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Abstract

Economists describe the stock market as an efficient market so that there

is no way to forecast its future prices. Rapid development in computational

power has led to machine learning techniques with stronger predictive power

becoming more prominent.

The scope of this thesis is to examine artificial neural networks’ ability to

forecast the Danish stock market. A total of six Danish stocks are forecasted

using daily one-step-ahead forecasting. The time period used for this purpose

is the year between 2010 and 2019, where the first eight years is used for

training and testing, while the last is used for forecasting.

Different architectures are tested, including FNN, RNN, LSTM, GRU, bi-

LSTM, and bi-GRU. Each architecture is tested both with and without the

inclusion of extra explanatory variables. In order to evaluate the models’

forecasts, ARIMA and ARIMAX are used as baseline models.

The simpler FNN structure without the addition of explanatory variables

proved, via out-of-sample forecasting, to be the more accurate of the artificial

neural network models. The forecasts from the FNN models were, in four

of the six stocks forecasted, statistically less accurate when compared to the

forecasts from the ARIMA and ARIMAX models. It was found that ANNs

need further development before their usage in forecasting stock market prices

becomes feasible.
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1 INTRODUCTION
.

1 Introduction

The task of forecasting stock prices have long been of interest to both economists and

investors. For investors, the interest stems from the potential competitive advantage one

could achieve with accurate forecasts. Economists disagree on whether changes in the

economy causes stock market changes, stock market changes causes economic changes, or

the two simply follow the same patterns independently of each other. What economists

do agree on, however, is the strong correlation between the stock market and the economy

as a whole. This was seen both in the vast decline in aggregate demand in 1974-1975,

a few years after the stock market collapse in 1973-1974 (Bosworth et al., 1975) and in

the rise in the unemployment rate in the wake of the financial crises in 2007-2008 (Hurd

and Rohwedder, 2010). It is safe to say that anyone who seeks to understand the whole

economy and how it works must consider the motions of the stock market. One way

economists have historically described the stock market is through the efficient market

hypothesis.

The stock market is often characterised as a highly efficient market, as described in the

efficient market hypothesis. The hypothesis states that when new information arises, it

is incorporated into the stock prices without delay. This means that all information that

could be used to predict a stock price is already incorporated in the stock’s current price.

Therefore, it is assumed that there is no point in trying to forecast stock prices (Malkiel,

2003). The validity of the hypothesis has often been questioned, both by Malkiel him-

self, but also by others (W. Lo and MacKinlay, 1999), who observed short-run pricing

irregularities. Grossman and Stiglitz (1980) also observed these irregularities and further

pointed out that the existence of a professional market for stock trading necessitates infor-

mational imperfections. The question is whether these short-run effects can be classified

and forecasted. In 2003 Malkiel pointed out that this would be possible one day:

"Undoubtedly, with the passage of time and with the increasing sophistication of our

databases and empirical techniques, we will document further apparent departures from

1



1 INTRODUCTION

efficiency and further patterns in the development of stock returns" - Malkiel (2003)

Much has happened since 2003, and the available techniques to forecast the stock market

has indeed expanded. One technique that has seen a vast transformation since then is

artificial intelligence. This technique has gained traction in recent years and is on its

way to change many industries (Agrawal et al., 2020). As such, it seems like an obvious

candidate to predict the stock market.

1.0.1 Artificial Intelligence

Artificial Intelligence (AI1) is a wide field of study, and it can be quite hard to give a

precise definition. John McCarthy, known as one of the leading figures of AI, described

it as:

"It is the science and engineering of making intelligent machines, especially intelligent

computer programs. It is related to the similar task of using computers to understand

human intelligence, but AI does not have to confine itself to methods that are biologically

observable." - McCarthy (2007)

So, in essence, AI makes it possible to use computer technology to perform human tasks

or even tasks beyond human abilities. One subset of AI that is often used to forecast is

Machine Learning (ML). The basic principles of ML are to make a computer learn by

itself without explicitly giving it instructions on what to learn. Some ML models are even

programmed to mimic the human brain. Although ML sounds like a modern and new

method, its principles have been known for many years. The idea of modelling the brain

was already introduced in 1949 by Donald Hebb (Foote, 2019). ML had a slow start in

its early years, partly caused by "AI winters", where a reduction of funding and interest

led to a significant decrease in development. A big reason for these winters was the lack

of computational power and data available at the time. However, this has changed in

recent years (Schuchmann, 2019).

A rapid increase in computers, becoming stronger and cheaper, has led to the task of

developing ML not only lying with trained computer engineers but instead with everyone

interested. This means that in recent years, ML has become very popular due to it
1All abbreviations used in this thesis and their full terms can be found in Appendix 5 - Abbreviation

used in the thesis
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1 INTRODUCTION

becoming feasible for not only professional developers but also everyday people (Brownlee,

2020a).

The continuous increase of data and computer power combined with the feasibility for

the general public has made ML a much more powerful and accessible tool. The ML

methodology covers a wide selection of different techniques. One technique that is often

used to forecast stock prices is the Artificial Neural Network (ANN). ANNs are one of

the ML techniques that tries to imitate the human brain. The advantages of ANNs over

other ML models are that ANNs are often better at working with more complex and

sequential data.

1.1 Problem statement

Malkiel’s statement from 2003 about how future empirical techniques could be able to

pattern the stock market combined with the huge development in both ML models and

computer power begs the obvious question: Has ML models reached a point where they

can feasibly predict future stock prices? The wide range of different ML techniques of

cause, makes this question far too comprehensive to answer within the scope of this thesis.

Instead, only the before mentioned branch of ML called Artificial Neural Network (ANN)

will be examined. To generally assess the predictive power of ANNs across all the different

stock markets seem unrealistic as well. For this reason, ANN is only examined using the

Danish stock market.

Based on the above, this thesis will be produced using the following problem statement:

How well do artificial neural network models predict future prices of the Danish stock

market?

1.2 Problem delimitation

The problem statement is already narrow and precise but still needs some delimitation.

The ML method, ANN, covers a broad spectrum of model types and testing them all

would be far too big a task to fit in any one thesis. The model types tested in this thesis

are: A Feed-forward Neural Network (FNN), a Recurrent Neural Network (RNN), a Long-

3



1 INTRODUCTION

Short-Term-Memory (LSTM), a bidirectional-LSTM (bi-LSTM), a Gated-Recurrent-Unit

(GRU), and a bidirectional-GRU (bi-GRU).

Training ANN models is both a time consuming and computationally heavy task. This

means that forecasting every Danish stock would either be too time-consuming or mean

that the models would not be sufficiently tuned. The tuning method chosen in this thesis

dictates that 1800 different models are trained per stock forecasted. In this thesis, a total

of six stocks will be used to examine the problem statement.

1.3 Course of action

The answering of the problem statement is based on an empirical test. The ANN models

investigated will be set to forecast the daily stock prices of six Danish stocks in the year

2019, using one-step-ahead forecasting. The daily stock prices from 2010-2018 will be used

to train and evaluate the models before actually forecasting. To evaluate these forecasts,

the AutoRegressive Integrated Moving Average (ARIMA) will be set to forecast the same

stocks in the same period, using the same forecasting method. As such the ARIMA

will be used as a baseline model, and the results will be compared with those of the

ANN models. It is common practice in empirical studies to use ARIMA models as a

comparison since they are simple to implement and produce forecasts that are generally

accurate (Yuan et al., 2016; Lütkepohl and Xu, 2010; Navares et al., 2018; Thomakosa

and GuerardJr, 2004; Li and Li, 2017).

The data set is split up into two parts to imitate a real-life forecasting situation. The

first part of the data (2010-2018) is used to train and test the ARIMA and ANN models,

where only one model will be chosen for each type per stock. The last part of the data

(2019) will be used to make the actual forecasts by the models chosen in the first period

and evaluate the final results.

The part of the data where the models are trained and tested is further split up into two

parts: Training and testing. The training period is first used to train2 different ARIMA

and ANN models. After the models are trained on the training period, they are used
2Building, fitting, regressing, and similar terms will all be referred to as "train" for convenience.

4



1 INTRODUCTION

to forecast the test period. This method is used to check how well models trained on a

specific period can make predictions on another. The results are further used to choose

which ARIMA and which ANN model will be used to make the final forecasts.

The performance of ANN models is often improved when feeding the models more relevant

information than just the time series of the dependent variable. For this reason, a set

of explanatory variables will be included in the models of the thesis. Every ANN model

type will be trained both with and without the inclusion of these explanatory variables.

The ANN models use five time-steps to forecast the dependent variables. To ensure

the comparison between ARIMA and ANN models is valid, the ARIMA models will

also be trained with and without these explanatory variables. The extra explanatory

variables will be used with one lag in the AutoRegressive Integrated Moving Average

with explanatory variables (ARIMAX) models. The explanatory variables include all the

stocks from the C25 index, stock indices, government bonds, currency conversion rates,

and gold and oil futures.

Only one ARIMA(X)3 and one ANN model will be chosen to forecast each dependent

variable. To better simulate a real-world application, the forecast period is only used

with the final models, and no changes in the model structure will occur based on the

results.

1.4 Contribution

The idea of using machine learning to predict stock prices is not entirely new. Therefore,

this thesis does not aim to make groundbreaking discoveries but instead to add to a

growing existing literature. This addition is based on the combination of both machine

learning techniques and adding additional information to the models. The stock market

this thesis will try to forecast is the Danish stock market. Although forecasting has

been done before, machine learning-based forecasting of the Danish stock market has not

been attempted before to the best of the writers’ knowledge. Forecasting the Danish

stock market might be a solid addition to the literature since Denmark is a small export

economy and its stock market is well developed. A well-developed stock market should
3This notation is used when referring to both ARIMA and ARIMAX models
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mean that the Danish stock market is most likely an efficient market rather than a young

stock market that has not reached a point of efficiency.

6



2 LITERATURE REVIEW

2 Literature review

In this chapter, existing literature that contains either ARIMA models, ML models, or

both are reviewed. Since the purpose of this thesis is to forecast stocks, only literature

regarding stock forecasting is considered. The purpose of reviewing existing literature

is to get an overview and understanding of similar research. This chapter is split into

three sections. In section 2.1 only existing literature concerning ARIMA models will be

presented. Section 2.2 presents literature that focuses on machine learning alone. Section

2.3 presents articles that compare ARIMA and ANN models.

Table 1 presents the most important information for the ARIMA, machine learning, and

comparative literature. The table contains the name of the author(s), the publishing

year, a brief summary of the study, and their conclusions.

Table 1: Overview of literature reviewed

ARIMA literature
Author Year Summary Conclusion
Mondal
et al.

2014 Examination of different fit-
ting period lengths when
building an ARIMA.

No signigicant difference be-
tween an ARIMA created on
23-, 18-, 12- or 6-months’ abil-
ity to forecast.

Afeef et al. 2018 ARIMA(1,1,1) forecast of
Pakistani oil company’s
stock price.

Strong ability to forecast in the
short run.

Virtanen
and Yli-
Olli

1987 Examination of uni-, multi-
variate and combined mod-
els’ abilities to forecast.

The Combined model proved
to predict stronger forecasts
with lower RSME.

(a) Overview of econometric litterature

Machine Learning literature
Author Year Summary Conclusion
Dingli and
Fournier

2017 Comparison of different SVM
models for Tech and Finance
industry.

Mixed result. Often Linear
regression and SVM were the
better model.

Shen et al. 2012 Comparison of different SML
models and creation of a
trading model.

SMV gave the better forecast
and outperformed the bench-
mark trading model.

7



2 LITERATURE REVIEW

Abe and
Nakayama

2018 Comparison of RF, SVR and,
deep learning models.

A deep learning model with
more layers were the better
model.

Naik and
Mohan

2019 Comparison of RF, SVR,
ANN, and a deep learning.

The deep learning model out-
performed the other models.

Beyaz
et al.

2018 Comparison of SVR and
ANN models.

SVR had the lowest RMSE.

Mehtab
et al.

2020 Comparison of SVM, ANN,
and LSTM models.

A LSTM model were the supe-
rior model.

Balaji
et al.

2018 Comparison of CNN, LSTM,
GRU, and ELM models.

GRU were better for shorter
forecasts and ELM were better
for longer forecasts.

(b) Overview of Machine Learning literature

Comparative studies
Author Year Summary Conclusion
Du 2018 Comparison of ARIMA,

ANN and Hybrid models.
ANNs outperform ARIMA
and Hybrid models outperform
both.

Siami-
Namini
et al.

2018 Comparison of LSTM and
ARIMA in financial and gen-
eral economic data.

LSTM achieves 84-87 per cent
lower RMSE.

Isenahd
and Ol-
ubusoye

2014 Comparison of ARIMA and
ANN on Nigerian stock mar-
ket.

The ANN outperform the
ARIMA.

(c) Overview of comparative literature

As can be seen in table 1, the existing literature shows that both ARIMA and machine

learning models are able to make somewhat accurate stock market predictions. Since

the literature uses either different evaluation metrics or evaluation metrics that can not

be compared on different stocks (e.g. RMSE), the different results across the literature

can not be directly compared. The machine learning literature, in particular, shows that

artificial neural networks are often better at forecasting stock prices than other supervised

machine learning models. The comparative studies all come to the same conclusion,

namely that artificial neural networks outperform ARIMA models. The following sections

will explain these articles in depth.
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2 LITERATURE REVIEW

2.1 AutoRegressive models

This section covers literature where ARIMA and ARIMAX models are used to forecast

stock markets. Section 2.1.1, includes two studies that forecast two different stock markets

using ARIMA models. Section 2.1.2 covers a study that compares the forecast strength

between a normal ARIMA, a linear model with external explanatory variables, and an

ARIMAX that is a combination of the two.

2.1.1 ARIMA models

ARIMA models are often used to forecast financial assets. Mondal et al. (2014) and

Afeef et al. (2018) both studies different ARIMA models and their ability to forecast

stock markets.

In their article Study of effectiveness of time series modeling (ARIMA) in forecasting

stock prices Mondal et al. (2014) examines the Indian stock market index NSE using

an ARIMA(1,0,2). Mondal et al. uses the time period 2012-2014 for their study. They

test four different training period lengths: 23-, 18-, 12-, and 6-months. No significant

difference was found in the models’ abilities to forecast stock prices across different sectors.

The models in the study all had an accuracy4 of at least 85 per cent (Mondal et al., 2014).

In Afeef et al.’s (2018) study Pakistan Oil & Gas Development Company Limited, they

focus on one company. They create different ARIMA models to forecast the Pakistani oil

company Pakistan Oil & Gas Development Company Limited. Based on a time period

from 2004 to 2018, they find that an ARIMA(1,1,1) have the strongest fit. Afeef et al.

conclude that the model’s ability to forecast is strong in the short run (Afeef et al., 2018).

