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Summary

Where we started An autonomous vehicle or robot left to roam in the wild needs
to know where it can go, and what to avoid. This is especially challenging when
navigating outdoors and exclusively relying on images captured by on-board sen-
sors to interpret the robot’s surroundings. We specifically tackle two challenging
aspects of vision-based scene understanding for outdoor navigation:

First, the robot may cover vast areas, and encounter unfamiliar territory with
diverse terrain or previously unseen obstacles. With this in mind, for the purpose
of navigation, we argue that learning to detect specific scene elements based on
what the robot is expected to encounter - such as cars, pedestrians, or roads - is
overly restrictive and does not scale well outside of controlled, predictable envi-
ronments. Thus, we propose to parse scenes in functional rather than descriptive
terms, directly learning a general notion of driveability which can be broadly ap-
plied to any type of scene or application.

Secondly, the robot may operate at different times of day or year, thus fac-
ing unfavourable lighting or weather conditions which degrade its view. In this
case, relying on a single type of sensor is not sufficient: visible spectrum cameras
are easily blinded and depth or infrared images, while more reliable, may lack
useful appearance-based cues for scene understanding. Thus, we explore fusion
approaches for leveraging complementary features from these different modalities.

Where we wandered This work takes a fully supervised image segmentation ap-
proach, leveraging existing multi-modal datasets for training and evaluation. We
train a SegNet-based architecture to classify pixels into three driveability levels,
distinguishing between areas which are preferable, possible, and impossible to drive
on, and employ a soft labelling scheme which incorporates inter-class distances
during training. Additionally, rather than giving each pixel equal contribution
during learning, we present a loss weighting scheme which assigns less impor-
tance to pixels located along object boundaries or in the distance, as they bear less
relevance for driving decisions.

After training SegNet to predict driveability in visible spectrum images, we
explore the potential of infrared and depth modalities as complementary predic-
tors by integrating the network into a deep multi-branch fusion architecture, each
branch specializing in a particular modality. Modality-specific features are fused
across branches either in the middle of the network where spatial resolution is the
coarsest (mid fusion), after the decoding stage where a full-resolution prediction is



recovered (late), or both (dual). Fusion is performed by a small convolutional sub-
network which weighs each input modality at the feature-level before producing a
combined feature map: the network learns to selectively emphasize the most infor-
mative features from each modality. We compare deep fusion architecture variants
to an early fusion baseline which simply concatenates modalities at the input.

These methods are first developed and evaluated in isolation on two public
datasets: Freiburg Forest, which features RGB, pseudo depth, and near-infared
(NIR) images of unstructured forested environments, and Cityscapes, an urban
driving dataset with RGB and real stereo depth data. We then jointly validate our
soft labelling and loss weighting scheme by learning pixel-wise driveability across
a diverse combination of visible spectrum images from 8 datasets. Lastly, we show
that these learning strategies can be successfully applied to the proposed multi-
modal architecture: we use Freiburg Thermal, a large-scale RGB-thermal dataset,
for training, and assess generalization to out-of-dataset RGB-thermal captures.

Where we landed Our experimental results can be summarized as follows:
• we find that pre-training SegNet on descriptive classes, and adapting it to

learn driveability via transfer learning achieves higher recall for out-of-domain
obstacles than learning driveability from scratch, or mapping object labels to
driveability as a post-prediction step. We show that a consistent represen-
tation of driveability can be learned across a wide combination of datasets,
but that conflicting label definitions and semantic ambiguity causes frequent
confusion between areas which are preferable vs. just possible to drive on.

• when training SegNet under a soft ordinal labelling scheme, the network
learns to make less severe mistakes than when using a standard one-hot la-
belling approach. However, results hinge on the ranking definition used to
generate the labels, revealing a trade-off between mistake severity and accu-
racy. With safety in mind, we opt for an asymmetrical inter-class distance
metric based on squared log difference, which assigns the highest penalty
when mis-classifying obstacles as preferable to drive on.

• compared to a standard uniformly-weighted loss, our loss weighting scheme
shows mixed quantitative results depending on the dataset, but has a notice-
able qualitative impact, producing a more a smooth and cohesive segmenta-
tion, with loss of detail considered an acceptable trade-off for navigation.

• in Freiburg Forest’s unstructured forested environments, the addition of NIR
and pseudo depth improves segmentation, both in an early and deep fusion
configuration, with the most substantial gains brought by NIR. In Cityscapes’
urban scenes, the addition of real stereo depth only improves segmentation in
a deep fusion configuration, and we find depth completion to be an unneces-
sary pre-processing step in this case. For deep fusion, we find it beneficial to
fuse modality-specific features both at a middle and late stage in the network;
the RGB-thermal fusion results in our final experiment confirms the viability
of the approach, as well as the valuable properties of thermal imaging for
scene understanding.
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Chapter 1

Introduction

Awareness of one’s immediate surroundings is crucial for navigation. As humans,
we naturally understand what surrounds us and how to interact with different
parts of a scene, even when faced with new, unpredictable environments. Achiev-
ing human-level scene understanding for autonomous systems is an active field
of research, and requires developing robust computer vision methods which can
interpret raw sensory data into useful representations for real-world operation. In
this work, we tackle egocentric perception for outdoor navigation “in the wild”,
where a robot is likely to encounter a wide range of different scene geometries,
terrains and obstacles, yet should still be able to identify safe and suitable routes,
using on-board sensors capturing the scene from its own point of view. We investi-
gate how images of outdoor scenes can be parsed both in a useful way, specifically
considering the task of autonomous navigation, and a reliable way, by incorporating
multiple sensing modalities into the prediction.

1.1 Research directions

Outdoor scene understanding for navigation

In the automotive field, scene understanding primarily involves parsing urban
landscapes for driving on structured roads and negotiating traffic. In the broader
context of mobile robotics, a vehicle may operate in much more diverse, off-road or
pedestrian environments - in which case, the question of where can I drive? or what
should I avoid? cannot necessarily be reduced to recognizing specific scene elements
such as lane boundaries, cars or people, as the vehicle may encounter unfamiliar
terrain, unexpected obstacles, or open areas with no clear path.

With these challenges in mind, we try to take a general, functional approach to
scene understanding, with the idea that it may not be necessary to precisely dis-
tinguish and categorize every element in the scene in order to determine where a

1



1.1. Research directions 2

vehicle can safely drive. In diverse environments, rather than identifying elements
by name (e.g. this is a tree), it may be more useful to parse the scene in terms of
how the vehicle can navigate in it (this area is more driveable than that one). Such a
representation could then directly be used to generate potential trajectories.

Multi-modal fusion

The choice of sensing modality for computer vision determines the type and qual-
ity of features which can be extracted, and the range of conditions in which the
system can operate. Monocular RGB imaging is the most widespread modality
for scene understanding, providing rich color and texture information at high-
resolution. Visible spectrum cameras are widely available, affordable and produce
dense, highly structured data which is intuitive to label, being analogous to human
vision. However, they are also highly sensitive to ambient illumination, lighting
artifacts such as glare or shadows, and adverse weather which may obstruct or
degrade the camera view: an outdoor vehicle cannot solely rely on this modality
for safely navigating in adverse conditions (e.g. direct sunlight, night-time, fog).

Combining RGB imaging with other modalities is a promising research area
with direct application to robotics. In particular, the release of compact low-cost
RGB-D cameras like the Microsoft Kinect and Intel RealSense which provide per-
pixel depth values via stereo matching has sparked many works which success-
fully incorporate distance information in a wide range of vision tasks [7]. However,
these depth maps suffer from noise and low precision with increasing distance [52].
Depth maps can also be constructed from sparse LIDAR or radar scans. 3D LIDAR
provides accurate and detailed scene geometry, and being an active sensor, can op-
erate regardless of ambient illumination, however it requires favorable atmospheric
conditions as it cannot penetrate through rain or fog. Conversely, due to its longer
wavelength, radar is robust to poor weather and offers longer range but at the ex-
pense of resolution, making it poorly suited for characterizing small obstacles [75].

Thermal imaging is also becoming an increasingly attractive modality as an
alternative or complement to RGB imaging due to its inherent robustness to illu-
mination changes; it is especially well-suited for detecting people and other heat
sources which stand out in their thermal intensity from the rest of the scene [26].
Although shifting away from the visible spectrum involves losing texture and color
information, unlike laser and radar scans, thermal images remain visually inter-
pretable, and can be labelled similarly to RGB images.

The complementary properties of these different imaging modalities can be
leveraged with deep multi-modal fusion methods, with the goal of improving out-
door scene understanding capabilities compared to RGB-only perception. This also
brings interesting challenges in the data collection stage and the choice of neural
network architecture.
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1.2 Project scope

Research questions

The goal of this work is to investigate how useful visual representations can be
learned from multi-modal image data for the purpose of outdoor navigation. To
this end, we formulate the following research questions which guide the develop-
ment and experimentation:

• To what extent does parsing outdoor scenes in terms of driveability rather
than specific semantic classes help when faced with unconstrained environ-
ments?

• How can multiple imaging modalities be combined for this purpose?

• What are the drawbacks and benefits of a multi-modal architecture for this
task, compared to single-modality approaches?

Delimitations

As the first building block in an autonomous vision-based navigation system, this
work specifically tackles robotic perception, to the exclusion of localisation, map-
ping, path planning or control methods. To assess the viability of the proposed
methods, we rely on existing datasets for offline evaluation: the implementation
over-head associated with data collection on a mobile platform, along with the
computational constraints associated with real-time embedded operation, are out-
side of the scope of this work.

1.3 Outline

Chapter 2 sets the stage for the methods that follow by briefly describing relevant
computer vision and deep learning concepts. Chapter 3 presents recent related
work in the fields of navigation-oriented scene understanding and multi-modal
vision. Building on this existing research, Chapter 4 provides an overview of our
approach and experimental design for tackling the research questions. Since this
project is largely data-driven, Chapter 5 then delves into available datasets and
describes the data preparation steps in our experiments. The bulk of our methods
is described and evaluated in Chapter 6, Chapter 7 and Chapter 8, and jointly
validated in Chapter 9. Wrapping up, Chapter 10 discusses the results of this
work in relation to the research questions, addresses some of its limitations and
challenges, and identifies possible next steps in the broader context of navigation,
leading to interesting directions for future work. Lastly, Chapter 11 concludes this
research sandwich by summarizing the main motivations and findings.



Chapter 2

Background

This chapter sets a very brief theoretical foundation for the methods used in this
work. We first give an overview of the sensing modalities that we consider for
multi-modal perception, and their basic properties. We then introduce relevant
machine learning concepts and deep neural architectures for pixel-level prediction.

2.1 Beyond monocular RGB imaging

2.1.1 Active vs. passive sensing

Passive imaging sensors capture naturally-occurring radiation in a scene such as
reflected light or emitted heat, thus relying on external energy sources. Outdoors,
the sun is the main source of visible light, which can be captured by visible spec-
trum cameras - however, the level of ambient illumination entirely determines the
quality of images. Thermal imaging also falls in this category and is an attractive
alternative, since it can capture heat emitted by objects regardless of illumination.
In contrast, active sensors provide their own illumination by emitting radiation
into the scene and measuring its reflection or scattering. These include laser and
radar scanners, for instance.

This section focuses on infrared and depth vision, which may fall under either
active or passive sensing, depending on the type of device.

2.1.2 Infrared imaging

All objects with a temperature above 0 K emit infrared radiation. While invisible
to the human eye, infrared imaging devices can be used to convert this energy into
a human-readable spatial intensity map. They operate within a certain spectral
range, depending on the desired usage - the warmer a surface, the shorter its peak
radiation wavelength. Capturing the infrared signature of a scene allows us to

4



2.1. Beyond monocular RGB imaging 5

“see” beyond the visible, without the distraction of variable illumination. The 3
infrared sub-divisions of interest are outlined in Figure 2.1 and introduced below.

visible NIR MWIR LWIR

0.4–0.7 µm 0.7–1.4 µm 3–5 µm 8–15 µm

Table 2.1: Wavelength range of the 3 main infrared imaging sub-divisions compared to the visible
spectrum, with an example camera capture of the same scene in each band. Images are from the
MIR object detection dataset [104] (cf. Section 5.1).

Near-infrared (NIR) wavelengths are adjacent to the visible spectrum and can
be captured passively with a modified digital camera or specialized NIR detector.
NIR images provide no color information but retain a high level of detail and
contrast; they resemble grayscale visible-light images, while being less sensitive to
ambient illumination and atmospheric haze. Similarly to the visible band, since
only very hot objects emit significant radiation in the lower end of the infrared
spectrum (over 2600 °C for a peak wavelength of 1 µm), NIR radiation in regular
scenes is essentially limited to reflected light from the sun or other light sources.
Thus, night vision capabilities require an active system. [114] elaborates on the
properties and applications of NIR imaging in contrast with longer infrared bands.

Mid-wave infrared (MWIR) and long-wave infrared (LWIR) are referred to as
thermal infrared - objects at room temperature emit significant radiation in these
bands, and thus can be captured passively by a thermal camera. While details,
textures or patterns may be lost in this range (eg. the road markings in Table 2.1),
the scene’s layout remains clear, and pedestrians or moving vehicles (the most
common dynamic obstacles in urban environments) appear particularly salient due
to their heat. Most thermal surveillance cameras operate in the LWIR range, since
the infrared energy emitted at human body temperature peaks around 10 µm. An
in-depth overview of thermal imaging technology and its applications to computer
vision is given in [26].

2.1.3 Depth vision

Within the scope of this work, we treat depth data not as an unorganized set of
3D points, but as a structured 2D (or 2.5D) imaging modality, where each pixel
encodes an estimate of its distance from the viewer. This allows us to employ stan-
dard 2D convolutional neural networks (CNNs) analogously across visible spec-
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trum, infrared, and depth images, rather than requiring a dedicated architecture
for 3D understanding [37].

Given a pair of monocular cameras with known parameters and partially over-
lapping fields of view (FOV), a disparity map can be constructed via stereo match-
ing by finding pixel-wise correspondences between the two camera views, thus
enabling RGB-D vision. 3D LIDAR technology is less accessible than RGB-D vi-
sion due to its cost, but its use is widespread in autonomous driving systems [118].
Sparse 2D depth maps can be computed from 3D laser scans by projecting point
clouds to the image plane, as done in [30] for instance. For an overview on different
3D → 2D scan representation methods commonly used for scene understanding,
we refer to [25].

In the interest of time and space, we do not elaborate on depth sensing tech-
nologies here, but rather focus on relevant pre-processing steps for depth-based
feature extraction.

Depth completion

Depth maps generated from raw range-sensing data are sparse by nature. As
shown in Figure 2.1, 3D LIDAR scans projected onto the image space appear as
structured scan lines with only a small portion of pixels encoding a depth value,
while stereo vision produces dense but noisy and discontinuous depth data with
specks or patches of missing values.

(a) 3D LIDAR scan (Velodyne HDL-64E) from the Kitti dataset [30]

(b) Stereo disparity (OnSemi AR0331 sensor)
from Cityscapes [21]

(c) Stereo depth (ZED camera) from ROB7
project [46]

Figure 2.1: Color visualization of sparse depth maps from existing datasets. Missing values are
shown in black.
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Input data sparsity is an issue for CNNs, since they are designed following the
assumption that every pixel encodes a valid observation. For instance, [110] found
that using raw stereo depth maps in a deep multi-modal pipeline gave poor results
for outdoor scene segmentation. Although effective methods have been proposed
for directly feeding sparse depth maps to CNNs (eg. through masked convolutions
which ignore missing values [107] or training strategies which encourage sparsity-
invariant learning [51]), these require special considerations in the architecture
design. Therefore, the most straightforward approach remains to first infer a dense
depth map as a pre-processing step, and using this dense image as input to a
standard CNN, as done in [110, 56, 109].

Given a sparse depth image with missing values, the aim of depth completion is
to recover an estimate of the true depth value for every pixel. Classical approaches
employ hole-filling strategies such as filtering and in-painting [3]. Leveraging vi-
sual information in order to guide the depth estimation process has also proven
beneficial, however, this places additional constraints on the availability and quality
of RGB images for every depth frame. While the current state-of-the-art is domi-
nated by image-guided CNN-based approaches, [59] demonstrates that traditional
image processing techniques are able to perform on-par with deep architectures
on depth completion benchmarks, at the fraction of the computational cost and
without the overhead of training or reliance on additional modalities.
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2.2 Deep learning for pixel-wise classification

The question "what is in this image?" can be answered at different levels, as illus-
trated in Figure 2.2. At the coarsest level, image classification generates a single
description for the whole image, based on the presence of one or more classes. Ob-
ject detection additionally provides the general location of different class instances
as bounding box coordinates. Semantic segmentation operates at the pixel-level
by partitioning the image into class regions: such dense predictions are crucial for
vision-based navigation, in order to precisely delimit driveable regions or obsta-
cles. Instance segmentation goes a step further by also distinguishing between
instances of the same type. While this can be useful for human-robot interaction
for instance, where it may be desirable to uniquely identify and segment people
in the image rather than grouping them under a common label, we do not con-
sider this step necessary for navigation-oriented scene understanding - therefore,
we focus on semantic segmentation.

   cat
   scooter

cat

cat

scooter scooter

background

cat
2

cat
1

scooter
1

scooter
2

Image classification Object detection

Instance segmentationSemantic segmentation

Figure 2.2: Egyptian cat models demonstrating different image description tasks, from coarsest (top
left) to finest (bottom right).

2.2.1 Semantic segmentation as pixel-wise classification

When framed as a machine learning problem, semantic segmentation amounts to
inferring a label for every pixel based on a set of pre-defined classes. In a fully
supervised learning scheme, ground truth labels are provided on a per-pixel basis
at training time. Much like any classification task, the goal is then to learn opti-
mal model parameters by minimizing the error between the true and the predicted
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labels. This error is captured by a loss function which penalizes incorrect pre-
dictions, with the loss being computed per pixel, and then averaged or summed
over the whole image. The simplest loss weighting scheme consists of giving each
pixel equal weight. However, more advanced loss weighting schemes have been
proposed in order to compensate for class imbalance [67, 4], or achieve finer seg-
mentation along boundaries [88], for instance. It is also common practice to define
a void class for unlabelled pixels which are explicitly ignored in the loss computa-
tion [21].

background

path

cat

-1.1

0.5

3.2prediction

0

1

00.925

0.013

0.062
softmax

ground truth
label

Figure 2.3: Example of a cross-entropy loss calculation for a single pixel in a 3-class semantic seg-
mentation task, where the label is one-hot-encoded. Predicted values are chosen arbitrarily and the
pixel size is exaggerated for illustration purposes.

The most widespread loss function for classification is cross entropy; minimizing
cross-entropy amounts to maximizing likelihood. This first requires normalizing
the model’s raw prediction ŷ′ to obtain a probability distribution ŷ across the set
of classes C (such that 0 < ŷi < 1 ∀i ∈ C and ∑C

i ŷi = 1) - for a multi-class problem,
this is typically done by applying the softmax (normalized exponential) function.
The softmax function and cross-entropy loss LCE are given by:

ŷi = softmax(ŷ′)i =
exp ŷ′i

∑j∈C exp ŷ′j
LCE(y, ŷ) = −∑

i∈C
yi log ŷi

The label’s probability distribution y can be expressed as a one-hot encoded vector,
where the target class has a probability of 1 and the other classes have a probability
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of 0. As illustrated in Figure 2.3, when using a “hard” one-hot-encoded ground
truth label, only the target class probability contributes to the cross-entropy loss
value: the model is encouraged to maximize the log-likelihood of the target class,
with the rest of the classes being considered categorically incorrect and infinitely
far from the target.

Alternatively, ground truth labels can be encoded as “soft” vectors, where in-
stead of assigning each observation to a single correct class, labels describe class
membership probabilities [27]. We show two examples of soft labels in Figure 2.4
compared to a standard hard label. In their most generic form, soft labels can be
generated via label smoothing, where the ground truth is taken as a weighted av-
erage between the original hard target and a uniform distribution across all classes
- [103] presents this (now widely adopted) technique for image classification and
shows how it has a regularizing effect, by discouraging high-confidence predic-
tions, and thus aiding generalization. However, uniform label smoothing treats
each incorrect class as equally probable. More interestingly, soft labels can be
used to express known relationships between classes (eg. similarity [120] or hi-
erarchy [23, 9]) or to capture natural ambiguity in the data (eg. at the borders
of segmentation masks [34] or due to inconsistent/subjective labels from multiple
annotators [72]).
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(a) Hard one-hot-encoded label
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(b) Soft label: uniform label
smoothing [103]
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(c) Soft label: distribution based
on semantic similarity

Figure 2.4: Different label distributions illustrated with a dummy example. Here, scooter is the target
class.

Models can be trained on soft labels with standard classification loss func-
tions such as cross-entropy or Kullback-Leibler divergence (relative entropy) eg.
as in [28, 23]. Kullback-Leibler divergence measures the difference between two
probability distributions (in this case, the predicted ŷ vs. ground truth y class
probability distributions). When y is fixed, minimizing Kullback-Leibler diver-
gence LKL is equivalent to minimizing cross-entropy LCE, since they only differ by
a constant factor:

LKL(y||ŷ) =
C

∑
i

yi log
yi

ŷi
LCE(y, ŷ) = −

C

∑
i

yi log ŷi =
C

∑
i

yi log
1
ŷi
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2.2.2 Architectures

Given an input image, deep semantic segmentation networks output dense pixel-
level class predictions. This is most commonly tackled as a two-stage process:
convolutional feature extraction, followed by expansion to recover the original im-
age resolution. The main challenge lies in capturing high-level context information
which plays a key role in scene understanding, while retaining detailed local in-
formation which is necessary for precise segmentation [67].

Encoder-decoder models

A highly influential work is the Fully Convolutional Network (FCN) architecture
proposed in [67] (with further analysis in [95]), which demonstrates how well-
established image classification CNNs such as VGG [99] can be leveraged for deep
semantic segmentation by replacing fully connected layers with 1× 1 convolution
to produce a coarse feature map for each class. This encoding stage is followed by
up-sampling through deconvolution for pixel-wise prediction. In order to recover
the spatial detail which is lost during down-sampling, FCN also demonstrates how
intermediate outputs from shallower layers can be incorporated in the up-sampling
stage through skip connections to achieve finer segmentation.

