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Synopsis:

Supermarket refrigeration systems are re-
sponsible for maintaining a constant tem-
perature to preserve the quality of the
goods. Failure in these appliances can lead
to economical losses and food spoilage.
However, manually monitoring the sys-
tems is inconvenient and expensive. The
objective of this thesis is therefore to use
fault detection for determining the status
of the systems and predict the failure be-
fore changes occur in the system.

To solve this problem, a Support Vector
Machine classifier (SVM) has been devel-
oped, using data from a simulation, to pre-
dict the state of the system in real-time.
Prior to the classification, the data has
been preprocessed by reducing its dimen-
sions to facilitate the work of the classi-
fier using Principal Component Analysis
(PCA) and Linear Discriminant Analysis
(LDA).

Several tests have been carried out to
verify the performance of the developed
methods under different initial conditions
and faults in the system. It can be con-
cluded from the results that LDA is the
superior method for dimensionality reduc-
tion in this application and SVM is a feasi-
ble solution for automatic fault detection
having close or equal to 100% accuracy in
most tests.

The content of this report is freely accessible, but publication (with source reference) may only be

done with the authors authorization.
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Preface

This thesis is written by two students at Aalborg University in their 4" semester of
Control and Automation Master’s degree. The focus of the thesis is fault detection
for supermarket refrigerant systems using machine learning methods.

The report’s structure is build up of 9 chapters, starting with an introduction and
ending with a conclusion, discussion and future works. All the literature and sources
used throughout the report can be found in the bibliography, along with a list of
figures and tables. The appendix can be found at the end of the report, containing
the MATLAB codes and a table of the newly simulated data parameters used for
the tests.

Special thanks to Jan Dimon Bendtsen, John-Josef Leth and Zahra Sadat Nour-
bakhsh Soltani for their supervision and guidance throughout this period. Addi-
tionally, thanks to Bitzer Electronics A/S for providing the data and simulation
necessary for this thesis.

Antonio Javier Martin Garcia Gowsikan Sathiyaseelan
amartil9@student.aau.dk Gsathil6@student.aau.dk
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Mathematical notation

In order to encourage a proper understanding of the mathematical contents, consis-
tency of the notations has been kept throughout the report. Furthermore to avoid
confusion with normal letters all mathematical symbols are written in italic. A list
of all the symbols used throughout the whole report can be found in Table|0.1|below.
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Table 0.1: List of all the mathematical symbols and their description

Symbol ‘ Description
x Lowercase variables are vectors
X Uppercase variables are matrices
z A variable with a bar is the mean of said variable
D Number of dimensions
M Number of dimensions the data is reduced to
N Number of samples
Ng, Number of support vectore
n=1,2,...,N | Subscript n is the sample index
t=1,2,...,D | Subscript i is the dimension index
T Superscript T is the transpose of x
o Standard deviation
z Standardised data
S Covariance matrix
u Eigenvector
U Transformation matrix
A Eigenvalues
41542 Mean of the different classes
Sp Between class covariance matrix
S Within class covariance matrix
w Eigenvector in LDA method
J(w) Function for maximising the separation and minimising the variance
Y Projected data
W Transformation matrix
w Coefficient of the line / weight vector of the SVM hyperplane
Sy Support vectors
b Bias of SVM hyperplane
L Lagrangian
t Target value
a Lagrangian multiplier
19 Slack variable
T New observation
C Uppercase C determines the restriction of SVM
c Lowercase c is the number of classes
K Kernel function
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Acronyms

A AU Aalborg University

CNN Convolutional Neural Network
DAGSVM Directed Acyclic Graph SVM
FDA Flexible Discriminant Analysis

LD Linear Discriminant

LDA Linear Discriminant Analysis
MANOVA Multivariate Analysis of Variance
PC Principal Components

PCA Principal Component Analysis
P-H Pressure Enthalpy

PoV Proportion of Variance

QDA Quadratic Discriminant Analysis
RDA Regularized Discriminant Analysis
SRS Supermarket Refrigerant System
SSS Small Sample Size

SVD Singular Value Decomposition

SVM Support Vector Machine
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CHAPTER

Introduction

Refrigerated goods are greatly influenced by the temperature they are stored at,
which is why inconsistencies in the temperature can reduce the quality of the prod-
ucts and lead to food spoilage. A Supermarket Refrigeration System (SRS) is there-
fore an important appliance used to keep the goods from going bad. However, it
can occasionally fail at times, which can lead to economical losses for the stores and
have health issues for the customers who consume these products. The problems
commonly occurring on SRSs can be from faults in the condensing unit or evapo-
rator side and in some cases be caused by evaporator fan faults which are due to
either reduced speed or a defective fan. These issues can be detected by implement-
ing automatic fault detection on the SRS which would give an early warning before
the goods are affected. Early fault detection would allow for the products to be
transferred to another cold storage unit or for a technician to arrive and solve the
issue before it affects the temperature. This way the loss can be kept at a minimum
and the problem can be solved quickly.

A SRS without any automatic fault detection has to be manually monitored by
measuring its temperature to detect whether the system is faulty. This type of
diagnosis and detection is undesirable as it is heavily dependent on humans to check
whether the temperature deviates from the set point. It is an unreliable approach as
it requires to be periodically monitored by someone to ensure that a faulty system
does not go unseen. Even if a faulty system is detected using this method, it would
still be too late as the integrity of the products have been compromised due to the
temperature difference in the storage units.

This project was proposed by Bitzer Electronics, a refrigeration and air conditioning
company that has been working in the field for 86 years. Their goal is to ensure
reliable and efficient systems for their customers. Bitzer Electronics also specialises
in other areas of the cold chain such as reefer containers and reefer trucks which are

1of




Chapter 1. Introduction

used throughout the whole delivery process of goods. They also produce household
refrigeration systems and controllers for different industrial refrigeration systems.
Ecostar is the condensing unit they produce for SRSs. The company’s other objec-
tive is in the development of a proper automatic fault detecting model. As manual
human detection is costly and time-consuming.

The main focus of this thesis is therefore in the development and implementation of
an automatic fault detection method for SRSs as it is relevant for having a reliable
system. The goal is to have a method which is applicable for a variety of SRSs as
they can differ in sizes, components and capacities depending on the supermarkets’
requirements. The weather conditions can also have an affect on the condensing
units. It is therefore desired to have a method which is robust enough to take all of
these factors into account.

The availability of data from SRSs encourages the usage of feature extraction and
dimensionality reduction methods for analysing which parameters are most infor-
mative for fault detection. For this purpose, machine learning methods such as
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) can
be implemented. In addition, the company has provided an ECOSTAR simulation
model which can be altered by changing its parameters to represent different fault
scenarios in the system. The extracted data from the model can then be used to
identify which feature extraction method is best suited for finding faults for a wide
range of systems.

It is also necessary to use a method for classifying the data. As the feature extraction
methods only show the most prominent variables. One of the methods which could
be used for the classification is a Convolutional Neural Network (CNN) which is
based on deep learning. Meaning that it can be trained to recognise the difference
between a faulty and non-faulty system. The other method involves Support Vector
Machine (SVM) which requires less data than a CNN for classification as it separates
the data from different classes and can thereby distinguish between a faulty and non-
faulty system. In this thesis it has been chosen to work with SVM for classifying
the data.
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1.1. Problem Statement Chapter 1. Introduction

1.1 Problem Statement

The intended outcome of this thesis is to develop and implement automatic fault
detection for a SRS.

The current issue with a SRS is that it is too expensive to manually monitor all the
variables from the system. It is therefore only reasonable to monitor the variables
which directly affect the temperature. This causes a late detection of malfunction
in the system which compromises the quality of the goods. It is therefore instead
desired to detect any faults as early as possible using the collected data from the
different sensors throughout the system. As it is imperative to maintain a consistent
temperature throughout the whole system in order to avoid food spoilage and keep
the goods in their optimal condition.

The end goal of this project is to use and compare different feature extraction meth-
ods on data from the system to analyse which of them is best suited for extracting
important features for classifying a faulty SRS. The most commonly used meth-
ods for this purpose are PCA and LDA which are known for their dimensionality
reduction. Reducing the data is a necessity as the fault detection needs to work
in real-time, since processing a lot of data would be time-consuming due to heavy
computations. The reduced data can then be classified using SVM.
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CHAPTER

System Overview

The following chapter describes the refrigeration process in detail and explains its
relation to the P-H diagram. Furthermore, the data and simulation received from
Bitzer Electronics are also described.

2.1 Description of the refrigeration process

In order to maintain adequate conditions for food in supermarkets, it is necessary to
have precise control of the temperature and environment in which they are stored.
Inadequate temperatures can lead to food degradation, energy expenditure, etc.
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Figure 2.1: Schematic of a refrigeration system used [1]
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2.1. Description of the refrigeration process Chapter 2. System Overview

Refrigeration systems based on heat transfer are used to control the temperature in
supermarkets. They can vary from one system to another, however, they normally
work by extracting the heat from the cold room and expelling it to the environment
[1] [2]. For this process, the refrigerant liquid changes its state between liquid
and vapour in the different phases that take place: evaporation in the cold room
and condensation during dissipation to the outside. An overview of the SRS by
Bitzer Electronics can be seen in Figure 2.1} It is composed of two main parts;
a condensing unit and an industrial evaporator in the cold room, each with its
corresponding controller: Ctrlcong and Ctrig,q, respectively. The first controller is
connected to a series of sensors allowing for control over the speed of the condenser
fan and compressor (V,,,), which controls the temperature in the cooling room.

The second controller is in charge of regulating the evaporator fan and expansion
valve. Depending on the opening degree of the expansion valve the flow of cooling
liquid can be increased or decreased allowing for more or less transfer of heat from
the room to the liquid. Increasing the evaporator fan speed allows for more airflow
to the evaporating surface and thereby produces more heat transfer.

Failures in this section of the system, more specifically in the evaporator fan, can lead
to uneven temperatures in certain areas of the cold room, which can compromise the
quality of the goods. When the evaporator fan malfunctions, it implies that there
is a reduction in the airflow and consequently a reduction in heat transfer. Faced
with this situation, the Ctrig,q, increases the temperature difference between the
coolant and the air, so that the desired room temperature is maintained. This has a
series of effects on some of the measured variables, such as suction pressure (Ps,.),
vapour density (p,), etc. which results in the compressor having to work harder to
maintain the volumetric flow constant. This can be analysed from certain variables
which can determine when a fault is occurring, but not all the variables are always
accessible, so a different selection of the key features are necessary depending on the
refrigeration system parameters available.
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Chapter 2. System Overview 2.2. P-H diagram

2.2 P-H diagram

The pressure enthalpy diagram (log P-H diagram) is a graphical representation of
states of fluids showing an overview of their behaviour under different conditions. It
is a valuable diagram specifically made for different refrigerants from which thermal-
dynamical properties can be deduced.
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Figure 2.2: Illustation of the different phases on a P-H diagram [3]

A P-H diagram is a representation with a y-axis of absolute pressure and a x-axis of
specific enthalpy. The enthalpy is typically measured in joule per kilograms (.J/Kg)
or Btu/lb while the pressure is in Pascal (Pa) units or pounds per square inch (psi).
The P-H diagram contains a mixed region stretching from a saturated liquid on
the left to a saturated vapour on the right as seen in Figure 2.2 The point they
meet at the top is known as the “critical point” which is where the refrigerant can
experience the highest temperature and remain in a liquid state. If the temperature
increases beyond the critical point the refrigerant would only exist in a vapour state
regardless of the pressure [4].

The diagram can be seen as a map indicating a refrigerants different thermodynamic
states. The left side of the saturated liquid line has a low specific enthalpy indicating
an area where the fluid is in a liquid phase (sub-cooled liquid). However, to the right
of the saturated vapour line the enthalpy is high and the fluid is in a vaporous state
(super-heated vapour). The mixed region delimited by the saturated liquid and
vapour lines describe a mixture of both states. Meaning that most of the left side
of the mixed region is in a liquid state while only a small part is in a vaporous

60f



2.2. P-H diagram Chapter 2. System Overview

state. While vice versa for the right side of the mixed region as it is predominantly
in a vaporous state with a small amount being in a liquid state. The horizontal
lines inside the mixed region seen in Figure [2.2]indicate the constant vapour content
known as “quality” which is a measure of the ratio of vapour mass and the total
mass. In other words, if a refrigerant moves from left to right inside the mixed region
the quality increases and the fluid is evaporating. Whereas if it is moving from right
to left the refrigerant is condensing and the quality decreases [3].
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Figure 2.3: The refrigeration cycle on a P-H diagram

The lines of constant temperature (isothermal lines) are vertical in the sub-cooled
liquid region, horizontal in the mixed region, and drop steeply towards the enthalpy
axis in the superheated vapour region. The constant pressure lines (isobaric lines)
are parallel to the x-axis which can be seen in Figure [2.3

A refrigeration cycle generally consists of four major components evaporator, com-
pressor, condenser and expansion valve. At point “A” in Figure the refrigerant
is in a partial liquid-vapour state where the temperature, pressure and enthalpy are
all low. To move from point “A” to “B” the evaporator transfers heat to the refrig-
erant converting the remaining liquid to vapour. The ideal evaporator coverts 100
% of the liquid to vapour and nothing more as the refrigerant would be superheated
if the temperature increases beyond that which is undesirable as the temperature
and pressure should remain constant while only the enthalpy should increase in the
evaporator.

