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Abstract:

In the following work, a novel multi-
modal sensor data fusion on far in-
frared imaging and lidar is elaborated
and its effects on avderse weather con-
ditions are studied. Furthermore, a
well-known problem in the thermal
imaging domain is addressed, the ex-
isting large domain gap to existing
datasets for the pre-training of deep
With the help of

artificial thermal images the training

neural networks.

of underrepresented object classes can
be improved. The final analysis takes
into account light fog, dense fog and
snow during day and night. This infor-
mation is finally evaluated, character-
ized and summarized with an outlook
showing that infrared and far infrared
wavelengths have strong challenges
with atmospheric humidity. Both lidar
and thermal imaging show degraded

performance in these conditions.
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Chapter 1

Introduction

1.1 Motivation

A major challenge in the development of autonomous vehicles is a highly accurate
perception pipeline during all weather conditions. This is necessary to reliably
implement fully autonomous vehicles. It is of great importance to gain extensive
knowledge about the dynamic environment and other road users. Moving objects
such as pedestrians, cyclists, cars are called dynamic. This information is essential
to navigate safely in public traffic. Autonomous vehicles are equipped with a
sensor set. The capturing and processing of the environment by high resolution
sensors is called environmental perception. Such a sensor set usually contains
lidars and cameras. Recently, thermal imaging was also incorporated by several
studies. Each of these sensors has advantages and disadvantages, which should be
combined profitably in the sensor fusion.

Autonomous vehicles have largely been developed and tested in warm sunny
regions where visibility is usually near perfect. Adverse weather conditions such
as those that occur in northern latitudes pose a major challenge to classic envi-
ronmental perception systems. Therefore, in the present work an approach to
incorporate lidar and thermal imaging into a fused perception is being developed
and evaluated.

As part of the development of this multi-modal object detection, a forward-
looking sensor configuration consisting of a automotive reference lidar and a high-
resolution thermal camera was used. The novel fused perception pipeline has the
goal to overcome adverse weather conditions and resolve bad visibility by incorpo-
rating daylight invariant optical measurements principles for autonomous driving.
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1.2 Structure of the Thesis

This work is divided into five central chapters. First of all, the following chapter
gives an explanation of the essential basics of the sensors used in this work. There,
the underlying technology for capturing the environment is explained. On the
one hand the lidar, on the other hand the thermal imaging. Subsequently, the
sensor data fusion will be described and the processing chain from measurement
to perception will be elaborated in more detail. The following section focuses
on fusion architectures, highlighting high-level, feature-level, and low-level fusion
systems and basic understanding of neural networks which will be used for feature
extraction. The third chapter is used to define requirements and present the best
possible solution. Chapter four focuses on the implementation and evaluation
of transfer learning to overcome the domain gap in the thermal domain. The
fifth chapter focuses on evaluation different weather conditions and showing the
performance of thermal imaging in adverse weather. Chapter six summarizes the

knowledge gained and gives an outlook on future expansions.



Chapter 2

Fundamentals

2.1 Sensors for Vehicle Environmental Perception

Thermal Imaging

Visual cameras that capture visible light have been the standard imaging device
in most applications such including driver assistance systems. But there are some
drawbacks to use these cameras. The colors and visibility of objects depend on
an energy source such as the sun or artificial light. Therefore, the main challenge
is that the images depend on the illumination, changing intensity, color balance,
direction. In addition, nothing can be captured in complete darkness. In the mid-
and long-wave infrared spectrum (3-14 ym), radiation is emitted by the objects
themselves, with wavelength and intensity depending on temperature. They do not
depend on an external energy source. Thermal imaging cameras take advantage
of this property and measure radiation in parts of this spectrum. [11] Figure
shows the same scene at night captured with a far infrared camera and a standard

rgb automotive camera.
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(@) (b)

Figure 2.1: Thermal Image and RGB Image from the Same Scene at Night. [E]]

For the lenses of thermal imaging cameras, a non-glass material has to be uti-
lized to account for the very low transmissivity of glass to thermal radiation. Ger-
manium is the most popular of these materials. Germanium is a metalloid material,
grayish-white in color, that is nearly completely transmissive to the infrared spec-
trum and reflective to the visible spectral range. Germanium has a comparatively
high price, in consequence of which the dimensions of the lens are very significant
importance and limiting the use of wide angle lenses with only up to 75 © in
automotive applications. [9]

Figure 2.2: Flir ADK - Automotive Thermal Camera. [E]]
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Lidar - Light Detection and Ranging

Lidar is a sensor based on an optical measurement method. The distance can be
determined by means of light pulses emitted by the sensor itself. Compared to the
Radar, the Lidar uses electromagnetic radiation in the infrared spectrum.

