
DACAN
Joint discrete and continuous action spaces in Deep Reinforcement Learning

Nichlas Ørts Lisby*, Thomas Højriis Knudsen*, Chenjuan Guo
{nlisby16, thkn16}@student.aau.dk, cguo@cs.aau.dk

Aalborg University
Department of Computer Science

Abstract

In this work we tackle the problem of domains with hy-
brid action spaces, i.e. both discrete and continuous. These
environments have proven challenging for traditional Deep
Reinforcement Learning (DRL) methods, and may be sub-
optimally handled by using discretized continuous actions.
The addition of continuous actions are especially ideal for
modern games, with input from devices like a mouse or an
analog stick. Other relevant domains for continuous actions
include robotics and other tasks where you cannot achieve
sufficient precision with a limited number of predefined ac-
tions. While discrete Deep Reinforcement learning agents
can be modified to work in such environments, they typically
struggle when high precision is required. We introduce two
different methods for combining discrete and continuous ac-
tion spaces, the first being a naive combination of continu-
ous and discrete networks and the other being an Actor-Critic
based approach, with a central critic that can critique the var-
ious actors. We show that the naive combination of networks
result in sub-optimal and unstable learning, and thereby con-
firming the need for a method in which continuous and dis-
crete actions can be combined in a sensible and coherent way.
Our central critic approach outperforms our Double DQN
(DDQN) baselines in the DOOM environment on the Viz-
DOOM scenarios Deadly Corridor and Defend The Center.
It quickly reaches a score which is better than the DDQN
baselines and then further improves the score. We also show
that our approach significantly outperforms DDQN when us-
ing large actions spaces, for example to introduce precision in
discretized actions, in which the DDQN will not scale prop-
erly.

1 Introduction
Deep Reinforcement Learning (DRL) experienced a big
leap forward with the publication of the original Deep Q-
Network (DQN)(Mnih et al. 2015). In the paper they teach
an agent to play old-school Atari 2600 games at a level
comparable to or even exceeding human-level performance
in some Atari games, using their novel DQN which com-
bines traditional Q-learning with Deep Neural Networks.
The DQN receives raw pixels as the only input from the
Atari games, and feeds those to the neural network, which

* These authors contributed equally
Copyright © 2021, Department of Computer Science at Aalborg
University (https://www.cs.aau.dk). All rights reserved.

results in DQN being able to reason about high-dimensional
inputs. However, the method introduced in the DQN paper
only handles low-dimensional and discrete action spaces.
While this is plenty for the Atari games, which only have
a few available actions, all of which are discrete, modern
games have much larger actions spaces, especially with the
introduction of continuous actions. Multiple papers have
also applied the traditional DQN to more complex domains,
as well as further improved upon the traditional DQN to ei-
ther perform better in the traditional Atari games or to be
able to handle more complex domains.

However, most of the improvements to DQN as well as
other DRL methods still focus solely on discrete action
spaces. This may be sub-optimal, as the usage of discrete
actions alone can become troublesome in modern games,
which predominantly use 3D environments. While using dis-
crete actions for interaction with movement keys is fine, a
problem arises once the agent has to ”look around” (here-
after referred to as player orientation) in the environment.
This action is often accomplished using either the mouse or
an analog stick, both of which will yield a continuous action
as opposed to a discrete action.

A continuous output can be any real value within a contin-
uous sequence of numbers, i.e. all numbers within a range is
defined. A continuous action can be anything from updating
the position of the mouse on the x or y axis, to the degree of
bending in a robot joint or the fuel to apply to a car to get it
to go up a hill.

Continuous outputs do not integrate well with traditional
DRL approaches. The (Tessler et al. 2016) paper did it
by discretizing the mouse input into two discrete actions,
namely Look 30 degrees left and Look 30 degrees right in
the 3D domain of Minecraft.

Being restricted to only a couple of discrete actions for
player orientation comes with some fairly obvious limita-
tions. First of all there is a loss in precision, which could be
vital in, for instance, First Person Shooter (FPS) or Multi-
player online battle arena (MOBA) games where the preci-
sion of the mouse is essential, as you can only move in pre-
defined increments. Furthermore the very rough, step based
control is very different to the smooth control from a human
player. Another downside to discretizing continuous actions
into many discrete actions is the increased size of the action-
space, with which a traditional DQN struggles to learn, due

1

to the high amount of exploration needed.
Tackling continuous actions in DRL is not a new problem.

The paper on Deep Deterministic Policy Gradients (DDPG)
(Lillicrap et al. 2019) was a breakthrough in determining
continuous actions through their DDPG method. However,
the DDPG method has primarily been applied in the context
of controlling parts and joints of a robot, along with multi-
ple physics simulation environments like the Cartpole1 en-
vironment. DDPG has never been applied within the context
of controlling player orientation, or more specifically deter-
mining mouse inputs.

In this paper we present two methods for dealing with
both discrete and continuous actions in game environments.
This is needed in order to further advance DRL progress in
the domain of 3D games and continue the quest for human
level control in 3D environments.

• We present a naive implementation of a mixed, but dis-
jointed continuous action and discrete action agent, where
there is no collaborative learning, but each agent tries to
learn on its own.

• In addition to this, we present a framework which is ca-
pable of taking the usual high-dimensional input known
from DRL, whilst producing both discrete and continuous
outputs, using a conjunction of Actor-Critic methods for
both discrete and continuous actions. We will show how
to combine and train these methods in a cohesive and non-
destructive manner.

• We demonstrate with empirical data that our novel
method is able to outperform existing methods working
on solely discrete or continuous actions spaces.

