
DETR for Combined Object Detection and Notation
Assembly in Optical Music Recognition

David O. Braae and Thomas R. Rusbjerg
Software, Group mi1014f21

Aalborg University
Department of Computer Science

Selma Lagerlöfs Vej 300
9220 Aalborg East, Denmark

Abstract—Optical Music Recognition is traditionally comprised
of several steps in a pipeline that together decipher the contents
of sheet music. These tasks include image preprocessing, object
detection, notation assembly, and encoding. Deep learning has
recently made its appearance within the field, simplifying the
pipeline and combining tasks that were previously separate.
However, most deep learning approaches still treat object detec-
tion and notation assembly as two disjoint tasks. R-CNN based
models, which are state-of-the-art object detectors within general
object detection, have been utilised to detect music objects and
show promising results. Meanwhile, it has recently been shown
that transformers can perform on par with R-CNN models in
general object detection while serving as a more simple, end-to-
end solution. Transformers inherently model relations between
objects through their attention mechanism, making them suitable
for notation assembly due to music notation’s rich contextual
nature. In this paper, we study how to utilise attention in
transformers to detect handwritten music objects in common
western music notation while simultaneously predicting object
relationships. We thereby propose an end-to-end model which
handles both object detection and notation assembly holistically.

I. INTRODUCTION

Optical Music Recognition (OMR) is the field of research
that investigates how to computationally read music notation
in images and encode the musical content in a digital format
[1]. Since there is an abundance of physical sheet music
contained in various archives [2] [3] [4], the success of OMR
systems would be of great value to the music community.
The benefits of digitising the music scores in these archives
are many, such as instant availability, ease of distribution,
computational analysis, search, and editing. However, the
process of manually digitising physical sheet music is tedious
as well as expensive, and calls for either full or partial
computational automation.

The traditional approach to OMR follows a pipeline
consisting of four steps [1] [5] [6], see figure 1:

1) The image is pre-processed since many scores are in a
deteriorated state or the image is noisy or skewed.

2) Object detection is performed, i.e. the class and location
of each symbol are identified.

3) The musical semantics of the identified objects are
analysed. This step is called notation assembly and
requires a contextual analysis since the meaning of each
music symbol depends on other symbols in the score.

4) The musical semantics are encoded into a standard
music notation format, e.g. MIDI [7], MusicXML [8]
or MEI [9].

The majority of work within OMR focuses on one of these
steps, with the most recent work being targeted at object
detection and notation assembly, as these steps are the
most essential and challenging. Traditionally, these steps are
themselves subdivided into subtasks, e.g. object detection has
usually been divided into stave-line detection and removal,
symbol segmentation, and symbol recognition [5]. However,
since deep learning’s recent appearance within OMR some of
these steps have seen great improvement, while other steps
have become obsolete or combined [1]. Object detection is
no longer divided into three subtasks, since Convolutional
Neural Networks (CNNs) have proven effective at dealing
with the task holistically.

The level of detail required of an OMR system to extract from
the score depends on the use case. For example, the objective
could be to identify the genre or composer of the music, or
to allow playback. At the highest level of comprehension
lies structured encoding: capturing all of the information
in the score and producing an identical digital version in
a format such as MusicXML [1]. Having the score in this
format makes it significantly more straightforward to conduct
any task on the score, such as analysis, search, editing, or
playback, and we therefore focus on this objective. However,
while OMR has frequently been called ”Optical Character
Recognition (OCR) for music” [1], it is far more challenging
in several regards. The difficulty lies in the fact that music
notation is two-dimensional and its semantics rely heavily
on context. For example, to determine the pitch of a note,
one must look at its vertical position on the stave, identify
the latest clef specifying which pitch correspond to which
stave-line, and take into account any accidentals found in the
score’s key, the bar that surrounds the note, or any individual

1

Fig. 1: The traditional OMR pipeline. In this example, the output musical encoding is MIDI, but the desired output encoding
depends on the specific use case.

accidental next to the note. Failing to recognise any of this
information will lead to an incorrect pitch. An example of
the difficulties with pitch inference is given in figure 2.

Fig. 2: A snippet from Henry Purcell’s The Epicure illustrating
the contextual information required for pitch inference. There
are three notes placed in the second stave-space from the top,
marked by red boxes. The first marked note is a C# since
the G-clef at the start declares that stave-space to be a C, and
because the note has an accidental in front of it (the # symbol,
called a sharp). The second marked note is also a C# because
the first accidental is still in effect until the end of the bar.
However, the third marked note is an E, even though it is
placed in the same stave-space and bar as the last two notes.
This occurs because an F-clef is located right after the second
marked note, changing the pitches of the stave-spaces.

Most research within OMR treats object detection and no-
tation assembly as two separate steps. However, given the
cohesive nature of objects in sheet music, it is appropriate
to combine the two and utilise the rich level of contextual
information to detect the objects. There are many cases in
machine learning where combining related tasks, also known
as multi-task learning, leads to better results [10]. This further
motivates the combination of the two steps. In this paper, we
therefore propose an approach that combines object detection
with notation assembly. Our main novel contributions are as
follows:
• We propose an OMR model that performs simultaneous

object detection and notation assembly.
• We introduce transformers to OMR, a domain of images

with many small and densely located objects.
• We present experiments that report the effectiveness of

transformers and multi-task learning in combined music
object detection and notation assembly.

II. RELATED WORK

This paper focuses on two separate tasks; object detection
and notation assembly, and our work builds on prior research
within both domains.

A. Object Detection

Being a fundamental and popular area within computer vision,
object detection has been in the spotlight of research for
several decades [11]. It is the task of locating and identifying
object instances of pre-defined categories in images by
predicting their class labels and rectangular bounding boxes
that encapsulate them. In terms of accuracy, the field has
been dominated by Region-based Convolutional Neural
Networks (R-CNNs) since their introduction in 2014 [11]
[12]. In these two-stage models, a Region Proposal Network
(RPN) suggests candidate regions for where objects may be
located in an image, and CNNs are used to extract features
from those regions. After having filtered out overlapping and
low-confidence regions using Non-Maximum Suppression
(NMS), a number of classifiers and bounding box regressors
use the final regions to make object predictions. The latest
R-CNN model, Mask R-CNN, was proposed by He et al.
[13] and predicts masks1 in addition to classes and bounding
boxes, thus improving its overall detection performance using
multi-task learning. While R-CNN models provide the highest
scores, other so-called one-stage models such as You Only
Look Once (YOLO) [14] and Single Shot Detector (SSD) [15]
trade off some accuracy for faster performance. This is useful
when working in domains with little computation capabilities
or strict real-time requirements. These more lightweight
models use features from the entire image globally instead of
generating region proposals to extract features from, which
drops the RPN component entirely.

