborn, then we
commute α to the start of the sequence and follow the lower transition sequence.
This yields the product state sequence 〈s, q0〉

α−→ 〈s′, qacc〉
u−→ 〈s′1, q2〉

v−→ 〈s′′, q2〉.
This run is not accepting, and thus the commutation is not correct.

To alleviate this problem we introduce safe actions.

Definition 3.9 (Safe action). Let T = (S,Σ,→, L, s0) be an LTS and let
A = (Q, δ,Q0, F) be an NBA. For a state s ∈ S and proposition b ∈ B(AP),
a set Safe(s, b) ⊆ Σ is safe wrt. b if for all α ∈ Safe(s, b) and w ∈ Safe(s, b)∗,

if s
w−→ s′, s

αw−−→ s′′, and s′ 6|= b, then s′′ 6|= b. For states s ∈ S and q ∈ Q, a
set Safe(s, q) ⊆ Σ is safe wrt. q if for all progressing propositions b ∈ Prog(q),
Safe(s, b) ⊆ Safe(s, q).

The property of a safe action α is that if we in a state s fire a sequence of safe
actions w after which we do not satisfy b then firing α followed by w will still
not satisfy b. In particular, when w is empty, if s 6|= b and s

α−→ s′, then s′ 6|= b.
The idea of a safe action is inspired by [5] but adapted for our purposes and
made looser. In particular, we do not require of a safe action α and transition
sequence w that w can consist of actions different from α, but restrict w to only
concern itself with explicitly safe actions.

In this new method the reductions are no longer only dependent on the
current LTS state, we also need to know in what NBA state we are at the
moment. To handle this we now define reductions on the product state space.

Definition 3.10 (Product reduction). Let T = (S,Σ,→, L, s0) be an LTS
and A = (Q, δ,Q0, F) be an NBA. Then the product reduction is a function
St : S ×Q → 2Σ and the reduced product state space of T ⊗ A given by St is
T ⊗St A where 〈s, q〉 →St 〈s′, q′〉 if and only if 〈s, q〉 → 〈s′, q′〉 and there exists

an α ∈ St(s, q) such that s
α−→ s′.

The stubborn set method is based on the following rules.

Definition 3.11 (COM, R, and SAFE). Let T = (S,Σ,→, L, s0) be an LTS,
A = (Q, δ,Q0, F) be an NBA and let St : S × Q → 2Σ be a product reduction.
The axioms COM, R, and SAFE are defined as, for all s ∈ S and all q ∈ Q

Automata-Driven LTL Model Checking of Petri Nets 15

COM If α ∈ St(s, q) and α1, α2, . . . , αn ∈ St(s, q)
∗
, if s

α1...αnα−−−−−−→ s′ then

s
αα1...αn−−−−−−→ s′.

R If α1 . . . αn ∈ St(s, q)
∗

and for all b ∈ Prog(q) we have s 6|= b then s
α1...αn−−−−−→ s′

implies that for all b ∈ Prog(q) we have s′ 6|= b.
SAFE For all s ∈ S, either q ∈ Reach(A), en(s)∩St(s, q) ⊆ Safe(s, q), and for

all progressing propositions b ∈ Prog(q) we have s 6|= b, or St(s, q) = Σ.

Rules COM and R are adapted from standard reachability-preserving stub-
born set methods, see [34,7]. R asserts that no progressing proposition is satisfied
without first taking a stubborn action, ensuring that states satisfying progress-
ing propositions are preserved. The rule SAFE asserts that we cannot reduce
if some unsafe action is enabled or if some progressing proposition is already
satisfied, ensuring that states in the NBA are reached at the right times so we
avoid the problem shown in Figure 4. It also ensures that no reduction is done
in accepting states since the point of the method is to reach accepting states,
and it is not safe to reduce there since anything can lead to an accepting cycle.

We are now ready to prove the correctness of this stubborn set method for
use in LTL model checking, not just LTLX.

Theorem 3.12. Let T = (S,Σ,→, L, s0) be an LTS, A = (Q, δ,Q0, F) be an
NBA, St : S×Q→ 2Σ be a product reduction satisfying COM, R, and SAFE,
and T ⊗St A be the reduced state space of T ⊗ A given by St. Then T ⊗ A
contains an accepting run if and only if T ⊗St A contains an accepting run.

Proof. “ ⇐= ”: Let π = 〈s0, q0〉 →St . . . be some accepting run in the reduced
state space. If π contains no state 〈si, qi〉 where si is a deadlock state, then π
must also be an accepting run in the full state space since St does not add any
new actions at any point. If π contains a state 〈si, qi〉 where si is a deadlock
state then since the run is accepting, either qi is accepting or some progressing
proposition b ∈ Prog(qi) to qi is satisfied by si. In both cases, by rule SAFE
no reduction is performed, so si is also a deadlock state in the full state space,
hence π is also an accepting run in the full state space.

“ =⇒ ”: Assume for sake of contradiction that the full state space contains an
accepting run π = 〈s0, q0〉 . . . but the reduced state space does not. Then there
must be a partitioning of π = π1π2 such that π1 is the longest prefix of π that is
executable in the reduced state space. Let 〈s1, q1〉 be the last state in π1. Since π2
is not executable, we have St(s1, q1) 6= Σ, so there is some reduction. By SAFE
we therefore know that q1 /∈ F , so π2 must change NBA state at some point, and
no progressing proposition of q1 is satisfied by s1. Let w ∈ Σ∗ be the sequence
of actions of length i − 1 such that for each action αk ∈ w in the sequence

〈s1, q1〉
α1−→ 〈s2, q2〉

αi−1−−−→ 〈si, qi〉 is a prefix of π2, and qi 6= q1 and qj = q1 for
all 1 ≤ j < i. Since qi 6= q1, some sj must satisfy a progressing proposition b

where q1
b−→ qi, so by R there must be a stubborn action α ∈ St(s1, q1) in w. Let

w = uαv such that u ∈ St(s1, q1)
∗

and α ∈ St(s1, q1). By COM s1
uα−−→ s′

v−→ si
implies s1

α−→ s′1
u−→ s′

v−→ si. Additionally, since St(s1, q1) 6= Σ and α is an
enabled, stubborn action, by SAFE α is a safe action, so by Definition 3.9

16 N. J. Ulrik, S. M. Virenfeldt

s′1 does not satisfy any progressing propositions. Since u does not contain any
stubborn actions and s′1 does not satisfy any progressing proposition, by R no

intermediate state along the run s′1
u−→ s′ satisfies any progressing proposition.

Hence we have 〈s1, q1〉 →St 〈s′1, q1〉 →∗St 〈s′, q1〉, an extension of the executable
part of π1 in the reduced state space. From 〈s′, q1〉, the execution can continue
to follow π2 by repeating this argument as necessary.

We thus obtain an accepting run in the reduced state space, contradicting
the assumption that there was no accepting run in the reduced state space. ut

3.3 Mixed Stubborn Set Method

The new stubborn set method presented above relies on the notion of reacha-
bility states, where in all states that are not reachability states no reduction is
performed. In this section we introduce a mixed stubborn set method that uses
the reachability stubborn set method when possible and falls back to the classic
method outside reachability states.

Definition 3.13 (Mixed reduction). Let T = (S,Σ,→, L, s0) be an LTS, let
A¬ϕ = (Q, δ,Q0, F) be an NBA corresponding to LTLX formula ϕ. Then given
a reduction Stclassic : S → 2Σ satisfying COM, KEY, VIS(ϕ), and IGN(ϕ),
and a product reduction Streach : S ×Q→ 2Σ satisfying COM, R, and SAFE,
the mixed reduction is the product reduction such that

St(s, q) =

{
Streach(s, q) if q ∈ Reach(A) and for no b ∈ Prog(q)s |= b

Stclassic(s) otherwise
.

We now prove that this reduction is LTLX preserving.

Theorem 3.14. Let T = (S,Σ,→, L, s0) be an LTS, let ϕ be an LTLX formula,
let A¬ϕ = (Q, δ,Q0, F) be an NBA corresponding to ¬ϕ, let Stclassic : S → 2Σ

be a reduction satisfying the rules COM, KEY, VIS(ϕ), and IGN(ϕ), let
Streach : S ×Q→ 2Σ be a product reduction satisfying the rules COM, R, and
SAFE, and let St : S ×Q→ 2Σ be the mixed reduction of Stclassic and Streach.
Then T ⊗A¬ϕ contains an accepting run if and only if T ⊗St A¬ϕ contains an
accepting run.

Proof. ⇐= Let π = 〈s0, q0〉 →St . . . be some accepting run in the reduced state
space. If π contains no state 〈si, qi〉 where si is a deadlock state in the reduced
state space, then π must also be an accepting run in the full state space since St
adds no new actions. If π does contain a 〈si, qi〉 where si is a deadlock state and
Streach was not used in 〈si, qi〉 then by KEY si is also a deadlock state in the
full state space. If Streach was used in 〈si, qi〉, then since π is accepting either
qi is accepting or si |= b for some progressing proposition b ∈ Prog(qi). In both
cases, SAFE prevents any reduction, so St(si, qi) = Σ, hence 〈si, qi〉 is also a
deadlock in the full state space.