Many works derived from FCN employ similar encoder networks and primar-
ily differ in the decoder design. For instance, U-Net [88] proposes multi-stage
up-sampling which mirrors the encoder depth; unlike FCN, the filter dimension-
ality is reduced to the number of classes only at the prediction stage. SegNet [4]
follows a similar structure, but proposes a more efficient technique for incorporat-
ing boundary information in the up-sampling stage: only the pooling indices are
transferred to the decoder, rather than the full encoder feature maps.

Dilated convolution

In the feature extraction stage, down-sampling feature maps (via strided convo-
lution or pooling) effectively widens the receptive field [70] of subsequent filters
without needing to increase their kernel size - making it a widely used technique
for image classification [58, 99, 42]. However, down-sampling comes at the ex-
pense of spatial resolution - this loss of detail is undesirable for dense prediction
tasks. While encoder-decoder approaches partially address this by adding decon-
volutional layers, an alternative consists of performing atrous convolution (coined
in [82], later called dilated convolution in [117]) for feature extraction, where the
filter is up-sampled with zeros, thus covering a larger input area than standard
convolution with the same number of weights, while preserving spatial resolution,
as illustrated in Figure 2.5. Dilated convolution has been successfully applied to
semantic segmentation as an alternative to encoder-decoder approaches [117, 16].
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21

(a) Standard convolution (dilation rate of 1)

21

(b) Dilated convolution (dilation rate of 2)

Figure 2.5: Illustration of standard vs. dilated convolution (no stride and no padding), with the input
map in blue, and the output map in green - only the first two steps of the convolution are shown. A
2× 2 convolutional filter with dilation rate of 2 covers the same input area as a 3× 3 undilated filter,
with less than half the number of weights. The diagrams are largely inspired by [22].

We have only scratched the surface of deep semantic segmentation here, highlight-
ing two important directions in existing work. For a much more comprehensive
overview, we refer to the recent survey in [76] and further explanation of different
architecture variants in [31].

2.2.3 Training neural networks

Parameter updates

The model’s parameters are first initialized either randomly (typically drawn from
a normal or uniform distribution with carefully chosen mean and variance [33,
43]), or with previously learned parameters from a pre-trained model (transfer
learning). In gradient descent learning, parameters are updated iteratively in the
direction that (locally) minimizes the loss function, based on its gradient with re-
spect to every parameter (computed via backpropagation). In practice, samples are
commonly fed to the model in a series of mini-batches, such that parameter up-
dates are based on an estimate of the true gradient computed from a small subset
of the training set - the batch size is an important hyper-parameter in this case.
Another crucial hyper-parameter is the learning rate, which determines the step
size of parameter updates - too big and we’ll keep over-shooting to different plan-
ets, too small and we’ll be 80 by the time we manage to reach the bottom. Plain
gradient descent sets a global learning rate for all parameters which remains con-
stant during training unless explicitly adjusted. This motivates the use of adaptive
gradient descent algorithms such as Adam [54] which calculate the learning rate
on a per-parameter basis. [91] gives a comprehensive overview of gradient descent
optimization methods.
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Regularization

A common issue in neural networks is over-fitting: the model learns to over-
characterize the training set, achieving low training error but failing to generalize
to new inputs. To limit over-fitting, regularization techniques can be applied at the
data level, during weight optimization or through modifications of the architecture
itself [60]. We briefly present a few of these techniques here.

Data augmentation consists of artificially expanding and diversifying the train-
ing data by modifying the original training samples, but only to the extent that
their essential content is not affected (ie. data labels can be preserved). The goal
is to expose the model to a distribution of samples which is closer to that of the
real unseen data encountered at run-time. For image semantic segmentation, these
modifications can include geometric transformations (cropping, flipping, scaling,
skewing, elastic deformation etc), color transformations (shifts in brightness, con-
trast, hue, etc.), degradation (eg. additive noise, blur, pixel drop-out) or more
complex alterations such as adding synthetic rain. See [97] for a survey on data
augmentation methods in computer vision.

Dropout [100] was proposed as an effective (and now widespread) technique to
prevent deep neural networks from over-relying on the presence of specific features
to make predictions - as these features may simply be an artefact of the training
set. By randomly de-activating a proportion of neurons at every training iteration,
the network is encouraged to explore different parts of the feature space in favour
of more robust, generic representations.

Batch normalization [48] is applied in hidden layers to mitigate shifts in the dis-
tribution of their inputs as the network’s parameters are updated. Each feature
map is normalized independently along the batch dimension based on running
estimates of batch statistics, and a linear shift-scale operation is then applied based
on learnable parameters. This technique has shown to allow for training which is
faster and less sensitive to initialization.
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2.2.4 Evaluation metrics

Counting correct pixels

Semantic segmentation metrics typically treat each pixel as an independent sample,
with the prediction taken as the class with the maximum probability. For multi-
class segmentation, the prediction is binarized using a one-vs-rest scheme, such
that each pixel can be a true positive (TP), true negative (TN), false positive (FP),
or false negative (FN) [29]. Here we define the segmentation metrics used in our
evaluation.

Accuracy measures the proportion of correct predictions:

A =
TP + TN

TP + TN + FP + FN

Intersection over Union (IoU) is widely used in semantic segmentation bench-
marks. It captures the amount of overlap between two binary masks, penalizing
both over- and under-segmentation, and is expressed as:

IoU =
TP

TP + FP + FN
Unlike accuracy which, as a global metric, is inherently skewed towards the perfor-
mance on the majority class, IoU, precision and recall can be reported on a per-class
basis, giving more insight into the performance for under-represented classes.

Quantifying error

Following [23], when tackling segmentation as a pixel-wise ordinal classification
task, we also make use of the following regression-based metrics, where n is the
total number of samples (pixels), and ei = yi − xi is a pair-wise error for a single
pixel i with ground truth yi and predicted value xi:

Mean absolute error (MAE) pretty straight-forward

MAE =
∑n

i=1 |ei|
n

Root mean squared error (RMSE) increases the penalty as the pair-wise error
grows (an error of 2 is four times worse than an error of 1), and the root brings it
back to the original unit

RMSE =

√
∑n

i=1 ei
2

n

Root mean squared log error (RMSLE) scale-invariant, and penalizes over- more
than under-estimation, which is quite cool

RMSLE =

√
∑n

i=1 [log(yi)− log(xi)]
2

n



Chapter 3

Related works

We explore relevant scene understanding literature at the intersection of the fields
of autonomous driving, where the challenges of outdoor operation and dynamic
obstacles are especially apparent, and robotics, where the notion of action-oriented
or affordance-based perception shows promising applications for control and nav-
igation. Since this work tries to take both a functional and a multi-modal approach
to scene understanding, we consider both aspects in this chapter, while limiting
our scope to deep learning-based methods which exclusively rely on egocentric
images for making predictions at run-time.

3.1 Functional scene understanding

[15] presents an interesting framework for thinking about vision-based autonomous
driving, identifying three main approaches which vary in their level of perceptual
abstraction:

• at the lowest level, mediated perception approaches parse the entire scene
into explicit visual representations, which must then be interpreted and con-
densed into driving decisions by a separate part of system.

• at the highest level of abstraction, behaviour reflex approaches bypass visual
representations altogether for end-to-end vehicle control.

• [15] argues for an affordance-based direct perception approach which falls
between these two extremes: sensory input is distilled into useful indicators
which are tailored to a driving task, and can be directly used a basis for
decision-making.

In the realm of robotic vision, [73] follows a similar line of thought, arguing for
action-oriented scene understanding which recognizes potential functions, opportu-
nities, or trajectories in the environment, as opposed to traditional descriptive scene
understanding which reasons at the level of objects or scene attributes.

15
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Figure 3.1 illustrates the different perception paradigms for autonomous naviga-
tion which we discuss in the remainder of this section.

Object recognition

Path proposals

Collision-free space

Driving indicators

distance to lane markings
distance to preceding car

Chen et al. (2016)

obstacle unknown path

 Barnes et al. (2017)

predicted probability of collision/bumpy0 1

Kahn et al. (2020)

Affordance segmentation

place-on sit walk

Lüddecke et al. (2019)

Scene geometry Behaviour reflexMediated perception

Affordances for navigation

Teichmann et al. (2018) Levi et al. (2015)

minor road

Figure 3.1: Visual perception for navigation: highly non-exhaustive overview. Images were created
based on the methods from related works presented in this section [105, 63, 15, 5, 53, 71], using
samples from the Kitti [30] (roads), Freiburg Forest [110] (off-road) and RGB-NIR Scene [13] (indoor)
datasets (cf. Section 5.1)

3.1.1 Mediated perception: describing what you see and nothing more

Image-based urban scene understanding is most commonly tackled as an object
recognition task, either at the pixel-level (where each pixel is labelled as part of
a relevant class) or at the instance-level (where bounding box coordinates are re-
gressed for each instance of a class). The release of large-scale annotated driv-
ing datasets like Kitti [30] has sparked significant work in this direction - includ-
ing task-specific methods (eg. pedestrian detection) and multi-task architectures
which, for instance, jointly perform road segmentation, car detection, and scene
classification [50] (top-left in Figure 3.1).

However, parsing the entire scene in terms of specific semantic categories (eg.
pedestrian, cyclist, car, road) requires an over-arching logic to determine where the
vehicle should/can safely drive, hinders generalisation to unseen obstacles, and
involves fine-grained labelling of objects which may not be relevant for vehicle
control (aside from the fact that they should be avoided) [6]. These considera-
tions have sparked works which try to learn more task-oriented representations
with varying degrees of abstraction, where the scene is directly parsed in terms of
navigability rather than appearance, and whose output can directly be used by a
planning algorithm.
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3.1.2 Scene geometry: just because it’s free doesn’t mean it’s a good idea

An alternative to object-based semantic labelling consists of parsing the scene ge-
ometrically in terms of occupied vs. free space. For instance, [63] labels free space
boundaries with LIDAR data and trains a CNN to regress the position of general
obstacles in monocular images (top-middle in Figure 3.1). However, identifying
collision-free space in the scene is not sufficient for ensuring safe and robust nav-
igation: some areas may be traversable, but nevertheless unsuitable to drive into
(e.g. a puddle or a ditch); on the contrary, as confirmed in [53], some elements
which are detected by range sensors as obstacles (e.g. tall grass) may in fact be
traversable. [5] (bottom-middle in Figure 3.1) extends this approach by learning to
segment driveable routes in urban scenes using odometry data for weak supervi-
sion, but pre-supposes the presence of an explicit path.

3.1.3 Behaviour reflex: direct mapping from image to action

A fully end-to-end “behaviour reflex” approach (in the top-right of Figure 3.1)
consists of directly regressing the vehicle steering angle from a camera capture,
rather than learning an intermediate visual representation of the scene [50]. How-
ever, as pointed out in [15] and [5], learning a direct mapping from an image to
a control action is an over-abstraction which may fail to capture the ambiguity or
complexity of driving decisions - for instance, in cases where there are multiple
valid directions (e.g. in case of a cross-road or open area). This approach has also
shown serious limitations when faced with an increasing number of dynamic ob-
stacles [19]. A recent study on robotic action [124] also suggests that, compared
to predicting a direct mapping from raw image to control output, semantic scene
segmentation greatly improves task performance in urban and off-road navigation.
Thus, for real-world driving, it may not be desirable to bypass visual representa-
tions entirely.

3.1.4 Affordances for navigation

Appearance-based or geometric scene understanding are not directly interpretable
in terms of potential action, and fail to capture degrees or levels of traversability:
while it is possible to drive over rough terrain or grass, it may not be practical or
preferable if there is a paved area available. An interesting notion which can be
used to capture these differences is that of “affordance”, which originated in psy-
chology to describe how we perceive our environment in terms of how we can use
or act on it to our harm or benefit [32]. This concept has led to interesting develop-
ments in robotic perception, especially for service and collaborative robots: reason-
ing about objects in functional terms (eg. reachable, openable, sittable) rather than
semantic labels has been shown to improve generalisation for recognising suitable
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actions and grasp poses [2]. However, works which tackle affordance-based per-
ception for robotic navigation remain scarce, compared to the bulk of literature
pertaining to object/tool manipulation or human-robot interaction [49]. The very
recent survey in [40] highlights the potential of interpreting the environment in
terms of visual affordance for intelligent decision making in a wide range of tasks,
also noting that research in this field is currently largely limited to indoor scenes.

Here, we focus on methods which predict navigational affordances from im-
ages, spreading our attention across the fields of robotics and autonomous driving.
A common approach is to rely on exploration-based learning, where information
from past interaction with the environment is used to learn useful representations
and guide present action. This requires either realistic simulation test-beds, or a
real system with physical access to various environments in which exposure to
potential hazards through trial and error is acceptable.

For instance, an affordance-based “direct perception” approach for autonomous
driving proposed by [15] (bottom-left in Figure 3.1) consists of learning traffic indi-
cators in a driving simulator such as heading angle or distances to preceding cars
which can then be directly used by a driving controller, however this method relies
on pre-defined visual cues (lane markings, cars) and thus cannot operate outside
of a highly constrained urban landscape. In a broader robotic context, [86] uses
pixel-wise affordance maps to encode where an agent can safely move in an unpre-
dictable first-person shooter simulator; affordance segmentation is learned through
continuous active interaction. Out in the real world, [53] (bottom-middle in Fig-
ure 3.1) demonstrates how physical navigation affordances (bumpiness, probabil-
ity of collision) can be learned in a fully unsupervised manner by an autonomous
robot roaming outdoors.

Self-supervised learning through exploration eliminates the need for manual
labelling, but is a time and resource intensive process, especially for navigation
applications. Indeed, it requires the agent to traverse vast, diverse areas and expe-
rience collisions in order to learn affordances, even though they could have easily
been human-annotated, since we are naturally skilled at assessing whether an area
is navigable by mere visual inspection. Although applied in indoor scenes and
not limited to navigation, [90] and more recently [71] (bottom-right in Figure 3.1)
demonstrate how dense affordances can be predicted at the pixel-level from RGB
images in a fully supervised manner, with ground truth segmentation masks.

3.2 Multi-modal data fusion for scene understanding

Many works have demonstrated the benefit of combining RGB imaging with infra-
red [38, 110, 102, 46] or depth data [109, 101] for outdoor scene understanding and
object recognition. An overview of multi-modal fusion methods for deep scene
understanding is given in [121], [25] and [56].
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When to fuse? Fusion can be performed at different stages in the network, which
we briefly present here, along with their main trade-offs.

Early fusion methods combine imaging modalities at the pixel level, before being
fed to the network - for instance, by treating each modality as an additional image
channel as in [110]. This approach is perhaps the simplest to implement and the
most light-weight, since standard single-input CNN architectures can directly be
applied. It also scales well to an increasing number of modalities. However, it also
requires that all modalities be present during training and at run-time, and that
images are precisely synchronized and aligned at the pixel level across modalities.

Late fusion methods employ a separate network for each modality, and combine
the output features in the final stage, at the prediction level. This has the advan-
tage that each branch can be designed and trained independently. However, each
additional input brings a significant cost in terms of the network size and com-
putational requirements. This fusion scheme also prevents any information from
being shared across modalities during learning.

Middle or hybrid fusion methods treat each modality as a separate input, while
allowing intermediate representations to be combined or shared at various stages.
For instance, [101] and [102] employ a multi-modal encoder-decoder architecture
for semantic segmentation, with modality-specific encoders and a common de-
coder; in the encoder stage, feature maps are fused after each layer. A similar
network structure is proposed in [38], but fusion is performed in the decoding
stage, where modality-specific feature maps are incorporated via skip connections.
Developing a middle fusion schemes requires making many design choices about
e.g. where and how should the modalities be fused?

How to fuse? An important consideration in middle and late fusion schemes
is how to combine feature maps from modality-specific layers. A common ap-
proach is to simply fuse them via concatenation or element-wise addition [38,
110, 102, 101], which gives each modality equal weight regardless of the input
quality. In practice, different modalities may provide different levels of useful-
ness in different conditions, different image regions or for different classes. This
has prompted more complex, adaptive fusion methods where the weight of each
modality is learned. For instance, the mixture of experts scheme in [108] pro-
poses class-wise gating sub-networks which learn a probability distribution over
the modality-specific experts. More recently, the same authors have presented a
model adaptation fusion [109] module which learns the correlation between be-
tween modality-specific feature maps and weighs them element-wise at different
stages in the network.



Chapter 4

General approach

4.1 What are we trying to predict?

Our aim is to parse outdoor scenes at the pixel-level in terms of how a vehicle or
robot can navigate in it, solely relying on images captured from its point of view.
Loosely inspired by the broad semantic classes {path, unknown, obstacle} defined
in [5] for urban scene understanding and the robotic action plausibility ratings
{possible, plausible, impossible} proposed in [72], we define three pixel classes to
characterize the driveability/navigability level of a certain area in an image:

• Preferable: where we would expect the vehicle to drive

• Possible, but not preferable: areas which are technically navigable but
more challenging or less suitable, and would not be chosen as a first resort

• Impossible or undesirable: any part of the scene which is unreachable (eg.
the sky) or should be unconditionally avoided (obstacles, hazardous terrain)

Figure 4.1 shows how an outdoor scene could be segmented according to these
three driveability levels.

not here
definitely here

maybe here

not here

maybe here

Figure 4.1: Where can/should I drive? Coarsely & manually annotated outdoor scene based on the
proposed driveability level definition: preferable, possible, impossible.

20
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Limiting the number of levels to 3 keeps the labelling process manageable and
relatively straight-forward, while still leaving room for a “grey-zone” unlike binary
classification which would fail to capture any degree of driveability.

4.2 Battle plan

Learning driveability affordances

Architecture From a technical standpoint, our task aligns with standard seman-
tic scene segmentation: we want to predict a label for every pixel in the image
based on pre-defined categories, and thus can employ existing image segmenta-
tion architectures. Similarly to [5], we pick the SegNet architecture introduced
in Section 2.2.2 as a base network for pixel-wise prediction. While it has been
surpassed by other state-of-the-art segmentation architectures eg. [123, 109], it is
widely documented and relatively lightweight thanks to its efficient up-sampling
technique, making it a solid choice for prototyping and evaluation.

Off the beaten path Our task nevertheless fundamentally deviates from classic
descriptive computer vision (as characterized in [73]) in several ways:

• we are not trying to address the question what is in this image?, but rather
directly asking how can I operate in this image?, or more specifically, where
can I go? Such an action-oriented approach is arguably more useful for an
autonomous vehicle than learning descriptive representations, but introduces
vagueness and ambiguity - while there is usually very little doubt on what
an object is, it may be more difficult to reach strong consensus or certainty
about what an object is for or how it can be interacted with.

• segmentation of objects by name (eg. vehicle, tree) is best achieved by learn-
ing specific recurring patterns which are unique to those objects; in contrast,
recognizing whether an area is driveable or not requires learning a very broad
representation of what an obstacle could possibly look like, as many different
types of features and scene elements may fall under this category.

• although it is not directly measurable, we are defining the notion of drive-
ability not as a semantic category but as an ordinal quantity, with some areas
in the image being more driveable than others.

• typically, every pixel in a prediction is given equal importance, regardless
of its position in the image - however, in the context of navigation, areas in
the immediate vicinity of the vehicle have a higher significance as guides for
potential action.
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Lazy shortcuts When it comes to generating ground truth data, our task is facil-
itated by the reasonable assumption that the notion of driveability can be inferred
from the type of object in the image (eg. a car will always be impossible to drive
on). As discussed in [2], such a mapping from semantic labels to affordance is
somewhat reductive as it does not take any contextual information into account,
but remains a common approach, since it allows us to leverage existing datasets
with pixel-wise semantic labels for fully-supervised learning. In addition, unlike
other types of visual affordances which often inherit the challenges of multi-label
learning [40] (eg. due to objects having multiple possible functions or uses), our
driveability definition can be tackled as a single-label pixel classification problem.

Gray rainbows While it is commonplace to preserve color information in visible
spectrum images for scene understanding [4, 5, 105], we choose to convert them
to a single-channel grayscale representation for two main reasons. First, we spec-
ulate that colour may add unnecessary or distracting information when trying to
learn such an abstract concept as driveability, and second, by reducing the number
of channels to 1, visible spectrum images can be seamlessly inter-changed with
depth or infrared images (which are inherently single-channel) at the input of the
network, without needing to adapt the number of weights in the first layer.

Learning order by softening things In order to model the ambiguity and or-
der between the three driveability levels, we opt for a soft labelling approach (in-
troduced in Section 2.2.1). Soft labelling schemes have successfully been applied
to semantic segmentation in prior work [28, 34], however these works only con-
sider a binary classification case, and generate pixel labels not based on inter-class
relations, but on spatial location, to capture ambiguity along object boundaries.
Conversely, works which demonstrate the use of soft labels for ordinal classifica-
tion [28, 23, 66], apply it to other tasks such as full-image classification (eg. age
estimation, aesthetic quality prediction or medical diagnosis) or pixel-wise regres-
sion (eg. depth estimation). To the best of our knowledge, the use of soft labels for
rank-based scene segmentation has not yet been investigated.

Unequal rights for unequal pixels We investigate how to focus learning towards
areas of particular interest for navigation, drawing from the insights in [64, 125],
and adapting the method from [88] to develop a pixel-wise loss weighting scheme.

Learning from multi-modal data

The data we want We have introduced some of the interesting properties of in-
frared and depth images in Section 1.1 and Section 2.1, and briefly reviewed CNN-
based fusion approaches for combining them with visible spectrum imaging in
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Section 3.2. Thermal imaging and stereo depth seems to be particularly relevant
sensing modalities for our task. Humans, animals and moving vehicles are among
the most common and safety-critical dynamic obstacles a robot may encounter, and
due to their heat, hold a characteristic signature when imaged with a LWIR cam-
era that contrasts with surrounding terrain, buildings, vegetation, and scene clutter.
Stereo depth is often readily available on robotic platforms due to the prevalence
of integrated RGB-D cameras, providing appearance-agnostic pixel-wise distance
information - without this geometric information, it may be difficult to distinguish
between flat surfaces and real obstacles. We therefore aim to incorporate both of
these modalities into the prediction, as a complement to visible spectrum imaging.

The data we have Our experimentation is limited by the extent of available data -
we explore our options in detail in Chapter 5, and fail to find any outdoor tri-modal
RGB-D-T datasets with pixel annotations. As detailed in Section 5.2, we resort to
using Freiburg Forest [110] (RGB-D-NIR with pseudo depth) and Cityscapes [21]
(RGB-D with real stereo depth) for the bulk of our model training and evaluation.
Thermal imaging is incorporated in our final experiments, when jointly evaluating
selected methods on other bi-modal datasets.