2 Environment
A challenging FPS 3D first person shooter environment can
be set up in ViZDoom2, which is the AI research platform
that has been chosen for agents implemented and tested
in this paper. ViZDoom is based on the classic FPS game
DOOM II3, and has a rich API for controlling the player
with both discrete and continuous actions. Please consult
section 9 and section 9 in appendix for a full overview of
available actions. Furthermore it is built with reinforcement
learning in mind, which means that the API includes a step
function for providing a player action and getting back a
reward as well as a function call for receiving the current
game state. ViZDoom allows for different game state repre-
sentations, however, for this paper we will solely be focus-
ing on the raw pixel representation. Furthermore, ViZdoom
provides multiple different maps or scenarios in which you
can test your agent. It even provides a custom map builder
to create custom scenarios.

Defining the domain
As with most traditional DRL algorithms the goal is to learn
a policy using nothing but the raw pixels as input to the

1https://gym.openai.com/envs/CartPole-v0/
2http://vizdoom.cs.put.edu.pl
3https://store.steampowered.com/app/2300/

DOOM_II

agent. However, in order for the algorithm to be able to rea-
son about ongoing actions, like movement or acceleration,
which is not obvious from a single frame, we will use frame
stacking on the last x frames. Furthermore each frame will
be preprocessed by a preprocessing function σ. σ will be re-
sponsible for downscaling and greyscaling the image. σ will
downscale each frame to w×h pixels and perform greyscal-
ing leaving each pixel defined by a single numeric value be-
tween 0 and 1.

Output from the agent is categorized in discrete actions
and continuous actions. Discrete actions Ad for things like
moving and shooting, from which we select a single action
ad. Continuous actions Ac being things like for instance the
delta degree change of the player orientation, or force to ap-
ply to some element. Ac will be of size n where n is the to-
tal amount of continuous actions needed. For instance, if we
would like to represent the continuous output of a computer
mouse you would need two values, one for representing hor-
izontal and vertical offset values respectively. The continu-
ous actions are represented by a floating point value4.

Thus once the preprocessing of σ has been applied, the
agents will use the mapping:

w × h× x→ (ad ∈ Ad, Ac)
Output being a tuple with both a discrete action, ad, and n
continuous action, all of which will then be executed simul-
taneously.

3 Related work
Combining continuous and discrete actions are not a com-
pletely unexplored domain. Prior work has tried to tackle
the same task of combining continuous and discrete actions.

One of the more relevant methods is Hybrid SAC (Soft
Actor-Critic) presented in (Delalleau et al. 2019). In the pa-
per the authors also strive to combine discrete and continu-
ous actions for video games, with discrete actions control-
ling buttons and continuous actions controlling an analog
stick. It is an extension of the Soft Actor-Critic method,
which was originally designed for continuous action tasks.
In order to handle both continuous and discrete actions they
theorize both converting continuous output to a discrete ac-
tion and using a completely discrete actor. They end up com-
bining both continuous and discrete actions into the SAC
algorithm, and thereby making it a hybrid capable of out-
putting both continuous and discrete actions.

In table 1 we list how prior algorithms differs from ours.
As is evident, the Hybrid SAC method achieves the same

goal as us and in our work we build on top of some of the
same ideas as from the (Delalleau et al. 2019) paper, but
we go with a fundamentally different approach where we
utilize DDPG and our own discrete Actor-Critic method as
our foundation as opposed to using SAC.

4 Background
An important concept in reinforcement learning is the
Markov Decision Process (MDP). The idea is to model your

4In our implementation specifically represented by a 64 bit
floating point variable.

2

Action space
Discrete actions Continuous actions Combined actions Hybrid foundation

Work
DQN
based X 7 7 -

methods
Advantage

Actor X 7 7 -
Critc

DDPG 7 X 7 -

Soft
Actor X5 X 7 -
Critic

Hybrid SAC X X X Soft Actor Critic

This work X X X DDPG

Table 1: Related work

domain and environment using the 5-tuple

(S,A,R,P, γ)

where

S is the set of all possible states in the environment.

A is the set of all possible actions in the environment.

R is a reward function that maps (s, a)→ r.

P is a probability function P (s′|st, at) specifying how
likely we are to transition to s′ given that we at time step
t take action at in state st.

γ is a discount factor used to cope with uncertainty in fu-
ture rewards, which is why we will often use the wording
”expected discounted reward“.

With this we can now follow the usual reinforcement learn-
ing flow of observing a state st at every time step t and tak-
ing an action based on our policy at = µ(st) which will
result in a reward rt and a transition to the next state st+1

With regards to the states, there is another useful con-
cept called the Markov Property, which is something our
states are assumed to fulfill. The Markov Property states
that the next state should only depend on the current state.
This means that the probability of transitioning to some state
given the current state should be the same as the probability
of transitioning to the state given all prior states. Mathemat-
ically we say that

P [st+1|s1, ..., st] = P [st+1|st]
This is a convenient assumption, since it means we do

not have to store the complete history (Although the current
state could be the sequence of all states before it).

DQN
The DQN algorithm was first introduced in the paper by
Mnih et al. in 2015 (Mnih et al. 2015). The paper proved
to be a break through in modern DRL since it managed to
combine traditional Q-learning with high dimensional input
by using a Convolutional Neural Network (CNN), a type of

5Can easily be modified for discrete action spaces

deep neural networks ideal for recognizing patterns in im-
ages. The neural network was utilized to approximate the
Q-value, that is the expected discounted reward.