In the sensors used in the vehicle a measurement according to the "Time of
Flight" principle is usually applied. The duration from the emission of the light
pulse to the reception of the backscattered beams is proportional to the radial
distance between the sensor and the detected object. Since the distance from mea-
suring system to the object has to be completed both on the way there and on the
way back, time t and the speed of light cy have to be divided by two as shown in

equation [2.1]

co-t
d= 5 (2.1)

The propagation properties of the wavelength with which the distance is mea-
sured in the Lidar sensor results in a comparable detection of object structures such
as a camera or the human eye. Only non-hidden objects in the direct field of view
can be detected. The big advantage of the short freuency at about 350THz is the
possibility to detect small objects as long as a laser beam hits the object. The short
wavelength enables a very high resolution, which is usually only mechanically
limited by the scanning method.[26]

Figure 2.3[ shows the mechanical construction of a lidar sensor. It contains 64
separate lasers, which cover a vertical field of view from 2°to -24.8°. This measure-
ment setup rotates several times per second around the z-axis and thus allows the
surrounding area to be captured. In this case, the horizontal resolution is deter-
mined by the sampling rate and the rotational speed. The vertical resolution of the

the field of view divided by the number of lasers.
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Figure 2.3: (a) Scanner frame axes. (b) Scanner layout. (c) Scanner Parameters in Vertical Plane. (d)
Scanner Parameters in Horizontal Plane.[13]

Often there are several objects in one measuring channel, but with a sufficiently
large distance, several objects can be detected by appropriate evaluation proce-
dures. In this case we speak of a multi-echo measurement, which is shown in
figure This enables the multi-target capability of the sensor. At a high attenua-
tion, e.g. due to fog, water droplets and dust, corresponding pulses are reflected at
these, as shown in figure The actual object (car) can still be detected correctly.

signal strength

4

time

Figure 2.4: Multi-echo measurement a lidar sensor[14]
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The proportion of transmitted radiation is referred to as the transmittance. The
attenuation is generally composed of absorption, scattering, diffraction and reflec-
tion and depends on the wavelength. A major challenge in laser measurement
technology is to detect the energy after reflection from an object, which is very
limited due to the eye safety requirements. It should be noted that the object, sim-
ilar to a Lambert reﬂectmﬂ usually radiates its energy diffusely into half the solid
angle (180°).[26]

1The Lambertian law (also Lambertian cosine law) describes, formulated by Johann Heinrich
Lambert, how the radiation strength decreases with a flattening beam angle due to the perspective
effect. If a surface follows Lambert’s law and the radiance of the surface is constant, the result is a
circular distribution of the radiant intensity.
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Figure shows the resulting point cloud of a high-resolution rotation lidar.
In this case, the sensor is mounted on the roof of the measuring vehicle, rotates
mechanically and can thus completely detect the environment horizontally. The

intensity of the reflection is represented by the color of the points.

Figure 2.5: Visualisation of a high resolution Lidar point cloud in foggy weather.
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2.2 Convolutional Neural Networks

Principles

Deep learning essentially refers to the use of neural networks with many hidden
layers. In theory, a single hidden layer is sufficient to represent any function to any
degree of accuracy, but may however require an infinite number of neurons. Using
multiple hidden layers can be motivated by comparing neural networks to logic
circuits. The number of units needed to represent some functions decreases as the
depth of the circuit increases. More complex functions can therefore be represented
by fewer neurons when the depth of the network is increased.

The artificial neuron

I

Figure 2.6: Principle of an Artificial Neuron.

The basic computational building block of a neural network is the artificial neuron,
depicted in Figure It takes a fixed number of scalar input values, represented as
the elements of a vector x and outputs a single scalar value y. Each input position
of the neuron is associated with a scalar parameter called a weight, represented
here as the elements of the vector w. It is these weights that constitute the param-
eters of neuron, and are what is adjusted when the neuron is learning. The com-
putation performed by the neuron consists of two steps. The first step computes a
linear combination of the input values and their corresponding weights, which is
equivalent to the dot product of these two vectors. The second step is performed
by feeding the result of the first step through an activation function. The output
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from the second step is then declared the final output of the neuron. Commonly
used activation functions include the sigmoid shaped logistic and hyperbolic tan-
gent functions. For deep neural networks, the ReLU (y = max(x,0)) activation
function is a popular choice. The activation function introduces a non-linearity to

the output of the neuron, making it capable of non-linear approximations.

Layers

Several neurons can be used together when more than one output dimension is
needed, such as in multi-class classification. Each neuron’s output then corre-
sponds to a single dimension in the output space. Which can be represented by a
layer consisting of as many neurons as the desired output dimension. And each
neuron is given an input vector and carries out independent computations to gen-
erate its output. With a fully connected layer, i.e., if each neuron in the layer
receives inputs from all neurons in the previous layer, the computation performed
can be described by a vector-matrix multiplication followed by an element-wise

application of the activation function.

Convolutional Neural Networks

Convolutional neural networks represent by far the most popular type of neural
network when it comes to image processing. While the underlying mechanisms
are the same as for normal feed-forward neural networks, the convolutional net-
work utilizes two different types of layers with several special properties that have
made them good at the task of image processing. Namely, the convolutional layer.
Within a convolutional layer, where each neuron is only given a small local win-
dow of input on which to carry out its calculations. The spatial window that is
visible to a given neuron is called its receptive field, and the convolutional layer
significantly reduces the receptive field of neurons in comparison to a fully con-
nected layer. In a convolutional layer, the receptive fields of all neurons are tiling
the input vector in overlapping windows. This kind of constraint is motivated by
the realization that in a signal with spatial correlation, like an image, nearby loca-
tions are more likely to be correlated than locations farther apart. However, in the
example of an image where the position of an entity within the image is random,
the above implementation of the convolutional layer means that each neuron in the
layer would have to be trained to recognize the same object. Doing so allows for
an optimization that significantly reduces the number of parameters in the convo-
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lutional layer. While each neuron in the same layer can share its weights with each
other. In other words, the computation performed by a convolutional layer can be
efficiently implemented as a convolutional operation, which convolves a filter of
values representing the shared weights of the neurons in the layer with the input
image. This convolution layer effectively targets a highly important issue in image
processing, namely, translational invariance. That it is applied to all possible lo-
cations in the image means that the filter is able to identify patterns in the image
independent of their location. Practically, this means that a convolutional layer car-
ries out a convolution of the input with filters learned during training. However, a
single convolutional layer typically contains many filters, each of which produces
its own output. By doing this, it allows the layer to learn to extract several differ-
ent types of features from the input. When applied to an image, the output of a
convolutional layer is known as a feature map. Basically, this is a multi-channel

image where each channel corresponds to the output of each filter.