=⇒ Assume for the sake of contradiction that the full state space contains
an accepting run but the reduced state space does not contain any accepting

Automata-Driven LTL Model Checking of Petri Nets 17

runs. Theorem 3.5 tells us that a state space TStclassic reduced by Stclassic satis-
fies ϕ if and only if T satisfies ϕ. As a corollary to this, TStclassic ⊗A¬ϕ has an
accepting run if and only if T ⊗A¬ϕ has an accepting run. Let π be an accepting
run in TStclassic ⊗A¬ϕ, and assume for the sake of contradiction that T ⊗StA¬ϕ
does not contain any accepting run. Let π = π1π2 such that π1 is the longest
prefix of π executable in T ⊗St A¬ϕ, and let 〈s, q〉 be the last state in π1. Since
π2 is not executable, 〈s, q〉 must be a state in which Streach is used, so q is a
reachability state and thus not accepting. Therefore there must be some frag-
ment 〈s, q〉 →Stclassic 〈s1, q1〉 →Stclassic . . .→Stclassic 〈sn, qn〉 of π such that qi = q
for 1 ≤ i < n and qn 6= q. By Definition 3.13, no progressing proposition of q is
satisfied, so since qn 6= q by R some stubborn transition must have been fired in

the fragment. Let 〈s, q〉 w−→ 〈sn, qn〉 such that w = uαv where u ∈ Streach(s, q)
∗
,

α ∈ Streach(s, q), and 〈s, q〉 uα−−→Stclassic 〈s′, q〉
v−→Stclassic 〈sn, qn〉. By COM we

also have s
α−→ s′′

u−→ s′. Since α ∈ en(s) it must also be a safe action, so
s′′ does not satisfy any progressing proposition, and since u does not contain
any stubborn actions, no intermediate state in the run satisfies any progressing
proposition. Hence we get 〈s, q〉 αu−−→Streach 〈s′, q〉, and since we remain in q the
entire time and no progressing proposition is satisfied, we get, by Definition 3.13,
〈s, q〉 αu−−→St 〈s′, q〉. From 〈s′, q〉 we can continue executing π2, repeating this ar-
gument as necessary. We thus get an accepting run in T ⊗StA¬ϕ as a consequence
of an accepting run in the original state space T ⊗ A¬ϕ. ut

3.4 Stubborn Sets for Petri nets

We now present a syntax-driven method for computing stubborn sets for a mark-
ing in a Petri net. We start by defining a COM-saturated set, which implements
the COM rule, and the set of increasing or decreasing transitions wrt. an ex-
pression.

Definition 3.15 describes necessary conditions for ensuring the rule COM.
These conditions are due to [7] and describes a set of transitions that can be
safely commuted with any transitions not in the set.

Definition 3.15 (COM-saturation). Let N = (P, T,W, I) be a Petri net and
M ∈M(N) be a marking. We say that a set T ′ ⊆ T is COM-saturated in M if

1. For all t ∈ T ′, if M
t−→ then

– for all p ∈ •t where t ∈ p− we have p• ⊆ T ′, and
– for all p ∈ t• where t ∈ +p we have p◦ ⊆ T ′.

2. For all t ∈ T ′, if M 6 t−→ then
– there exists a p ∈ •t such that M(p) < W (p, t) and +p ⊆ T ′, or
– there exists a p ∈ ◦t such that M(p) ≥ I(p, t) and p− ⊆ T ′.

The intuition of the conditions in Definition 3.15 is as follows. According to
Condition 1, if t is enabled and decreases the number of tokens in the place
p ∈ •t, then any t′ that has p as a pre-place, i.e. p ∈ •t∩ •t′, is in conflict with t
since t can disable t′. Likewise if t increases the number of tokens in a place p with

18 N. J. Ulrik, S. M. Virenfeldt

outgoing inhibitor arcs, the transitions inhibited by p are also in conflict with t.
Condition 2 states that a transition t′ that could cause a disabled transition t to
become enabled cannot be commuted with t, as t is then dependent on t′. This is
the case if either t′ adds tokens to some insufficiently marked pre-place p ∈ •t or
if t′ removes tokens from a sufficiently marked place p ∈ ◦t that has an inhibitor
arc to t. The following lemma states that transitions from a COM-saturated set
T ′ can be commuted with any sequence of transitions that are not in T ′, or in
other words that T ′ satisfies the COM axiom of stubborn set theory.

Lemma 3.16. Let N = (P, T,W, I) be a Petri net, let M ∈M(N) be a marking
and let T ′ ⊆ T be COM-saturated in M . Then for any t ∈ T ′, t1, . . . , tn ∈ T \T ′

and any marking M ′ ∈M(N), if M
t1...tnt−−−−→M ′ then M

tt1...tn−−−−→M ′.

Proof. Assume M
t1...tn−−−−→ Mn

t−→ M ′ for t ∈ T ′ and t1, . . . , tn ∈ T \ T ′, and

assume for sake of contradiction that M 6 t−→. Then there must be (i) some p ∈ •t
such M(p) < W (p, t) and +p ⊆ T ′, or (ii) some p ∈ ◦t such that M(p) ≥ I(p, t)
and p− ⊆ T ′.

(i) since Mn
t−→, for all p where M(p) < W (p, t) some ti must have increased the

number of tokens in p, i.e. ti ∈ +p for some i < n. However, by Condition 2
we have +p ⊆ T ′, so ti /∈ +p, hence no ti increased the number of tokens in

p. Therefore since Mn
t−→, also M

t−→, a contradiction.

(ii) since Mn
t−→ for all p where M(p) ≥ I(p, t) some ti must have decreased the

number of tokens in p, i.e. ti ∈ p−. However, by Condition 2 we have p− ⊆ T ′,
so ti /∈ p−, hence no ti decreased the number of tokens in p. Therefore since

Mn
t−→, also M

t−→, a contradiction.

Thus we conclude that M
t−→.

Now let M
t−→ Mt. We now show that Mt

t1...tn−−−−→ M ′. Assume for sake of
contradiction that some ti cannot be fired. Then there must either be a place
p ∈ •ti such that M(p) > Mt(p) and thus t ∈ p−, or some p ∈ ◦ti such that
M(p) < Mt(p) and thus t ∈ +p. In the former case, by Condition 1 p• ⊆ T ′, so
since ti /∈ T ′ we have ti /∈ p•, and in the latter case by Condition 1 p◦ ⊆ T ′, so
since ti /∈ T ′ we have ti /∈ p◦. In both cases t cannot have disabled ti, so ti can
be fired, a contradiction.

In conclusion, both M
t−→Mt and Mt

t1...tn−−−−→M ′ is possible. ut

The conditions in Definition 3.15 give rise to a straightforward closure algo-
rithm that starting from some set T ′ iteratively includes additional transitions
as required by Conditions 1 and 2. Because of Lemma 3.16, this algorithm can
be used to ensure COM starting from any initial set of transitions.

The following definition of increasing and decreasing transitions of an expres-
sion is relevant to constructing visible and safe sets and to rule R.

Definition 3.17 (Increasing and Decreasing transitions).
Let N = (P, T,W, I) be a Petri net and let e ∈ E be an expression. The set of

Automata-Driven LTL Model Checking of Petri Nets 19

increasing transitions incr(e) and decreasing transitions decr(e) are defined as
follows.

incr(p) = +p

decr(p) = p−

incr(c) = decr(c) = ∅
incr(e1 + e2) = incr(e1) ∪ incr(e2)

decr(e1 + e2) = decr(e1) ∪ decr(e2)

incr(e1 − e2) = incr(e1) ∪ decr(e2)

decr(e1 − e2) = decr(e1) ∪ incr(e2)

decr(e1 · e2) = incr(e1 · e2) = incr(e1) ∪ incr(e2) ∪ decr(e1) ∪ decr(e2)

The sets incr(e) and decr(e) define the sets of transitions that increase or
decrease the value of an expression e ∈ E. They have the property that if the
valuation of e increased after firing some transition t then t ∈ incr(e), and if the
valuation decreased after firing t then t ∈ decr(e)..

Lemma 3.18. [7] Let N = (P, T,W, I) be a Petri net, let e ∈ E be an ex-

pression, and let M,M ′ ∈ M(N) be markings such that M
t1...tn−−−−→ M ′ for

t1, . . . , tn ∈ T . If evalM (e) < evalM ′(e) then for some i, ti ∈ incr(e), and if
evalM (e) > evalM ′(e) then for some i, ti ∈ decr(e).

Corollary 3.19. Let N = (P, T,W, I) be a Petri net, M,M ′ ∈M(N) be mark-

ings such that M
t−→ M ′ for t ∈ T , and let a ∈ AP be an atomic proposition.

Then either M |= a iff M ′ |= a or for some expression e mentioned in a,
t ∈ incr(e) ∪ decr(e).

Proof. If a = tt then we trivially have M |= a ⇐⇒ M ′ |= a.

Let a = e1 ./ e2. If for each i ∈ {1, 2} we have evalM (ei) = evalM ′(ei) then
clearly M |= a iff M ′ |= a. Otherwise for some i either evalM (ei) < evalM ′(ei) or
evalM (ei) > evalM ′(ei). In the former case, by Lemma 3.18 we have t ∈ incr(ei),
and in the latter case t ∈ decr(ei). ut

We now show implementations of each stubborn set method wrt. Petri nets.

Classic Stubborn Set Method We now show how to implement the classic
stubborn set method on Petri nets. The only missing part is a definition of visible
sets of an LTL formula ϕ that is suitable for the rule VIS(ϕ). The following is
a suitable definition.