Special treatment for special sensors Before delving into multi-modal fusion,
we investigate the effect of pre-processing for depth or infrared images, noting
a lack of existing experiments addressing this. For instance, [38, 41] make no
mention of data augmentation for RGB-T and RGB-D segmentation respectively,
while [108, 102, 109] list augmentations used during training without making a
distinction between different modalities. Depth completion seems to be standard
procedure [109, 56], but is performed without justification in these works.

Fusion architecture Similarly to [92, 38, 109], we take an early fusion approach as
our multi-modal segmentation baseline. For deep fusion, we explore the adaptive
fusion approach proposed by [109]: rather than simply concatenating or adding
features extracted from different modalities, a convolutional fusion unit learns to
combine them in an optimal way. We implement the fusion unit in 3 multi-branch
configurations (middle, late, and a combination of both), designing the architecture
in a modular way: SegNet’s efficient decoding technique is preserved, and the
full extent of the network can be initialized with pre-trained SegNet weights and
then trained end-to-end in a short period, with only the fusion unit’s parameters
needing to be learned from scratch. This approach contrasts with the bulk of
existing multi-modal semantic segmentation methods for autonomous driving [25],
which employ FCN-based decoders and learn their weights from scratch. We also
evaluate our deep fusion architecture in a tri-modal configuration, which to the
best of our knowledge has not been done in prior work.
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TL;DR

Figure 4.2 gives an overview of our experimental approach, following the structure
of this report. In Chapter 6, we train SegNet to segment visible spectrum images
based on our proposed driveability definition, and evaluate its performance on
in-domain and out-of domain samples, compared to a naive mapping from ob-
ject classes to driveability in the post-prediction stage. The soft labelling and loss
weighting methods follow in the same chapter. In Chapter 7, we train SegNet
to segment driveability in NIR, pseudo depth, and stereo depth images, which
gives us a measure of how useful each of these modalities can be as a stand-alone
predictor before our fusion experiments. Chapter 8 is where all the fusion magic
happens. Chapter 9 serves as a final wrap-up, where we select the most promis-
ing methods from the three previous chapters, and jointly validate them in two
experiments on a wider range of datasets.

Chapter 6

Chapter 8

Deep
fusion

Channel
stacking

Chapter 9

V+D   V+NIR   V+D+NIR

Out-of-dataset
generalization

V+T

Cross-dataset
learning

V

vs.

objects driveability

vs.

Learning to segment

V

Ordinal
soft labels

Chapter 6

Per-pixel
loss weighting

Training strategies
V

Data
augmentation

Depth
completion

Chapter 7

Bringing it all together

D   NIR

Alternative modalities

Multi-modal fusion

(V) Visible spectrum
(D) Depth 
(NIR) Near-Infrared 
(T) Thermal

modalities

Figure 4.2: Roadmap of the methods we explore from Chapters 6 to 8, followed by 2 final experiments
in Chapter 9. For each chapter, we specify the imaging modalities included in our evaluation. The
image pair in the top right is a ground truth sample from the Cityscapes dataset (cf. Section 5.1).
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4.3 Implementation details

Software This project is developed in Python 3, primarily relying on PyTorch
Lightning [83, 24] as a deep learning framework, Weights & Biases [10] for experi-
ment logging, Scikit-learn [84] for computing certain evaluation metrics, OpenCV [12]
for simple image processing, Albumentations [14] for data augmentation, and La-
belbox [61] for image annotation. We also make limited use of ROS [87] and Matlab
for interfacing with certain datasets, and R for visualization.

Hardware Deep learning models are trained on a NVIDIA Tesla V100-SXM3-
32GB GPU via a dedicated cloud service1.

Deliverables The project source code is made available as a public repository:
https://github.com/glhr/learning-driveability-heatmaps

with the bulk of the implementation in the following sub-module:
https://github.com/glhr/lightning-segnet

Additionally, we showcase some of our main results on video sequences from dif-
ferent datasets - details and links are included in Section A.7 (appendix).

Reproducibility We set a global random seed and enforce deterministic PyTorch
operations2 in order to ensure identical results across repeated runs of the same
experiment on a given device (both for training and evaluation), and to ensure
that differences in performance between methods are not due to random varia-
tion (eg. in the random weight initialization, dropout patterns, data augmentation
sequence).

1https://www.claaudia.aau.dk/platforms-tools/compute/gpu-cloud-ai/
2https://pytorch.org/docs/stable/notes/randomness.html

https://github.com/glhr/learning-driveability-heatmaps
https://github.com/glhr/lightning-segnet
https://www.claaudia.aau.dk/platforms-tools/compute/gpu-cloud-ai/
https://pytorch.org/docs/stable/notes/randomness.html


Chapter 5

Data is everything

Neural networks can only learn from the examples we show them. Training models
to give accurate predictions in diverse situations requires collecting or generating
large amounts of diverse data. While large-scale datasets of labelled RGB images
are widely available, this is particularly challenging when taking a sensor fusion
approach, since it requires data from multiple modalities capturing the same scene,
at the same time, and from a similar perspective. In this chapter, we review and
compare existing vision datasets with potential applications to multi-modal scene
understanding. We then select the most relevant datasets for this task, and outline
the pre-processing steps for training our prediction models.

5.1 Relevant datasets

When surveying existing literature for publicly available datasets, we specifically
consider those which feature a combination of RGB, depth, and/or IR data, and
capture outdoor scenes captured from an egocentric perspective. Aerial or surveil-
lance datasets are excluded, for instance. A summary of these datasets is given in
the appendix (Tables A.1 for RGB-D-IR, A.2 for RGB-IR and A.3 for RGB-D), with
further comments for each category below.

5.1.1 RGB-D-IR

To the best of our knowledge, Freiburg Forest [110] is currently the only dataset
capturing outdoor scenes with our three modalities of interest (RGB, depth, and
IR), while providing full-image pixel-level annotation. Time-synchronized and cal-
ibrated multi-modal image pairs are provided out of the box, allowing for rapid
prototyping and experimentation. However the dataset contains less than 300
frames capturing the same forested area, and does not feature any dynamic ob-
stacles. Furthermore, the depth maps in this dataset were generated by a depth

26
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estimation DCNN from monocular images, since the authors found the disparity
images from the stereo RGB camera to be too noisy, giving poor segmentation re-
sults in unstructured environments. PST900 [96] is the only other dataset in this
category providing pixel-level annotations. It also provides aligned multi-modal
pairs with long-range stereo depth maps. However, it is limited to a few specific
object classes, and is more suited for search-and-rescue applications than outdoor
scene understanding, since it was captured in an underground setting.

Among the other RGB-D-IR datasets in our overview, ROB7 [46] was collected
as part of a previous semester project and contains valuable tri-modal data fea-
turing heavy pedestrian activity and un-marked lanes. However, the thermal cap-
tures are un-calibrated and not precisely time-synchronized with RGB-D captures,
resulting in significant misalignment when the vehicle is moving at considerable
speed. ViViD [62] provides full multi-sensor calibration information, however the
data is a raw stream recorded at a high frame-rate along a very short trajectory,
with an unequal number of readings per sensor. Extracting and annotating multi-
modal pairs would require synchronization. Similarly, FieldSAFE [57] provides
raw data recorded in a single location, albeit a much more unique one. Both
datasets suffer from low quality depth maps, making them poorly suited for learn-
ing to outline obstacles. Brno Urban [65] is an impressive candidate due to its
scale, environmental diversity, number of sensors used to capture driving scenes,
and particular care paid to time-synchronization, however calibration parameters
are approximate, and multi-modal pairs have to be extracted manually from raw
streams. We include CATS [106] mostly because of its name, but also because it
contains interesting hybrid scenes and stereo RGB/thermal pairs - but unfortu-
nately, no annotations to go along with it either.

(a) Freiburg Forest (b) PST900 (c) ViViD (d) FieldSAFE

(e) ROB7 (f) CATS (g) Brno Urban

Figure 5.1: RGB sample for each RGB-D-IR dataset in Table A.1

https://github.com/Robotics-BUT/Brno-Urban-Dataset
http://bigdatavision.org/CATS/index.html
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5.1.2 RGB-IR

Pixel annotated multispectral datasets remain scarce, even when removing the re-
quirement for depth data. To the best of our knowledge, Freiburg Thermal [113]
(released very recently) is currently the only large-scale RGB-thermal dataset with
full-image semantic labels, providing valuable time-synchronized and aligned mul-
tispectral data in challenging city scenes. However, its pixel labels were produced
by an RGB segmentation teacher network rather than a human annotator, and are
therefore often approximate, and affected by lighting artefacts. MIR Semantic Seg-
mentation [38] contains images captured in 3 different infrared bands, along with
more accurate semantic masks, but only for a small set of dynamic obstacles, thus
leaving most of the pixels unlabelled. ThermalWorld VOC [55] is more of a general
purpose dataset, captured with a hand-held set-up from an unconstrained view-
point in diverse pedestrian locations, but is also only partially pixel-annotated.

KAIST pedestrian [47] is specifically geared towards all-day pedestrian detec-
tion (surprise) in urban scenes, thus only providing bounding box annotations.
Similarly, FLIR ADAS provides bounding box annotations for 5 common dynamic
obstacles, and includes night-time captures; however, this dataset only includes
RGB images for reference - they are not spatially aligned with their thermal coun-
terpart, and no calibration information is provided. Driveable region [116] has a
similar limitation: night-time thermal images are pixel-annotated, but correspond-
ing RGB frames are only provided for a small fraction of the dataset, and are not
spatio-temporally aligned. Lastly, RGB-NIR Scene [13] contains non-annotated
multispectral pairs captured in a wide range of settings from a static viewpoint;
however, since the two modalities are captured sequentially, we note significant
discrepancies in scene content in some image pairs eg. due to people walking in
the background.

(a) Freiburg Thermal (b) MIR Segmentation (c) ThermalWorld VOC (d) Driveable region

(e) MIR Object Detection (f) KAIST Pedestrian (g) FLIR ADAS (h) NIR Scene

Figure 5.2: RGB sample for each RGB-IR dataset in Table A.2

http://thermal.cs.uni-freiburg.de//
https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
http://www.zefirus.org/ThermalGAN/
https://soonminhwang.github.io/rgbt-ped-detection/
https://soonminhwang.github.io/rgbt-ped-detection/
https://www.flir.com/oem/adas/dataset/
https://sites.google.com/site/drivableregion/home
https://ivrlwww.epfl.ch/supplementary_material/cvpr11/index.html
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5.1.3 RGB-D

Among the annotated datasets in our overview, Cityscapes [21] is perhaps the most
common benchmark for outdoor semantic scene understanding, as it provides fine
annotations for thousands of images. It also has the advantage of featuring real
disparity computed via semiglobal matching [44] from stereo pairs. However, it
was captured in ideal outdoor conditions and features highly structured scenes.
Lost and Found [85] was captured in similar conditions as Cityscapes, along dif-
ferent German streets in sunny weather. However, it was specifically developed
to assess small obstacle segmentation on roads: the images feature objects such as
toys or boxes along the vehicles path. Only coarse annotations of the road area and
the obstacle are provided. Kitti [30] is also a well-known urban driving benchmark
and features more challenging illumination conditions than Cityscapes, but its se-
mantic segmentation dataset is only limited to 200 samples. Depth information is
provided as sparse 2D projections of LIDAR scans. SYNTHIA video [89] provides
pixel-wise object classes and dense “true” depth at a much larger scale, since it
was generated in a simulation environment.

The 3 remaining datasets in this category do not include semantic annotations.
RADIATE [94] stands out due its particularly challenging weather conditions, in-
cluding dense fog, snowfall and heavy rain with water coating the camera view; it
provides stereo RGB pairs, radar and 3D LIDAR scans but no temporally aligned
multi-modal pairs. In contrast to widespread urban driving datasets which are
often limited to highly predictable road scenes from European cities, IDD Multi-
modal [111] captures unstructured traffic in India, providing LIDAR scans in ad-
dition to RGB images - but no temporally aligned pairs or calibration information.
Lastly, DIML / CVLAB [17] is an RGB-D dataset designed for depth estimation in
highly diverse scenes - unlike the others in this category, images are taken from a
pedestrian perspective, thus extending beyond vehicle-centric street views.

(a) Cityscapes (b) Kitti (c) Lost and Found (d) SYNTHIA video

(e) RADIATE (f) IDD Multi-modal (g) DIML/CVLAB

Figure 5.3: RGB sample from each RGB-D dataset in Table A.3

https://www.cityscapes-dataset.com/dataset-overview/
http://www.6d-vision.com/lostandfounddataset
http://www.cvlibs.net/datasets/kitti/
http://synthia-dataset.net/
http://pro.hw.ac.uk/radiate/paper/
https://soonminhwang.github.io/rgbt-ped-detection/
https://soonminhwang.github.io/rgbt-ped-detection/
https://dimlrgbd.github.io/
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5.1.4 Honorable mentions

The following datasets were not included in our overview, either because they do
not feature multi-modal data, or because they escaped our attention at the time of
writing, but still bear mentioning for future reference:

• Robot Unstructured Ground Driving (RUGD) [115] was recorded by a mo-
bile robot in off-road environments, and includes 7k+ RGB images with dense
pixel annotations for 24 semantic categories.

• Dense Indoor and Outdoor DEpth (DIODE) [112] is a large-scale (20k+)
RGB-D dataset captured in diverse indoor and outdoor scenes, with high-
quality and long-range depth measurements.

• RGB and NIR Urban Scene Dataset for Deep Scene Parsing (RANUS) [18]
includes 4k pixel-annotated RGB-NIR pairs of driving scenes for 10 semantic
categories.

• WildDash [119] (4k+ samples) and Mapillary Vistas [80] (25k samples) are
two interesting pixel-annotated RGB semantic segmentation datasets for ur-
ban driving in challenging conditions, spanning diverse locations, weathers,
and sensor characteristics.

5.2 Chosen datasets

Considering the time and effort needed to manually annotate a full image seg-
mentation dataset for training, we specifically select datasets featuring pixel-level
annotations of outdoor scenes. In the same spirit of laziness, we also exclude
raw datasets which do not provide registered and calibrated multi-modal samples,
or pre-computed depth maps. For tri-modal fusion, this leaves us with Freiburg
Forest as the only candidate. For bi-modal fusion, we note that all the RGB-IR
datasets meeting our criteria are either only partially annotated (ThermalWorld
VOC, MIR Multispectral Segmentation), or approximately annotated (Freiburg
Thermal). Thus, we turn to RGB-D datasets for more options - however, Lost and
Found is only partially annotated, SYNTHIA is a synthetic dataset and thus would
not be indicative of real-world performance, and Kitti’s segmentation dataset is too
small for training.

Therefore, we take Freiburg Forest and Cityscapes as our primary datasets for
development and experimentation - this gives us two completely different types
of scenes and a total of 4 modalities to experiment with: visible spectrum, NIR,
dense pseudo depth, and real stereo depth, coupled with fine full-image pixel
annotations. We use the rest of the aforementioned datasets to complement some
of our experiments, and to include thermal imaging in the final stage.

http://rugd.vision/
https://diode-dataset.org/
https://sites.google.com/site/gmchoe1/ranus
https://wilddash.cc/
https://www.mapillary.com/dataset/vistas
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5.2.1 Dataset splits

Table 5.1 details the training/validation/test split used for each of the chosen
datasets. The training set is used for model estimation, while the validation set
is used for monitoring performance on unseen samples during learning and se-
lecting the best model for evaluation. Evaluation is then performed on the test set.
When available, we use the official split. If the dataset is explicitly divided into dif-
ferent sequences or locations, we try to create a challenging split such that separate
locations/sequences are used in each set. For datasets which include night-time
captures, we only use day-time ones, since we have no fully annotated night-time
dataset available for training. We also exclude indoor scenes from ThermalWorld
VOC. Note that for small datasets (< 500 samples) like Freiburg Forest and Kitti,
we use the same set for validation and testing, to preserve a maximum amount of
training data. Instructions for downloading each of these datasets and reproducing
our data splits are included in our project repository1.

Samples

Dataset, sub-set Split total train val test

Kitti [30]
random 90/10% split of
original train set 200 180 ← 20 →

Freiburg Forest [110] official split 336 230 ← 136 →

MIR Multispectral [38]
daytime

official split 820 410 205 205

ThermalWorld VOC
outdoor [55]

random 80/10/10% split of
original training set 1466 1173 147 146

Lost & Found [85]
original test set + per-street
split of original train set 2239 949 87 1203

Cityscapes [21]
original train set + per-city
split of original val set 3475 2975 276 233

SYNTHIA video [89]
3 sequences

per-sequence split 7892 3744 1180 2968

Freiburg Thermal [113]
daytime

per-sequence split of
original training set 12170 10067 988 1115

Table 5.1: Dataset splits used in the experiments, shown in order of smallest to largest dataset.

1https://github.com/glhr/learning-driveability-heatmaps/tree/main/datasets

https://github.com/glhr/learning-driveability-heatmaps/tree/main/datasets
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5.3 Data preparation

5.3.1 Depth maps

The Freiburg and Synthia datasets already include artificial dense depth maps
with valid values for every pixel, and thus can be directly used as input to a deep
image segmentation network. However, depth maps from other datasets of interest
which provide real range-sensing data such as Cityscapes and Kitti are noisy and
contain missing values. These can be approximated with depth completion as a
pre-processing step, as introduced in Section 2.1.3. We investigate the effect of
depth completion on segmentation performance in Section 7.2 (single-modality
model) and Chapter 8 (multi-modal models).

Depth completion

We employ the method in [59] to perform basic un-guided depth completion on
sparse or discontinuous depth maps. While this method was originally demon-
strated on LIDAR scan depth maps from the Kitti dataset, [109] successfully ap-
plies it to disparity images from the Cityscapes dataset as a pre-processing step for
semantic segmentation.

Figure 5.4: Steps in the multi-scale depth completion pipeline proposed in [59], applied to a sparse
depth map from the Kitti dataset. The input laser scan is contrast-enhanced and subsequent depth
maps are colorized for visualization.
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As illustrated in Figure 5.4, this depth completion method applies a series of stan-
dard image filtering and morphological operations for filling missing depth values
and reducing noise. The official IP Basic implementation2 provides several variants
of the method, with different quality vs. speed trade-offs. Since we perform all
pre-processing offline with no runtime constraints, we opt for the highest-quality
variant, which performs dilation at 3 different scales, distinguishing between close-
range, mid-range and far-range pixels, with larger dilation kernels for closer ob-
jects. To perform depth completion on stereo depth maps from different datasets,
we adapt the original implementation by:

• adjusting the thresholds delimiting the three depth zones (near, mid, and far)
for each dataset based on its input type and range, and defining a stereo
region of interest (ROI), in which missing values should be estimated. These
regions are used to selectively apply filtering to different parts of the depth
map using pixel masks, which we illustrate with an example in Figure 5.5.

• performing extrapolation not only towards the top edge of the image, but
also towards the other edges if necessary.

• only performing extrapolation for pixels outside of the stereo ROI.

• adding a final hole-filling step with a large dilation kernel size in order to
over-write remaining missing values.

invalid
near

mid-range

far

Pixel masks

outside ROI

Input depth map

Completed depth map

Figure 5.5: Pixel masks used in the depth completion process, illustrated with a sample from the
Cityscapes dataset.

2https://github.com/kujason/ip_basic

https://github.com/kujason/ip_basic
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The steps of the full depth completion process are detailed in Section A.3, and
Figure 5.6 shows some examples of completed stereo depth maps compared to the
original IP Basic implementation.

(a) Cityscapes dataset

(b) Lost and Found dataset

(c) ROB7 dataset

Figure 5.6: Depth completion results on samples from different datasets. Depths maps are colorized
for visualization, with missing values in black. We show a comparison between the original IP Basic
results vs. our modified implementation.
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5.3.2 Image resolution

Image resolution and FOV vary widely across datasets. The size of input sam-
ples used for training CNNs is an important consideration: preserving high input
resolution allows for fine segmentation without loss of detail, however this intro-
duces large memory and computational requirements which may prohibit single-
GPU training. Thus, it is common practice to resize input images to fixed di-
mensions [99]. For instance, the authors in [109] report segmentation performance
of their architecture on the Cityscapes dataset for different input resolutions, and
found that down-sampling input images from the original size of 1024× 2048 to
384× 768 brought a drop in accuracy of less than 1% while reducing inference time
by over ten-fold. In this work, we do not consider a high level of detail at long dis-
tances to be necessary for navigation-oriented scene understanding. Therefore, we
opt for a small input resolution of 240× 480 - the same width as in [4], but with
a wider aspect ratio (to accommodate wide-FOV urban driving datasets like Kitti).
Similarly to [41, 109], images are down-sampled with bi-linear interpolation for
RGB, and nearest-neighbour interpolation for other modalities and ground truth
masks.

5.3.3 Augmentation

Similarly to existing scene segmentation works [79, 105, 109], we augment the
training set with random geometric and photometric transformations which are
listed in Table 5.2. In order to preserve label integrity, only geometric transforma-
tions are applied to the ground truth mask, with nearest neighbour interpolation.
Data augmentation is applied to training samples on-the-fly with each individual
transformation having a probability of 0.5. After augmentation, samples are re-
sized to the fixed input size described in Section 5.3.2. Examples of random data
augmentation applied to different samples are shown in Figure 5.7.

Geometric transformations

horizontal flip
random rotation −10 to 10°

random crop 80 to 90 % of the original size
random perspective transformation 4 points, distance of 5 to 15 % from the corners

random grid-based distortion 3× 3 grid

Photometric transformations

random brightness & contrast adjustment −40 to 40 % of the mean intensity
random tone curve manipulation scale of 10 %

Table 5.2: List of transformations applied on training samples and their parameters. See [14] for a
detailed description.
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(a) Freiburg dataset

(b) Cityscapes dataset

(c) Kitti dataset

Figure 5.7: Examples of an original sample (left) and randomly augmented sample (right) for differ-
ent semantic segmentation datasets



Chapter 6

Navigation-oriented scene
understanding

In this chapter, we focus on segmenting single-channel visible spectrum images, as
a first step towards multi-modal prediction. The goal is not to refine segmentation
through architectural improvements, but rather to investigate learning schemes for
navigation-oriented scene understanding. We pick SegNet, a well-established seg-
mentation network, describe its architecture in Section 6.1 and use it for all the
experiments in this chapter. We start with a standard pixel-wise categorical clas-
sification approach in Section 6.2, and investigate how to segment outdoor scenes
into the proposed broad driveability classes introduced in Chapter 4, compared to
learning specific object classes. In Section 6.3, we then introduce a ranking between
these classes in order to learn the inherent hierarchy between driveability levels,
thus turning this task into a pixel-wise ordinal classification problem. Lastly, we
propose a pixel-wise loss weighting method in Section 6.4, with the aim of focusing
learning on areas in the scene which are the most relevant to navigation.