Deep Neural Networks

A major difficulty in performing image analysis is the need to create features that
extract unique features from the image that can be reliably used by a classifier. An
extremely timeintensive task, and frequently the one that makes or breaks a good
system. Nevertheless, neural networks with many hidden layers have shown that
they can solve this problem by being able to automatically extract such features
when adequate training data is available. Traditionally, these types of deep net-
works have been known as difficult to train because the gradient wanished as it
propagates through many layers and eventually disappears due to the many pa-
rameters of the model. However, recent advances in hardware as well as architec-
tural inventions have made it possible to train these deep networks. A technique
that has demonstrated that this problem can be addressed is the rectified linear
unit (ReLU) activation function, defined as ReLU(x) = max(0,x). In contrast to
sigmoidal activation functions, ReLU enables the gradient to propagate without
being vanished by the activation function. Deep neural networks have demon-
strated several highly interesting properties in the way information is extracted
from the input. Within a trained network, the initial layers learn to detect very
general features, which are assembled into higher level feature detectors by sub-
sequent layers. Convolutional networks are applied to image data are particularly

likely, as this information is easy to detect.
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2.3 Sensor Data Fusion

Goals of sensor data fusion

The basic objective of sensor data fusion is to bring together different independent
sensors in such a way that the advantages of different measuring principles and

methods compensate each other’s weaknesses.

Redundant Information

If several sensors provide information about the same object, this is referred to as
redundancy. This additional information can be used to improve the known object
properties. Different physical measuring principles have different occurring errors.
This behaviour has to be considered by using respective measurement models.
Redundant environmental sensors can lead to an increase in fault tolerance and
increased system availability. If individual sensors fail, data of sufficient quality
can still be made available.[26]]

Complementarity

Environmental sensors, which provide different but additional information to the
fusion, are called complementary. On the one hand, this can be done by different
visual ranges of similar sensors, which improve the detection. This way, problems
with the association at the edge of the sensor detection range can be solved[7]. If
the data refer to the same object, the gathered information can be increased by
detecting different properties. The use of different sensor measurement methods
can lead to an increase in the robustness of the overall system, as different char-
acteristics of the objects can be detected. For example, the Lidar is able to detect
outer contours in the direct field of view, whereas the Lidar enables the detection
of features beyond the contour edges.[26]



2.3. Sensor Data Fusion 15

Process of Sensor Data Fusion

The sensor data fusion is divided into main components, which are explained

below. These are generally valid for single sensor as well as multi sensor systems.

Signal Processing and Feature Extraction

In the signal processing step with subsequent Feature extraction, environmental
information is captured from the sensors. In the first step of the measurement,
the signals are recorded by the sensor, which also contains noise. The raw signals
recorded this way are converted into physical quantities, which form the raw data
of a sensor. The further steps of signal processing includes the interpretation under
consideration of the physical properties. Afterwards, characteristics are extracted
from the raw data. Feature hypotheses can then be derived to object hypotheses.
However, this entails the risk of misinterpretations. Basically, the data of all sen-
sors must be transformed into a common coordinate system. Possible errors in the
alignment can lead to errors in the assignment. Different measurement methods
of the sensors lead to different feature hypotheses. For example, the outer edge
of a vehicle is detected by laser sensors, but only the hot wheels are detected by
thermal camera. This can also occur with sensors of the same type, since differ-
ent viewing angles provide different measured values. In a multisensor system,
different sensors ideally map the same object. Due to unequal resolution and mis-
interpretations, the characteristics can differ from each other.[26] Figure @] shows
the described procedure.
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:Noise

Enegery
>
. . Raw data ) .
Signal reception »|  Signal processing Measurement
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Assump-tions """""""""" »  Feature extraction Perception
Feature

Figure 2.7: Process chain of environmental perception with subsequent feature extraction

Classification

In the classification step, the object hypotheses are assigned previously defined
object classes based on given properties of the data. These classifications are used
to distinguish between cars and cyclists and pedestrians, for example.

Analysis of the situation

When using the fused data to take over driving functions, an analysis of the sit-
uation becomes necessary. This is the link between the merged environment ac-
quisition and the assistance functions. The analysis must then provide the basis
for intervention decisions, taking into account the performance of sensors and fu-
sion.[26]
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Multi-sensor Data Fusion Architectures

Sensor fusion is generally divided into three different architectures. They are also
referred to as central, decentral and hybrid fusion. These are based on the degree
of processing of the sensor data and the level at which they are merged.