Definition 3.20 (Visible transitions). Let N = (P, T,W, I) be a Petri net,
and let ϕ be an LTL formula. The set vis(ϕ) ⊆ T of visible transitions of ϕ is

20 N. J. Ulrik, S. M. Virenfeldt

defined inductively as

vis(ϕ) =

incr(e1) ∪ decr(e1)∪
incr(e2) ∪ decr(e2)

if ϕ = e1 ./ e2 where e1, e2 ∈ E
and ./ ∈ {<,≤, 6=,=, >,≥}

vis(ϕ1) ∪ vis(ϕ2) if ϕ = ϕ1Rϕ2 where R ∈ {U,∧,∨}
vis(ϕ′) if ϕ = Qϕ′ where Q ∈ {G,F,X,¬}
∅ otherwise .

The desired property of vis(ϕ) is that it is a visible set wrt. ϕ. By Corol-
lary 3.19 and by construction vis(ϕ) is indeed a visible set since for any expression
e mentioned in ϕ we have incr(e) ⊆ vis(ϕ) and decr(e) ⊆ vis(ϕ). Therefore, using
Lemma 3.16 and Corollary 3.19 we can now implement the classic stubborn set
method for Petri nets, as shown by the following theorem.

Theorem 3.21. Let N = (P, T,W, I) be a Petri net, T = (M(N), T,→, L,M0)
be the transition system of N , let St : M(N) → 2T be a reduction, and let
ϕ be an LTL formula. Then St satisfies COM, KEY, and VIS(ϕ) if for all
markings M ∈M(N):

1. Either St(M) = T or there exists a tkey ∈ St(M) such that M
tkey−−→,

2. St(M) is a COM-saturated set in M , and

3. Either (en(s) ∩ St(s)) ∩ vis(ϕ) = ∅ or St(s) = T .

Proof. By Lemma 3.16, Condition 2 ensures COM. Condition 1 ensures that,
if M is not deadlocked, there is an enabled transition in St(M), and since
St(M) satisfies COM, KEY is also satisfied. Finally, by Definition 3.20, we
have incr(e1)∪decr(e1)∪ incr(e2)∪decr(e2) ⊆ St(M) for all atomic propositions
e1 ./ e2 mentioned in ϕ. Thus as an immediate consequence of Corollary 3.19,
vis(ϕ) is a visible set, so Condition 3 ensures VIS(ϕ). ut

As mentioned previously, the rule IGN(ϕ) is ensured during state space

exploration by checking that if M
t−→M ′ where M ′ is on the current search path

then all successors t ∈ en(M) should be explored. Thus by Theorem 3.5 the
present method for stubborn set generation for Petri nets is suitable for model
checking LTLX formulae.

Reachability Stubborn Set Method To implement the reachability-based
stubborn set method for Petri nets we need ways to ensure the axioms R and
SAFE. To do this we now give syntax-directed definitions of the interesting
transitions of a marking and a formula which ensures the axioms R and SAFE.

Definition 3.22 (Interesting transitions). [7] Let N = (P, T,W, I) be a
Petri net and let b ∈ B(AP) be a proposition. For a marking M ∈M(N) the set
AM (b) ⊆ T of interesting transitions of b is defined inductively as AM (b) = ∅ if

Automata-Driven LTL Model Checking of Petri Nets 21

M |= b, and otherwise as follows.

AM (tt) = AM (ff) = ∅
AM (e1 < e2) = AM (e1 ≤ e2) = decr(e1) ∪ incr(e2)

AM (e1 > e2) = AM (e1 ≥ e2) = incr(e1) ∪ decr(e2)

AM (e1 = e2) =

{
decr(e1) ∪ incr(e2) if evalM (e1) > evalM (e2)

incr(e1) ∪ decr(e2) if evalM (e1) < evalM (e2)

AM (e1 6= e2) = incr(e1) ∪ decr(e2) ∪ decr(e1) ∪ incr(e2)

AM (b1 ∧ b2) = AM (bi) for some i where M 6|= bi

AM (b1 ∨ b2) = AM (b1) ∪AM (b2)

AM (¬e1 < e2) = AM (e1 ≥ e2)

AM (¬e1 > e2) = AM (e1 ≤ e2)

AM (¬e1 = e2) = AM (e1 6= e2)

AM (¬(b1 ∧ b2)) = AM (¬b1 ∨ ¬b2)

AM (¬e1 ≤ e2) = AM (e1 > e2)

AM (¬e1 ≥ e2) = AM (e1 < e2)

AM (¬e1 6= e2) = AM (e1 = e2)

AM (¬(b1 ∨ b2)) = AM (¬b1 ∧ ¬b2)

The purpose of AM is to be an efficiently computable syntactic over-approxi-
mation which ensures the rule R, i.e. to reach a state satisfying b some transition
from AM (b) must be fired. These properties are formalised in the following two
lemmas.

Lemma 3.23. [7] Let N = (P, T,W, I) be a Petri net, let M ∈ M(N) be a

marking, and let b ∈ B(AP) be a proposition. If M 6|= b and M
w−→M ′ for some

w ∈ AM (b)
∗
, then M ′ 6|= b.

Lemma 3.23 reflects the rule R, hence by including AM (b) in a stubborn set
St(M, q) for all progressing propositions b ∈ Prog(q) we guarantee R. AM also
leads to a suitable definition of unsafe actions as follows.

Lemma 3.24. Let N = (P, T,W, I) be a Petri net and b ∈ B(AP) be a propo-
sition. Then for any marking M ∈ M(N) where M 6|= b, the set T \ AM (b) is

safe wrt. b, i.e. for t /∈ AM (b) and w ∈ AM (b)
∗
, if M

w−→ M ′, M
tw−→ M ′′, and

M ′ 6|= b, then M ′′ 6|= b.

Proof. We proceed by structural induction in the form of b. Let t /∈ AM (b) and

w ∈ (T \ AM (b))∗, and assume M 6|= b, M
w−→ M ′, M ′ 6|= b, and M

tw−→ M ′′.
The inductive hypothesis is that for any subproposition b′ of b, M ′ 6|= b′ implies
M ′′ 6|= b′, i.e. t is safe wrt. any subproposition b′ of b.

b = e1 < e2 Since M 6|= b then evalM (e1) ≥ evalM (e2). By the definition of AM
we have decr(e1)∪incr(e2) ⊆ AM (b), hence t /∈ decr(e1)∪incr(e2). Thus when

M
t−→ Mt, by Lemma 3.18 t /∈ decr(e1) implies evalM (e1) ≤ evalMt

(e1), and
t /∈ incr(e2) implies evalM (e2) ≥ evalMt

(e2). Hence evalM ′(e1) ≤ evalM ′′(e1)
and evalM ′(e2) ≥ evalM ′′(e2), so since M ′ 6|= b we also have M ′′ 6|= b.

22 N. J. Ulrik, S. M. Virenfeldt

b = e1 ≤ e2 Equivalent to b = e1 < e2 + 1

b = e1 > e2 Equivalent to b = e2 < e1.

b = e1 ≥ e2 Equivalent to b = e2 < e1 + 1

b = e1 = e2 If evalM (e1) > evalM (e2) then the argument proceeds as the case
e1 < e2. If evalM (e1) < evalM (e2) then the argument proceeds as the case
e2 < e1.

b = e1 6= e2 Since incr(e1) ∪ decr(e1) ∪ incr(e2) ∪ decr(e2) ⊆ AM (b), if M
t−→Mt

then evalMt(e1) = evalM (e1) and evalMt(e2) = evalM (e2). Therefore since
M ′ 6|= b we also have M ′′ 6|= b.

b = b1 ∧ b2 Since M 6|= b, for some i ∈ {1, 2} we must have M 6|= bi and
AM (bi) ⊆ AM (b). By Lemma 3.23, since ti /∈ AM (bi) we have M ′ 6|= bi,
so by the inductive hypothesis M ′′ 6|= b.

b = b1 ∨ b2 Since M ′ 6|= b then M ′ 6|= b1 and M ′ 6|= b2. By the inductive hypoth-
esis we get M ′′ 6|= b1 and M ′′ 6|= b2 and therefore M ′′ 6|= b.

We have thus demonstrated that if M 6|= b, any transition t ∈ T \AM (b) is safe
wrt. b. ut

We now give a syntax-driven implementation of the reachability-based stub-
born set method for LTL queries such that the rules COM, R, and SAFE are
satisfied.

Theorem 3.25. Let N = (P, T,W, I) be a Petri net, A = (Q, δ,Q0, F) be an
NBA, and St :M(N)×Q→ 2T be a product reduction such that, for all markings
M ∈ M(N) and states q ∈ Q, St satisfies Condition 1 and 2, then St satisfies
the rules COM, R, and SAFE.

1. Either St(M, q) = T , or q ∈ Reach(A) and for all b ∈ Prog(q) we have
en(M) ∩ St(M, q) ⊆ T \AM (b).

2. Otherwise we have

(a)
⋃
b∈Prog(q)AM (b) ⊆ St(M, q) and

(b) St(M, q) is a COM-saturated set in M .