6.1 Segmentation architecture

SegNet follows an encoder-decoder architecture, the encoder being based on VGG-
16 [99], and the decoder mirroring the encoder via de-convolution to recover the
input resolution. Except for the number of channels at the input and feature maps
at the output (determined by the number of image channels and the number of
training classes respectively), the network is fully symmetrical. In all blocks, con-
volution is applied with a kernel of size 3× 3, unit stride, and zero-padding to
preserve spatial resolution. Max-pooling is applied after each encoder block over
a 2× 2 window with a stride of 2; the max-pooling indices are transferred to the
decoder blocks for up-sampling.

The network variant which we implement is illustrated in Figure 6.1. Compared
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Figure 6.1: Segmentation architecture used for pixel-wise prediction, based on SegNet [4], with the
encoder and decoder shown as two parallel branches. We feed the network a single-channel image,
and the number of classes c at the output varies per learning scheme/experiment.

to the original SegNet model, drop-out (rate of 0.5) is applied in the six deepest
encoder and decoder blocks for regularization, and the number of convolutional
layers in each block is reduced to 2 (as opposed to 3 in the deepest blocks of VGG-
16), results in a total of 20 convolutional layers.

6.2 Object classes to driveability

The goal is to compare our proposed class definition (3 driveability levels) to a
classical object-based segmentation approach in terms of learnability, accuracy and
generalization. To this end, in order to avoid having to label a full dataset from
scratch, we leverage existing outdoor semantic segmentation datasets: we make
use of the Freiburg Forest, Cityscapes and Kitti datasets, all three of which provide
dense pixel-wise annotations across 2 or more imaging modalities, including RGB.

To generate ground truth labels, we perform a blind mapping from the original
semantic classes of each dataset to driveability levels, based on the type of scene
element. As detailed in Figure 6.2, essentially, any kind of object or barrier in the
scene is considered impossible to drive on (red), along with the sky. Paved areas
or paths are considered fully driveable ie. preferable (green), while other terrains
(eg. grass) or areas on the side of the path (eg. sidewalk) are assigned to the inter-
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mediary possible level (yellow). Figure 6.3 shows examples of resulting driveability
segmentation masks obtained after applying this ground truth mapping.

(a) Freiburg Forest labels (b) Cityscapes labels

Figure 6.2: Pie charts showing how we sort the original semantic classes into driveability levels. The
size of the slices indicates the proportion of pixels assigned to each driveability level across the full
dataset.

Freiburg Forest

Cityscapes

Kitti

Figure 6.3: Dataset samples: single-channel visible spectrum image (left), original labels (middle),
labels mapped from object classes to driveability level (right).
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To assess the viability of the proposed driveability class definition compared to
object-based semantic classes, we implement and evaluate three learning schemes.
In the baseline scheme, the network is trained to predict the original object classes
in the dataset (eg. tree, sky, car), and these predictions are manually mapped to
driveability levels in the evaluation stage. As illustrated in Figure 6.4a, for evalua-
tion of the baseline scheme, the predicted object class probabilities are mapped to
driveability level probabilities via simple addition. The predicted driveability level
is then taken as the argmax across the class probability vector for each pixel.

Road Grass Vegetation Tree Sky Obstacle

Input sample

Predicted class probabilities
Ground truth:
object classes

Driveability level probabilities

Segmentation 
network

Preferable ImpossiblePossible

Ground truth:
driveability levels Argmax

Evaluation

(a) Baseline scheme, where ground truth and predicted semantic labels are mapped to driveability levels.

Evaluation

Semantic object classes

Driveability levels

Ground truth

Baseline scheme

Driveability scheme

Prediction
(b) Baseline and driveability learning schemes - the ground truth column shows the target used when training
the model, and the prediction column is the model output (after applying argmax).

Figure 6.4: Evaluation procedure, illustrated with samples from the Freiburg Forest dataset.
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In the driveability scheme, the network is trained to directly predict driveabil-
ity levels, as shown in Figure 6.4b. Lastly, we also implement a transfer learning
scheme, where the network is first trained on the original object classes (outcome
of the baseline scheme), and then adapted to learn driveability levels.

Training procedure

We train SegNet on grayscale visual images which are resized and randomly aug-
mented following the procedure in Section 5.3. The model is trained on each
dataset separately, with Adam optimization [54] (β1 = 0.9, β2 = 0.999, left as
default) and a limited batch size of 8 due to memory constraints. For all three
schemes, the segmentation model is trained to minimize Kullback-Liebler diver-
gence. The loss per batch is computed as the sum of the loss per non-void pixel,
divided by the number of non-void pixels in the batch - such that each labelled
pixel contributes equally in the total loss regardless of the proportion of void pix-
els, image resolution or batch size.

For the semantic and driveability schemes, the segmentation network is trained
from scratch with an initial learning rate of 10−3. The best model for each scheme is
selected based on minimal validation loss. In the transfer learning scheme, we then
adapt the semantic model to predict driveability levels by re-initializing the last
convolutional layer with 3 output channels and resuming training with an initial
learning rate of 10−4 for a small number of epochs until convergence.

Figure 6.5 compares the learning curves of the semantic and driveability learning
schemes on both datasets. We note lower loss, faster convergence and better gen-
eralization to the validation set for the semantic models - this is especially apparent
when learning the Cityscapes dataset, which has a higher number of semantic
classes for each driveability level (eg. 24 → 1 for the level vs. 4 → 1 for
Freiburg Forest), suggesting that specific semantic descriptions are easier to learn
than general driveability levels spanning different object types.

0 100 200 300 400 500 600

(a) Freiburg dataset (b) Cityscapes dataset

Figure 6.5: Learning curves for the semantic and driveability schemes trained on the Freiburg and
Cityscapes datasets. The loss is scaled based on the number of training classes for comparison.
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Evaluation

For each training dataset and learning scheme, we record the pixel accuracy as
well as pixel-wise precision and recall per driveability level on unseen samples,
both from the dataset’s own test set (intra-dataset evaluation) and from the other
segmentation datasets to assess domain generalization (out-of-dataset evaluation).
Scores are computed by accumulating a raw confusion matrix of predictions across
batches, which is column-normalized (for recall) and row-normalized (for preci-
sion) at the end of the testing epoch. Quantitative results are given in Table 6.1
and described below. We also show examples of predictions by all six models in
Figure 6.7 (trained on Freiburg Forest) and Figure 6.8 (Cityscapes).

pixel
accuracy

Precision Recall

Trained on Freiburg Forest, prediction on Freiburg test set
Semantic 94.32 95.77 89.70 98.30 98.27 89.47 79.57
Driveability 94.78 96.40 90.08 97.62 98.49 90.70 79.33
Transfer learning 94.30 95.23 91.02 97.39 98.48 87.68 83.27

Trained on Freiburg Forest, prediction on Kitti dataset
Semantic 75.65 88.34 36.41 89.28 96.17 62.45 28.53
Driveability 70.86 87.51 30.88 88.74 96.26 63.49 6.96
Transfer learning 73.56 84.85 34.38 91.37 97.41 55.32 20.56

Trained on Freiburg Forest, prediction on Cityscapes test set
Semantic 68.58 90.14 15.80 96.95 97.89 62.08 25.63
Driveability 60.20 89.10 11.95 96.72 98.38 59.03 2.73
Transfer learning 63.82 88.87 13.25 97.04 98.46 58.61 12.55

Trained on Cityscapes, prediction on Cityscapes test set
Semantic 96.85 99.00 74.58 98.25 98.94 87.36 95.32
Driveability 97.30 98.44 85.98 97.39 99.37 78.76 97.43
Transfer learning 96.91 98.90 75.21 98.41 99.10 87.55 95.21

Trained on Cityscapes, prediction on Kitti dataset
Semantic 90.73 96.14 83.37 80.55 97.96 53.36 94.35
Driveability 87.15 93.84 85.96 72.89 98.48 23.83 95.72
Transfer learning 91.49 95.31 85.04 84.36 98.41 57.22 94.00

Trained on Cityscapes, prediction on Freiburg Forest dataset
Semantic 69.53 89.97 55.08 27.45 92.53 4.37 94.54
Driveability 63.72 92.59 71.49 21.94 84.76 0.20 97.90
Transfer learning 69.46 87.78 58.97 28.60 92.75 3.73 94.16

Table 6.1: Quantitative results of argmax predictions, comparing the three learning schemes. For
readability, we highlight the best and worst result for each metric.
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We first remark that the results of this experiment are affected by class imbal-
ance: the most infrequent driveability levels ( for Freiburg, for Cityscapes)
have the lowest recall scores, and although we evaluate the models under the same
driveability level definition, note that they were trained under different class defi-
nitions and distributions (eg. in Cityscapes, pole is a minority class when training
the semantic model, but falls under the majority class when training the drive-
ability model). Thus, in the evaluation, it may be difficult to disentangle the effects
of class distribution from differences in learning scheme.

Looking at intra-dataset performance, the models achieve higher pixel accuracy
on Cityscapes than Freiburg Forest. We attribute this in part to the dataset’s scale
(≈ 10 times more data to learn from than Freiburg Forest), and to the fact that its
well-lit urban scenes are less ambiguous to segment than the unclear transitions be-
tween path, grass, and surrounding vegetation in Freiburg Forest, especially when
solely relying on grayscale information. Comparing the three learning schemes,
the driveability model produces the most accurate segmentation, out-performing
the semantic and transfer learning models by approximately 0.5% on both datasets.
This is somewhat expected, since it was trained from scratch to specialize in learn-
ing to segment driveability.

The differences in performance between the learning schemes widen signifi-
cantly for out-of-dataset prediction. Note that this is a particularly challenging
task, since the out-of-dataset samples include completely different scenes to those
that the models were trained on (urban scenes vs. forested areas): models trained
on Cityscapes have seen little to no grass, off-road paths or rocks, while those
trained on Freiburg Forest have not seen any paved road, building or dynamic
obstacle. We aggregate and visualize the differences in intra-dataset and out-of-
dataset performance between the learning schemes in Figure 6.6. Here we pay
particular attention to precision scores for the most driveable areas and recall

60

70

80

90

Intra-dataset Out-of-dataset

Pixel accuracy

20

40

60

80

100

Intra-dataset Out-of-dataset

■ Precision

88

92

96

100

Intra-dataset Out-of-dataset

■ Recall

Semantic Driveability Transfer learning

Figure 6.6: Distribution of intra-dataset and out-of-dataset performance metrics across models
trained on both datasets (Freiburg Forest and Cityscapes), comparing the three learning schemes.
The scores are directly taken from Table 6.1.
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scores for undriveable areas, based on the idea that over-segmentation of the
driveable path and under-segmentation of obstacles raises safety concerns for nav-
igation: it is better to be conservative about where we should drive, and overly
cautious about what to avoid.

On out-of-dataset samples, models trained under the transfer learning scheme
jointly achieve higher recall for areas and higher precision for areas than with
the two other schemes. The semantic models have the highest tendency to under-
segment obstacles, while the driveability models are the most likely to incorrectly
label areas as preferable to drive on. We especially note a large drop in the
performance of the driveability model when trained on Cityscapes and evaluated
on Freiburg Forest.

The pictures Looking at the side-by-side qualitative comparison in Figure 6.7
and Figure 6.8, we observe that the driveability model tends to categorize large
areas as the same thing, with less attention to detail, while the semantic model is
more sensitive to fine-grained patterns and small obstacles. We see this in the first
row of Figure 6.7 for instance, where unlike the semantic model, the driveability
model fails to segment the bench in the distance, but produces smoother segmen-
tation outlines. In the third and fourth row, the driveability model fails to recognize
most of the thin path altogether. The transfer learning seems to inherit properties
from both of these learning schemes, often outputting what looks like a reasonable
middle ground, and more consistent segmentation of obstacles both for intra- and
out-of-dataset samples. We also notice that the models tend to mimic the scene ge-
ometry and class distribution which they were originally trained on: when trained
on Cityscapes for instance, out-of-dataset predictions maintain a low proportion
of pixels, and a wide path spanning most of the image, while the opposite
holds when trained on Freiburg Forest, where the path constitutes a much smaller
fraction of images.

Wrapping up It appears that in being trained on a general class definition from
the start, the driveability models learn a broad-stroked scene representation which
generalizes poorly in completely new scenes and often overlooks relevant details.
For generalization to new scenes and obstacles, it seems beneficial to first learn
narrow descriptive classes and then adapt the model via transfer learning to learn
a more general, functional description. The transfer learning scheme also bene-
fits from fast training compared to learning the proposed driveability definition
from scratch, converging in under 40 epochs on Freiburg Forest and in under 20
epochs on Cityscapes. Thus, we opt for this learning scheme in all the following
experiments.
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Input image Ground truth Semantic Driveabilty Transfer learning

(a) Trained on Freiburg Forest, prediction on Freiburg Forest test set

(b) Trained on Freiburg Forest, prediction on Kitti

(c) Trained on Freiburg Forest, prediction on Cityscapes

Figure 6.7: Selected samples from the Freiburg Forest, Cityscapes and Kitti datasets, comparing the
segmentation output of the Freiburg Forest models in Table 6.1, under the three learning schemes.
Predictions are shown overlayed on the input image.
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Input image Ground truth Semantic Driveabilty Transfer learning

(a) Trained on Cityscapes, prediction on Cityscapes test set

(b) Trained on Cityscapes, prediction on Kitti

(c) Trained on Cityscapes, prediction on Freiburg Forest

Figure 6.8: Selected samples from the Freiburg Forest, Cityscapes and Kitti datasets, comparing
the segmentation output of the Cityscapes models in Table 6.1, under the three learning schemes.
Predictions are shown overlayed on the input image.
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6.3 Soft labels for ordinal segmentation

In Section 6.2, we have treated driveability level prediction as a standard categor-
ical segmentation task, without considering a hierarchy between the three classes,
and thus treating all mis-classifications as equally severe. In this section, we in-
corporate a ranking between the classes during learning such that the further a
prediction is from the target class, the higher the loss: for instance, classifying an
area which is preferable to drive on as impossible to drive on should be penalized
more heavily than classifying it as possible. Thus, rather than only considering how
many mistakes the network makes, the goal is to encourage it to make “better mis-
takes”, as expressed in [9]. As demonstrated in [28] and [23] for instance, this can
be accomplished by training the network on soft labels which encode inter-class
relationships. As opposed to other ordinal classification methods which involve
architectural changes or modifications of the loss formulation, a soft labelling ap-
proach only requires a modification of the ground truth data, and can be used in
a standard classification pipeline, allowing for direct comparison with the default
hard labelling scheme.

We first describe how soft ground truth labels are generated, and how we define
the inter-class relationships for this task. We then train our segmentation network
on these ordinal labels and evaluate its performance in terms of accuracy and
mistake severity, compared to the previous experiment.

6.3.1 Generating soft labels

To encode a distance between the driveability levels, we implement the Soft Ordi-
nal vectors (or SORD) labelling scheme proposed in [23], where “hard” one-hot en-
coded labels are converted to a softmax-normalized probability distribution based
on a ranking definition, such that the target class has the highest probability and
the other probabilities encode a distance from the target class. Given a set of ranks
R = {rimpossible, rpossible, rpre f erable} (one per driveability level), a SORD ground truth
label ŷ can be generated based on a target rank rt as follows:

ŷi =
exp−φ(rt, ri)

∑k∈R exp−φ(rt, rk)
∀ri ∈ R

where φ(rt, ri) is a metric loss function which penalizes deviation from the target
rank rt eg. absolute difference |rt − ri|. As all the distances between the ranks
approach infinity, ŷ reduces to a one-hot encoded vector; as the distances approach
0, ŷ approaches a uniform probability distribution.
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6.3.2 Ranking definition

In common applications of ordinal classification, the ranking R is already defined
based on natural order in the data: for instance, in age estimation, the distance
between the classes is simply a difference in years, or in depth estimation, the
ranking is based on metric measurements. In our case, the ranking definition is
somewhat arbitrary, since we do not have a quantitative measure of driveability:
we simply know that rimpossible < rpossible < rpre f erable.
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Figure 6.9: Diagram showing how a soft ordinal label is generated from a hard label (for a single
pixel) based on a class ranking definition, using absolute difference as metric loss function φ(rt, ri).

We first consider a simple ranking definition, where the classes {impossible,
possible, preferable} are mapped to the ranks R = {1, 2, 3} (least to most driveable);
using absolute difference as our metric loss function φ, the inter-class distance in
this case is 1. Figure 6.9 shows how a soft label can then be generated based on this
definition for a single sample - in this example, the target is impossible. A vector
encoding the distance of each class from the target class is then computed: the
possible class has a distance of 2 from the target, for instance. We then simply apply
softmax on the distance vector in order to obtain a normalized class probability
distribution, to be used as the soft label.

Similarly to [23], in addition to absolute difference (AD), we consider other
inter-class distance metrics for generating soft ordinal labels, including square dif-
ference (SD), and square log difference (SLD):

φ(rt, ri) = α|rt − ri| (AD)

φ(rt, ri) = (α|rt − ri|)2 (SD)

φ(rt, ri) = (α| log(rt)− log(ri)|)2 (SLD)
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We introduce a factor α which scales the label entropy - as α grows, the SORD
label approaches a one-hot label with 0 entropy. For AD and SD, setting α to 2
with the ranks R = {1, 2, 3} has the same effect as using R = {2, 4, 6} with α = 1.
Figure 6.10 shows SORD labels generated for the three inter-class distance metrics
and two α values which we consider in the experiment. While SD and AD yield
symmetric and scale-invariant encodings, SLD yields softer labels with increasing
rank.

(a) One-hot labels (baseline)

(b) SORD labels, ADα=1 (c) SORD labels, SDα=1 (d) SORD labels, SLDα=1

(e) SORD labels, ADα=2 (f) SORD labels, SDα=2 (g) SORD labels, SLDα=2

Figure 6.10: Label class probabilities generated for different label representations. For the SORD
labels, we use the following rank definition: R = {1, 2, 3}

6.3.3 Training procedure

Loss Aligning with all the experiments in this section and following [28, 23], we
compute the loss as the Kullback-Leibler divergence (cf. Section 2.2.1). Figure 6.11
illustrates how the loss value varies for different possible mistakes in each labelling
scheme. In the standard one-hot labelling case, all incorrect predictions yield the
same loss value; in the SORD labelling scheme, the loss value increases with in-
creasing distance from the target class. Note that when using square log difference
(SLD) as the inter-class distance metric, the confusion matrix is not vertically or
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horizontally symmetrical: for instance, classifying an obstacle as driveable
yields a higher loss than classifying a driveable pixel as undriveable - the
network has a higher incentive to assign pixels a low driveability level.
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Figure 6.11: Confusion matrix of the Kullback-Leibler divergence between all possible combinations
of ground truth vs. predicted class, under different labelling schemes (with R = {1, 2, 3}). For
conciseness, we only show the α = 1 variants, since increasing α only hardens the labels.

Learning As a baseline for evaluation, we use the transfer learning model from
Section 6.2 (which was trained on standard one-hot encoded labels). For training
the network on soft labels to learn driveability, we use the same procedure and
hyper-parameters: the network is initialized with the baseline object class model,
and then adapted to learn 3 driveability levels by re-initializing the last layer and
continuing training with a lower learning rate.

6.3.4 Evaluation

Similarly to [23], we record categorical pixel accuracy as well as regression metrics
(cf. Section 2.2.4): mean absolute error (MAE), root mean squared error (RMSE),
root mean squared log error (RMSLE), mirroring the three inter-class φ metrics
(AD, SD, and SLD) which we compare for the SORD vector computation. We
also introduce a mistake severity metric, which is based on [9], and is computed as
the mean absolute error of incorrect predictions. The metric is normalized based
on the minimum and maximum possible error for a single prediction (1 and 2
respectively with a ranking of R = {1, 2, 3}), such that a severity of 0 corresponds
to the lowest possible error, and 1 corresponds to the worst possible mistake. Note
that while the mean error metrics implicitly depend on the proportion of correct
vs. incorrect predictions, the mistake severity metric only considers the error for
incorrect predictions, and is thus fully decoupled from accuracy.

Table 6.2 compares the performance of the models trained on SORD labels
compared to the one-hot baseline. Looking at the best performing models on
each dataset, we first note significantly different results for Freiburg Forest vs.
Cityscapes. An important difference between the datasets is the proportion of
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pixels (cf. Figure 6.2) and general location of obstacles: in Freiburg Forest, pix-
els are much more prevalent due to the abundant grassy areas and obstacles on the
driveable path are rare, while in Cityscapes images, the proportion of sidewalk or
other terrain is very slim, and obstacles on the road are a common occurence. This
transpires through the mistake severity metric: for Cityscapes samples, the error in
driveability level is much more likely to be 2 than 1 compared to Freiburg Forest,
hence the higher mistake severity. For Freiburg Forest, all SORD label methods
yield a significantly lower mistake severity and higher IoU for areas which are im-
possible to drive on than the standard one-hot labelled baseline. On Cityscapes,
the performance of different SORD models is a trade-off between mistake severity
and accuracy. For both datasets, SLDα=1 makes the least severe mistakes.

pixel
accuracy

IoU error mistake
severityMAE RMSE RMSLE

Trained on Freiburg Forest, prediction on Freiburg test set
One-hot 94.30 93.85 80.70 81.45 0.0580 0.2448 0.1527 0.0173

ADα=1 94.39 94.13 81.16 80.27 0.0568 0.2412 0.1491 0.0122
SDα=1 94.53 94.21 81.54 81.34 0.0553 0.2374 0.1474 0.0010

SLDα=1 94.25 94.26 80.79 77.67 0.0581 0.2435 0.1487 0.0010
ADα=2 94.44 94.18 81.36 80.39 0.0563 0.2401 0.1484 0.0124
SDα=2 94.37 93.89 80.87 82.06 0.0572 0.2428 0.1518 0.0159

SLDα=2 94.08 93.92 80.12 78.46 0.0600 0.2482 0.1529 0.0136

Trained on Cityscapes, prediction on Cityscapes test set
One-hot 96.91 98.02 67.94 93.76 0.0346 0.2051 0.1066 0.1208

ADα=1 97.02 98.00 68.26 94.11 0.0335 0.2022 0.1059 0.1236
SDα=1 96.63 97.98 65.66 93.10 0.0373 0.2110 0.1088 0.1078

SLDα=1 96.79 98.01 65.63 93.81 0.0345 0.1979 0.1030 0.0731
ADα=2 96.98 98.00 68.06 93.95 0.0340 0.2041 0.1066 0.1261
SDα=2 96.95 98.01 68.02 93.87 0.0343 0.2046 0.1067 0.1244

SLDα=2 96.92 97.95 67.46 93.88 0.0346 0.2055 0.1075 0.1238

Table 6.2: Quantitative results of argmax predictions on the Freiburg Forest and Cityscapes test sets,
comparing models trained on soft ordinal labels vs. the baseline one-hot label representation. For
readability, we highlight the best, second-best, and the worst result for each metric. We also highlight
results which perform worse than the one-hot baseline.