7of



Chapter 2. System Overview 2.2. P-H diagram

The refrigerant vapour at point “B” has a lot of heat but with a low temperature
and pressure, so in order to go from point “B” to “C” the refrigerant is compressed
using a compressor which increases the temperature and pressure without adding
any heat which is known as an “adiabatic process”.

At point “C” it is a hot, high-pressure refrigerant vapour. Once the refrigerant
goes from point “C” to “D”. It is first cooled through the condenser which coverts
the vapour to a liquid by dispensing the heat. If the temperature decreases the
refrigerant ends up being sub-cooled which is not ideal for the condenser. It is
desirable to remove the same amount of heat added by the evaporator process while
still retaining the same temperature and pressure.

The last step in the refrigeration cycle is the expansion valve which main goal is
to lower the pressure, and in turn make it possible to go from point “D” to “A”
again as the temperature decreases along with the pressure drop while the enthalpy
stays the same. Thereby ending up with a cold refrigerant. This is the theoretical
explanation of the refrigeration cycle which might differ in real life due to limitations
of equipment’s [5].
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2.3. Data from Bitzer Electronics Chapter 2. System Overview

2.3 Data from Bitzer Electronics

In this section, there will be a description of the data provided by Bitzer Electronics.
This data has been collected using the simulation described in Section [2.4] modifying
certain parameters from one experiment to another. All the variables used for the
simulation will be explained in this section including the ones used to develop the
proposed methodology in Section [I.1} The main features from this data will be
extracted through PCA / LDA dimensionality reduction methods and subsequently
be used for training the SVM classifier.

The folder provided by Bitzer Electronics contains a total of 115 different experi-
ments, with their corresponding figures in which a total of 10 different variables are
shown. An example of one of these experiments, showing the variables can be seen

in Figure [2.4]
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Figure 2.4: Example of a figure with the data provided by Bitzer Electronics, show-
ing Non-Faulty and Faulty operating data

In this figure a total of 19 variables are represented, however, only 10 different
variables can be distinguished. This is because in the representation of the variables,
those that share the same name but are distinguished in the labels (for example,
Cpr — fault | Cpr —real), are superimposed on the graph. In this project, only the
variables labelled as “fault” have been used, including the variables without any
second label (T, T, etc.), since they are not superimposed.
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Chapter 2. System Overview 2.3. Data from Bitzer Electronics

Each variable contains data of both a working and faulty system. As the first 6000
observations (from sample 1 to 6000) belong to a correctly functioning system, while
the next 6000 samples (from sample 6001 to 12000) belong to a faulty system. This
can be seen in Figure where after sample 6000 a change in the trend is observed
for all the variables.

The files generated by the simulation contain a struct variable with all the variables
which interact with the simulation. This struct consists of data from both the sim-
ulated variables, as well as useful information of the different tests performed. This
information includes the test number, ambient temperature, HeatLoad, tempera-
ture setpoint (T), start and end samples for the tests, as well as the start sample
for the faulty data, labels for the faulty/non-faulty samples, error message and a
time variable.

Apart from this, the remaining variables include the O f fset/Scale for the different
faults and the data for the variables. Due to some of these variables being super-
imposed, as mentioned before, only the following variables will be studied from the
simulations: Tret, Touc, Tais; 1o, Tsny Tty Toups Psucs Pais, Cpr, Veap, EvapFanSpeed,
CondFanSpeed.

The 115 different tests are divided into groups of 6 tests for each faulty signal,
varying in the HeatLoad (1000, 2000, 4000, 13000, 17000, 20000), Ty (0, 7, 12)
and O f fset/Scale values as seen in Table This table is however for the newly
simulated data but the same principle applies with the only difference being the
Of fset/Scale values and the sample size.

The HeatLoad parameter represents the amount of work done by the compressor.
Figure shows a comparison between tests with a low and high HeatLoad param-
eters. A value of O(10%) leads to results with very large oscillations in the variables
compared to data obtained with values of O(10%).
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2.3. Data from Bitzer Electronics Chapter 2. System Overview
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Figure 2.5: Comparison of two datasets with different heatload parameters. The
top subplot being at 1000 and the bottom subplot being at 13000
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Chapter 2. System Overview 2.4. Simulation

2.4 Simulation

Bitzer Electronics has provided a simulation model of their “ECOSTAR” system,
which is one of their supermarket condensing units. The model is specifically made
for one of their available “ECOSTAR” models but can however be altered to pro-
duce data representative of a variety of different models. The simulation has been
prepared to simulate a wide range of faults making it possible to produce both faulty
and non-faulty data for different areas of the system.

The simulation model is made in MATLAB using Simulink as seen in Figure [2.6]
Allowing the user to change certain parameters and plot a simulated diagram illus-
trating how the data from the sensors would look like under the specified conditions
similar to Figure in the previous section.

Condensor

Evaporator

T : 1
s mia|

Figure 2.6: The simulation model used in MATLAB

The way the simulation works is by using a MATLAB-script which takes an excel
file as input for the system. This file contains all the parameters which are con-
figurable by the user. The first couple of variables are related to the simulation
plot (Startsaempie; Faultsampie; Endsample) and the general system itself (Ter, Tomp,
HeatLoad). While the last variables are related to the faults which can be simu-
lated using the model (TsucOffseta T'retOffseta TdisOffset; PdisOffset; Cp,rScale; ExUScalea
EvapFangeqe, CondFangeq.). These faults are either temperature/pressure offsets
or malfunctioning/underperforming parts in the system, which can be due to fan
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2.4. Simulation Chapter 2. System Overview

faults, blocked valve, lack of refrigerant or wear over time. Once the system pa-
rameters have been specified in the file the simulation can be run. The output data
from that test is then collected in a “struct” and plotted in a graph as mentioned
in Section 2.3l

The simulation model gives the user the freedom to specify the faults and the severity
of these faults which can be beneficial when creating a system for fault detecting
especially when the real SRS is not accessible. An explanation of all the variables
used in the simulation and the data from Bitzer Electronics can be found in Table
2.1} Instead of using the data provided by Bitzer Electronics new simulations have
been created based on more realistic offsets and scales which can be seen in Appendix

Table Bl
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2.4. Simulation

Table 2.1: List of symbols with their description and units.

Symbol Description Unit
Toet Setpoint temperature [°C]
T. Condensing temperature [°C]
T, Superheat temperature [°C]
Troom Cooling room temperature (sensor) [°C]
Tamb Ambient temperature (sensor) [°C]
Tsue Suction temperature (sensor) [°C]
To Evaporation temperature (sensor) [°C]
Tis Discharge temperature (sensor) [°C]
Tret Returned air temperature (sensor) [°C]
Toup Supplied air temperature (sensor) [°C]
Py Suction pressure (sensor) [bar]
Pyis Discharge pressure [bar]
Irc Converter current [A]
FC Frequency converter [—]
Ctrigyap Evaporator controller [—]
Ctrlcond Condenser controller [—]
Cpr Compressor [—]
Vep Expansion valve [—]
EvapFanSpeed Evaporator fan speed [—]
CondFanSpeed Condenser fan speed [—]
HeatLoad Compressor work (W]
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CHAPTER

Theory

This chapter describes the theory behind the different dimensionality reduction and
classification methods. Each of the dimensionality reduction methods are divided
into steps, key issues and adaptations. Continuing with a comparison between both
methods. Lastly the chapter ends with a description of the classifier for both linear
and non-linear cases.

3.1 PCA

Principal Component Analysis (PCA) is a data analysis method used to emphasise
variation and bring out patterns in data. It transforms data into a lower dimension
while maintaining the main characteristics of it. It reduces the data by geometrically
projecting them onto lower dimensions known as Principal Components (PC’s) and
tries to find the best description of the data using as few PC’s as possible.

The first PC, which accounts for the most variation, is chosen by minimising the
total distance of the data and their projection to the PC. Minimising the distance
to the PC also means that the variance of the projected points is maximised (o)
[6]. The second and subsequent PC’s are selected with a similar criteria, however
they are chosen to be uncorrelated to the previous PC’s and therefore orthogonal.
This requirement means that the maximum number of PC’s possible is the minimum
between number of samples or number of features.

This method also maximises the correlation between data and their projection, which
is similar to carrying out multiple linear regressions on the projected data against
each variable of the original data.
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The PC’s are defined as linear combinations of the original data variables. The PCA
can be interpreted as a rotation matrix that rotates the data in such a way that the
projection with the greatest variance goes along the first axis. The new variables
depend on the dataset, rather than being pre-defined functions. This means that the
PC’s are adaptive to each individual case. PCA is an unsupervised learning method
which is similar to clustering. Clustering is a method of unsupervised segmentation
and grouping, since the groups obtained are not known prior.

3.1.1 Steps

The Principal Component Analysis can be carried out in 5 steps [7]:

Step 1: For all the data to influence equally, the first step of conducting PCA is
to standardise all the values. This prior step is critical as the method is sensitive
towards the variance of the initial variables. Meaning that the variables with a
greater variance will have a greater influence and effect on the method. A variable
with a range between 0 and 100 will have a greater influence than one between 0
and 10, leading to inaccurate results. Having a set of variables x = x1,22,...,2n
(with N being the number of samples) which belongs to a D-dimensional space.
The standardisation is normally done with a simple formula: the new value (z,,) is
obtained by subtracting the mean (Z) and dividing by the standard deviation (o)
for each variable (z,) with n =1,2,..., N. With this step, all the variables will be
on the same scale.

Tpn— T
n = — 3.1
o= T (31)
Where, T is the mean of each variable.
| N
n=1

This step is not necessarily required if the original dataset has the same range in all
dimensions, as it will not have a big effect on the PCA.

Step 2: Covariance matrix computation. This step serves to see the relationship
that exists between the variables, comparing how much each initial variable differs
from the mean. In this way, the variables that have a high correlation can be
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detected, as they only provide little additional information to the already existing
one. To detect this correlation, the covariance matrix S is computed.

1 _ o
S = N Z(mn —Z)(x, — T) (3.3)

n=1

S is a symmetric D x D matrix (where D is the number of dimensions). In the
diagonal it can be found the variances of each variable (since the covariance of a
variable with itself is its variance) and since the covariance is commutative there is
a symmetry with respect to the main diagonal.

Step 3: Compute the eigenvectors and eigenvalues of the covariance matrix to
identify the Principal Components.

Principal Components are new variables that are constructed as linear combina-
tions of the initial variables. These combinations are done in such a way that the
PC’s are uncorrelated and most of the information within the initial variables are
compressed into the first components. This allows selecting the components that
contain the maximum information, discarding those that have little to add. In geo-
metric terms, Principal Components represent the directions of the data that have
a maximal amount of variance. The larger the variance carried by a line, the larger
the dispersion of the data points along it, thus the more information it has.

This can be seen in Figure [3.1] The PC’s are chosen according to one of the two
criteria that are equivalent: comparing the variance and looking for the greatest
possible dispersion of data (blue dots) projected along the PC (red dots), or com-
paring the distance of the data to the PC (red lines) and looking for the minimum
possible distance, in absolute value, for all the samples.
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Figure 3.1: First Principal Component in a 2 Dimensional data [7]

If the dataset is defined as D-dimensional vectors x1, ..., xy or, equivalently a D x N
data matrix X, where the z; is the row vector of observations of the jth variable
(Dimension). The goal is to find a linear combination of the rows of X that max-
imises the variance (dispersion along it). This linear combination can be represented
as Z]D:l ujz; = u' X, where u is a column vector of constants us, us, ..., up.

The variance is then, var(u? X) = u? Su, where S is the covariance matrix. Finding
the linear combination with maximum variance is now equivalent to obtaining the
vector u that maximises the quadratic form u”Su [§]. Furthermore, an additional
constraint has to be imposed, the vector u has to have norm one, this is, u’u = 1.
Now the problem can be reformulated as trying to maximise u?Su — A(uv?u — 1),
where A\ is a Lagrange multiplier.

Su—lu=0%s Su=\u (3.4)

Vector u is therefore the eigenvector, and A is the corresponding eigenvalue of the
covariance matrix S.

The eigenvectors of the covariance matrix are the directions of the axes where there
is the most variance. The eigenvalues give the amount of variance carried in each
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Principal Component. The PC’s are obtained by sorting the eigenvectors from high-
est to lowest using the eigenvalues associated with them. This can be represented
in a scree plot as seen in Figure |3.2] where 10 eigenvalues have been sorted and
normalised.