Proof. By Lemma 3.24, Condition 1 ensures the rule SAFE. By Lemma 3.23,
Condition 2a ensures R, and by Lemma 3.16 Condition 2b ensures COM. Hence
by Theorem 3.12 a reduction satisfying the above conditions is an LTL-preserving
reachability-based stubborn set. ut

In summary, the stubborn set St(M, q) is generated as follows. First, if q ∈ F
or some progressing proposition b ∈ Prog(q) is satisfied by M , the set of all tran-
sitions is returned. Otherwise, the closure algorithm is run on the set of interest-
ing transitions to obtain a stubborn set satisfying COM and R. The resulting
stubborn set is checked for whether there is any overlap with enabled interesting
transitions, in which case the set of all transitions is returned, otherwise the
computed stubborn set is returned.

Automata-Driven LTL Model Checking of Petri Nets 23

p1

t1 t2

p2 p3

t3

p4

p5

t4

(a) Petri net

q1 q2

p4 < 1

p4 ≥ 1

tt

(b) NBA

Fig. 5: Example of reachability stubborn set applied to Petri nets.

Example 3.26. We will now provide an example of using the reachability stub-
born set method to compute a subset of successors of a Petri net marking.
Consider the product system of the Petri net shown in Figure 5a and the NBA
in Figure 5b. In the initial marking M0 the enabled transitions are

en(M0) = {t1, t2, t4} . (1)

The goal of the stubborn set is then to determine a subset of these enabled
transitions to explore which are sufficient to ensure the property being verified.
We first need to determine if the method applies in q1. Since q1 is not an accepting
state and p4 ≥ 1 ∨ p4 < 1 = tt, it is a reachability state. The only progressing
proposition p4 ≥ 1 is not satisfied by M0 so we do not return all transitions
immediately. We now determine the set of interesting transitions

AM0(p4 ≥ 1) = incr(p4) ∪ decr(1) = {t3} ∪ ∅ = {t3} .

Next we determine a set of transitions that contains t3 and satisfies Lemma 3.16.
Such a set is

St(M0, q1) = {t1, t2, t3} . (2)

We now ensure that none of the enabled transitions in this set are interesting. We
have en(M0) ∩ St(M0, q1) = {t1, t2} which is disjoint from AM0

(p4 ≥ 1) = {t3},
so we have en(M0) ∩ St(M0, q1) ⊆ T \AM0

(p4 ≥ 1), and St(M0, q1) is therefore
a valid stubborn set. From Equation 1 we see that the transition t4 is enabled in
M0, but it is not part of the stubborn set in Equation 2. As such the interleaving
which fires t4 first and then either t1 or t2 will not be explored by state space
exploration, and the size of the state space is therefore reduced.

Mixed Stubborn Set Method The implementation of the mixed stubborn
set method for Petri nets follows straightforwardly from the existing implemen-
tations of the classic stubborn set method and the reachability stubborn set

24 N. J. Ulrik, S. M. Virenfeldt

method and from Definition 3.13. In state 〈M, q〉, we check whether q ∈ Reach(A)
and whether no b ∈ Prog(q) is satisfied by M . If this is the case, we apply the
reachability stubborn set method, otherwise we fall back to the classic stubborn
set method.

3.5 Evaluation

In this section we introduce the dataset and the setup used for the evaluation,
and the results from the stubborn set methods1. For evaluating the proposed
methods we use the dataset from the 2020 edition of the Model Checking Con-
test (MCC) [26]. The dataset consists of 1016 place/transition nets modelling
academic and industrial use cases. In addition to these 1016 place/transition
models, the MCC also features a set of coloured Petri nets, which we do not
include in our evaluation. For each model 32 randomly generated LTL formulae
are provided, split evenly between cardinality formulae and fireability formulae.
This gives us a total of 32 512 model checking queries to evaluate our approaches
against. For evaluating each configuration we run each query for 15 min with
16 GiB of memory on one core from an AMD Opteron 6376.

The techniques described in this paper are implemented as an extension to
the LTL model checker presented in [42], which is a part of the open source verifi-
cation engine verifypn [25] for the model checker Tapaal [12]. The LTL model
checker uses version 2.9.6 of the Spot library [13] for translating LTL formulae
into NBAs, and a derivative of Tarjan’s algorithm [20,38] for searching for ac-
cepting cycles. To speed up verification we also employ the query simplifications
from [6] and most of the structural reductions from [7]. This configuration serves
as the baseline against which we evaluate the techniques. The query simplifica-
tions have the potential to solve queries outright, before any state exploration
is performed and thus before any of the techniques presented in this thesis have
a chance to affect performance. To make the contributions of the present tech-
niques as clear as possible we will omit all trivially solved queries from the
dataset. These comprise two cases, namely those which are solved outright by
query simplifications, and those which has no valid initial NBA state in the
product state space. The resulting dataset after removing these queries contains
19 274 queries of which 7583 are cardinality queries and 11 691 are fireability
queries.

For a visual comparison between different configurations we use cactus plots
inspired by [8]. For each configuration, the time ti taken to solve query qi is
measured, and the times ti are sorted in increasing order. These sorted times
are then plotted as (1, t1), (2, t2) . . ., where t1 ≤ t2 ≤ · · · for each configuration
using a logarithmic time axis. By doing this, different queries may have been
used to evaluate different configurations, so direct comparisons on individual
queries are not possible. However, these plots allow us to get a broad overview
of how different configurations handle easier or harder queries. For example,
one method might be really good at easy queries but scale poorly to harder

1 Reproducibility package: https://github.com/simwir/Aut-LTL-Thesis

https://github.com/simwir/Aut-LTL-Thesis

Automata-Driven LTL Model Checking of Petri Nets 25

Table 1: Results from evaluation of the stubborn set methods by category. The
suffix + denotes a positive answer, while − denotes a negative answer. C denotes
cardinality queries and F denotes fireability queries.

(a) Number of answers by category.

LTLC+ LTLC− LTLF+ LTLF− Total

Baseline 555 5708 703 8936 15 902 82.5 %

Classic 559 5735 714 8995 16 003 83.0 %

Reachability 565 5763 713 9044 16 085 83.5 %

Mixed 566 5775 725 9058 16 124 83.7 %

(b) Percentage gain in the number of answered queries compared to the baseline by
category.

LTLC+ LTLC− LTLF+ LTLF− Total

Classic 0.7 % 0.5 % 1.6 % 0.7 % 0.6 %

Reachability 1.8 % 1.0 % 1.4 % 1.2 % 1.2 %

Mixed 2.0 % 1.2 % 3.1 % 1.4 % 1.4 %

queries, whereas another may require a lot of overhead on easy queries but be
capable of dealing with harder queries. We also include a Virtual Best Solver
(VBS) [8] series, created by taking the minimum time to solve query qi across
all configurations. For example, if query q was solved in 1 s, 5 s, and 0.1 s by
different configurations then the VBS time is 0.1 s. In addition to the cactus
plots we include a breakdown of the number of positive and negative answers in
each category. The categories are LTLC+, LTLC−, LTLF+, and LTLF−, where
+ refers to positive answers, i.e. no counterexample exists, − refers to negative
answers, i.e. counterexample was found, and C and F refer to the cardinality
and fireability categories.

Table 1a shows the number of answers obtained for each category using the
different configurations, and Table 1b shows the percentage gains for each stub-
born set method compared to the baseline. While in absolute numbers the ad-
ditional answers are primarily due to negative answers, the percentage increase
is largest for positive answers. In general, positive answers are expected to be
harder to obtain than negative answers, as they require disproving the existence
of any counterexample, which means the full state space has to be explored.
While stubborn sets address the size of the state space, which does appear to
help, in many cases the stubborn set method is not able to remove any states.
For example, among the positive queries answered by both the baseline and the
mixed stubborn set method, only 312 queries allowed for any reduction in the
size of the state space. In the other 939 cases, the stubborn set method is pure

26 N. J. Ulrik, S. M. Virenfeldt

11000 12000 13000 14000 15000 16000
1

10

100

1000

Time (in seconds)

Baseline (n = 15902)

Classic (n = 16003)

Reachability (n = 16085)

Mixed (n = 16124)

Virtual Best Solver (n = 16310)

(a) All problems slower than 1 s.

14800 15000 15200 15400 15600 15800 16000 16200

100

1000

30

40

60

200

300

400

600

Time (in seconds)

(b) 1500 hardest problems, not counting VBS.

Fig. 6: Cactus plots over time taken by different stubborn set methods versus
the baseline.

Automata-Driven LTL Model Checking of Petri Nets 27

overhead, meaning that answers take longer to obtain. As for negative answers,
reducing the size of the state space may also affect the search order, such that a
path leading to a counterexample is more likely to be found. We also note that
there are many more negative instances than positive instances in the dataset—
of the 19 274 queries that are not trivially solved, we determine using the mixed
method that 14 833 (76.96 %) are negative queries and only 1291 (6.70 %) are
positive queries.

Figure 6 shows cactus plots from the experiments with stubborn sets. In
Figure 6a all data points slower than 1 s are plotted, and in Figure 6b the 1500
hardest points for the best configuration (excluding VBS) are plotted. From
Figure 6a we see that the classic method is slower on easier queries. A hypothesis
is that the stubborn set extensions caused by IGN(ϕ) happen frequently in
smaller models which results in a lot of overhead. The mixed method does not
have this characteristic, perhaps because reachability states are common, and
IGN(ϕ) does not apply in those. Otherwise, the main takeaway is that the
configurations have very similar profiles, indicating minimal reason to not choose
the best configuration. In Figure 6b we see that the different configurations
behave very similarly until a point where queries start to become very difficult
for the various configurations. Perhaps most interesting is that the reachability
method and mixed method have near identical profiles until a slight shift around
15 500, indicating that this is where the mixed method pays off. The VBS has
a similar performance characteristic to the actual methods but reaches further
right than the other configurations, hinting that the methods are complementary.