2.1.2 ARIMA with extra explanatory variables

Virtanen and Yli-Olli (1987) wrote an article named Forecasting stock market prices in

a thin security market, where they examined different econometric ways to forecast the

Finish stock market. The study examined the time frame 1975-1986, where the years

1975-1984 were used as data to build the models, while the years 1985-1986 were used

to forecast. Virtanen and Yli-Olli trained three different types of models; a univariate
4Accuracy is calculated using MAE
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ARIMA model, a multivariate time series model and a combination of the two. The uni-

variate method led to the construction of two different models: A classic ARIMA(0, 2, 1)

and an ARIMA with a seasonal component ARIMA(0, 2, 1)(0, 1, 1)4. Both models were

significant, with p-values smaller than one per cent. The multivariate model was created

with six explanatory variables: Lagged versions of the stock, anticipated future cash flow,

return on Finish state bonds, money supply (Finish Mark), inflation, and the Swedish

stock market (Stockholm Stock Exchange). The coefficients of all explanatory variables

proved to be significant at a five per cent level. Two combined models were created: One

where the standard ARIMA (f(A)) was combined with the multivariate model (f(M))

and one where the ARIMA with a seasonal component (f(AS)) were combined with the

multivariate model (f(M)). The combined models5 had the formulas:

yt = α + β1f(M) + β2f(A) + ε (1)

yt = α + β3f(M) + β4f(AS) + ε (2)

β2 proved to be insignificant in the model with no seasonal component, as to why the

model was not used for forecasting. Virtanen and Yli-Olli used many different methods

to examine the strength of the models’ forecasts. The different methods all pointed to the

same conclusion. The combined model (RMSE = 0.069) outperformed both the univariate

ARIMA (RMSE = 0.095) and the multivariate model (RMSE = 0.082) (Virtanen and

Yli-Olli, 1987).

Summary

The ARIMA method proved to be able to forecast stock markets without considerable

errors in the three studies examined. The last study by Virtanen and Yli-Olli showed that

a combination (ARIMAX) of ARIMA and multivariate models produces the strongest

forecasts.

2.2 Machine Learning

A variety of machine learning studies have tried different approaches and models in order

to forecast the stock market. In this section, existing literature regarding machine learning
5These models are what this thesis refers to as ARIMAX models
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and stock forecasting is presented. The simpler models are presented first, and more

advanced models are introduced later on.

2.2.1 Supervised Machine Learning

Several different machine learning approaches have been used across studies when trying

to forecast the stock market. Traditional Supervised Machine Learning (SML) models

are often used, both Dingli and Fournier (2017) and Shen et al. (2012) use SML models

in their studies.

Dingli and Fournier (2017) wrote the article Financial Time Series Forecasting – A Ma-

chine Learning Approach where they created several SML models to predict the stock

price for the tech and finance industry. They created three different models: A classi-

fication that predicts whether the price goes up or down, a regression that predicts the

change in the price, and a regression that predicts the actual price. Each of the models

is estimated daily, weekly, monthly, quarterly, and yearly. They trained their model with

explanatory variables6 which includes 200 different technical indicators divided into three

categories: Currency exchange rates, world indices, and commodity prices. All the ex-

planatory variables are not included in each model; only the explanatory variables with

statistical importance were selected. The explanatory variables were selected based on an

ANOVA f-test. Therefore each model is created with a different number of explanatory

variables (Dingli and Fournier, 2017).

Dingli and Fournier test the forecasting ability of different models, e.g. logistic regression,

Support Vector Model (SVM), Decision Trees (DT), and a Random Forest (RF). The clas-

sification models are evaluated using accuracy, and the regression models are evaluated

using Root Mean Square Error (RMSE). Different models performed best, depending on

the time period and stock. However, linear regression and SVM were often the better

models. For the regressions models, they found that only including a small number of ex-

planatory variables were better when using daily data compared to the other frequencies.

The best model for the finance industry only had one explanatory variable and three for

the tech industry. On the other hand, weekly data had 38 and 69 explanatory variables.
6In the machine learning terminology, explanatory variables are described as features.
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Shen et al. (2012) also tested several SML models in their article Stock Market Forecasting

Using Machine Learning Algorithms. They created classification and regression models

as well and found that SVM was a better model at forecasting the NASDAQ, DJIA,

and S&P 500. When predicting whether the stock price rose or fell, the models had an

accuracy of 74.4, 77.6, and 76 per cent, respectively. Like Dingli and Fournier (2017)

they created models with explanatory variables. Which explanatory variables to include

were based on cross-correlation. Different models were tested, and they found that only

including four explanatory variables lead to a higher accuracy than models that included

more.

Additionally, they found that SVM is sensitive to the training set’s size, where a longer

training period leads to higher accuracy and lower RMSE. The article differs by creat-

ing three different trading models: One based on the results from the SVM model and

two benchmark models. In most cases, the trading model containing the SVM results

outperformed the benchmark models (Shen et al., 2012).

2.2.2 Artificial Neural Network

In the article Deep Learning for Forecasting Stock Returns in the Cross-Section, the

writers Abe and Nakayama (2018) create several machine learning models in order to

forecast the one-month-ahead stock price for the MSCI Japan index. The explanatory

variables are 25 different factors, e.g. book-to-market ratio, market beta and volatility

(Abe and Nakayama, 2018).

Abe and Nakayama create different models consisting of an RF, an SVR7, and 16 different

deep learning models. The different deep learning models are differentiated by their

number of layers, units and percentage of dropout. The models are evaluated by their

correlation coefficient, directional accuracy, and mean square error (MSE). Generally, the

deep learning models had better results, where a greater amount of layers led to a better

model (Abe and Nakayama, 2018).

Naik and Mohan (2019) found the same results in their article Stock Price Movements

Classification Using Machine and Deep Learning Techniques-The Case Study of Indian
7Same principle as an SVM model but for a regression problem.
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Stock Market. Comparing an RF, SVM, Artificial Neural Network (ANN), and a deep

learning model, they found that deep learning outperformed the remaining models for a

classification (Naik and Mohan, 2019).

Beyaz et al. (2018) also compared an ANN and an SVR model in their article Comparing

Technical and Fundamental indicators in stock price forecasting. They tried to combine

fundamental and technical analysis in a machine learning model. Opposite Naik and

Mohan (2019), Beyaz et al. found that the SVM had a lower RSME compared to the

ANN model. Beyaz et al. Also found that this was the case regardless of the combination

of explanatory variables (Beyaz et al., 2018).

Mehtab et al. (2020) create eight different SML and ANN models in their article Stock

Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models. They

differ by creating four different Long-Short-Term-Memory (LSTM) models. They found

that the LSTM models were superior to the SML and standard ANN models (Mehtab

et al., 2020).

In their article Applicability of Deep Learning Models for Stock Price Forecasting An

Empirical Study on BANKEX Data, Balaji et al. (2018) focus on deep learning models.

They create fourteen different models based on the techniques: Convolutional Neural

Networks (CNN), Gated Recurrent Unit (GRU), LSTM, and Extreme Learning Machines

(ELM). The models differ by the number of layers and how many steps ahead the models

forecast. They tested the models on different stock prices from the bank sector. All of the

deep learning models had good results. The GRU model tends to have better results for

a shorter forecast, while the ELM model tends to be the better model for longer forecasts

(Balaji et al., 2018).

Summary

Using SML models, adding only the most significant explanatory variables often led

to better results. However, compared to SML models, the ANN models often turned

out as the better model. When comparing a standard ANN to the more complicated

Recurrent Neural Network (RNN) models, the RNN architectures, such as LSTM and

GRU, outperformed the simpler models.
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2.3 Comparative studies

In the past two sections, literature which either uses ARIMA or machine learning models

have been reviewed. In the following section, the literature that compares ARIMA and

ANN models performance when forecasting stock market prices is reviewed.

In their article, Application and analysis of forecasting stock price index based on com-

bination of ARIMA model and BP neural network, Du (2018) uses forecasting of the

Shanghai Securities composition stock index to compare ARIMA, ANNs, and a hybrid

of the two. The data consist of daily data points from January to December 2017. The

models created were an ARIMA(2,1,1), a feed-forward neural network, and a hybrid

ARIMA-Neural network model that uses the residual values from the ARIMA model as

an explanatory variable for the neural network model.

The testing data shows that the ARIMA was the worst model (RMSE = 89.21), the

neural network was the second-best (RMSE = 65.73), and the hybrid was the best model

by far (RMSE = 18.02) (Du, 2018).

Siami-Namini et al. (2018) compares ARIMA and LSTM models’ ability to forecast both

financial and general economic data in their article Forecasting economic and financial

time series: ARIMA vs. LSTM. The data used consist of six stock prices collected

monthly from 1985 to 2018 for the financial forecasts. A range of different consumption

metrics, M1 money supply, and trade data was used for the general economic forecasts.

The models compared are an ARIMA model and an LSTM model with four units in its

LSTM layer.

The results presented by Siami-Namini et al. show that the LSTM model on average has

an 87 per cent lower RMSE in financial forecasts and 84 per cent lower RMSE in general

economic forecasts. They also show that the amount of iterations in the LSTM-model

does not affect the final forecasting accuracy (Siami-Namini et al., 2018).

In their article Forecasting nigerian stock market return using arima and artificial neural

network models, Isenahd and Olubusoye (2014) similarly conclude that ANNs8 (RMSE =

0.0150 - 0.1055) outperform ARIMA models (RMSE = 5) when used for forecasting. The
8These are referred to as TECH in the paper
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neural networks used were feed-forward neural network models, and the ARIMA was a

non-seasonal (3,0,1) (Isenahd and Olubusoye, 2014).

Summary

The comparative literature all come to similar conclusions; ANN models outperform

ARIMA models in all articles. This out-performance is also not negligible, with the

ANNs achieving a significantly lower RMSE in all the literature reviewed.

The existing literature is reviewed, and the theory about the stock market, ARIMA(X),

and ANN are presented in the following chapters.
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3 Stock market - Theory

Before forecasting the stock market, it is important to establish why the stock market is

interesting to economists. It is also prudent to take a more thorough look at the efficient

market hypothesis to understand its central concepts.

3.1 The stock markets and the economy

The stock market has an undeniable link to the economy as a whole. It serves as both

a way for private consumers to save money that yields higher expected returns and as

a way to supplement or entirely replace income. How private consumers savings and

income develop is highly dependent on how the stock market develops. If the stock

market experiences a sharp fall, it might lower the general consumption for the consumers.

On the other hand, a sharp rise in stock prices might boost general consumption since

consumers would need to save less of their income to achieve the same amount of total

savings. For businesses, the stock market can act as a low-cost way to raise the capital

needed for expansion, and the amount of capital that a business can raise depends on

the current stock market. Many modern pension funds also use the stock market to both

save money and expand their current capital. Like private consumers, the pension funds

success is highly reliant on the stock market’s performance to ensure their customers’

savings. A sharp fall in the stock market might destroy many peoples retirement savings

and thereby lessen their future consumption as retirees. Lastly, the stock market has

often acted as a way of measuring the general public confidence in the economy since

private consumers with negative confidence in the economy would be unlikely to gamble

their money in the stock market.

One thing is for economists to know the links between the stock market and the economy,

but another is for economists to know how the stock market itself develops. One of the

most popular theories economists use to describe the stock market is the efficient market

hypothesis.
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3.2 The efficient market hypothesis

The ideas behind the efficient market hypothesis have been around for a long time, but

the first to truly codify its concepts was Fama (1970). He compiled the theory and litter-

ateur to show that the stock market was, in fact, a highly efficient market that followed

a random walk. The efficient market hypothesis gained even more traction when Malkiel

wrote his book a random walk down wall street in 1973.

The efficient market hypothesis states that information is absorbed in the market incred-

ibly quickly, to a point where any available information concerning a specific stock is

incorporated instantaneously into the stocks price (Malkiel, 2016). Another way of view-

ing this would be to say that changes in stock price from one day to the next is entirely

random (Enders, 2015) since new information occur randomly. This being the case, the

hypothesis also suggests that there is no available information left to make predictions

on the future stock prices (Malkiel, 2016). Though bubbles like the dot-com bubble in

the late 1990s and the housing bubble in 2007-2008 seem to contradict the theory that

the stock market is efficient, they are in effect examples of when the market is, in fact,

efficient. The lead up to the bubbles themselves may be considered irrational, but the

fact that the bubbles burst is a sign that the market has the power to self-correct, thereby

being efficient (Malkiel, 2016). As the title of Malkiel’s book suggests, the efficient market

hypothesis simply states that the stock market behaves like a random walk.

3.2.1 Random walks

A random walk is a mathematical way of describing random stochastic trends. In the

case of stock price forecasting, it would be assumed that the current price (yt) is equal

to the former price (yt−1) plus a white-noise component (εt). In a time series, this would

mean that changes to the current price are dependent only on the white-noise component,

i.e. a random change (Enders, 2015). A random walk can be written as:

yt = yt−1 + εt (3)

As can be seen in this equation, the price will remain constant unless a random change
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occurs. The equation above is what mathematicians and statisticians refer to as a sta-

tistical random walk. The stock market, however, has shown sign of not being a true

statistical random walk which has led to some criticism of the theory (Malkiel, 2016).

3.2.2 The efficient market hypothesis’ critics

Although the efficient market hypothesis has many proponents, it also has its fair share

of critics. Some critics point to the crisis and bubbles the stock market has historically

encountered as proof that the market is inefficient (Malkiel, 2003). Others have shown

that short-term momentum exists in the market, so that positive news about a stock often

leads to a "bandwagon" effect drawing investors to the stock (Malkiel, 2003). This means

that rises in a stock price often leads to higher rises, and falls leads to sharper falls. The

critics also suggest that the stock market is not perfect at reacting to news and sometimes

under reacts. This would mean that a stock is undervalued compared to the true value

of the stock (Malkiel, 2003). Another criticism is that the mere fact that professional

markets for stock trading exist necessitates the existence of imperfect prices. Grossman

and Stiglitz (1980) observes short-run pricing irregularities that would be consistent with

an imbalance in information between professional and amateur traders. This would help

to explain why a professional market for stock trading exists.

18



4 ARIMA - THEORY

4 ARIMA - Theory

Since ARIMA and ARIMAX will be used as baseline models, the theory concerning these

models will be explained in this chapter. In section 4.1 theory concerning stationarity

will be explained. ARIMA theory will be explained in section 4.2, while the ARIMA with

extra explanatory variables will be explained in section 4.3. Section 4.4 will explain the

AIC selection criterion that is used to choose the best ARIMA(X) model.

4.1 Stationarity

In order to be able to forecast a time series using ARIMA models, the series must be stable

and predictable. This means that the series needs to be stationary. Several conditions

need to be met in order to deem a time series stationary. These conditions state that

a time series’ mean, unconditional variance, and autocovariance must be independent of

time (Enders, 2015).