In a low-level fusion architecture, there is no pre-processing of raw data at the
sensor level. Each sensor transmits its raw data to the fusion module, which then
performs a low-level fusion of the raw data from all sensors. The merged raw
data is then provided as input for a central tracking algorithm. This architecture
is sometimes referred to as a centralized tracking architecture. A basic low-level
fusion architecture is shown in Figure The advantage of a low-level fusion is
that all relevant data still exists and is taken into account in the further processing.
Abstraction levels such as features result usually in a loss of information. Also it is
possible to classify the data very early by merging raw data from different sources.
The merged measurements selected for input into the tracking algorithm already
have a high probability of being a valid measurement of a relevant object for a
particular application. However, low-level fusion requires a large database and
can be complex to implement in practice. Adding a new sensor to the architecture
requires significant changes to the fusion module because the raw data comes in

different formats and from different sensor types.

Tracking

A

Fusion

A A T
[ Raw Data

Sensor 1 Sensor 2 Sensor N

Figure 2.8: Low-Level-Fusion

In the case of fusion at feature level, certain characteristics are extracted from
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the raw data by a preprocessing step before the data fusion is performed. The
extracted characteristics from a particular object model are then used as input for
the tracking algorithm. The architecture of the fusion is shown in Figure The
main advantage of feature-level fusion is its ability to reduce the bandwidth of
sensor data for the fusion. This is possible because the extracted feature data
is much smaller than the raw data of the sensor. However, feature-level fusion
retains the ability to preprocess and classify sensor data such as a low-level fusion.
This reduction in bandwidth results in a significantly reduced runtime of the entire
fusion. In addition, parallel processing of the raw data is possible, which further
decreases the runtime of the overall system.

Tracking
A
Fusion
A A A
- S
Feature Feature Feature
. —
A A A
Raw Data Raw Data mesmmm  Raw Data
Sensor 1 Sensor 2 Sensor N

Figure 2.9: Feature-Level-Fusion

High-level fusion architecture is the opposite of low-level fusion. Each sensor
independently performs the steps from the raw data to the tracking algorithm and
generates an object list. In the fusion module, these objects are then linked to one
of the following objects and lead to a track-to-track fusion of sensor-independent
objects. A basic fusion at this level is shown in Figure The main advantage
of high-level fusion is the modularity and encapsulation of sensor-specific details.
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All sensor relevant details are kept on the sensor level so that the fusion module
can process the data abstractly. This makes the high-level fusion architecture ad-
vantageous for applications in which modularity and simplicity of design are of
primary importance.[1]

Fusion
A A A
Tracking Tracking Tracking
A A A
Raw Data Raw Data EEmmm Raw Data
Sensor 1 Sensor 2 Sensor N

Figure 2.10: High-Level Fusion






Chapter 3

Requirements and Design

The development of Car, Bicycle and Pedestrian Detection in Adverse Weather
Conditions by using Lidar and Thermal Imaging is subject to some requirements
which will be presented in the next section. Thermal Imaging and Lidar have
different raw data, Lidar provides a high resolution 3D point cloud. Since this
work focuses on sensor domain, the complexity is reduced to a 2D projection.

3.1 Sensor Data Fusion Architecture

Sensor Data Fusion in adverse weather conditions is well studied in [23].

EVALUATION USING A NET TRAINED WITH ADVERSE-KITTI

approach classes
feature encoder | fusion approach dataset car | truck | tram | pedestrian | cyclist | van | mAP
VGG16m Early Fusion Kitti 0.732 | 0.784 | 0.588 0.390 0.535 | 0.621 | 0.609
adverse-Kitti || 0.689 | 0.657 | 0.433 0.343 0.413 | 0.522 | 0.510
Middle Fusion Kitti 0.738 | 0.775 | 0.606 0.414 0.541 | 0.628 | 0.617
adverse-Kitti || 0.697 | 0.667 | 0.474 0.363 0.431 | 0.539 | 0.529
Late Fusion Kitti 0.736 | 0.765 | 0.681 0.425 0.519 | 0.644 | 0.628
adverse-Kitti || 0.698 | 0.663 | 0.488 0.372 0.408 | 0.547 | 0.529
VGG16 Early Fusion Kitti 0.795 | 0.899 | 0.888 0.538 0.752 | 0.806 | 0.780
adverse-Kitti || 0.766 | 0.826 | 0.745 0.498 0.679 | 0.719 | 0.707
Middle Fusion Kitti 0.801 | 0.922 | 0.915 0.522 0.794 | 0.817 | 0.795
adverse-Kitti || 0.772 | 0.856 | 0.778 0.495 0.705 | 0.732 | 0.723
Late Fusion Kitti 0.798 | 0.907 | 0.962 0.556 0.758 | 0.839 | 0.805
adverse-Kitti || 0.766 | 0.851 | 0.801 0.506 0.690 | 0.758 | 0.729

Figure 3.1: Sensor Data Fusion Architectures in Adverse Weather Conditions. [23]

The results shown in figure 3.1 and present similar performance with the late
fusion having the highest mean average precision and the mid-level fusion the sec-

ond highest. With this knowledge further studies of fusion architectures are not

21
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considered to be necessary. The low-level fusion is used because of its simplicity
and the know performance. Figure.2]shows the low level fusion of lidar and cam-
era. The lidar point cloud is projected onto the camera and a multi-channel image
is generated, which additionally contains all depth information of the lidar sensor.
An additional upsampling of the point cloud is possible in this case and should
be done. The concatenated image channels are fed into feature encoder network,
which determines bounding boxes and object classes considering the information
from both sensors.

determine ROI

MLP \ | car/pedestrian/... |

input image feature encoder features
e.g. VGG16

Figure 3.2: Low Level Sensor Data Fusion of Lidar and Camera.