The DQN algorithm uses the Bellman equation to calcu-
late the Q-value, which states that the total expected reward
is given by the immediate reward plus the reward expected
in the future.

Following this the Q function can be defined in a nice
recursive manner:

Q(s, a) = E
[
R(s, a) + γmax

a′
(Q (S (s, a) , a′))

]
where S is now the transition dynamics defined for taking
action a in some state s. It is used to calculate the Q-value for
a given action, allowing us to choose the best action based
on the Q-value. The goal is to calculate the optimal reward
for all actions, and the optimal Q-function is often denoted
as Q∗.

DQN uses Experience Replay, meaning it samples from
the set δ of previous experiences. The replay buffer is stan-
dard for most DRL algorithms, and leads to more stable be-
havior. The replay buffer is simply a large store of past tran-
sitions in the form of tuples given by (st, at, rt, st+1).

The second key contribution of DQN was the introduction
of a target network Q′ to help improve the learning stability.
The target network is a copy of the actual network that is not
updated for a period of time allowing the network to have
something stable to converge towards. The target network is
then updated with the weights of the actual network at some
given interval.

During each learning step, the algorithm uses a mean-
squared error function to minimize the error during training
and maximize the Q-value. At a given time step t we define
the target value for our network as:

yt =

{
ri if i+ 1 is terminal
ri + γmaxa′ Q

′(st+1, a
′) else

Which leads us to the following definition of loss:

(yt −Q (st, at))
2

often refereed to as TD-loss,is temporal difference loss,
since we calculate the difference between what our Q-
network predicts at time step t and the immediate reward
gained at t added to the value predicted by our target net-
work on the next state st+1.

One last thing to tackle is when to select which action. To
strike a balance between exploration and exploiting previous
learned experience, DQN uses the Epsilon-greedy method. It
is simply a slowly decreasing value, ε, which determines the
probability of selecting a random action or using the action
with the maximum Q-value as decided by the Q-function.
Initially ε will often be 100% meaning all actions are ran-
dom, and exploration is favored, but as time goes on the ε
value will decrease and often end at 5% where exploitation
is heavily favored, but a random action is still chosen ever
so often.

3

DDQN Since the introduction of DQN it has been im-
proved multiple times. In this paper we will utilize the exten-
sion called Double DQN (DDQN) which is an almost regu-
lar DQN improved to reduce the overly optimistic estimates
that a vanilla DQN can yield when determining the value of
the current state. This is done by updating the way the target
value is calculated:

yt =

{
ri if i+ 1 is terminal
ri + γQ′(st+1,maxa′ Q(st+1, a

′)) else

Now utilizing the the current network for action selection.

Actor-Critic
A somewhat different approach for DRL is the Actor-Critic
method. It differs from DQN in multiple ways by being both
a mix of value based and policy based algorithm and also by
being an on-policy algorithm. The Actor-Critic method uti-
lizes two networks, one being a traditional Q-Function (the
critic) and the other being a policy function (the actor). The
responsibility of the actor is to determine which actions to
pick, while the critic should be used to evaluate the actors
behavior. The output of the actor should in the case of dis-
crete actions be activated using the Softmax activation func-
tion, which will result in a probability distribution over ac-
tions to pick. This differs from the off-policy method of us-
ing for instance ε-greedy for selecting the action to pick.

Throughout the paper we will use the fundamental ideas
from Actor-Critic, but our different usages will also differ
significantly from traditional Actor-Critic methods, and we
will therefore not go more in to depth for the time being.

DDPG
The ideas for determining continuous actions detailed in this
paper is inspired by the paper Continuous control with deep
reinforcement learning(Lillicrap et al. 2019), which intro-
duces a novel method for continuous control in DRL with
the DDPG algorithm. The general method for DDPG is
largely inspired by DQN and Actor Critic networks.

The agents behavior is based on its policy π, which is a
learned probability distribution. This is also where the pri-
mary difference between DQN and DDPG exists, as DQN
utilizes a Q value to estimate a policy, while DDPG uses
an architecture similar to the one found in Actor Critic net-
works, which uses both a Q network and a policy network.
As with DQN the DDPG also utilizes target networks, which
leaves us with a total of 4 networks: A Q network Q (the
critic), a deterministic policy network µ (the actor), a target
Q network Q′ and a target policy network µ′.

The DDPG network receives an observation and outputs
a single continuous value. This value will most often corre-
spond to some position or an amount to add or subtract from
a value. For example, consider a joint on a robot, where the
current position of the joint is observed in every state. The
network value can then be used to determine the update to
the joints position or angle.

Contrary to Reinforcement Learning (RL) in discrete
action spaces, where exploration is done by probabilisti-

cally selecting a random action (for example using epsilon-
greedy), DDPG, and continuous action RL in general, sim-
ulates randomness by adding noise to the action itself, to
ensure different actions are tried during training to find use-
ful learning signals. This leaves us with an exploration pol-
icy µt(st), which takes a state and modifies the action using
some noise N :

µt(st) = µ(st) +N
So we simply output an action directly as a real number,

that can then be applied.
To prevent canceling out training the noise, N , is gener-

ated so that it is somewhat correlated with previous noise,
using the Ornstein-Uhlenbeck (OU) process(Uhlenbeck and
Ornstein 1930), as detailed in the DDPG paper.

However, more recent results have found that OU noise is
overly complicated, and that uncorrelated mean-zero Gaus-
sian noise is perfectly adequate6(Matheron, Perrin, and
Sigaud 2019). Gaussian noise is a random noise drawn from
a Gaussian distribution:

f(x) = 1
d
√
2π
e−1/2(

x−m
d)2

wherem is the mean and d is the standard deviation. With
Gaussian noise, the probability of larger deviations quickly
decreases.