Time series that stems from raw data are often non-stationary. Raw data tends to have

a trend or is seasonally correlated, making it hard to model and forecast. Non-stationary

time series, however, can become stationary by differentiating the data (Enders, 2015).

4.2 AutoRegressive Integrated Moving Average

A model often used to forecast a stationary time series is the AutoRegressive Moving

Average (ARMA) model. The ARMA model consists of two components; an AR- and an

MA-component (Enders, 2015).

The AR component is a linear model that makes the forecast based on lagged versions of

the dependent variable. The model is expressed by:

AR(p) yt = α0 +

p∑
i=1

αiyt−i + εt (4)

Where p indicates the number of lags, yt is the dependent variable, α0 is a constant, αi

are parameters, and εt is a white noise component. (Enders, 2015)

The second part of an ARMA model is the MA component. The MA component describes
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a model where forecasts are made based on earlier periods’ error terms. The model is

expressed by:

MA(q) xt =

q∑
i=0

βiεt−i (5)

Where q denotes the number of lags, εt is a white noise component, and βi are parameters.

(Enders, 2015)

As explained, the ARMA model combines the AR and MA components. The ARMA

model is therefore expressed by:

ARMA(p, q) yt = α0 +

p∑
i=1

αiyt−i +

q∑
i=0

βiεt−i. (6)

Such, the ARMA structure is a model that uses earlier values of a variable and model

errors to forecast its future values.

As explained in section 4.1, stationarity in the data set is a requirement for forecasting

using ARMA models. If the data used for the ARMA model is deemed non-stationary and

therefore differentiated, the ARMA is denoted as an AutoRegressive Integrated Moving

Average (ARIMA) model. In an ARIMA (p,d,q) p and q still denotes the number of AR

and MA components, while d denotes how many times the data set is differentiated to

become stationary (Enders, 2015).

4.3 AutoRegressive Integrated Moving Average with external re-

gressors

A way to incorporate extra explanatory variables is the AutoRegressive Integrated Moving

Average with external regressors (ARIMAX) model. The ARIMAX combines the ARIMA

model structure with a standard linear regression model. A standard linear regression

model is a strong tool to describe correlations between variables. Linear regression models

are often better suited for cross-sectional data, since time series data often, if not always,

are autocorrelated (corr(yt, yt−1) 6= 0). Linear time series regressions will result in a

biased model because an autocorrelated dependent variable means that the error terms

20



4 ARIMA - THEORY

will be autocorrelated as well (Date, 2020).

The autocorrelation problem can be accounted for by combining the linear regression

structure with an ARIMA model and thus creating an ARIMAX(p,d,q). The ARIMAX

is expressed by:

yt = φXt−1 + ηt (7)

Where φ is a vector of coefficients, Xt−1 is a vector containing the explanatory variables

at time t− 1, and ηt is the ARIMA part:

ηt = α0 +

p∑
i=1

αiyt−i +

q∑
i=0

βiεt−i. (8)

Such, the ARIMAX structure is a model that uses earlier values of a dependent variable,

earlier model errors and lagged versions of a set of explanatory variables to forecast a

dependent variable’s future values.

4.4 Akaike Information Criterion

Selecting the order of p and q when modelling an ARIMA(X)(p,d,q) often end up in a

trade-off between the models simplicity and how well it fits the data. Too high orders

of p and q are often associated with overfitted models, where the model is very good at

explaining the training data but bad at forecasting data that lies outside of the training

data. Too low orders of p and q increase the sum of squared residuals, which is associated

with a weak model.

The Akaike Information Criterion (AIC) is a measurement that accounts for both the risk

of over-and underfitting. The measurement is constructed so that lower AIC values are

associated with a better model. The formula for AIC is showed in equation 9 (Enders,

2015).

AIC = T ln (sum of squared residuals) + 2n (9)

Where T is the number of usable observations, and n is the number of estimated param-
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eters (p+ q+ a possible constant term).
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5 ANN - Theory

A variety of artificial neural networks will be used in this thesis. For this reason, the

theory needed to understand and create both feed-forward and recurrent neural networks

is explained in this chapter. First simple feed-forward neural networks are explained

in section 5.1. Recurrent neural networks are explained in section 5.2, and finally, the

process of tuning hyperparameters are explained in section 5.3.

5.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine learning method that is able to deal

with more complex systems than traditional supervised machine learning methods. An

ANN works by creating units and layers that do computations based on input and relay

those computations further down the network. The ANN is created this way to imitate

the neurons and links in the human brain(Sanderson, 2017a). There are many types of

ANNs, but the simplest and most easily used to explain the general features of ANNs is

a simple Feed-forward Neural Network (FNN). A simple FNN consists of one input, one

hidden, and one output layer. It is important to note that there can be multiple hidden

layers. A simple FNN is illustrated below in figure 1:

Figure 1: Simple FNN

Reference: Own creation based on (Sanderson, 2017a)

The first part of an FNN is the input layer. This layer consists of one unit for each
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explanatory variable in the data. Each unit receives the data of one explanatory variable

and assigns it a weight to determine how important this explanatory variable is to the

model. Aside from the weights, each unit also contains a bias and an activation function

(Sanderson, 2017a). This is presented in equation 10:

σ(w1a1 + b) (10)

Where σ is the activation function, w is the weight, a is the data, and b is the bias.

The bias regulates whether the unit sends data through the network. The bias, input,

and weights in each unit are different, but they share the same activation function. The

units’ activation function is used to normalise the output and determine whether the

units’ output is sent further down the network. Since this thesis uses a regression model,

the Rectified Linear Unit (ReLU) function is used. This activation function changes all

negative values to zero and does nothing to positive values. This means data is only sent

through the network if the unit’s output is above 0. The advantage of using ReLU is that

it is an efficient activation function that also allows for back-propagation (Sanderson,

2017a). Back-propagation is explained in detail in section 5.1.1. Each unit’s result in the

input layer are then sent through the network to the next layer, which is the hidden layer

(Sanderson, 2017a).

The hidden layer differs from the input layer in how the number of units is decided.

Instead of being decided based on the number of explanatory variables in the data, the

number of units is decided solely at the researcher’s discretion. The chosen amount of

units is often a trade-off between predictive power and overfitting the model. The units in

the hidden layer differ from the units in the input layer in the data they receive. Instead

of receiving raw data, they receive the results from all the units in the previous layer.

Since they receive more data, they also have to assign more weights (Sanderson, 2017a).

This is presented in equation 11:

σ(w1a1 + w2a2 + w3a3 + ...+ wiai + b) (11)

The notations are the same as in equation 10
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The weights and bias are different in each unit, but the units in the hidden layer not only

share an activation function but also shares the same data. The results from the units in

the hidden layer are then sent to the output layer (Sanderson, 2017a).

The number of units in the output layer depends on the problem investigated. There

would be one unit for a regression, and for a classification, there would be units equal to

the number of classes predicted. The units in the output layer work the same way as the

units in the hidden layer. Since the output layer is the last layer in an FNN, its results

are not sent to another layer but are instead the entire model’s result (Sanderson, 2017a).

The way an ANN, in general, achieves accurate forecasts is by training and changing its

weights and biases so that the output of the last layer is closer to the true values.

5.1.1 Training an ANN

Initially, the weights and biases are randomly selected in the model. However, they can

be changed to improve the model’s performance. The process of changing the weights

and biases is often referred to as training the model (Sanderson, 2017c).

When training an ANN, it is important to have a loss function to evaluate the model’s

performance. The loss function describes how far off the correct answer the model’s

predictions are. In this thesis, the loss function is the RMSE measurement described in

section 6.1. The goal of training an ANN is to find a local minimum of the loss function.

Reaching this local minimum is commonly done by using back-propagation (Sanderson,

2017b). To understand back-propagation, it is helpful to start by considering the output

layer, which consists of only one unit. When running a neural network, each observation

is sent through all the layers, and the final prediction is the output of the last unit, as

shown in equation 11. When an ANN makes a prediction, it is possible to calculate the

loss of that prediction and then calculate how the model should be changed to reach the

local minimum (Sanderson, 2017c). A model’s output can be changed by changing the

variables shown in equation 11, namely w, a and b. Changing the units’ weight and bias

is relatively simple since their initial value is randomly chosen, but changing the unit’s

input is more complicated. For the first unit in a model, the input is simply the raw data,

but for all the following units, the input is the output of all units in the previous layer.
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To change the input of the last unit, the output of the second to the last layer needs to

be changed. This change is done by back-propagation, which is a method of changing the

weights, bias and input in a unit with respect to how it will change the following units

and layers (Sanderson, 2017c).

In theory, the most accurate way to reach a local minimum of the loss function is to calcu-

late the loss individually for all observations. This method is often considered too time-

consuming and demands too much computational power (Sanderson, 2017c). To solve

these problems, an optimiser is often used to speed up the process of back-propagation.

One solution is to gather the data in batches and send them through the network to-

gether, thereby calculating their combined loss. This method is not as accurate but is

significantly faster and reaches the same local minimum in the end (Sanderson, 2017c).

To further increase the efficiency of the training process, momentum can be added to

the model. In this thesis, the Adaptive Momentum Estimation (Adam) method is used

to optimise the training. This method has been chosen since it offers the best balance

of computational ease and accuracy. One crucial part of any optimiser is the learning

rate. The learning rate in an ANN is a way to determine how fast a model adapts to

new information. A high learning rate would result in a model that often changes its

weights based on new information, whereas a low learning rate would result in a model

that would be less prone to change its weights (Brownlee, 2020b).

If an ANN is prone to overfit during training, it can be beneficial to add a dropout layer

to the model. Adding dropout is a way of randomly ’killing’ units in the previous layer.

In effect, this means that some of the calculations and connections established in the

previous layer are not carried forward to the next. Randomly ’killing’ units might seem

counterintuitive at first, but the process introduces randomness, which is often beneficial

to combat overfitting. Thus the model often achieves better results even though it is

effectively working with less information (Brownlee, 2019).

One drawback of FNNs is that they cannot use sequential data. This can be fixed by

employing an RNN.
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5.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of ANN that deals with sequential data,

like time series. The major difference between an RNN and an FNN is that the former

incorporates memory about earlier instances in the data. This is done by adding a

hidden state to the units. The hidden state transfers what has been learned earlier in the

sequence to the later parts (Pi, 2018b). The way an RNN is used is to place RNN layers

in the first part of FNNs. This means that an RNN does not necessarily consist of only

recurrent layers but rather that the first layer or layers have a recurrent structure. It is

also possible to have feed-forward layers after a recurrent layer to further strengthen the

model’s predictive ability. An example of a recurrent layer can be seen in figure 2.

Figure 2: Recurrent layer

Reference: Own creation based on (Venkatachalam, 2019)

As illustrated in figure 2, the units assign weights to not only the output of the previous

unit but also the output of the earlier step in the sequence. The weight wh represents the

memory transfer and allows the RNN to retain a memory of the sequence. One drawback

of this simple way of creating RNNs is that it suffers from short-term memory. This short-

term memory occurs because of the vanishing gradient problem. The vanishing gradient

problem occurs because the earliest layers of an ANN often experiences the least amount
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of change during back-propagation. Thus, the last layers are often weighted higher when

the ANN makes its final prediction, and for RNNs, only the most recent data hold any

significant weight in the prediction (Pi, 2018b). There are ways to alleviate this by using

more advanced architectures such as LSTM and GRU.

5.2.1 Long-short-term memory

A way to alleviate the vanishing gradient problem is to use a type of RNN called the

Long-Short-Term Memory (LSTM) architecture. The LSTM architecture utilises a gate

structure that makes it possible to control what is remembered and forgotten by the

network (Pi, 2018a). An example of this gate structure is illustrated below in figure 3.

Figure 3: LSTM gate

Reference: Own creation based on (Pi, 2018a)

In the LSTM architecture, the cell state is used to transport information through the

sequence. It acts as the LSTM architecture’s memory.

The first part of the LSTM is the forget-gate. This gate receives the cell and hidden state

from the previous part of the sequence. It also receives input from the current part of the

sequence. The input and hidden state are passed through a sigmoid function that creates

values between 0 and 1. Values closer to 0 should be forgotten, and values closer to 1

should be remembered. After being passed through the sigmoid function, it is multiplied

by the cell state. Thereby the model chooses how much of the earlier cell state should be
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kept.

The next part of the LSTM is the input gate. In this gate, the hidden state and input are

passed through both a sigmoid and tanh function. The sigmoid function again controls

what is kept and what is forgotten. The tanh function ensures that the input values do

not become unmanageable by limiting them to be between -1 and 1. The sigmoid and

tanh function results are then multiplied to determine what the model should keep from

the current input and then added to the cell state.

The last part of the LSTM is the output gate. In this gate, the hidden state and input

are first passed through a sigmoid function. Then the cell state is sent through the tanh

function. The transformed input and hidden state are multiplied by the cell state to

determine what should be kept for the output. The result is a new hidden state that is

passed on to the next part of the sequence. The cell state is similarly passed on to the

next part of the sequence. The new hidden state also acts as the output for the current

part of the sequence.

5.2.2 Gated Recurrent Unit

Another way of dealing with the vanishing gradient problem is to use a Gated Recurrent

Unit (GRU) architecture. A GRU is similar to an LSTM, but it foregoes the cell state

and instead only uses the hidden state to transfer information. As seen in figure 4 a GRU

only has two gates: a reset gate and an update gate.
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Figure 4: GRU gate

Reference: Own creation based on (Pi, 2018a)

The GRU works by first sending both the new input and a hidden state through a sigmoid

function in the reset gate. The result of this is then multiplied with the hidden state to

decide what information from the past should be used. Next is the update gate; here,

the input and hidden state is passed through another sigmoid function and added to

both the past hidden state and to the input. The update gate acts as a way of deciding

what information from the current input should be used to update the current and new

hidden states. Lastly, the input is passed through a tanh function and updated with

the information from the update gate. This new input/hidden state is then multiplied

with the current hidden state to achieve the output of the gate. Like in an LSTM, this

output acts as both the output of the gate and as the hidden state for the next gate in

the sequence. Another trait shared between the GRU, and LSTM architectures are their

ability to be bidirectional.

5.2.3 Bidirectionality

Bidirectionality means that the sequence is passed through the recurrent layer twice, once

from the first part of the sequence to the last and once from the last part of the sequence

to the first. The output of each of these is then calculated together to reach the final

output of a gate.

The advantage of bidirectionality is that it sometimes picks up on connections that the
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RNN might otherwise overlook early in the sequence.

5.3 Hyper parameters

A crucial part of improving the performance of any machine learning model is to tune its

hyperparameters. It is important to note that the hyperparameters are different from the

trainable parameters like biases and weights. The hyperparameters are defined when the

model is constructed and does not change during training. In the case of an ANN, these

hyperparameters include the number of units, the number of layers, activation functions

and more. The tuning process entails changing these parameters, either manually or

automatically, to achieve a better model. For the FNNs and RNNs used in this thesis,

the hyperparameters that are changeable is the number of units, standard feed-forward

layers, dropout rate, activation function and learning rate. However, for the LSTM and

GRU layers and the bidirectional versions of these, the activation functions are limited to

the sigmoid and tanh functions described in sections 5.2.1 and 5.2.2. These limitations

are imposed in order to utilise GPU acceleration9 which speeds up the training and tuning

process that would otherwise take days to complete.