Figure 6.12 presents a visual comparison between predictions by the different la-
belling schemes on a selected image crop from each dataset, and also includes an
error map for each prediction, computed as the pixel-wise difference between the
ground truth driveability level and the predicted (argmax) level. While the mistake
severity and squared error metrics in the quantitative evaluation only capture the
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magnitude of pixel classification error, here we also visualize it’s direction: nega-
tive errors (in blue) correspond to an under-estimation of driveability (the model
is being overly conservative about which areas are driveable), while positive errors
(in red) are arguably worse in the context of safe navigation, since the model is
over-estimating how driveable an area is. A light shade of blue or red indicates
low mistake severity, and white indicates a correctly classified pixel. Looking at
the overall aspect of the segmentation, the models trained on the hardest labels
(one-hot followed by SDα=2) yield the most rough and spotty segmentation out-
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Figure 6.12: Argmax predictions and color-coded error maps of the 6 SORD models compared to the
one-hot baseline, on a cropped sample from the Freiburg Forest and Cityscapes test sets.
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lines, while the softer labelling schemes produce smoother contours. The two SLD
models are the most effective at reducing the number of severe positive (red) errors:
due to the asymmetrical class probability distributions in their labels, the model
is encouraged to under-estimate rather than over-estimate driveability. Figure 6.13
shows a few examples of full-image predictions by these two models. For SLDα=1,
this comes with an increase in the number of low-severity errors which visually
manifests as a layer of pixels around obstacles. For SLDα=2, severe errors trans-
fer over to the opposite direction, resulting in obstacles which are slightly more
over-segmented than by the rest of the models.

SLDα=1One-hotInput image SLDα=2

Figure 6.13: Argmax predictions (top) and color-coded error maps (bottom) of the 2 SLD models
compared to the one-hot baseline, on samples from the Cityscapes and Freiburg Forest test sets.
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6.4 Loss weighting

In the previous experiments, the loss per image is computed as an un-weighted
average of pixel-wise loss, thus giving every pixel equal contribution during learn-
ing. Upon examination of the loss value per pixel on test images (Figure 6.14),
we find that the highest loss occurs along segmentation boundaries - this aligns
with [64, 125] which found boundary pixels to be the most difficult to segment.

However, for navigation applications, fine segmentation along the edges of dif-
ferent classes may not be necessary, since a vehicle is expected to stay in the middle
of driveable areas. Thus, it may be beneficial to introduce leniency along bound-
aries during learning and evaluation, while giving more weight to central areas.
Furthermore, we posit that it is more important to segment the scene correctly in
areas close to the vehicle (ie. low in the image), as these directly influence driv-
ing decisions, whereas areas high in the image (eg. the sky) bear less relevance
for our task. Based on these intuitions and following the method in [88] (albeit
with a completely different goal), we implement a loss weighting scheme which
encourages the segmentation network to learn pixels with higher importance.

Figure 6.14: Loss on test samples from the Freiburg Forest (top) and Cityscapes (bottom) datasets,
based on predictions by the driveability models from Section 6.2. The ground truth segmentation is
shown on the left and the Kullback-Liebler divergence per pixel is visualized on the right.

We describe how we generate pixel-wise weight maps from ground truth segmen-
tation masks, and incorporate them into the loss computation. In contrast to [88],
where the pixel weight is maximized along borders, and exponentially decayed
with increasing distance, we assign the lowest weight to border pixels, and incor-
porate a notion of depth, with higher edge tolerance for distant objects.
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Figure 6.15: Steps in the weight map computation, numbered and illustrated with a ground truth
sample from the Kitti dataset.

6.4.1 Generating weight maps

Given a pixel location p = [px, py]T in the ground truth mask, we formulate a
weight map which depends on its Euclidian distance d(p) to the closest boundary
and on its vertical position (height) in the image h(p):

w(p) = h(p) ·
[

1− exp
(
− d(p)

1 + α(1− h(p)2)2

)]
(6.1)

where α is a constant which we experimentally set to 30. The height map h(p) is
used to scale the rate at which the pixel weight increases when moving away from
a boundary, and as a pixel-wise multiplication factor which assigns higher weight
to lower pixels. We generate a weight map w(p) for every ground truth mask in
three steps which are illustrated in Figure 6.15:

1. the height map h(p) is pre-computed for all possible pixel locations based on
the image height H as: h(p) = py/H such that pixels in the lowest row of the
image have the value 1 and those in the top row have a value of 0.

2. for computing the distance map d(p), we first perform edge detection on the
gray-scaled ground truth mask, binarize the edge map, and apply a distance
transform [11] with a 5× 5 kernel
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3. the weight map w(p) is computed following (6.1), and then normalized to lie
within a range of 0.1 to 1.

This results in a weight map with the lowest intensity along segmentation bound-
aries (dark blue in Figure 6.15), and the highest intensity in the lower region of the
image (red). See Section A.6 for examples of a weight map generated on a Freiburg
Forest and Cityscapes sample.

6.4.2 Weighted loss computation

Similarly to [88] and derivative works such as [35], the weight map is applied to
the loss per pixel p via element-wise multiplication:

LKL(yp||ŷp) = w(p) ∑
i∈C

yp,i log
yp,i

ŷp,i

where yp and ŷp are the pixel ground truth and predicted class probability vectors
respectively, and C is the set of classes. As visualized in Figure 6.16, after applying

(a) Ground truth (b) Unweighted pixel-wise loss (c) Weighted pixel-wise loss

Figure 6.16: Loss on test samples from the Freiburg Forest (top) and Cityscapes (bottom) datasets,
based on predictions by the driveability models from Section 6.2. The ground truth segmentation is
shown on the left and the Kullback-Liebler divergence per pixel is visualized before (middle) and
after applying the pixel-wise weight map (right).
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the weight map, the loss per image is primarily concentrated in the bottom half of
the image, and in areas away from boundaries, rather than along object contours.

6.4.3 Evaluation

For comparison with the standard unweighted loss approach, we repeat the same
training procedure as in the transfer learning scheme of Section 6.2, where the net-
work is initialized with weights from the object segmentation task, and then trained
to predict driveability levels with an initial learning rate of 10−4 until convergence.
The network is trained on the Freiburg Forest and Cityscapes datasets separately.
We record pixel accuracy and also introduce a weighted accuracy measure, which
assigns variable importance to pixels based on the weight map w generated from
the ground truth mask. These two metrics are given in Table 6.3 and calculated
as:

Aunweighted =
∑p∈P c(p)

∑p∈P 1
Aweighted =

∑p∈P w(p)c(p)

∑p∈P w(p)

where P is the set of non-void pixels across all samples in the testing epoch and
c(p) is a correctness indicator function which returns 1 if the pixel p is correctly
predicted (true positive or true negative) and 0 otherwise.

Pixel accuracy IoU mistake
severityAunweighted Aweighted

Trained on Freiburg Forest, prediction on test set
unweighted loss 94.30 93.68 93.85 80.70 81.45 0.0173
weighted loss 94.30 93.79 93.91 80.80 80.85 0.0179

Trained on Cityscapes, prediction on test set
unweighted loss 96.91 97.24 98.02 67.94 93.76 0.1207
weighted loss 96.79 97.13 97.93 66.86 93.55 0.1209

Table 6.3: Performance of the driveability segmentation model with the proposed loss weighting
scheme vs. the standard model from Section 6.2.

On the Freiburg Forest dataset, training the model with the proposed loss weight-
ing method yields an increase in accuracy for the pixels of higher importance, as
indicated by the weighted score. However, this improvement does not extend to
the Cityscapes dataset.

Comparing the unweighted vs. weighted accuracy, it is interesting to note that
for Cityscapes, the pixels of interest (low in the image and far from edges) are easier
to learn, while for Freiburg Forest, the model achieves higher accuracy for distant
pixels. This could be attributed to the fact that Cityscapes features much more clut-
tered scenes with objects which are difficult to segment precisely in the distance but
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appear more clearly delineated in the foreground; in contrast, Freiburg Forest im-
ages have rather uniform background elements (primarily sky and vegetation), but
more ambiguous terrain in the foreground. Although both models yield quantita-
tively similar results, the model trained under the loss weighting scheme produces
less patchy or fuzzy segmentation for both datasets, with smoother boundaries and
a noticeable loss of detail, especially in distant (high) areas (eg. legs, thin poles).
We highlight this with selected image crops in Figure 6.17, and additionally show
a side-by-side comparison of full-image predictions in Figure 6.18.

Unweighted loss

Weighted loss

Unweighted loss

Weighted loss

(a) Segmentation is smoother and less fragmented with loss weighting
Freiburg Forest (top) & Cityscapes (bottom)

Ground truth

Unweighted loss

Weighted loss

(b) Details are lost along the way - Cityscapes

Figure 6.17: Crop of predictions on selected samples from the Freiburg Forest and Cityscapes test
sets, showing the effect of loss weighting. Predictions are shown overlayed on the input image.
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Weighted lossUnweighted lossGround truth

Figure 6.18: Selected samples from the Freiburg Forest (top) and Cityscapes (bottom) test sets for
qualitative comparison of the proposed loss weighting scheme vs. the standard model from Sec-
tion 6.2. Predictions are shown overlayed on the input image.



Chapter 7

Segmenting depth and infrared
images

To guide the next experiments, the goal is to first train our segmentation net-
work on alternative modalities from the Freiburg and Cityscapes datasets, to assess
their usefulness as individual predictors of driveability, and to obtain pre-trained
models which we later integrate into a multi-modal architecture. Since the use of
depth and IR imaging also raises questions about the kind of pre-processing which
should be applied, we also specifically evaluate the effect of data augmentation and
filtering on segmentation performance.

In these experiments, for direct comparison with the model trained on visible
spectrum images, we employ the same training procedure and hyper-parameters
as in the experiments from Chapter 6, where SegNet is initialized with the baseline
model trained on object classes and then adapted to learn 3 driveability levels.
Rather than learning to segment each new modality from scratch, we use the pre-
trained visible spectrum model weights for initialization of the object baseline, and
then learn driveability on the new modality. We use one-hot encoded labels and
no loss weighting during training. For evaluation, we report global pixel accuracy,
weighted accuracy (cf. Section 6.4), class-wise IoU, as well as mistake severity
(introduced in Section 6.3.4).

7.1 Data augmentation

In the experiments of Chapter 6, we trained SegNet on grayscale visible spectrum
images with random photometric and geometric transformations (cf. Section 5.3.3)
applied on-the-fly during training for data augmentation. However, whether these
transformations should analogously be applied to infra-red or depth images for
multi-modal segmentation remains an open question.

60
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Therefore, we tackle this question by training the model on depth and IR im-
ages and comparing two data augmentation variants: in the geom variant, only
geometric transforms are applied (thus leaving pixel intensity intact), and in the
geom+photo, all the augmentations listed in Section 5.3.3 are applied. Similarly
to [41], depth and IR images are min-max normalized to [0, 255] - the same range
as visible spectrum images. Results on the Freiburg dataset are reported in Ta-
ble 7.1.

Evaluation Comparing the segmentation performance across modalities on the
Freiburg dataset, visible spectrum images achieve the most consistent scores across
levels and are the most informative modality for learning driveable areas ( and

), while NIR images yield superior segmentation for non-driveable areas ( ),
but remain ambiguous when distinguishing between the and levels. The
largest variation in performance between modalities can be seen in the IoU for the

level; relying on depth data alone for segmentation yields poor results, since it
especially lacks the visual cues necessary to distinguish between different types of
terrain.

We also note that due to the nature of the depth data in this dataset, which
was generated artificially from visible spectrum images alone, light artefacts such
as glare or shadows wrongly transfer to the depth modality, as can be seen in Fig-
ure 7.1a. In this example, the sun ray causes discontinuity in the segmentation of
the visible spectrum and depth images, while the NIR modality is unaffected and
yields the most consistent segmentation. The two examples in Figure 7.1 also show
that the pseudo depth images are rather poor estimates of true distance: clouds
appear unrealistically close, the path appears darker/closer than the neighbouring
grass, and the bench in Figure 7.1b is almost lost in the background.

Comparing the two data augmentation variants, our results suggest that aug-
menting images with photometric transformations is beneficial for NIR, however
it hinders performance for depth data. This also aligns with the intuition that
intensity-based transformations are more sensible for visible spectrum and NIR
images, since they simulate natural variations in illumination - applying them to
depth maps is perhaps analogous to warping the scene geometry in an unrealis-
tic manner. Therefore, in the following experiments, we implement the geom data
augmentation variant for depth data, and photo + geom for infra-red images.
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Pixel accuracy IoU mistake
severityA Aweighted

Trained on Freiburg dataset, prediction on test set
Vphoto+geom 94.30 93.68 93.85 80.70 81.45 0.0173
Dgeom 88.40 85.00 91.20 66.48 33.41 0.0236
Dphoto+geom 87.90 84.08 91.21 65.20 27.30 0.0240
NIRgeom 92.77 92.10 93.98 77.31 61.05 0.0359
NIRphoto+geom 93.26 92.58 94.55 78.47 62.84 0.0228

Table 7.1: Segmentation performance on depth (D) and NIR images, compared to the visible spec-
trum (V) model from Section 6.2. We highlight the best and worst results for each metric.

Visible spectrum

Ground truth

DepthNIR

(a) Effect of glare

(b) Segmentation of a mid-range obstacle, which is highlighted in blue

Figure 7.1: Comparison of segmentation results of different single-modality models (Vphoto+geom,
Dgeom and NIRphoto+geom) on selected samples from the Freiburg test set.
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7.2 Depth completion

While [109] applies depth completion as a pre-processing step for multi-modal
segmentation of Cityscapes scenes, the authors do not report comparative results
to show its usefulness compared to training the network on raw disparity maps.
Therefore, to investigate the effect of depth completion on this dataset, we compare
the segmentation performance when training our network on raw stereo disparity
maps vs. completed maps (generated following Section 5.3.1), with the same ex-
perimental procedure as in the previous section. Quantitative results are reported
in Table 7.2.

Pixel accuracy IoU mistake
severityA Aweighted

Trained on Cityscapes dataset, prediction on test set
V 96.91 97.24 98.02 67.94 93.76 0.1207
Draw 96.24 97.15 97.12 60.39 92.80 0.1707
Dcomp 95.64 96.51 96.63 56.84 91.25 0.2242

Table 7.2: Segmentation performance on depth (D) images, compared to the visible spectrum (V)
model from Section 6.2. We highlight the best and worst results for each metric.

Evaluation Comparing the models trained on raw disparity maps (Draw in Ta-
ble 7.2) vs. depth-completed maps (Dcomp), applying depth completion as a pre-
processing step results in a clear drop in performance across all metrics, especially
for segmentation of the driveability level. Figure 7.2a shows an example where
the Dcomp model incorrectly segments the entire ground area as , while the Draw

model is able to correctly predict the left sidewalk as . This is most likely due
to the loss of detail caused by the filtering operations in the depth completion pro-
cess: while missing values are filled, objects lose their sharp delineation. Depth
completion also makes obstacles appear fuller and results in a more approximate,
"blobby" segmentation, as can be seen for the pedestrians and pole in Figure 7.2b.
In this example, Dcomp is the only model which correctly segments the stroller as a
single object.

We also note that compared to the Freiburg dataset where pseudo depth alone
is a poor indicator of driveability level (cf. Table 7.1), on the Cityscapes dataset, the
network is able to accurately segment scenes in terms of driveability from stereo
disparity, especially in the areas of interest (cf. Section 6.4), with less than a 1.5%
drop in overall pixel accuracy for both D models compared to the model trained
on visible spectrum images, and an even smaller drop for weighted pixel accuracy
(less than 0.1% for Draw).
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Visible spectrum Raw depth

Ground truth

Completed depth

(a) Sidewalk boundaries are lost with depth completion

(b) Obstacles are over-segmented with depth completion

Figure 7.2: Comparison of segmentation results of different single-modality models (V, Draw and
Dcomp) on selected samples from the Cityscapes test set.



Chapter 8

Multi-modal fusion

In this chapter, we explore how the proposed driveability levels (presented in Sec-
tion 4.1) can be learned from multi-modal imaging data, with the aim of improv-
ing segmentation compared to relying on visible spectrum images alone. We first
present and evaluate a fusion baseline in Section 8.1, where images are combined
at the input of the network via simple concatenation - thus requiring minimal
architectural changes. In Section 8.2, we adapt the work proposed in [109], and ex-
plore middle and late fusion configurations where feature representations from
modality-specific branches are fused adaptively, allowing the network to learn
cross-modal correlation and complementarity.

8.1 Channel stacking for early fusion

Similarly to [92, 38, 109], we implement channel stacking as a baseline for multi-
modal segmentation. In this case, as illustrated in Figure 8.1, fusion is performed at
the lowest level by concatenating multi-modal images at the input of the network:
each modality is incorporated as an additional image channel, and the network
can be trained end-to-end much like in our single-modality experiments.

SegNet

Figure 8.1: Channel stacking for multi-modal segmentation, illustrated with a sample from the
Freiburg dataset. Modalities from left to right: visible spectrum, pseudo depth, NIR.
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We investigate segmentation performance for different modality combinations in
the Freiburg (visible spectrum, NIR, and depth) and Cityscapes (visible spectrum,
depth) datasets, following the same training and evaluation procedure as in Chap-
ter 7’s single-modality experiments. In the initialization stage, we increase the
number of input channels of the first convolutional layer to the number of modali-
ties stacked in the input. Rather than learning these new weights from scratch, we
copy the weights from the existing channel trained on visible spectrum images.

Pixel accuracy IoU mistake
severityA Aweighted

Trained on Freiburg dataset, prediction on test set
V 94.30 93.68 93.85 80.70 81.45 0.0173
V + D 94.41 93.83 94.07 81.22 80.80 0.0152
V + NIR 95.07 95.24 94.87 83.40 81.93 0.0194
V + D + NIR 94.83 94.93 94.62 82.47 81.69 0.0181

Trained on Cityscapes dataset, prediction on test set
V 96.91 97.24 98.02 67.94 93.76 0.1207
V + Draw 96.60 97.00 97.61 65.22 93.33 0.1370
V + Dcomp 96.74 97.14 97.67 66.38 93.59 0.1450

Table 8.1: bunch of metrics after mashing modalities together, best and worst

Evaluation Table 8.1 compares the performance of single-modality vs. early-
fused multi-modal prediction on the Freiburg and Cityscapes dataset. For the
Freiburg dataset, results suggest that combining visible spectrum images with
depth and/or NIR data in the input is valuable for segmentation. Adding depth
data reduces mistake severity while improving IoU for the least driveable areas.
Incorporating NIR data yields the highest gain in accuracy and IoU across all lev-
els, however it also results in more severe mistakes - mis-classifications are more
likely to occur between the and levels than between successive levels. Inter-
estingly, unlike the V and V+D inputs where the weighted accuracy remains lower
than the overall accuracy, adding NIR data improves segmentation in the areas of
interest for navigation. Figure 8.2a shows some examples for which multi-modal
prediction via channel stacking is beneficial for segmentation.

In contrast, for Cityscapes, stacking visible spectrum and depth images de-
grades performance compared to relying on visible spectrum images alone. Fur-
thermore, unlike in the single-modality experiment where more accurate segmen-
tation is achieved using raw depth maps than completed maps, we observe the
opposite here, where incorporating raw depth yields the largest drop in accuracy
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and IoU. We attribute this to the mis-match in data sparsity when combining vis-
ible spectrum images with raw depth, causing the input channels to be less corre-
lated than when missing depth values are filled. The drop in segmentation quality
caused by channel stacking is shown in Figure 8.2b with two examples.

VGround truth D NIR V+D+NIR

While some background detail from distant trees is lost, the closest ones on the right are more precisely seg-
mented when fusing the three modalities, and the path remains correctly segmented.

Even though the path is incompletely segmented by the single-modality models, it is fully recovered after fusion.
The trees on the left are also correctly excluded from driveable areas.

(a) Freiburg Forest: three single-modality models (middle) vs. channel stacking model (right)

Ground truth

V+Dcomp V+DrawVisible spectrum (V)

Channel stacking with raw depth maps adds noise in the segmentation and results in under-segmented obsta-
cles. Note that the sidewalk area is incorrectly annotated in the ground truth in this example.

Channel stacking degrades the segmentation compared to the visible spectrum model, especially when using
raw depth maps. areas in the middle of the road are lost and boundaries appear ill-defined.

(b) Cityscapes: single-modality model vs. two channel stacking models

Figure 8.2: Qualitative results of channel stacking on selected test set samples.
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8.2 Cooler fusion

In this section, we investigate how modality-specific features can be extracted and
fused at a later stage in the network. While a standard approach consists of fus-
ing feature maps via a fixed operation such as concatenation [38] or element-wise
addition [41, 102], this implicitly considers each modality as equally and uncondi-
tionally informative for segmentation, regardless of scene context or class. To sur-
pass these limitations, we draw from the insights in [109], which proposes to learn
feature-level correlation between different modalities in order to fuse modality-
specific feature maps adaptively.

The work in [109] proposes a full segmentation architecture for multi-modal
segmentation. Each modality is fed into a separate ResNet-based encoder [42] for
feature extraction, followed by a spatial pyramid pooling module with dilated con-
volutions to capture multi-scale contextual information. These modality-specific
streams are then combined in the middle of the network by a fusion unit whose
output is up-sampled by a single common decoder. In addition, for refining seg-
mentation in the up-sampling stage, the network employs skip connections: at
different stages, feature maps from parallel encoders are fused and then concate-
nated into the corresponding decoding layer. Although this architecture achieves
state-of-the art results, its multi-stage fusion topology cannot be directly applied
with a SegNet-based network. Indeed, SegNet fundamentally differs in its up-
sampling technique: rather than concatenating entire feature maps into the de-
coder and performing bi-linear interpolation, SegNet’s decoder up-samples via
max-unpooling, guided by pooling indices from the encoder’s max-pooling lay-
ers. Therefore, rather than replicating the full architecture in [109], we only make
use of its Self-Supervised Model Adapation (SSMA) fusion unit and integrate it
into a SegNet-based architecture, leveraging our pre-trained models from previous
experiments. In Section 8.2.1, we first present three fusion architectures which pre-
serve SegNet’s encoder and decoder design. Section 8.2.2 then describes the fusion
unit itself, and how we adapt it to our configuration.