Based on the evaluation we conclude that the mixed method has the best
performance, although the reachability method on its own is also has a significant
performance gain, both compared to not using any stubborn sets and to using
the classical stubborn set method.

4 Guided search

When doing explicit state model checking using depth-first search algorithms,
such as the on-the-fly variant of Tarjan’s algorithm [38,20] which we use, how
quickly a target state is found is highly dependent on the order in which succes-
sors to the current state are explored. By default, we use some arbitrary static
ordering of the transitions in the Petri net to determine which transition to fire
next. Worst case, the algorithm might spend a long time exploring an irrele-
vant area of the state space when a different choice of successor may lead to
the answer faster. A way of alleviating this issue is by using heuristics to guide
the search toward successors that are more likely to result in an answer. In the
following we describe some heuristics suitable for LTL verification of Petri nets.
In marking M , the heuristics assign a non-negative number to each M ′ where
M →M ′ such that the markings with smaller numbers should be explored first.
For heuristic function h, we accomplish this by sorting the set of successors of
marking M , that is {M ′ ∈ M(N) |M →M ′}, in ascending order based on the
value of the heuristic h(M ′).

28 N. J. Ulrik, S. M. Virenfeldt

100

p1 t1 p2 t2

(a) Example where heuristics can
find a counter example faster.

p1 t1 p3 p2 t2

(b) Example where heuristics can be applied to
avoid the infinite loop.

Fig. 7: Example Petri nets where the search order matters heavily when verifying
Gp2 6= 0.

Example 4.1. Consider the Petri net in Figure 7a, with the query Gp2 6= 0, that
is p2 is never 0. If the static ordering of the transitions puts t1 before t2 we
end up firing t1 100 times before t2 is fired and the counterexample to Gp2 6= 0
is found. Firing t2 before t1 therefore saves 100 states, a significant speed-up.
Using a heuristic to guide the search lets us accomplish this while not being
dependent on being lucky with the arbitrary ordering of transitions. In the Petri
net in Figure 7b, t1 can be fired infinitely often, meaning that using the same
transition ordering as before t1 will be fired indefinitely, preventing us from
finding the counterexample to Gp2 6= 0. In this case, a heuristic that at some
point fires t2 will result in us finding a counterexample.

This illustrates the two advantages we may gain from heuristics. Some prob-
lems which we are not able to answer without it suddenly becomes feasible and
in other cases there may still be performance to be gained.

Distance-Based Heuristic The distance-based heuristic is roughly based on
the difference in the number of tokens between a marking and the requirements
described by the atomic propositions of the formula. This method is an adapta-
tion of the heuristic search for reachability analysis of Petri nets presented in [25].
We view this difference as a distance between the current marking and a satisfy-
ing marking. The distance is calculated using the recursive formula dist defined
in Figure 8. For a Petri net N , an LTL formula ϕ, and a marking M ∈ M(N)
we calculate the heuristic as dist(M,ϕ, tt).

Example 4.2. Consider the Petri net N in Figure 9a and the LTL formula
ϕ = ¬F(p0 > 3 ∧ XFp1 > 3). We want to determine whether N |= ϕ. As-
sume that the static transition ordering is t0 < t1 < t2. With this static ordering
we see that p2 is going to be ever increasing and we will never find a coun-
terexample. In order to use the heuristics we first calculate the distance function
for each successor. We let Mi denote the marking after firing ti once. We then
get dist(M0, ϕ, tt) = 4, dist(M1, ϕ, tt) = 4, and dist(M2, ϕ, tt) = 3. The heuris-
tic prioritises the transition t2, leading us one step closer to violating Fp1 > 3.
Repeating the procedure, after 4 firings of t2, we end up in a marking where
M(p1) = 4, and considering the NBA in Figure 9b we end up in q2, which is
accepting and has a tautology as the retarding proposition. As such it is clear to
see that any continuation of this run will visit the accepting NBA state infinitely
often, resulting in a counterexample to the formula.

Automata-Driven LTL Model Checking of Petri Nets 29

dist(M,Qϕ, negated) = dist(M,ϕ, negated), if Q ∈ {A,F,X}
dist(M,Gϕ, negated) = dist(M,ϕ,¬negated)

dist(M,ϕ1 U ϕ2, negated) = dist(M,ϕ2, negated)

dist(M,¬ϕ, negated) = dist(M,ϕ,¬negated)

dist(M,ϕ1 ∧ ϕ2, ff) = dist(M,ϕ1, ff) + dist(M,ϕ2, ff)

dist(M,ϕ1 ∨ ϕ2, ff) = min(dist(M,ϕ1, ff),dist(M,ϕ2, ff))

dist(M,ϕ1 ∧ ϕ2, tt) = min(dist(M,ϕ1, tt), dist(M,ϕ2, tt))

dist(M,ϕ1 ∨ ϕ2, tt) = dist(M,ϕ1, tt) + dist(M,ϕ2, tt)

dist(M, e1 ./ e2, negated) = ∆(./, evalM (e1), evalM (e2), negated)

for ./ ∈ {<,≤, 6=,=, >,≥}

∆(=, v1, v2, ff) = |v1 − v2|

∆(6=, v1, v2, ff) =

{
1, if v1 = v2

0, otherwise

∆(<, v1, v2, ff) = max(v1 − v2 + 1, 0)

∆(≤, v1, v2, ff) = max(v1 − v2, 0)

∆(>, v1, v2, ff) = ∆(<, v2, v1, ff)

∆(≥, v1, v2, ff) = ∆(≤, v2, v1, ff)

∆(=, v1, v2, tt) = ∆(6=, v1, v2, ff)

∆(6=, v1, v2, tt) = ∆(=, v1, v2, ff)

∆(<, v1, v2, tt) = ∆(≥, v1, v2, ff)

∆(>, v1, v2, tt) = ∆(≤, v1, v2, ff)

∆(≤, v1, v2, tt) = ∆(>, v1, v2, ff)

∆(≥, v1, v2, tt) = ∆(<, v1, v2, ff)

Fig. 8: Definition of the distance between a marking and a LTL formula. Based
on [25] and extended to LTL.

p0 t0 p2t1p1t2

44

(a) Petri net.

q0 q1 q2

¬p0 > 3

p0 > 3

¬p1 > 3

p1 > 3

tt

(b) NBA corresponding to the LTL formula F(p0 > 3 ∧ XFp1 > 3).

Fig. 9: Example system where heuristics are advantageous when considering the
LTL formula ϕ = ¬F(p0 > 3 ∧ XFp1 > 3).

30 N. J. Ulrik, S. M. Virenfeldt

Automaton-Based Heuristic We now present a refinement of the previous
method where instead of looking at the entire LTL formula, we look at the
progressing formulae of the current state in the NBA. The main idea of this
approach is that if we are not in an accepting state then we would like to leave
the current state as quickly as possible and move closer to an accepting state. As
such we prioritise transitions based on how quickly they can enable a progressing
formula and how far the resulting NBA state is from some accepting state. Let
N be a Petri net, T = (M(N), T,→, L,M0) be an LTS, A = (Q, δ,Q0, F) be
an NBA, and for q ∈ Q let BFS(q) be the shortest path distance from q to
any q′ ∈ F (if q ∈ F then BFS(q) = 0). Then given a state 〈M, q〉 in T ⊗ A
where q /∈ F , we calculate the heuristic for each successor M ′ ∈ suc(M) as the

minimum of (1 + BFS(q′)) · dist(M ′, b, ff) over all q′ ∈ Q where q
b−→ q′. For

improved performance we precompute BFS(q) for all q ∈ Q.

Example 4.3. Let us again consider the Petri net in Figure 9a, and the NBA
corresponding to ¬ϕ, presented in Figure 9b. First we notice in Definition 2.6
that when creating the initial states Q′0 of the product state space we evaluate
the outgoing formulae of the initial NBA states once. In this case the result is
that we have to evaluate the outgoing propositions of q0 to determine the initial
product states. Here we see that the initial marking satisfies the progressing
proposition p0 > 3 but not the retarding proposition ¬p0 > 3. As such the
only inital NBA state in the product state space is q1. Next we calculate the
heuristic where, as before, Mi is the marking resulting from firing ti. As there
is only one progressing proposition we can simplify the heuristic calculation to
(1+BFS(q1))+dist(Mi, p1 > 3, ff), yielding the values 1·dist(M0, p1 > 3, ff) = 4,
1 · dist(M1, p1 > 3, ff) = 0, and 1 · dist(M2, p1 > 3, ff) = 3. The transition with
the highest priority is t1 which immediately leads to a marking where p1 > 3,
so we can move to the accepting state. This illustrates a key advantage that the
NBA based heuristic has over using the distance-based heuristic on the entire
LTL formula, namely that is can disregard parts of the formula that are not
relevant at the moment.