Percentage of variance

4 5 § 7
Principle Components

Figure 3.2: Scree plot of the eigenvalues of a 10 dimensions dataset ||

Step 4: Feature vector. Once they have been sorted, the feature vector needs to
be formed which is a matrix composed of the eigenvectors carrying most of the
information about the original dataset. The dimension of this matrix determines
the final dimension of the transformed data.

The problem is: how to choose the necessary number of eigenvectors without a
great loss of information? If D the total number of original dimensions of eigenvec-
tors/eigenvalues and M (M < D) the number of dimensions to which it is going to
be reduced. To estimate the amount of information that the eigenvalues encompass,
the Proportion of Variance (PoV) formula can be used:

B M+ X+ Ay
MA X+ A+ Ap
when )\; are sorted in descending order it is safe to stop when PoV > 0.9.

PoV (M) (3.5)

Step 5: Recast the data along the axes of the Principal Components. Using the
feature vector formed in the previous step, the original data is transformed and
reoriented from the original axes to the ones that correspond to the PC’s. In order
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to project the data into M number of PC’s Equation [3.6)has to be computed, where U
is the D x M transformation matrix or feature vector containing the M eigenvectors.

Y =U"X (3.6)

3.1.2 Key issues with PCA

Covariance and correlation matrix: As mentioned in Section step 1, it
is very important that the scale of all variables are the same. This is due to the
influence that different scaling has when it comes to studying their variance and
obtaining an adequate covariance matrix. Since the covariance matrix of a stan-
dardised dataset is the correlation matrix R of the original dataset, a PCA on the
standardised data is also known as a correlation matrix PCA [§]. The eigenvectors
of the correlation matrix now define the uncorrelated maximum variance of the stan-
dardised variables. These new vectors do not correspond to those calculated prior to
standardisation. The variance encompassed by each of the PC’s chosen in this way
do not coincide either. Normally a greater number of PC’s with the standardisa-
tion is required than without it to encompass the same percentage of variance. The
Singular Value Decomposition (SVD) approach is also valid in this context [8]. An
SVD procedure of the standardised data matrix is equivalent to a PCA correlation
matrix of the dataset. Unlike the covariance matrix PC’s, correlation matrix PC’s
do not vary based on linear changes in units of measurement and, therefore, are the
appropriate choice for datasets where there are different scales for each variable.

Centring the data: On some occasions, PCA is similar to an SVD of a row-
centred data matrix. In certain applications, centring rows of the data matrix may be
inappropriate. In these situations it may be better to avoid any preprocessing of data
and subject the matrix of unfocused data to an SVD or auto decompose the matrix
of second non-centred moments, whose eigenvectors define linear combinations of
the uncentered variables.

3.1.3 Adaptations of Principal Component Analysis

There are several adaptations to the original PCA method [§]. These are among
the most common that can be found: Functional Principal Component Analysis,
Simplified Principal Components, Robust Principal Component Analysis, Symbolic
Data Principal Component Analysis, etc.
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3.2 LDA

Linear Discriminant Analysis (LDA) is another dimensionality reduction method
commonly used for supervised data classification. It is similar to PCA but instead
focuses on maximising the separability between classes. LDA reduces higher di-
mensional data by projecting it onto a lower dimensional space by maximising the
separation of the data points while simultaneously minimising the dispersion of the
data, thereby achieving maximum class discrimination in the dimensional-reduced
space [9]. This process results in class separation which avoids overfitting (“Curse
of dimensionality”) and reduces computational costs.

To explain how LDA works an example of a two-dimensional dataset can be used.
As here instead of projecting the data onto one of the axes and neglecting the useful
information from the other axis, LDA creates a new axis using information from
both original axes and projects the data onto this new axis in a way that maximises
the separation between the two classes. These new axes follow two criteria: having
maximised distance between the means and minimised variance within each class
which can be seen in Figure 3.3

A
X7 Class 1 =
Class2 @

Figure 3.3: LDA maximising the class separation [10]

LDA was originally described as a two-class problem but was later generalised for
multiclass classification. There exist two different types of LDA methods known
as class-dependent and class-independent. In the class-dependent LDA, a separate
lower dimensional space is calculated for each class to project the data onto. While
in the class-independent LDA, each class is projected onto the same lower dimen-
sional space [11]. All the data therefore share the same transformation regardless
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of their class unlike the class-dependent LDA, which transforms the class data in-
dependently. It is therefore easier to use class-independent LDA for classification as
a new unknown sample can be transformed using a single transformation. Whereas
for the case of class-dependent LDA, it can be difficult to figure out which class
transformation to use on the new sample data as the class is unknown.

3.2.1 Steps

The goal with dimensionality reduction using LDA can be achieved in four steps.
In the case of two class D-dimensional reduction problems with a desired projection
onto one dimension, the steps will be as follows.

Step 1: The first step is to compute the between-class covariance matrix (Sg) which
is the distance between the mean of the different classes. It shows how well the data
is scattered across the classes.

Sp = (2 — ) (pa — )" (3.7)

Where, the mean of each class is represented as p; and po.

[ = Nil ;xn, o = ]\% Z:I:n (3.8)

Step 2: The second step is to calculate the within-class covariance matrix (Sy)
which is the distance between the mean and the samples in each of the classes. It
shows how well the data is scattered within each class which can be calculated by
finding the sum of the covariance matrix for each of the classes.

Sw =Y (@0 — p)(wn — )" + Y (w0 — ) (@ — p2)" (3.9)

Step 3: After calculating the between-class covariance matrix and the within-class
covariance matrix, the third step is to find the vector w which is the transformation
vector projecting the D-dimensional data into one dimension. This is also the vector
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that maximises the separation between the two classes and minimises its variance
using the Sp and Sy from Equations [3.7] and [3.9| respectively in:

w' Spw
Jw) = e (3.10)

In order to maximise the separation, J(w) must be differentiated with respect to w
and made equal to zero, finding the following equality:

where, \ is the grouping of all scalar values. In this problem, \ has little importance
since it is the direction of w that is desired to find, and not its magnitude. This
can however be rewritten to Equation if Sy has a full rank (non-singular), as
it will be invertible.

w = Sy Spw (3.12)

Since Spw follows the same direction as us — 1, Equation [3.12] can be rewritten as
follows.

w o< Syt (kg — 1) (3.13)

The eigenvector is a non-zero vector that represents the direction of a new lower
dimensional space. While the eigenvalue is a scalar value representing the scaling
factor of the eigenvector. Meaning that the eigenvector represents an axis in a new
lower dimensional space, whereas the eigenvalue shows the robustness of this vector.
This indicates how well the eigenvector maximises the between-class variance and
minimises the within-class variance.

Step 4: The fourth and last step is to reduce the original data matrix by projecting

it onto the lower dimensional space.

Y =w'X (3.14)
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where, Y is the projected observation and X is the original data matrix. While w
is the constructed lower dimensional space using the eigenvector.

The w vector can be considered as the eigenvector which maximises the J(w) func-
tion, this being, the eigenvector with the highest eigenvalue. In the case where
the data is projected down onto k£ > 1 dimensional space, several eigenvectors are
required in order to form the W matrix, where W = wy, ..., w,. This is a transfor-
mation matrix where the columns are the eigenvectors of J(w). Since J(w) has D
eigenvectors, the eigenvectors with the largest eigenvalues are used to represent the
lower k-dimensional space while the others are neglected.

And then the projection of the data will be:

Y =W'X (3.15)

3.2.2 Key issues with LDA

Even though LDA is widely known and a commonly used data reduction method it
suffers from two main problems: linearity and small sample size.

Linearity problem: LDA is used to find a linear transformation that separates
different classes. However, it can not find a lower dimensional space if the classes
are non-linearly separable. Meaning that in the cases where the means of the classes
are approximately equal to each other, the discriminatory information does not exist
and the LDA will therefore not be able to find a lower dimensional space. To solve
this issue a kernel method can be used which transforms the data from non-linearly
separable to linearly separable as seen in Figure (3.4 This is done by transforming all
the samples using a nonlinear mapping to a new feature space. Some of the different
types of kernel functions used for this purpose include Polynomial, Gaussian, Radial
Basis Function etc.

3 !
glabs’] - ! Samples are A ;
Class2 @ 1 linearly Seprable ) :
1 1
. & o :
Mapping : .
—_—» ! 3 !

1
(x) = (v, %) = (z1,22) = 2 | '
——————————————————————————————————————————————— I 27 :
Samples are ! ! !
i : (=L !
i Non-linearly Seprable p ! [ 1+ ] !
i =D = (=L 1) '
m [ [ mx 1 @-Q4 Ziy

- T T T T T P (22) = (2.4 -« T T T : o

2 a1 0 1 2 | =20 2 0 1 2 !
1

Figure 3.4: The linearity problem solved using the kernel method [12]
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Small Sample Size: One of the big problems of dimensionality reduction methods
is the Small Sample Size (SSS). It occurs when there is a lower number of training
samples available for each class compared to the dimensionality of the sample space.
To be more specific for this method, it occurs when the within-class variance is
singular. Since linear discriminant analysis (LDA) requires the within-class covari-
ance matrix to be nonsingular, LDA cannot be directly applied to SSS problems.
These are some of the solution used for solving the SSS problem. The first one
being Regularisation (RDA) where the identity matrix is scaled by a regularisation
parameter and added onto the within-class variance making it non-singular. The
problem with this method is choosing the right regularisation parameter as it could
lead to poor performance. Another method to solve the issue is using sub-space in
which the original data is reduced using a non-singular lower space. The drawback
of this method is that some discriminant information is lost. A third solution for
solving the issue is using Null-space. Here the idea is to remove the null space of the
within-class variance. However in this case some discriminant information is also
lost [11].

3.2.3 Adaptations of Linear Discriminant Analysis

There exist other methods similar to LDA. The most known variations are Quadratic
Discriminant Analysis (QDA) and Multivariate Analysis of Variance (MANOVA).
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3.3 Comparison of the methods

In this section a comparison will be made between the two dimensionality reduction
methods proposed above, PCA and LDA in Sections [3.1] and [3.2] respectively.

Both methods are used in this case as means of data preprocessing algorithms. Since
the original data has a high dimensionality due to it being composed of various
variables (Psuc, Tdis, etc.), it is therefore necessary to reduce its dimensions to be
able to perform a subsequent classification in real-time. Both methods have certain
similarities and differences that will be seen throughout this section, comparing them
and showing an example of how each of them would act with the same dataset.

3.3.1 Similarities

Both methods are used in this case to reduce the dimensions of the original data for
later classification.

Both LDA and PCA are linear transformation methods, that project the original
data onto the eigenvectors, which are linear combinations of the main features. Both
methods project/reduce the data to the desired number of dimensions (eigenvectors).
These eigenvectors are the directions that collect the main properties, sorted from
highest to lowest using the associated eigenvalues. Thereby reducing the data to the
number of dimensions that define the original data in its entirety without a great
loss of information.

3.3.2 Differences

As mentioned, both methods are used to reduce the dimensions of the original data,
however, each method does it differently. PCA focuses on the attributes or directions
that present the greatest variance of the data. While LDA tries to maximise the
separation of the classes to which the data belongs to.

There is also a difference when training both methods. PCA is an unsupervised
method requiring only the original dataset. Whereas LDA is a supervised method
meaning that in addition to the original dataset it also requires the class labels for
the corresponding samples.
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3.3.3 Example

In this example, a series of points have been generated randomly using a normal
distribution with a different mean and variance along each of the three original axes
(r,y and z) as seen in Figure [3.5] These points belong to two different classes,
represented by red squares and blue circles. The parameters for the generated
data are specifically chosen to showcase the differences between both methods when
reducing their dimensions. In this case, both data clouds/classes have the same
mean in two of the three axes (z and y). However the variance differs in all of the
axes for both classes with (y) having the highest variance compared to (z) having
less and (z) with the least variance.

As seen in the figures, this distribution of the classes allows for obtaining clear
directions for both the PCA and LDA methods, both main directions being different.

For the PCA method, both data clouds are considered as a single dataset, for this
reason a clear direction of variance has been chosen along the y axis, this being
the first Principal Component or PC1. The second PC corresponds to the second
direction with the greatest variance, in this case x, compared to z (since both classes
have been placed close enough). The results from this method can be seen in Figure
3.0, which shows a reduction from three dimensions down to two dimensions. Where
the data is dispersed as much as possible, regardless of whether the two classes are
intermingled.

The LDA method looks for those directions in which the classes are as far apart
from each other as possible, while also clustering the observations within the classes.
Similarly to PCA, LD1 is the direction that maximises these two sought-after char-
acteristics, while LD2 is the second direction. The results from this methods can be
seen in Figure[3.7], where a clear separation between the two classes can be observed,
reducing the dimensions of the original three to the two main LD’s.

The conclusion of this example is that both methods are equally valid for reducing
the dimensions, they only differ in the features that they seek to highlight.
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(b) Side view of the generated data.