Recently, Carion et al. [16] proposed a new method,
DEtection TRansformer (DETR) for object detection, drawing
inspiration from other fields such as machine translation. They
propose to simplify the pipeline of region-based networks by
adopting an encoder-decoder architecture using transformers,
effectively dropping components present in R-CNN models
that require substantial fine-tuning and prior knowledge about
the input, e.g. RPN and NMS. The accuracy of DETR is
on par with R-CNN models, but transformers require large
datasets and very long training time. DETR uses attention
mechanisms to reason about the global image context and
implicitly utilise relations between the objects as it predicts all

1A mask is the collection of pixels that make up the object.

2

objects at once in a single pass through the model. The work
we present in this paper builds on DETR but differs from
previous work since we augment DETR to explicitly model
the relations between the detected objects. Furthermore,
we evaluate DETR in the domain of OMR which contains
challenges different from those in general datasets such as
COCO [17], e.g. dense images with many small objects.

B. Object Detection in OMR

Traditionally, the object detection phase in OMR is subdivided
into stave-line removal, symbol segmentation, and symbol
classification [1] [6]. Since stave-lines often posed issues in
symbol segmentation, they were removed first using various
methods. Symbol segmentation is often approached using
hierarchical decomposition, i.e. split by staves and then
extract primitive symbols (noteheads, stems, etc.) [5]. The
classification stage is sometimes part of the segmentation,
and many methods have been used to classify music objects
based on their segmentation, e.g. k-nearest neighbour, neural
networks and hidden Markov models [6] [5].

In more recent work, however, there has been a shift
towards deep learning methods that combine these stages [1]
[6]. Pacha et al. [18] used Faster R-CNN [19] in a sliding-
window approach on stave-wise images of handwritten music
notation to detect the class and bounding box of every
music object. The main downsides of their approach are long
training times and sensitive hyperparameter tuning to fit the
data.
Tuggener et al. [20] use a CNN to perform a watershed
transformation for semantic segmentation of the entire score,
achieving high performance on small objects, but struggling
with overlapping symbols, accurate bounding boxes, and rare
classes.
Hajič jr. et al. [21] utilise the U-Net architecture [22] to
perform semantic segmentation, and then use a simple
connected components detector to segment each object. Since
this approach is based on connected components, it struggles
with very dense scores with overlapping symbols.
Our approach uses an encoder-decoder transformer
architecture which has not previously been applied to
the field of OMR. Its primary difference from previous
approaches is how it utilises attention mechanisms to
reason about relationships between the objects when making
predictions.

C. Notation Assembly

While several deep learning methods have been used to tackle
the object detection stage of OMR, the same cannot be said
for notation assembly. Instead, the majority of methods rely
on grammars [23] [24] [25] [26] [27] [28] and heuristics
about the specific music being recognised [29] [30] [31] [32].
These methods manually define syntactic rules that formalise
how music can be written and uses these rules to reconstruct
the musical information from the detected music objects. The
drawback is that there exists a huge corpus of music symbols,

and music notation is extremely complex [1] [33], making
these rules hard to define. The result is that most suggested
grammars only capture a tiny subset of music notation [25].
Furthermore, while it has been stated that it is possible to
recognise music notation using an LL(k) grammar [34], there
is no guarantee that any given music score will follow the
rules of music notation. Instead, it is often the case that they
are not followed [33] [35], and this becomes ever so more
the case with handwritten music [6], which is the focus of
this paper.

Some of the issues with grammatical and heuristical
approaches can be circumvented using machine learning,
as shown by Pacha et al. [36]. They encapsulate all of
the syntactic information in the music score in a graph by
modelling relationships between music objects (this graph
is described in more detail in section V). They do this in a
data-driven fashion by training a CNN to identify pairwise
relationships between music objects, given cropped images
centred on pairs of detected objects. However, they couple
this with a rule-based approach by only giving the model
training examples where the two objects are ”compatible”,
i.e. when they are within close proximity, and when the
classes are not incompatible, e.g. a notehead and a barline
cannot be related. Therefore, their model does not learn to
discern between incompatible and compatible music objects.
Our approach differs greatly from theirs in this regard, in
addition to using an entirely different type of neural network
(transformers). Given an image of a music score, our model
predicts the objects and their relationships simultaneously in
a single pass, without having to centre the image on a pair
of pre-detected objects which furthermore have been selected
using a manually defined set of rules.

D. Scene Graph Generation

Exploring relationships between objects in images is not a task
limited to OMR, and this issue is at the core of Scene Graph
Generation (SGG), a popular field within computer vision [37].
SSG models predict the position and characteristics of objects
in an image as well as their relations to other objects. The
relations are usually expressed in a subject - predicate - object
triplet manner, e.g. ”girl throwing ball”. While there are many
different approaches to SGG [37], a significant number of
proposed methods use the following graph based architecture
[38] [39] [40] [41] [42]:

1) Use RPN or R-CNN to generate objects as vertices.
2) Generate an initial graph using a graph initialisation

scheme.
3) Refine the graph using a Graph Neural Network (GNN).

The primary distinction between their approaches and ours
is twofold: firstly, we predict the objects and relationships
simultaneously using a single model instead of building graphs
based on existing regions or objects. Secondly, the relations
between music objects do not follow the triplet format, since
we are only interested in determining whether the relations
exist or not.

3

Fig. 3: An example of an input music score and the desired
output with class labels, bounding boxes, and edges between
related objects.

III. PROBLEM DEFINITION

In this paper, we focus on the task of simultaneous object
detection and notation assembly in OMR. That is, we seek
an algorithm that determines the position and class of each
musical object in an image of a music score, as well as the
relationships between the identified objects. The task is thus
to create a function that given an image I ∈ R3×H×W as
input, produces a Music Notation Graph (MuNG) G = (V,E)
as output, where V is the set of vertices and E is the
set of directed edges. A vertex v = (c, b) ∈ V is a pair
consisting of a class label c and a rectangular bounding
box b that encapsulates an object. An example vertex is
the gClef in figure 3 with its label and bounding box. The
figure illustrates an example of the desired output given an
image of sheet music, i.e. the label and bounding box of
each object as well as their relationships with each other.
The bounding box b is a 4-tuple (cx, cy, h, w) defining the
centre coordinates of the box and its height and width.
An edge e is defined as an ordered pair of vertices in V:
e ∈ E ⊆ {(vi, vj) | (vi, vj) ∈ V 2 and vi 6= vj}. An edge
signals that there is a syntactical relationship between two
music objects. The figure illustrates several examples of
edges, e.g. between an accidentalFlat and the key, or between
a noteheadHalf and its stem. The output edges are given as
an adjacency matrix A ∈ {0, 1}|V |×|V | where Aij = 1 if
(vi, vj) ∈ E and Aij = 0 if (vi, vj) /∈ E.