8.2.1 Multi-modal segmentation architecture with indexed unpooling

The three fusion architectures that we employ in our experiments are illustrated in
Figure 8.3. For feature extraction, we opt for parallel, independent encoders which
each specialize in a particular modality. Each encoder outputs a low-resolution fea-
ture map which encodes high-level, modality-specific representations of the scene.
Similarly to [109], these feature maps can then be fused into a single cross-modal
representation by a fusion unit in the middle of the network. The number of chan-
nels at the input and output of the fusion unit is adapted to the feature depth of
512 extracted by SegNet’s encoder.
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In SegNet, at each down-sampling stage in the encoder, the max-pooling in-
dices are stored to perform indexed max-unpooling at the corresponding up-sampling
stage in the decoder. However, in a fusion architecture, the max-pooling indices
from the parallel encoders cannot simply be combined like feature maps, since their
value encodes spatial locations rather than activations. While it may be beneficial
to investigate fusion mechanisms for combining pooling indices from different en-
coders, we take a simple approach where the pooling indices for each modality are
left intact, and compare three different strategies in this direction.

SegNet
decoder

c

SFusionMid

512

512

512
SegNet
encoder

SegNet
encoder

pooling indices

(a) Mid architecture: middle fusion with modality-specific encoders and a common decoder. For up-sampling in
the decoder, only the pooling indices of a single encoder are used.

pooling indices

64

64

FusionLate S

cSegNet
decoder
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(b) Late architecture: late fusion with modality-specific and independent SegNet networks.
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(c) Dual architecture: middle and late fusion with modality-specific encoders and decoders.

Figure 8.3: Segmentation architecture variants used for multi-modal pixel-wise prediction, based on
the SegNet [4] network presented in Section 6.1, illustrated with two modalities from the Freiburg
dataset. See Figure 8.4 for a legend.
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1. The mid architecture in Figure 8.3a consists of a single decoder which takes
fused feature maps as input, but only uses the pooling indices of a single
modality-specific encoder for up-sampling. This requires defining a "main"
modality which is the most informative for recovering scene detail. In our
experiments, based on the single-modality results in Chapter 7, we choose to
use the pooling indices of the visible spectrum encoder.

2. An alternative (shown in Figure 8.3b) consists of employing independent seg-
mentation branches up to the prediction stage, and performing late fusion
after feature maps have been up-sampled back to the input image’s resolu-
tion. In this case, a fusion unit is added at the end of the network, in order
to fuse the 64-channel feature maps produced by the decoders into a single
c-channel prediction (where c is the number of classes).

3. Thirdly, we present a dual architecture, where fusion is performed both in the
middle and late in the network. As shown in Figure 8.3c, the network keeps a
symmetrical topology with modality-specific decoders - the pooling indices
of each modality-specific encoder are transferred to the corresponding de-
coder. However, unlike the late fusion architecture, the modality-specific
decoders are fed the same fused feature map for up-sampling, which they
then refine independently.

For all three architectures, SegNet’s encoder and decoder are left intact, making
it seamless to integrate several pre-trained single-modality SegNet networks for
fusion.

8.2.2 Fusion units

Here we present the SSMA unit from [109], and build on top of this work by
proposing a custom unit which is more parameter-efficient and facilitates learning
in our configuration. Both units are integrated into the mid and dual architecture
variants presented in Section 8.2.1 for comparison in our experiments.

The main idea behind the SSMA unit is to dynamically weigh modality-specific
input streams depending on their respective features, in order to optimally com-
bine them into a fused representation. Specifically, the goal is to learn a rich, non-
linear mapping between the activations from modality-specific input streams, and
element-wise multiplication factors which selectively suppress or emphasize each
input stream. This mapping is modelled by a small convolutional sub-network
which extracts cross-modal features while preserving spatial structure, and pro-
duces a bounded activation for every element in the input streams, which repre-
sents how much the input element should contribute to the fused output.
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SSMA architecture The SSMA unit takes n modality-specific feature maps of
depth Din as input and outputs a single feature map with the same spatial dimen-
sions, whose depth Dout matches the number of input channels in the next stage.
In its original formulation [109], the SSMA unit is only used for mid-level fusion,
where Din = Dout. In this work, we also adapt it for late fusion to fuse the decoder
outputs into a single prediction, in which case Dout = c. The unit’s architecture is
detailed below and illustrated in Figure 8.4a with n = 2 and Din = 512 | Dout = 512
for middle fusion and Din = 64 | Dout = c for late fusion (based on the layer di-
mensions in SegNet).

At the input of the SSMA unit, the modality-specific feature maps (shown in
blue and green in Figure 8.4) are first concatenated depth-wise, yielding a fea-
ture map of depth nDin. They are then fed through a convolutional bottleneck
layer with ReLU activation for dimensionality reduction, resulting in a nD/β fea-
ture map, where β is the bottleneck compression rate. A second convolutional
layer then expands the feature map back to a depth of nDin, such that it can be
multiplied element-wise with the concatenated input feature maps. This layer is
activated with a sigmoid function, such that after multiplication, each element in
the feature map is scaled by a factor between 0 and 1. Lastly, a third convolutional
layer is applied to recover a feature map of depth Dout. While [109] additionally
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(a) SSMA unit from [109], adapted for the SegNet architecture.
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(b) Proposed modification of the SSMA unit.
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Figure 8.4: Fusion units for middle (left) and late (right) fusion. β denotes the bottleneck compression
rate (set to 16 in our experiments), and c corresponds to the number of classes (3 in our experiments).
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applies batch-normalization on the fused feature map, we find that it significantly
degrades performance in our configuration, and therefore omit this layer (see Sec-
tion A.1 for a comparison of the model learning curves with vs. without batch
normalization).

Custom fustion unit In our configuration, where we aim to leverage pre-trained
decoder weights rather than learning them from scratch, the un-bounded output
of the SSMA unit (due to the third convolutional layer) is sub-optimal, since it may
widely differ from the original feature maps fed to the decoder when training the
single-modality model. Therefore, we propose an alternative fusion unit which is
based on the same fully convolutional bottleneck architecture as SSMA, but differs
in the way that the original modality-specific feature maps are then weighed and
combined. As illustrated in Figure 8.4b, rather than element-wise multiplication
followed by depth reduction, we apply an element-wise weighted sum between
modality-specific feature maps which directly results in a combined feature map
of depth Din. Specifically, the feature map of depth nDin produced by the first
two convolutional layers is split depth-wise into n modality-specific feature maps,
and softmax activation is applied along the modality dimension, such that cross-
modality elements in the same channel and spatial location sum to 1. Modality-
specific feature map pairs are then multiplied element-wise and summed across
modalities to produce a fused map.

This approach greatly facilitates training when using pre-trained decoder or
output layers, as further detailed below in Section 8.2.3, since the output of the
fusion unit remains in the same range as the input feature maps. It also bypasses
the need for a third convolutional layer (in the mid-fusion case), thus reducing the
number of parameters.

Parameters For both fusion unit variants, in all layers, convolution is performed
with a single-strided 3× 3 kernel and zero-padding to preserve spatial resolution.
Based on the results in [109], we set the bottleneck compression rate β to 16.
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8.2.3 Initialization and training procedure

In our experiments, we compare the mid, late and dual architectures presented
in Section 8.2.1, and implement each architecture with SSMA vs. Custom fu-
sion units described in Section 8.2.2 - resulting in six segmentation network vari-
ants which are trained and evaluated: midSSMA, midCustom, lateSSMA, lateCustom,
dualSSMA, dualCustom .

Where to start Unlike [109] where the weights of the decoder must be learned
from scratch, we initialize the encoders and decoders in our fusion network using
pre-trained weights from the single-modality SegNet models from Section 6.2 (vis-
ible spectrum) and Chapter 7 (depth & IR), which were all trained following the
same transfer learning scheme described in Section 6.2.

For the mid configuration, the common decoder is initialized with the weights
from the visible spectrum model. For the dual configuration, the decoders are
initialized with modality-specific weights, similarly to the encoders. Additionally,
since the last convolutional layer in our CustomLate unit has the same dimensions as
the last layer of SegNet, we can initialize it with pre-trained weights from the visi-
ble spectrum model as well. The same cannot be done for the SSMALate unit, since
its last layer has double the number of input channels. Thus, only 2 layers in our
custom fusion unit need to be learned from scratch during training, as opposed to
3 for SSMA. In our experiments, to assess the effect of pre-training CustomLate’s last
layer, we additionally distinguish between the dualCustom,PTLL model (pre-trained
last layer) and dualCustom, where the last layer is initialized randomly like in the
SSMA unit. For random initialization of untrained layers, we apply Kaiming ini-
tialization [43] in case of ReLU activation, and Xavier initialization [33] in case of
sigmoid or softmax activation.

The network variants with SSMA vs. Custom fusion units produce drastically
different outputs upon initialization. We illustrate this in Figure 8.5, which shows
the segmentation output on a Cityscapes sample after initializing the five network
variants with our pre-trained SegNet model weights. Unlike SSMA, upon random
initialization of the custom fusion unit’s first two convolutional layers, the features
it produces are a randomly weighted yet scale-preserving combination of modality-
specific features; thus, the midCustom, lateCustom,PTLL and dualCustom,PTLL networks
already output viable predictions prior to training. As opposed to midSSMA and
midCustom, the dualSSMA and dualCustom networks have a randomly initialized last
layer, resulting in a noisy mapping from feature space to label space - however, the
structure of the scene remains clearly visible in dualCustom’s prediction, since the
network’s activations up until the last layer remain consistent after adding custom
fusion units before and after the pre-trained decoders.
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(a) Input sample - visible spectrum image (left) and raw disparity map (right)

(b) midSSMA (c) midCustom (d) lateSSMA (e) lateCustom (f) lateCustom,PTLL

(g) dualSSMA (h) dualCustom (i) dualCustom,PTLL

Figure 8.5: Segmentation output on a Cityscapes test sample of the different fusion networks in our
evaluation, after initialization and prior to training.

Learning things For training, we use the same hyper-parameters and training
procedure as in the previous experiments. Thus, unlike [109] which follows a
multi-stage training scheme with different initial learning rates for the encoder
vs. decoder layers and polynomial learning rate decay, we apply the same initial
learning rate of 10−4 across all parameters, and train the network end-to-end in a
single phase without learning rate scheduling. While this may not yield optimal
performance, it allows for direct comparison with our single-modality and early
fusion models.

8.2.4 Evaluation

We evaluate the 8 network variants on different modality combinations from the
Freiburg and Cityscapes datasets based on the same evaluation metrics as the
previous experiments, and compare their performance to the single-modality and
early fusion models. Although the fusion architecture has so far only been illus-
trated for two modalities, we incorporate a third branch for V + D + NIR fusion,
resulting in 3 encoders in the feature extraction stage, and 3 decoders in the late
and dual architectures for symmetry. We first point out significant discrepancies in
the training process depending on the kind of fusion unit in the network. We then
report and discuss the quantitative results in Table 8.2.

SSMA mood swings Figure 8.6 compares the learning curves of models trained
with SSMA vs. Custom fusion units. We note significant instability in validation
loss and accuracy when training SSMA-based fusion models, while those based on
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Custom fusion units quickly converge with minimal fluctuations in performance
on the validation set. Additionally, initializing the Custom fusion unit’s last layer
with pre-trained weights for late fusion (lateCustom,PTLL and dualCustom,PTLL models)
results in high validation accuracy within the first training iteration, and brings
a small performance increase compared to the lateCustom and dualCustom models
(where the last layer is randomly initialized) in some cases (cf. Table 8.2).
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Figure 8.6: Learning curves during training of the 8 architecture variants on different modality
combinations (cf. Table 8.2). The models are grouped based on the unit used for fusion (SSMA vs.
Custom vs. CustomPTLL), and we show the mean and min-max range for the loss (left) and pixel
accuracy (right) per epoch. The loss is plotted on a log-scale for clarity.
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Pixel accuracy IoU

modalities fusion A Aweighted

mistake
severity

V - 94.30 93.68 93.85 80.70 81.45 0.0173

V + D early 94.41 93.83 94.07 81.22 80.80 0.0152
V + D midSSMA 94.87 94.47 94.56 82.58 82.12 0.0221
V + D midCustom 94.56 93.93 94.33 81.66 80.68 0.0113
V + D lateSSMA 94.65 94.10 94.29 81.83 82.06 0.0131
V + D lateCustom 94.42 93.76 94.24 81.35 79.41 0.0140
V + D lateCustom,PTLL 94.48 93.86 94.37 81.56 79.10 0.0142
V + D dualSSMA 94.42 93.89 94.80 81.96 74.46 0.0139
V + D dualCustom 94.61 94.08 94.58 82.11 78.94 0.0134
V + D dualCustom,PTLL 94.93 94.46 94.74 82.98 81.42 0.0115

V + NIR early 95.07 95.24 94.87 83.40 81.93 0.0194
V + NIR midSSMA 96.13 96.30 95.87 86.68 86.42 0.0151
V + NIR midCustom 95.36 95.17 95.30 84.25 82.10 0.0144
V + NIR lateSSMA 95.53 95.48 95.29 84.78 84.08 0.0153
V + NIR lateCustom 95.36 95.17 95.42 84.55 80.73 0.0144
V + NIR lateCustom,PTLL 95.38 95.19 95.43 84.57 80.83 0.0154
V + NIR dualSSMA 95.39 95.58 95.06 84.45 83.62 0.0353
V + NIR dualCustom 95.41 95.36 95.32 84.51 82.18 0.0176
V + NIR dualCustom,PTLL 95.58 95.58 95.64 85.14 81.46 0.0178

V + D + NIR early 94.83 94.93 94.62 82.47 81.69 0.0181
V + D + NIR midSSMA 95.65 95.47 95.36 84.98 85.13 0.0146
V + D + NIR midCustom 95.30 95.08 95.42 84.23 80.12 0.0145
V + D + NIR lateSSMA 95.43 95.37 95.34 84.57 82.24 0.0174
V + D + NIR lateCustom 95.71 95.69 95.33 85.25 86.02 0.0156
V + D + NIR lateCustom,PTLL 95.61 95.56 95.21 84.93 85.75 0.0166
V + D + NIR dualSSMA 95.62 95.46 95.52 85.06 83.11 0.0185
V + D + NIR dualCustom 95.98 96.04 95.73 86.25 85.98 0.0147
V + D + NIR dualCustom,PTLL 95.81 95.80 95.54 85.61 85.48 0.0159

(a) Trained on Freiburg dataset, prediction on test set
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Pixel accuracy IoU

modalities fusion A Aweighted

mistake
severity

V - 96.91 97.24 98.02 67.94 93.76 0.1207

V + Draw early 96.60 97.00 97.61 65.22 93.33 0.1370
V + Draw midSSMA 97.00 97.25 98.21 68.34 93.80 0.1085
V + Draw midCustom 97.22 97.70 98.09 70.23 94.54 0.1287
V + Draw lateSSMA 96.94 97.14 98.27 67.98 93.66 0.0935
V + Draw lateCustom 96.82 96.95 98.14 67.28 93.42 0.1035
V + Draw lateCustom,PTLL 96.87 97.00 98.21 67.59 93.51 0.1011
V + Draw dualSSMA 96.69 96.69 98.21 66.02 92.98 0.0983
V + Draw dualCustom 96.95 97.10 98.24 67.91 93.70 0.0971
V + Draw dualCustom,PTLL 97.02 97.22 98.24 68.50 93.87 0.1043

V + Dcomp early 96.74 97.14 97.67 66.38 93.59 0.1450
V + Dcomp midSSMA 96.98 97.30 98.19 68.35 93.79 0.1093
V + Dcomp midCustom 97.13 97.52 98.18 69.30 94.21 0.1140
V + Dcomp lateSSMA 96.88 97.04 98.15 67.88 93.53 0.1121
V + Dcomp lateCustom 96.92 97.17 98.11 68.31 93.63 0.1216
V + Dcomp lateCustom,PTLL 96.83 96.95 98.17 67.48 93.36 0.1110
V + Dcomp dualSSMA 96.94 97.35 98.15 65.97 93.71 0.1233
V + Dcomp dualCustom 97.01 97.29 98.20 68.49 93.89 0.1059
V + Dcomp dualCustom,PTLL 96.97 97.17 98.19 68.37 93.75 0.1107

(b) Trained on Cityscapes dataset, prediction on test set

Table 8.2: Segmentation performance for different fusion configurations, compared to the visible
spectrum (V) model from Section 6.2. We highlight the best, second-best and worst results for each
metric/modality combination, and results which perform worse than the V and/or early fusion
baseline. Results for the rows in gray are taken from the previous experiments in Section 8.1.

Deep fusion is a good idea On the Freiburg Forest dataset, the deep fusion mod-
els consistently out-perform the early fusion and single-modality baselines in terms
of accuracy and IoU for the and levels. Compared to early fusion, the best
performing deep fusion models increase accuracy and IoU for the level in the
order of 1% , over 3% for the level and over 4% for the level. On Cityscapes,
all deep fusion models also improve IoU for the level compared to the base-
lines. For some models however, this comes with a slightly poorer performance
when distinguishing and areas, compared to the single-modality baseline -
most likely due to stereo depth being a poor indicator of terrain type. Comparing
the deep fusion variants, for each modality combination across both datasets, the
best quantitative performance is generally achieved with a mid or dual architecture,
indicating that fusing high-level features at the input of the decoder is beneficial
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compared to having each branch up-sample modality-specific features indepen-
dently. Figure 8.7 compares predictions by the 3 architecture variants and early
fusion baseline. Upon visual inspection, we see clear improvements in segmenta-
tion quality brought by dual fusion.

Visible spectrum Raw depth Ground truth

Early fusion MidCustom LateCustom,PTLL DualCustom,PTLL

(a) Bi-modal segmentation on Cityscapes

We note that the mid architecture achieves competitive results on both datasets,
especially Cityscapes, whose images were captured in the most favorable illumina-
tion conditions. However, since this architecture only uses the pooling indices from
the visible spectrum branch for up-sampling, it inherits some of the limitations of
the visible spectrum model when faced with challenging lighting or scene elements
which are difficult to delineate in this modality. This transpires in the first example
of Figure 8.7b for instance, where the light ray causes poor segmentation of the left
side of the path, or the second example, where the trees in the background blend
with the grass. We would therefore expect a wider gap in performance between
the mid and dual/late architectures in more challenging datasets.
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Visible spectrum NIRDepth Ground truth

Early fusion MidCustom LateCustom DualCustom

(b) Tri-modal segmentation on Freiburg Forest

Figure 8.7: Qualitative comparison of the deep fusion variants (Custom units) and early fusion
baseline on selected multi-modal samples of the Cityscapes and Freiburg Forest test sets.
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Tri-modal prediction is worth it Looking at the performance of the dualCustom

architectures for different modality combinations on the Freiburg dataset, the best
results in terms of accuracy and IoU are achieved when segmenting the scene using
all 3 modalities (V +D+ NIR), followed by V + NIR, and lastly V +D. The benefit
of incorporating all 3 modalities into the prediction through deep fusion can be
seen in Figure 8.8. We note that in this dataset, the addition of NIR imaging brings
a stronger improvement than depth, most likely because the distinction between
path and surrounding grass is more clear in this modality (due to the high NIR
reflectance of vegetation [114]), and as discussed in Section 7.1, the depth data
was estimated from visible spectrum images and thus is not representative of true
depth. However, as also found in the single-modality and early fusion experiments,
results in Table 8.2 indicate that incorporating NIR data comes with a small mistake
severity trade-off compared to the V + D combination.

Visible spectrum NIRDepth Ground truth

V V+D V+NIR V+D+NIR

Figure 8.8: Predictions by the dualCustom,PTLL fusion model for different modality combinations on
selected samples of the Freiburg Forest test set, compared to the single-modality baseline.
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Depth completion conundrum Comparing the two modality combinations V +

Draw and V + Dcomp for all fusion architectures on the Cityscapes dataset, almost all
fusion models reach higher IoU for obstacles with raw depth maps than com-
pleted ones, and for all metrics, the best scores (in bold) are higher with V + Draw

than V + Dcomp. This aligns with our comparison of single-modality models, where
feeding the network raw depth maps resulted in superior segmentation perfor-
mance, and contrasts with the early fusion model, for which completed depth
maps improve segmentation across all metrics. This suggests that depth comple-
tion as a pre-processing step is mostly beneficial when the depth maps are being
jointly convolved at the input of the network; when feature extraction is performed
by a dedicated, modality-specific encoder, this step seems unnecessary at best, and
detrimental at worst.

Figure 8.9 shows two examples in which we compare the fusion output for V +

Draw vs. V + Dcomp modality combinations. Although the differences are subtle, for
both architectures in the comparison (dual and late, which have a separate decoder
for each modality), we notice a loss of detail with V + Dcomp fusion, such as the
metal poles on the right in the first example, and the curved metal bar in front of
the tree in the second example.