Figure 3.5: Data generated for comparison between PCA and LDA methods
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3.4 Support Vector Machines

The method of classification using Support Vector Machines (SVM) was developed
during the ’90s. Originally, it was created as a binary classification method, i.e.,
classifying whether an element belongs to one of two classes. However, the method
has later been extended to classification of a larger number of classes, as well as
used in regression problems.

The SVM method is based on finding a hyperplane that can separate both classes
with the fewest possible outliers. In a D-dimensional space, a hyperplane is defined
as a flat and affine (it does not need to pass through the origin) subspace of D — 1
dimensions. This means that in a bi-dimensional space, the resulting hyperplane
would be a line (1 dimension), while in a 3-dimensional space, the hyperplane would
be a plane (2-dimensions), and in the same way for spaces with D > 3.

The mathematical definition of the hyperplane can be expressed with the following
equation:
wU+w1$1+w2$2+"'+UJDI'D:O (316)

Where D is the dimension of the space, and given the parameters wyg, wy,..., wp,
the point defined by = = (21, zs,...,2p) that fulfils Equation belongs to the
hyperplane. When point = does not satisfy Equation [3.16], it means that it is on one
side or the other in the regions separated by the hyperplane as seen in Figure [3.§
To know which side of the subdivided regions the point falls, only the sign of the
equation needs to be computed.

X2 Class 1
Class 2

X1

L.

Figure 3.8: SVM hyperplane separating the space into two classes
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There are two possibilities when finding the hyperplane: cases in which data can be
separated linearly, and cases in which it cannot be linearly separated.

3.4.1 Linear separable cases

In the case that the variables are perfectly separable into two classes (+1 and —1),
the hyperplane separates the space according to the following inequalities:

Wy + WX, + wexs + -+ + wpxp < 0 (317)
When the point is labelled as —1 and

Wy + W1 + Weko + - - - + wpxp > 0 (318)

when the point is labelled as +1.

Each new observation (z*) can therefore be classified by observing the sign of the
function f(z*) = wo+w 2 +woxs+- - - +wpx},. Furthermore, the magnitude of the
value obtained indicates the distance at which the observation is from the selected
hyperplane. This function can be compressed in a matrix formulation as:

y(r) =wlz +b (3.19)

Where w! = (wy,ws, ..., wp) is the weight vector, and b = wy is a bias.

However, the choice of the hyperplane can be complicated, since there are infinite
hyperplanes that satisfy the inequalities, which is why some criteria need to be added
to find the most optimal one.

The solution is known as the maximal margin hyperplane. This is the furthest
hyperplane with respect to all training observations. To obtain it, the distances of
each observation perpendicular to the hyperplane have to be calculated. Of these
distances, the one with the smallest measure is called the margin, and shows how far
apart the hyperplane is from the observations as seen in Figure [3.9, The distance
from a sample point to the hyperplane is defined by:

- (3.20)
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Where ¢, are the target values or labels (in this case +1 and —1). The maximal
margin hyperplane is the one with the largest margin of all the hyperplanes. Even so,
the problem is not easy to solve, since there is still an infinite number of hyperplanes
by which to classify the measurements, so optimisation methods are used. Thus, to
find the maximal distance from the closest sample to the hyperplane the following
equation needs to be solved:

argma {% minft, (w2, + b)]} (3.21)

jw][

In order to solve this optimisation problem the following Lagrangian function is
used:

N
1
L(w,b,a) = 5||w||2 =Y an {ta(w"z, +b) — 1} (3.22)
n=1

where, L is the Lagrangian and a is the Lagrangian multipliers. The Lagrangian
function minimises with respect to w and b and maximises with respect to a. By
taking the derivative of L(w, b, a) with respect to w and b equal to zero the following
equation is obtained.

w = Zantnqﬁ(xn) (3.23)

n=1

where, ¢(z,,) is the transformation of x. Once the weight vector is obtained the next
step is to determine the bias parameter b.

Sv Sv

- lev S =Y k0, 1) (3.24)

n=1 m=1

where, Ng, is the total number of support vectors and k(z,, z,,) is the kernel func-
tion. However, if the kernel function is not implemented it can be interpreted as
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Figure 3.9: Visualisation of how the maximal margin hyperplane classifies the data

The observations that are on the edge of the margins are called support vectors,
and they support (determine) the maximal margin hyperplane. Any modification to
these observations would imply a drastic change in the maximal margin hyperplane,
unlike the rest of the observations that do not affect the hyperplane when modified.

3.4.2 Non-linear separable cases

The case described in the previous subsection is an ideal and simple example of
data separation using a hyperplane. However, it is not always the case that the
data can be linearly separated using a hyperplane that perfectly differentiates one
class from another. In some cases the data can be found intermingled causing it to
not have a maximal margin hyperplane. In these cases modifications to the concept
are accepted in which some hyperplanes that separate most of the data can be
considered valid, allowing a small number of outliers. This type of hyperplane is
known as Support Vector Classifier or Soft Margin SVM.

Even on the occasions when a maximal margin hyperplane may exist, it may present
certain drawbacks that make it sub-optimal:

e Since the hyperplane has to separate the two classes perfectly, it is very sensi-
tive to any small changes in the data. Adding new observations can drastically
change the hyperplane, so the method has little robustness.

e The fact that it has to fit perfectly to all the observation can result in overfit-
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ting for the training data, making the classification of new data biased to the
training data.

For this reason, the use of Support Vector Classifiers is sometimes a better op-
tion. These, sacrifice not finding the maximal margin, allowing some observations
to be found within them or even misclassified as seen in Figure [3.10l With this,
a more robust classifier is achieved with a greater predictive capacity against new
observations, solving the problem with overfitting.

Class | =
Class2 @

Figure 3.10: Visualisation of how the soft margin hyperplane classifies the data

Solving the classification problem by using a soft margin SVM is a convex opti-
misation problem in which the regularisation parameter C' comes into play. This
parameter controls how restrictive the margins will be, allowing a greater or lesser
amount of errors and tolerances. Minimising the following equation would be equiv-
alent to maximising the margin width.

N
1
O &+ 5wl (3:25)
n=1

where, w is a weight factor and &, is a slack variable used for penalising the points
which are misclassified. When the data points are correctly classified or on the
margin line, &, = 0. However if they lie on the correct side but inside the margin,
&, < 1. Lastly if they are on the wrong side of the hyperplane as misclassified points
&> 1.
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If C' = o0, no error is allowed, therefore it will be equivalent to a maximal margin
hyperplane. The closer C' is to zero, the less the outliers are penalised and hence
the less accurate the margin will be. Consequently, C' is the parameter in charge
of balancing the bias and the variance of the model. Similar to the problem when
the data is perfectly linearly separable, the data that are on the edge of the margin
are those that influence the selected hyperplane, however, in this case those obser-
vations that fall within the margin itself also influence it. The lower the value of
C, the greater the width of the margin, therefore it will cover a greater number
of observations (both at the edge and within it) and it will be more robust, hence
increasing the bias, but decreasing the variance. On the contrary, when the value
of C increases, the width of the margin decreases, covering a smaller number of
observations (previously called support vectors) and the classifier will have a lower
bias but a greater variance.

After introducing both the £ and C variables the Lagrangian optimisation problem
Equation [3.22] changes to the following equation.

N

N N
Liwba) = Lol + O3 &S a{tuy(e) ~ 1463 =S b (320
n=1 n=1

n=1 =

The fact that only a few observations (support vectors) influence the selected hyper-
plane makes this method more robust. As it does not depend on all the observations
when determining the hyperplane.

3.4.3 SVM

The Support Vector Classifier described above has good results when the separation
between the classes is more or less linear, decreasing its usefulness when this is not
the case. However, the fact that the classes are not linearly separable in the original
space does not mean that they can not be in spaces with higher dimensions.

The SVM method can be considered as an extension of the Support Vector Classifier
by increasing the size of the data to obtain a linear separation. This separation can
be achieved through the use of a Kernel.
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3.4.3.1 Kernel

The dimension of a dataset can be modified by increasing or combining any of
its dimensions. There are infinite transformations, so it would be very difficult to
choose the one that best suits each occasion which is why the kernels are used for
this purpose. The kernel is a function that returns the dot product between two
vectors of the original space in a new space with a greater dimension. This step is
commonly called the “kernel trick”, since with a small modification of the original
problem, a solution can be obtained in any dimension. There are many kernels, but
the most known are:

e Linear kernel: K(z,2') =x -2’

Where K is the kernel function, x and 2’ are both different samples of the
data set. If a linear kernel is used, the result will be equivalent to a Support
Vector Classifier.

e Polynomial kernel: K(z,2') = (-2’ +r)?

Where d is the polynomial degree and r is the polynomial coefficient. When
d =1 and r = 0, the result is the same as the linear kernel. If d > 1 the limits
of the margins will be non-linear, increasing this non-linearity as d increases.
These parameters are determined by cross-validation methods.

e Gaussian kernel (RBF): K(z,2') = exp (—||z - 2'||*)

In this kernel, v is the parameter that controls the behaviour of the kernel.
With small values, the kernel resembles a linear kernel, while increasing its
value, the kernel becomes more flexible, while its non-linearity increases.

3.4.4 SVM for more than two classes

As mentioned at the beginning of the section, SVM is an extended method of binary
classification, classifying between two classes, so it is not designed to classify more
than two classes. However, different methodologies allow the classification among a
greater number of classes. Among the most known are: one-versus-one, one-versus-

all and DAGSVM.

e one-versus-one: Assuming a scenario in which there are ¢ (¢ > 2) classes and
it is desired to classify a new observation using SVM. The procedure would be
to generate c¢(c — 1)/2 SVMs comparing all possible combinations of classes.
In order to classify the new observation, the ¢(c — 1)/2 SVMs would have to
be used and at the end, the class that would have appeared with the greatest

36 of 85



3.4.

Support Vector Machines Chapter 3. Theory

frequency in each of the binary classifications would be the one assigned to
the new observation. This methods disadvantage is that the number of models
required increases greatly as classes increase.

one-versus-all: This method consists of training c different SVMs comparing
each of the classes against the remaining ¢ — 1 classes. To obtain a prediction,
each of the SVMs is used, and the class that yields a positive outcome will
be assigned to the observation. This method has the drawback that several
classes can result successfully at the same time. In addition, this method is
unbalanced when training, since there are many more negative than positive
samples in each SVM.

DAGSVM: The Directed Acyclic Graph SVM method is an improvement of
the one-versus-one method. The procedure is the same, except that a reduc-
tion in execution time is achieved. The method begins by making a binary
comparison, and once classified as one of the participating classes (suppose
A versus B), all subsequent comparisons with the unselected classes are dis-
carded (in the case of having classified as A, the comparisons of C vs. B, D vs.
B, etc. are discarded). This greatly reduces the number of total comparisons
required.

37 of [85]



CHAPTER

Implementation

In this chapter brief descriptions of the implementation of each developed method
(PCA, LDA and SVM) will be done, as well as the combination of these in order to
classify new data for detecting faults in the system.

4.1 PCA

The PCA method has been implemented as a MATLAB function, so it can be used
in a more accessible and flexible way.

The function receives as inputs a matrix with all the samples (in which one class
is concatenated with the other) and the number of Principal Components to which
the data is to be projected (nPC'). The matrix with the samples has dimensions of
D x n, where n is the number of samples and D is the number of different signals
in the matrix (Tsue, Tret, Puis, €tc.).

The code is based on the equations developed in Section [3.1] and follows the steps
described. First, the covariance matrix S is calculated according to Equation [3.3]
Second, the eigenvectors as well as the eigenvalues of S are computed using the
MATLAB function “eig(S)”, as described in the eigenvector problem in Equation
3.4 The third step consists of sorting these eigenvectors from highest to lowest
using the associated eigenvalues. The last step is to create the transformation or
projection matrix U, of dimensions D x nPC.

As outputs of the function, the transformation matrix is returned, along with the
sorted eigenvalues and eigenvectors.
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4.2 LDA

The LDA method has also been implemented as a MATLAB function, to make it
easier to access and obtain the desired projection matrix.

The function receives as input parameters the D x n matrices of the two classes (n
being the number of samples, and D the number of variables/dimensions, in this case
13), as well as the number of dimensions the data is desired to be reduced to (nLD).
As output parameters, the function returns the projection matrix W (D x nLD)
from Equation the matrices with the calculated eigenvectors and eigenvalues
and a vector with the labels of each sample showing which class they belong to (—1
and +1) needed for the SVM classifier.

The code is based on the equations developed in Section and can be seen in
Appendix [A.2] The between- and within-class covariance matrices Sp and Sy are
calculated using Equations and respectively and finally the eigenvalues and
eigenvectors of J(w) (Equation are computed using the MATLAB function
“eig(Sp, Sw)”, which is equivalent to solving Equation [3.11] The eigenvalues are
then sorted in descending order along with their corresponding eigenvectors. Finally,
the transformation matrix W is created with the desired number of eigenvectors
which will determine the new dimensions of the transformed data.

4.3 SVM

The SVM classifier has been implemented as a MATLAB function in order to sim-
plify the process of creating new models using the projected data from the dimen-
sionality reduction methods.