To sum up, the output of a model solving the two-fold
problem of object detection and notation assembly will
consist of three parts: a class label and bounding box for
each music object in the image, and an adjacency matrix
describing the relationships between all detected objects.

IV. METHOD

We propose a new method for OMR in which object detection
and notation assembly are combined in a single model, and
we utilise the capabilities of the transformers in DETR [16]
to achieve this.

A. Architecture

The architecture of our model follows that of DETR, and
thus combines a CNN feature extractor with an encoder-
decoder transformer, followed by Feed Forward Networks
(FFNs) for each prediction branch, see figure 4. The CNN
acts as a feature extractor, i.e. the input image is transformed
through the CNN’s layers to a latent representation of a lower
dimension than that of the original input. The transformer
encoder transforms the CNN’s feature maps summed with
a positional encoding. Through the attention mechanism, the
encoder learns which areas of the image are related to each
other and encodes this information in its output. The encoder’s
output, i.e. the transformed feature maps, is used in the
cross-attention of the decoder as shown in figure 5. The
decoder’s input consists of a fixed number of learned positional
embeddings referred to as object queries. These object queries
learn to focus on specific parts of the encoder-transformed
feature maps, i.e. the image representation. The decoder uses
these queries in combination with the cross-attention weights
to determine which part of the encoder’s output to focus on.
The decoder’s output consists of a set of transformed object
queries, each corresponding to a feature representation of
a potential object in the image. Each of these transformed
object queries is passed through FFNs to obtain the class and
bounding box prediction. The relationships between objects
are obtained by a dot product between each pair of the
transformed object queries followed by an FFN.

B. Model Components

This section explains each model component in more detail.

1) CNN feature extractor: The first component of the model
is the feature extractor, also referred to as a backbone. The
backbone consists of a convolutional neural network with the
purpose of reducing the input image to a compact feature
representation. This reduces downstream computation which
is especially important for transformer models due to the
input quadratic self-attention. The chosen CNN architecture
is ResNet-50 [43], which is a popular architecture utilising
a deep CNN with residual connections. The model is pre-
trained on the COCO dataset [17] in order to reduce training
time by utilising transfer-learning. The input to the CNN is
a set of images img ∈ R3×H×W consisting of 3 colour
channels. H and W are the height and width of the largest
image in the batch, respectively. Smaller images are adjusted
with 0-padding such that all images are the same size. The
CNN transforms the image into a set of feature maps, i.e.
fmap ∈ RC×H′×W ′

with C = 2048, H ′ = H/32, and
W ′ = W/32. The feature maps get further reduced by a 1x1

4

Fig. 4: The architecture of our proposed model from input to output. The CNN generates feature maps that are input as vectors
to the encoder. The encoder transforms the extracted features and this is used in the decoder’s cross-attention in combination
with a set of learned object queries. Each object query is transformed and corresponds to an object prediction, as illustrated
by the three colours. The three prediction branches process each query and outputs a class label, bounding box, and set of
relationships between the objects, respectively.

Fig. 5: The encoder and decoder components of DETR [16].

convolution which maps the C to a d-dimensional feature map
z ∈ Rd×H′×W ′

, where d = 512.

2) Transformer: The next two components, the encoder
and the decoder, are both transformers. A transformer is a
sequence-to-sequence model that utilises attention to perform

a transformation of an input. Attention is a mechanism that
highlights the important parts of an input, i.e. which parts of
the input to attend to, hence the name. The backbone CNN
has extracted a number of useful features from the image,
and the transformer’s job is to further process those features,
while enhancing the important parts and diminishing the rest.
For example, musical dots are very small and may easily be
mistaken for noise in the image. If the model can focus on
whether the dot appears next to a note, it may help it to
detect the dot. In general, the image features, encoder output,
or object queries may contain many characteristics that the
model can leverage when making predictions, and the goal of
the attention is to enhance the useful characteristics. Since
there may be many such characteristics, a single attention
mechanism may become saturated and fail to capture them all.
Because of this, the encoder and the decoder uses a form of
attention called multi-head attention, as depicted in figure 5.
In multi-head attention, the input is divided into d/h parts,
where d is the feature dimension and h is the number of
attention heads in the multi-head attention block. We use the
same number of attention heads as the original DETR, i.e.
h = 8. Each d/h slice of the input is processed by a single
attention head and their outputs are concatenated afterwards.
Intuitively, this allows each attention head to focus on its own
characteristic in the input.

Encoder
The transformer encoder further transforms the feature maps
by using 6 identical layers stacked on top of each other

5

containing multi-head self-attention followed by an FFN as
proposed in [44], see figure 5. Since transformers are a
sequence-based model, the encoder expects a sequence rather
than an image. Therefore, the feature representation of the
image, d × H ′ × W ′, is collapsed into a sequence of vec-
tors, d × H ′W ′. Unlike other sequence-based models like
LSTM which process their inputs sequentially, a transformer
is able to process its inputs in parallel. While this allows
significantly faster data processing, it also means the model
is unable to capture order in the data, i.e. it is permutation-
invariant. Because of this, the input is supplemented with a
positional encoding that gives the model a sense of where each
vector is located in the image [45]. The encoder transforms
its input and therefore preserves the input’s dimensions, i.e.
Rd×H′W ′ → Rd×H′W ′

.

Decoder
The decoder also follows the same architecture as in [44]
containing 6 stacks of multi-head self-attention followed by
cross-attention which performs multi-head attention over the
output of the encoder stack, followed by an FFN, see figure 5.
The decoder does not function in an autoregressive manner
which means the input learned positional embeddings (object
queries) of size d can be processed in parallel at each decoder
layer. There is a total of N learned object queries which are
added to each attention layer. The number of queries, N , must
be significantly larger than the number of objects in the image.
In the original DETR, N is set to 100 since they use the COCO
dataset where there is an average of 7 objects per image [46].
In our case, the images contain many more instances and N is
therefore required to be larger, i.e. N = 500, see section V-A.
The N object queries are transformed by the decoder, and
they are then used as input in the final prediction branches.
By utilising self- and encoder-decoder attention, the model
is able to globally reason about objects and their pair-wise
relations with the entire image as context. Like the encoder,
the decoder transforms its input and therefore keeps the input
dimensions of the object queries i.e. Rd×N → X ∈ Rd×N .