Learning The DDPG algorithm is in many ways very sim-
ilar to DQN and borrows many training characteristics from
DQN. It uses both a replay buffer and target networks, same
as DQN. However, as mentioned, DDPG learns a total of 4
networks. The critic is updated using a mean-squared Bell-
man error, which is computed from mini-batch samples rep-
resenting a transition, si → si+1.

The loss functions for the critic is defined as:

JQ =
1

N

∑
i

(ri + γQ′(si+1, µ
′(si+1))−Q(si, ai))

2

For the actor the objective is simply to maximize dis-
counted reward, which we can do by using gradient ascent
with the following ‘loss’:

Jµ =
1

N

∑
i

Q(si, µ(si))

The target networks for DDPG are updated differently
from DQN, where the target network is frozen for a while,
whereas DDPGs target networks are simply constrained
with soft updates. Soft updates will essentially blend the two
networks together, using a factor, tau, to determine the ratio
between how much of the target network to keep and how
much to take from the regular network. It is defined as:

τ � 1 : θ′ → τθ + (1− τ)θ′

Where θ is the weights of the network and θ′ is the
weights of the target network.

Similar to DQN, as described in section 4, DDPG also
uses a replay buffer. Since DDPG is an off-policy algorithm,

6https://spinningup.openai.com/en/latest/algorithms/ddpg.html

4

it can as opposed to other Actor-Critic methods utilize this
large replay buffer to learn from more uncorrelated transi-
tions.

MADDPG
Multi-agent DDPG (MADDPG) is a multi-agent method
presented by (Lowe et al. 2020) which allows multiple
DDPG agents to collaborate in order to achieve a common
goal.

The multi-agent method of joining a continuous action
agent with a discrete action agent is based on the MAD-
DPG method of running two or more DDPG agents to-
gether. MADDPG extends the traditional DDPG agent into a
multi-agent approach, using centralized planning by means
of decentralized actors all being critiqued by a central critic,
which has access to information about all policies of other
agents. It was specifically designed for environments where
multiple different agents all affect the same environment7.
Each individual agent has direct access to only its local ob-
servations, and can be viewed as the actors from an actor-
critic algorithm. Essentially, MADDPG is simply two or
more DDPG networks that have learned to cooperate, thanks
to a central actor.

5 Methodology
We introduce two methods for combining discrete and con-
tinuous actions in a single agent. The first method naively
combines discrete and continuous action networks. After-
wards, we introduce a novel method to handle the combina-
tion of discrete and continuous action networks.

NNC
We first introduce a naive combination of multiple indepen-
dent continuous and discrete action networks, which we will
refer to as Naive Network Combination (NNC). The NNC
method will have a DDPG network for controlling player
orientation and a completely independent DDQN for con-
trolling movement and shooting. The purpose of NNC is to
observe how well independent networks will train together,
as this is expected to result in bad and unstable learning.

With a naive combination, we expect that a good action
in one network may still lead to a bad reward, resulting in
negative learning for the network, even though it chose the
correct action.

Consider a scenario where the network responsible for
aiming will correctly aim exactly at an opponent, but the net-
work responsible for moving and shooting decides to walk
backward and fall down a cliff instead of shooting. In that
case, even though the network responsible for aiming did the
correct thing, the other network does something completely
wrong, which will result in a bad reward and may eventually
result in the network learning not to do the ‘right’ thing. It
may instead learn to look directly into the air, preventing the
movement network from running off the cliff, but now never
being able to kill the opponent, and never actually receiving
the optimal reward. The other network may then try to shoot,

7An example of this could be multiple robots or multiple joints
on a robot

but as the player looks directly into the air, shooting will not
yield any reward.

DACAN
The primary contribution of this paper is our off-policy and
model-free algorithm and network architecture designed to
combine a discrete action network with one or more con-
tinuous action networks, thus the network should be able to
fully control a player with both continuous and discrete ac-
tion inputs. As opposed to the NNC method, the networks
should be combined in a non naive way, in which the net-
work should be able to achieve stable and non destructive
learning. We dub our contribution Discrete And Continu-
ous Action Network (DACAN). The main idea for DACAN
is to utilize the same strategy as in MADDPG, that is have
a single ‘global’ critic that can critique, or evaluate, multi-
ple actors. In this paper that would be one or more DDPG
networks, and a single discrete actor network. However, the
idea should be reusable with any continuous and discrete ac-
tor networks, and therefore not exclusive to DDPG and our
actor network implementation.

Network architecture First we introduce a standard base
network, as can be seen in fig. 1, consisting of 4 layers, the
first 3 being convolutional layers and the last being a fully
connected layer. All the layers uses the Rectified Linear Unit
(ReLU) activation function. This base is very common in
DRL networks working on pixel input. The idea is to have
the convolutional layers pick up on patterns in the image,
and then combine the patterns to a bigger meaning in the
fully connected layer.

For further information of the exact values used in the net-
work, please conform to the hyper parameters in section 10.

Connected to the last layer of the base network is our out-
put layers.

The critic output is activated using the identity activation
function (essentially no activation). The goal is for the critic
to be able to predict the Q-value given a state and actions.
Therefore the critic will, in addition to the stacked observa-
tions, take both a discrete and continuous actions as input.

Next up is one or more continuous output layers activated
using tanh to force the output to be in range [−1, 1]. The goal
of these layers are to output the continuous actions that will
maximize the Q-value, i.e total discounted reward accumu-
lated.

