An Impedance Control Driven Robotic Disassembly
Platform used For Screw Unfastening

Unfastening of Screws

AALBORG UNIVERSITY
DENMARK

Department of Electronic Systems

(© Group 1066, Aalborg University, Spring 2021.

Attributions

This report was typeset using I4TEX.

AALBORG UNIVERSITY
DENMARK

Title:

An Impedance Control Driven Robotic
Disassembly Platform used For Screw Un-
fastening
Theme:

Master thesis

Project Period:
Spring 2021

Project Group:
Group 1066

Authors:

Jacob Krunderup Sgrensen

Supervisors:

Dimitris Chrysostomou
Sebastian Hjorth

Number of Pages: 52
Date of completion: June 2, 2021

Department of Electronic Systems
Department of Materials and Production
M.Sc. Robotics

Fredrik Bajers Vej 7
9220 Aalborg @
http://www.es.aau.dk

Synopsis:

A robotic system using a KUKA LBR iiwa
and an Arduino Mega 2560 is presented,
which acquires the user/worker input from
the integration into the skill-based system,
which uses positions taught by the user/-
It does this
by utilizing the skill-based system user in-

worker to unfasten screws.

terface, which is built to make task-level
programming possible, enabling an inexpe-
rienced worker to program the robot to do
complex tasks. The robotic system uses the
skill-based system to control and manage the
connected devices, which enables the robotic
system to use a series of simple commands
to the robot resulting in the complex task of
unfastening screws. The skill-based system
makes this possible through 3 layers of pro-
gramming, which is utilized to create com-
plex tasks. The robotic system is successful
in tests using positions taught by the user/-
worker and is able to unfasten screws, de-
spite having screws of different lengths suc-

cessfully.

The intellectual property rights to all original material brought in this report belong to the author.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the author.

Preface

This report is written by Jacob Krunderup S¢rensen and contains their thesis for the
Robotics Masters programme at Aalborg University.

I thank Dimitris Chrysostomou, my supervisor, for his support during not only the masters
but the bachelor as well. He enabled the projects during my time at AAU to always be
fun, and sometimes a bit over the top.

I also extend my thanks to my other supervisor Sebastian Hjorth, who helped me to
understand the more complex maths used to control the robots.

Furthermore, I thank my colleagues and friends throughout both the bachelor and masters,
Daniela, Guilherme, Jan, Jens and Rune for making my time at Aalborg University both
fun and academically enriching.

Also, I thank my parents and my brother for helping me get through the tough Covid-19
times, as this has not been the easiest of times. They helped me get through this semester
in a big way, which enabled me to finish the study.

C/)Wé A Opfrenaen

4 Jacob Krunderup Sgrensen
<jksal6@student.aau.dk>

v

Reading Guide Aalborg University

Reading Guide

A Git repository for the project is made available on Bitbucket with the following link:
https://bitbucket.org/Krunderup/kukadisassembly/src/master/

The list of acronyms ordered alphabetically

Acronym Definition

AAU Aalborg Universitet

EOL End of life

SBS Skill-Based System

HRI Human-Robot Interaction
GUI Graphical User Interface

ROS Robot Operating System
UDP User Datagram Protocol

1P Internet Protocol

https://bitbucket.org/Krunderup/kukadisassembly/src/master/

Table of Contents

Preface

Reading Guide

List of Figures

List of Tables

Chapter 1 Introduction

Chapter 2 Related Works
2.1 Product Disassembly

2.2 HRI

Chapter 3 Skill-Based System

3.1 SBS Architecture
3.2 SBS programming
321 Tasks
322 Skills.
3.2.3 Device Primitives
3.3 Skill execution
3.4 Teaching skills
3.5 Device Manager
3.5.1 Creating a device

Chapter 4 Information Flow

4.1 System Architecture L
4.2 Screwdriver
4.3 Arduino Mega 2560
4.3.1 Rosserial-arduino L oo
4.3.2 Screwdriver control Lo L
4.4 KUKALBRiiwa e
4.4.1 UDP Connection
4.4.2 Threading for receiving
4.4.3 Receiving state of therobot 0oL
4.4.4 Sending commands to therobot
4.5 Pipeline from SBS to KUKA
4.5.1 SBStopython
4.5.2 Pythonto KUKA

iv

vii

viii

15
15
16
18
19
20
21
21
22
23
23
23
23
24

vi

5.1

5.2
5.3

6.1

6.2

Chapter 5 Unscrewing Task Creation
Unscrewing Task
5.1.1 Tool contact search L oo
5.1.2 Peg-in-Hole
5.1.3 Unfastening
5.1.4 Toolremoval
Teaching the skill
Sunrise Servoing
5.3.1 SmartServo Impedance Control

Chapter 6 Evaluations
Device Primitives
6.1.1 Tool Contact Search
6.1.2 Peg-in-Hole
6.1.3 Unscrewing L
Task evaluation
6.2.1 Teaching. L
6.2.2 Execution
6.2.3 Error/recovery states.

Chapter 7 Discussion

7.1
7.2
7.3
7.4
7.5

Robot connection . .
Peg-in-hole
Powered screwdriver
Unscrewing
Error/Recovery state

Chapter 8 Conclusion

Bibliography

List of Figures

1.1

3.1
3.2

3.3
3.4

4.1

Tool created by Technicon, with a D435 camera and four LED lights attached .

The SBS architecture as depicted in [1].
The three layers of programming used in the skill-based system, as depicted in

25
25
26
27
29
32
32
35
36

38
39
39
40
42
43
43
44
45

46
46
46
47
47
48

49

50

11
12

15

vii

4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

5.3
5.4
9.5
5.6

5.7
5.8
5.9
5.10

5.11
5.12

5.13
5.14
5.15

6.1
6.2
6.3
6.4
6.5
6.6

Picture showing the robot with the tool attached to the end-effector.

Drawing of the CAD model seen from the bottom, showing the dimensions used.

CAD drawings showing the dimensions used to attach the screwdriver
Final CAD design seen from multiple angles.
Arduino Mega 2560
Arduino with connections to screwdriver
Flowchart of the robot UDP connection

Pictures showing the steps to unfastening a screw.
Figure showing the approach taken to unfasten screws, starting from the

teaching of the screw locations and ending at the removal of the tool from

the screw. e
Flowchart of the tool contact search device primitive.
Flowchart of the peg-in-hole device primitive.
Graph with time on x and the external wrench measured on the z-axis on y. . .
Graph with time on the x-axis and the external force measured on the z-axis

on the y-axis.
Graph with time on the x-axis and the tool z position on the y-axis.
Flowchart of the unfastening device primitive.
Flowchart of the tool removal device primitive.
SBS teaching interface instructing the worker to insert the tool into the desired

SCTEW. . v v o v e e e e e e e
SBS teaching interface instructing the worker to rotate the tool.
SBS teaching interface instructing the worker to decide between teaching more

positions, or stopping the teaching. 000
Figure showing the effect of the "seconds hand effect", made by KUKA [2] . . .
Figure showing the movement without the effect, made by KUKA [2]
Flowchart of the impedance control function

Test setup environment showing the robot and the test platform
Pictures showing the tool moving downwards until contact with the screw. . . .
Pictures showing the tool being inserted into the screw
Picture showing the tool after missing the screw
Pictures showing the screw being unfastened

Test platform with screws numbered, with the screw 1 being closest to the robot.

List of Tables

3.1

5.1

Input parameters for the execution of a "MoveTo" skill

Input parameters for the execution of an "Unscrewing" skill

17
17
18
18
20
22

25

26
27
28
29

30
30
31
32

33
34

38
39
40
42
42
43

List of Tables

Aalborg University

6.1
6.2
6.3
6.4

6.5

6.6

Test results of the tool contact search
Test results for the peg-in-hole impedance test
Information about the Cartesian screw positions saved by the SBS.
Table showing the results of the task execution test. Automatic means that
the robot needed no help, Help means that the worker was needed, and Failed
means that it failed to fully unfasten the screw. The number in parenthesis
means that the screw was tightened too hard, meaning that it could not be
unfastened. L
Table showing the results of the task execution test. Automatic means that
the robot needed no help, Help means that the worker was needed, and Failed
means that it failed to fully unfasten the screw.
Table showing the results of interrupting the robot during the tool contact
search and tool insertion device primitives.

X

Introduction

The largest pump manufacturer in the world is Grundfos, which is based in Bjerringbro,
Denmark. [3] For this reason, a lot of waste is created once these pumps reach their EOL,
or when other problems occur. Because of this, the pumps that are sent to Grundfos to be
disassembled come in two different conditions. The first of these is that the pump is almost
new, due to it being returned because of either a manufacturing or a delivery problem.
The second condition is that the pump can be old, having sustained wear and tear for an
extended period of time. The biggest reason for Grundfos investing in the disassembly of
these pumps is that it can potentially be made into an economical gain, and it enables
Grundfos to use older parts of older pumps, which also helps to protect the environment.
4]

The way that Grundfos is disassembling the pumps currently, is by doing it manually
by human workers. Because the disassembly is done manually, it is not cost-effective,
compared to what an automatic robotic system could do. [3; 4] For this reason, Grundfos
is also looking into design for disassembly for the newer pumps. The current situation at
Grundfos is that the returns currently received, is the older models of pumps, meaning that
some form of flexibility is needed for the disassembly. This means that while a robotic
system would be cheaper in the long run, it is not feasible with the current situation.
However, if a robotic system could be created to aid in the disassembly instead, the entire
disassembly process could be made more efficient. For this reason, a system using the flex

workers currently at Grundfos is explored.

A system using a KUKA LBR iiwa with a camera was used previously to insert a tool into
a screw [5]. For this purpose, a tool was created by Technicon. This tool is a pneumatic
screwdriver, with a 3D printed shell designed for an Intel D435 camera, and LED lights,
which is seen on Figure 1.1. The system takes a picture of the test platform, after which
the tool is inserted into the screws one by one, by using the KUKA Sunrise Toolbox to
control the robot.

The system managed to prove that as a proof of concept, the system is capable of detecting
screws, and inserting the tool into the screws. As mentioned in [5], the KUKA Sunrise
Toolbox has some issues in regards to the communication with the robot, as well as the
control of the robot. For this reason, a different control strategy is explored for this project.
Another thing further explored in this project is the use of impedance control. Another
thing mentioned in [5], is that impedance control is used to make the robot compliant,
which is useful for human-robot interaction, as the robot can react to a human touching
the robot. There was, however, problems with the KUKA Sunrise Toolbox, which made it

Aalborg University

Figure 1.1: Tool created by Technicon, with a D435 camera and four LED lights attached

so that impedance control was separate from the other control functions. For this reason,
a control strategy is developed with impedance control in mind for this project, which can
enable the system to work better with humans.