The SVM function receives as inputs the training and validation data which are
split from the projected dataset. It also gets a vector of possible regularisation
parameters (C') used for finding the optimal parameter for the specific dataset. As
output it returns the weight vector (w), bias (b) and the support vectors (Sv) which
are all necessary for constructing the hyperplane, margins and predicting the classes
of the test data.

The first step is to write all the necessary terms for utilising MATLAB’s “quad-
prog()” function which simplifies the process of solving the quadratic problem. In
this case it concerns solving for a (Lagrangian multipliers) which are used to deter-
mine the support vectors, weight vector and bias (Equation . The next step is
to calculate the weight vector according to Equation [3.23| and the bias parameter
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following Equation [3.24] Once these terms have been determined, the classes of the
validation data can be predicted. The prediction procedure solves Equation as
the sign of it determines which class the data belongs to. These steps are run in a
loop for all the possible C' parameters and the accuracy of the predictions are stored
to determine the optimal regularisation parameter (C'). The SVM procedure is then
rerun using the optimal regularisation parameter to get the output with the highest
accuracy.

4.4 Classifiers combination

In order to achieve a fast classifier that can run in real-time, it is convenient to
work with data in a lower dimensional space. Since the original data is collected
in D = 13 dimensions, it is required to perform a dimensionality reduction prior
to SVM classification. Figure shows a flowchart of the classification procedure,
starting from the extraction of the data to the prediction of new samples. The
different options proposed in the chart will be described in the following sections.

Extract the data
from the desired
simulation

Form
Class 1 with Non-
Faulty samples
& Class 2 with Faulty
samples

Split randomly into
training, validation
and test data

Reduce

Group classes and
reduce dimensions
using PCA

dimensions

using LDA

Create SVM
model

Predict new
data

Figure 4.1: Flowchart of the PCA/LDA SVM implementation
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4.4.1 PCA SVM

In this section the implementation of the combined PCA and SVM for classifying
new data will be explained.

As seen in Figure [1.1] the first step is to extract the signals from the desired simu-
lation tests. These signals are grouped into two classes, Class 1 with the samples of
the non-faulty segment and Class 2 with the samples of the faulty segment. These
classes are D xn matrices in which the rows are formed by each of the chosen signals.
In order to analyse the static part of the signal and avoid the dynamic part, both
the first sample and the number of samples are specified by the user. Classes are
in turn separated for training, validation and unbiased test data. The number of
samples in each of these data groups are determined by the user (see Section ,
where all the samples inside them are randomly selected among both class matrices
maintaining the row order.

For the dimensionality reduction by means of PCA, both training classes are grouped
in a D X 204y 4ining Matrix, which is fed to the developed function (see Appendix
and returns the transformation matrix D x nPC' that reduces the dimensions of the
original data into nPC' dimensions using Equation [3.6| Both the training data
and the validation data are projected using this matrix and then introduced in the
developed SV M function (see the code in Appendix .

The parameters that this function returns (w, b and Sv) are used to generate the
hyperplane that separates both classes, as well as the margins and to determine the
support vectors.

In order to classify new data, the sign of Equation needs to be computed.
x in this case being the projected coordinates of the test data using the already
calculated transformation matrix from the PC'A function.

4.4.2 LDA SVM

Since the methodology to perform the combination of LDA and SVM is very similar
to that explained in the previous Section [£.4.1] Only a brief explanation of the
differences and similarities of applying LDA as a reduction method and SVM as a
classifier will be described.

As mentioned in the previous section, the first step is to extract the data from
the desired simulation test. However, for this methodology both classes will re-
main separate. The classes are then fed to the LDA function (see Appendix [A.2)),
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which returns the transformation matrix W that reduces the classes into the desired
number of dimensions nLD using Equation [3.15]

The procedure from this point is the same as in the previous section: train the SVM
with the training and validation data and obtain the parameters that define the
hyperplane and margins.

Finally, to analyse which of the classes a new sample belongs to, the sign of Equation
is computed with x being the coordinates of the sample being projected with
W from LDA.
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Validation Tests

Different tests have been carried out to check the validity of the implemented meth-
ods. In this chapter each of the tests will be explained, with a brief description of
how they were developed and the results obtained from them.

5.1 Validation 1: Verification of the methods

In order to verify the implementation of the methods used throughout this thesis.
A couple of tests have been made comparing the developed methods to MATLAB'’s
own functions for dimensionality reduction and classification. This is to ensure that
the code developed based on the theory in Chapter |3|is functioning as intended.

5.1.1 PCA

The first test is a comparison between the developed function for PCA which can
be seen in Appendix and MATLAB’s pca function. The objective of this test is
to illustrate the similarities between both functions by reducing the dimensions of
a two class dataset with four dimensions down to two dimensions.

The results from the developed function for PCA can be seen in Figure[5.1] Where
Figure displays the projected data of the two largest Principle Components
which collectively represents around 97 % of the information from the original four
dimensional dataset as seen on the scree plot in Figure [5.15]
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(a) The projected data using PCA (b) Scree plot using PCA

Figure 5.1: The results from using the developed PC'A function

The MATLAB function pca(X) is simple to implement. As it takes the dataset
as input and can simply output the transformed data, eigenvectors, eigenvalues
and variance. This greatly simplifies the process of using PCA for dimensionality
reduction and the results of this function can be seen in Figure [5.2l Similarly to
the other figures both the projected data and scree plot are shown to compare the
similarities between both functions.
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(a) The projected data using PCA (b) Scree plot using PCA

Figure 5.2: The results from using MATLAB’s pca function

From both Figures [5.1] and can it be concluded that the results of the projected
data and scree plots are very similar. However with the exception that the projected
data seems to be centred using the MATLAB function. This should however not
pose a problem as the spread of the projected data is the same for both functions and
the “percentage of variance” for both scree plots are identical to each other. This
test therefore confirms that the developed function for PCA is working as intended.
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5.1.2 LDA

The second test is a comparison between the developed function for LDA which can
be seen in Appendix and MATLAB’s function for LDA. The objective of this
test is similar to the test for PCA as the goal is to illustrate the similarities between
both functions by reducing the same two class dataset in four dimensions down to
two using LDA instead.

The MATLAB function fitcdiscr(X, Label) is simple to implement however it does
not directly output the transformed data like in the case for PCA. Instead, it out-
puts a lot of different variables from which the most noteworthy for the case of
dimensionality reduction are the Sg and Sy, which can be used to compute the
transformation matrix using Equation from Section [3.2] The original data can
then be transformed using this matrix and plotted as seen in Figure [5.3b]

04 Developed LDA Function 5 Matlab LDA Function
’ = Class 1 = Class 1
® Class 2 . ® Class 2
0 4
0.1 .t 3 . .
. . . N
b o ae
0-0.2 .-, ] $ - a2 ..--. . e ;:
- [
0.3 1 - .
0.4 0 o
0.5 -1
06 04 02 0 0.2 0.4 0.6 0.8 1 -6 -4 2 0 2 4 6 8 10
LD1 LD1
(a) The developed LD A function (b) MATLAB'’s fitcdiser function

Figure 5.3: Comparison between the developed LDA function and MATLAB "s
fitediser function

The results from both functions for the two class dataset can be seen in Figure
(.3l Clearly illustrating that both figures are not similar to each other. However,
they both seem to split the data in a similar manner. This is most likely due to
the fact that the MATLAB function is made for multiple classes (K > 2) which
the developed function is not, as it is not necessary for the purpose of this thesis
which is to classify a two class dataset (Non-faulty and Faulty data). Meaning that
the calculations used for the MATLAB function are not completely similar to the
developed function. However, if the code is rewritten to accommodate multiple
classes instead of only two, the figures for the projected data will most likely look
very similar to each other.

To accommodate the multiple class LDA, some of the equations in Section [3.2| need
to be rewritten as they differ slightly from binary class LDA. First and foremost the
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calculation for Sp differs from Equation in the following way.

Sp =Y Ne(ue — 1) (e — )" (5.1)

Where, K is the number of classes and Ny is the number of samples in each of the
classes. Whereas p; is the mean of each class, p is the mean of the total dataset
with N being the number of total samples in the dataset.

pr = Nik me p= %ZNICM (5.2)

The other equation which differs is the Sy, which is rewritten from Equation [3.9| to
the following equation:

Sw =Y (@ — i) (w0 — )" (5.3)

Besides these two equations the rest should be similar to the ones mentioned in
Section[3.2] The results from this rewritten implementation compared to MATLAB’s
function can be seen in Figures 5.4 and [5.5|for a three class four dimensional dataset
reduced down to two dimensions.
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(a) The projected data using LDA (b) Scree plot using LDA

Figure 5.4: The results from using the developed LDA function for multiple classes
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Figure 5.5: The results from using MATLAB’s fitcdiscr function for multiple
classes

It can be concluded from Figures and that the reason for the difference in
the plotted diagrams in Figure [5.3| is because of the Sg and Sy equations being
calculated using the general mean. This is due to MATLAB’s function being made
for multiple classes which is demonstrated when the developed function in Appendix
is rewritten for multiple classes. As it gives a very similar result as the MATLAB
function where the scaling in the x and y-axis is the only difference. This is further
supported by the fact that the scree plots are identical to each other. It is therefore
not possible to compare the MATLAB function to the developed two class LDA
function, however it can be assumed that it is working as intended. Since the results
from both multiple class dimensionality reduction functions seem to be similar.

5.1.3 SVM

The third test is a comparison between the developed SV M function which can be
seen in Appendix and MATLAB’s SVM function. The objective of this test is
to find the optimal hyperplane and margins which split the two class dataset into
two regions. By comparing the results from both functions it should verify whether
the developed SVM function is working as intended.

The MATLAB function fitcsvm/(X, label) is simple to implement as it only requires
the data of a two class dataset (grouped in X) and the corresponding labels as input
and outputs the necessary variables to create the SVM. Some of these variables
include a, w, b, S, and more. This simplifies the process of creating the hyperplane,
margins and determining where the support vectors lie.

Figure [5.6] illustrates the similarities between both functions for SVM. The results
from the figures show that the hyperplane, margins and support vectors are all
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placed in the same position for both functions. It can therefore be concluded from
this test that the developed SVM function seems to be working as intended.
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(b) The SVM results using MATLAB’s implementation

Figure 5.6: Comparison between the developed SVM function and MATLAB’s SVM
function
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5.2 Validation 2: Dimensionality reduction
methods

To verify that the dimensionality reduction is done correctly for both PCA and
LDA, it has been tested that the developed transformation matrices U and W work
with validation data.

For this test, only one of the multiple datasets mentioned in Section has been
used as training data. The 13 different signals have been extracted and grouped into
two classes, C containing N = 2000 non-faulty samples, and C5 with 2000 faulty
samples. Each of the signals make up a row in the class matrix, where the columns
are the samples. The D x N matrices formed are then grouped into a new matrix
called Cy;. This is needed since each of the methods treats the data differently.
PCA processes all the data in the same way, since it is an unsupervised method,
while LDA needs to know the labels of the samples.

As seen in Figure [5.7], the top sub figure shows the transformed original data us-
ing the U matrix from PCA to maximise the variance of the data along the main
two Principal Components. Whereas the bottom sub figure shows the transformed
original data using the W matrix from LDA to maximise the separability of both
classes along the main two eigenvectors.

New data can then be transformed into these two main feature directions using the
transformation matrices U and W obtained from the training data mentioned before.
However to verify that both methods are working as intended, the validation data
used for testing are from the same dataset but a different segment of the signals.
Figure |5.8| shows the projection of the samples using the transformation matrices
obtained from the training data in Figure for both methods, the top sub-figure
being PCA and the bottom sub-figure being LDA.
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Tests

In this chapter, there will be a description of the different tests carried out to evaluate
the developed methods under different initial conditions. All tests will be performed
following the same pattern to maintain consistency. The first test will be explained
in more detail compared to the rest since they will keep the same parameters. The
changes inherent to each test will be explained in its corresponding section.

6.1 Test 1: Classification of an easy dataset

The intended outcome of this test is to create a classifier that allows for classifying
faulty samples that belong to signals that are easily distinguishable from the non-

faulty samples. In this case the test has been done by choosing simulation 30 from
the Table in Appendix where the faulty viable is Py, adding an offset of -1 bar.

The original data of this simulation can be seen in Figure [6.1] From this data,
the two classes are extracted forming two matrices of D x nSamples, where the
nSamples is 2000 and D is 13. To avoid the dynamic part of the signals, the first
sample starts at sample 1000. The two class matrices are each randomly split into
three matrices one for training, validation and unsupervised testing. 20% of the
original matrix has been selected for validation while 10% is used for testing. This
is equivalent to 400 and 200 samples respectively, whereas the rest of the samples
are used for training.