Finally, we have the discrete actor output using the soft-
max activation to get a probability distribution over discrete
actions that can be taken. The goal is again to maximize the
Q-value, so the action with the highest probability should re-
flect the action expected to give the highest total discounted
reward.

The complete network architecture can be observed in
fig. 1.

Learning As with both DQN and DDPG we will also
introduce replay memory for storing experiences. During
training we will sample from these experiences and use
those to update the networks. Furthermore we will also be
utilizing target networks, as both DQN and DDPG found

5

Stacked observations

Conv Conv Conv
ReLU ReLU

Dense
ReLU

Base network

ReLU

ReLU

ReLU

ReLU

Critic

Cont. Actor 1

Cont. Actor n

Discrete Actor

Tanh

Tanh

Soft
max

Q(s, a)

π(a|s)

[-1, 1]

[-1, 1]

Figure 1: DACAN network architecture. Detailed information about layer sizes can be found in the appendix.

those to improve the learning stability. Therefore we will
have the following networks:

Q The critic network
µd The discrete actor network
µ1
c The first continuous actor network

. . .

µnc The n continuous actor network
Q′ The critic target network
µ′d The discrete actor target network
µ1
c
′ The first continuous actor target network

. . .

µnc
′ The n continuous actor target network

Following this we define µ1,...,n
c as all continuous actor

networks, i.e. µic,∀i ∈ {1, . . . , n}.
In order to update the networks we will have to determine

the loss functions for each.
Starting with the critic network, the premise is the same

as in DDPG, the target value is the predicted Q-value using
the Bellman equation, that is we take the immediate reward
at a given step plus the discounted future reward predicted
by the target network on the next state using the best actions.
In order to determine the best continuous actions, we use the
continuous target networks to determine the optimal action.
For discrete actions, since the total number of actions are
a lot more limited than for the continuous actions, we can
simply maximize the Q-value over all the possible discrete
actions. Formally the target would then be given by

yi = ri + γ max
ad∈Ad

Q′
(
si+1, µ

1
c
′(si+1), . . . , µnc

′(si+1), ad
)

Then we can determine the TD error using the predicted
Q-value using the critic network. At last we will use Mean
Squared Error (MSE) as our loss function, which will result
in the following function for calculating loss across a mini
batch with N elements:

JQ =
1

N

∑
i

(
yi −Q

(
si, a

1
ci, . . . , a

n
c i, adi

))2

and i denoting the time step at each element in the mini
batch.

The continuous actors are fairly straight forward, as the
goal of the these are simply to gain as much discounted fu-
ture reward as possible. Therefore the loss can simply be
the negative sum of all predicted Q-values on a mini batch.
For prediction we will utilize the discrete action resulting
in the greatest predicted Q-value and for all continuous ac-
tions not being the one for which we are determine loss for,
we will use target networks in order to differentiate the dif-
ferent continuous actor losses. If we use gradient ascent for
these network updates, we can maximize with regards to the
Q-value in which case the ‘loss’ for actor j will simply be:

Jµ
j
c =

1

N

∑
i

max
ad∈Ad

Q(si, µ
1
c
′(si), .., µ

j
c(si), .., µ

n
c
′(si), ad)

The discrete actor is somewhat different from actors in
regular discrete Actor-Critic methods and it is more closely
related to the actor from DDPG. In practice we will use these
key differences: 1 Experience Replay instead of using the
traditional N-step loss. 2 A Target network, as we sample
from earlier experiences we should not be utilizing a rapidly
changing network to calculate targets.

These changes are primarily due to DDPG being an off-
policy method while most other Actor-Critic methods are
on-policy. Although it should be noted using discrete off-
policy Actor-Critic methods with experience replay is not
a new thing. Previous work has shown to be very effec-
tive using these methods and is for instance demonstrated
with Sample Efficient Actor-Critic with Experience Replay
(Wang et al. 2017).

Apart from these two key changes, the main idea of the
discrete actor remains the same as most previous discrete
actors. The idea is for the actor to predict the ‘advantage’
gained by taking a particular action. The advantage is the
delta value between the predicted discounted reward on an
action and the value we expect a state to be ‘worth’. For-
mally it is given by

A(s, a) = Q(s, a)− V (s)

6

Hence the goal for this network is to maximize the advan-
tage gained given above. However, we want to do it in such a
way, that the probabilities outputted from the actor network
is updated in a sensible way, and not immediately favors one
action a lot more than the others. Therefore we utilize the
Negative Log-Likelihood (NLL) − log loss function, which
is simply the negative log value of the probability of select-
ing an action(Miranda 2017)8.

The loss function Jµd
for the discrete actor therefore be-

comes:

Jµd
=

1

N

∑
i

− log(µd(si)) ·A(si, ai)

Using the loss functions from above we calculate the par-
tial derivative of the function with respect to all weights and
biases in the network. This will result in gradients for each
parameter in the network, and using these gradients we can
perform gradient descent, i.e. subtract the gradient from the
parameter in order to converge to the local minima. The gra-
dient is multiplied by a small number α that is the learning
rate, which is used to perform small granular updates and
not overshoot the target.

In order to update the target networks we will utilize
DDPGs method of doing soft updates to all the target net-
works. This is opposed to way it is done in DQN, where the
target network is hard updated at some specific interval.

So after each iteration of training we will update target
networks using

θQ
′
← τθQ

′
+ (1− τ) θQ

θµ
′
d ← τθµ

′
d + (1− τ) θµd

θµ
1...n
a

′
← τθµ

1...n
a

′
+ (1− τ) θQµ

1...n
a

where θ denotes the weights of a given network and τ is
some ratio determining how much the target network should
be updated.