As this is a continuation of [5], the objective is to create a system that works with flex
workers, a simple user interface is needed to guide the workers. For this reason, a system is
needed to make the robot easier to use by the flex workers. The system used for this is the
Skill-Based System (SBS), presented in chapter 3. SBS is designed to be used by workers
having low to no experience working with robots, which is helpful for the flex workers at

Grundfos.
The main contributions of this project are:

e UDP connection to the robot
e Full impedance controlled system
e Integration into SBS

The report starts by exploring the related works (chapter 2), where control strategies
for assembly and disassembly are explored. Next, the Skill-Based System is explored
(chapter 3). After the SBS, the system architecture (chapter 4) is explained, as well as

Aalborg University

the connections used to the Arduino and the KUKA LBR iiwa. After the connections are
explained, the approach taken to unfasten the screws is explored (chapter 5). Lastly, the
report tests and evaluates the system (chapter 6) using the skill execution, finishing with
the discussion (chapter 7) and conclusion.

Related Works

The task explored in this report concerns the disassembly of Grundfos pumps, or more
specifically the unfastening of screws. Because of this, works by other authors regarding
disassembly, and unscrewing are explored, as well as how the HRI is handled in assembly
and disassembly cases.

2.1 Product Disassembly

As the task studied in this report focuses on the unfastening of screws, other works with
similar disassembly tasks are explored.

When dealing with an automatic robotic solution to disassembly and re-manufacturing,
different strategies have to be taken into account as failure is likely to happen during
the process. There are different ways of dealing with the failures of disassembly e.g. [6]
identified three common failures when dealing with the unfastening of screws, these being:
tool missing the screw, tool slipping on screw and the screw being too tight to unfasten.
They also present a way of dealing with these three issues. The first of these problems is
dealt with by having two stages of "peg-in-hole" strategies, the first being a rough search,
while the second searching strategy is more thorough. As this is a similar problem to the
one presented in this project learnings from this will be taken into account.

In [7], a robotic system is proposed for disassembling electrical vehicles, because of the
increasing problem of disposing of them. The work is centered around the disassembly
of the steering component where a group of PCBs are extracted by the robot. For this,
different operations are used by the robot, such as cutting and manipulation, which is
achieved using a tool changer.

DiFilippo proposed a robotic system to unfasten screws from a laptop in [8]. For this
purpose, the robot was equipped with a screwdriver and an accelerometer. The purpose
was to use a vision system to identify the screw holes, after which the accelerometer would
determine whether or not a screw was present to be unfastened.

Another proposed automatic disassembly system proposed in [4], focuses on the insertion
of the tool into the screw. To accomplish the task, a particular searching pattern is
developed, where the end-effector does a circular movement in the area of the screw.
Using this searching pattern the robot will eventually insert the tool into the screw, after
which the unfastening of the screw is done using a powered screwdriver.

The use of sampling-based motion planners has also been considered by [9], where an

2.2. HRI Aalborg University

algorithm is presented to overcome the challenge of the invalid initial state disassembly
problem. This is done by considering the information about the flexible parts of the object
to be disassembled, which is then used in the disassembly planning.

In [10], a system is proposed to address the uncertainties in the disassembly process
automatically. It does this by assessing and selecting the most desirable disassembly actions
based on the estimated destructiveness of those actions. The system was tested on several
models of screens, where the inaccuracies on the sensors and model were resolved by user
intervention.

2.2 HRI

There is a trend when using robotic systems for disassembly, where human workers are
brought into the system to allow the system to be more flexible and disassemble more
complex products.

To make workers more likely to trust and work well with a robotic system, [11]| proposed
a framework for testing the trust the worker has in the robot. To make it simple to
understand by the workers, a face is created on a screen, as this is something humans
understand very well and instinctively. This paper calculates the trust the human has in
the robot and uses this to select trajectories and modify the speed of the robot. They
use a face that changes dynamically to provide feedback to the worker, which can increase
the trust the worker has in the robot. They show that with increased trust and usability
of the robot, the worker has a significant drop in perceived workload, while the assembly

time remains the same.

In a work presented by Quan Liu [12], a framework is created and combined with a set of
other technologies. It uses perception, cognition, decision, execution and evolution to tackle
the uncertainties and complexities in disassembly. The work shows that a multi-modal
perception system, and sequence planning for a human-robot interaction disassembly task
can be done at high feasibility and effectiveness.

In [13], a system is proposed to use gestures from the worker to start and stop the movement
of the robot to allow the worker to feel safer and allow him to collaborate with the robot.
They also have other gestures to allow the worker to more accurately control the robot.
However, the robots are not collaborative by nature and are not compliant with the worker.

Another example of HRI is presented in [14], where the safety of the worker in the hybrid
cell is a heavy focus. This means that collision avoidance is one of the focuses of the work,
and thus use an implementation of potential fields combined with a constraint least-squares
optimization, to make sure that the robot does not move into areas that are blocked. The
objects including the worker’s arms are tracked in a virtual environment, which is used for
collision avoidance. Here the potential fields are used to repel the robot from the objects,
while the constraint least-squares restricts the motion to safe sub-spaces of the collision

avoidance.

Another work explored how two factors, namely extroversion and negative attitude towards
the robot affected the assembly of an object. [15] They found that the more extroverted

2.2. HRI Aalborg University

people are, the longer they tend to talk to the robot, while people with a negative attitude
towards robots, the more they look at the robots hands.

In [16], a human-robot hybrid cell was presented for flexible assembly. The work focused on
assembling LEGO blocks into a final product. To do this, the task was divided into multiple
subtasks. They found that an optimum number of subtasks is effective to maintain a high
level of trust, which in turn led to a satisfactory performance of human-robot interactions
and assembly performance.

Another work proposed a human-robot collaborative platform for disassembly in [17]. The
work focused on car batteries because they can be partly disassembled by the robot, using
just a powered screwdriver, while the human worker sharing the workspace would use
different tools. Another way of creating a collaborative platform used for disassembly is
proposed by [18]. In this work, the human worker teaches the robot how the disassembly
of different parts is done by teaching things like how to cut a cable, unfasten screws and
where to discard the different parts.

A skill-based approach can also be taken to teach the robot a complex task as seen in
[19]. Here the previous work of the authors where an adaptive impedance controller,
together with a defined skill formalism, show that the complexity of manipulation tasks
is significantly reduced. One of the tasks tested on the system was the peg-in-hole task,
which was achieved with sub-millimeter tolerances.

This chapter explored work done in the disassembly scene, focusing on the disassembly of
screws and peg-in-hole. HRI was also explored both in assembly and disassembly.

Skill-Based System

The Skill-Based System is a system initially presented by Casper Schou. The system is
built to make normal workers without previous robot experience able to program a robot,
by using very high-level programming. [20|This combined with collaborative robots gives
the opportunity to have fast change-overs, as the system does not need an operator to
configure the robotic system to the new robot cell. This can be done by teaching the robot
the positions instead. This can be done as SBS is made with workers teaching the robot

in mind.

3.1 SBS Architecture

SBS is built on having a central state machine to control the different aspects of the SBS.
A visualization of the architecture of SBS can be seen on Figure 3.1.

The central control node is surrounded by the task manager, the skill manager and the
device manager. These make up the creation and execution of the tasks created. The
device manager takes care of the device primitives, which controls the robot using simple
commands, while the skill manager uses sequences of these primitives to achieve more
complex robot movements. The task manager enables the user to create sequences of
skills, as well as the teaching of these skills.

All of the tools of SBS are made available to the user through the GUI, which is used to
supply the user with information on the current state of the robot as well as the creation
of tasks. The Ul manager takes care of the information coming from the robot through
the ROS bridge. This is where the information used for the teaching of skills is gathered

3.2. SBS programming Aalborg University

Skill

Manager
(Layer 2)

Central Control
(State Machine)

Manager
(Layer 1)

Device

Manager
(Layer 3)

Device
Proxy

- = - =
& S, ~

L4 ~
/Device), /Device?,
\ Driver, \ Driver/
. ’ \ ’

ROS mmmmsyemmdmea
iPhysical; iPhysical,
IO s Device’: s Device ':

-

Figure 3.1: The SBS architecture as depicted in [1].

3.2 SBS programming

Programming the robot in SBS is done in a way that complex tasks can be created, and
then through teaching, the parameters can be saved. By teaching the robot the positions
of objects in the workspace, the setup of the robotic system can be done more easily. This
removes the need for an operator to do low-level programming to configure the hardware
and software to suit the new task. This is possible due to the SBS using three layers to
program the robot; Tasks, skills and device primitives. The three layers can be seen on

Figure 3.2.
Fetch rotor caps
Ly~ O |~ G
avigate to alibrate to} . . } .
[AssembleJ [Fetch rotorJ [location]}[workstation IFIE o
rotor caps

Skills Pick object
Rotate | [Navigate to| [Calibrate to Pick [Capture]}{Moye "°b°t]>[Grasp]' .
object location | |workstation object InElgfe linear
Device primitives

Move robot | [Move robot " Measure Capture
e . Grasp Navigate - ’
joint linear distance image

Figure 3.2: The three layers of programming used in the skill-based system, as depicted in [1].

3.2. SBS programming Aalborg University

Using this three-layer system, SBS can be set up by an operator with different tasks, skills
and device primitives, enabling workers to intuitively pick the tasks that need to be done
at the workstation. The skills will however need to be "taught" to the robot, as parts of
the parameters needed for the execution of the skill, is not known to the robot e.g. the
position of an object which needs to be picked up. Once the needed parameters are taught
to the robot, the system can effectively work without a worker there, as the robot has been

reprogrammed to the new workspace.

3.2.1 Tasks

The top layer of the SBS is what workers will use to program the robot. This layer consists
of tasks, which are made up using a sequence of skills. Here a task could be to fetch an
object, which is made up using several skills, such as "move" and "pick up".