In the high-level fusion, shown in Figure [3.3|finder the feature extraction takes
place completely independently. Only the final feature maps are fused in the last

step to generate bounding boxes and their object classes.

determine ROI

input image feature encoder image features
e.g. VGG16

/ object (yes/no)
%) [ @ —> | offset (Ax,Ay,Ah,Aw)
/ global features MLP \ car/pedestrian/...

depth data feature encoder depth features
e.g. VGG16

Figure 3.3: High Level Sensor Data Fusion of Lidar and Camera.
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The recently proposed solely upsampling based approach in proves to be
the most accurate low-level fusion and one of the most accurate methods overall
in the autonomous driving KITTI vision benchmark benchmark while still
maintaining simplicity and is therefore selected for this work. Figure shows
the procedure of this method. In the first step, the raw data of the point cloud
projected in the camera plane are visible. Which is very sparse.

(projected LiDAR point clouds)

orithm 1

Figure 3: The final upsampled depth map

Figure 3.4: Weighted upsampling of the lidar point cloud.

Following the projection, a sparse 2D depth map is obtained, to be used in the
next step. Since the lidar depth map is sparse, it is necessary to extrapolate it.
Therefore, by applying the weighted depth computation algorithm (Algorithm 1),
tigure 3.5/ shows the described pseudo code. It is possible to create an image with
full depth. However, as can be seen in Figure 1, only a minority of the pixels have
non-zero values. Therefore, these pixels are called value pixels and other pixels are
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called empty pixels. This particular step is to fill in the empty pixels. With respect
to the structure of lidar data, as shown in Figure 1, the sparseness of lidar data in
the vertical direction is larger than that in the horizontal direction. Consequently,
in order to obtain a monotonic depth map, a function that fills all the empty pixels
by searching the entire neighborhood of the pixel with longer vertical step than the
horizontal neighborhood is used. However, for each empty pixel, our algorithm
searches backward and forward to find all the valued pixels. When the number of
valued pixels found is greater than zero in both directions, it assigns a value equal
to the weighted average of all valued pixels found, unless it moves to the next
pixel without giving it a value. Once the empty points are filled, a complementary
algorithm (Algorithm 2), figure (3.6 visualizes the described pseudo code, is used
to make the shapes in the depth image more coherent and to fill the small empty
points (see Figure 3). A rectangular area around an empty pixel is examined by
this algorithm, and if the number of evaluated pixels is greater than a threshold,
the empty pixel is given a value equal to the weighted average of all evaluated
pixels. A threshold value must be chosen so that every inner pixel of a shape is
filled. Similar to Algorithm 1, the weighted structure in Algorithm 2 aims to be
smooth but computationally expensive even with large steps.[17]
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Algorithm 1 Weighted Depth Filling Algorithm

S, = step length for X-axis
Sy = step length for Y-axis
for Each pixel in depth map do
if Pizelvalue = 0 then
S=0
Sc=0
for searched pixels forward with S-x footstep do
if Pizelvalue # 0 then
d + distance between searched pixel and reference pixel
S + S + (1/d) x(searched pixel value)
Scl « Sc1+(1/d)
end if
end for
for searched pixels backward with S-x footstep do
if Pizelvalue # 0 then
d + distance between searched pixel and reference pixel
S + S + (1/d) x(searched pixel value)
Sc2 + Sc2+(1/d)
end if
end for
14 1+2
end if
if Scl1 > 0 & Sc2 > 0 then
Pixel value<— S/(Scl + Sc2)
end if
end for
Do the same for Y-axis

Figure 3.5: Weighted Depth Filling Algorithm. [17]

Algorithm 2 Complementary Weighted Depth Filling Algorithm

Ss = step length for Searching
for Each pixel in the depth map do
if Pizelvalue = 0 then
§=0
S.=0
for search a sqaure around the pixel SsxSs do
if Pizelvalue # 0 then
d <+ distance between searched pixel and reference pixel
S < S + (1/d)x(searched pixel value)
Se  Sc+ (1/d)
end if
end for
14 1+2
end if
if Sc/(Ss x Ss) > Thresold then
Pixel value«— S/Sc
end if
end for

Figure 3.6: Complementary Weighted Depth Filling Algorithm. [17]
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3.2 Object Detection

Deep Learning based object detectors are split into two categories over the past few
years. On the one hand single stage detectors which do everything from the input
image to the final bounding box in a single stage. However, two stage detectors
have a separate stage at the end to do the sparse prediction. They are usually able
to achieve a slightly higher accuracy at the high computational cost. Figure
visualizes the different architectures. As this project focuses on a real-world appli-
cable pipeline the single-stage-detectors is chosen in regards of the computational

cost.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.7: One-Stage Detector vs. Two-Stage Detector. [5]

The most well known single stage detector is called YOLO (You Only Look
Once) and is continuously improved with small changes to the architecture and
training. As shown in figure YOLO consist out of a backbone, neck and head.
The input Image is usually a 3-channel image. The backbone which is usually
an ImageNet pretrained classifier. The more recent version YOLOv4 introduces
a custom backbone, called the CSPDarknet53. The neck is considered to be the
layers between backbone and head, and these layers are usually used to collect
feature maps from different stages. Usually, a neck is composed of several bottom-
up paths and several top-down paths. The head stays unchanged compared to
YOLOvV3 [24].