Pseudocode DACAN algorithm can be seen in algo-
rithm 1.

6 Experiments
We test the 5 different methods discussed in the paper in or-
der to determine and compare the results and benefits of DA-
CAN over the existing methods. The purpose is to test how
well DACAN performs when combining discrete and con-
tinuous actions, versus networks made for only one or the
other. The methods will be tested against the Deadly Corri-
dor scenario from VizDoom.

The purpose of this scenario is to teach the agent to
navigate towards its fundamental goal (the vest) and
make sure he survives at the same time.
Map is a corridor with shooting monsters on both sides
(6 monsters in total). A green vest is placed at the op-
posite end of the corridor. Reward is proportional (neg-
ative or positive) to change of the distance between the
player and the vest. If player ignores monsters on the

8We can maximize by minimizing the negative log likelihood.

Algorithm 1 DACAN algorithm

Init networks Q,µ1...n
c , µd with weights θQ, θµ

1...n
c , θµd

Init target networks Q′, µ1...n
c

′, µ′d with weights:

θQ
′
← θQ, θµ

1...n
c

′
← θµ

1...n
c , θµ

′
d ← θµd

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select actions using current policy and noise:

ad = µd(st)

aic = µic(st) +Nt+i,∀i ∈ {1, . . . , n}

Take actions at = {ad, a1c , . . . , anc } and observe re-
ward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample mini-batch B of N transitions from R
for b ∈ B do

Update Q,µ1...n
c , µd with values from b according

to section 5
end for
Update Q′, µ1...n

c
′, µ′d according to section 5

end for
end for

sides and runs straight for the vest he will be killed
somewhere along the way.9

Figure 2: Starting position in Deadly Corridor

For all experiments in this section, all agents will use the
same base network as was explained in section 5. Further-
more all agents will utilize the same preprocessing algorithm
σ which will scale the image to 80 × 80 greyscale and do
4 frames frame stacking. The discrete actions Ad will be
{NoOp, Shoot,WalkAndShoot,Walk} and the continu-
ous actions will be limited to the players horizontal orienta-

9https://github.com/mwydmuch/ViZDoom/tree/
master/scenarios

7

tion, i.e. Ac = {∆H}. ∆H will be restricted to to a maxi-
mum update of 10 degrees pr. game tick. Additional hyper
parameters used by the agents for the tests can be found in
section 10.

DDQN
First baseline was created using a DDQN. Since the DDQN
will only be able to output discrete actions, we need
to discretize the player orientation actions for this ex-
periment. This is done by defining 6 actions for player
orientation, namely look horizontal with offset values
{−8,−4,−2, 2, 4, 8}. We also conducted a test with only 2
actions, namely {−4, 4} to reduce the actions space, but the
decreased flexibility in player orientation seemed to result in
worse results.

DDPG
For the next baseline, we decided to test how well the DDPG
would perform on the domain. However, the DDPG pos-
sesses multiple challenges. First of all the output of the
DDPG is continuous, which cannot be immediately used for
our discrete actions. We solve this problem with the simple
mapping

f(x) =

{
if x > 0 Action
else NoOp,

This is possible since all our discrete actions can be com-
bined, for instance if both Shoot and Walk are selected we
map that to the discrete action WalkAndShoot, and in the
case of no actions being taken, it will be the equivalent of a
NoOp.

The next problem is the fact that the DDPG will only out-
put a single value, i.e. can only be used for a single action.
This is solved by using multiple independent networks for
each action. However, as mentioned in section 5 this is ex-
pected to result in unstable, or even no real learning at all.

MADDPG
Next, we wanted to add a MADDPG baseline. MADDPG
still posses the problem of not being able to output discrete
actions, so we will be using the same mapping as in the
DDPG. As mentioned MADDPG is a Multi-Agent network,
and is therefore able to output multiple values. We use this
to output values to all the actions needed, and since we no
longer use independent networks the training is expected to
be more stable.

NNC
The NNC baseline is used to determine the success of using
two independent networks. It uses a DDQN for discrete ac-
tions selection and a DDPG for player orientation. As the
networks are not correlated at all, we would as with the
DDPG expect the training to be unstable.

Results
The results of all the algorithms over a period of 2500
episodes in the Deadly Corridor scenario can be seen in
fig. 3. As expected both DDPG and NNC performs subop-

0 245 490 735 980 1225 1470 1715 1960 2205 2450
3

194

385

576

767

958

1149

1339

Episode

E
nv

ir
on

m
en

tS
co

re

DACAN
NNC

MADDPG
DDPG
DQN

Figure 3: Evaluation of algorithms on Deadly Corridor

timal. In fact the results changing rapidly in a somewhat
correlated way seems to indicate that the score is primar-
ily affected by the changing noise and not so much network
changes.

Somewhat more surprising is that the MADDPG performs
similarly to DDPG and NNC. This could indicate that our
implementation of MADDPG may contain errors, or that
the hyper parameters chosen are inadequate for it to perform
well. Alternatively it could also indicate that translating con-
tinuous actions to discrete actions using the mapping previ-
ously mentioned is not feasible in practice.

Next up is the DDQN which as expected demonstrates
stable learning, until it plateaus at around episode 1000.

At last we can see DACAN showing stable and fast learn-
ing all the way through the experiment. The results imply
that DACAN is useful for combining discrete and continu-
ous actions in an advanced domain with high dimensional
input. It also indicates that combining discrete and continu-
ous actions may be favorable over simply using discrete ac-
tions and potentially discretizing input that should otherwise
be continuous.