The tasks of the SBS after being programmed by the concatenation of skills are then
parameterized by utilizing the teaching functions of the skills, which is why these tasks
are directly made to solve goals in the factory. As the task layer is made to be used by
workers, it is not coupled with the hardware layer, where commands are given to the robot.
The tasks created are stored in external files, where the skills and parameters are saved,
which is used to be able to create, save, load and run the tasks. [1]

3.2.2 Skills

The middle layer of the SBS is the skill layer. These skills are made up of device primitives,
which can be both sensing and manipulation primitives. The skills are created to do
singular behaviours such as picking up or placing an object. The skills not only contains the
primitives needed to perform the skill, but also the parameters to do so. The parameters
are specified in a two-step process, the first being offline where simple parameters are
picked. Once the robot is at the workspace, the second step is the online parameters,
which are supplied by teaching. This is where end-effector positions can be stored and
used for skill execution. [1]

3.2.3 Device Primitives

The lowest layer of the SBS programming is the device primitive layer. These are the
different functions that the different connected devices can perform, such as moving the
robot to a Cartesian or joint space position. The device primitives are called by the SBS
using the device manager, which takes care of the connected devices. The SBS, when a
primitive is needed, calls the device manager to find an available device with the given
device primitive, after which it is called. The primitives are the lowest level of programming
in SBS, where the device is programmed. These contain direct communication to the
device, which is used to control it. For the KUKA LBR iiwa, an example of a device
primitive is the "move cart" primitive, which moves the end-effector of the robot to the
given goal pose. |[1]

3.3. Skill execution Aalborg University

3.3 Skill execution

A skill is executed in a way where there is a start state and a goal state. In-between these
states, the first thing the skill does is the pre-condition check, which is the robot checking
if all conditions are full-filled before the skill is executed. Once the pre-conditions have
been checked, the skill is executed using the parameters that have either been taught to
the robot or specified to the robot. This is to make programming the robot easier, as
teaching the robot can be done by anyone, whereas giving specific parameters can only be
done if you really know the robot. Once the skill has been executed, an evaluation is done
to check whether the skill was executed in a correct way. This is done using a prediction
of the desired goal. If the difference between the prediction and the evaluation is within
the error margin, the skill is deemed successful.

The idea is that a task can be created offline, with some of the parameters specified before
connecting to the robot, and teaching the last parameters online, as this is more intuitive
to the workers that are going to use the robot. This also enables the worker to correct and
help the robot, by keeping the "human-in-the-loop". [1]

3.4 Teaching skills

There are two parts to the parameterizing of skills, these being offline and online
parameterizing. This is done so that the more specific parameters can be set up beforehand
by more experienced operators, while the simpler parameters can be taught to the robot
via online teaching by the workers at the workstation.

To explain the teaching of skills in the SBS, an example is made from the teaching of
the "MoveTo" skill. The different parameters that can be specified or taught are the
parameters for the "MoveTo" skill, which can be seen in Table 3.1.

Name Type User Input Description
x1 MoveFramelJoint ParamVector Teach Target joint positions
x2 MoveFrameCartesian ParamVector Teach Target EE pose
x3 Velocity Double Specify Velocity
x4 FrameType Char Specify Frame Type
x5 MotionType Char Specify Motion Type
x6 OrientationLock Boolean Specify Make tool orientation free
x7 MoveGripper Char Specify Initial gripper position

Table 3.1: Input parameters for the execution of a "MoveTo" skill

To use this skill in the SBS, the skill must first be chosen and added in the SBS task
creation GUI, as shown on Figure 3.3.

10

3.4. Teaching skills

Aalborg University

Edit task

(a) Opening SBS GUI

Add skill

skill: [Please select [=] [New object will be named:

« Done @ Cancel

(c) The AddSkill GUI, after pressing the Add skill
button.

<= Add skill

L5 Load task file

L= Convert ADT

Generate task

Edit specification || 4 Reset teaching

= Delete skill P Teach from here

P Teach all

Scene [<Select scene>
orkspace [Undefined]
P Test Run

4» Move up

& Move down

(e) Task creation GUI, showing the added skill in
yellow, meaning it has yet to be fully parameterized.

S Add skill

le3Load taskfile | L5 Convert ADT

#Y Edit specification || & Reset teaching

== Delete skill P Teach from here

P Teach all

scene [<seieczeene>]
<space |Undefined |

(b) The task creation GUI, from pressing "pro-
gram" on the opening GUL

Add skill

New object will be named:

£ Move up

¥ Move down

Velocity: 0.30 =
Make tool orientation free: i
Frame type: oint space hd
Motion type: FTE. I
Initial gripper possition:| None =l

(d) The parameters specified for the MoveTo skill

Figure 3.3: Figures showing how to add a skill and begin teaching

11

3.4. Teaching skills Aalborg University

After the skill has been chosen and the offline parameters have been specified, as seen on
Figure 3.3c and Figure 3.3d, the skill shows up with a yellow box next to the name of
the skill, as seen on Figure 3.3e. This means that the skill has not been fully taught yet.
To fully teach the "MoveTo" skill, the robot must be taught the target joint position or
Cartesian frame, based on what was specified in Figure 3.3d. This is done by using the
teaching interface, which is used to instruct the worker on how to teach the robot. The
teaching interface used for the "MoveTo" skill can be seen on Figure 3.4.

Teach a position i

(a) Teaching interface instructing the worker to (b) Teaching interface showing the worker that the
press on the tool to teach the robot a position. tool can be moved in free space.

(c) Teaching interface instructing the worker to
either teach another point, or to stop the teaching.

Figure 3.4: Teaching interface used for the "MoveTo" skill.

The teaching interface allows the worker to know how to teach the robot, while also giving
the worker feedback in some cases. In the case of the "MoveTo" skill example, the teaching
interface first tells the worker to press on the robot end-effector to begin teaching the robot,
as seen on Figure 3.4a, after which the interface informs the worker that the teaching has
begun, as seen on Figure 3.4b. Lastly, once the robot is detected as stationary, the worker
is given a choice between teaching more points or stopping, as seen on Figure 3.4c.

Through the teaching interface, instructions can be given to the worker, which enables the
robot to be taught using online teaching. This makes it possible to place the robot into
a new environment, and have the robot up and running, without having an expert set up
the system.

12

3.5. Device Manager Aalborg University

3.5 Device Manager

To control the different devices connected to the system, SBS uses a device manager, which
keeps track of what devices are connected, as well as what different device primitives the
different devices are capable of using, such as "move cart".

To keep track of the connected devices the device manager uses an advertiser class, which
is built to interface with the manager. This advertiser uses a "heartbeat" ROS-publisher
to make sure that the device is connected. In this way the device manager knows if a
device has an error because the device’s "heartbeat" will stop if the device crashes in any
way.

The device manager uses device config files in the form of XML files, as well as device
proxy CPP libraries to know which devices are available to be connected, as well as what
functions are available from the different devices.

In this file, information can be found on what the device is, its name, what ROS-node is

used to manage the device, and lastly what functions are available for the device.

3.5.1 Creating a device

To create a new device for the device manager, the first thing that must be done is to
create a config file, together with a proxy library to be used by the device manager.

Config file

To create a new device the first thing that needs to be created is the device config file. In
this config file, the name, class and type are required for the device manager to know what
type of device it is.

The config file contains four tags that are used by the device manager. These four tags
are identification, driver, physical and functions. The identification tag contains the basic
information about the device, which is the name, class, type etc. As an example, these
could be "KUKA iiwa", "arm", and "articulated". The driver tag contains information
about what ROS node is used to launch the device. The physical tag contains the physical
properties of the device, which could be the weight. Lastly, the functions tag contains the
device primitives that the device can perform. This is also where the required parameters
for the device primitives are specified.

Device proxy

Once the config file is created, the next step is to create a device proxy, which the device
manager uses as a library to connect to the device driver. This proxy library is used to
create the ROS publishers, subscribers and service clients that control the robot.

The proxy library is used to program the device primitives for the device. This is done by
turning the library into a ROS service which is called by the SBS when executing skills
or tasks. This means that once a command is sent from the SBS, a request is received
containing the device primitive needed, as well as the required parameters.

13

3.5. Device Manager Aalborg University

This chapter explored how the SBS is built, as well as how the tasks and skills are created
and taught. How the device manager is used to control the devices connected to the SBS
was also explored, as well as how to create new devices to connect to the SBS.

14

Information Flow

To allow the system to accomplish the task of unfastening screws, a robot and a tool are

needed, this chapter explores the different devices used for the project, as well as how these

devices communicate and are controlled.

4.1 System Architecture

As different forms of communication are needed for the different devices used in the project,

these forms of communication are explored. The devices used for the project is the KUKA

LBR iiwa, an Arduino Mega 2560, and a powered screwdriver.

User input Gul
... .
Full System : Control layer - ROS A4
]
: SBS smmmn Device
. Manager
1 |
1 | |
1
1
. Robot
: Rostg::al mEee 'Control Node
1
[]
n

ROS Communication

Emm®» Communication Protocol

Figure 4.1: A simplified version of the system architecture.

As shown on Figure 4.1, the KUKA LBR iiwa and Arduino Mega 2560 are controlled using
separate ROS nodes, which are explained in section 4.3 and section 4.4 respectively.

15

4.2. Screwdriver Aalborg University

Figure 4.2: Picture showing the robot with the tool attached to the end-effector.

As seen in Figure 4.2, the KUKA LBR iiwa is equipped with a screwdriver, which is
controlled using an Arduino Mega 2560. The screwdriver uses a hex bit, which is used for
the unscrewing skill. The tool is created using a 3D printed fixture to hold the screwdriver
in place, which is explained in section 4.2.

4.2 Screwdriver

For [5] a tool was created by Technicon to be attached to the robot. However, due to issues
mentioned in that report, a different tool is used for the unfastening of the screws.

To attach the screwdriver to the robot, a 3D print is used to keep the screwdriver in place.
A metal plate connector is utilised to make sure that the 3D print can be attached to the
robot. This metal plate has screw holes in the four corners to be used for the 3D print.
The dimensions for these screw holes can be seen on Figure 4.3, together with the bottom
of the 3D print.

16

4.2. Screwdriver Aalborg University

Figure 4.8: Drawing of the CAD model seen from the bottom, showing the dimensions used.

For the screwdriver to be held in place by the 3D print, the dimensions of the screwdriver
are taken and used to create the tube for the screwdriver, as seen on Figure 4.4.

70.00

59.96

(a) Drawing of the CAD model seen from the side, (b) Drawing of the CAD model seen from the top,
showing the dimensions used for the tube. showing the dimensions used for the tube.

Figure 4.4: CAD drawings showing the dimensions used to attach the screwdriver

After the dimensions for the metal plate connector and the screwdriver are known, the
next step is to create the final CAD model for the 3D print. To do this, the bottom and
tube seen on Figure 4.3 and Figure 4.4, are put together. However, as the screwdriver
needs wires to control it, four holes are added around the tube to allow for the wires to be
put through. The final CAD design can be seen on Figure 4.5.

17

4.3. Arduino Mega 2560 Aalborg University

(a) Final CAD model seen from the side. (b) Final CAD model seen from the top right

Figure 4.5: Final CAD design seen from multiple angles.