3) Prediction: As previously mentioned, the output of the
model consists of three parts: classifications, bounding boxes,
and relationships between objects. Each of these outputs
is obtained separately in parallel from the transformed ob-
ject queries, i.e. the decoder output X. The classification is
predicted by a linear transformation of the decoder output
RN×d → RN×C where C is the number of unique classes
plus one to account for predictions that should be labelled as
Ø (no object). The no object class is required since there are
more object queries than objects in the image.
Bounding boxes are obtained using a three layer Multilayer
Perceptron (MLP) of hidden dimension d with a ReLU acti-
vation function followed by a linear projection layer RN×d →
RN×4. The four values are the normalised centre coordinates,
width, and height of the bounding box w.r.t. the input image.
The relationships between objects are obtained as an adjacency
matrix A by taking the dot product between all pairs of

transformed object queries X (the decoder output) followed
by a linear transformation and a sigmoid activation function
as seen in equation (1).

A = σ((X XT) W + b), (1)

where W is the linear transformation’s weight matrix, b is
its bias, and σ is the sigmoid function. We use the dot
product since it is often used in similarity measures, e.g.
in transformers or as in word2vec [47], and it is therefore
capable of creating latent spaces where objects with similar
properties are embedded closely together. Since the output
of the dot product contributes significantly to the model’s
training loss, it learns to generate similar object embeddings
for related objects. The linear transformation is used to add
learnable parameters the model can utilise to predict relations.
The sigmoid activation function is used to ensure the model’s
prediction is between 0 and 1, since predicting relationships
is a binary classification task.

C. Loss function

We denote the ground truth set of objects as y, and the model’s
output predictions as ŷ. The output consists of a fixed-size set
of N predictions, where N is determined by the number of
object queries in the decoder, i.e. ŷ = {ŷi}Ni=1. Each object
in y and ŷ consists of two elements: a class c ∈ C and a
bounding box b. The ground truth relationships between the
objects are given by an adjacency matrix A, and the predicted
relationships in Â. The model is optimised using a set-based
loss function. The loss function produces an optimal bipartite
matching between the predicted and ground truth objects and
then optimises individual class, bounding box, and relationship
losses. That is, the model’s loss is calculated on the optimally
matched pairs. As a consequence of using a bipartite matching
loss the model learns to not predict the same objects multiple
times, since only one prediction can be matched to one ground
truth object. As previously mentioned, the number of predicted
objects N is greater than the number of objects in any of the
images of the dataset. Therefore, the labels y are padded with
Ø (no object) as a means to discard excess predictions. The
matching between predictions and labels is performed by the
Hungarian Algorithm which is a combinatorial optimisation
algorithm that solves the assignment problem in polynomial
time [48]. An optimal matching σ̂ is found by searching for
a permutation of the N predictions σ ∈ SN with the lowest
cost:

σ̂ = argmin
σ∈SN

N∑
i=1

Lmatch(yi, ŷσ(i)), (2)

where Lmatch(yi, ŷσ(i)) is the matching cost between ground
truth yi and ŷσ(i) with σ(i) being the i-th index of permutation
σ. The matching cost used to find the optimal matching is
calculated based on the class and bounding box cost between
pairs of matched objects, see equation (3):

Lmatch(yi, ŷσ(i)) = − 1{ci 6=Ø}p̂σ(i)(ci)+

1{ci 6=Ø}Lbox(bi, b̂σ(i)) ,
(3)

6

where ci is the class label of ground truth object yi and bi
is its relative bounding box coordinates. For the prediction
with index σ(i), the predicted probability of class ci is
denoted p̂σ(i)(ci), and b̂σ(i) denotes the predicted bounding
box coordinates. 1{ci 6=Ø} is a set containing ones unless
the class is Ø in which case it resolves to 0. This ensures
that excess predictions matched with the no object label Ø
are not used in the matching loss. Optimising the matching
between predictions and Ø does not affect the matching
cost between predictions and ground truth objects, which is
the only matching cost we are interested in. The class term
−1{ci 6=Ø}p̂σ(i)(ci) is negative since it describes a cost, and
minimising the cost will maximise the predicted probability
for the ground truth class. Lbox(bi, b̂σ(i)) is the bounding box
cost.

After the optimal bipartite matching has been determined,
the cost incurred by this matching is used to optimise the
model. Additionally, the cost introduced by the relationship
predictions Â is also taken into account. This loss is defined
as follows:

LHungarian(y, ŷ) = Lrelation(A, Â) +
N∑
i=1

[
− log p̂σ̂(i)(ci) +

1{ci 6=Ø}Lbox(bi, b̂σ̂(i))
] (4)

The loss consists of three main components: Lrelation for
the loss of the relations, the negative log-likelihood for the
classes, and Lbox for the bounding box loss. The logarithm
is used for the class term since it provides larger penalties
for poor predictions. Furthermore, the excess predictions that
could not be matched to a ground truth object also contribute
to the loss, since 1{ci 6=Ø} is absent from the class term. This
will teach the model to make empty predictions (Ø), when
there are no objects to predict. However, since the number
of predictions (object queries) is significantly larger than
the number of ground truth objects, there will be a class
imbalance where the no object class Ø will dominate. The
model will therefore learn to predict Ø more often than it
should. For this reason, the loss is decreased by a factor of
10 when the ground truth class is Ø.

The bounding box loss is defined in equation (5).

Lbox(bi, b̂σ(i)) =

λiouLiou(bi, b̂σ(i)) + λL1||bi − b̂σ(i)||1 ,
(5)

where λiou and λL1 are hyperparameters determining the
weight of the Liou(bi, b̂σ(i)) and L1 terms, respectively.
Liou(bi, b̂σ(i)) is a measure of overlap between the ground
truth and predicted bounding box called Generalised Intersec-

tion over Union (GIoU) [49], and is defined as follows:

Liou(bi, b̂σ(i)) =

1−
(|bi ∩ b̂σ(i)|
|bi ∪ b̂σ(i)|

−
|B(bi, b̂σ(i)) \ bi ∪ b̂σ(i)|

|B(bi, b̂σ(i))|

)
,

(6)

where | · | denotes the area function of a bounding box, and
B(bi, b̂σ(i)) is the smallest convex hull containing both bi and
b̂σ(i).
The relationship loss term in equation (4) is a binary cross-
entropy loss for relations between all pairs of valid objects,
and is defined in equation (7).

Lrelation(A, Â) =

− 1

N2

N∑
i=1

N∑
j=1

[
1{ci 6=Ø , cj 6=Ø , i 6=j}

(Aij · log(Âij)+
(1− Aij) · log(1− Âij))

]
(7)

V. EXPERIMENTS

This section aims to evaluate if our augmented DETR alone
can be used to perform both object detection and notation
assembly in OMR. We therefore evaluate the model on an
OMR dataset while comparing its results with the state-of-
the-art within object detection as well as notation assembly.
Furthermore, we compare the object detection score of our
Relation-DETR to that of the original DETR, to investigate the
effects of multi-task learning caused by predicting relations in
addition to objects.