Comparing to DDQN in big action spaces
Following the above results it is clear that DACAN was
the best performing method, also significantly better than
DDQN. However, the scenario was pretty good for DDQN
with only a few actions available. Next up we want to test the
DDQN against DACAN in another scenario, namely Defend
The Center.

The purpose of this scenario is to teach the agent that
killing the monsters is GOOD and when monsters kill
you is BAD. In addition, wasting amunition is not very
good either. Agent is rewarded only for killing monsters

8

so he has to figure out the rest for himself.
Map is a large circle. Player is spawned in the ex-
act center. 5 melee-only, monsters are spawned along
the wall. Monsters are killed after a single shot. Af-
ter dying each monster is respawned after some time.
Episode ends when the player dies (it’s inevitable be-
cuse of limitted ammo).10

The goal here is to prove that traditional DDQN do not
scale to big actions spaces, and that DACAN will out-
perform DDQN significantly (with regards to tasks re-
lated to continuous actions), when forcing DDQN into
large action spaces. This time we give the DDQN 200
different actions for changing the players orientation,
namely {−10,−9.9,−9.8, . . . , 9.8, 9.9, 10}. Although this
may seem like a lot, it is nowhere near the in practice in-
finite11 amount of values that DACAN can pick. In defend
the center we will only have a single discrete action, that is
Shoot, and of cause the NoOp action. Therefore, in order
to perform well in this scenario, it is vital that the agent be-
comes good at controlling the player orientation.

The results can be seen in chart fig. 4.

0 145 290 435 580 725 870 1015 1160 1305 1450
0

1

2

3

4

5

Episode

E
nv

ir
on

m
en

tS
co

re

DACAN
DDQN

Figure 4: Evaluation of algorithms on Defend The Center

As can be seen in the chart, the big action space makes
exploration really hard for DDQN, and it struggles to learn
anything. DACAN on the other hand learns quickly, and al-
though it may not quite reach the results we were hoping
for (only killing an average of 5 enemies), it is apparent that
having player orientation controlled with a continuous ac-
tion, as opposed to a big amount of discrete actions, is very
beneficial for learning.

10https://github.com/mwydmuch/ViZDoom/tree/
master/scenarios

11A standard 64 bit floating point variable can represent approx-
imately 14 trillion values between -1 and 1.

7 Conclusion
This paper presents two novel approaches for combining dis-
crete and continuous actions in DRL networks. This hybrid
of continuous and discrete actions are useful for environ-
ments requiring a high level of precision for continuous in-
puts, like in the case of controlling player orientation in the
DOOM environment.

This works presents the NNC method, which naively
combine two independent networks, namely a continuous
and a discrete network. Utilizing this method each agent is
essentially training in an environment which is made ran-
dom by the other networks training, leading to unstable or
no learning at all. The results, shown in fig. 3, shows that, as
expected, the performance of the NNC method is inadequate
for the scenarios in which it has been tested. Thus, we deem
that the NNC agent does not warrant any further work.

The primary contribution, the DACAN method, performs
well in the DOOM environment on the scenarios on which it
has been tested. These are precisely the type of domains that
DACAN is designed for, since it contains the discrete actions
for moving the player around in the world, and the contin-
uous actions for determining the player orientation, thus al-
lowing the agent to look around in the environment with a
much higher precision than if discretized player orientation
actions were used.

The primary novelty is a successful integration between
multiple discrete and continuous actor networks, with a cen-
tral Q-network serving as the critic which manages the learn-
ing between actors. We introduce n continuous actor net-
works, one for each continuous action, meaning that we have
a central critic network, a discrete actor network, n contin-
uous actor networks, and target networks for each of these.
This approach leads to excellent results, far exceeding the
baseline networks also developed for the experiments, as can
be observed in fig. 3. In addition, as can be seen in fig. 4, DA-
CAN also significantly outperforms the traditional DDQN
when the action space of DDQN is raised to be somewhat
comparable to the precision achieved when using continu-
ous values. This is simply because DDQN cannot scale to
handle such big action spaces.

The DACAN approach provides very promising results
and further work in other environments should be pursued

8 Future work
Given the time frame of the project and the limited server re-
sources, we were unable to train all algorithms on multiple
environments for an extended period of time. Future work
should test especially DACANs performance against multi-
ple environments, to further verify the results.

For some of the same reasons as stated above, DACAN
has only been tested on a Proof of Concept level with a sin-
gle continuous output and limited discrete actions. DACAN
should in future work be tested with a more complex action
space, including potentially multiple continuous outputs (for
instance including the vertical axis for player orientation).

DACAN should also be tested against state of the art dis-
crete and continuous hybrid agents like Hybrid SAC in order

9

to determine how well it compares against its main compe-
tition.

Additional further work could also investigate possibili-
ties for improving the discrete actor in DACAN, by for in-
stance introducing some of the improvements that have been
known to benefit ordinary discrete Actor-Critic networks.