As can be seen on Figure 4.5, extra screw holes are added to the tube to allow the
screwdriver to be fastened to the 3D print.

The final CAD design allows the screwdriver to be held in place by the 3D print while
allowing the wires needed to control the screwdriver to go through the bottom of the 3D
print.

4.3 Arduino Mega 2560

The Arduino Mega 2560 is a microcontroller, built by Arduino for easy and low-cost
prototyping with sensors and actuators. The Arduino is controlled using the Arduino
programming language, which is a language based on wiring, which utilizes the IO pins on
the Arduino Mega 2560 (Seen on Figure 4.6). This section explains how the Arduino is
used to control the screwdriver used to unfasten screws.

Figure 4.6: Arduino Mega 2560

18

4.3. Arduino Mega 2560 Aalborg University

Programming the Arduino is done using the Arduino IDE which was made for programming
and uploading the software to the Arduino board. To start programming the Arduino, the
first thing to do is to set up the pins that are going to be used in the setup function. This
sets the different pins to either input or output. While all pins can output a digital signal
(5v or 0v), some of the pins on the board are set up to be able to read an analog signal.

In the setup function, a pin is set up for either input or output for runtime. This is
also where the baud rate is set up for communication with the board. The board can
communicate in two ways, one being the USB connection, and the other being the RX/TX
pins, which are built for communication with other devices. This means that the Arduino
can receive information from the external PC, and then act accordingly using the output
pins. The ROS communication used for the project is also initialized in the setup function,
to allow the Arduino to communicate through ROS.

4.3.1 Rosserial-arduino

The rosserial library for Arduino built by Joshua Frank [21], uses the USB connection to
send and receive ROS messages to and from the Arduino. It is made as a wrapper for the
standard ROS serialized messages, making it possible to integrate the Arduino into a ROS
framework.

As shown earlier, the ROS node, subscribers and publishers are initiated in the setup
function. This is where the external PC figures out what to send and receive from the
Arduino. This is done on the external PC by launching the rosserial-arduino ROS node,
with the USB port name as an argument. This creates a node running on the external
PC, which converts and sends the related messages to the Arduino. This is useful as
the screwdriver used for the unfastening of the screws can be controlled by the Arduino,
meaning that a control signal can be sent through ROS. The control signal used for the
Arduino is a callback function.

The first thing to creating a callback function on the Arduino is to create a ROS subscriber,
by giving the topic name, and the callback function as seen below.

ros: :Subscriber<std_msgs::String> sub("Activate_tool", messageCb);

As can be seen above, the subscriber receives a string, which is used in the callback function.
Once the subscriber is created and initiated in the setup function, the callback function is
called every time a ROS spin is called, which in this case is called using the "spinOnce"
function.

The "spinOnce" function is needed due to how callback functions work in ROS. Callback
functions are not automatically called every time a message is received on the topic, instead
the message is put into a queue. The "spinOnce" function then calls all the queued callback
functions. This means that the callback function for controlling the screwdriver is called
if a message has been sent.

If the callback function is called, the data contained in the message is used to control the
screwdriver. If the message is an "a", that means that the screwdriver is to be activated,

19

4.3. Arduino Mega 2560 Aalborg University

and the output pin is set to "HIGH". After the screwdriver is activated, the Arduino sends
back the pin output. How this is used to control the screwdriver is explained in the next

section.

4.3.2 Screwdriver control

The screwdriver works by utilizing a 12v battery, which can be charged using a USB cable.
As the screwdriver essentially is just a DC motor, which rotates in the direction of the
current, this can be controlled using a MOSFET as seen on Figure 4.7.

Screwdriver
DC motor
] 1
. Q1
Screwdriver MOSFET-N
battery -
i

U1
MEGA_DEVICE

o faYa)
= = =
w' [T]U]
P I 1 P A [R Oy []
WA—A-HTT TTTTTTTT A=A []
< _223
225
L . Aﬁé 29y yssgg 287
PWM and digital F e FoeF oo 289
. A 301
Communication 323
_335
387
389
Arduino mega2560 B _481
2 483
_445
_467
_489
_561
533
Analog in GND — — @nND
'_
w
D25 | B ofrdmlenloln] ojod Smi oy
ST T I T T T T
[a)a]
= =
G0

Figure 4.7: Arduino with connections to screwdriver

The figure shows the Arduino using the MOSFET as a switch to control the current from
the battery. This means that if a 5v signal is given on pin 12, the current flows through
the MOSFET powering the DC motor.

With the MOSFET combined with the rosserial library, the screwdriver can be controlled
through ROS. This means that the external PC can easily activate the screwdriver, and
thus be used directly by SBS, if the unscrewing device primitive is called (explained in
subsection 5.1.3).

20

4.4. KUKA LBR iiwa Aalborg University

4.4 KUKA LBR iiwa

The KUKA LBR iiwa is controlled using the Sunrise cabinet/controller, which uses
KUKA'’s collection of Java packages to control the robot. One package that can be used to
control the robot is the FRI (Fast Research Interface) package. Other ways of controlling
the robot are through direct connections to the sunrise controller, through either a TCP /IP

or a UDP connection.

FRI was initially chosen as the way to control the robot. However, during initial testing,
the connection proved to not be able to send anything other than movement commands.
This made it impossible to use as a stand-alone connection, as different impedance control
stiffnesses is required for the project. Due to this, a different way of controlling the robot
is explored, this being the UDP connection.

4.4.1 UDP Connection

The UDP (User Datagram Protocol) connection is a connection between devices, which
is often used for time-sensitive applications. For this reason, it is often used for video
playback. This is due to the connection not needing a confirmation message from the
receiver, which enables the source to send data as fast as possible.

The connection, not needing a handshake, makes it faster than a TCP/IP (Transmission
Control Protocol) connection, which was utilized by the KST (KUKA Sunrise Toolbox)
used in [5]. As a TCP/IP connection also requires a confirmation message to be sent for
every command, this slows down the control frequency. As a faster control frequency is
needed for some applications of robotics, the TCP/IP connection is not fast enough, as a
test done by the author of the KST show that each message has a delay of 3-4 ms.[22]

This means that the UDP connection is a better choice, as the control frequency can
increase. Another advantage of using a UDP connection is that when sending a message,
only the receivers address needs to be specified, making sending messages easier. The same
is true for the receiving end, as only the address and port are needed to create a socket.

For the KUKA LBR iiwa, the robot is programmed using the KUKA Sunrise IDE, which
uses java to control the robot. To create a UDP connection in java, the java.net packages
are used. For the UDP connection, the DatagramSocket and DatagramPacket are used to
create the socket and send and receive packets from the external PC.

21

4.4. KUKA LBR iiwa Aalborg University

Start

Create UDP
socket

Error creating Close UDP
socket socket

Create new
thread
1
Start UDP UDP receive
receiving loop on function
thread
\ 7
Y
Stop

Figure 4.8: Flowchart of the robot UDP connection

As on Figure 4.8, the controller creates a UDP socket, after which a thread is created to
manage the received packets.

Once the socket is created, the robot controller waits for a packet to arrive from the
external PC. This is done to create a connection from the controller to the external PC.
After the packet has been received, the controller sends back a message to let the external
PC know that the connection has been established. This also allows the controller to save
the IP address of the external PC, which is used to send the current state of the robot to
the external PC.

4.4.2 Threading for receiving

To allow the robot to be controlled while receiving commands at the same time, a thread
for receiving packets is created. This allows the controller to control the robot while also
receiving commands from the external PC. This is done inheriting the Runnable class in
java.

Once the thread is created, the thread enters a loop, which checks the received packets
for commands and the parameters from the external PC. This enables the robot to run in
Cartesian impedance control mode for the entire duration of the robot application, while
the receiving thread can change the stiffness parameters or give a new desired goal pose.

22

4.5. Pipeline from SBS to KUKA Aalborg University

4.4.3 Receiving state of the robot

Because the SBS needs the state of the robot for workers to be able to teach the robot
skills, the state has to be sent to the external PC.

The state is read from the robot sensors, after which the state is formatted in a specific
way before being sent to the external PC.

The message is formatted as a string containing a keyword, followed by the state associated
with the keyword separated using a ",". The separation is done so that when the string
is decoded, it can be easily split on the receiving end. There is one exception to this,
however, which is the last parameter in the message. This parameter tells the external PC

whether the robot is currently in impedance control mode.

Once the message is created, it is converted into bytes, after which a packet containing the
message, the length of the message, the receiving IP address and the receiving port. After
the packet is created, the packet is sent through the UDP socket.

4.4.4 Sending commands to the robot

To control the robot, the controller must be able to receive, decode and check the packets
from the external PC.

The command messages are formatted in a similar way as the robot state, in the same
way, that the state is formatted, with the command as the first keyword, followed by the
parameters for the command.

Once the packet is received from the external PC, the packet is decoded into a string. After
the packet is decoded, the string is split, converting the string into a list of strings. In this
way, the first element of the list is the command for the robot. An example of a command
is the "cartImpLIN" command, which puts the robot into Cartesian impedance control
using the SmartServoLIN package. The parameters for the impedance control command
is the different stiffness parameters for the robot.

An example of the impedance control command message is seen below.
"cartImpLIN,1000,1000,200,5,150,150,"

How this is used to control the robot is explained further in section 4.5.

4.5 Pipeline from SBS to KUKA

To control the KUKA LBR iiwa using the SBS, a pipeline is created to convert and send
the SBS commands to the robot. This is done through the use of a "bridge", which is
created in python to interface with the robot using the UDP connection, and with the SBS
using ROS.

4.5.1 SBS to python

Commands from the SBS are sent using a ROS service call, with a "FcnCall" as a request.
This "FenCall" contains the command, and a parameter handler, which contains all the

23

4.5. Pipeline from SBS to KUKA Aalborg University

required parameters for the command. The required parameters are specified in the device
config file (Explained in subsection 3.5.1).

As explained in chapter 3, commands from the SBS go through the device manager, using
the device proxy created for each device. The proxy used for the project converts the SBS
commands into ROS messages, which are sent to the python bridge. Once the command is
received by the device manager, the proxy "execFen" function is called as a ROS service.
Here, the command is checked using the command string stored in the "FenCall", after
which the appropriate device primitive is called using the given parameters. In the case
of a "move cart" device primitive, the given parameters are the Cartesian position of the
goal position in meters and the velocity for the robot. After the primitive is called, the
proxy generates a ROS message to be sent to the python bridge. This message contains
the command for the robot and the parameters, which are used to call the ROS service
created to control the robot.

The ROS service checks the command and calls the device primitive needed to control the
robot. For the "move cart" primitive, the Cartesian position is converted from meters to
millimeters due to the robot using millimeters for the goal positions.