In order to evaluate the ANN and ARIMA(X) models’ performance, different evaluation

methods will be used. These are explained in the next chapter.

9This is done through NVIDIA’s CUDA framework and moves the tuning and training from the CPU
to the GPU, which is often more powerful.
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6 Evaluation methods

Different evaluation methods will be used to evaluate and compare ARIMA(X) and ANN

models’ ability to forecast financial assets. RMSE and MAPE will be used to both

choose the best models to forecast and to evaluate these forecasts. The mathematics and

intuition of these is explained in sections 6.1 and 6.2. The Diebold-Mariano test will

be used to measure whether there is a difference accuracy of the forecasts produced by

the ARIMA(X) and the ANN models. The method behind the Diebold-Mariano test is

explained in section 6.3.

6.1 Root Mean Square Error

Root Mean Square Error (RMSE) is used to test the models’ abilities to forecast. RMSE

is also used as the loss function when training the ANN models.

RMSE describes an average deviation between the foretasted and the actual values, with

a heavier weight on large deviations and a lighter weight on smaller deviations. The

formula for calculating RMSE is shown in equation 12.

RMSE =

√√√√ n∑
t=1

(yt − ŷt)2
n

(12)

Where yt denotes the actual value at time t, ŷt denotes the forecasted value at time t,

and n denotes the number of forecasts.

The deviation is squared in the formula, which secures that RMSE always is presented

in absolute values. This also has the before mentioned effect that large deviations get a

heavier weight. The RMSE statistic is constructed so that it cannot be used to evaluate

forecasts across different dependent variables. This is the case since the statistic’s size is

correlated with the size of the dependent variable.

6.2 Mean Absolute Percentage Error

Another way of calculating an average deviation between forecasted and actual values is

the Mean Absolute Percentage Error (MAPE). It differs by calculating the difference in

32



6 EVALUATION METHODS

percentage instead of in level and that it weighs deviations equally regardless of size. The

formula for calculating MAPE is shown in equation 13.

MAPE =
1

n

n∑
t=1

|yt − ŷt
yt
| (13)

The notations are the same as in equation 12.

The advantage of the MAPE statistic is that it can be used to evaluate forecasts across

different dependent variables. The dependent variables in this thesis are different Danish

stocks, and the MAPE statistic makes it possible to evaluate the forecasts across these

different stocks.

6.3 Diebold-Mariano test

The Diebold-Mariano (DM) test is used to investigate whether the difference in accuracy

across models is significant. The DM test tests the difference by an ordinary student’s

t-test. Since the models in this thesis always use one step ahead forecasting, the DM test

statistic can be calculated as:

DM =
d̄√

γ0+2γ1+...+2γq
(H−1)

(14)

Where H represents the number of forecasts used to calculate d̄, γi is the i’th autocovari-

ance of the dt sequence, d̄ represents the mean loss difference between model 1 and model

2:

d̄ =
1

H

H∑
i=1

[g(e1i)− g(e2i)] (15)

Where g(e1i) and g(e2i) is the errors at time i, in model 1 and 2 respectively.

As shown in equation 14, the DM statistic is calculated by the mean of the loss differences

between model 1 and 2, and the standard deviation of that mean
(√

γ0+2γ1+...+2γq
(H−1)

)
. It

is clear from the formula that if one or more γi are negative, the standard deviation

of d̄ could become negative. In order to counter such circumstances, Newey and West

standard deviation is calculated and used.
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The last step is to compare the DM statistic with critical values obtained from a student

t-test with 1−H degrees of freedom. For this thesis, the null hypothesis is that model 1

does not have more accurate forecasts than model 2 (Enders, 2015).

With the theory in place, the next chapter will explain how it will be used and imple-

mented throughout this thesis.
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7 Methodology

In this chapter, the overall methodology for this thesis will be presented. To answer the

problem statement How well do artificial neural network models predict future prices of

the Danish stock market?, twelve different ANN’s will be trained for each of the six Danish

stocks investigated. These twelve models include six models that only use earlier prices

to forecast and six models that use a set of explanatory variables. The selection of these

explanatory variables is explained in section 7.2. Out of these twelve, only one model

will be used to make the actual forecasts. The selection process for choosing this model

is covered in section 7.5. To analyse the forecasts of the ANN models, one ARIMA(X)

model for each stock is trained to forecast the same stocks in the same period. The process

of finding the best ARIMA(X) model is explained in section 7.4. The selection of both

the best ANN and ARIMA(X) follow an out-of-sample test strategy that is explained in

section 7.1. Because this thesis uses data from different stock exchanges, several missing

values occur in the data. The process of dealing with the missing values is explained in

section 7.3. The empirical analyses are performed using the coding language R in the

program RStudio10.

7.1 Out-of-sample testing

The selection of both the best ARIMA(X) and ANN model follow an out-of-sample testing

strategy. In out-of-sample testing, the data is split up into two parts: Training and

testing. The models are first trained using the training part of the data, and then to

generalise the model, it is tested using new data from the testing part of the data. The

chosen time period and the division into training and testing periods are explained later

in section 8.1.

7.2 Explanatory variable selection

Not all of the explanatory variables later described in section 8.3 are used when forecasting

the dependent variables. The explanatory variables are selected by using a Granger
10The codes and overall data manipulation can be found at https://github.com/andreasbj77/Master-

thesis
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Causality test for each dependent variable. The Granger Causality test examines whether

one time series can be used to predict another time series. A lower p-value is associated

with a more significant explanatory power (Enders, 2015). For this thesis, the Granger

Causality test examines five lags and uses a critical value equivalent to a p-value of one

per cent. The one per cent critical p-value was decided after first attempting to use a five

per cent critical value. This resulted in poorly performing models in the out-of-sample

test, so it was decided to lower the critical p-value to one per cent. If an explanatory

variable meets the one per cent criteria, the variable will be included in the model.

7.3 Missing values

Missing values (NA) occur in the data used in this thesis. The primary reason for the

occurrence of NAs is that the markets across the world have different trading days due

to, e.g. holidays. Neither the ARIMA(X) nor the ANN approaches allow NAs. NAs do

not occur in the dependent variables since they are all traded on the Copenhagen stock

exchange. This means that NAs are only a problem in the explanatory variables.

For this thesis, the NAs is replaced using interpolation. Interpolation is a statistical

approach to find an unknown data point between two existing points. The method relies

on the assumption that observations do not differ significantly from each other. Since

this thesis uses day-to-day stock prices, the daily change in the stock price is somewhat

limited. Since stock market prices often do not develop linearly, the method spline is

chosen. Spline imputes the missing data using a cubic polynomial between the existing

points. This means that the missing data can be imputed while still keeping the non-linear

form characterising the stock market.

Generally, imputing NAs is not a perfectly precise method. Imputing NAs is often more

precise when they occur individually rather than when they occur in long sequences.

Therefore the NAs distribution in the data was investigated before imputing. All NAs in

the data occur individually or in sequences of two, which means that the errors created

when imputing are kept to a minimum.
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7.4 ARIMA(X) selection method

Two different types of ARIMA models will be trained for each dependent variable, a

standard ARIMA and an ARIMAX model. The selection of which models will be used

for forecasting is divided into two parts. In the first part, the R function Auto.Arima() is

used to choose the optimal model structures based on AIC. The function is restricted to

only look at stationary models. Eight model structures will be chosen for each dependent

variable based on AIC: Four ARIMA models and four ARIMAX models.

In the second part, the eight model structures will be tested using the testing period.

The eight different ARIMA(X) models are used to forecast the testing period using a

one-step-ahead forecasting method. The models are then evaluated using RMSE and

MAPE, where the one with the lowest score is chosen as the model to produce the actual

forecasts. This selection process means that only one model is chosen to forecast each

dependent variable.

7.5 ANN selection methods

Twelve different ANN model types will be trained for each of the six dependent variables.

These twelve are made from six different architectures, which are: An FNN, a simple

RNN, an LSTM, a GRU and a bidirectional version of both the LSTM and the GRU

models. Each of these six architectures is trained both with and without extra explanatory

variables, meaning that twelve model types will be trained in total for each of the six

dependent variables. The creation and selection of ANN models are made using the

training and testing data described in section 7.1.

First, the models are created by tuning the hyperparameters of each individual model.

This tuning is done automatically through the KerastuneR package in R. This method

randomly selects values from a pre-defined search space11 and trains models, using the

training period, for a different amount of epochs. This process is repeated for all model

types within each dependent variable and leads to 150 individual models that are then

compared, and the best model is then selected as the best of its type. With twelve model

types per dependent variable and six dependent variables, this selection process results
11These can be found in Appendix 3 - Hyperparameter tuning
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in 10, 80012 models in total across all model types and dependent variables.

After creating the best model for each of the twelve model types, the models are compared

using the testing period. The models forecast the testing period using a one-step-ahead

method, and their results are compared using the RMSE and MAPE statistic. Based on

these results, the best model for each dependent variable is selected.

With the theory and methodology established, the last thing needed before starting to

answer the problem statement is to select which data will be used in this thesis. This is

done in the following chapter.

12150 models · 12 model types (6 with explanatory variables and 6 without) · 6 dependent variables
= 10, 800 models in total
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8 Data selection

This chapter describes how, when, and what data is selected13. The six dependent vari-

ables are chosen from the C25 stock index. How and what stocks are chosen are explained

in section 8.2. The time period and data frequency chosen in this thesis are daily stock

prices from the start of 2010 to the end of 2019. The time period is further divided

into training, testing, and forecasting periods. The reasoning behind choosing this time

period and frequency are presented in section 8.1. The explanatory variables tested by

a Granger causality test in this thesis include all the stocks from the C25 index, stock

indices, government bonds, currency conversion rates, and gold and oil futures. The

reasons for including these are explained in section 8.3.

8.1 Time period

The time period for this thesis ranges from the 1st of January 2010 to the 30th of De-

cember 2019. The time period is divided into three sub-periods: a training period, a

test period and a forecast period. Figure 5 illustrates the division of the different time

periods.

Figure 5: Illustration of time period

Reference: Own creation

The training period ranges from the 1st of January 2010 until the 29th of December 2017,

represented by the black line. The blue line represents the test period on figure 5 and

range from the 1st of January 2018 until the 28th of December 2018. Lastly, the forecast

period ranges from the 2nd of January until the 30th of December 2019 and is represented

by the red line.
13The Data used in the thesis can be found at https://github.com/andreasbj77/Master-

thesis/tree/main/Data
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This specific time period is chosen to avoid obvious structural breaks from economic

crises. By choosing a period from 2010 to 2019, the structural breaks from the financial

crisis in 2008 and the corona crisis in 2020 are avoided.

For this thesis, daily stock prices are chosen. The choice of daily prices means that the

models have enough data to train properly, without adding bias from the imputation of

too many missing values. Hourly frequency is available for most of the data and would

give the models significantly more data for training, which could benefit the ANN models.

However, this thesis contains data from different stock exchanges worldwide, which have

different time zones and therefore different opening hours. This disparity in opening

hours would result in a huge amount of missing data points which could bias the models

when imputed. Weekly frequency would mean much less data, and in the period chosen,

this would not be enough data for proper training, testing and forecasting periods. As

such, a daily frequency is used in this thesis.

8.2 Dependent variables

The dependent variables selected for this thesis is stocks selected from the Danish C25-

index in 2018, which contains the 25 most traded Danish stocks. 2018 is chosen so that

the selection is not influenced by the forecasting period (2019). Only stocks that have

been publicly traded from 2010 to 2019 is considered. The stocks in the index are divided

into sectors as defined by the Danish newspaper Børsen. One stock from within each

sector is chosen based on the highest stock price on the last day of the testing period.

One stock from each sector is chosen in order to cover as many different stock types as

possible.

The stocks chosen as the dependent variables for this thesis are: Carlsberg, Genmab,

Jyske Bank, A.P. Møller - Mærsk B, SimCorp, and Vestas Wind Systems.

All the stock prices are gathered directly from Yahoo finance. The closing price for each

day will be used as both the dependent forecasting target and explanatory lagged values.

The stock price of all stocks in the C25-index at the starting date of the forecasting period

can be found in Appendix 2 - Dependent variables
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8.3 Explanatory variables

In addition to past values of the dependent variables, this thesis will also include several

other explanatory variables. These explanatory variables have all been selected to study

whether additional information improves the models’ performance when forecasting. As

with the dependent variable, the closing price of the extra variables will be used as the

price when relevant.

As described in section 7.2, all explanatory variables are not used to forecast each depen-

dent variable. The explanatory variables are instead selected based on a Granger causality

test for each of the dependent variables. The p-values from the Granger causality tests

can be found in Appendix 1 - Granger Causality test. The values written in bold repre-

sent which explanatory variables are included in the models for each dependent variable.

What variables are tested, and the reasoning for doing so is described below.

Stocks in the C25 index

All available stocks within the Danish C25-index are used as explanatory variables.14 The

stocks in the C25-index should provide a good indication of the stock market’s general

performance, and they should also be an indicator for the performance within each sector.

The correlation between the stocks and the dependent variables might be positive if the

stocks are of companies that the dependent variables rely on in their supply chain or if

they simply show a general rise in stock price within the sector. They might also be

negatively correlated if the stocks are of a company that is in direct competition with the

dependent variables.

All stock data is collected from Yahoo finance.

C20- and SP500-index

The stock indices C2015 and SP500 are used as extra explanatory variables. These are

included to provide information on the general performance of the Danish and the Amer-

ican stock markets. The SP500 index is often used as a proxy for the American stock

market, which accounts for 56 per cent of the total global stock market (Statista, 2021),

as to why it is a good indicator of the general tendencies of global stock markets. The
14Due to data limitations, not all stocks in the index are included
15Due to data limitations, the C20-index will be used instead of the C25-index
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C20 index should be a good indicator of the general performance of the Danish stock

market. It is expected that both stock markets are positively correlated with the depen-

dent variables since a rise in the general market oftentimes means a rise in the individual

stock prices.

The SP500 is from Yahoo finance, and the C20 is collected from investing.com.

2- and 10-year government bonds

The interest rate on 2- and 10-year Danish government bonds are included to provide

information on the expectations of the agents acting in the market. The rationale behind

including the government bonds is that they should act as both an alternative good

to the stock market and a proxy of the market expectations. The interest rate of 2-

year government bonds acts as a proxy for the short-term expectations, and the 10-

year government bonds act as a proxy for the long-term expectations. In both cases, a

rise in the interest rate is expected to be an indicator of worsening expectations of the

potential return on stocks. This is due to government bonds being an alternative good to

investments in stocks, so a fall in demand for stocks would lead to a rise in demand for

government bonds. For those reasons, it is expected that the interest rate of both 2- and

10-year government bonds will be negatively correlated with the dependent variables.