The training data is then introduced to both dimensionality reduction methods.
Where the data is projected from the original 13 dimensions down to only 2, which
is sufficient (without a great loss of information) and allow for representing the data
in a 2D graph. The training and validation data are then fed to the SVM, which
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creates the optimal model using the chosen values of the regularisation parameter
(C) between: [0.1, 1, 5, 10, 20, 50, 100]. Once the model is created, it can be tested
using the previously projected test data.

The results of this test are shown in Section [7.1]
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Figure 6.1: The original data from simulation 30

6.2 Test 2: Classification of a difficult dataset

The objective of this test is to check the performance of the classifier when the faulty
samples are very similar to the non-faulty. For this, a simulation with low HeatLoad
value has been chosen, which causes the signals to oscillate making the non-faulty
and faulty samples overlap. In this case, simulation 21 has been chosen from Table
, and the variable that causes the failure is Ty;s with an offset of —2[°C].

The original data can be seen in Figure [6.2] where it can be observed that the
non-faulty data and faulty data are very similar as they overlap each other.

The rest of the parameters remain the same as those mentioned for Test 1: (first
sample, total number of samples, percentages into which the data is divided, etc.).

The results of this test are shown in Section [7.2]
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Figure 6.2: The original data from simulation 21

6.3 Test 3: Effect of the noise in the data

The purpose of the third test is to analyse the effect of noise on the signals as it is
a common occurrence on real systems. Data is usually obtained with noise, which
could for instance be caused by imperfect sensors.

In order to compare the results, the data is extracted from the same simulations as
in the previous tests.

The effect of noise has been tested in different ways. First, noise has been applied
to the training data, using the same procedures described in Sections and
[4.4.2] Secondly, noise has been applied to the testing data, which reproduces a real
system. As a third test noise is added to both the training and test data to increase
the prediction performance for more realistic data. Lastly, it has been applied to
the whole dataset, including the validation data.

The noise is added as a random number for each sample with A/(0,2). This adds
a deviation from the original data of [-2, 2], which for some variables is the value
assigned for the offsets to simulate the faulty state. Making it harder for the SVM
to separate the data as the Non-Faulty and Faulty data overlap each other. In
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noise of the same normal distribution was applied and it was said to be as high or
even higher than what a real system could experience.

As an example, this noise can be seen applied to the T, variable in Figure [6.3

Lastly, to analyse the robustness of the models against noise, the value of the vari-
ance applied to the noise has been increased and the effects on the accuracy of the
predictions have been observed.

The results of this test are shown in Section [7.3]
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Figure 6.3: Noise applied to T} for non-faulty and faulty classes

6.4 Test 4: Using a different simulation as
testing data

The fourth test focuses on evaluating how the proposed methodologies behave when
test data is used from a different simulation. The objective of this test is not to
create a general model that works for all types of failures, but rather see how it
behaves with data from both similar and different simulations.

Keeping the training and validation data from simulation 24 in Table [B.1] different
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tests have been carried out modifying the origin of the testing data.

In the first test, the testing data was extracted from simulation 22 (see Table |B.1])
which has the same failure signal, Ty, but slightly different HeatLoad at 17000
instead of 20000 and T} at 7 compared to 12.

Whereas in the second test, simulation 36 from Table was selected as it has the
same HeatLoad at 20000 and T at 12 but a different fault signal, Py,..

In order to confirm the results another simulation (38) with a compressor fault
having completely different HeatLoad (13000) and T (0.0) parameters is tested.

To check the results with a simulation considered as difficult to separate, the same
procedures previously described have been repeated for simulations with low values
of HeatLoad.

The original signals used for training and validation data can be seen in Figure [6.4]
while the signals used for the first test data can be seen in Figure [6.5|and the signals
used for the second test data can be seen in Figure [6.6]

The results of this test will be described in Section [7.4l.
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Figure 6.4: The original data from simulation 24 used for training and validation
data
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Figure 6.5: The original data from simulation 22 with the same faulty variable but
different HeatLoad and T,.; parameters
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Figure 6.6: The original data from simulation 36 with the same HeatLoad and Ty,
parameters, but different faulty variable Pi,.
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6.5 Test 5: Effect of the dynamics in the signals

In this test it is desired to evaluate the effect of the dynamic part of the signals in
the developed classifiers. In order to contrast the results, the same simulations as
for Tests and have been used for extracting the data (see Figures and
, but in this case the first sample begins at sample 50.

The results of this test will be shown in Section [7.5]

6.6 Test 6: Effect of standardising the data

As mentioned in the first step in Section for some data it is necessary to
standardise it before making the dimensionality reduction method. Not all the data
requires this preprocessing, so it is interesting to see if the created models are affected
by the standardisation of the data, improving or worsening the predictions of new
samples.

For the same reasons as in the previous tests, the data used for Test and
have selected to be able to compare the results. The standardisation of the samples

follows Equation [3.1] Once the data is standardised it is separated into training,
validation and test data as in the other tests, and then applied to the methods.

The results for this test can be seen in Section [7.6]
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CHAPTER

Results

In this chapter, the results for the tests described in Chapter [6] will be presented.
For each of the tests, both methods of dimensionality reduction have been carried
out prior to the training of the SVM classifier.

The results of each method will be separated into subsections within each test. First,
showing the amount of variance collected in each of the eigenvectors, followed by a
plot of the results from the classifier where the hyperplane is created along with its
margins and the accuracy of the unbiased test data.

7.1 Results Test 1: Classification of an easy
dataset

In this section, the results from Test 1 described in Section will be presented.
This test is meant to show how the classifier performs when the faulty data is easily
separable from the non-faulty data. This can be seen in Figure[6.I] where the samples
from 1 to 3000 have different values compared to the samples from 3001 to 6000.

7.1.1 PCA SVM Test 1

The variance collected in each of the eigenvectors for PCA in this test can be seen
on the scree plot in Figure [7.1] Tt is shown that the first two Principal Components
collectively have more than 99% of the variance from the data.

Once the PCA is performed and the data is reduced into 2 dimensions, the SVM is
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trained and the test data is classified. The results for this test are shown in Figure
where the red dots refer to the Non-Faulty training data and the blue squares
are the Faulty training data. While the Non-Faulty test data are shown as green
dots and the Faulty test data are the yellow squares. The Support Vectors are
shown with black rings and the hyperplane is a black line with the margins being
the dashed lines.

Since all tested C values had 100% accuracy for the validation data, C' = 100 has
been selected, which has a good amount of support vectors without going into the
margins. The testing data also achieved an accuracy of 100% which was expected
since the data was easily separable

Test 1: Scree plot
T T

100

90 -

80~

70

60 -

Percentage of variance
w
o
T

X2
Y 8.54372

PR — | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13
PCs for all the data

Figure 7.1: Scree plot for PCA method in Test 1
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Figure 7.2: Hyperplane and margins for PCA SVM Test 1

7.1.2 LDA SVM Test 1

The scree plot for the LDA method can be seen in Figure[7.3] It is worth mentioning
that it would only be necessary to use the first eigenvector, since it collects 100% of
the variance making the rest of them negligible. It has however been decided to use
two eigenvectors for the sake of consistency throughout the figures and to facilitate
the visibility of the samples.

For this test, the SVM created can be seen in Figure [7.4] The fact that only one
eigenvector is sufficient for separating the data means that the second direction
provides little to no information.

Since all the samples lie on the margins, the selection of the C parameter does
not have any effect on the SVM model. Especially when it comes to finding the
support vectors, since practically all the samples are at the same distance from the
hyperplane. The regularisation parameter is therefore chosen to be C' = 100, since
not many support vectors are necessary for defining the margins. The results from
both the validation and testing data show 100% accuracy.
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Test 1: Scree plot
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Figure 7.3: Scree plot for LDA method in Test 1
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Figure 7.4: Hyperplane and margins for LDA SVM Test 1

7. Results
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7.2 Results Test 2: Classification of a difficult
dataset

The results for Test 2 in Section [6.2 will be described here. This test aims to show
how well the methods handle data that is not easily separable.

7.2.1 PCA SVM Test 2

The scree plot in Figure shows that with the first 2 PC’s more than 98% of
the variance is collected. However, since PCA does not consider the labels of each
sample, the projection of the data on these two main directions causes both classes to
overlap. This can be seen in Figure[7.6|where the data from both classes intermingle.
Which is also reflected in the accuracy of the test data, as it is 50.50%. Specifically
for the model represented in Figure [7.6] the optimal regularisation parameter C
is 0.1 and the validation data has an accuracy of 51.25%. These percentages are
approximations as they depend on the randomisation when splitting the classes.
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Figure 7.5: Scree plot for PCA method in Test 2
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Figure 7.6: Hyperplane and margins for PCA SVM Test 2

7.2.2 LDA SVM Test 2

Chapter 7. Results

As in Test 1 for the LDA method, the scree plot for this test shows 100% variance
for the first eigenvector which can be seen in Figure However, as expected
when projecting the classes, they are not as easily separable. In Figure it can
be seen that a few samples cross the hyperplane when creating the SVM model.
When training the model, the optimal regularisation parameter C' was 100, with a
validation data accuracy of 97.12%. The test data performed similarly achieving an

accuracy of 96.75%
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7.3 Results Test 3: Effect of noise on the data

The results of adding noise to the data are going to be explained in this section. As
mentioned in Section the noise has been applied to the training, validation and
test data, by adding values to the samples with N(0, 2).

7.3.1 PCA SVM Test 3

Adding noise to the training data from Test showed that at least 4 PC's are
needed to collect a variance greater than 90% in the scree plot of Figure[7.9, However
it was still possible to achieve 100% accuracy in the test and validation data using
the first two Principal Components, as seen in Figure [7.10/with C' = 100. The limits
of this test has been tested by increasing the variance of the noise, which resulted
in the model still being able to classify the data with a variance far beyond what a
real system would ever encounter.

In the second test, where the noise is added to the testing data the first two PC’s
gathered a variance of 99%. From this test a prediction and validation accuracy of
100% is achieved with C' = 100 as shown in Figure [7.11] The prediction accuracy
however decreases once the variance of the noise is greater than 4.

For the third test the same data is used but the noise is added to both the training
and testing data leading to a similar scree plot seen in Figure The noise in both
the training and testing data does not have a sufficient enough negative effect on
the predictions as can be seen in Figure[7.12] This is due to the clouds of the testing
data remaining on either side of the hyperplane. The model is more affected when
the noise is added to the test data compared to the training data.

The same results were achieved when adding noise to the training, validation and
testing data. This was however expected as the noise in the validation data only
affects the training phase of the SVM, which in some cases reduces the accuracy of
the validation data but not the overall performance of the model. It has been tested
that even increasing the variance of the validation noise beyond a realistic level, the
accuracy of the testing data is not affected.

Testing the effect of noisy data on a simulation considered as difficult for separating
the classes is deemed unreasonable as the results shown in Test proved that
the methodology is not reliable for these cases.

65 of [85]



Chapter 7. Results

80

70

(o2}
o

a
o

Percentage of variance
w S
o o

N
o

10

7.3. Results Test 3:

Test 3: Scree plot
I I

PCs for all the data

Effect of noise

X1
Y 74.2907

X2

Y 8.56354

i X3

Y 1.95453
. & N § N §F W =B _§ N §F

1 2 3 4 5 6 7 8 9 10 1 12 13

on the data

Figure 7.9: Scree plot for PCA method in Test 3 with noise in the training data
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7.3.2 LDA SVM Test 3

The scree plots for all the tests done for LDA SVM in Test 3 showed 100% variance
in the first eigenvector.

In Figure [7.13] noise is applied to the training data for simulation 30 achieving an
accuracy of 100% for both the validation and testing data. However, when the
noise is applied to the testing data for the same simulation, as seen in Figure (7.14],
the testing accuracy drops to 50% while the validation accuracy remains the same.
[lustrating how much the model is affected by noise from the testing data. However,
when the SVM model is both trained and tested with noisy data as seen in Figure
it can once again achieve an accuracy of 100% in both the validation and testing
data. Showing that the model becomes more robust against noise when it is trained
on noisy data.

When applying noise to the data from Test [6.2] the model is also affected by noise
in the training data. In Figure the model is shown with noise applied to the
training data, achieving an accuracy of 85.32% in validation data and 86.25% in the
testing data for C' = 100. The results worsened when applying noise to the test
data. As can be seen in Figure the clouds of test data intermingle and cross
the hyperplane, decreasing the accuracy of the testing data to 69.05%.

Finally, noise was also added to the validation data to see whether it would have any
effect on the accuracy. The accuracy for the test data remained almost the same
at 69.79%, while the validation accuracy decreased significantly to 68.25%. This
was expected as the noise in the validation data only affects the training phase,
which does not have a big impact on the testing data. The small differences in the
percentages are due to the randomly generated noise and are therefore negligible.