4.5.2 Python to KUKA

Once the service request is received from the SBS device manager and the device primitive
is called, the first step is to convert the SBS command into the UDP packet sent to the
robot.

With the service request received, the SBS command is converted into a string, containing
the command followed by the parameters for the robot separated using a ",". After the
string is generated containing the command for the robot, the string is converted to bytes
after which it is sent to the robot controller using the UDP connection. When the controller
receives the message from the python bridge, the message is converted into a string, after
which the string is split using the "," separator. After the string is split, the first element
in the list, the command, is used to decide which primitive should be used by the robot.
After the command is read, the parameters are read by converting the string into a double
to be used during the execution of the primitive. In the case of the "move cart" primitive
being called, the parameters are used to generate a "Frame", which is the KUKA LBR
iiwa’s way of representing Cartesian positions. A Frame consists of the Cartesian position
in millimeters, and the orientation of the end-effector in Euler angles. After the Frame is
given to the robot controller, the controller uses inverse kinematics to calculate the goal
joint positions and create a trajectory for the robot. This is done using the SmartServoLLIN
class, which is explained in section 5.3.

This chapter explored the system architecture, as well as the use of an Arduino for
controlling the screwdriver, as well as how the Arduino is controlled using the "rosserial"
package. After that, the connection to the KUKA LBR iiwa was explained, as well as why
the UDP connection was chosen. Lastly, the connection between SBS and the robot was
explored.

24

Unscrewing Task Creation

To make the robot accomplish the task of unfastening screws, the unscrewing task itself
has to be created. This chapter explores how the unscrewing task is created and taught
the positions of screws. Lastly, the Sunrise servoing package is explored, as this is used for

impedance control.

5.1 Unscrewing Task

As an unscrewing task is a complex task, it is split into smaller tasks that a robot can
execute. This also enables each part of the task to be parameterized instead of being
hardcoded. Because the parameterization of the task is important for the SBS integration
and the teaching of the robot, the parameters for each device primitive are explored.

(a) Step 1: Locate the screw (b) Step 2: Approach the (c) Step 3: Insert hex-key
mto screw

(d) Step 4: Unfasten the (e) Step 5: Detect the un- (f) Step 6: Remove the tool
screw fastening of the screw from the screw

Figure 5.1: Pictures showing the steps to unfastening a screw.

25

5.1. Unscrewing Task Aalborg University

For the robot to achieve the unfastening of a screw, the task must be split into smaller
and simpler skills or device primitives. For this reason, each part of screwing a screw is
explored. As seen on Figure 5.1, the steps to unfastening a screw are to first approach
the screw with the tool, then insert the tool. Once the tool is inserted into the screw, the
screw is unfastened.

While unfastening a screw is a simple task for humans, there are parts of the task that
is a very difficult task for a robot. The parts in question here is step 3 and 5, the first
being a re-occurring research topic called the peg-in-hole problem. The second part is
the detection of the unfastening, which is explored in subsection 5.1.3. For this project,
however, due to knowing the position of the screw beforehand, this task becomes simpler.

Unscrewing Task

i
1 1
1 1
1 1
1 1
1 1

1
: Teaching of the - Move to screw 3| Move down to screw |
1 screw location 71 approach point - 1
1 1
1 1
1 1
1 1
1 * 1
1 1
1 . - . w| Remove tool from 1
. Peg-in-hole > Unscrewing > sorew |
1 1
1 1
1 1
1 1

Figure 5.2: Figure showing the approach taken to unfasten screws, starting from the teaching of
the screw locations and ending at the removal of the tool from the screw.

For this project, the unscrewing task is split into 5 separate skills, or device primitives,
which can be seen on Figure 5.2. The figure shows that the task requires the screw positions
to be taught to the robot before the task can be executed. Once the screw positions are
saved, the positions are used to move the end-effector of the robot to the approach point
for each screw. This approach point is set to a static height directly above the screw
(Explained in subsection 5.1.1). Once the end-effector has been moved to the approach
point, the robot starts to move the end-effector downwards until a contact force is detected.
Once a contact force is detected, the end-effector is expected to be in contact with the
screw, which is where the simple peg-in-hole device primitive is used (explained further
in subsection 5.1.2). Once the end-effector is inserted into the screw, the unfastening is
done by activating the screwdriver (Explained in subsection 5.1.3). After the unfastening
has been done, the last step is to remove the end-effector from the screw (Explained in
subsection 5.1.4).

5.1.1 Tool contact search

To ensure that the peg-in-hole device primitive is as simple as possible, a few steps have
to be done, the first being knowing the Cartesian position of the screw. The next step is
the tool contact search device primitive.

26

5.1. Unscrewing Task Aalborg University

The tool contact search makes the robot move the end-effector downwards at a constant
pace, while the tools external upwards force is being monitored. A flowchart of the
primitive can be seen on Figure 5.3.

Start

Y
E—

Get current robot
state

e ———

Y
)

Startloop

—

Y

s external force!
higher than
force limit

No
——

Make new goal
position

— S

Y

)

Move robot
downwards

T

Figure 5.3: Flowchart of the tool contact search device primitive.

As seen in the flowchart, the robot moves downwards from the current robot state, until
the external force has exceeded the force limit. To do this, the goal position is used to
generate a control message for the robot, after which it is sent to the robot controller.
Once the external force larger than the force limit, the robot is expected to be in contact
with either the table or the screw.

To make this device primitive more flexible with different situations, the force limit and
speed of the robot can be parameterized using the SBS framework.

5.1.2 Peg-in-Hole

The peg-in-hole task itself is done in a simple manner. The first step to performing this
task is getting the tool itself into a favorable position. As this is done using the tool contact
search, the current step is the tool insertion.

As the task is to insert a tool into a screw, some information about the screw must be
known beforehand. In this case, the needed information is the type of screw, which in
this case is a hexagonal screw. Being a hexagonal screw means that if the tool is rotated
30 degrees in each direction, the tool can if the position is correct, be inserted no matter

27

5.1. Unscrewing Task Aalborg University

what orientation the screw is in. After the tool is inserted into the screw, the robot must
be able to detect if the tool is correctly inserted. This detection is done by looking at the
external torque being applied to the tool. This is done in roughly the same way as [5].

While the peg-in-hole device primitive is mostly hardcoded, the tool rotation margin during
the search can be changed depending on the type of screw. Lastly, while the robot can
detect if it has correctly inserted the tool into the screw, there can still be errors resulting
in the robot not inserting the tool into the screw. To make sure that this does not happen
during the execution of the unscrewing skill, a recovery/error state is created. A flowchart
of the device primitive can be seen on Figure 5.4.

Get current robot
state

y

Startloop

!

Rotate tool

Is tool insertion
detected

No

Is Z position
too low

Yes Send error state
Yes Send error state

Figure 5.4: Flowchart of the peg-in-hole device primitive.

No

As seen on the flowchart, the error state depends on the tool z-position or a timeout. The
limiting position on z is calculated based on the initial z position and the height of the
screw, which enables the robot to detect if the tool falls off the screw. The timeout is

28

5.1. Unscrewing Task Aalborg University

added due to the tool sometimes being stuck on the screw.

5.1.3 Unfastening

The unfastening of the screw is a simple part of the execution once the tool has been
inserted into the screw. This is due to the unfastening, essentially, being about turning on
the screwdriver (Explained in section 4.3).

However, for the purpose of testing the system on different length screws, some form of
detection is needed for the completion of the unscrewing. For this reason, some data is
collected during the unfastening device primitive. The data collected for the detection is;
The wrench on the z-axis, the force on the z-axis and the position on the z-axis.

wrench on the z-axis during unscrewing

014

0.0

Wrench

Tool insertion

X - axis

Figure 5.5: Graph with time on x and the external wrench measured on the z-azis on y.

As seen on Figure 5.5, unfastening the screw fully shows a small oscillating pattern.
However, since the wrench is higher and lower at points during the unfastening process,
other ways of detecting the unfastening are considered. These other ways being the external
force on the z and the position on z.

29

5.1. Unscrewing Task Aalborg University

force on the z-axis during unscrewing

0.0

Force

Tool insertion

X - axis

Figure 5.6: Graph with time on the z-axis and the external force measured on the z-azris on the
Y-axis.

Firstly, Figure 5.6 shows that after the screw has been fully unfastened, an oscillation
starts, which can be used to detect the unfastening of the screw, as it is a consistent
pattern on the graph.

Position on z during unscrewing

e™ Nz g™ apT Mgt ORgrT Nt St

320 4

Position

316

Tool insertion

X - axis

Figure 5.7: Graph with time on the z-azis and the tool z position on the y-azis.

Lastly, Figure 5.7 shows that the tool position rises steadily during the unfastening, while
the position starts oscillating once the screw is fully unfastened.

The detection method chosen for the project is to use the position on z, where a simple
detection can be created. This detection is done by saving the highest point reached on
the z-axis and monitoring how much the position drops. If the drop is over the chosen

30

5.1. Unscrewing Task Aalborg University

threshold, a counter is bumped and a timer is started. If this occurs two times within a
second, the screw is deemed unfastened. A flowchart of how the full primitive is done can

be seen on Figure 5.8.

Get current robot
state

3

Start screwdriver

3

Start loop

No

Unfastening
detected

No

Generate new Current robot
goal state state
\ J

Y

—

Send new goal
state

T

Figure 5.8: Flowchart of the unfastening device primitive.

As seen on the flowchart, a goal pose is also sent to the robot during the unfastening of the
screw. This is done to ensure a constant downward force instead of an increasing force.

With this detection, the unfastening can be detected, which is shown in subsection 6.1.3.

This enables the robot to unfasten screw due to the unfastening being detected more
efficiently.

31

5.2. Teaching the skill Aalborg University

5.1.4 Tool removal

The last step of unfastening a screw is to remove the tool from the screw. This step, while
it seems simple, can be challenging.

The challenging part of removing the tool from the screw is that the tool can often get stuck
in the screw when rotating. While this step is simple once the screw is fully unfastened, it
can damage the tool if the screw is not unfastened. Because of this issue, a device primitive
for removing the tool from the screw is created. A flowchart of the primitive can be seen
on Figure 5.9.

Get current robot
state
Start loop

CurrentZ
position high »>Yes
enough
No
Rotate tool, and
move tool up

Figure 5.9: Flowchart of the tool removal device primitive.

As seen on the flowchart, the primitive tries to remove the tool from the screw until a pre-
defined Z position is reached. This is done to ensure that the robot can move unobstructed
to the approach point of the next screw. It can also be seen that the tool is rotated as it
is moved upwards. This is due to the tool’s tendency to get stuck in the screw during the
unscrewing or tool insertion.