Interest rates on 2- and 10-year bonds are collected from investing.com.

Currency conversion rates

Since the Danish economy is predominantly export-focused, the currency conversion rates

of the most significant Danish export receivers is included as an explanatory variable.

These are the USA, Sweden, Norway, The UK, and China (Udenrigsministeriet, 2018).

Countries in the euro-zone are not included since Denmark has a fixed exchange rate

policy with the euro. The currency exchange rate is stated in the value of one foreign

currency in Danish kroner. These exchange rates act as a gauge for the relative price

level between Denmark and its most important trading partners. A rise in the value of

a foreign currency compared to the Danish krone would mean that it would be cheaper

to buy Danish goods, all other things being equal. Thus the expectation is that the cor-

relation between foreign exchange rates and the dependent variables are positive. There

might also be a negative correlation between certain exchange rates and certain stocks if
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a Danish company depends on imported raw resources for their production.

All currency exchange rates are collected from The National Bank of Denmark’s Stat-

Bank.

Gold and oil futures

Gold and oil futures are included to gain information on alternative goods. Gold is

especially known for being a ’safe haven’ for investments during economic downturns. The

expectations for gold futures are that their price should rise when the stock market shows

signs of instability. Therefore gold futures are expected to have a negative correlation

with the dependent variables during economic downturns or even a positive correlation

if the stock market is overheated.

Oil can be an alternative investment and a key part of many companies production or

supply chain. When the expected oil prices rise, it is expected that more people switch

from investing in stocks to investing in oil futures, given their greater potential return.

A rise in oil prices might also mean a rise in production cost for companies relying on

oil. This means that a rise in oil prices is expected to be negatively correlated with stock

prices.

The gold futures are collected from investing.com, and the oil futures are from Yahoo

finance.

8.4 Summary

The dependent variables are all from the C25 index and are chosen based on sectors

and the stock’s price. The dependent variables chosen to forecast include: Carlsberg,

Genmab, Jyske Bank, A.P. Møller - Mærsk B, SimCorp, and Vestas Wind Systems. This

thesis seeks to forecast the dependent variables daily stock price in 2019. The models

used for forecasting are trained using daily stock prices from 2010 to the last day of 2017,

while the models’ forecasts are tested and validated using data from 2018. The extra

explanatory variables considered is based on a theoretical correlation with the dependent

variables. The considered explanatory variables include: The stocks from the C25 index,

stock indices, government bonds, currency conversion rates, as well as gold and oil futures.

In the following chapter, the chosen data will be examined and analysed.
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9 Exploratory data analysis

Before creating the models, each dependent variable is investigated and analysed. The

purpose of the analysis is to characterise and compare the dependent variables to get a

general sense of the data. As explained, the selection method for the ANN and ARIMA(X)

models follow an out-of-sample testing strategy. This means that the models chosen to

forecast the forecasting period are the models that made the most precise forecasts of the

testing period. Therefore, one could assume that models for variables where the testing

and forecasting period are similar would produce more accurate forecasts compared to

variables where the periods are dissimilar. One thing that characterises the market as

a whole is that the stock prices tend to rise over the training and forecasting periods.

The prices in the testing period, on the other hand, tend to resemble a random walk.

Thus, better models at forecasting the testing period might not be the better models for

forecasting the forecasting period.

First, each dependent variable’s augmented Dickey-Fuller p-value is investigated to see

if the models are stationary. Then each dependent variable is analysed individually.

The testing, training and forecasting period, as well as the entire period as a whole, are

analysed. A table of descriptive statistics and a plot of the stock price are presented for

each individual dependent variable. The training period in the figures are shown in black,

the test period is printed in blue, and the forecasting period is shown in red.

Stationarity

As described in section 4.1, the ARIMA approach states that the data should be sta-

tionary when forecasting. This is tested by the Augmented Dickey-Fuller (ADF) test,

which tests if the data has a unit root. The ADF statistics for the training periods of the

dependent variables are printed in table 2.

Table 2: Augmented Dickey–Fuller p-value

Carlsberg Genmab Jyske Bank Mærsk B SimCorp Vestas
P-value 0.30 0.59 0.48 0.53 0.32 0.44
P-value >0.01 >0.01 >0.01 >0.01 >0.01 >0.01(diff. data)

Own creation based on calculations in R. Values are rounded for convenience
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The test results show that all the six dependent variables are non-stationary, with p-

values between 30-60 per cent. Table 2 also shows the results from ADF-tests after

the variables are differentiated. The results show that all the dependent variables are

stationary after differentiating the data series, all with p-values under one per cent. Since

the dependent variables are non-stationary without differentiating but become stationary

when differentiated, one would assume that an ARIMA(p,1,q) is the optimal ARIMA

structure.
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Carlsberg

Carlsberg has the lowest average daily change, both when looking at training, testing,

forecasting, and the entire period as a whole. This does not speak to whether the Carls-

berg stock price changes over the whole time period but speaks more to the size of the

day to day changes. The test period has the lowest standard deviation and the lowest

average percentage change, which also becomes apparent when looking at figure 6. The

price in the testing period seems to develop somewhat randomly without any drift or

trend, while the development of the forecasting prices shows a clear upward trend.

Table 3: Descriptive statistic for Carlsberg

Mean Standard Deviation Average daily change (%)
Training 555.17 83.68 1.09
Test 739.40 29.06 0.71

Forecast 895.82 88.65 0.86
Entire period 607.22 136.51 1.03

Own creation based on calculations in R. Values are rounded for convenience

The apparent difference in price development could mean that the better econometric

model at forecasting the testing period might be a random walk without drift, while the

better model at predicting the forecasting period is a model with drift. The same problem

could arise for the chosen ANN model since the model is chosen based on having the most

precise testing period forecasts.

Figure 6: Carlsberg stock price

Own creation in R
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Genmab

Genmab has the second-highest daily percentage changes. The overall high percentage

changes primarily come from the training and testing period, whereas the volatility is

much lower in the forecasting period as seen in table 4.

Table 4: Descriptive statistic for Genmab

Mean Standard Deviation Average daily change (%)
Training 448.65 478.54 1.87
Test 1082.86 114.22 1.76

Forecast 1251.29 170.88 1.27
Entire period 591.21 520.78 1.80

Own creation based on calculations in R. Values are rounded for convenience

The models are chosen based on the test period, so they might have some of the same

problems as the Carlsberg models when making their forecasts. The price development in

the test period seen in figure 7 looks somewhat like a random walk, with a slight downward

trend, while the stock price in the forecast period has a very clear upward trend. The

development in the training period and the forecasting period look similar, but this might

play a minor role since the final model selection is solely based on out-of-sample forecast

errors.

Figure 7: Genmab stock price

Own creation in R
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Jyske Bank

Unlike Carlsberg and Genmab, Jyske Banks full time period does not seem to have a

clear trend. The stock price starts at around 200 in 2010 and ends around 240 in 2019 as

seen in figure 8. There is some change in the price when looking at the individual periods.

The training period starts with a small rise in the first year’s stock price, followed by a

small decline the following year. The rest of the training period is characterised by an

overall rise in the stock price, with some declining sub-periods.

Table 5: Descriptive statistic for Jyske Bank

Mean Standard Deviation Average daily change (%)
Training 263.34 70.12 1.23
Test 330.86 37.98 1.00

Forecast 235.79 21.89 1.17
Entire period 607.22 136.51 1.03

Own creation based on calculations in R. Values are rounded for convenience

What also separates the development of Jyske Bank’s stock price from Carlsberg and

Genmab is that the testing and forecasting periods show signs of the same trend. Both

periods are characterised by a fall in the stock price, though with a larger fall in the

testing period. Because the periods are a lot alike, one could expect that the selected

ARIMA(X) and ANN models would produce more precise forecasts than if only one of

the periods had a downward trend.

Figure 8: Jyske Bank stock price

Own creation in R
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Mærsk B

The Mærsk B stock price development as a whole is reminiscent of Jyske Bank. As seen

in figure 9 Mærsk B has a versatile stock price, and if it were not for the last months of

2019, it would end at the same price level as it started at. There is no clear trend in the

stock price development. The stock price rises a lot between 2012-2015, like in the case

of Jyske Bank, but falls to its earlier level in the next couple of years.

Table 6: Descriptive statistic for Mærsk B

Mean Standard Deviation Average daily change (%)
Training 8930.32 1800.47 1.38
Test 8127.31 779.17 1.73

Forecast 8017.89 775.13 1.48
Entire period 8760.10 1683.78 1.42

Own creation based on calculations in R. Values are rounded for convenience

What separates Mærsk B and Jyske Bank is that, while Jyske Bank had similar test

and training periods, the price development for Mærsk B is different in the two periods.

A down-turned trend characterises the test period. However, the prices in the forecast

period resemble a random walk the first eight months, after which the prices see a con-

siderable spike the next four months with a rise of over 33 per cent. This difference could

mean that the models chosen will produce weak forecasts with relatively high MAPEs.

Figure 9: Mærsk B stock price

Own creation in R
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SimCorp

The SimCorp stock price seen in figure 10 develops much like Carlsberg and Genmab,

with a clear upward trend throughout the entire period.

Table 7: Descriptive statistic for SimCorp

Mean Standard Deviation Average daily change (%)
Training 205.77 111.78 1.23
Test 472.77 71.68 1.42

Forecast 615.29 62.39 1.28
Entire period 272.88 172.52 1.26

Own creation based on calculations in R. Values are rounded for convenience

Both the testing and forecasting periods experience significant rises in the stock prince

at the beginning of the periods, followed by a downwards trend. The most significant

difference between the two periods is that the stock price in the forecasting period takes

a big swing upward at the end of the period.

Figure 10: SimCorp stock price

Own creation in R
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Vestas

Vestas has the highest average percentage change in both the training period and the

entire period as a whole, as seen in table 8. The test and forecast periods’ average

percentage change, however, are somewhat lower. This can also be seen in figure 11.

The Vestas’ stock price starts the training period with a downward trend for the first 2-3

years, followed by an upward trend until three months before the period ends, where the

stock price drastically falls.

Table 8: Descriptive statistic for Vestas

Mean Standard Deviation Average daily change (%)
Training 52.67 34.75 2.15
Test 85.98 5.83 1.45

Forecast 113.11 9.08 1.30
Entire period 61.97 36.95 1.99

Own creation based on calculations in R. Values are rounded for convenience

The price developments in the test and forecasting period follow the same patterns, where

the first nine months of the periods resemble a random walk, followed by a significant

rise in the prices. The irregularities in how the stock price moves might be something

that the ANN model can pattern and pick up on, while the linearity of the ARIMA(X)

models could make it harder for them to predict.

Figure 11: Vestas stock price

Own creation in R
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9.1 Summary

The dependent variables were investigated by an ADF test in order to check if the data is

stationary. None of the dependent variables are stationary, but after being differentiated

once, they all become stationary.

Both Carlsberg and Genmab have vastly different price developments in their testing and

forecasting periods. This could lead to the model chosen in the testing period not being

the optimal model for forecasting the forecast period. SimCorp shows the same signs,

but the periods are more similar. Vestas’ testing period resemble a random walk, with an

upward spike in the last months. The same patterns apply to the forecasting period. This

is something the ANN models might be able to pick up on. Jyske Bank and Mærsk B do

not seem to follow any clear trend. Though Jyske Bank seems to have similar training

and forecasting periods, which could make one expect more precise forecasts.

Each stock price has been investigated and analysed. The best ARIMA(X) and ANN

models are selected and evaluated in the following chapters.
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10 Selection of ARIMA(X) models

The best ARIMA(X) models for each dependent variable will be selected in this chapter.

The detailed description of the method used to choose the suitable ARIMA(X) models for

forecasting is described in section 7.4. In essence, the method is split up into two parts;

first, eight models are chosen, four ARIMA and four ARIMAX, based on the models’

AIC. The eight models that were chosen and their respective AICs are presented in table

9. These eight models are used to forecast the testing period. Then the best model out

of those eight is chosen based on which model has the lowest RMSE and MAPE. The

evaluation statistics are shown in table 10, where the model with the lowest evaluation

statistics for each dependent variable is written in bold. The selection process for each

dependent variable will be explained one by one in this chapter.

Carlsberg

The explanatory variables chosen for the ARIMAX models for Carlsberg are the lag of

the individual stock prices of Danske Bank and DSV, the Oil price and the American

SP500 stock index. The reasoning behind choosing these is described in section 7.2.

When looking at the models of Carlsberg, the stock price is differentiated in the ARIMA

structures since they all follow a (p,1,q) structure. In contrast, all the ARIMAX models

follow a (p,0,q) structure where the stock price is not differentiated. The Carlsberg stock

price itself is, as shown in chapter 9, non-stationary, as to why one would expect models

that follow a (p,0,q) structure would be non-stationary as well. The code used to train

the model and calculate AICs is restricted to only look for stationary models. To be

certain that the models are stationary, the unit roots has been examined. The roots are

inside the unit circle, which deems the models stationary. There can be many reasons why

the ARIMAX models are stationary without differentiating the non-stationary dependent

variable. Carlsberg’s stock price data could suffer from structural breaks, making it non-

stationary, which the explanatory variables equalise. This thesis will not investigate this

matter further since it lies beyond the scope of the problem statement.

When comparing the AICs, one would expect that the ARIMAX(0,0,28) is the better

model for forecasting Carlsberg’s stock price. The AICs of the eight models are very

53



10 SELECTION OF ARIMA(X) MODELS

similar, as to why the out-of-sample testing might end up with different results.

The results from the out-of-sample testing show that the ARIMA models, which has a

MAPE at around 0.70 per cent, outperforms the ARIMAX models that all have a MAPE

at about 0.78 per cent. The ARIMA(0,1,0) outperforms the other ARIMA structures with

0.002 percentage points, which really is not a lot, and there is probably no significant

difference between the models. However, the method of this thesis does demand that

only one model is used to make the actual forecasts. Since the ARIMA(0,1,0) technically

outperforms the others, it is chosen to forecast the stock price of Carlsberg.

Genmab

The explanatory variables chosen for the ARIMAX models for Genmab are the lag of the

stock price of Lundbeck, the exchange rates between Danish kroner and US dollars, and

the American SP500 stock index.