References
Delalleau, O.; Peter, M.; Alonso, E.; and Logut, A. 2019.
Discrete and continuous action representation for practical
rl in video games.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2019. Continuous
control with deep reinforcement learning.
Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and
Mordatch, I. 2020. Multi-agent actor-critic for mixed
cooperative-competitive environments.
Matheron, G.; Perrin, N.; and Sigaud, O. 2019. The problem
with ddpg: understanding failures in deterministic environ-
ments with sparse rewards.
Miranda, L. J. 2017. Understanding softmax and the neg-
ative log-likelihood”. https://ljvmiranda921.
github.io/notebook/2017/08/13/
softmax-and-the-negative-log-likelihood/.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning.
Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D. J.; and
Mannor, S. 2016. A deep hierarchical approach to lifelong
learning in minecraft.
Uhlenbeck, G. E., and Ornstein, L. S. 1930. On the theory
of the brownian motion. Phys. Rev. 36:823–841.
Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.;
Kavukcuoglu, K.; and de Freitas, N. 2017. Sample efficient
actor-critic with experience replay.

9 Appendix
Discrete actions
Binary buttons have only 2 states ”not pressed” if value 0
and ”pressed” if value other then 0.

• ATTACK

• USE

• JUMP

• CROUCH

• TURN180

• ALTATTACK

• RELOAD

• ZOOM

• SPEED

• STRAFE
• MOVE RIGHT
• MOVE LEFT
• MOVE BACKWARD
• MOVE FORWARD
• TURN RIGHT
• TURN LEFT
• LOOK UP
• LOOK DOWN
• MOVE UP
• MOVE DOWN
• LAND
• SELECT WEAPON1
• SELECT WEAPON2
• SELECT WEAPON3
• SELECT WEAPON4
• SELECT WEAPON5
• SELECT WEAPON6
• SELECT WEAPON7
• SELECT WEAPON8
• SELECT WEAPON9
• SELECT WEAPON0
• SELECT NEXT WEAPON
• SELECT PREV WEAPON
• DROP SELECTED WEAPON
• ACTIVATE SELECTED ITEM
• SELECT NEXT ITEM
• SELECT PREV ITEM
• DROP SELECTED ITEM

Continuous actions
Buttons whose value defines the speed of movement. A pos-
itive value indicates movement in the first specified direc-
tion and a negative value in the second direction. For exam-
ple: value 10 for MOVE LEFT RIGHT DELTA means slow
movement to the right and -100 means fast movement to the
left.

In case of TURN LEFT RIGHT DELTA and
LOOK UP DOWN DELTA values correspond to degrees.
In case of MOVE FORWARD BACKWARD DELTA,
MOVE LEFT RIGHT DELTA,
MOVE UP DOWN DELTA values correspond to Doom
Map unit.

• LOOK UP DOWN DELTA
• TURN LEFT RIGHT DELTA
• MOVE FORWARD BACKWARD DELTA
• MOVE LEFT RIGHT DELTA
• MOVE UP DOWN DELTA

10

10 Hyper parameters
Default hyper parameters

Hyperparameter Value Description

Frame width 80px Width of frame after down scaling with σ
Frame height 80px Height of frame after down scaling with σ
Frame stacking 4 Number of frames to include in input to network
Frame skipping 4 Number of frames to skip / repeat action

Base Layer 1 type Convolutional Type of layer
Base Layer 1 kernel size 8× 8 Size of filter to convolve across frame
Base Layer 1 stride size 4× 4 Step size of filter
Base Layer 1 output size 32 Number of outputs from layer
Base Layer 1 activation ReLU Activation function applied on output from layer

Base Layer 2 type Convolutional Type of layer
Base Layer 2 kernel size 4× 4 Size of filter to convolve across frame
Base Layer 2 stride size 2× 2 Step size of filter
Base Layer 2 output size 64 Number of outputs from layer
Base Layer 2 activation ReLU Activation function applied on output from layer

Base Layer 3 type Convolutional Type of layer
Base Layer 3 kernel size 3× 3 Size of filter to convolve across frame
Base Layer 3 stride size 1× 1 Step size of filter
Base Layer 3 output size 32 Number of outputs from layer
Base Layer 3 activation ReLU Activation function applied on output from layer

Base Layer 4 type Dense Type of layer
Base Layer 4 output size 1568 Number of outputs from layer
Base Layer 4 activation ReLU Activation function applied on output from layer

Optimizer ADAM Gradient updater / optimizer used when updating gradients
Weight Initializer XAVIER Method for initializing weights and biases
Batch size 32 Samples to use from replay buffer when training
Gamma 0.99 Discount factor used
Experience Replay Max Size 100000 The maximum size of the Experience Replay buffer in elements

DDQN

Hyperparameter Value Description

Target network update frequency 1000 How often the target networks are updated.
Recall that these are frozen for a length of time.

Epsilon start 1 The start value of the epsilon-greedy value,
i.e. how much we explore in the beginning

Minimum Epsilon 0.1 The smallest epsilon value.
Learning Rate 0.00025 Factor to be applied to gradients before updating network.

DDPG

Hyperparameter Value Description

Learning Rate 0.00025 Factor to be applied to gradients before updating network.
Noise function Simplex Noise The noise function used in the implementation.
Tau 0.001 The size of the soft updates to the target network

MADDPG

Hyperparameter Value Description

Learning Rate 0.00025 Factor to be applied to gradients before updating network.
Noise function Simplex Noise The noise function used in the implementation.
Tau 0.001 The size of the soft updates to the target network

NNC

Hyperparameter Value Description

Learning Rate 0.00025 Factor to be applied to gradients before updating network.
Noise function Simplex Noise The noise function used in the implementation.
Tau 0.001 The size of the soft updates to the target network

DACAN

Hyperparameter Value Description

Learning Rate 10−7 Factor to be applied to gradients before updating network.
Noise function Simplex Noise The noise function used in the implementation.
Tau 0.001 The size of the soft updates to the target network
Actor to critic layer size 1568
Actor to critic layer activation ReLU

11