This enables the tool to be removed from the screw, in the case of the screw not being
fully unfastened or not at all.

5.2 Teaching the skill

To unfasten screws while not using vision for detecting the screw positions, the positions
must be supplied to the robot. This is done through the SBS teaching interface (Explained
in section 3.4).

As seen in Table 5.1, there are 8 parameters needed for the execution of the skill. Of these,
6 of the parameters are specified when creating the task for the robot, while the 2 frame
parameters are taught to the robot.

32

5.2. Teaching the skill

Aalborg University

Name Type User Input Description

x1 ScrewFramelJoint ParamVector Teach Target joint positions

x2 ScrewFrameCartesian ParamVector Teach Target EE pose

x3 Velocity Double Specify Velocity

x4 Lin Boolean Specify Joint or Cartesian space
movements

x5 OrientationLock Boolean Specify Make tool orientation free

x6 SearchAngle Double Specify Peg-in-hole rotation span

x7 ForceLimit Double Specify Tool contact search force-
limit

x8 MultiScrew Boolean Specify Multiple screw execution

Table 5.1: Input parameters for the execution of an "Unscrewing” skill

After the offline parameters are specified and the teaching of the online parameters begins,

the robot is stiffened, while it waits for the worker to begin the teaching of screw positions.

After the worker applies a force to the end-effector to begin teaching the screw positions,

the robot loosens the stiffness of the impedance control to allow the worker to insert the

end-effector into the screws. To instruct the worker to insert the tool into the screws, the

teaching interface is used, as seen on Figure 5.10.

Teach points

Insert tool into

Figure 5.10: SBS teaching interface instructing the worker to insert the tool into the desired screw.

After the tool has been inserted into the screw, the teaching interface detects when the

robot has been stationary for three seconds. After this has been detected, the current

robot position is saved into the online parameters, after which the worker is instructed to

rotate the tool using the interface shown in Figure 5.11.

33

5.2. Teaching the skill Aalborg University

Teach points

Rotate tool t

Figure 5.11: SBS teaching interface instructing the worker to rotate the tool.

Once the SBS teaching interface detects the rotation, a warning is given to the worker due
to the robot being about to move, after which the robot removes the tool from the screw.
After the tool is removed from the screw, the teaching interface stiffens the impedance
control to allow the worker to choose between teaching more screw positions and stopping
the teaching using the interface shown in Figure 5.12.

Teach points

another scre
Proceed:

Action/Status|

Figure 5.12: SBS teaching interface instructing the worker to decide between teaching more
positions, or stopping the teaching.

34

5.3. Sunrise Servoing Aalborg University

After the teaching of the screws is done, the positions are saved to be used for later
execution of the task created.

5.3 Sunrise Servoing

The Cartesian impedance control mode used in the project is done using the Sunrise
servoing package from KUKA [2]|. It enables the use of soft-realtime control for the KUKA
LBR iiwa.

From the Sunrise servoing package, two control modes are chosen to be used for the project,
these being the standard SmartServo class and the SmartServoLLIN class. They control
the robot using joints and frames respectively for controlling the robot. It does this by
executing the movements asynchronously. Both classes have the impedance control mode
built-in, enabling the robot to be compliant during the execution of the unscrewing skill.

The two SmartServo classes, both share problem, which occurs when using soft-realtime
control. This issue is called the seconds hand effect. This effect is visible when commands
are not given to the robot fast enough, which makes the movement look jittery. This effect
can be seen on Figure 5.13.

setDestination GoalReached
|

setDestination | GoalReached
]

i i
1]
] I
1 I
]]
I I
] I
IRéached |
1 |
] I
T I
1]
] I
1 I
]]
1 I
1 I
1 I

|
1
|
1
1
1
1
|
1

1
1
i
1
i
| setDestination |
1
|

| Goa
pal

s

L

[

1

1

|
1 1
. 1
| 1
1 1
| 1
| 1
| |
| 1
| 1
| 1
1 1
| |
| 1
| 1
| 1
L

>
>

to t1 t2 3 t4 t5 t

Figure 5.13: Figure showing the effect of the "seconds hand effect”, made by KUKA [2]

As seen on the figure, if a new goal position is not sent fast enough, the robot slows down
and even reaches the goal, resulting in a movement that looks jittery. However, as seen on
Figure 5.14, the effect can be fixed by sending the commands to the robot faster or having
larger distances between the goal commands.

setDestination

e

/ -1
|
|
1
|

c. 1

1
1
1
|
1
I
1
|
I
1
|
1
1

setDestination

setDestination

=
|

»
>

i
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
:
t2 t1+sync t3 t2+sync t

t0 t1 t0+sync

Figure 5.14: Figure showing the movement without the effect, made by KUKA [2]

35

5.3. Sunrise Servoing Aalborg University

Another way that this issue can be circumvented, is to lower the maximum acceleration and
velocity of the robot so that it takes longer to go between the goal positions. An entirely
different way of making the problem smaller is to use the SmartServo impedance control,
which can also make the movements appear smoother. For this project, the impedance
control mode is in use for the entire unscrewing process.

5.3.1 SmartServo Impedance Control

The impedance control mode found in the SmartServo classes can be controlled in an easier
way, compared to using the standard impedance control, as the standard impedance control
works during a single movement at a time. However, by using the SmartServo classes, the
control mode can be initiated and used until the SmartServo runtime is stopped.

When using the SmartServo and SmartServoLIN classes for impedance control, some
parameters are needed for the control mode to be initiated. These different parameters
are the stiffness parameters and the tool parameters. The tool parameters are the
transformation from the flange of the KUKA iiwa to the tool and the center of mass
and mass of the tool. All of this is used for the gravity compensation for the robot. Once
the tool is specified, the next step is to create the SmartServo runtime and control the
robot using the goal positions. A flowchart of how the impedance control is done can be

seen on Figure 5.15.

Start
Change
\ 4 impedance
 EEEEE— P
Create parameters
Impedance
control mode
No Yes
A 4 —
Change
Get current robot Impedance
state parameters
\ J D p—
v — v
)
Initialize and Change goal Get goal state
parameterize state from UDP
SmartServoLIN \ J
Y
 EEEE—
Start Impedance Stop
control loop Impedance No
\ , control

Yes

Figure 5.15: Flowchart of the impedance control function

36

5.3. Sunrise Servoing Aalborg University

As seen on the flowchart, the controller starts by creating the impedance control mode
after which, the SmartServoLIN instance is created and parameterized. After the creation
of the SmartServoLIN, the impedance control loop is initiated. In this loop, a decision
function is created to allow the impedance control parameters to be changed during the
runtime of the robot movements. After the decision function, the new goal state is read
from the UDP connection, which is used to change the goal state of the robot.

This chapter explored the task of unfastening screws by breaking down the task into more
doable skills and primitives for the robot. The teaching of the screw positions using the
SBS teaching interface was explored. Finally, how impedance control is used was explored.

37

Evaluations

This chapter explores the evaluation of the full system and the individual parts of the
system. To do this, the tests are done in two parts, these being the individual device
primitives and the full system tests.

Figure 6.1: Test setup environment showing the robot and the test platform

The test setup, as seen on Figure 6.1, uses a test platform with the screws fastened into
it to allow for a more consistent and static test setup. The test platform is lifted from the
table, as this allows the robot to reach the screws, as the work-space of the robot cannot
properly reach the table it is placed on.

The requirement for the full system test is to have a 95% success rate in unfastening the
screws on the test platform. For this reason, individual tests are done using each device
primitive to determine the best parameters for each primitive, which in turn allows the
full system to have a higher success rate. A hypothesis is created for the tool insertion
device primitive, which is that the initial rotation direction affects the outcome of the tool
insertion. This hypothesis is tested during the task execution tests.

38

6.1. Device Primitives Aalborg University

6.1 Device Primitives

As the SBS uses device primitives to define the skills for the robot, the different device
primitives have to be evaluated to see if they perform as they should. The device primitive
used for moving the robot in Cartesian space is however not evaluated as this is the basis
for the other primitives.

The tests of each device primitive is done by testing different parameters. Because of this,
only one parameter is changed at a time for each test. This is done to evaluate how each
parameter affects the primitive.

6.1.1 Tool Contact Search

This primitive makes the robot’s end-effector go downwards until an external force on the
z-axis, after which the robot stops the downwards movement. This test consists of trying
the primitive with different parameters to see the end result. The device primitive can be
seen on Figure 6.2.

Figure 6.2: Pictures showing the tool moving downwards until contact with the screw.

The different parameters which are tested are the end-effector velocity and the external
force needed to stop the movement. For the purpose of testing each parameter separately,
only one parameter is changed at a time. The initial parameters for the test are a relative
velocity of 25% of the deemed maximum velocity and a force limit of -0.5 N on the z-axis.
The test is deemed successful if the robot correctly stops after contact with the screw.

39

6.1. Device Primitives

Aalborg University

Velocity Force Limit Result
25% -0.5 N 0/10
50% -0.5 N 0/10
5% -0.5 N 0/10
100% -0.5 N 0/10
25% -1.0N 9/10
50% -1.0N 10 / 10
5% -1.0N 10 / 10
100% -1.0N 10 / 10
25% 15N 10 /10
50% ‘15N 10 /10
75% ‘15N 10 /10
100% -1.5 N 10 / 10

Table 6.1: Test results of the tool contact search

The results of the tests for this device primitive, shown in Table 6.1, shows that when
the limiting force is too low, the upwards force exerted by the impedance control mode,
is enough for the robot to think that it has hit screw. Due to this, the limiting force is

increased, after which the success rate becomes 100%.

This means that in the full skill test, the external force limit is chosen to be -1.5 N, as this
works using both high and low velocity for the device primitive.

6.1.2 Peg-in-Hole

The peg-in-hole primitive uses the same strategy used in [5]. However, due to the tool and
control strategy being different, a new test is conducted to choose the correct impedance
parameters for the problem. The device primitive can be seen on Figure 6.3.

search

N

(a) Tool after the tool contact (b) Picture with the rotation used (c) Tool inserted into the screw
for the tool insertion, overlayed
with white arrows.

Figure 6.3: Pictures showing the tool being inserted into the screw

40

6.1. Device Primitives Aalborg University

For this test, the stiffness parameters for the x-axis and the y-axis are changed
simultaneously to ensure the stiffness is the same in the XY-plane. The z-axis stiffness is
changed to test whether different downwards forces makes the peg-in-hole primitive more
successful. The initial Cartesian position is static throughout the test. This test uses the
tool contact search for the initial approach towards the screw. The starting stiffness for
the XY-plane is chosen to be 1000, which is a high stiffness, meaning that the tool is less
likely to deviate from the desired position, while the stiffness on the z-axis is chosen to be
quite low to not apply too much force on the tool during the execution.