The ARIMAX models outperform the ARIMA models based on AIC. The results of

the out-of-sample testing point to the same conclusion. The forecasts from the ARI-

MAX models’ MAPE are approximately 0.18 percentage points lower than those from

the ARIMA forecasts. The error statistics across the ARIMAX models show ambiguous

results. The RMSE statistic points to the conclusion that the ARIMAX(0,1,1) produces

the most precise forecasts, while the MAPE statistic points to the ARIMAX(1,1,0). The

results differ because RMSE puts a heavier weight on large errors, while MAPE is cal-

culated using a simple average. The difference between the models is so small that one

could argue that there is no real difference in the predictive strength of the models. The

method for this thesis dictates that only one ARIMA(X) model is used to forecast each

dependent variable, and since the out-of-sample testing technique points to an ambiguous

answer, the model with the lowest AIC is chosen. ARIMAX(0,1,1) has the lowest AIC of

the two and is chosen as the final model to forecast the stock price of Genmab.

Jyske Bank

The explanatory variable chosen for the ARIMAX models for Jyske Bank is the lag of

the American SP500 stock index.

Looking at AIC, one would assume that the ARIMAX models slightly outperform the
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10 SELECTION OF ARIMA(X) MODELS

ARIMA models. The out-of-sample testing points to the same conclusion. The evaluation

statistics for the ARIMAX models are very similar; they all have a MAPE of 1.004 after

rounding. However, the ARIMAX(1,1,0) has the lowest evaluation statistics, which is

why this structure is chosen to make the actual forecasts of Jyske Bank’s stock price.

Mærsk B

The explanatory variables chosen for the ARIMAX models for Mærsk B are the lag of the

individual stock prices of FLSmidth and NovoNordisk, the Oil price and the American

SP500 stock index.

Looking at AIC, one would assume that the ARIMAX models would outperform the

ARIMA models. Despite this, the out-of-sample testing results show that the ARIMA

models outperform the ARIMAX models with a MAPE around 0.01 percentage points

lower. This means that the ARIMA(0,1,0) is determined to forecast Mærsk B’s stock

price.

SimCorp

The explanatory variables chosen for the ARIMAX models for SimCorp are the lag of the

individual stock prices of DSV, Genmab, SydBank, WilliamDemant and the American

SP500 stock index.

The ARIMAX models have a lower AIC estimate than the ARIMA models and are

expected to perform better in out-of-sample testing. As is expected, the ARIMAX models

have both lower RMSEs and MAPEs. Like in the case of Genmab, RMSE and MAPE

show different results as to why AIC will be the final selection criteria. The models in

question are ARIMAX(1,1,0) and ARIMAX(0,1,1), where the latter has a lower AIC,

which means that the ARIMAX(0,1,1) is chosen to forecast the stock price of SimCorp.

Vestas

The explanatory variables chosen for the ARIMAX models for Vestas are the lag of the

individual stock prices of Genmab, NovoNordisk, the exchange rates between Danish

kroner and US dollars, the exchange rates between the Danish and Norwegian kroner,

the Danish C20 stock index and the American SP500 stock index.

Even though the Vestas data series is non-stationary, the ARIMAXmodels follow a (p,0,q)
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structure, like in the case of Carlsberg. The models unit roots have been investigated

and show that the models are stationary.

Looking at AIC, one would suspect that the ARIMA models’ forecasts outperform the

ARIMAX models’ forecasts. The out-of-sample tests show similar results, where the

ARIMA models’ forecasts MAPEs is around 0.2 percentage points lower than the ARI-

MAX models’ forecasts. The RMSE and MAPE statistics show that the ARIMA(3,1,0)

+ drift is the better forecasting model, and it is chosen as the final model.

Table 9: AIC for ARIMA(X) models

ARIMA Carlsberg Genmab Jyske Bank Mærsk B SimCorp Vestas
(0,1,0) 14031.57 16226.5 11511.93 26095.06 11358.79 -
(0,1,0) + d 14032.63 16226.27 11513.34 26096.92 11358.90 -
(1,1,0) + d 14033.85 16229.24 11515.34 26099.81 11361.86 -
(0,1,1) + d 14032.87 16228.28 11514.39 26098.9 11360.88 -
(2,1,1) - - - - - 7231.059
(3,1,0) - - - - - 7229.316
(3,1,0) + d - - - - - 7231.192
(3,1,1) - - - - - 7231.282

(a) ARIMA

ARIMA Carlsberg Genmab Jyske Bank Mærsk B SimCorp Vestas
(0,0,26) 14261.72 - - - - -
(0,0,27) 14249.59 - - - - -
(0,0,28) 14231.01 - - - - -
(0,0,29) 14231.36 - - - - -
(0,1,0) - 16218.96 11461.32 - 11324.56 -
(1,1,0) - 16221.61 11461.81 26038.83 11326.19 -
(0,1,1) - 16220.68 11460.88 26038.28 11325.11 -
(2,1,2) - 16220.79 - - - -
(1,1,1) - - 11463.82 26040.64 11324.51 -
(0,1,2) - - - 26039.87 - -
(0,0,33) - - - - - 7707.791
(0,0,34) - - - - - 7696.4
(0,0,35) - - - - - 7685.676
(0,0,36) - - - - - 7669.293

(b) ARIMAX

Own creation based on calculations in R. Values are rounded for convenience
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Table 10: RMSE and MAPE for ARIMA and ARIMAX

Carlsberg Genmab Jyske Bank Mærsk B SimCorp Vestas
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

(0,1,0) 7.018 0.704 29.301 1.768 4.717 1.009 175.724 1.729 10.100 1.418 - -
(0,1,0) + d 7.025 0.706 29.303 1.770 4.726 1.012 175.806 1.731 10.096 1.417 - -
(1,1,0) + d 7.032 0.706 29.303 1.770 4.739 1.013 175.886 1.732 10.095 1.418 - -
(0,1,1) + d 7.033 0.706 29.303 1.770 4.739 1.013 175.886 1.7318 10.095 1.417 - -
(2,1,1) - - - - - - - - - - 1.625 1.451
(3,1,0) - - - - - - - - - - 1.623 1.446
(3,1,0) + d - - - - - - - - - - 1.622 1.446
(3,1,1) - - - - - - - - - - 1.622 1.447

(a) RMSE and MAPE for ARIMA

Carlsberg Genmab Jyske Bank Mærsk B SimCorp Vestas
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

(0,0,26) 7.495 0.779 - - - - - - - - - -
(0,0,27) 7.426 0.772 - - - - - - - - - -
(0,0,28) 7.467 0.776 - - - - - - - - - -
(0,0,29) 7.465 0.772 - - - - - - - - - -
(0,1,0) - - 29.080 1.740 4.581 1.004 - - 10.004 1.402 - -
(1,1,0) - - 29.080 1.737 4.558 1.004 177.617 1.745 10.008 1.397 - -
(0,1,1) - - 29.079 1.738 4.558 1.004 177.456 1.744 10.009 1.397 - -
(2,1,2) - - 29.306 1.755 - - - - - - - -
(1,1,1) - - - - 4.558 1.004 177.640 1.745 10.018 1.400 - -
(0,1,2) - - - - - - 177.640 1.740 - - - -
(0,0,33) - - - - - - - - - - 1.828 1.681
(0,0,34) - - - - - - - - - - 1.811 1.658
(0,0,35) - - - - - - - - - - 1.835 1.681
(0,0,36) - - - - - - - - - - 1.835 1.678

(b) RMSE and MAPE for ARIMAX
Own creation based on calculations in R. Values are rounded for convenience
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10.1 Summary

In total, three ARIMA and three ARIMAX models were chosen to forecast the six depen-

dent variables. Two of the ARIMA models chosen resembles a random walk with their

(0,1,0) structure; these models were chosen for the Carlsberg and the Mærsk B stock.

The last ARIMA is chosen to forecast the Vestas stock and has a (3,1,0)+drift structure.

In the selection process of both Genmab and SimCorp, the RMSE and MAPE pointed

to different conclusions. This meant that the models with the lowest AIC were chosen,

which were ARIMAX(0,1,1) for both the Genmab and SimCorp stock. The four ARI-

MAX models for the Jyske Bank stock had very similar testing forecast error statistics

with a MAPE of 1.004 after rounding. The ARIMAX(1,1,0) ultimately had the lowest

MAPE as to why it was chosen to forecast the Jyske Bank stock.
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11 Selection of ANN models

The best ANN model for forecasting the dependent variables is selected in this chapter.

The process by which ANN models are selected is described in section 7.5. The models are

first trained using the training data, and their results are then validated using the testing

data. The training part of the data is also where the tuning of ANN models takes place.

During training, 150 models of each type are created and trained, and the best model

of each type is then carried forward to the testing part. Here the results of the models

are tested and validated, and the model with the lowest RMSE and MAPE is selected

for forecasting a given dependent variable. For Carlsberg, for example, there would be

150 of each of the model types, i.e. FNN, RNN, LSTM, GRU, bidirectional LSTM and

bidirectional GRU. All these models are then trained, and the best of each type is tested

and compared to the other types to choose the final model. This is repeated for all

dependent variable, both with and without extra explanatory variables, which leads to a

total of 10, 800 trained models, of which six is selected.

The explanatory variables used to forecast the dependent variables are the same as in

the ARIMAX forecast. Five timesteps are used in all recurrent models, which would be

equivalent to including five lags of all explanatory variables in the ARIMAX models. The

RMSE and MAPE for all dependent variables after out-of-sample testing are presented

in table 11.

The specific model for each dependent variable is explained below. The structure of the

models that were not selected for each dependent variable can be found in Appendix 4 -

Structure for ANN testing models

Carlsberg:

The best ANN architecture for forecasting Carlsberg without explanatory variables is

an FNN with an RMSE of 6.98, while the best architecture to predict the stock with

explanatory variables is a GRU with an RMSE of 11.44. The results produced by models

without extra explanatory variables are better across the board; no model architecture

achieves better results when extra explanatory variables are included. Carlsberg is notable

for having the lowest MAPE for all model architectures out of all the dependent variables.
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The FNN without extra explanatory variables is chosen to predict the forecasting period

since it is the best model for forecasting Carlsberg by far, with a MAPE of 0.7 per cent.

The final model structure can be seen in figure 12.

Figure 12: Final structure for Carlsberg

The model has three standard dense layers16, two dropout layers, and a learning rate of

0.01. Since the model is an FNN without extra explanatory variables, the input only

consists of one variable and no timesteps.

Genmab

The FNN is the best architecture for forecasting the testing period with an RMSE of 29.57

without extra explanatory variables and 31.38 with extra explanatory variables. The

inclusion of extra explanatory variables once again worsens the models’ performances

across all model architectures. Additionally, the FNN without explanatory variables

achieves a MAPE of 1.79 per cent and a MAPE of 1.90 per cent if explanatory variables

are included. For these reasons, the FNN architecture without explanatory variables is

chosen to forecast Genmab’s stock price during the forecasting period. The final model

structure can be seen in figure 13.

Figure 13: Final structure for Genmab

The model consists of two standard dense layers, no dropout, and a learning rate of 0.001.

As with Carlsberg, the model’s input only consists of one variable and no timesteps.

Although the model structure consists of fewer layers than Carlsberg, it is still a very

complex model due to the high amount of units (928) in the first dense layer.

Jyske Bank

The testing data shows that the best architecture to forecast Jyske Bank is the FNN with-

out additional explanatory variables, with an RMSE of 4.83. If additional explanatory
16Dense layers are what feed-forward layers are referred to in the Keras framework
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variables are included, the GRU becomes the best architecture, with an RMSE of 6.30.

Although the FNN without additional explanatory variables is once again the best model,

the evaluation statistics show that the inclusion of explanatory variables can benefit some

model architectures. The LSTM, GRU, and bi-directional GRU all improve their RMSE

and MAPE when additional explanatory variables are included. The average RMSE for

Jyske bank with and without explanatory variables is also much closer than Carlsberg

and Genmab. Despite this, the FNN without explanatory variables is still the best option

and is chosen as the final model. The final model structure can be seen in figure 14.

Figure 14: Final structure for Jyske Bank

The model consists of two standard dense layers, two dropout layers, and a learning rate

of 0.01. The model’s input only consists of one variable and no timesteps.

Mærsk B

The best model architecture for Mærsk B is the FNN without extra explanatory variables

with an RMSE of 177.25 and a MAPE of 1.75. The LSTM architecture improves slightly

when adding extra explanatory variables, but on average, the models without explanatory

variables perform better. The FNN without extra explanatory variables is chosen as the

final model, and its structure can be seen in figure 15.

Figure 15: Final structure for Mærsk B

The model consists of three dense layers, one dropout layer, and a learning rate of 0.001.

The model’s input only consists of one variable and no timesteps.

Simcorp

Forecasting Simcorp during the testing period shows that the FNN architecture is once

again the best. It is notable, though, that only the FNN with extra explanatory variables

is able to achieve results comparable to the models without extra explanatory variables.
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All other model architectures with extra explanatory variables achieve much higher RM-

SEs and MAPEs than their counterparts without extra explanatory variables. Even the

worst model architecture without extra explanatory variables is much better than the

best model with extra explanatory variables, except for the FNN. The FNN without ex-

tra explanatory variables achieves an RMSE of 10.13 and a MAPE of 1.43 and is chosen

as the final model. Its structure can be seen in figure 16.

Figure 16: Final structure for SimCorp

The model consists of three dense layers, one dropout layer and a learning rate of 0.0001.

The model’s input only consists of one variable and no timesteps. Although the amount

of layers is the same as with Mærsk B, the amount of units is far higher for SimCorp, and

the learning rate is much lower. This suggests that the two might share the same general

structure but that Simcorp’s network is much more complex and learns more slowly over

time.

Vestas

As with the other dependent variables, the FNN without extra explanatory variables is

the best architecture for forecasting Vestas. It achieves an RMSE of 1.62 and a MAPE

of 1.44. Unlike the results for SimCorp, the results of model architectures with and

without extra explanatory variables are quite close. Unlike Jyske Bank, though, none of

the model architectures are improved when adding explanatory variables. Once again,

the FNN architecture without extra explanatory variables is chosen as the final model,

and its structure can be seen in figure 17.

Figure 17: Final structure for Vestas

The model consists of two standard dense layers, two dropout layers, and a learning rate

of 0.001. The model’s input only consists of one variable and no timesteps.
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Table 11: RMSE and MAPE for all ANN models

Carlsberg Genmab Jyske Bank Mærsk B Vestas SimCorp
Excl Incl. Excl Incl. Excl Incl. Excl Incl. Excl Incl. Excl Incl.