Fire-Count Heuristic Sometimes when exploring the state space the same
transitions are fired many times compared to the other transitions. This may be
a problem since only firing the same transitions may prevent different behaviours
of the net from being explored. We therefore propose a heuristic that tries to
balance the number of times each transition is fired by penalising transitions that
are fired many times. Generally firing a transition a few more times than some
other transition poses no problem, so we introduce a threshold such that each
firing above this threshold incurs a penalty that is logarithmic in the number
of firings over the threshold. Let t ∈ T be a transition from a Petri net, let ft
denote the number of firings of t in the current search path, and let ` be the
penalty threshold. Then the heuristic is calculated as

FC(t) =

{
0 if ft < `

blog2(ft − `)c otherwise .

Automata-Driven LTL Model Checking of Petri Nets 31

Table 2: Results from the evaluation of heuristics.

(a) Number of answers by category.

LTLC+ LTLC− LTLF+ LTLF− Total

Baseline 555 5708 703 8936 15 902 82.5 %

Fire-Count 555 5878 699 9165 16 297 84.6 %

Distance 553 5907 693 9187 16 340 84.8 %

Automaton 555 5967 693 9236 16 451 85.4 %

Automaton + Fire-Count 555 5973 690 9244 16 462 85.4 %

(b) Percentage gain in the number of answered queries compared to the baseline by
category.

LTLC+ LTLC− LTLF+ LTLF− Total

Fire-Count 0.0 % 3.0 % −0.6 % 2.6 % 2.5 %

Distance −0.4 % 3.5 % −1.4 % 2.8 % 2.8 %

Automaton 0.0 % 4.5 % −1.4 % 3.4 % 3.5 %

Automaton + Fire-Count 0.0 % 4.6 % −1.8 % 3.4 % 3.5 %

An alternative approach to this issue is presented in [29]. They explore an
under-approximation technique where the token counts in the initial marking
are reduced if individual places contain many tokens.

Combining Heuristics To determine whether different heuristics are comple-
mentary we also consider combining heuristics together by taking the sum of
two individual heuristics. We see the automaton-based heuristic as an exten-
sion of the distance-based heuristic, so we only consider the combination of the
automaton heuristic and the fire-count heuristic.

4.1 Evaluation

In this section we present experimental evaluation of the heuristics. The exper-
imental setup is as before: 15 min and 16 GiB of RAM per query. By parame-
ter search we determined that for the fire-count heuristic alone a threshold of
` = 500 worked best, and for combining the fire-count heuristic with the au-
tomaton heuristic a threshold of ` = 5000 worked best. These values are used
for the configurations involving the fire-count heuristic.

Figure 10 shows cactus plots for the different configurations of heuristics.
In Figure 10a we note that the fire-count heuristic takes a comparatively long
time to solve simpler queries. This may be because the heuristic starts by zero-
initialising an array of size |T |, the number of transitions in the net, and because
the heuristic has no effect before the threshold is met. For harder queries all the

32 N. J. Ulrik, S. M. Virenfeldt

11000 12000 13000 14000 15000 16000 17000
1

10

100

1000

Time (in seconds)

Baseline (n = 15902)

Fire-Count (n = 16297)

Distance (n = 16340)

Automaton (n = 16451)

Automaton + Fire-Count (n = 16462)

Virtual Best Solver (n = 16879)

(a) All answers slower than 1 s.

15000 15250 15500 15750 16000 16250 16500 16750

100

1000

20

30

40

60

200

300

400

600

Time (in seconds)

(b) Top 1500 answers.

Fig. 10: Cactus plots for heuristics.

Automata-Driven LTL Model Checking of Petri Nets 33

heuristics achieve gains, as can be seen clearly in Figure 10b. At the hardest
1500 queries, we see a similar trend as with the stubborn set methods where the
improvements mainly enable solving more problems before they become too dif-
ficult. The distance between the VBS and the actual techniques strongly suggest
that running different processes in parallel has great potential.

Table 2a shows the number of answers by category. There are no gains in the
positive cases which is expected since the heuristics only affect the search order
and in positive cases we have to explore the entire state space. Interestingly,
in the LTLC+ category nearly no answers are lost while in LTLF+ up to 13
answers are lost in the worst case. One explanation of this is the explosion in the
number of atomic propositions when expanding fireability atomic propositions
into cardinality atomic propositions. In the worst case each fireability atomic
proposition t could be unfolded into a disjunction of size 2 · |P | if for all places
p ∈ P we have W (p, t) > 0 and I(p, t) <∞. In that case computing the distance
dist(M,ϕ) may then become a significant task. The gains are similar between
LTLC− and LTLF−.

The single best configuration based on these experiments is the automaton
heuristic composed with the fire-count heuristic.

5 Performance Evaluation

In the following, we present experimental performance evaluation of the full
model checker, including stubborn sets and heuristics, as well as a comparison
against the state of the art LTL model checker ITS-LoLA, under the MCC’20
setup.

5.1 Combined Stubborn Sets and Heuristics

In this section we present experimental evaluation of combining the heuristics
and the stubborn sets. As previously, the experimental setup is 15 min and
16 GiB of RAM per query. Configurations are denoted using “[heuristic] + [stub-
born set]”. In these configurations, the state space is reduced using stubborn sets,
and the resulting set of transitions is ordered based on the heuristic. For exam-
ple, the configuration Automaton + Reachability describes a search guided by
the automaton heuristic in a state space reduced by the reachability stubborn
set method.

Table 3 lists results from evaluating combinations of the automaton heuris-
tic with the different stubborn set methods. The combination of the automaton
heuristic and the fire-count heuristic, which was previously determined to be
the single best heuristic, combined with mixed stubborn sets achieved a total
of 16 635 total answers, less than the automaton heuristic combined with mixed
stubborn sets which achieved 16 658 answers. We therefore omit this configura-
tion from further analysis. As expected based on the evaluation of stubborn sets,
the mixed stubborn set method answers the most queries, followed by the reach-
ability stubborn set method and the classic stubborn set method. Figure 11b

34 N. J. Ulrik, S. M. Virenfeldt

Table 3: Comparison of the performance gains from combining the automaton
heuristic with each of the stubborn set methods.

(a) Number of answers by category for combinations of automaton heuristic and its
variants with reachability and mixed stubborn set methods.

LTLC+ LTLC− LTLF+ LTLF− Total

Baseline 555 5708 703 8936 15 902 82.5 %

Automaton + Classic 559 5994 705 9260 16 518 85.7 %

Automaton + Reach 565 6022 705 9315 16 607 86.2 %

Automaton + Mixed 566 6039 716 9337 16 658 86.4 %

(b) Percentage gain in the number of answered queries compared to the baseline by
category.

LTLC+ LTLC− LTLF+ LTLF− Total

Automaton + Classic 0.7 % 5.0 % 0.3 % 3.6 % 3.9 %

Automaton + Reach 1.8 % 5.5 % 0.3 % 4.2 % 4.4 %

Automaton + Mixed 2.0 % 5.8 % 1.8 % 4.5 % 4.8 %

Table 4: Comparison of the individual performance gains from the mixed stub-
born set method and automaton heuristic with the performance gains from com-
bining the techniques.

(a) Number of answers by category.

LTLC+ LTLC− LTLF+ LTLF− Total

Baseline 555 5708 703 8936 15 902 82.5 %

Mixed Stubborn 566 5775 725 9058 16 124 83.7 %

Automaton Heuristic 555 5967 693 9236 16 451 85.4 %

Automaton + Mixed 566 6039 716 9337 16 658 86.4 %

(b) Percentage gain in the number of answered queries compared to the baseline by
category.

LTLC+ LTLC− LTLF+ LTLF− Total

Mixed Stubborn 2.0 % 1.2 % 3.1 % 1.4 % 1.4 %

Automaton Heuristic 0.0 % 4.5 % −1.4 % 3.4 % 3.5 %

Automaton + Mixed 2.0 % 5.8 % 1.8 % 4.5 % 4.8 %

Automata-Driven LTL Model Checking of Petri Nets 35

12000 13000 14000 15000 16000 17000
1

10

100

1000

Time (in seconds)

Baseline (n = 15902)

Automaton + Classic (n = 16518)

Automaton + Reach (n = 16607)

Automaton + Mixed (n = 16658)

Virtual Best Solver (n = 16886)

(a) All answers slower than 1 s.

15200 15400 15600 15800 16000 16200 16400 16600 16800

100

1000

20

30

40

60

200

300

400

600

Time (in seconds)

(b) Top 1500 answers.

Fig. 11: Cactus plots for combined heuristics and stubborn sets.

36 N. J. Ulrik, S. M. Virenfeldt

shows a similar trend as Figure 6 where the reachability method and mixed
method have similar profiles up to a point where they diverge at around 16 100.

Table 4 recounts the results from the mixed stubborn set method, the au-
tomaton heuristic and the combination Automaton + Mixed. The number of
answers gained by the combined technique over the baseline is approximately
equal to the sum of answers gained by the individual techniques—the mixed
stubborn set method gains 222 answers over the baseline, and the automaton
heuristic gains 549 answers over the baseline, while the combined method gains
756 answers, slightly less than 222 + 549 = 771.

In conclusion, the single best configuration is the combination of the mixed
stubborn set method with the automaton heuristic.

5.2 Evaluation Against State of the Art

To evaluate the performance of our LTL model checker, we compare our im-
plementation against ITS-LoLA [39,48], the winner of the LTL category of the
2020 edition of the Model Checking Contest (MCC) [26]. The evaluation is per-
formed following the setup of the MCC, and against the version of ITS-LoLA
submitted for the competition.2 Unlike in the previous evaluations we do not
remove trivially solved queries, so for each of the 1016 model instances there are
16 cardinality formulae and 16 fireability formulae. For each evaluation the tool
is allotted 16 GiB of memory and 4 CPU cores. The tool must then answer as
many of the 16 queries as possible within 1 h. We evaluate each tool on the total
number of answers.