Raw depth (Draw) Completed depth (Dcomp)Visible spectrum Ground truth

V+Draw | LateCustom,PTLL  V+Dcomp | LateCustom,PTLL  V+Dcomp | DualCustom,PTLL  V+Draw | DualCustom,PTLL  

Figure 8.9: Predictions by the lateCustom,PTLL and dualCustom,PTLL fusion models for the two bi-modal
combinations V + Draw and V + Dcomp on selected samples of the Cityscapes test set.
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SSMA vs. Custom fusion units Besides the difference in training speed and sta-
bility discussed in the beginning of this section, we note mixed differences in per-
formance when fusing features with SSMA vs. Custom units. Figure 8.10 compares
their performance in terms of weighted pixel accuracy and mistake severity on both
datasets. Note that for fair comparison, we do not consider the Custom,PTLL mod-
els here. We note that Custom fusion models achieve more consistent performance
across datasets and modality combinations than SSMA models which exhibit high
variability (especially in the dual configuration eg. mistake severity on Freiburg
Forest, and weighted accuracy on Cityscapes). We also note that dual models tend
to reach higher pixel accuracy and lower mistake severity with Custom units (on
Cityscapes, this difference in performance extends to all metrics); we attribute this
to the fact that the dual model is the most difficult to train, having 2 fusion units
which are jointly learned from scratch. Results suggest that the SSMA unit is best
suited for mid-level or late fusion, but not both.
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Figure 8.10: Distribution of weighted pixel accuracy scores (left) and mistake severity scores (right)
across different modality combinations, comparing the performance of deep fusion models trained
with Custom vs. SSMA fusion units.
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The presence of 3 modalities in Freiburg Forest also gives us additional in-
sight into how the fusion units cope with an increasing number of input streams.
In Figure 8.11, we examine the models’ performance for the different modality
combinations in our evaluation. Comparing performance between the V + NIR
(bi-modal) and V + D + NIR (tri-modal) combinations, the Custom models ben-
efit from a clear improvement, while the SSMA models fall short in leveraging
complementary features of a third modality. We attribute this to the difference in
activation function in the SSMA vs. Custom fusion units: in SSMA, the weight for
each element in the input is scaled independently across modalities with a sigmoid
function, while in the Custom unit, a softmax function is applied across modali-
ties. Thus, in the Custom fusion unit, for a given location in the feature map, low
activation for one modality coincides with high activation for the other. Figure 8.12
shows two dual fusion predictions with SSMA vs. Custom fusion units.

Comparing the three architecture variants, the mid configuration performs best
for a bi-modal input, but does not scale well to a third modality. In contrast,
the performance of the late and dual architectures sees a clear improvement with
a tri-modal input. This suggests that when incorporating additional modalities,
modality-specific intermediate-level features should also be incorporated in the
decoding stage.
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Figure 8.11: Distribution of weighted pixel accuracy scores across different modality combinations,
comparing the performance of deep fusion models trained with Custom vs. SSMA fusion units (left),
and with different architecture variants (right).

Ground truth DualCustomDualSSMA

Freiburg V + D + NIR

Cityscapes V + Draw

Figure 8.12: Predictions by the Dual fusion architecture trained with SSMA vs. Custom fusion units
on selected samples of the Freiburg Forest and Cityscapes test set.
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8.3 The slow elephant in the room

While its benefits are clear, the incorporation of additional modalities in the pre-
diction through deep fusion comes with a computational cost, especially in a late
or dual scheme, where each additional modality brings an additional encoder-
decoder branch. To quantify this cost, we measure the average inference time
and memory consumption of a forward pass for the different architectures in our
experiment: SegNet (with one or more input channels), and the three deep fu-
sion variants (Mid, Late and Dual). Benchmarking is performed both with multi-
threaded CPU-only execution and with GPU-acceleration. Section A.5 provides
implementation details, and we report results along with hardware specifications
in Figure 8.13. As expected, channel stacking is the most time and memory effi-
cient fusion method: the number of modalities at the input of the network can be
increased at negligible computational cost. In contrast, each new modality-specific
branch in the deep fusion architectures results in a near-linear increase in inference
time and memory consumption.
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Figure 8.13: Benchmarking results, comparing the computational footprint of the 3 deep fusion
models (with Custom fusion units) vs. SegNet.



Chapter 9

Bringing it all together

In Chapter 6, we explore soft labelling and loss weighting training strategies for
segmenting driveability levels in visible spectrum images, and in Chapter 8, we
evaluate different multi-modal fusion configurations for segmentation.

However, in the previous experiments, we have performed training on specific
datasets in isolation: the model learns to specialize in a particular type of scene
(eg. backwoods paths in Freiburg Forest, structured roads in Cityscapes) with
a consistent view-point, set of sensor characteristics etc. Thus, its performance
may not be a good indicator of its ability to cope with diverse environments and
captures. Therefore, in this chapter, we investigate whether a robust representation
of driveability can be learned across a combination of different, more challenging
datasets.

Furthermore, rather than applying our proposed methods separately, in this
chapter, we select the most promising models from our previous experiments, and
show how these training strategies can be combined and applied to a multi-modal
architecture. Figure 9.1 illustrates our approach for combining the proposed meth-
ods, which we outline below

• Transfer learning scheme from Section 6.2, where the network first learns
specific descriptive object classes from a semantic segmentation dataset, and
then is adapted to learn a more functional representation by segmenting the
scene in terms of 3 driveability levels.

• Soft ordinal labels from Section 6.3 for modelling a distance-based ranking
between the driveability levels - during training, the network learns inter-
class distances in order to make less severe mistakes

• Pixel-wise loss weighting from Section 6.4, to focus learning away from fine
boundaries, and towards the bottom of the image

• Deep multi-modal fusion from Section 8.2, to leverage the complementary
properties of different modalities

85
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1 Train SegNet on object classes
initial learning rate 10-3

4 Fine-tune with loss weighting

3 Train with soft ordinal labels
initial learning rate 10-4

2 Update architecture
to predict 3 driveability levels

Single modality

Re-initialize last SegNet layer

S

3

SegNet

S

c

SegNet

Multi-modal  fusion

Discard last layer & integrate
into encoder-decoder branch

magic
fusion

magic
fusion S

3

S

c

SegNet

Figure 9.1: Overview of the training procedure combining the proposed methods to learn driveability
from one or more modalities.
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In Section 9.1, we explain our parameters and configurations of choice for each
method, which we then apply in two experiments:

1. Cross-dataset cocktail: in Section 9.2, we train SegNet to segment driveability
on a combination of visible spectrum images from 8 different datasets.

2. Thermal fiesta: in Section 9.3, we train a SegNet-based deep fusion archi-
tecture on a large-scale RGB-T dataset, and assess generalization to out-of-
dataset samples. Since the thermal modality has not been included in the
previous experiments, this is its time to shine.

9.1 Selected models

We base our choice of models on two main criteria: high IoU for areas which are
impossible to drive on, and low mistake severity: from a navigation-oriented
perspective, not confusing obstacles with the driveable path is crucial.

For generating soft labels, we pick the SLDα=1 scheme (as defined in Sec-
tion 6.3.2), since it jointly achieves amongst the highest IoU for non-driveable areas
and the lowest mistake severity (cf. the experimental results in Section 6.3.4). Note
that this scheme yields the softest labels among the other inter-class distance defi-
nitions in our evaluation, resulting in smooth transitions from to pixels with
a "buffer" of pixels around areas - as shown in Figure 9.2. While this deviates
from what segmentation ground truth masks look like, we consider this beneficial
for navigation, since it essentially adds a safe margin around obstacles.

SegNet, SLDα=1Visible spectrum image Ground truth

Figure 9.2: Example of a prediction by the SLDα=1 model from Section 6.3 on a Cityscapes test
sample, compared to the ground truth mask. The prediction is shown overlayed on the input image.

As a deep fusion architecture, we pick the dualCustom variant from Section 8.2,
which uses our Custom fusion unit to combine modality-specific feature represen-
tations both in the middle of the network, and after the decoding stage. Compared
to the other fusion variants in our evaluation, it consistently achieves a good com-
bination of low mistake severity and high IoU for non-driveable areas across
the two datasets and different modality combinations.
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9.2 No dataset left behind

In this section, we train a cross-dataset model, as an attempt to learn a more generic
notion of driveability than in our previous single-dataset experiments. We show
that our proposed driveability definition and training scheme can be used to learn
pixel-level navigation affordances from a mix of diverse datasets with different
class definitions and partial annotations.

9.2.1 Data

The 8 musketeers We make use of all 8 datasets in our Section 5.2 overview
which contain pixel-level annotations for visible spectrum images: Freiburg For-
est, Freiburg Thermal, Cityscapes, Kitti, Synthia, ThermalWorld, Lost & Found,
MIR Multispectral. Note that while all these datasets except Freiburg Forest were
collected in urban areas, they widely differ in their aspect ratio, image quality,
annotation style/coarsity level, and each pose a unique set of challenges.

For instance, Synthia’s images were generated in a simulation environment,
thus its textures are not natural or realistic compared to the other datasets, and
its captures are generally very dark due to shadows from high-rising buildings.
Freiburg Thermal covers a wide range of driving scenarios and illumination condi-
tions, and its annotations are approximate and blotchy. Lost & Found was specifi-
cally created to assess small-obstacle segmentation, and features unusual objects on
the vehicle’s path. MIR Multispectrual suffers from low image resolution, motion
blur, and many of the roads are scattered with puddles and leaves. ThermalWorld
VOC is perhaps the most challenging, as it was not captured from a vehicle, but
from an unconstrained hand-held viewpoint along walkable areas in different cities
and weathers, with many different close-range obstacles.

Combined dataset To gather a combined dataset for training, we randomly select
200 images from each of the 8 datasets (based on the number of the samples in the
smallest dataset - Kitti only has 200): 180 from their training set and 20 from their
validation set (see Section 5.2.1 for details on the dataset splits). This results in a
total of 1440 training samples and 160 validation samples. We then evaluate the
cross-dataset model on the datasets’ individual test sets.

Ground truth Following the same procedure as in Section 6.2, we generate drive-
ability ground truth data by mapping the original semantic labels of each dataset
to driveability levels: (roads and paths), (other terrain, sidewalks), and
(sky, any obstacle) - see Section A.1 for the exact mapping. Figure 9.4 illustrates the
resulting class distribution for each dataset and for the combined dataset. We also
show a driveability sample from each dataset in Figure 9.3. Note that 3 datasets
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are only partially annotated: for ThermalWorld VOC and MIR Multispectral, the
model can only learn to segment obstacles, and Lost & Found only provides a very
coarse outline of the driveable area.

Cityscapes Kitti Freiburg ThermalFreiburg Forest

Lost & Found ThermalWorld VOC MIR MultispectralSynthia

impossible, possible, preferable to drive on, void/unlabeled

Figure 9.3: Sample from each dataset in the cross-dataset evaluation, with the visible spectrum image
at the top, and the ground truth driveability segmentation at the bottom.

Freiburg Forest

Cityscapes

Kitti

Freiburg Thermal

Synthia

Lost & Found

ThermalWorld VOC

MIR Multispectral

Combined

0% 25% 50% 75%

void/unlabeled impossible possible preferable

Figure 9.4: Proportion of pixels per driveability level for each (full) dataset in the cross-dataset
evaluation, as well as in the combined dataset (200 samples from each of the 8 datasets).
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9.2.2 Training procedure

We initialize SegNet with the pre-trained Cityscapes semantic model from Sec-
tion 6.2 (since this is the largest dataset in our single-dataset experiments), and
follow the transfer learning scheme to learn driveability levels from a combination
of the 8 datasets. The model is trained on soft labels with SLDα=1 until conver-
gence, with the same hyper-parameters as in Section 6.2. Similarly to our previous
experiments, during training, samples are randomly augmented on the fly and
fed to the model in shuffled batches - in this case, each batch contains samples
originating from different datasets.

As illustrated in Figure 9.1, we then apply loss weighting as a final training
stage for a few epochs, while maintaining the soft labelling scheme. To examine
the effect of loss weighting, we compare the performance of the model before and
loss-weighted training stage in our evaluation. Section A.6 shows examples of a
loss weight map generated for each dataset in our evaluation.

9.2.3 Evaluation

Table 9.1 records the model’s segmentation performance on unseen samples from
the test sets of each dataset included during training. The table includes results
from the single dataset experiments on Freiburg Forest and Cityscapes for com-
parison (taken from Table 6.2). We first generally comment on the cross-dataset
model’s performance on the different datasets, and then specifically compare the
cross-dataset vs single dataset model performance for Freiburg and Cityscapes,
and elaborate on the effect of loss-weighting. Lastly, we show cases where the
model fails to correctly segment driveability from visible spectrum images alone.

Similarly to our earlier experiments in Section 6.2, the cross-dataset model’s
performance for each driveability level (in terms of IoU) reflects the class distri-
bution: for all datasets where undriveable pixels constitute the majority class,
the model achieves an IoU of over 90%. On Lost & Found where obstacles only
constitute a small fraction of labelled pixels (cf. Figure 9.4), the model frequently
mis-classifies them as driveable. We also note that the cross-dataset model has a
tendency to confuse the road/path with other terrain, which manifests as generally
low IoU scores for pixels. We attribute this to two main factors:

• the SLDα=1 soft labelling scheme introduces significant ambiguity between
the and levels: mis-classifying one as the other during training has the
lowest penalty compared to all other possible errors (cf. Figure 6.11).

• the distinction between the two levels is ambiguous in the labelling process
and class definition itself, with conflicting labels across datasets: for instance,
a subset of Cityscapes images feature square-paved roads (which are con-
sidered fully driveable ), while walkable paths with a similar appearance
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are labelled as sidewalk in Freiburg Thermal (considered only possible to
drive on).

Note that MIR Multispectral only contains a minute fraction of pixels (cf. Fig-
ure 9.4) which all correspond to bumpy strips on the road - the model classifies
them as fully driveable, hence the abysmal IoU score for this class.

Pixel accuracy IoU mistake
severitytest set A Aweighted

94.25 93.65 94.26 80.79 77.67 0.0010
93.55 92.69 94.86 78.82 66.63 0.0049Freiburg Forest
93.26 92.12 94.49 77.60 66.35 0.0054

96.79 97.24 98.01 65.63 93.81 0.0731
94.93 94.56 97.51 53.51 89.27 0.0724Cityscapes
95.20 94.93 97.52 54.44 90.06 0.0712

93.25 93.65 94.27 61.40 85.32 0.0621
Kitti

93.36 93.85 94.21 60.96 86.11 0.0654

91.61 89.93 91.09 54.64 81.70 0.3720
Synthia

92.01 90.38 91.07 57.65 82.34 0.4272

92.43 91.94 95.60 43.82 81.97 0.1478
Freiburg Thermal

92.71 92.26 95.59 44.80 82.74 0.1601

89.58 91.92 41.16 - 89.69 0.0481
Lost and Found

91.20 93.38 39.19 - 91.31 0.0603

97.53 97.08 97.66 9.48 - 0.0587
MIR Multispectral

97.55 97.33 97.69 9.49 - 0.0805

99.26 98.67 99.26 - - 0.1249
ThermalWorld VOC

99.62 99.44 99.62 - - 0.0967

Single dataset Cross-dataset Cross-dataset, LW

Table 9.1: Quantitative results for the SegNet model trained on visible spectrum images with SORD
labels (SLDα=1) from a combination of 8 datasets (180 training sample from each). We record per-
formance on the test set of each dataset separately, before and after the loss-weighting (LW) training
stage. For reference, we also include the results of the single-dataset models from Section 6.3.4
(Cityscapes and Freiburg) and highlight them in gray. We highlight the best and second best results.

Figure 9.5 shows examples of predictions by the loss-weighted cross-dataset model
(green in Table 9.1) on each test set in our evaluation.
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Freiburg Forest

Cityscapes

Kitti

Freiburg Thermal
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Synthia

Lost and Found

MIR Multispectral

ThermalWorld VOC

Figure 9.5: Prediction by the cross-dataset model after loss-weighted (LW) training on selected sam-
ples from individual test sets.
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Single- vs cross-dataset learning

Figure 9.6 compares predictions by the cross-dataset model (blue in Table 9.1) with
the single-dataset models from our soft labelling experiment in Section 6.3.4, where
the model is trained and evaluated separately on the Freiburg and Cityscapes
dataset (gray in Table 9.1).

Looking at quantitative metrics, cross-dataset learning results in a drop in accu-
racy on both test sets, primarily across the two driveable levels and . During
single-dataset training, the model learns to recognize the specific features of the
paths in Freiburg Forest for instance, which are quite different from the paved
streets of the other datasets included in the cross-dataset training. Thus, in some
cases, cross-dataset learning results in a fuller path (eg. the first two rows in Fig-
ure 9.6), since the model is accustomed to wide driveable areas from urban scenes -
however, when the path is too dissimilar from the paved roads in the other datasets,
it is wrongly categorized as possible rather than preferable to drive on. On
Cityscapes, road areas with irregular terrain are more likely to be classified as
when learning cross-dataset representations.

However, as can be seen in Figure 9.6’s visual comparison, cross-dataset learn-
ing results noticeably improves segmentation of obstacles: in Freiburg Forest, trees
are more clearly delineated and in Cityscapes, previously under-segmented objects
are recovered (at the expense of precision, hence the lower IoU score).

Input image Ground truth Cross-datasetSingle dataset

(a) Freiburg Forest
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Input image Ground truth Cross-datasetSingle dataset

(b) Cityscapes

Figure 9.6: Qualitative comparison of predictions by single-dataset models on Freiburg Forest and
Cityscapes with the cross-dataset model (both trained without loss weighting).

Overall, learning a variety of objects from other datasets seems to be beneficial
for recognizing undriveable areas, however the notion of a driveable path is more
ambiguous depending on the type of scene and annotation.

Effect of loss weighting

Comparing the results of the cross-dataset model trained with uniformly weighted
loss (blue in Table 9.1) and after applying loss weighting (green), we note that
loss weighting improves accuracy on every dataset except Freiburg Forest. Fig-
ure 9.7 shows predictions by both models for qualitative comparison. Similarly to
our single dataset experiment from Section 6.4, we find that loss weighting yields
a slightly smoother and more cohesive segmentation. We especially find that it
improves recall for areas low in the image (at the expense of precision) - e.g.
the traffic sign, baby stroller and dog’s head in Figure 9.7. The increase in mis-
take severity on most test sets is likely due to over-segmentation of obstacles or
loss of detail in distant areas: loss weighting greatly improves mistake severity on
ThermalWorld VOC, which contains many obstacles captured at close range.
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Input image Ground truth Weighted lossUnweighted loss

Figure 9.7: Comparison of predictions by the cross-dataset model, trained with and without loss
weighting, with a sample from each of the test sets in Table 9.1 (shown in the same order).
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Failure cases

We note that the model can be prone to severe mistakes when confronted with chal-
lenging illumination conditions or unexpected obstacles on the road - Figure 9.8
shows examples for both cases.

For large obstacles in close vicinity to the vehicle, this can partly be explained
by the fact that in most images seen during training, obstacles appear starting
at a reasonable distance from the vehicle. A contributing factor to these errors
might also be that due to the front of the ego-vehicle being visible at the bottom of
the image in Cityscapes images (which the model was pre-trained on, and which
constitute 1/8 of training samples), the model learns to ignore object features in
its immediate vicinity. In addition, some surfaces like smooth concrete barriers
or walls are difficult to distinguish from the road or sidewalk when relying on
grayscale visual information alone.

The poor IoU score for pixels on the Lost & Found dataset (where all the
pixels in this class correspond to small road obstacles) also raises a key contra-
diction faced by the model during learning: the model is encouraged to ignore
road irregularities such as potholes, shadows, lane markings (since all of these are
considered driveable ), yet should still be able to identify anomalies and po-
tential hazards on the vehicle’s path. Distinguishing the two can be tricky when
perception is limited to monocular vision.

Freiburg Forest: rays of sunshine aren’t always welcome

Freiburg Thermal: shadows are not as dangerous as they seem

MIR Multispectral: good luck driving into that

Ground truthInput image Cross-dataset, LW

(a) Shadows and lights confuse the best of us
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Cityscapes: trying to climb up walls won’t get you far

Synthia: watch your left

Synthia: no comment needed

ThermalWorld VOC: just barely avoiding the dog

(b) Overlooking large obstacles

Freiburg Thermal: I know it looks like a road marking, but please don’t ignore it

Kitti: poles are not just for dancing

Lost & Found: apparently shadows are more driveable than boxes

(c) Overlooking smaller ones

Figure 9.8: Some examples of unacceptable segmentation results by the cross-dataset model (trained
with loss weighting), with at least one sample from each of the test sets in Table 9.1.
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These failures highlight the importance of incorporating additional modalities
in the model’s prediction: depth information has shown to improve segmentation
of obstacles (both in our deep fusion experiments from Section 8.2 and in exist-
ing literature [108, 101]), while thermal images provide robustness to variations
in illumination (we fuse visible spectrum and thermal imaging in the next sec-
tion). These modalities can help distinguish between driveable surfaces and real
obstacles. The addition of color information may also be beneficial to accentuate
differences between the road and scene elements which should be avoided.

9.2.4 Bonus content: driveability in the wild

To further display the model’s ability to predict driveability in a wide range of
settings, we show segmentation results on hand-held pictures taken in diverse
locations and conditions in Figure 9.9. Note that the model’s training samples do
not feature any images captured during night-time or under snow-fall, yet it is able
to segment obstacles correctly in these examples.

Figure 9.9: Spot the kitties
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9.3 No modality left behind

As a final experiment, we show that the proposed deep fusion architecture can be
trained with the soft labelling and loss-weighting scheme to predict driveability
from a combination of visible spectrum and thermal images. For training, since
this is the only large-scale RGB-T dataset with full-image pixel-level annotations,
we make use of the Freiburg Thermal dataset, introduced in Section 5.1.2. Note that
this is also a much larger dataset than in the experiments from previous Chapters
(12k+ samples vs. less than 200 for Freiburg Forest and around 3.5k for Cityscapes).

The goal of this experiment is not only to record segmentation performance
on unseen samples from Freiburg Thermal, but also to assess the model’s ability
to generalize to out-of-dataset captures. Therefore, for evaluation, we also make
use of partially annotated RGB-T datasets from Section 5.1: ThermalWorld VOC
and MIR Multispectral. Since the pixel labels in these two datasets almost exclu-
sively correspond to the level (eg. person, building, car - cf. Figure 9.4), we
additionally manually annotate 55 images from the KAIST Multispectral Pedes-
trian Detection dataset (introduced in Section 5.1.2). We randomly select 5 samples
from each day-time sequence in the test set (cf. the benchmark’s data description1).
Image pairs are annotated with coarse, full-image, pixel-level class labels for the 3
driveability levels. Our annotated samples are made publicly available2. We show
a driveability sample from each of these 4 datasets in Figure 9.10.

Freiburg Thermal MIR Multispectral ThermalWorld VOC KAIST Pedestrian

Training

Evaluation

Figure 9.10: Example of an input pair (visible spectrum and thermal image) and ground truth drive-
ability segmentation from the 4 datasets in our thermal fusion experiment.