FNN 6.98 11.66 29.57 31.38 4.83 6.79 177.25 249.48 1.62 1.69 10.13 10.95
RNN 10.06 13.10 41.82 45.23 6.35 6.38 261.32 283.58 2.38 2.67 14.83 48.06
LSTM 11.67 12.71 46.00 47.06 6.78 6.65 284.51 280.91 2.55 2.57 17.12 45.06
bi-LSTM 11.44 13.24 43.53 50.14 7.11 7.58 310.75 314.86 2.87 2.94 18.49 29.53
GRU 10.44 11.44 40.92 42.09 6.50 6.30 263.16 281.06 2.40 2.62 15.72 28.42
bi-GRU 12.18 12.39 40.92 47.93 7.53 7.26 301.58 303.78 2.75 3.07 18.65 28.55
Mean 10.46 12.42 41.71 43.97 6.52 6.83 266.43 285.61 2.43 2.59 15.82 31.76

(a) RMSE for training period

FNN RNN LSTM bi-LSTM GRU bi-GRU

Carlsberg Excl. 0.7 1.03 1.20 1.23 1.07 1.27
Incl. 1.25 1.41 1.41 1.44 1.25 1.33

Genmab Excl. 1.79 2.54 2.20 2.43 2.02 2.34
Incl. 1.90 2.82 3.00 3.21 2.68 3.06

Jyske Bank Excl. 1.05 1.49 1.61 1.68 1.54 1.75
Incl. 1.61 1.56 1.56 1.78 1.49 1.70

Mærsk B Excl. 1.75 2.47 2.76 3.09 2.54 3.00
Incl. 2.60 2.76 2.73 3.15 2.71 3.03

Vestas Excl. 1.44 2.00 2.20 2.43 2.02 2.34
Incl. 1.47 2.21 2.22 2.47 2.17 2.49

SimCorp Excl. 1.43 2.15 2.53 2.72 2.31 2.71
Incl. 1.63 8.36 8.56 5.48 4.53 4.83

Mean Excl. 1.36 1.95 2.21 2.31 1.99 2.36
Incl. 1.74 3.18 3.24 2.92 2.47 2.74

(b) MAPE for training period

Own creation based on calculations in R. Values are rounded for convenience
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11.1 Summary

The best performing models for all variables were FNNs. Although, some other model

types were close to performing as well as the FNNs, such as the GRU for Jyske Bank

and Carlsberg. The inclusion of variables improved only a few models. The final model

selected for all dependent variables was an FNN without extra explanatory variables.

The best ARIMA(X) and ANN models have been found for each dependent variable. The

final models are used to predict the forecasting period, and the results are presented and

analysed in the following chapter.
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12 Results

This chapter presents and evaluates the results of the forecasts made by the best ARIMA(X)

and the best ANN models selected in the previous chapters. As explained in chapter 7,

one ARIMA(X) and one ANN are used to forecast each dependent variable. The specific

models used to forecast are explained in chapter 10 and 11. Each model is used to predict

the forecasting period using one-step-ahead forecasting. The resulting evaluation statis-

tics and the Diebold-Mariano (DM) p-values of the forecasts can be seen in table 12. The

average daily percentage changes for the forecasting period, presented in chapter 9, are

included in the table. These are included to compare the models to the actual volatility

of the stock prices since the average daily percentage changes are directly comparable to

the MAPE evaluation statistic. Plots of the predicted and the actual prices can be seen in

figure 18. Since this thesis uses one-step-ahead forecasting, the errors become very small

relative to the actual prices. This means that the differences in ARIMA(X) and ANN

forecasts can be very hard to spot in the plots. Therefore, the results and discussion will

be based on the evaluation statistics rather than the graphical representation.

Table 12: Results of forecasting

(a) Evaluation statistics

RMSE MAPE Average daily
ARIMA ANN Difference ARIMA ANN Difference change (%)

Carlsberg 11.65 11.75 0.91 % 0.85 0.86 0.01 0.86
Genmab 20.70* 21.12 1.99 % 1.26* 1.27 0.01 1.27
Jyske Bank 3.81* 4.03 5.55 % 1.21* 1.35 0.14 1.17
Mærsk B 160.75 160.57 -0.12 % 1.48 1.47 -0.004 1.48
SimCorp 10.69* 11.16 4.25 % 1.27* 1.33 0.06 1.28
Vestas 2.05 2.06 0.39 % 1.30 1.31 0.01 1.30
Average 2.16 % 0.04

*ARIMAX models
Own creation based on calculations in R. Values are rounded for convenience

(b) Diebold-Mariano test

Carlsberg Genmab Jyske Bank Mærsk B SimCorp Vestas
P-value 0.01 0.02 0.03 0.45 0.003 0.28

Own creation based on calculations in R. Values are rounded for convenience

The error statistics in table 12 show that, aside from Mærsk B, the ARIMA(X) mod-

els outperform the ANN models when forecasting all the dependent variables. Because
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the statistics are based on one-step-ahead daily forecasting, the differences in MAPE

and RMSE generally become smaller than if it was based on lower frequency data, e.g.

monthly, with longer forecasting horizons. These small average differences in RMSE

and MAPE might not seem like a lot, but considering that the difference is every day

for a year, these small differences could start to add up. The results will be presented

individually for each of the dependent variables.

Carlsberg

Although the ANN for Carlsberg is outperformed by the ARIMA(X), the ANN does get

a MAPE equal to the daily percentage change. This is despite the difference in trend

between the forecasting and testing period. The ANN model has a 0.91 per cent higher

RMSE and a 0.01 percentage points higher MAPE. The DM test was set to test whether

the ARIMA(X) forecasts were statistically more accurate than the ANN forecasts. The

null hypothesis states that the accuracy of the ARIMA(X) forecasts is not higher than the

forecasts of the ANN. The test has a p-value of 0.01, which means that the null hypothesis

is rejected. Thus it is concluded that the ARIMA(X) forecasts are more accurate than

the ANN forecasts, at a significant level.

Genmab

The ANN is outperformed by the ARIMA(X) when forecasting the Genmab stock. The

ANN forecasts do get a MAPE equal to the average daily percentage change, which is

a sign that the forecasts are somewhat precise. The fact that the testing period was

markedly different from the training and forecasting period does not seem to have had

a noticeable effect. The difference in RMSE between the ANN and the ARIMA(X) is

1.99 per cent, and the MAPE difference is, like in the case of Carlsberg, 0.01 percentage

points. A DM test is performed on the ANN and ARIMA(X) forecast errors. The test has

a p-value of 0.02, which means that the null hypothesis is rejected. Thus, the ARIMA(X)

forecasts are more accurate than the ANN forecasts, at a significant level.

Jyske Bank

The biggest difference in model performance between ANN and ARIMA(X) is when

forecasting Jyske Bank’s stock price. The ARIMA(X) outperforms the ANN model with

5.55 per cent looking at RMSE and 0.14 percentage points looking at MAPE. Both the
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ANN and the ARIMA(X) model struggle to forecast Jyske Bank’s stock price. This can

be seen in the difference between their MAPEs and the average daily percentage change.

The ANN had a 0.18 percentage points higher MAPE, and the ARIMA(X) had a 0.04

percentage points higher MAPE. The reason the models struggle when forecasting Jyske

Bank is most likely because the forecasting period trends downwards, while its training

period trends upwards. The DM test shows that the ARIMA(X) forecasts are more

accurate than those of the ANN at a significant level, with a p-value of 0.03.

Mærsk B

The only dependent variable where the ANN forecasts outperform those of the ARIMA(X)

is Mærsk B. It outperforms with a very slim margin though, and out of the six dependent

variables, this is where the difference is the smallest. The ANN outperforms with a 0.12

per cent lower RMSE and a 0.004 percentage points lower MAPE. In addition to being

the only stock where the ANN outperforms, Mærsk B is also the only dependent variable

where the ANN has a MAPE that is lower than the average daily percentage change,

with a difference of 0.01 percentage points. The fact that the ANN outperformed the

ARIMA(X) could be explained by Mærsk B having no clear trend and different training

and testing periods. However, the outperformance is not significant. The DM test has a

p-value of 0.45 which means that the ANN forecasts are not more accurate than those of

the ARIMA(X) at a significant level.

SimCorp

The ANN model for SimCorp struggled to forecast the testing period, so it comes as

no surprise that it also struggles to predict the forecasting period. The ANN model is

outperformed by 4.25 per cent looking at RMSE and 0.06 percentage points looking at

MAPE, compared to the ARIMA(X) model. The model also fails to reach the average

daily percentage change, with a MAPE that is 0.05 percentage points higher. The DM

test shows that the ARIMA(X) forecasts are more accurate than those of the ANN at a

significant level, with a p-value of 0.003.

Vestas

Despite the irregularities in Vestas’ stock price, the ANN was outperformed by the

ARIMA(X) model. The ARIMA(X) forecasts had a 0.39 per cent lower RMSE and
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a 0.01 percentage points lower MAPE. The ANN ended up with a MAPE of 1.31, while

the average daily percentage change was at 1.30. Surprisingly, the DM test shows that

the ARIMA(X) forecasts are not more accurate than those of the ANN at a significant

level, with a p-value of 0.28. This might seem peculiar since the models for Vestas had a

bigger difference in RMSE and MAPE compared to the models for Carlsberg and Gen-

mab. The answer to this lies in how the DM statistic is calculated. This is the case since

the DM statistic is used to calculate the p-values. Recall from equation 14 that the DM

statistic is calculated by the mean of the loss differences between the models divided by

the standard deviation of that mean. In the case of Carlsberg, Genmab, and Vestas, the

mean of the loss differences are approximately the same, but the standard deviation of

the mean from Vestas is much higher than those from Carlsberg and Genmab. This leads

to a lower DM statistic, which in turn leads to a higher p-value.
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Figure 18: Forecasted stock prices for ARIMA(X) and ANN

(a) Carlsberg (b) Genmab

(c) Jyske Bank (d) Mærsk B

(e) SimCorp (f) Vestas

12.1 Summary

The results from the forecasts show that, aside from Mærsk B, the ANN models were

outperformed by the ARIMA(X) models. In the case of Mærsk B, the ANN model

outperformed the ARIMA(X) model, but only by a slim margin. The DM tests show

that the differences in accuracy were significant for Carlsberg, Genmab, Jyske Bank,

and SimCorp. The MAPEs from the ANN models were either lower or the same as the

average daily percentage change when forecasting Carlsberg, Genmab, and Mærsk B. It
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was found that the ANN models struggled to forecast both Jyske Bank and SimCorp.

The final results for each dependent variable have been presented and analysed. In the

following chapter, these results and their implications are discussed.
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13 Discussion

The results presented in chapter 12 clearly show that ANNs are still not at a point where

they can predict the Danish stock market as accurately as the ARIMA(X) model. For the

ANN models to actually be useful, they would need to outperform the ARIMA(X) and get

a lower MAPE than the average daily percentage change. This general underperformance

of ANN models might lead one to conclude that nothing of interest has been gained from

predicting the Danish stock market with ANN models in this thesis, but that is not the

case. This chapter will explore and discuss some of the implications of the results of this

thesis.

13.1 Does the Danish stock market behave as a random walk?

The fact that the ANNmodels are unable to outperform both the average daily percentage

change and the ARIMA(X) models could be explained by the Danish stock market, in

fact behaving as a random walk. This is further supported by the structure of all the best

ANN models. In chapter 5 it was mentioned that a simple RNN should be superior at

predicting time series data compared to an FNN. This is the case since RNNs, contrary

to FNNs, examines the data as a sequence. Furthermore, the theory states that more

complicated architectures of RNN such as LSTM and GRU, which uses a gated structure,

should outperform the simple RNN architecture. Despite this, the out-of-sample testing

showed that FNNs are the better predictor for all dependent variables, even though it

does not factor in that the data is in a sequence. This suggests that a simpler model

architecture is preferable. The reason might be that FNNs are better at imitating a

random walk than RNNs, LSTMs, GRUs, bi-LSTMs, and bi-GRUs. It could be the case

that RNNs, LSTMs, GRUs, bi-LSTMs, and bi-GRUs simply generate too much noise

when trying to model connections that do not exist.

However, the ARIMA(X) selection suggest something different since the best models

for forecasting the dependent variables was not exclusively random walks. This could

signify that the Danish stock market has irregular price changes that can be predicted.

The reason might also be the selection method, where the ARIMA(X) models selected

to forecast only outperforms a random walk in the testing period by a slim margin, as
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explained in chapter 10. The largest departure from a random walk in the ARIMA models

is Vestas with a (3,1,0) structure, but the difference between this structure and a random

walk in the out-of-sample test is marginal. The same goes for when ARIMAX models

are selected, where the ARIMAX models only outperform the random walk by a slim

margin. Thus it can be assumed that the departures from the random walk structure for

the ARIMA(X) models are more likely to be caused by the selection method used in this

thesis, rather than a sign that the Danish stock market does not behave like a random

walk. If the Danish stock market does, in fact, behave like a random walk, adding more

information such as; the stock price of other companies, indices, interest rates, currency

conversion rates, or prices of commodities, to the forecasting models should either worsen

or not affect the forecasts of the models. This effect can be seen in the ANN models,

where adding extra explanatory variables worsens the forecasts of almost all the models.

The implications of this will be discussed in the next section.

13.2 Effect of adding explanatory variables

One big difference between the ARIMA(X) and ANNmodels is that some of the ARIMA(X)

models benefit from the inclusion of extra explanatory variables. This is interesting for

two reasons. Firstly, that the efficient market hypothesis suggests that extra explanatory

variables are not useful when forecasting stock markets. Secondly, because the extra ex-

planatory variables actually worsen the ANN models’ performance. The fact that some

ARIMA(X) models benefit from including extra explanatory variables could be explained

by the same reasons that the ARIMA(X) for some dependent variables diverge from a

random walk. The results of the out-of-sample testing are very close, and any ARIMAX

models chosen over an ARIMA model might simply be due to the selection method used.

The reasons why the ANN models performance worsen when the extra explanatory vari-

ables are included are more unclear. Theoretically, the ANN models should be able to

adapt to unneeded information and learn to ignore it during training, but this does not

seem to happen. The models’ inability to properly adapt might be due to the extra

explanatory variables simply adding too much noise to the models for them to filter out

properly. Another reason could be that the chosen time period might not provide enough
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data for the model to learn to ignore the extra explanatory variables. A final reason could

be the frequency of data used in this thesis. Dingli and Fournier (2017) suggest that the

amount of extra explanatory variables that benefit a machine learning model is dependent

on the frequency of the data, with higher frequencies like daily data needing fewer extra

explanatory variables. Although their study focuses on traditional supervised machine

learning, their findings could also be applied to ANN models. Further comparisons to

existing literature are made in the next section.

13.3 Comparison to existing literature

The results presented in this thesis diverges heavily from the litterateur presented in

section 2.3. All other comparative studies reviewed showed that an ANN is either always

better or at least better in some cases compared to an ARIMA. The fact that the ARIMA

models often outperform the ANN models in this thesis shows that the ANN methodology,

when applied to the Danish stock market, might not be as powerful as other literature

suggests. There could be many reasons why this thesis comes to a different conclusion,

but without a clear look at the coding and complete methodology of these papers, it is

hard to state clear reasons. Though, some hypothesis can be generated based on the data

used by the authors. Du (2018) use data from much larger economies than Denmark.