A. Dataset

We use MUSCIMA++ [50] to conduct the experiments, a
dataset consisting of 140 manually annotated images of hand-
written sheet music. At this point in time, MUSCIMA++ is
the only OMR dataset that has annotations for both objects
and their relationships. The dataset contains 91254 annotated
symbols as well as 82247 relationships. It is based on the
CVC-MUSCIMA dataset [51], which was originally designed
for writer identification and stave-removal. There are 50 differ-
ent writers represented in MUSCIMA++, with 2-3 pages from
each writer, and the writers exhibit vastly different styles of
writing as shown in figure 6. The dataset contains a total of 115
different classes of music symbols, and these vary greatly in
both size and frequency. The 140 images are split such that 100
are used for training, and 20 are used for validation and testing,
respectively. To test the model’s ability to generalise, we use a
strict test-split facilitated by the authors of MUSCIMA++ [50]
which ensures that the test set only contains scores by writers
not appearing in the training set. The images are cropped such
that each sub-image contains one stave each, thus reducing the
number of objects and relations in each image significantly.
A full page in the dataset contains 735 music symbols on
average with a standard deviation of 123. In contrast, the
average number of symbols in a stave is 142 with a standard
deviation of 56. However, even after cropping to staves, the

7

(a) Writer 1 has handwriting very sim-
ilar to typeset.

(b) Writer 22 draws notes disjointly and some
symbols such as the clefs and noteheads are
deformed.

Fig. 6: The same bar written by two different writers to illus-
trate the diversity in writing styles present in MUSCIMA++.

number of objects and relationships in the images is still very
high compared to other popular image datasets, making the
task of object detection in OMR more challenging. To put
things in perspective, the popular COCO dataset [17] contains
an average of 7 instances per image [46].

B. Evaluation Metrics

Object detection and notation assembly are both evaluated
using classification metrics, even though specifically predicting
the bounding boxes is a regression task. In classification,
we are interested in predicting True Positives (TP) and True
Negatives (TN), while minimising False Positives (FP) and
False Negatives (FN). For example, given an image of a half-
note, a true positive would be to predict that there is an empty
notehead. Similarly, when predicting its bounding box, a true
positive would be a bounding box that overlaps significantly
with the ground truth bounding box. As for relationships, a
true negative would be to predict that there is no relationship
between two given objects if no such relationship exists. These
metrics are described by two overall metrics: precision and
recall. Precision is the accuracy of the positive classifications,
i.e. how often the positive classifications are correct, see
equation (8).

P =
TP

TP + FP
(8)

Only measuring precision can give a false representation of
the model’s performance, and we therefore also measure the
overall ratio of true positive classifications. This is called the
model’s recall, and is defined in equation (9).

R =
TP

TP + FN
(9)

Since the performance of the model is evaluated using both
metrics, they are often combined in a single metric called the
F1 score, see equation (10).

F1 = 2
P ×R
P +R

(10)

The F1 score can be used to evaluate the model’s overall clas-
sification score. Another way to collectively report precision
and recall is to plot precision and recall as a graph, called
the Precision-Recall graph, see figure 7. The ideal model
maximises precision and recall, and this leads to the greatest
area under the graph. This area is called Average Precision
(AP)2, and it is the most commonly used evaluation metric
in object detection [11]. When the classification task includes
more than two classes, e.g. 115 classes in MUSCIMA++, the
AP is reported as a mean across all classes. This is called the
mean Average Precision (mAP) but is often referred to simply
as AP, since it is implied to be across all classes.

Fig. 7: Three precision-recall graphs. A good classifier will
keep both precision and recall as high as possible, thus
maximising the area under its graph. Image source: [53].

The method for evaluating how much a predicted bounding
box overlaps with its ground truth counterpart is a simpler
version of the loss function described in equation (6). It is
defined in equation (11) where b̂ is the predicted bounding
box and b is the ground truth bounding box. The perfect IoU
score is 1, i.e. when the area of the two boxes’ intersection
is as large as their areas combined. The IoU of two bounding
boxes is illustrated in figure 8.

IoU =
|b̂ ∩ b|
|b̂ ∪ b|

(11)

Usually, a bounding box prediction is considered a true posi-
tive when its IoU with the ground truth bounding box is 0.5

2A more in-depth explanation of AP and mAP can be found in [52].

8

or more. We use the popular COCO evaluation metric [54]
that is an average of AP at different IoU thresholds, i.e. AP
at IoU = .50:.05:.95. This means we measure the model’s AP
at an IoU of 0.5, and then incrementally at steps of 0.05 until
the final IoU of 0.95. In addition to the primary AP, the score
is also commonly reported for different IoUs thresholds and
object sizes. AP50 and AP75 report the AP at IoU thresholds
0.5 and 0.75, respectively, and APs, APm, and APl report the
AP for small, medium, and large objects, where the sizes are
based on the object’s area. Objects smaller than 322 pixels are
categorised as small, medium objects are between 322 and 962

pixels, and large objects are larger than 962 pixels.

Fig. 8: The IoU of two boxes illustrated. The closer the area
of intersection is to the area of union, the better the overlap
is. Image source: [55].

C. Results

1) Training: The model has been trained using a transfer
learning strategy, i.e. the model has been pre-trained on a
different dataset before being adapted to our dataset. The
model was initialised with the weights of the original DETR
model which have been trained on the COCO object detection
dataset. The model was then trained on the MUSCIMA++
dataset for 1.108.800 iterations corresponding to four full
training days using a Google Cloud instance with 4 vCPUs
and a single NVIDIA V100 GPU with a batch size of 8.
Following this, the model’s relations-module was added and
further trained for 55.439 iterations over 2 days on our own
hardware with a batch size of 1. The model was trained using
AdamW optimiser with an initial learning rate of 10−5 and a
weight decay of 10−4.

2) Object Detection: The state-of-the-art object detector
within OMR is MusicObjectDetector [18] (Faster R-CNN),
which was later slightly refined to process stave-wise images
directly [36]. In addition to comparing our model with the
state-of-the-art, we also compare with the original DETR
model to evaluate whether or not object detection results are
improved by explicitly learning relations between the predicted
objects. The results of the object detection experiments are
given in table I. As the table illustrates, the performance of
DETR and our model is considerably lower than MusicObject-
Detector. The difference between the scores of APs, APm, and
APl show that DETR struggles with detecting small objects
and is significantly better at detecting larger objects. Since
the majority of objects in sheet music are small, the overall
AP is greatly reduced by its low score on small objects. It is
furthermore evident that the relations module did not improve
the performance, given the slightly lower score of our model
compared to the original DETR. The MUSCIMA++ dataset
contains a wide array of 115 symbols, and it is therefore of
interest to inspect how the model performs on the different
object classes. These results are illustrated in table II which
shows the average precision on the 10 most common symbols.
The per-class AP scores also show that DETR is better at
detecting large objects, e.g. slur and beam, and struggles
with small objects, e.g. legerline and augmentation dot. Given
that the two most frequent classes, noteheadFull and stem,
outnumber the other instances significantly, we would expect
the model to excel at detecting these. Instead, the model fails
to reach a high score on them because of their small size. This
is also evident in table III which shows the 10 classes with
the highest per-class AP. These objects are among the largest
objects in the dataset, and even though there are very few
examples of some of these classes, the model still performs
well due to the objects being large.