Figure [3.8) visualizes the architecture of YOLO. The backbone at the beginning
for feature extraction and the object detection layer in three different scales as well
as the respective shortcut connections to these are highlighted.
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Figure 3.8: Architecture of YOLO.[17]

As discussed, the majority of improvements compared to older version is due
to small changes. These improvements are either part of training or a small and
fast post-processing step. During training the “Bag of Freebies (BoF)” consist of
CutMix and Mosaic data augmentation, DropBlock regularization and Class label
smoothing. Furthermore, Self-Adversarial Training is applied, the grid sensitivity
is eliminated, multiple anchors for a single ground truth are used and Random
training shapes are used. The Bag of Specials (BoS), small improvements with
a high return, are based on a new activation function (Mish), Cross-stage partial
connections (CSP) and Multiinput weighted residual connections (MiWRC).[5]

Scaled-YOLOV4 (green highlighted in figure was chosen for this work, the
latest and most accurate version so far. The Scaled YOLOV4 lies on the Pareto opti-
mality curve. For every neural network , there is always such a YOLOv4 network,
which is either more accurate at the same speed, or faster with the same accuracy.
YOLOWV4 is the best in terms of speed and accuracy today reaching up to 1774 FPS
on a modern GPU [25].
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MS COCO Object Detection
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Figure 3.9: MSCOCO Object Deetection Benchmark Evaluation.

Especially noteworthy are the new introduced so called CSP connections which
are extremely efficient, simple, and can be applied to any neural network. The
general idea is that half of the output signal goes along the main path to generates
more semantic information with a large receiving field and the other half of the

signal goes bypass in order to preserves more spatial information with a small
perceiving field.
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3.3 Pre Training Deep Neural Networks for Thermal Imag-
ing

Deep neural networks need a very large amount of training data to avoid overfit-
ting which describes the learning of the training data instead of it’s features. An
overfitted model will perform poorly on non-training data. Such amount of data
is usually not available for the specific object recognition task, possibly due to the
long time it takes to manually annotate examples with location information. In an
attempt to overcome this, essentially all of the reviewed work on object recognition
uses some form of pre-training, which allows the base network to be trained in
a different way before it is trained on the recognition task. Most commonly the
MSCOCO dataset presented earlier. Here, the intuition is that during pre-training,
the network learns very general features that are also applied to similar tasks. It
can then use these features to be subsequently trained on the limited amount of
recognition data available to the task.

As discussed in [27] thermal object detection in the domain of autonomous
driving lacks the ability to generalize. Performing poorly when trained on the
KAIST Dataset [6] and tested on the Flir Dataset [10]. The small thermal and
non-diverse thermal datasets are not sufficient in order for the network learn the
high level appearance of the thermal domain. Furthermore [2] notes that "there is
an considerable lack of work undertaken for cyclist detection using multi-spectral
data".

Therefore further consideration are being proposed in order to overcome the
domain gap especially for underrepresented classes such as cyclists. Creating a
diverse dataset at the level of MSCOCO in the thermal domain is an almost im-
possible task. Since it consists of more then 200.000 completely different images
with 1.5 million pixel accurate object bounding boxes. For this reason, the follow-
ing chapter [ explores ways to adapt the dataset to the thermal domain and thus
exploit the available labels and diverse scenes.






Chapter 4

Transfer Learning for Thermal Imag-

ing

Transfer learning is when a model developed for one task is reused to work on a
second task. Object detection networks are usually pretrained on the MSCOCO
dataset including more then 200.000 labeled images and 1.5 million object in-
stances. [22] and fine tuned on a smaller set of application specific data. As
discussed in 3| opens the thermal imaging domain a gap.

The previously mentioned FLIR dataset, an example image shown in

31
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Figure 4.1: Example Image from the Dataset with Detected Objects.

is one of the very few and most recent labeled automotive dataset in the thermal
domain and therefore used for the following considerations. It is acquired via a
RGB and thermal camera mounted on a vehicle with annotations created for 14.452
thermal images. It primarily is captured in streets and highways in Santa Barbara,
California, USA from November to May with clear-sky conditions at both day and

night.
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4.1 Generating Artificial Thermal Images

ThermalWorld and Thermal GAN

In the following section a new method is proposed to close the domain gap. Previ-
ous work has dealt with methods to generate artificial thermal images, which have
shown to improve re-identification networks. In this context, the ThermalWorld
dataset was also created, which contains thermal images as shown in the form
of absolute temperate and

Temperatur (°C)

Figure 4.2: Example Image from the Dataset with the Corresponding Temperature.

semantic segmentations as seen in figure [20]

Figure 4.3: Example Image from the Dataset with the Corresponding Semantic Segmentation.
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This combination of semantic segmentation, which assigns a class to each pixel,
makes it possible to extract the absolute and relative temperature distribution for
each class. Figure 4.4 visualizes the temperature distribution of all classes in the
entire ThermalWorld dataset.

ThermalWorld Absolute Temperatur per Class
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background dog cat house car_parking car_driving truck bus pedestrian

Figure 4.4: Absolute Temperature Distribution of each class in the ThermalWorld dataset.