Siami-Namini et al. (2018) forecast weekly and monthly data instead of the daily data

used in this thesis and Isenahd and Olubusoye (2014) forecasts a much younger and

maybe more volatile market than the Danish stock market. As such, the differences in

results might be explained by the difference in the data used by existing literature and

this thesis.

13.4 Possible improvements to methodology

These differing results lead to a discussion of the methodology used in this thesis. As

mentioned earlier, the selection method for ARIMA(X) models presents some problems.

These are mainly that the ARIMA(X) models are so similar that it becomes almost

impossible to select the definitively best model. Since this thesis’ primary focus is not

on the performance of ARIMA(X) models, though, this is more of an inconvenience than
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a problem. A general problem when training ANN models is that the models can be

very hard to reproduce precisely. The number of changeable parameters also present

a challenge to defining whether the best possible model has been achieved. With the

amount of models trained and tested though, it is likely that the best possible model

within the given set of parameters has been achieved. As for the number of changeable

parameters, this was solved somewhat by using automatic tuning, which vastly improves

the ability to test many different combinations of parameters. Of course, some limitations

exist, both in the form of time constraints and computational power, limiting the number

of possible parameter combinations that can be tested. Unfortunately, these limitations

are hard to solve and present more of a trade-off between complexity and feasibility than

any true solutions.

The selection of extra explanatory variables could also lead to problems. These problems

could stem from both the extra explanatory variables included and those that were not.

The extra explanatory variables that were included were selected based on the Granger

causality test. Although this measurement is solid, the given p-value for selecting variables

might be too high. This would mean that variables that have a too low predictive power

were included in the models. The extra explanatory variables that were not included are

a much more complex problem to solve. There will almost always be extra explanatory

variables that could have been included but were not, so gathering variables that might

be of interest is sometimes more of an art than a science. As with the limitations in

ANN models, this problem also stems mainly from the trade-off between complexity and

feasibility.

13.5 Real life application of methods

A discussion of the real-life application of the methods used in this thesis is also interesting

since the work needed to implement the two methods are different. The results of this

thesis show that ANNs cannot outperform ARIMA(X) models, but even if they had been

able to, the real-life applicability would still be questionable. The time and resources

needed to implement the methodology used for ANNs in this thesis are immense compared

to the time and resources used to implement the ARIMA(X) models. The coding used for
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the ARIMA(X) models in this thesis took between 10 and 15 minutes to run, whereas the

coding used for the ANN models took up to 2 days to run, even with GPU acceleration

which speeds up the training and tuning process. This means that ANNs would have to

not only be comparable to ARIMA(X) models but outperform them with a significant

margin for them to be an effective tool for forecasting the Danish stock market. This

could change in the future, however. As mentioned in the introduction, the development

of both computational power and machine learning in general is happening at a rapid

pace. As such, it is not unlikely that ANNs will be able to be both more efficient and

better at forecasting the Danish stock market than ARIMA(X) models in the future.

13.6 Summary

Although the results produced in this thesis shows that ANN models cannot predict the

Danish stock market better than an ARIMA(X) model, this chapter has pointed to some

other interesting conclusions. The resulting structures of the ANN models suggest that

the Danish stock market behaves like a random walk. This is also supported by the

fact that adding extra explanatory variables has no or a negative impact on the models.

Compared to the existing literature, these results are very different, with the ANNs often

beating ARIMA models in the literature. A possible reason for this might be the different

data used in this thesis. Although the selection method used in this thesis presents some

difficulties, there is no true solutions, only trade-offs. Lastly, the real-world application of

the methods used in this thesis was discussed. It is clear that the time and computational

power needed to train the required amount of ANN models presents a challenge to its

implementation. This means that even if the results of the ANN models were better,

they would still be impractical to use.
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14 Conclusion

The work in this thesis has been done in order to answer the problem statement:

How well do artificial neural network models predict future prices of the Danish stock

market?

The problem statement was answered by forecasting a selection of Danish stocks with

ANN models and comparing them to ARIMA(X) models used as baselines. The year 2019

was used as the forecasting period, where the daily stock prices of Carlsberg, Genmab,

Jyske Bank, A.P. Møller - Mærsk B, SimCorp, and Vestas Wind Systems were forecasted

using one-step-ahead forecasting. The years from the start of 2010 to the end of 2018

was used to train and select both the best ANN and ARIMA(X) models using an out-of-

sample testing strategy.

The best ANN model type for all the dependent variables ended up being a feed-forward

neural network, compared with a simple RNN, LSTM, GRU, bi-LSTM, and bi-GRU.

None of the models used extra explanatory variables since they generally worsened model

performance. Although the ANN models were of the same type, their structures differed

across the dependent variables. It was evident in the selection of ARIMA(X) models that

there were no big differences between the models tested. The models chosen to forecast

ended up being: Carlsberg - ARIMA(0,1,0), Genmab - ARIMAX(0,1,1), Jyske Bank -

ARIMAX(1,1,0), Mærsk B - ARIMA(0,1,0), SimCorp - ARIMAX(0,1,1) and Vestas -

ARIMA(3,1,0) with drift. This meant that three ARIMA models and three ARIMAX

were used to forecast.

The results of the forecasting period showed that the ANN models perform worse or

similar compared to the ARIMA(X) models. The ANN and ARIMA(X) error statistics

were close in some cases. After further inspection with a Diebold-Mariano test, it was

determined that no model had a better accuracy than the other when forecasting Mærsk

B and Vestas. However, the Diebold-Mariano test showed that the ARIMA(X) models

were statistically more accurate when forecasting the remaining four stocks.

The discussion revolved around why this thesis got these results. One of the possible

reasons pointed to were that the Danish stock market, in fact, behaves like a random
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walk. This notion is further supported by the fact that the best ANN models proved

to be feed-forward neural networks, especially since the addition of extra explanatory

variables worsened most of the ANN models.

The results were also compared to the existing literature. Contrary to the results in

this thesis, the existing literature showed that the ANN models heavily outperforms the

ARIMA models. There can be many reasons as to why the results in this thesis differ,

such as difference in data length and frequency, and the type of country investigated.

It was concluded that ANNs still need further development before using them to forecast

stock market prices becomes feasible. Especially considering the time and computational

power needed to train, tune, and test ANNs, compared to ARIMA(X) models.
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15 APPENDIX

15 Appendix

15.1 Appendix 1 - Granger Causality test

Carlsberg Genmab Jyske Bank Mærsk B SimCorp Vestas
Ambu 0.120 0.875 0.380 0.180 0.037 0.574
Carlsberg - 0.945 0.497 0.720 0.135 0.479
Coloplast 0.405 0.731 ´0.045 0.711 0.065 0.029
Danske
Bank

0.003 0.455 0.196 0.255 0.040 0.415

DSV 0.005 0.494 0.079 0.433 0.000 0.072
FLSmidth 0.529 0.071 0.282 0.022 0.594 0.176
Genmab 0.030 - 0.580 0.108 0.006 0.006
GN 0.089 0.962 0.871 0.431 0.142 0.029
Jyske
Bank

0.034 0.619 - 0.091 0.380 0.431

Lundbeck 0.014 0.003 0.037 0.707 0.454 0.026
Mærsk A 0.455 0.463 0.525 0.502 0.959 0.052
Mærsk B 0.326 0.590 0.446 - 0.978 0.092
Novo
Nordisk

0.759 0.125 0.080 0.005 0.198 0.001

Novozymes 0.160 0.237 0.238 0.831 0.262 0.282
Royal
Unibrew

0.120 0.307 0.560 0.895 0.097 0.020

SimCorp 0.046 0.054 0.059 0.772 - 0.070
SydBank 0.080 0.049 0.483 0.106 0.009 0.324
Tryg 0.054 0.357 0.010 0.102 0.057 0.063
Vestas 0.326 0.749 0.576 0.153 0.030 -
William
Demant

0.047 0.063 0.173 0.361 0.000 0.364

C20index 0.123 0.260 0.058 0.089 0.015 0.002
SP500 0.000 0.000 0.000 0.000 0.000 0.003
Two Year
Bond

0.052 0.158 0.045 0.360 0.421 0.084

Ten Year
Bond

0.153 0.303 0.021 0.576 0.030 0.203

CNY 0.510 0.110 0.398 0.248 0.077 0.036
GBP 0.905 0.221 0.474 0.380 0.046 0.050
NOK 0.066 0.125 0.967 0.510 0.047 0.002
USD 0.133 0.004 0.730 0.072 0.317 0.002
SEK 0.455 0.608 0.593 0.349 0.895 0.445
Gold Fu-
tures

0.312 0.160 0.526 0.389 0.257 0.631

Oil Price 0.000 0.069 0.073 0.002 0.291 0.514
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15.2 Appendix 2 - Dependent variables

Consumption Energy Finance Health Care Industry Technology
Carlsberg 699.00 - - - - -
Royal Unibrew 455.80 - - - - -
Vestas - 100.36 - - - -
Jyske Bank - - 234.50 - - -
Tryg - - 164.80 - - -
SydBank - - 157.50 - - -
Danske Bank - - 128.70 - - -
Genmab - - - 1024.50 - -
Coloplast - - - 611.20 - -
Novo Nordisk - - - 304.30 - -
Novozymes - - - 288.10 - -
Lundbeck - - - 283.10 - -
GN - - - 255.60 - -
William Demant - - - 187.40 - -
Ambu - - - 162.60 - -
Mærsk B - - - - 7230.67 -
Mærsk A - - - - 6776.72 -
DSV - - - - 441.50 -
FLSmidth - - - - 298.00 -
SimCorp - - - - - 460.40
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15.3 Appendix 3 - Hyperparameter tuning

The Keras tuner package provides a variety of hyperparameter selection options. The

ones used in this thesis are range and choice. The range is used by setting a minimum

and maximum value for a given parameter and defining the step by which it changes.

The choice is used to chose between predefined values (KerastuneR, 2021).

The number of units in the layers is decided with a range of 32 and 1024 with a step of

32.

The dropout layers are set to decide between a dropout rate of either 0, 0.1, 0.2 or 0.3.

Additional feed forwards layers can be added beside the first hidden layer in a range of

1-5 layers.

Deciding the learning is a choice between 0.01, 0.001 and 0.0001.
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15.4 Appendix 4 - Structure for ANN testing models

15.4.1 Structure of ANN for Carlsberg

Figure 19: Carlsberg without explanatory variables

(a) RNN (0.001 LR)

(b) LSTM(0.01 LR)

(c) Bi-LSTM(0.01 LR)

(d) GRU(0.01 LR)

(e) Bi-GRU(0.001 LR)

Figure 20: Carlsberg with explanatory variables

(a) FNN (0.01 LR)

(b) RNN (0.001 LR)

(c) LSTM (0.001 LR)

(d) Bi-LSTM (0.001 LR)
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(e) GRU (0.001 LR)

(f) Bi-GRU (0.001 LR)

15.4.2 Structure of ANN for Genmab

Figure 21: Genmab without explanatory variables

(a) RNN (0.0001 LR)

(b) LSTM (0.0001 LR)

(c) Bi-LSTM (0.01 LR)

(d) GRU (0.001 LR)

(e) Bi-GRU (0.001 LR)
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Figure 22: Genmab with explanatory variables

(a) FNN (0.001 LR)

(b) RNN (0.001 LR)

(c) LSTM (0.001 LR)

(d) Bi-LSTM (0.001 LR)

(e) GRU (0.01 LR)

(f) Bi-GRU (0.001 LR)

15.4.3 Structure of ANN for Jyske Bank

Figure 23: Jyske Bank without explanatory variables

(a) RNN (0.001 LR)

(b) LSTM (0.01 LR)
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(c) Bi-LSTM (0.01 LR)

(d) GRU (0.001 LR)

(e) Bi-GRU (0.001 LR)

Figure 24: Jyske Bank with explanatory variables

(a) FNN (0.001 LR)

(b) RNN (0.001 LR)

(c) LSTM (0.01 LR)

(d) Bi-LSTM (0.001 LR)

(e) GRU (0.001 LR)

(f) Bi-GRU (0.01 LR)
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15.4.4 Structure of ANN for Mærsk B

Figure 25: Mærsk B without explanatory variables

(a) RNN (0.001 LR)

(b) LSTM (0.01 LR)

(c) Bi-LSTM (0.001 LR)

(d) GRU (0.01 LR)

(e) Bi-GRU (0.001 LR)

Figure 26: Mærsk B with explanatory variables

(a) FNN (0.001 LR)

(b) RNN (0.001 LR)

(c) LSTM (0.01 LR)
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(d) Bi-LSTM (0.001 LR)

(e) GRU (0.001 LR)

(f) Bi-GRU (0.001 LR)

15.4.5 Structure of ANN for SimCorp

Figure 27: SimCorp without explanatory variables

(a) RNN (0.001 LR)

(b) LSTM (0.001 LR)

(c) Bi-LSTM (0.001 LR)

(d) GRU (0.001 LR)

(e) Bi-GRU (0.001 LR)
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Figure 28: SimCorp with explanatory variables

(a) FNN (0.001 LR)

(b) RNN (0.0001 LR)

(c) LSTM (0.001 LR)

(d) Bi-LSTM (0.001 LR)

(e) GRU (0.001 LR)

(f) Bi-GRU (0.01 LR)

15.4.6 Structure of ANN for Vestas

Figure 29: Vestas without explanatory variables

(a) RNN (0.001 LR)

(b) LSTM (0.01 LR)

92



15 APPENDIX

(c) Bi-LSTM (0.001 LR)

(d) GRU (0.01 LR)

(e) Bi-GRU (0.001 LR)

Figure 30: Vestas with explanatory variables

(a) FNN (0.01 LR)

(b) RNN (0.0001 LR)

(c) LSTM (0.0001 LR)

(d) Bi-LSTM (0.0001 LR)

(e) GRU (0.001 LR)

(f) Bi-GRU (0.01 LR)
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15.5 Appendix 5 - Abbreviation used in the thesis

ADF Augmented Dickey–Fuller AI Artificial Intelligence

AIC Akaike Information Criterion ANN Artificial Neural Network

AR AutoRegressive ARIMA AutoRegressive Integrated

Moving Average

ARIMAX AutoRegressive Integrated

Moving Average with exter-

nal regressors

ARIMA(X)Both ARIMA and ARIMAX

ARMA AutoRegressive Moving Av-

erage

Bi-GRU Bidirectional Gated Recur-

rent Unit

Bi-LSTM Bidirectional Long-short-

term memory

CNN Convolutional Neural Net-

works

DM Diebold-Mariano DT Decision Tree

ELM Extreme Learning Machine FNN Feed-forward Neural Net-

work

GRU Gated Recurrent Unit LSTM Long-short-term memory

MA Moving Average MAPE Mean Absolute Percentage

Error

ML Machine Learning MSE Mean Square Error

NA Missing value ReLU Rectified Linear Unit

RF Random Forrest RMSE Root Mean Square Error

RNN Recurrent Neural Network SML Supervised Machine Learn-

ing
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