Symbol #Examples (training-set) Relation-DETR DETR
noteheadFull 19288 1.916 2.355
stem 16597 0.825 0.956
legerLine 8733 1.007 1.072
beam 6169 8.282 8.829
barline 3660 5.277 4.874
measureSeparator 3142 3.414 4.130
slur 2466 15.975 16.716
augmentationDot 2035 0.000 0.000
accidentalSharp 1578 7.106 7.950
articulationStaccato 1506 0.000 0.000

TABLE II: The per class AP performance of Relation-DETR
and DETR as evaluated on the test set for the 10 most common
symbols.

Model AP AP50 AP75 APs APm APl
MusicObjectDetector [36] 69.5* - - - - -
DETR [16] 6.9719 19.2104 3.6496 4.1903 8.3341 28.1347
Relation-DETR 6.9463 18.7687 3.7223 4.3319 7.4160 27.5300

TABLE I: The performance of the state-of-the-art OMR object detector compared to our model and the original DETR. *
indicates that the score was reported by the authors in their paper.

9

Symbol #Examples (training-set) Relation-DETR DETR
staffSpace 4910 77.776 77.389
gClef 294 30.674 33.985
fClef 208 30.951 32.254
volta 8 43.498 29.191
repeat1Bar 12 20.152 28.556
cClef 131 24.583 27.051
dynamicDH 365 26.541 25.134
tupleBracket 65 18.431 25.118
restWhole 113 12.273 23.487
staffLine 3195 14.627 18.085

TABLE III: The 10 highest per-class AP scores of Relation-
DETR and DETR as evaluated on the test set.

3) Notation Assembly: We compare our model’s ability to
capture relationships between music objects with the per-
formance of Pacha et al. [36] and their MungLinker model
(CNN). The relationship scores are based on binary classifi-
cation metrics since we are only interested in whether or not
a relation exists. Our model only predicts the relationships
between identified objects, and a relationship prediction is
therefore only correct if it is between two objects the model
correctly identified. However, the relationships between ob-
jects the model failed to predict are still counted as errors. The
notation assembly results for both models are given in table IV.
When comparing the performance of the two, it is important
to take into account their differences. MungLinker is, as
mentioned earlier, trained and evaluated sequentially only on
selected pairs of detected objects using a set of rules, i.e. how
close the two objects are and whether or not they are musically
compatible. The input to the model also only contains the
smallest crop of the image needed to encapsulate both objects.
In contrast, our model predicts the relationships between all

pairs of objects, without the help of proximity and musical
rules. Furthermore, it does so simultaneously in a single pass
on the image while detecting the objects. This inevitably
means that our model tackles a more challenging task, which
consequently decreases its performance. Regardless of this,
however, the results clearly show that our model is far from
adequate for the task, and in no way compares to MungLinker.

Model Precision (%) Recall (%) F1-Score (%)
MungLinker 93.2 91.5 92.3
Relation-DETR 0.0024 0.4593 0.0047

TABLE IV: The relations scores between MungLinker and our
Relation-DETR.

4) Qualitative Results: To get better insight into our model’s
behaviour we inspect its predictions directly on images from
the test data. The model’s predictions are illustrated and
compared to the ground truth in figure 9. The figure shows
that the model is able to locate almost all of the objects
in the image, but it also illustrates the model’s flaws. The
model makes too many predictions and often predicts multiple
overlapping objects, and the predicted bounding boxes are
often slightly misplaced and do not always accurately enclose
the objects. Another way to examine the model’s behaviour
is to look at its learned attention weights. The cross-attention
weights in the decoder illustrate which parts of the image the
decoder focuses on when making predictions, and each object
query is associated with its own set of attention weights in the
decoder’s cross-attention. The attention weights of two object
queries are shown in figure 10. While we only show attention
weights for two queries, the same pattern is exhibited by all

(a) Ground truth objects.

(b) Relation-DETR object predictions.

Fig. 9: An example of our model’s object detection on an image from the test set compared with the ground truth. Each object
class is represented by a single colour.

Fig. 10: The cross-attention weights of the decoder (top) for two given object queries when making a prediction on the test
set, where the attention is largest in the dark blue areas. The objects predicted by the object queries are marked in blue on the
original figure (bottom).

10

object queries. As the figure shows, the attention for each
query is focused on the area where it makes its prediction.
The model also focuses slightly on similar object groupings
other places in the stave, indicating that the model has learned
to match object queries with certain patterns in the data. If the
model had successfully learned to model relationships between
objects, we would expect to see more attention to related
objects, e.g. slurs when detecting noteheads.

VI. CONCLUSION

In this paper, we studied how to utilise the attention mech-
anisms in transformers to detect objects as well as their
pairwise relationships in music scores. The model we propose
is an augmented DETR with the purpose of tackling object
detection and notation assembly simultaneously, the two most
challenging tasks in OMR. We furthermore study how the
combination of these two tasks can affect the performance of
both tasks using multi-task learning. Unlike previous work that
explores the utilisation of deep learning methods in notation
assembly, our approach does not involve explicitly defined
musical rules when detecting object relationships. However,
the results of our experimental studies show that our proposed
model fails to compete with the state-of-the-art within OMR
object detection and notation assembly. It is evident that the
model needs further refinement to perform on par with the
state-of-the-art. One such refinement would be to optimise the
models ability to detect smaller objects. A common method
in computer vision is to increase the resolution of the feature
maps, giving the model more fine-grained information about
the objects. This is achieved by modifying the CNN backbone
in the model, such as lowering its stride or using the output
of one of the hidden layers which have higher resolution.
However, larger feature maps lead to even longer training
times because of the quadratic computation incurred by the
attention mechanisms in transformers. It would therefore be
required to reduce the model’s computational complexity, e.g.
by using local attention instead of global attention. This would
allow the model to focus on relationships between objects that
are close to one another which is appropriate for sheet music
since the majority of relationships occur between objects
within close proximity, e.g. a beamed group of notes. We
hope that by proposing a new method for combining object
detection and notation assembly in OMR, we inspire more
research on combined OMR tasks and how transformers can
be utilised to perform both simultaneously.