The test is deemed successful if the robot can successfully insert the tool into the screw
and detect that the insertion is done correctly. If the robot takes longer than 15 seconds

to insert the tool, the test is deemed unsuccessful.

X and Y stiffness 7 stiffness Result
1000 100 0/10
1000 200 3 /10
750 100 9/10
750 200 10 / 10
500 100 10 / 10
500 200 10 / 10

Table 6.2: Test results for the peg-in-hole impedance test

The test results seen in Table 6.2, show that with too high stiffness on the xy-plane, the
tool can not be successfully inserted if the tool hits the side of the screw-head. This results
in the success rate is very low for higher stiffness, while the success rate increases as the
stiffness on the XY-plane decrease. In the end, the insertion reaches a 100% success rate
for the Cartesian position chosen for the test.

Recovery

Due to the tool insertion, or peg-in-hole, having a high chance of failure, a recovery action
is made. This recovery action detects if the tool gets too low on the z-axis, meaning that
the end-effector missed the screw entirely. It works by asking the operator/worker near the
robot to move the end-effector into the screw to ensure that the tool is correctly inserted.
Once the tool is inserted, the robot continues with the unscrewing skill.

For the purpose of making sure that this is correctly detected, with no false positives, a
test is conducted. During the test, the end-effector is pushed off the screw to ensure it
does not get inserted into the screw. The test is deemed successful if the failure is correctly

detected. A picture of the tool having missed the screw can be seen on Figure 6.4.

41

6.1. Device Primitives Aalborg University

1

Figure 6.4: Picture showing the tool after missing the screw

The test was done 50 times, out of which the robot detected the failure in 100% of the
tests. This means that the recovery mode can be expected to work if the initial state of
the end-effector is that the tool is in contact with the side of the screw-head.

6.1.3 Unscrewing

For the unscrewing test, the initial state of the test is that the tool is inserted into the
screw. This means that the success criteria is whether the robot can correctly detect if
the screw is fully unscrewed. This detection is described in subsection 5.1.3. Once the
robot has detected that the unscrewing is done, the screw is examined to see if it is fully
unfastened. The device primitive can be seen on Figure 6.5.

(a) Picture before the unfasten- (b) Picture after the unfasten-
ng. ing.

Figure 6.5: Pictures showing the screw being unfastened

If the screw is fully unfastened after the detection, the test is deemed successful. In the 20
tests done, the robot succeeded in detecting the unscrewing, giving the detection a 100%

42

6.2. Task evaluation Aalborg University

success rate.

6.2 Task evaluation

The task is evaluated in three ways, the first of which is the teaching, as this is how the
robot gets to know the positions of the screws. Second, the task execution is evaluated.
Finally, the error/recovery state is evaluated.

For the evaluation of the unscrewing task created in the project, there are 4 screws screwed
into the test platform, as seen on Figure 6.6.

Figure 6.6: Test platform with screws numbered, with the screw 1 being closest to the robot.

The test platform is set up, so that screw 1 is closest to the robot, while screw 3 is the
farthest from the robot. Screw 1 and 2 are both 12 mm long screws, while screw 3 is a 6
mm long screw and screw 4 being the longest of 20 mm. This gives the system 3 different
screw lengths to be evaluated from.

6.2.1 Teaching

To evaluate the teaching of the unscrewing task, the four screws are taught to the robot
10 different times to test the accuracy of the teaching. The teaching is done 10 times
and saved into different task files, which will be used during the execution and error state
evaluation.

Once the teaching is done, the positions are checked using the test-run function in the
SBS interface to evaluate the positions saved by the SBS. The initial teaching of the robot

43

6.2. Task evaluation Aalborg University

shows that screw 3 and 4 have a better Cartesian position saved for the screws, while screw
1 and 2 are off-centred. This problem seems to be due to the nature of the tool not being
static enough, as the tool can be moved slightly.

After the information on the screw positions is saved by the SBS, it is processed which can
be seen in Table 6.3.

‘ Screw 1 ‘ Screw 2 ‘ Screw 3 ‘ Screw 4
Average -308.24 308.47 | -307.62 394.87 | -392.99 395.38 | -393.92 309.97
Minimum | -309.75 307.83 | -308.71 393.74 | -394.05 394.64 | -395.06 309.52
Maximum | -307.56 309.33 | -306.66 395.71 | -392.23 396.65 | -393.16 310.67
Deviance 2.197 1.498 2.057 1.964 1.827 2.011 1.896 1.147

Table 6.3: Information about the Cartesian screw positions saved by the SBS.

In the table, the average, minimum, maximum and deviance can be seen. It can be seen
that the saved position can vary by up to 2 millimeters, which can cause the robot to fail
with the insertion of the tool during the execution of the skill. This deviance is due to
small variances in the orientation during the teaching of the screw positions, as well as the
screwdriver being able to move inside the tool.

6.2.2 Execution

To test the execution of the unscrewing task, each of the task files taught to the robot is
executed 5 times. The system is then evaluated on how many screws are removed with
and without having to ask the operator/worker for help to insert the tool into the screws.
This means that the robot will try to unfasten 20 screws in total for each of the task files.

Test nr. | Automatic | Help | Failed
1 17 (4) 2 1
2 16 4 0
3 17 (1) 3 0
4 13 (1) 5 2
5 8 11 1

Table 6.4: Table showing the results of the task execution test. Automatic means that the robot
needed no help, Help means that the worker was needed, and Failed means that it failed to fully
unfasten the screw. The number in parenthesis means that the screw was tightened too hard,
meaning that it could not be unfastened.

As can be seen in Table 6.4, the results show that the robot can, for the first three task
files, manage to unfasten the screws automatically in 85%, 80% and 85% of the times,
while it only failed once with the first task file. The fourth test failed two times to fully
unfasten the longest of the four screws due to the unfastening detection looking for an
oscillation, which also appears when a long screw is being unfastened. The fifth and last
test failed to perform the tool insertion 11 times, which can be attributed to two causes,
both of which are caused by the screwdriver being able to move slightly in the 3D print.

44

6.2. Task evaluation Aalborg University

To test the hypothesis of whether the initial rotation direction for the tool insertion changes
the outcome of the device primitive, the last 5 tests are done using the opposite rotation
of the tool.

Test nr. | Automatic | Help | Failed
1 16 2 2
2 20 0 0
3 15) 0
4 19 0 1
5 19 0 1

Table 6.5: Table showing the results of the task execution test. Automatic means that the robot
needed no help, Help means that the worker was needed, and Failed means that it failed to fully
unfasten the screw.

As shown in Table 6.5, the first and third tests performed worse than the other 3 tests. This
difference is due to the tool having moved in the 3D print, which causes the execution to fail.
For the 3 other tests, they performed the tool insertion significantly better than the tests
done in Table 6.4. The reason for this is that the initial rotation in the tool insertion device
primitive moves the tool in a different way, depending on the initial rotation direction.

Overall, the system succeeded in automatically unfastening the screws in 80% of the tests.
The system required help from the worker in 16% of the tests, which means that the
system achieves an overall success rate of 96%. This means that the full system is deemed
successful, having more than a 95% overall success rate.

6.2.3 Error/recovery states

The final test revolves around the robot falsely detecting the tool contact or tool insertion
failing. This is then evaluated on how the robot responds to the error.

The test is done by interrupting the robot during the two device primitives that use
detection to end the primitives. These two primitives are the "tool contact search" and the
"tool insertion" primitive. For the tool contact search primitive, the robot is interrupted
by stopping the robot before the tool hits the screw. For the tool insertion primitive, the
tool is grabbed to make the robot think that the tool is inserted.

The system is then evaluated, on which of two states it enters based on the interruption.
These two states are the recovery/error state of the system, and the second state is to
continue the task without stopping. Each of the primitives is interrupted 10 times.

Device primitive | Recovery/error | Continue
Tool contact search 10 0
Tool Insertion 0 10

Table 6.6: Table showing the results of interrupting the robot during the tool contact search and
tool insertion device primitives.

As Table 6.6 shows, the robot will go into the recovery /error state when interrupted during
the tool contact search. In contrast, the robot continues with the execution of the task

when interrupted during the tool insertion primitive.

45

Discussion

In this chapter, the evaluation of the robotic system is reflected upon. Both the successes
and issues with the system are analysed in order to list some of the challenges, which could
be done in future work.

7.1 Robot connection

The robot UDP connection, was used due to the FRI connection not being able to fully
control the robot. Because of this, the UDP connection was created to send commands
to the robot, which made controlling the robot using an external PC possible. Through
this connection, the robot is able to send feedback to the external PC, as well as receiving
commands. However, even though the UDP connection enables fast control of the robot,
it does come with its own issues, which should be taken into account.

The big issue with a UDP connection is the possibility of losing packets during the
communication between the external PC and the controller. When this issue happens,
the robot command can be misinterpreted, which makes the robot move in odd ways. This
made it so that the robot would change the orientation of the end-effector and the goal
position. This proved to be an issue during the testing of the task execution, as whenever
a move command was started, there was a chance of this issue being present, which would
result in the current test being reset. This, in addition to needing a reset, could, if the tool
is inserted into the screw, potentially damage or destroy the tool. It can also slightly move
the screwdriver in the 3D print, which can change the results of the peg-in-hole device
primitive.

This is expected to be due to the UDP connection sending and receiving the packets on
the same port. It could also be due to the robot state being read before the values from
the robot is read, as this would result in the same behavior. For future work, this issue
should be explored and resolved.

7.2 Peg-in-hole

The peg-in-hole evaluation behaved as expected, where a too high stiffness on the XY-
plane makes it so that the tool is not inserted. However, with a lower stiffness, the tool
is able to move in the XY-plane, enabling the system to have a higher chance of inserting
the tool correctly into the screw. This means that with the correct stiffness parameters,
the system was able to insert the tool into the screws correctly.

46

7.3. Powered screwdriver Aalborg University

As the peg-in-hole is done using positions taught by the worker, the testing of the primitive
and task execution show promising results. However, if the screws are deformed due to wear
and tear or somehow not in the pre-programmed positions, the system would fail. However,
due to this being a known problem during the creation of the system, an error/recovery
state was created to get around this issue, which performed as expected. As a side-effect of
the implementation, it even made it possible to interrupt the robot during the downwards
movement towards the screw.

The simplicity of the primitive, while it works for the test platform, is mostly due to the
time constraints with the robot due to the Covid-19 situation.