We now describe in detail how we use the available resources. We perform
the verification of the 16 queries in four phases.

Phase 1: Parallel Simplification In the first phase we perform parallel simplifica-
tion. Here we run the query simplification as described in [6,42] on the 16 queries
in parallel, after which we perform structural reductions based on the methods
described in [42,7]. We run the parallel simplification for at most 17 min. The
query simplification may solve some queries outright, and if so we remove them
from the to-do list for the remaining phases.

Phase 2: Parallel Verification The second phase is the parallel verification phase.
Here we run through each query in the to-do list and try four different strategies
in parallel. We use this phase to try different heuristics in the hope that one
of them quickly finds a counterexample. As we saw in Figure 10 the VBS is
significantly better than the individual heuristics. In this phase we hope to win
some of that performance by running them in parallel. This phase is run for up
to 5 min for each of the remaining queries. The four strategies run in parallel
are:

– Distance heuristic,

2 Available at: https://mcc.lip6.fr/2020/results.php

https://mcc.lip6.fr/2020/results.php

Automata-Driven LTL Model Checking of Petri Nets 37

Table 5: Number of answers in the MCC setup.

LTLC+ LTLC− LTLF+ LTLF− Total

Baseline 5276 10 039 2855 11 818 29 988 92.3 %

Tapaal 5292 10 124 2878 11 931 30 225 93.0 %

ITS-LoLA 5204 9278 2664 10 133 27 277 84.0 %

– Automaton heuristic,
– Composed heuristic of automaton heuristic and log fire-count with a thresh-

old of 5000, and
– No heuristic but nested depth first search instead of Tarjan’s algorithm.

For the three strategies that use Tarjan’s algorithm we use the mixed stubborn
set method.

Phase 3: Sequential Verification After the parallel verification phase, we enter
the sequential verification phase, where a single verification job is run at a time,
but for a longer time. This is due to the 16 GiB memory restrictions which we
might exceed if we run multiple processes in parallel for a long time. This verifi-
cation job is run using our overall best configuration, namely the mixed stubborn
set method using the automaton based heuristic. The idea in this phase is that in
order to determine that there is no counterexample we have to explore the entire
state space. This likely requires a large amount of time and memory, especially
since these are formulae that were not solved in previous, shorter phases. In
this phase we use a dynamic timeout based on the remaining time available and

queries still to be solved. We run each query for max
(

8 min, Remaining time
Remaining queries

)
,

evaluated at the start of each query. As such if some queries are solved quickly,
the remaining are allotted a bit more time.

Phase 4: Random Verification If there happens to be any more time left after
the sequential verification phase, and there still are some queries which have not
been answered the final phase is the random verification phase. In this phase we
run 4 random searches in parallel on each of the remaining queries in turn for
Remaining time

Remaining queries each. We repeat this until either all queries have been answered
or we run out of time.

The baseline configuration runs the same scheduling algorithm but using
different configurations. The sequential step is done without any stubborn set
reductions or heuristics, and instead of various heuristics the parallel verification
phase is done using a mix of random and non-random Tarjan’s algorithm [20]
and NDFS [11].

Results Table 5 shows the number of answers in the MCC setup. Tapaal and
ITS-LoLA disagree on 25 queries. There is no official ground truth for the MCC
dataset, but Thierry-Mieg maintains a repository of trusted answers from the

38 N. J. Ulrik, S. M. Virenfeldt

competition, which is updated in case an answer is found to have been wrong or
uncertain [41]. This repository only contains answers for queries for which there
were determined a trusted answer [26], so not all queries have answers. Out of
the 25 disagreements the trusted answers assigns 4 errors to us in the fireability
category and assigns to ITS-LoLA 8 errors in the fireability category and 5 errors
in the cardinality category. Since both tools disagree with the trusted answers
neither are infallible so we remove these 25 queries from the dataset. There is a
disagreement between the baseline and ITS-LoLA on 1 cardinality query and 1
fireability query. These have also been removed from the dataset. There are no
disagreements between baseline and Tapaal. This leaves us with a dataset of
32 485 queries.

Tapaal outperforms ITS-LoLA with a margin of around 3000 queries, a
percentage increase of 10.8 %, a significant improvement compared to state of
the art. This margin corresponds to solving 56.8 % of queries not solved by ITS-
LoLA. Secondly we see that while Tapaal performs better in all categories, most
of our performance improvement stems from queries containing a counterexam-
ple. This is in line with the results we have seen above where the techniques
introduced in this thesis mainly affected the number of counterexamples found,
and only to a lesser degree the number of positive answers. Considering that
heuristics only affect negative queries this is expected. Furthermore, ITS-LoLA
employs multiple techniques that assist in the positive cases [48,40]. They use
the same classic stubborn set method as we do [45] and they also use structural
reductions [40], but unlike us they use symmetry reductions [35,36], allowing for
further state space reductions.

Looking at baseline versus Tapaal we note that the improvement of Tapaal
is smaller than noted in previous, single-query experiments. One hypothesis is
that the random searches and use of NDFS in the parallel step of the baseline
help make up much of the difference otherwise gained via heuristics. This would
be consistent with smaller gains in negative answers than previously and similar
gains in positive answers, which are likely due to the partial order reductions.
Still, for practical applications the performance of a single setup is important,
and we are therefore of the opinion that the presented techniques display a
significant improvement.

6 Conclusion

We presented a novel automaton-based stubborn set technique and automaton-
based heuristics for guided search that are suitable for Linear Temporal Logic
(LTL) model checking of Petri nets. The stubborn set method is a variant of
reachability-preserving stubborn set methods where we consider outgoing edges
in the Nondeterministic Büchi Automaton (NBA) as a reachability problem un-
der certain conditions. It improves on the classic stubborn set method [44] by
allowing arbitrary LTL formulae rather than only next-free formulae. We also
presented several heuristics for guided search of model checking LTL on Petri
nets. The automaton-based heuristic is based on an adaptation of the heuristics

Automata-Driven LTL Model Checking of Petri Nets 39

for reachability analysis in [25] to LTL, with the modification that local informa-
tion in the NBA is used. We also considered the adapted heuristic without using
local information. Lastly we presented a heuristic based on punishing firing the
same transition too many times to encourage exploring different aspects of the
model.

We implemented these heuristics and the stubborn set method along with
an implementation of the classic stubborn set method [44] as an extension to
the open source model checking backend verifypn [25] for Tapaal [12]. Based
on this implementation we experimentally evaluated the techniques using the
dataset from the 2020 edition of the Model Checking Contest (MCC) [26], which
after removing trivially solved queries contains 19 274 queries. We found that the
reachability stubborn set method solved 16 085 (83.5 %) queries while the classic
stubborn set method solved 16 003 (83.0 %). The baseline solved 15 902 (82.5 %)
queries, meaning that the reachability stubborn set method gains nearly twice as
many answers compared to the baseline as the classic stubborn set method. The
adapted heuristic without local information solved 16 340 (84.8 %) queries while
the automaton-based heuristic solved 16 451 (85.4 %), demonstrating an advan-
tage to using local information. The heuristic punishing firing the same transition
too many times answered 16 297 (84.6 %) queries, less than the distance-based
heuristic.

To find a single best configuration using these techniques, we evaluated com-
binations of the stubborn set methods and the NBA based heuristic. When com-
bined with the automaton heuristic, the classic stubborn set method answered
16 518 (85.7 %) of queries, the reachability stubborn set method answered 16 607
(86.2 %) of queries, and the mixed stubborn set method answered 16 658 (86.4 %)
of queries. We found that the combined automaton and fire-count heuristic with
the mixed stubborn set answered 16 635 (86.3 %) queries, less than the same
configuration without the fire-count heuristic. We also found that the individual
gains from stubborn sets and heuristics are approximately additive. The mixed
stubborn set method gains 222 answers over the baseline, and the automaton
heuristic gains 549 answers over the baseline, while the combination gains 756
answers, slightly less than 222 + 549 = 771. This is a percentage increase of
4.8 % over the baseline in number of answers, illustrating that the novel tech-
niques we have introduced improves the performance of the LTL model checker
in verifypn.

To evaluate the real world performance of the techniques presented in this
thesis we compare against ITS-LoLA [39,48], the winner of the 2020 edition of the
MCC [26]. As dataset we used the full MCC’20 dataset but discarded 27 queries
where Tapaal and ITS-LoLA disagreed on the answer. On the resulting dataset
of 32 485 queries, the new model checker solved 30 225 (93.0 %) queries while
ITS-LoLA solved 27 277 (84.0 %) queries, a improvement of 10.8 % by Tapaal,
and a reduction of unsolved queries by 56.8 % compared to ITS-LoLA.

We thus conclude that the techniques presented in this thesis shows signifi-
cant performance gain, and with these improvements the LTL-engine of Tapaal
is among state of the art.