68 of [85]



7.3. Results Test 3: Effect of noise on the data Chapter 7. Results
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Figure 7.13: Hyperplane and margins for LDA SVM Test 3 with noise in the training
data from simulation 30
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Figure 7.14: Hyperplane and margins for LDA SVM Test 3 with noise in the testing
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Figure 7.15: Hyperplane and margins for LDA SVM Test 3 with noise in the training
and testing data from simulation 30
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Figure 7.16: Hyperplane and margins for LDA SVM Test 3 with noise in the training
data from simulation 21
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Figure 7.17: Hyperplane and margins for LDA SVM Test 3 with noise in the training
and testing data from simulation 21

7.4 Results Test 4: Using a different simulation
as testing data

The results of predicting test data from a different simulation will be described
in this section. This test is only carried out for the simulations which are easily
separable as the other simulations already have low accuracy.

Since the validation data is extracted from the same simulation as the training
data, the accuracies of the validation data for all the different tests carried out in
this section are 100%.

7.4.1 PCA SVM Test 4

The scree plots for all the tests using PCA achieved approximately 99% of the
variance for the first two Principal Components.

The model using the testing data extracted from simulation 22 can be seen in Figure
It presents an accuracy of 82.75% for this particular testing data.
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When using the model with the testing data from simulation 36, as seen in Figure
7.19| the accuracy increases to 100%.

This is however not the case for all simulations as it was confirmed using testing
data from simulation 38 that the model was unable to classify the data reaching a
testing accuracy of 57.50%. This shows that the classifier can only classify testing
data from a different simulation if it is similar enough to the training and validation
data.
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Figure 7.18: Hyperplane and margins for PCA SVM Test 4 using test data from
simulation 22
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Figure 7.19: Hyperplane and margins for PCA SVM Test 4 using test data from
simulation 36

7.4.2 LDA SVM Test 4

All the tests using the LDA achieved an accuracy of 100% in the first eigenvector of
the scree plot.

As seen in Figures [7.20] and [7.21] the test data is found in its correct side of the
hyperplane, thus the predictions have an accuracy of 100% in both models. This
model has also been confirmed using simulation 38 reducing the accuracy to 50%.
[lustrating that not all different simulations can be classified using this model.
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Figure 7.20: Hyperplane and margins for LDA SVM Test 4 using test data from
simulation 22
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Figure 7.21: Hyperplane and margins for LDA SVM Test 4 using test data from
simulation 36
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7.5 Results Test 5: Effect of the dynamics in the
signals

In this section, the results using the classifier with the dynamic part of the signals
are going to be described. The dynamics of the signals worsen the consistency in
the signals making the classification of the data more difficult.

The scree plots are not going to be shown since they are very similar to the previously
shown figures, however the variance collected in the main feature directions are going
to be mentioned.

7.5.1 PCA SVM Test 5

The variance collected from the data in Test [6.1] with the dynamics is 88.85% and
9.16% for the first two PC’s. While the variance from the dynamical data in Test
is 94.69% and 3.35%.

The results of the classifier with the dynamics are shown in Figure [7.22] Comparing
it to the results without them in Figure|7.2|shows that the dynamics make it harder
for the model to classify data. This can be seen as the validation and test accuracy

decreases from 100% to 95.87% and 100% to 97.50% respectively for C' = 10.

Similar results are obtained when using data from a simulation with overlapping
samples in both classes. In this case, the scree plot has a variance of 94.69% and
3.35% in the first two PC’s. From the SVM model in Figure [7.18, a validation
accuracy of 48.75% and a test accuracy of 49.75% are achieved with C' = 100
making the model unreliable.
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Figure 7.22: Hyperplane and margins for PCA SVM Test 5 including dynamics from
simulation 30
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Figure 7.23: Hyperplane and margins for PCA SVM Test 5 including dynamics from
simulation 21
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7.5.2 LDA SVM Test 5

Although the model is somewhat affected by the dynamics, the LDA SVM method
continues to maintain high levels of success in both cases. The scree plots for both
data maintain 100% variance in the first eigenvector.

The models including the dynamics for the two different simulations are shown
in Figures [7.24] and [7.25] In the first model the classes are still easily separable,
achieving 100% accuracy for both the validation and test data for C' = 100. Whereas
in the second model the accuracy decreases for both the validation data and test
data going from 97.12% to 96.88% and 96.75% to 96.25% respectively in reference
to the model without the dynamics.
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Figure 7.24: Hyperplane and margins for LDA SVM Test 5 including dynamics from
simulation 30
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Figure 7.25: Hyperplane and margins for LDA SVM Test 5 including dynamics from
simulation 21

7.6 Results Test 6: Effect of standardising the
data

The results of this test differ a little from those previously obtained in Test [7.1] and
T2

7.6.1 PCA SVM Test 6

The PCA method with the data from Test looks very similar to the first test
itself. The scree plot reaches 99% variance in the first two PC’s and the SVM model
has 100% accuracy in both, validation and testing data. The main difference in this
case is that the data remains centred.

There are however some differences in the PCA method with the data from Test
6.2 The scree plot of the standardised data can be seen in Figure showing that
the variance is spread along more PC’s, requiring a total of 4 PC’s to achieve more
than 90%. For this reason, the SVM model can not be shown in a figure, but the
hyperplane can still be computed and the test data can be predicted. The results
from this test gets a validation accuracy of 48.63% and a test accuracy of 51.50%
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similarly to the results from Test
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Figure 7.26: Scree plot for PCA method in Test 6

7.6.2 LDA SVM Test 6

For the LDA method, the only difference that can be underlined is that the data
is centred after the dimensionality reduction. Both scree plot and accuracy remain
the same as in Tests and with the only exception being the testing accuracy
of 97.25% for simulation 21.

7.7 Overall results

In this section, an overall overview of the results from this chapter have been col-
lected in Table [.1] for the different tests carried out in order to facilitate the com-
parison of the test accuracies for both methods. In this table, the (°) after the
percentage refers to the noise applied to the testing data while the (*) is when noise
is applied to both, training and testing data and finally, the (1), refers to the test
with noise in the whole dataset.
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Table 7.1: List of all the test accuracies for both methods

Test No. Dataset PCA LDA
1 Simulation: 30 100% 100%
2 Simulation: 21 50.50% 96.75%

100% 100%
Simulation: 30 100%° 55%°
3 100%* 100%*
100%F | 100%t
1] 85.32%
Simulation: 21 ] 69.05%*
1 69.79%
Simulation: 24 & 22 82.75% 100%
1 Simulation: 24 & 36 | 100% 100%
Simulation: 24 & 38 57.50% 50%
. Simulation: 30 97.50% 100%
Simulation: 21 49.75% 96.25%
6 Simulation: 30 100% 100%
Simulation: 21 51.25% 97.25%
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CHAPTER

Conclusion

The objective of this project was to develop and implement an automatic fault
detection model for a supermarket refrigeration system without the necessity of
manually monitoring all the different signals from it. To do this, in Section a
classifier has been developed using the Support Vector Machine method, which finds
a hyperplane that divides the space and separates the samples from the signals when
the system is in normal operation and in a failure state. To facilitate the work of
the classifier, and to be able to show the results in a 2D graph, a reduction of the
dimensions has been applied to the original data using two methods: an unsupervised

method (PCA) in Section [4.1] and a supervised method (LDA) in Section [4.2]

The dimensionality reduction methods and the classifier have been successfully im-
plemented and several tests have been carried out in Chapter [0 to verify and validate
them under different conditions. In these tests, the methods developed using data
obtained from the simulations have been tested. Faulty samples have been detected
against non-faulty samples having both similar and different values. The limits of
the developed models have been verified: by adding noise to the training, validation
and testing data in Section using test data from different simulations in Section
6.4 including the dynamic part of the signals in Section [6.5] and finally, in Section
the effects of standardising the data prior to reducing its dimensions have been
verified.

All the results from Chapter|7] are collected in Table|7.1|to show that, although both
methods are appropriate for reducing dimensions, in general, using LDA presents
a greater success when it comes to predicting faulty data. This was expected from
the beginning since PCA does not distinguish between the classes, and treats all
samples as a single dataset, whereas LDA focuses on separating the classes when

reducing the dimensions, which sets up a perfect distribution of the samples for the
SVM classifier.
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From the comparison of Test and can it be concluded that the models trained
using simulations with high values of HeatLoad (O(10%)) perform better in com-
parison to low values (O(10%)). This is to be expected since the signals are more
constant with high values and oscillate more with low values.

The tests concerning the addition of noise show that when it is applied to the
training and validation data, the model is barely affected as the dimensionality
reduction methods seem to reduce the impact of it, even with high values of noise
variance. However, when it is applied to the test data, the prediction accuracy
drops when the variance of the noise is greater than 3. The prediction performance
improves when the model is trained with noisy data in comparison with the original
data from the simulation. It can be concluded from the fourth test that training
the classifier model with one simulation fault does not assure that the prediction of
different faults will be detected since it is highly dependant on how the signals are
in comparison with the training data.

The dynamics of the signals affect both methods, as the test accuracies decrease
compared to the tests without it. The PCA method is however more influenced by
the dynamics as the drop in the accuracy is higher.

The last test showed that standardising the data prior to the classification is not
required as it does not have an impact on the predictions.

It can be concluded from all the tests that the LDA SVM method presented in
Section [4.4.2]is more robust against changes in the training data, generally allowing
greater noise and being less affected by the dynamic part of the signals.

The classification can be run in real-time with new data as it only requires two steps
which are computationally effortless. The first step is preprocessing the data using
the transformation matrix extracted from either PCA or LDA and then calculating
the sign of Equation[3.19]to predict whether it is a faulty sample or not. Additionally,
the model is very flexible adapting to the current system and being able to be trained
with the available signals making it applicable for various SRSs.
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CHAPTER

Discussion and future work

It is evident from the conclusion in Chapter 8 that the LDA method outperforms
PCA for classification of the classes. However this conclusion is purely based on the
results and tests carried out which do not completely reflect the general performance
of the methods for all faulty scenarios. Before concluding that one method is better
than the other, one could say that a more comprehensive analysis should be done.
This could involve testing for all the different faulty signals to verify that it performs,
on average, better than the other. However this task would be very time-consuming
and it was instead preferred to test the methods under different conditions.

The noise in the third test has been chosen to be N(0,2), which was deemed ap-
propriate for the system as this magnitude is bigger than what will be encountered
in the field. It was expected from the PCA method that it would barely be affected
by the noise as it extracts the main feature directions with the most variance. A
similar outcome appeared for the LDA method as it compresses the noise inside
of each class. Noise in data from a real system can not be avoided and therefore
training a model with noisy data will make it more robust against predicting actual
data.

Trying to classify data from a different simulation than the model is trained on is
very dependent on, the similarities between the data. From the tests completed in
Section a concrete conclusion can not be formed as it is based on a comparison
between three different tests which do not fully show the correlation between the T,
HeatLoad and different fault signals. To achieve a more comprehensive conclusion
several comparisons between the different simulations should be done in order to
analyse the impact of each parameter in the signals.

It has not been tested whether the models suffer from overfitting, which occurs when
they are specifically trained for a certain dataset making them biased towards new
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data and unable to classify it correctly. In all the tests, the models are trained with
the same number of samples to maintain consistency and to be able to compare the
results from one test to another. New tests would have to be carried out by varying
the number of samples used for training the models and observing its effect on the
prediction of new samples. A way of reducing the effects of overfitting is by applying
noise to the training samples, which is shown in Test 3 with a less biased model.

9.1 Future work

This section proposes improvements to the implemented methods which could lead
to better results. However these implementations were not feasible within the time
frame of this thesis and are therefore listed as future work. This includes SVM for
multiple classes, kernels, cross validation and combination of multiple simulations
for training.

9.1.1 SVM for multiple classes

The current implementation of the SVM model is only capable of classifying a two
class problem. Whereas a different strategy could be implemented to classify K > 2
classes. In this case the idea is to be able to expand the amount of faults that the
classifier can predict. Instead of only classifying whether the data is faulty or not, it
could potentially also predict which signal is faulty. In Section three different
approaches for this implementation were proposed. The amount of iterations for
comparing all the faults in the first two approaches increases quadratically to the
number of classes, it will slow down the process to the point that it could not
be predicted in real-time. The last approach, DAGSVM reduces considerably the
amount of iterations needed to classify the sample among all the classes, which could
be implemented in a real system.

9.1.2 Kernels

The results from the classifier could potentially be improved by applying the kernels
mentioned in Section [3.4.3.1 In general, when using LDA as a dimensionality
reduction method, the data is transformed in such a way that it is not necessary
to implement a kernel. However, when noise is applied to the data, the prediction
results could be improved by implementing a Gaussian kernel, which gives the model
greater flexibility by not limiting it linearly.

84 of 85



9.1. Future work Chapter 9. Discussion and future work

9.1.3 Cross validation

It could be used to make a more robust model as it uses the whole dataset for
training and validation. This could be beneficial in scenarios where the dataset is
smaller. One of the ways is to use the K-fold cross validation. Here, the entire
dataset is divided into K packets with the same number of samples. K iterations
are performed in which one of the packages is used as validation data, and the rest
as training data. In each iteration, the package used as validation data is changed,
and finally the optimal model is obtained by making an average of the results.