The original work proposed a constrained GAN (Generative Adversarial Net-
work) which is able to generate artificial thermal images from a temperature seg-
mentation and rgb images. This is being done by predicting the relative tempera-
ture gradients instead of its absolute temperature. It is assumed that the thermal
segmentation that provides average temperatures of the emitting objects in the
scene could resolve possible ambiguities. [19]

Exploiting Panoptical Labels

The newest category of MSCOCO labels is called panoptical labels. These are a
combination of semantic and instance segmentation, taking into account the stuff
and things categories, which assign a meaningful class to each pixel. Figure
visualizes these panoptical labels and their corresponding rgb images.
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Figure 4.5: Panoptical Labels and Corresponding Images from the MSCOCO Dataset.

It can be seen that they offer an accurate description of the scene. Figure
visualizes the difference between semantic, instance and panoptic segmentation. It
can be clearly seen, that panoptic is an advanced combination of both.

(a) image (b) semantic segmentation

1l 4

(c) instance segmentation (d) panoptic segmentation

Figure 4.6: RGB Image, Semantic Segmenation, Instance Segmentation and Panoptic Segmentation
of the same Scene.

These pixel-precise panoptical labels are combined in the next step with the pre-
viously extracted distribution functions of the different classes. These are approx-
imated by a normal distribution, from which a sample is drawn for each instance
in the image with the associated class. We start with a background temperature
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for the image as shown in figure [£.7]
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Figure 4.7: Absolute Background Temperature Distribution and Example Values.

Subsequently, based on the background temperature, a sample for the relative
temperature belonging to the respective class is drawn. In this way, a dense and

realistically distributed thermal temperature segmentation is created.
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Figure 4.8: Relative Temperature Distribution and Example Values of a Person.
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This procedure is applied to the entire MSCOCO dataset in the following step.
In this way, it receives additional thermal annotations. This large scale thermal
segmented dataset is then extended with the constrained ThermalGAN to complete
thermal images.

The following figure 4.9/ shows the input (RGB image) and the output (artificial
thermal image). Especially persons are displayed very realistically, which is most
likely due to the training of the Thermal GAN with focus on person re-id. However,
as seen in (b), it also fails slightly and produces images that are difficult to interpret
in some situations. In addition, the images lose some of their resolution and detail.

(g (h)

(k)

Figure 4.9: MSCOCO Images and Corresponding Generated Thermal Images

4.2 Evaluating MSCOCO Performance

In the following, two identical Scaled-Yolov4-CSP networks were trained. In one
case, the network was pre-trained with the normal MSCOCO dataset and tuned to
the new domain fine with the Flir thermal dataset. In the second case, the network
was additionally pre-trained with the fake thermal images. In addition, the images
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lose some of their resolution and detail.

In the following diagram the evaluation by means of the test data set is
visible. In particular, it is noticeable that the bicycle has a much lower precision
than the rest.
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Figure 4.10: Average Precision of MSCOCO + Flir.

Additionally in figure[4.11] the detailed Precision vs. Recall graph, which shows
the problem even more clearly. This exactly matches the previously described
problem over in the thermal domain.
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Figure 4.11: Precision vs. Recall of MSCOCO + Hlir.

4.3 Evaluating MSCOCO-thermal Performance

In contrast, the following evaluation is carried out using additional artificial ther-
mal images. It is clearly visible that the underrepresented class of the bicycles in
the training data set cannot be learned sufficiently in with the normal training. In
contrast, with additional artificial thermal images, the network was able to learn
a more general representation of the thermal domain and was thus able to adapt
much faster with less data to new problems.
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Figure 4.12: Average Precision of MSCOCO thermal + Flir.
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Figure 4.13: Precision vs. Recall of MSCOCO thermal + Flir.
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Evaluating Thermal and Lidar Imag-
ing in Adverse Weather Conditions

Figure 5.1: Geographical Diversity of the SeeingThroughFog Dataset. [4]

41
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Most of the data sets and test areas of autonomous cars to date take place under
optimal weather conditions. However, some work is taking place on domain adap-
tation and weather conditions. Recently, the project "Seeing Through Fog Without
Seeing Fog" produced a series of publications on the topic as well as a matching
dataset that includes a variety of sensors and weather conditions. Of particular
interest for this work is the fact that thematic images are recorded and included,
but have not been used by anyone.

Figure 5.2|shows the sensor setup. Relevant is the thermal camera and the lidar

on the roof.
Gated Camera Stereo Camera Velodyne HDL64-S3 Weather Station
BrightwayVision Aptina AR0230 903nm, 64-layer Airmar WX150
808nm, 1280x720 ‘ 1920x1080

= » j FIR Camera

e | Axis Q1922
- T 640x480, 100mK

Road-Friction Sensor
Vaisala Prototype

Velodyne VLP32
903nm, 32-layer

Propreatary Radar

Figure 5.2: Sensor Setup on the Project Car.

This data set forms the basis for the evaluation of Adverse Weather Conditions
in the further course. The network is trained with the corresponding training data
set and tested with the existing test split.

It was also the goal to use additional self-recorded data, however, in this case a
problem has arisen. Already with the relation between camera field of view and the
lidar in the data set, the solely depth upsampling does not deliver perfect results.
With the more than three lower lidar of the aalborg university the upsmaplling
failed completely. The SeeingThroughFog dataset uses the HDL-64e lidar [4] scan-
ner with a vertical resolution of 0.4°[15]. The lidar scanner HDL-32e at Aalborg
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University considered for this project has a more then 3 times lower resolution of
1.33°[16] which results in only a few lays being inside the scene which.