ACKNOWLEDGEMENTS

The authors would like to thank Chenjuan Guo for providing
valuable supervision and feedback throughout the project.

REFERENCES

[1] Jorge Calvo-Zaragoza, Jan Hajič Jr., and
Alexander Pacha.
“Understanding Optical Music Recognition”.
In: ACM Comput. Surv. 53.4 (July 2020).
ISSN: 0360-0300. DOI: 10.1145/3397499.
URL: https://doi.org/10.1145/3397499.

[2] Marı́a Alfaro-Contreras, Jorge Calvo-Zaragoza, and
José M. Iñesta. “Approaching End-to-End Optical
Music Recognition for Homophonic Scores”.
In: Pattern Recognition and Image Analysis.
Ed. by Aythami Morales et al.
Cham: Springer International Publishing, 2019,
pp. 147–158.

[3] Antonio Rı́os-Vila, Jorge Calvo-Zaragoza, and
José M. Iñesta. “Exploring the two-dimensional nature
of music notation for score recognition with
end-to-end approaches”.
In: 2020 17th International Conference on Frontiers in
Handwriting Recognition (ICFHR). 2020,
pp. 193–198. DOI: 10.1109/ICFHR2020.2020.00044.

[4] Arnau Baró et al. “From Optical Music Recognition to
Handwritten Music Recognition: A baseline”.
In: Pattern Recognition Letters 123 (2019), pp. 1–8.
ISSN: 0167-8655.
DOI: https://doi.org/10.1016/j.patrec.2019.02.029.
URL: https://www.sciencedirect.com/science/article/pii/
S0167865518303386.

[5] Ana Rebelo et al. “Optical music recognition:
state-of-the-art and open issues”. English.
In: International Journal of Multimedia Information
Retrieval 1.3 (2012), pp. 173–190.
DOI: 10.1007/s13735-012-0004-6.

[6] Elona Shatri and György Fazekas. Optical Music
Recognition: State of the Art and Major Challenges.
2020. arXiv: 2006.07885 [cs.CV].

[7] MIDI.
URL: https://www.midi.org/ (visited on 06/06/2021).

[8] MusicXML. URL: https://www.musicxml.com/ (visited
on 06/06/2021).

[9] Music Encoding Initiative. 2021. URL:
https://music-encoding.org/ (visited on 06/06/2021).

[10] Sebastian Ruder. An Overview of Multi-Task Learning
in Deep Neural Networks. 2017.
arXiv: 1706.05098 [cs.LG].

[11] Li Liu et al. “Deep learning for generic object
detection: A survey”. In: International journal of
computer vision 128.2 (2020), pp. 261–318.

[12] Ross Girshick et al. “Rich feature hierarchies for
accurate object detection and semantic segmentation”.
In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, pp. 580–587.

[13] Kaiming He et al. “Mask R-CNN”.
In: IEEE Transactions on Pattern Analysis and

11

https://doi.org/10.1145/3397499
https://doi.org/10.1145/3397499
https://doi.org/10.1109/ICFHR2020.2020.00044
https://doi.org/https://doi.org/10.1016/j.patrec.2019.02.029
https://www.sciencedirect.com/science/article/pii/S0167865518303386
https://www.sciencedirect.com/science/article/pii/S0167865518303386
https://doi.org/10.1007/s13735-012-0004-6
https://arxiv.org/abs/2006.07885
https://www.midi.org/
https://www.musicxml.com/
https://music-encoding.org/
https://arxiv.org/abs/1706.05098

Machine Intelligence 42.2 (2020), pp. 386–397.
DOI: 10.1109/TPAMI.2018.2844175.

[14] Joseph Redmon et al. “You only look once: Unified,
real-time object detection”.
In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 779–788.

[15] Wei Liu et al. “Ssd: Single shot multibox detector”.
In: European conference on computer vision.
Springer. 2016, pp. 21–37.

[16] Nicolas Carion et al.
“End-to-End Object Detection with Transformers”.
In: Computer Vision – ECCV 2020.
Ed. by Andrea Vedaldi et al.
Cham: Springer International Publishing, 2020,
pp. 213–229. ISBN: 978-3-030-58452-8.

[17] Tsung-Yi Lin et al.
“Microsoft coco: Common objects in context”.
In: European conference on computer vision.
Springer. 2014, pp. 740–755.

[18] Alexander Pacha et al. “Handwritten music object
detection: Open issues and baseline results”.
In: 2018 13th IAPR International Workshop on
Document Analysis Systems (DAS). IEEE. 2018,
pp. 163–168.

[19] Shaoqing Ren et al. “Faster r-cnn: Towards real-time
object detection with region proposal networks”.
In: arXiv preprint arXiv:1506.01497 (2015).

[20] Lukas Tuggener et al. “Deep watershed detector for
music object recognition”.
In: arXiv preprint arXiv:1805.10548 (2018).

[21] Jan Hajic Jr et al. “Towards Full-Pipeline Handwritten
OMR with Musical Symbol Detection by U-Nets.”
In: ISMIR. 2018, pp. 225–232.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
“U-net: Convolutional networks for biomedical image
segmentation”.
In: International Conference on Medical image
computing and computer-assisted intervention.
Springer. 2015, pp. 234–241.

[23] David Bainbridge.
Extensible optical music recognition. PhD Thesis.
1997.

[24] David Bainbridge and Tim Bell.
“The Challenge of Optical Music Recognition”.
In: Computers and the Humanities 35.2 (2001),
pp. 95–121. ISSN: 00104817.
URL: http://www.jstor.org/stable/30204846.

[25] Dorothea Blostein and Henry S. Baird.
“A Critical Survey of Music Image Analysis”. In:
Structured Document Image Analysis.
Ed. by Henry S. Baird, Horst Bunke, and
Kazuhiko Yamamoto.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1992,
pp. 405–434. ISBN: 978-3-642-77281-8.
DOI: 10.1007/978-3-642-77281-8 19.
URL: https://doi.org/10.1007/978-3-642-77281-8 19.

[26] K.T. Reed and J.R. Parker.
“Automatic computer recognition of printed music”.
In: Proceedings of 13th International Conference on
Pattern Recognition. Vol. 3. 1996, 803–807 vol.3.
DOI: 10.1109/ICPR.1996.547279.

[27] M. Szwoch.
“Guido: A Musical Score Recognition System”.
In: Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007). Vol. 2. 2007,
pp. 809–813. DOI: 10.1109/ICDAR.2007.4377027.