A more complex searching algorithm should be implemented for future work, as the current
algorithm only rotates the tool while applying a downwards force. This could be done using
a spiral searching algorithm, as done in [4]. Another thing that could be done is to add a
camera to the tool to check for the screw in these cases.

7.3 Powered screwdriver

A 3D print was designed to hold the screwdriver in place for the project, which performed
as expected during the evaluations. The 3D print was created as a prototype to be able
to test the execution of the unscrewing task. As the screwdriver itself is controlled using
an Arduino, it made controlling the tool with ROS as simple as sending a ROS message.

However, as shown in the evaluations of the system, the tool used for the project had two
issues during the evaluations. The first of which is how the screwdriver is held in place,
as it enabled the screwdriver to move slightly inside the 3D print, which affected the task
execution results. The second issue of the tool is that the system is liable to fail to unfasten
the screws due to the screws being tightened too much. This issue can be solved by simply
using a more powerful screwdriver.

Another thing for future work is to create a more static tool, which makes the teaching
of positions more accurate. It could improve the peg-in-hole performance as well. One
last improvement for the tool would be to use the KUKA Flange connectors to control
the screwdriver. This would make the tool easier to control, while the tool setup would
be easier as well, as the cable for the Arduino can make the impedance control behave
differently due to the cable pulling in different directions.

7.4 Unscrewing

The unscrewing detection made performed better than expected when used on different
length screws. The longest of the screws was expected to produce false positives, whereas
it could correctly detect the unscrewing in most of the cases.

The reason for the longer screw being expected to produce false positives is that oscillations
on the Z position, which is used for the unscrewing detection, could be produced when
unfastening long screws. While this was detected falsely during the task evaluation, the
detection could be made better for future work of the project.

47

7.5. Error/Recovery state Aalborg University

A way to make the detection better could be done using the external force on z, which
also shows a possibility of being used. Another strategy entirely could be to use machine
learning for this detection.

7.5 Error/Recovery state

Though the error/recovery state was implemented for the peg-in-hole to detect if the tool
was correctly inserted into the screw, it seemed to solve another problem entirely. The
problem mentioned here is that the robot can be interrupted during the execution during
two of the device primitives.

These primitives are the tool contact search and the peg-in-hole. As this detection was
done using the Z position of the tool, interrupting the tool contact search makes the robot
think that the tool has come into contact with the screw. This means that the peg-in-hole
primitive is called. But because of the tool being interrupted above the screw, the tool
will, due to the downwards force, move downwards, triggering the error/recovery state.

This means that the robot enters the error state when interrupted. For future work, an
additional error state should be implemented, as when interrupting the rotation of the
peg-in-hole, the robot detects it as the tool is correctly inserted. For this reason, the
position on Z could be used to check if the tool has actually been inserted.

48

Conclusion

This report proposed a robotic system using a KUKA LBR iiwa, an Arduino Mega 2560
and a powered screwdriver.

The system was integrated into the SBS to allow for less experienced workers to work
with the robotic system while also allowing the system to be easily reconfigured for other
purposes.

The system managed to use teaching to get the screws’ positions while achieving a 96%
success rate for the system. This proves that with some optimization on the system, the
success rate could become higher, while also doing the unscrewing faster.

In conclusion, the system works as a proof of concept. It shows that using the SBS for
controlling the robotic system can prove to make the system simpler to use and more user-
friendly. In addition, it showed that by using impedance control, controlling the velocity of
the robot is possible, as well as making the robot compliant to the worker in the workspace

49

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

Casper Schou. Easy reconfiguration of modular industrial collaborative robots.
Technical report, Aalborg University, 2016.

KUKA. KUKA Sunrise.Servoing 1.14. Pub KUKA Sunrise.Servoing 1.14 (PDF) en,
2017.

Grundfos. Grundfos - about us. https://www.grundfos.com/about-us.html, 2020.
Accessed: 27-05-2021.

Jiayi Liu, Zude Zhou, Duc Truong Pham, Wenjun Xu, Chungian Ji, and Quan Liu.
Collaborative optimization of robotic disassembly sequence planning and robotic
disassembly line balancing problem using improved discrete bees algorithm in
remanufacturing. Robotics and Computer-Integrated Manufacturing, 61, 2020. ISSN
0736-5845. URL \url{http:
//www.sciencedirect.com/science/article/pii/S0736584518300516}.

Guilherme Mateus Martins and Jacob Krunderup Sgrensen. An impedance control
driven robotic disassembly platform using deep-learning for adaptive screws
detection. Technical report, Aalborg University, 2020.

Jun Huang, Duc Troung Pham, Ruiya Li, Kaiwen Jiang, Dalong Lyu, and Chungian
Ji. Strategies for dealing with problems in robotised unscrewing operations.
Technical report, University of Birmingham, 2021.

J. Li, M. Barwood, and S. Rahimifard. Robotic disassembly for increased recovery of
strategically important materials from electrical vehicles. Robotics and
Computer-Integrated Manufacturing, 50:203 — 212, 2018. ISSN 0736-5845. URL
\url{http:
//www.sciencedirect.com/science/article/pii/S0736584516301004%}.

N. M. DiFilippo and M. K. Jouaneh. A system combining force and vision sensing
for automated screw removal on laptops. IEEE Transactions on Automation Science
and Engineering, 15(2):887-895, 2018.

Daniel Schneider, Elmar Schomer, and Nicola Wolpert. A motion planning
algorithm for the invalid initial state disassembly problem. In 2015 20th
International Conference on Methods and Models in Automation and Robotics
(MMAR), pages 35-40, 2015.

50

https://www.grundfos.com/about-us.html

Bibliography Aalborg University

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Wei Hua Chen, Gwendolyn Foo, Sami Kara, and Maurice Pagnucco. Automated
generation and execution of disassembly actions. Robotics and Computer-Integrated
Manufacturing, 68:102056, 2021. ISSN 0736-5845. URL
https://www.sciencedirect.com/science/article/pii/S0736584520302672.

Behzad Sadrfaridpour and Yue Wang. Collaborative assembly in hybrid
manufacturing cells: An integrated framework for human-robot interaction. IEEFE
Transactions on Automation Science and Engineering, PP:1-15, 09 2017.

Quan Liu, Zhihao Liu, Wenjun Xu, Quan Tang, Zude Zhou, and Duc Truong Pham.
Human-robot collaboration in disassembly for sustainable manufacturing.
International Journal of Production Research, 57(12):4027-4044, 2019. URL
https://doi.org/10.1080/00207543.2019.1578906.

Panagiota Tsarouchi, Alexandros-Stereos Matthaiakis, Sotiris Makris, and George
Chryssolouris. On a human-robot collaboration in an assembly cell. International
Journal of Computer Integrated Manufacturing, 30(6):580-589, 2017.

Frank Wallhoff, Jiirgen Blume, Alexander Bannat, Wolfgang Rosel, Claus Lenz, and
Alois Knoll. A skill-based approach towards hybrid assembly. Advanced Engineering
Informatics, 24(3):329-339, 2010. ISSN 1474-0346. URL
https://www.sciencedirect.com/science/article/pii/S1474034610000406.

The Cognitive Factory.

Serena Ivaldi, Sebastien Lefort, Jan Peters, Mohamed Chetouani, Joelle Provasi, and
Elisabetta Zibetti. Towards engagement models that consider individual factors in
hri: On the relation of extroversion and negative attitude towards robots to gaze
and speech during a human-robot assembly task. International Journal of Social
Robotics volume, 9, 2017.

S.M. Mizanoor Rahman and Yue Wang. Mutual trust-based subtask allocation for
human-robot collaboration in flexible lightweight assembly in manufacturing.
Mechatronics, 54:94-109, 2018. ISSN 0957-4158. URL
https://www.sciencedirect.com/science/article/pii/S0957415818301211.

Kathrin Wegener, Wei Hua Chen, Franz Dietrich, Klaus Droder, and Sami Kara.
Robot assisted disassembly for the recycling of electric vehicle batteries. Procedia
CIRP, 29:716 — 721, 2015. ISSN 2212-8271. URL \url{http:
//www.sciencedirect.com/science/article/pii/$2212827115000931}. The 22nd
CIRP Conference on Life Cycle Engineering.

Esther Alvarez-de-los Mozos and Arantxa Renteria. Collaborative robots in e-waste
management. Procedia Manufacturing, 11:55 — 62, 2017. ISSN 2351-9789. URL
\url{http:
//www.sciencedirect.com/science/article/pii/S2351978917303372}. 27th
International Conference on Flexible Automation and Intelligent Manufacturing,
FAIM2017, 27-30 June 2017, Modena, Italy.

L. Johannsmeier, M. Gerchow, and S. Haddadin. A framework for robot
manipulation: Skill formalism, meta learning and adaptive control. In 2019

51

Bibliography Aalborg University

[20]

[21]

[22]

International Conference on Robotics and Automation (ICRA), pages 5844-5850,
2019.

Casper Schou, Mikkel Hvilshgj, and Christian Carge. Intuitive programming of
aimm robot. Technical report, Aalborg University, 2012.

Joshua Frank. Ros serial arduino library.
https://github.com/frankjoshua/rosserial_arduino_lib, 2020. Accessed:
18-05-2021.

M. Safeea and P. Neto. Kuka sunrise toolbox: Interfacing collaborative robots with
matlab. IEEE Robotics Automation Magazine, 26(1):91-96, March 2019. ISSN
1070-9932.

52

https://github.com/frankjoshua/rosserial_arduino_lib

	Front page
	Titlepage
	Preface
	Reading Guide

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related Works
	Product Disassembly
	HRI

	Skill-Based System
	SBS Architecture
	SBS programming
	Tasks
	Skills
	Device Primitives

	Skill execution
	Teaching skills
	Device Manager
	Creating a device

	Information Flow
	System Architecture
	Screwdriver
	Arduino Mega 2560
	Rosserial-arduino
	Screwdriver control

	KUKA LBR iiwa
	UDP Connection
	Threading for receiving
	Receiving state of the robot
	Sending commands to the robot

	Pipeline from SBS to KUKA
	SBS to python
	Python to KUKA

	Unscrewing Task Creation
	Unscrewing Task
	Tool contact search
	Peg-in-Hole
	Unfastening
	Tool removal

	Teaching the skill
	Sunrise Servoing
	SmartServo Impedance Control

	Evaluations
	Device Primitives
	Tool Contact Search
	Peg-in-Hole
	Unscrewing

	Task evaluation
	Teaching
	Execution
	Error/recovery states

	Discussion
	Robot connection
	Peg-in-hole
	Powered screwdriver
	Unscrewing
	Error/Recovery state

	Conclusion
	Bibliography