The following is the analysis of Adverse Weather Conditions. As a benchmark,
RGB + Lidar is used with the same procedure to show the advantages and disad-
vantages of the different spectra.

5.1 Dense Fog Daytime

Thermal and Lidar

In the dense fog during the day failed far infrared completely. No detail of the
environment can be guessed and the image does not contain any relevant informa-

tion.

Figure 5.3: Image ID: 200, Thermal Imaging fails in dense fog.

In the dense fog during the day failed far infrared thermal imaging and near
infrared lidar sensors both fail. No detail of the environment can be guessed and

the image does not contain any relevant information.
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Figure 5.4: Image ID: 200, Also lidar fails ins combination with thermal imaging in dense fog.

The following image shows an intersection within the downtown area with just

a person visible. This scenario represents the best case in dense fog.

Figure 5.5: Image ID: 2190, Thermal Imaging fails in dense fog and can only correctly see close
persons.

During the day in dense fog, the combination of thermal imaging and lidar
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achieves an average precision of only 0.004. Bicycles and cars can not be detected
at all.
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RGB and Lidar

RGB and lidar, on the other hand, can be people reasonably well, and cars even
better. Only bicycles are a problem in this example, but this is most likely due
to the fact that there is no representative number and quality of bicycles in heavy
SNOW.
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Figure 5.6: Image ID: 200, RGB shows a clear image of the envivroment compared to thermal imag-
ing.

Figure 5.7: Image ID: 2190, RGB shows a clear image of the envivroment compared to thermal
imaging.
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Figure 5.8: Image ID: 2190, Lidar captures mostly noise in these conditions.

5.2 Dense Fog Nighttime

Thermal and Lidar

Dense fog at night shows the same behavior as during the day. Interestingly, how-
ever, with a higher precision for the few correctly detected persons.
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In dense fog at night, the sitation for thermal imaging does not improve much

compared to rgb. On the other hand, the lidar is able to record at least some
relevant detections.
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RGB and Lidar

As before, the visible domain has clear advantages, especially for cars and bicycles.
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Figure 5.9: Image ID: 900, Lidar captures mostly noise in these conditions.
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5.3 Light Fog Daytime

The effects of the combination of low ambient temperature and high humidity

described above also make the lidar/thermal combination virtually blind here.

Thermal and Lidar
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RGB and Lidar

Previously seen effects are again visible here, that in the visible domain objects can
still be perceived.
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5.4 Light Fog Night

Thermal and Lidar
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RGB and Lidar
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5.5 Snow Day

For the sake of completeness, snow by day and by night is also shown below. It
can be seen that the basic effects of water particles in the air are the same and
reducing the thermal imaging visibility. However, dense snow flakes have a much
smaller impact on the thermal domain compared to light fog. The direct view
to the environment and it’s far infrared emitting surfaces between the snowflakes
seems to be advantageous compared to fog where the radiations needs to pass
through the water molecules.
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5.6. Snow Night
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10 Mean Average Precision: 0.323

person bicycle car
name

RGB and Lidar

Precision vs. Recall

1.0
class
—— person
—— bicycle
0.8 — car
0.6
T
O
<
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

precision



5.6. Snow Night

Mean Average Precision: 0.399

0.8

0.6

ap

0.4

0.2

person bicycle
name

0.0







Chapter 6

Conclusion and Outlook

6.1 Conclusion

A novel and improved training process for deep neural networks in the thermal
domain has been presented which is able to lead to faster training convergence and
compensate underrepresented classes.

The main conclusion of this work is that the combination of features from far
infrared and lidar images heavily suffers in any weather with water particles in
the air. With thermal imaging being mostly completly blinded in dense fog, while
with visible light it is still possible to capture the scene. However the results clearly
show that thermal imaging in combination with lidar is a strong combination for
pedestrian detection during the night on a similar level of actively illuminated
scenes which are captures with modern hdr imagers.

In addition to the analyses performed here [21] and [3] discussed that lidar has
major problem in adverse weather conditions such as snow and fog with partial
failures. Especially modern high resolution lidar sensors fail as shown in this work.
Furtgermore in [8] is the Light Transmission in Fog and specifically the influence
of wavelength on the extinction coefficient well studied. Wavelengths from 350 nm
to 1000 nm had the same behavior in fog, regardless of fog density or type. On the
other hand, above 1000 nm, differences may occur. For very dense fogs < 30 m and
in particular advection fogs, fog had an impact about 10% higher for wavelengths
in the infrared range. [8] These results fit very well with the results observed here
in this thesis in that both lidar and thermal imaging have much greater difficulty

in fog, rain, and snow.
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6.2 Outlook

There are still many fundamentals to uncover in the field of environmental sens-
ing for fully autonomous cars, and no one has yet found the perfect sensor set.
Contrary to the original expectations of this work, thermal imaging and lidar have
proven to be disadvantageous compared to classic rgb cameras in adverse weather
conditions. Especially interesting considering the high price of these two sensors.
Recent advances such as hdr imager have made their contribution, which can now
reliably capture dark scenes. However, previous work has already shown that
thermal imaging can significantly improve pedestrian detection in clear night con-
ditions. Considering the safety that autonomous vehicles need to achieve, thermal
imaging may have a place for this situation as well. just no particular advantages

in adverse weather.
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