[28] Bertrand Coüasnon et al. “Using logic programming
languages for optical music recognition”.
In: In Proceedings of the Third International
Conference on The Practical Application of Prolog.
Citeseer. 1995.

[29] Michael Droettboom, Ichiro Fujinaga, and
Karl MacMillan. “Optical Music Interpretation”.
In: Proceedings of the Joint IAPR International
Workshop on Structural, Syntactic, and Statistical
Pattern Recognition.
Berlin, Heidelberg: Springer-Verlag, 2002, 378–386.
ISBN: 3540440119.

[30] Kia Ng. Music Manuscript Tracing.
DOI: 10.1007/3-540-45868-9\ 29.

[31] Christopher Raphael and Jingya Wang.
“New Approaches to Optical Music Recognition.”
In: ISMIR. 2011, pp. 305–310.

[32] Lorenzo J Tardón et al. “Optical music recognition for
scores written in white mensural notation”.
In: EURASIP Journal on Image and Video Processing
2009 (2009), pp. 1–23.

[33] Donald Byrd and Jakob Grue Simonsen.
“Towards a standard testbed for optical music
recognition: Definitions, metrics, and page images”.
In: Journal of New Music Research 44.3 (2015),
pp. 169–195.

[34] Ichiro Fujinaga.
“Optical music recognition using projections”.
PhD thesis. McGill University Montreal, Canada,
1988.

[35] Władysław Homenda.
“Automatic recognition of printed music and its
conversion into playable music data”.
In: Control and Cybernetics 25 (1996), pp. 353–368.

[36] Alexander Pacha, Jorge Calvo-Zaragoza, and
jr. Jan Hajič. “Learning Notation Graph Construction
for Full- Pipeline Optical Music Recognition”.
In: Proceedings of the 20th International Society for
Music Information Retrieval Conference
(Delft, The Netherlands).
Delft, The Netherlands: ISMIR, Nov. 2019, pp. 75–82.
DOI: 10.5281/zenodo.3527744.
URL: https://doi.org/10.5281/zenodo.3527744.

[37] Xiaojun Chang et al. “Scene Graphs: A Survey of
Generations and Applications”.
In: arXiv preprint arXiv:2104.01111 (2021).

12

https://doi.org/10.1109/TPAMI.2018.2844175
http://www.jstor.org/stable/30204846
https://doi.org/10.1007/978-3-642-77281-8_19
https://doi.org/10.1007/978-3-642-77281-8_19
https://doi.org/10.1109/ICPR.1996.547279
https://doi.org/10.1109/ICDAR.2007.4377027
https://doi.org/10.1007/3-540-45868-9_29
https://doi.org/10.5281/zenodo.3527744
https://doi.org/10.5281/zenodo.3527744

[38] Jianwei Yang et al.
“Graph r-cnn for scene graph generation”.
In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 670–685.

[39] Yikang Li et al.
“Factorizable net: an efficient subgraph-based
framework for scene graph generation”.
In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 335–351.

[40] Apoorva Dornadula et al. “Visual relationships as
functions: Enabling few-shot scene graph prediction”.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops. 2019,
pp. 0–0.

[41] Mengshi Qi et al. “Attentive relational networks for
mapping images to scene graphs”.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019,
pp. 3957–3966.

[42] Moshiko Raboh et al. “Differentiable scene graphs”.
In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. 2020,
pp. 1488–1497.

[43] Kaiming He et al.
“Deep Residual Learning for Image Recognition”.
In: CoRR abs/1512.03385 (2015). arXiv: 1512.03385.
URL: http://arxiv.org/abs/1512.03385.

[44] Ashish Vaswani et al. Attention Is All You Need. 2017.
arXiv: 1706.03762 [cs.CL].

[45] Niki Parmar et al. Image Transformer. 2018.
arXiv: 1802.05751 [cs.CV].

[46] Coco Explorer. 2020.
URL: https://cocodataset.org/#explore (visited on
06/05/2021).

[47] Tomas Mikolov et al. Efficient Estimation of Word
Representations in Vector Space. 2013.
arXiv: 1301.3781 [cs.CL].

[48] H. W. Kuhn.
“The Hungarian method for the assignment problem”.
In: Naval Research Logistics Quarterly 2.1-2 (1955),
pp. 83–97.
DOI: https://doi.org/10.1002/nav.3800020109.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
nav.3800020109. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/nav.3800020109.

[49] Hamid Rezatofighi et al.
“Generalized Intersection over Union”. In: (2019).

[50] Jan Hajič jr. and Pavel Pecina.
In Search of a Dataset for Handwritten Optical Music
Recognition: Introducing MUSCIMA++. 2017.
arXiv: 1703.04824 [cs.CV].

[51] Alicia Fornés et al. “CVC-MUSCIMA: a ground truth
of handwritten music score images for writer
identification and staff removal”.
In: International Journal on Document Analysis and
Recognition (IJDAR) 15.3 (2012), pp. 243–251.

[52] Sovit Ranjan Rath.
Evaluation Metrics for Object Detection. 2020.
URL: https://debuggercafe.com/evaluation-metrics-for-
object-detection/ (visited on 05/21/2021).

[53] Doug Steen. Precision-Recall Curves. 2020.
URL: https://medium.com/@douglaspsteen/precision-
recall-curves-d32e5b290248 (visited on 05/25/2021).

[54] Detection Evaluation. 2020.
URL: https://cocodataset.org/#detection-eval (visited on
05/22/2021).

[55] Vineeth S. Subramanyam.
IOU (Intersection over Union). 2017. URL:
https://medium.com/analytics-vidhya/iou-intersection-
over-union-705a39e7acef (visited on 05/25/2021).

13

https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1802.05751
https://cocodataset.org/#explore
https://arxiv.org/abs/1301.3781
https://doi.org/https://doi.org/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://arxiv.org/abs/1703.04824
https://debuggercafe.com/evaluation-metrics-for-object-detection/
https://debuggercafe.com/evaluation-metrics-for-object-detection/
https://medium.com/@douglaspsteen/precision-recall-curves-d32e5b290248
https://medium.com/@douglaspsteen/precision-recall-curves-d32e5b290248
https://cocodataset.org/#detection-eval
https://medium.com/analytics-vidhya/iou-intersection-over-union-705a39e7acef
https://medium.com/analytics-vidhya/iou-intersection-over-union-705a39e7acef

	Introduction
	Related Work
	Object Detection
	Object Detection in OMR
	Notation Assembly
	Scene Graph Generation

	Problem Definition
	Method
	Architecture
	Model Components
	CNN feature extractor
	Transformer
	Prediction

	Loss function

	Experiments
	Dataset
	Evaluation Metrics
	Results
	Training
	Object Detection
	Notation Assembly
	Qualitative Results

	Conclusion
	References