40 N. J. Ulrik, S. M. Virenfeldt

Future Work A line of inquiry into the reachability stubborn set method is
to expand the set Reach(A) of reachability states beyond those whose edges
form a tautology or perhaps even into accepting states, which would make the
method applicable in a wider range of typical LTL properties. There may also
be better ideas for how to handle unsafe actions, either generating them in a
different way or taking less extreme recovery actions than setting St(s, q) to the
set of all actions. Stubborn set methods that target other structural properties of
NBAs, such as weak NBAs or other properties related to connected components,
are prospective directions for more specialised automaton-based methods. For
heuristics, interesting questions include investigating other fire-count penalty
functions than the logarithm, and heuristics which also apply in the accepting
states of the NBA. Other ways of prioritising the NBA than BFS may also be of
interest. Lastly, the algorithms used for generating NBAs may exhibit properties
or patterns that are exploitable for smarter techniques.

References

1. Babiak, T., Křet́ınskỳ, M., Řehák, V., Strejček, J.: LTL to büchi automata trans-
lation: Fast and more deterministic. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 95–109. Springer
(2012)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press (2008)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: International conference on tools and algorithms for the construction
and analysis of systems. pp. 193–207. Springer (1999)

4. Bønneland, F., Jensen, P., Larsen, K., Muniz, M., Srba, J.: Start pruning when
time gets urgent: Partial order reduction for timed systems. In: Proceedings of the
30th International Conference on Computer Aided Verification (CAV’18). LNCS,
vol. 10981, pp. 527–546. Springer-Verlag (2018). https://doi.org/10.1007/978-3-
319-96145-3 28

5. Bønneland, F., Jensen, P., Larsen, K., Muniz, M., Srba, J.: Stubborn set reduction
for two-player reachability games. Logical Methods in Computer Science 17(1),
1–26 (2021)

6. Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simplification of
CTL formulae for efficient model checking of Petri nets. In: International Con-
ference on Applications and Theory of Petri Nets and Concurrency. pp. 143–163.
Springer (2018)

7. Bønneland, F.M., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Stubborn versus
structural reductions for petri nets. Journal of Logical and Algebraic Methods in
Programming 102, 46–63 (Jan 2019). https://doi.org/10.1016/j.jlamp.2018.09.002,
https://doi.org/10.1016/j.jlamp.2018.09.002

8. Brain, M., Davenport, J.H., Griggio, A.: Benchmarking solvers, SAT-style. In:
SC2@ ISSAC (2017)

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and computation 98(2), 142–170
(1992)

https://doi.org/10.1007/978-3-319-96145-3_28
https://doi.org/10.1007/978-3-319-96145-3_28
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1016/j.jlamp.2018.09.002

Automata-Driven LTL Model Checking of Petri Nets 41

10. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Computer Aided Verification, pp. 147–158. Springer Berlin Hei-
delberg (1998). https://doi.org/10.1007/bfb0028741, https://doi.org/10.1007/
bfb0028741

11. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal methods in system design
1(2-3), 275–288 (1992)

12. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K., Møller, M., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Proceedings of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS‘12). LNCS, vol. 7214, p. 492–497.
Springer-Verlag (2012)

13. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Proceedings of
the 14th International Symposium on Automated Technology for Verification and
Analysis (ATVA’16). Lecture Notes in Computer Science, vol. 9938, pp. 122–129.
Springer (oct 2016). https://doi.org/10.1007/978-3-319-46520-3 8

14. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Interna-
tional SPIN Workshop on Model Checking of Software. pp. 1–18. Springer (2006)

15. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: International SPIN Workshop on Model Checking of Software. pp. 57–79.
Springer (2001)

16. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.:
Survey on directed model checking. In: International Workshop on Model Checking
and Artificial Intelligence. pp. 65–89. Springer (2008)

17. Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. In:
International Colloquium on Automata, Languages, and Programming. pp. 475–
486. Springer (2000)

18. Esparza, J., Křet́ınskỳ, J., Sickert, S.: One theorem to rule them all: A unified trans-
lation of LTL into ω-automata. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. pp. 384–393 (2018)

19. Esparza, J., Schröter, C.: Net reductions for LTL model-checking. In: Lec-
ture Notes in Computer Science, pp. 310–324. Springer Berlin Heidel-
berg (2001). https://doi.org/10.1007/3-540-44798-9 25, https://doi.org/10.

1007/3-540-44798-9_25

20. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tar-
jan’s algorithm. Theoretical Computer Science 345(1), 60–82 (2005)

21. Godefroid, P.: Using partial orders to improve automatic verification method. In:
International Conference on Computer Aided Verification. pp. 176–185. Springer
(1990). https://doi.org/10.1007/BFb0023731

22. Hansen, H., Lin, S.W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: Partial order reduction for timed automata with abstractions. In: Interna-
tional Conference on Computer Aided Verification. pp. 391–406. Springer (2014)

23. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley (2003)

24. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on software engi-
neering 23(5), 279–295 (1997)

25. Jensen, J., Nielsen, T., Østergaard, L., Srba, J.: TAPAAL and reachability analysis
of P/T nets. LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) 9930, 307–318 (2016). https://doi.org/10.1007/978-3-662-53401-4 16

https://doi.org/10.1007/bfb0028741
https://doi.org/10.1007/bfb0028741
https://doi.org/10.1007/bfb0028741
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/3-540-44798-9_25
https://doi.org/10.1007/3-540-44798-9_25
https://doi.org/10.1007/3-540-44798-9_25
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/978-3-662-53401-4_16

42 N. J. Ulrik, S. M. Virenfeldt

26. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Amparore, E.,
Berthomieu, B., Biswal, S., Donatelli, D., Galla, F., Ciardo, G., Dal Zilio, S.,
Jensen, P., He, C., Le Botlan, D., Li, S., Miner, A., Srba, J., Thierry-Mieg,
Y.: Complete Results for the 2020 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2020/results.php (June 2020)

27. Lehmann, A., Lohmann, N., Wolf, K.: Stubborn sets for simple linear time prop-
erties. In: International Conference on Application and Theory of Petri Nets and
Concurrency. pp. 228–247. Springer (2012)

28. Liebke, T.: Büchi-automata guided partial order reduction for LTL. In: PNSE@
Petri Nets. pp. 147–166 (2020)

29. Liebke, T., Wolf, K.: Verification of token-scaling models using an under-
approximation (2020)

30. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-
fication of asynchronous circuits. In: International Conference on Computer Aided
Verification. pp. 164–177. Springer (1992)

31. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

32. Peled, D.: All from one, one for all: on model checking using represen-
tatives. In: Computer Aided Verification, pp. 409–423. Springer Berlin Hei-
delberg (1993). https://doi.org/10.1007/3-540-56922-7 34, https://doi.org/10.

1007/3-540-56922-7_34

33. Petri, C.A.: Communication with automata. Ph.D. thesis, Universität Hamburg
(1966)

34. Schmidt, K.: Stubborn sets for standard properties. In: Lecture Notes in Computer
Science, pp. 46–65. Springer Berlin Heidelberg (1999). https://doi.org/10.1007/3-
540-48745-x 4, https://doi.org/10.1007/3-540-48745-x_4

35. Schmidt, K.: How to calculate symmetries of Petri nets. Acta Informatica 36(7),
545–590 (2000)

36. Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf,
S., Schwartzbach, M. (eds.) Tools and Algorithms for the Construction and Analy-
sis of Systems. pp. 315–330. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

37. Schmidt, K.: Narrowing Petri net state spaces using the state equation. Funda-
menta Informaticae 47(3-4), 325–335 (2001)

38. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2), 146–160 (Jun 1972). https://doi.org/10.1137/0201010, https:

//doi.org/10.1137/0201010

39. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Tools and Al-
gorithms for the Construction and Analysis of Systems, pp. 231–237. Springer
Berlin Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 20, https:

//doi.org/10.1007/978-3-662-46681-0_20

40. Thierry-Mieg, Y.: Structural reductions revisited (2020)

41. Thierry-Mieg, Y.: pnmcc-models-2020. https://github.com/yanntm/

pnmcc-models-2020 (2021), accessed: 2021-05-26

42. Ulrik, N.J., Virenfeldt, S.M.: Extending TAPAAL with LTL model checking. Tech.
rep., Aalborg University (2020)

43. Valmari, A.: Stubborn sets for reduced state space generation. In: International
Conference on Application and Theory of Petri Nets. pp. 491–515. Springer (1989)

44. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System
Design 1(4), 297–322 (1992)

https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-48745-x_4
https://doi.org/10.1007/3-540-48745-x_4
https://doi.org/10.1007/3-540-48745-x_4
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-662-46681-0_20
https://github.com/yanntm/pnmcc-models-2020
https://github.com/yanntm/pnmcc-models-2020

Automata-Driven LTL Model Checking of Petri Nets 43

45. Valmari, A.: The state explosion problem. In: Lectures on Petri Nets I: Basic Mod-
els, pp. 429–528. Springer Berlin Heidelberg (1998). https://doi.org/10.1007/3-540-
65306-6 21, https://doi.org/10.1007/3-540-65306-6_21

46. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Model Check-
ing Software, pp. 225–243. Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-32582-8 16, https://doi.org/10.1007/

978-3-319-32582-8_16

47. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Lecture
Notes in Computer Science, pp. 137–150. Springer Berlin Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69738-1 10, https://doi.org/10.1007/

978-3-540-69738-1_10

48. Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux,
O.H. (eds.) Application and Theory of Petri Nets and Concurrency. pp. 351–362.
Springer International Publishing, Cham (2018)

https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.1007/978-3-540-69738-1_10