9.1.4 Combination of multiple simulations for training

The idea behind this strategy is to use multiple simulations in the training phase
of the SVM and then create a more general model which can be used for different
faults. To carry out this model, random samples from different simulations would
be extracted forming the training and validation matrices which will be used in the
methods PCA/LDA and SVM. The idea is to mix simulations that are different
enough to create a more flexible model, but that are not too different since those
samples could be considered as outliers.
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APPENDIX

Matlab functions

A.1 PCA function

function [U, DsPCA, VsPCA] = PCA (rawdata, nPC)
D = size (rawdata,l) ;

N = size (rawdata ,2) ;

mu = mean(rawdata ,2) ;

% PCA Step 1: Covariance Matrix S
S = zeros;
for i =1 : N
S =S+ (rawdata(:,i) — mu)=*(rawdata(:,i) — mu)'; %eq: 3.3
end

S = S/N;

% PCA Step 2: Eigenvectors and eigenvalues of S
[evecPCA ,evalPCA]=eig (S);  Jeq: 3.4

% PCA Step 3: Sorting and finding the highest eigenvalues
[dPCA,indPCA] = sort (diag(evalPCA),'descend');

DsPCA = evalPCA (indPCA ,indPCA) ;

VsPCA = evecPCA (:,indPCA) ;

% PCA Step 4: Transformation matrix U
u= [VsPCA(:,1) VsPCA(:,2) VsPCA(:,3) VsPCA(:,4) VsPCA(:,5) VsPCA(:,6) ];
U= u(:,1:nPC) ';

Source A.1: The PCA function used for dimensionality reduction
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Appendix A. Matlab functions A.2. LDA function

A.2 LDA function

function [W, VSLDA, DsLDA, colors] = newLDA (cl, c¢2, nLD)
% Number of observations in each class

nl = size(cl,2);

n2 = size(c2,2);

% Mean of each class
mul=mean(cl ,2) ;

mu2=mean (c2,2) ;

% Label vector

one_vec = omnes(nl,1);
two_vec = —ones(n2,1);
colors = [one_vec; two_vec];

% Calculate the between class variance (SB)
Sb = (mul-mu2) *(mul-mu2) '; % eq: 3.7
dl=cl-repmat (mul,1,size(cl,2));
d2=c2—repmat (mu2,1,size (c2,2));

% Calculate the within class variance (SW)
sl=d1lxdl"';

s2=d2xd2"';

Sw = sl + s2; % eq: 3.9

%% Find eigen values and eigen vectors of J(w)

[evecLDA ,evalLDA]=eig (Sb,Sw); % eq: 3.10

%% LDA Step 3: Sorting and finding the highest eigenvalues —>
eigenvectors (2)

[dLDA,indLDA] = sort (diag(evalLDA) ,'descend');

DsLDA = evalLDA (indLDA ,indLLDA) ;

VsLDA = evecLDA (:,indLDA) ;

9% Projecting the data into LDA1 and LDA2

w = [VSLDA(:,1) VsLDA(:,2) VSLDA(:,3) VSLDA(:,4) VsSLDA(:,5) VsLDA(:,6)

I
W= w(:,1:nlLD);

Source A.2: The LDA function used for dimensionality reduction
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A.3. SVM function Appendix A. Matlab functions

A.3 SVM function

function [w, b, Sv] =SVM (clt, c2t, clv, c¢2v, possible_C)
% Concatenating class 1 and 2

Data_train = [clt c¢2t];

Data_test = [clv ¢2v];

% Label vector for train and test data
Label_train = [ones(1,size(clt,2)) (—ones(1l,size(c2t,2)))];
Label_test = [ones(l,size(clv,2)) (—ones(1l,size(c2v,2)))];

% Number of observations in Data_train
n.SVM = size (Data_train ,2) ;

% Position in the vector for class 1 and 2
Label = Label_train;
ClassA = find( Label = 41 );
ClassB = find( Label = —1 );
% Design SVM
% Quadratic objective term
H = zeros (n.SVM,n.SVM) ;
for i = 1:n.SVM
for j = i:n.SVM
H(i,j) = Label_train(i)*xLabel_train(j)*Data_train (:,i) '
Data_train (:,j); % Saves the value to the mnext column
H(j,i) =H(i,j); % Saves the value to the next row
end
end

% Linear objective term
f = —ones(n.SVM,1);

% Linear equality constaints
Aeq = Label_train;
beq = 0;

% Lower bounds

lb=zeros (n.SVM, 1) ;

% Optimization options

Alg{1} = "trust—region—reflective';
Alg{2} = 'interior —point—convex';
options = optimset ('Algorithm ', Alg{2}, 'Display', 'off', 'MaxIter',20)

Y

% Saving the accuracy for all possible_C
Acc_matrix = [size(possible_.C ,2) ,2];

% Finding the optimal C for all possible C
for j= 1l:size(possible_-C ,2)
C = possible_C(j);
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49

50 % Upper bounds

51 ub=Cxones (n.SVM, 1) ;

52

53 % Finding alpha (lagrangian multipliers)

54 alpha = quadprog(H,f ,[],[] ,Aeq,beq,lb,ub,[],options) ';
55 AlmostZero = (abs(alpha)<max(abs(alpha))/leb);

56 alpha (AlmostZero) = 0;

57

58 % Determining the support vectors

59 Sv = find (alpha>0 & alpha<C);

60

61 % Calculating the weight vector

62 w = 0;

63 for i = Sv

64 w = wtalpha(i)xLabel_train(i)*Data_train(:,i); % eq: 3.21
65 end

66

67 % Calculating the bias

68 b = mean(Label_train (Sv)—w's Data_train (:,Sv)); % eq: 3.22
69

70 % Predicting the class for the test data

71 Predict = sign(Data_test 'sw+b); % eq: 3.18

72

73 % Calculating the accuracy based on the prediction and known labels
74 NPredict = size (Predict ,1);

75 LP_compare = Label_test ' = Predict;

76 accuracy = (sum(LP_compare) / NPredict)=*100;

7

78 % Saving the accuracy to a vector

79 Acc_matrix(j,:) = [C accuracy |;

80

81 % Displaying the current C value test

82 Text = ['Finished testing C = ' num2str(C) ];

83 disp (Text)

84 end

85

86 % Rerun the test using the optimal C value
87 % Choosing the C value with the most accuracy

88 [max_C, indx] = max(Acc_matrix(:,2));
89 c_optimal = Acc_matrix (indx,1);
90

91 % Upper bounds

92 ub = c_optimal *ones(n.SVM,1);

93

94 % Calculating alpha

95 alpha = quadprog(H,f,[] ,[],Aeq,beq,lb ,ub,[], options) ';
96 AlmostZero = (abs(alpha)<max(abs(alpha))/leb);

97 alpha(AlmostZero) = 0;

98

99 % Finding the support vectors

100 Sv = find (alpha>0 & alpha<c_optimal );
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A.3. SVM function Appendix A. Matlab functions

% Calculating the weight vector
w = 0;
for 1 = Sv
w = wtalpha(i)«Label_train(i)*Data_train (:,1); % eq: 3.21
end

% Calculating the bias
b=mean (Label_train (Sv)—w'sx Data_train (:,Sv)); % eq: 3.22

% Predicting the class for the test data
Predict = sign(Data_test 'swt+b); % eq: 3.18

% Calculating the accuracy based on the prediction and known labels
NPredict = size (Predict ,1);

LP_compare = Label_test ' = Predict;
accuracy = (sum(LP_compare) / NPredict)=100;

Source A.3: The SVM function used for classification
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Newly simulated data

In the table below a list of all the newly simulated test data are shown with the
specified Ty, HeatLoad and Of fset/Scale for the different fault signals.
Of fset and Scale values for the tests have been changed in order to simulate more
realistic data. Commonly for all the tests the T,,,, is set at 25 °C' while the fault
sample has been set to start after sample 3001 reducing the sample size to 6000.

APPENDIX

Table B.1: List of the newly simulated data

Simulation No. ‘ Toot ‘ HeatLoad ‘

Fault Signal

1 0
2 0
3 7
4 7
) 12
6 12
7 0
3 0
9 7
10 7
11 12
12 12
13 0
14 0
15 7
16 7
17 12
18 12
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1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000

Tsuc Offset (-
Tsuc Offset (
Tsuc Offset (
Tsuc Offset (
Tsuc Offset (
Tsuc Offset (
Tsup Offset (
Tsup Offset (
Tsup Offset (
Tsup Offset (
Tsup Offset (
Tsup Offset (
Tret Offset (
Tret Offset (
Tret Offset (

(

(

Tret Offset
Tret Offset
Tret Offset (
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o1
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o4
25
26
57
o8
29
60
61
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1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000
1000
13000
2000
17000
4000
20000
1000

Tdis Offset (-2
Tdis Offset (-2
Tdis Offset (-2
Tdis Offset (-2
Tdis Offset (-2
Tdis Offset (-2
Pdis Offset (-1
Pdis Offset (-1
Pdis Offset (-1
Pdis Offset (-1
Pdis Offset (-1
Pdis Offset (-1
Psuc Offset (-
Psuc Offset (-
Psuc Offset (-
Psuc Offset (-

(-

(-

)
)
)
)
)
)
)
)
)
)
)
)

Psuc Offset
Psuc Offset
Cpr Scale (
Cpr Scale (
Cpr Scale (
Cpr Scale (
Cpr Scale (
Cpr Scale (
(

(

(

(

(

0.1)
0.1)
0.2)
0.2)
0.2)
0.2)

Exv Scale
Exv Scale
Exv Scale

Evap Fan Scale
Evap Fan Scale
Evap Fan Scale
Evap Fan Scale
Evap Fan Scale
Evap Fan Scale
Cond Fan Scale
Cond Fan Scale
Cond Fan Scale
Cond Fan Scale
Cond Fan Scale
Cond Fan Scale

Tsuc Offset (

1
1
2
2
2
2
)
)
)
)
)
)
)
)
)
)
)
)
0.8)
0.8)
0.8)
0.8)
0.8)
0.8)
0.8)
0.8)
0.8)
0.8)
0.8)
0.8)
)

8
8
8
8
8
8
8
8
8
8
8
8
(
(
(
(
(
(
(
(
(
(
(
(
2
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62 0 13000 Tsuc Offset (2)
63 7 2000 Tsuc Offset (2)
64 7 17000 Tsuc Offset (2)
65 12 4000 Tsuc Offset (2)
66 12 20000 Tsuc Offset (2)
67 0 1000 Tsup Offset (2)
68 0 13000 Tsup Offset (2)
69 7 2000 Tsup Offset (2)
70 7 17000 Tsup Offset (2)
71 12 4000 Tsup Offset (2)
72 12 20000 Tsup Offset (2)
73 0 1000 Tret Offset (2)
74 0 13000 Tret Offset (2)
75 7 2000 Tret Offset (2)
76 7 17000 Tret Offset (2)
7 12 4000 Tret Offset (2)
78 12 20000 Tret Offset (2)
79 0 1000 Tdis Offset (2)
80 0 | 13000 Tdis Offset (2)
81 7 2000 Tdis Offset (2)
82 7 17000 Tdis Offset (2)
83 12 | 4000 Tdis Offset (2)
84 12 20000 Tdis Offset (2)
85 0 1000 Pdis Offset (1)
86 0 | 13000 Pdis Offset (1)
87 7 2000 Pdis Offset (1)
88 7 | 17000 Pdis Offset (1)
89 12 | 4000 Pdis Offset (1)
90 12 20000 Pdis Offset (1)
91 0 1000 Psuc offset (0.1)
92 0 13000 Psuc offset (0.1)
93 7 2000 Psuc offset (0.2)
94 7 17000 Psuc offset (0.2)
95 12 4000 Psuc offset (0.2)
96 12 20000 Psuc offset (0.2)
97 0 1000 Cpr Scale (0.2)
98 0 13000 Cpr Scale (0.2)
99 7 2000 Cpr Scale (0.2)
100 7 17000 Cpr Scale (0.2)
101 12 | 4000 Cpr Scale (0.2)
102 12 20000 Cpr Scale (0.2)
103 0 1000 Evx Scale (0.2)
104 0 | 13000 Exv Scale (0.2)
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105 7 2000 Exv Scale (0.2)

106 7 17000 Exv Scale (0.2)

107 12 | 4000 Exv Scale (0.2)

108 12 20000 Exv Scale (0.2)

109 0 1000 Evap Fan Scale (0.2)
110 0 13000 Evap Fan Scale (0.2)
111 7 2000 Evap Fan Scale (0.2)
112 7 17000 Evap Fan Scale (0.2)
113 12 4000 Evap Fan Scale (0.2)
114 12 20000 Evap Fan Scale (0.2)
115 0 1000 Cond Fan Scale (0.2)
116 0 13000 Cond Fan Scale (0.2)
117 7 2000 Cond Fan Scale (0.2)
118 7 17000 Cond Fan Scale (0.2)
119 12 4000 Cond Fan Scale (0.2)
120 12 20000 Cond Fan Scale (0.2)
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