1https://soonminhwang.github.io/rgbt-ped-detection/data/
2https://www.kaggle.com/glhr00/rgbt-driveability-segmentation-kaist

https://soonminhwang.github.io/rgbt-ped-detection/data/
https://www.kaggle.com/glhr00/rgbt-driveability-segmentation-kaist
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9.3.1 Training procedure

Pre-trained models As a starting point (step 1 in Figure 9.1), we train two single-
modality SegNet models from scratch to segment object classes in visible spectrum
and thermal images from the Freiburg Thermal dataset (13 semantic classes). We
use the same standard training procedure as in Section 6.2, with one-hot labels and
no loss weighting. We refer to these two models as VFreiburgThermal (visible spectrum
model) and TFreiburgThermal (thermal model). We also make use of the SegNet model
trained on Cityscape’s object classes in Section 6.2, which we refer to as VCityscapes.

Baseline model Following the transfer learning scheme, we use the pre-trained
VFreiburgThermal model as a basis to learn driveability from visible spectrum images
alone (step 2 in Figure 9.1). Similarly to the previous experiment, training is per-
formed with the SLDα=1 soft labelling scheme. We take this as our baseline, to
compare against deep fusion.

Fusion models Step 3 in Figure 9.1 illustrates how we incorporate pre-trained
SegNet models into the dualCustom fusion architecture. The visible spectrum and
thermal branches are initialized with the weights from the encoder and decoder
of their respective pre-trained SegNet models: only the prediction layer of each
SegNet model is discarded. To investigate the effect of initializing the deep fusion
architecture with pre-trained weights from a different dataset, we train two fusion
models:

• VFreiburgThermal + TFreiburgThermal, where the network is initialized with the Seg-
Net models which were both pre-trained on Freiburg Thermal’s object classes

• VCityscapes + TFreiburgThermal where the visible spectrum branch is initialized
with the SegNet model pre-trained on Cityscapes’ object classes instead

In order to learn driveability levels, the fusion architecture’s prediction layer is
randomly initialized with 3 output channels, and we then train the network end-
to-end with the SLDα=1 soft labelling scheme. In addition, similarly to the previous
experiment, we apply loss weighting as a final training phase, and record the fusion
model’s performance both before and after applying loss weighting to evaluate its
effect.

Data augmentation Based on the results from Section 7.1 which suggest that
photometric data augmentation is beneficial for segmentation of NIR images, we
similarly apply both photometric and geometric transformations to thermal images
during training. However, considering the fundamental differences between NIR
and LWIR imaging (cf. Section 2.1.2), the choice of data augmentation for the
thermal modality should be investigated further.
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9.3.2 Evaluation

Table 9.2 records performance of the baseline (in blue) and deep fusion models
(green and yellow) on Freiburg Thermal’s test set as well as the three other RGB-T
datasets, before and after the loss-weighting (LW) training stage. Similarly to the
results of our previous experiment, the level is the most challenging to segment
correctly, while all models achieve an IoU of over 90% for undriveable areas .

Pixel accuracy IoUpre-trained model
per modality

architecture
& training A Aweighted

mistake
severity

Trained on Freiburg Thermal dataset, prediction on Freiburg Thermal test set - 1115 samples
VFreiburgThermal SegNet 95.61 95.93 96.96 61.07 90.25 0.1514
VFreiburgThermal dualCustom 95.75 96.07 97.04 62.80 90.33 0.1691

+
TFreiburgThermal dualCustom,LW 95.74 96.07 97.05 62.37 90.33 0.1677
VCityscapes dualCustom 95.61 95.96 96.88 61.29 90.18 0.1674

+
TFreiburgThermal dualCustom,LW 95.72 96.13 96.97 61.57 90.45 0.1664

Trained on Freiburg Thermal dataset, prediction on MIR Multispectral - 820 samples
VFreiburgThermal SegNet 87.72 84.61 90.30 3.47 - 0.3711
VFreiburgThermal dualCustom 89.73 87.43 92.30 5.15 - 0.3507

+
TFreiburgThermal dualCustom,LW 89.90 87.76 92.43 5.83 - 0.3653
VCityscapes dualCustom 89.43 87.05 92.07 3.49 - 0.2689

+
TFreiburgThermal dualCustom,LW 89.40 86.90 92.17 2.01 - 0.2973

Trained on Freiburg Thermal dataset, prediction on ThermalWorld VOC - 1466 samples
VFreiburgThermal SegNet 90.38 85.92 90.38 - - 0.2763
VFreiburgThermal dualCustom 96.77 95.54 96.77 - - 0.2107

+
TFreiburgThermal dualCustom,LW 96.57 94.92 96.57 - - 0.2340
VCityscapes dualCustom 95.61 94.38 95.61 - - 0.2500

+
TFreiburgThermal dualCustom,LW 95.65 94.19 95.65 - - 0.2970

Trained on Freiburg Thermal dataset, prediction on KAIST Pedestrian - 55 samples
VFreiburgThermal SegNet 94.42 96.08 93.46 37.70 92.18 0.2582
VFreiburgThermal dualCustom 93.74 95.15 93.56 34.11 90.92 0.1953

+
TFreiburgThermal dualCustom,LW 93.68 95.03 93.67 33.63 90.65 0.1928
VCityscapes dualCustom 91.84 92.55 93.69 27.29 86.73 0.1233

+
TFreiburgThermal dualCustom,LW 92.86 94.02 93.93 29.98 88.66 0.1514

Table 9.2: Quantitative results for the SegNet (visible spectrum) and dualCustom (visible spectrum and
thermal) models trained with SORD labels (SLDα=1) on the Freiburg Thermal dataset. We highlight
the best and second best, and worst results.

The following sections specifically examine the effect of incorporating thermal im-
ages with deep fusion, network initialization and loss weighting.
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Benefit of fusion

We first compare the performance of the single-modality V model and the V+T
deep fusion model, both pre-trained on Freiburg Thermal (first two rows in Ta-
ble 9.2). Looking at the IoU for undriveable areas, the fusion model out-
performs the visible spectrum model on all 4 datasets. KAIST Pedestrian is the
only dataset in our evaluation where fusion does not improve accuracy for drive-
able areas ( and pixels) - it seems that the lower quality thermal images in
this dataset causes confusion between different terrain types.

While quantitative differences between the two models are rather minor on
Freiburg Thermal (which the model is trained on), we see noticeable differences
when looking at the segmentation output. Figure 9.11 shows examples from
Freiburg Thermal’s test set where fusion improves segmentation compared to the
visible spectrum model, by recovering the outline of important obstacles which
should be avoided. Note that this dataset’s ground truth masks are very approxi-
mate (they seem to have been estimated from visible spectrum images), with fre-
quently inaccurate outlines of objects (e.g. the traffic pole in the first row of Fig-
ure 9.11 or people’s legs in the second row) - in many cases, the output of the
fusion model is more accurate and cohesive than the ground truth. Hence, the
quantitative metrics reported for this dataset may not be representative of true
performance.

traffic pole makes a full recovery

most of the legs are saved

cleaning up the railing on the left

another leg uncovered from the shadows

Visible (V) Thermal (T) SegNet (V) DualCustom (V+T)Ground truth

Figure 9.11: Prediction on samples from the Freiburg Thermal test set, comparing deep fusion (V+T)
with the single-modality (V) model (first two rows in Table 9.2).
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poor lighting and smoke won’t fool a thermal camera

dog was hiding in the shadows, but not anymore

the sidewalk is indeed a sidewalk

confusing pile of motorcycles becomes less confusing

(a) MIR Multispectral

cleaning up those leaves

let’s not run people over please

just because it’s moving fast doesn’t mean you should drive on it

cars headlights are annoying but not driveable

(b) ThermalWorld VOC

The performance gap between the two models significantly widens on out-of-
dataset samples, especially on ThermalWorld with an improvement in accuracy
of over 6% (and over 9% in weighted accuracy) when fusing modalities. Consider-
ing the challenging nature of this dataset, these results suggests that incorporating
thermal imaging aids generalization to new scene elements and viewpoints. Fig-
ure 9.12 shows predictions on out-of-dataset samples: the visible spectrum model
frequently makes severe mistakes which are corrected by visible-thermal fusion.
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the fence on the right is slightly more of a fence

spotted those concrete bricks in the distance

Visible (V) Thermal (T) SegNet (V) DualCustom (V+T)Ground truth

(c) KAIST Pedestrian

Figure 9.12: Prediction on out-of-dataset samples from the 3 datasets in our evaluation, comparing
deep fusion (V+T) with the single-modality (V) model (first two rows in Table 9.2).

Initialization matters

Comparing the two fusion models (VFreiburgThermal + TFreiburgThermal and VCityscapes +
TFreiburgThermal) which differ in the pre-trained model used to initialize the visible
spectrum encoder-decoder branch, the first converges faster during training and
achieves higher accuracy across all 4 datasets. However, quantitative differences in
performance between the models are quite small, both on Freiburg Thermal and
out-of-dataset samples. In fact, we find frequent cases where the fusion model
initialized with VCityscapes yields more coherent segmentation, a few of which are
shown in Figure 9.13.

Visible (V) Thermal (T)
VFreiburgThermal 
TFreiburgThermal

+ VCityscapes

TFreiburgThermal
+Ground truth

Figure 9.13: Predictions by the two fusion models, with one example per dataset in our evaluation.
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These results suggest that the proposed fusion architecture can be successfully
initialized with a pre-trained semantic model from a different dataset and achieve
comparable performance. Considering the lack of public large-scale fusion datasets
and the effort required to pre-train each branch of the fusion network, this could
have interesting implications: the fusion network can be initialized with read-
ily available pre-trained SegNet models trained on separate large-scale single-
modality datasets, and then learn to fuse modalities for learning driveability on
a (potentially smaller) multi-modal dataset.

Effect of loss weighting

Out of the two fusion models, loss weighting seems to be the most influential for
VCityscapes + TFreiburgThermal, where it consistently improves IoU for undriveable
areas across all datasets, therefore we show examples in Figure 9.13 for this model.
Although it continues to consolidate the segmentation, visually, we do not see
the same level of improvement from applying loss weighting than in the previous
cross-dataset experiment, and it fails to improve weighted accuracy for half of
the datasets in the evaluation. This could be due to the inaccuracy of Freiburg
Thermal’s pixel annotations: loss weight maps are generated from ground truth
masks, with the assumption that scene elements are correctly outlined. If outlines
are incorrectly labelled (eg. patches or shadows on the road in Figure 9.13), the
loss weighting scheme may assign low importance to pixels of interest.

Freiburg: prediction is somehow less messy than the ground truth

MIR Multispectral: recovering obstacles is always nice

Weighted lossUnweighted lossVisible (V) Thermal (T) Ground truth
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Thermal VOC: slightly less patchy path

KAIST Pedestrian: loss weighting cleaning up the streets

Weighted lossUnweighted lossVisible (V) Thermal (T) Ground truth

Figure 9.13: Comparison of predictions by the VCityscapes + TFreiburgThermal fusion model, trained with
and without loss weighting, with two samples from each of the datasets in Table 9.2.

that’s enough pictures I think



Chapter 10

Discussion

In Section 10.1, we first reflect on our findings with respect to the research ques-
tions defined in Section 1.2. Section 10.2 raises some over-arching challenges and
limitations of our methods, and Section 10.3 zooms in on some specific weaknesses
and possible improvements. Section 10.4 considers the broader context of robotic
navigation, outlining possible next steps for real-world operation. Lastly, in Sec-
tion 10.5 we spread out further into research dreams about potential extensions of
this work. Apologies in advance for the length - I blame all the papers mentioned
here for being too interesting.

10.1 Research questions

To what extent does parsing outdoor scenes in terms of driveability rather than
specific semantic classes help when faced with unconstrained environments?

In Section 6.2 we train segmentation models to directly predict 3-level driveability
from images (either from scratch or via transfer learning), and compare them to a
baseline which predicts object classes followed by a naive mapping to driveability
in the post-prediction stage. Looking at rate of convergence, training stability and
segmentation performance, our results suggest that training SegNet on specific
object classes is an easier learning task, but does not perform on par with models
trained to directly predict driveability levels. For generalization to new obstacles
from out-of-dataset samples, learning driveability via transfer learning yields the
best results: the model first learns fine object-specific features, and then is adapted
to learn broader, more generic representations.

Defining the learning problem based on a notion of level (how driveable is this?)
rather than descriptive categories (what is this?) has also opened interesting con-
nections to affordance-based perception in robotic literature, and ordinal classi-
fication approaches which incorporate inter-class relations during learning. In a

108
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standard object-based segmentation task, there is no effective difference between
mis-classifying the road as a sidewalk or as an elephant - both are simply consid-
ered wrong, despite one mistake being much more reasonable than the other. In
contrast, our driveability definition clearly expresses a ranking between the classes,
and we show that by manipulating the soft label encoding used for training, we
can adjust how different mistakes are penalized based on prior knowledge about
the task - this proves to be an effective way to reduce mistake severity in different
types of scenes.

The cross-dataset experiment in Section 9.2 also shows that our 3-level drive-
ability definition allows segmentation models to learn from a combination of multi-
ple datasets, despite them being labelled with incompatible sets of semantic classes.
Applying the same training procedure with an object-based class definition would
result in non-overlapping classes across datasets and a potential increase in the
number of output channels of the network for every new dataset added: for in-
stance, rather than learning a shared notion of obstacle across different scenes, the
model would learn to recognize cats from one dataset, and trees and bicycles from
another. Adding training data would then require annotating images for all the
object classes present across the combined datasets. In contrast, learning a generic,
universal notion of driveability allows each driveability level to encompass train-
ing examples from different sources, and from a practical stand-point, makes the
labelling process much less laborious than outlining individual objects.

Despite these advantages, as discussed in [73], parsing the scene in terms of
affordance or functionality adds a layer of subjectivity to the labelling and the
evaluation. For instance, in a descriptive computer vision task, grass can (and
should) always be labelled as grass with little to no ambiguity, but in terms of
navigational affordance, its driveability level may depend on the vehicle’s ability to
cope with varying grass lengths. Another semantic category such as water could
range from being a shallow puddle which can safely be traversed, to a pond or
lake which would be hazardous to drive into. The edge of the sidewalk can range
from being a non-issue for a legged robot, a slight bump on the way for a large
vehicle, to an insurmountable obstacle for a small mobile robot. While descriptive
segmentation can usually be solved and assessed in a vacuum regardless of context
or application, the same cannot be said when segmenting the scene with such a
nebulous concept as driveability.

How can multiple imaging modalities be combined for this purpose?

A simple approach consists of incorporating modalities as additional image chan-
nels at the input of the network. However, this approach is as uncool as it sounds.
As described in Section 8.2, a cooler approach which is supported by state-of-the-
art literature [25] consists of treating each modality as a separate input stream, and
giving them each their own specialized encoder. Modality-specific features can
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then either be fed to a common decoder (mid fusion) or up-sampled independently
by separate decoders and fused right before the prediction stage (late fusion). We
also propose a third fusion variant, which performs fusion in both locations (dual
fusion). The question then lies in how to fuse modality-specific features into a
shared representation - for this, we adapt the fusion unit in from [109] and pro-
pose a modification which results in improved training speed and stability, and
more consistent performance across modality combinations and fusion variants.

What are the drawbacks and benefits of a multi-modal architecture for this task,
compared to single-modality approaches?

A first hurdle when developing multi-modal fusion methods is data: recording
the environment from a combination of multiple sensors brings its own set of
challenges compared to simply taking images with a single camera [25]. Although
we bypass data collection altogether in favor of existing datasets, we note that the
extent of available data quickly narrows when adding additional modalities to the
grocery list, especially for less conventional imagery such as infrared. In contrast,
RGB-only semantic segmentation datasets are much easier to come by [76].

The addition of a second or third modality for segmentation also requires de-
veloping a more complex model. Fusing modalities at the input of the network
via channel stacking requires minimal architectural changes, and can be trained
end-to-end at little to no additional computational cost, but does not bring con-
sistent improvement compared to relying on visible spectrum images alone, and
even degrades segmentation performance for some modality combinations. Em-
ploying modality-specific branches in a mid, dual or late configuration comes with
a significant cost in terms of inference time and memory (cf. our benchmark in
Section 8.3), but has a clear performance advantage over a visible spectrum-only
model. We find that deep fusion consistently out-performs early fusion and single-
modality baselines across all 3 datasets in our multi-modal experiments, aligning
with the findings in [109] - even on the Freiburg Forest and Cityscapes datasets
which were captured in favorable illumination conditions, incorporating infrared
and/or depth into the prediction brings an improvement in IoU across all drive-
ability levels, and reduces mistake severity. When comparing deep fusion variants,
we achieve remarkable performance with a mid architecture for a bi-modal input -
however, its performance hinges on the quality of visible spectrum images, whose
intermediate-level features in the encoder are used to guide up-sampling in the
common decoder. The dual architecture’s performance proves to be more robust to
challenging lighting, and scales better to an increasing number of modalities.

Nevertheless, the visible spectrum SegNet model achieves good performance
of its own when predicting driveability (pixel accuracy in the order of 95% in
urban and forested scenes), and one could argue that the addition of depth or
infrared imaging is not worth the trouble for normal day-time operation. Indeed,
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when trained on a single dataset, the model learns to specialize in a particular
domain and rarely makes flagrant mistakes when evaluated on images from the
same dataset. However, we point to our experiments in Chapter 9 which reveal
significant limitations of visible spectrum imaging for jointly learning driveability
across multiple diverse datasets, or when faced with challenging out-of-dataset
samples.

10.2 Challenges and limitations

Let’s just blame the data Due to the lack of available multi-modal data recorded
in truly challenging conditions, we cannot speak for the models’ performance un-
der different weathers or at night-time, for instance. All the visible spectrum
images used in our experiments are clear enough that the scene can be labelled
by a human annotator looking at this modality alone. Thus, we believe to not
have explored the full potential of deep adaptive fusion, in cases where the visible
spectrum cannot be relied upon for interpreting the scene. We also note that our
cross-dataset experiment was performed with a single-modality model; it may be
more difficult to combine infrared or depth data from different datasets due to the
variety in sensor characteristics, but would be worth investigating.

We have also encountered limitations in the way that we generate ground truth
labels for driveability segmentation. A blind mapping from descriptive object
classes to driveability ignores the subjective and contextual nature of affordance
labelling which we have discussed in the previous section. In addition, when try-
ing to train a classifier on a combination of different datasets, we encounter many
of same the issues addressed in [39] (although we tackle a very different task): a
lack of global agreement on label definitions (resulting in conflicting ground truth
examples), heterogeneous annotation styles, data bias (a majority of urban scenes),
and imbalanced class distributions.

Or let’s blame the metrics We have largely evaluated our approach as a standard
segmentation task based on pixel-wise correctness (with accuracy and IoU). How-
ever, this assessment operates under the assumption that finer segmentation which
maximises quantitative segmentation metrics (with respect to densely annotated
ground truth masks) is desirable for path planning. It does not capture qualitative
or subjective factors which may in fact make a less accurate model more suited for
navigation-oriented scene understanding. For instance, the improvements brought
by pixel-wise loss weighting in our experiments are primarily qualitative in na-
ture and do not necessarily translate to improvement in pixel-wise correctness, yet
could be valuable if a smoother, less detailed segmentation is desired. [122] raises
an interesting discussion about the limitations of widely-used semantic segmen-
tation metrics for scene understanding in real-world applications, and proposes
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region-based metrics which separately account for under- and over-segmentation
while allowing ambiguity along segmentation boundaries. In addition, as recom-
mended by [25], assessing multi-modal segmentation approaches for autonomous
driving should extend beyond quantifying deviations from a ground truth mask,
and include systematic measures of how the model copes with different types of
scenes, outdoor conditions, or sensor failures, for instance.

Unlike existing work tackling pixel-wise classification for scene understanding,
we draw from ordinal classification literature [9] and incorporate a mistake severity
metric as a first step towards ranking mis-classifications rather than considering
them all equally unacceptable. However, this remains an overly simplistic measure,
since it only quantifies the magnitude of errors and is blind to their direction -
which, as mentioned in Section 6.3.4, we believe to be relevant for a navigation-
oriented task due to the severity of under-segmenting obstacles as opposed to
over-segmenting them. Much like pixel accuracy, this metric is also skewed by
class imbalance, and in our case can simply be minimized by always predicting the
low-risk middle level . Lastly, being a regression metric, it captures a distance
between a target and predicted level, which in our case is defined rather arbitrarily;
the rank-based metrics used in [93] may be more appropriate.

A more comprehensive evaluation of our approach would first require defining
what we would like the segmentation to look like when used as a basis for plan-
ning, and reasoning more carefully about what kind of mistakes can be tolerated
vs. should be highly penalized in the context of real-world navigation.

10.3 Going further down the rabbit hole

Tuning things is a bore In our experiments, we have paid little to no emphasis
on tuning hyper-parameters for maximizing performance; we stuck with the same
set of hyper-parameters across all experiments (except for the reduction in learning
rate for transfer learning) to maintain fair grounds for comparison. However, this
may not have done justice to certain models which would have achieved better
performance had they been given the hyper-parameter tuning efforts they deserve
(eg. [23] mentions that the learning rate should be carefully chosen based on the
entropy of the chosen soft label encoding, and [109] trains different parts of their
fusion network at different rates). We also found our results to be significantly
influenced by weight initialization (eg. when comparing the effect of using a pre-
trained layer in our fusion unit in Section 8.2.3, or when initializing a fusion branch
with pre-trained weights from a different dataset in paragraph 9.3.1); initializing
depth and infrared segmentation models from Chapter 7 with pre-trained weights
learned from visible spectrum images may have given an unfair advantage to the
visible spectrum model, and limited the potential of the deep fusion models.
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Multi-modal data augmentation When training our fusion models on RGB+IR
images, we apply the same random data augmentation to both modalities. For ge-
ometric transformations, this is necessary to preserve spatial alignment. However,
considering the properties of infrared imaging, we question whether applying the
same photometric transformation makes sense: in reality, a change in brightness
captured with a visible spectrum camera would not translate to the same change in
brightness in thermal images, since LWIR cameras are blind to lighting conditions
- and conversely, an increase in the thermal intensity of an object would not trans-
late to the same change in visible light intensity in an RGB image. Thus, we stress
that cross-modal data augmentation techniques should be investigated further.

Loss weighting for weight loss Our loss weighting scheme was developed purely
as an initial proof of concept, and we have not evaluated the effect of the parame-
ters in the weight map formulation (eg. rate at which the pixel weight decays from
boundaries, or the overall loss scaling factor) on learning or segmentation quality;
the work in [88] which inspired our approach uses a large scaling factor of 10,
but without any justification for this value, or comparison to a standard uniformly
weighted loss scheme for reference. We also note that our current implementation
blindly generates weight maps regardless of label type, rather than ignoring void
areas (cf. the examples in Section A.6), which is not great, but a pretty easy fix.

Soft problems are hard to solve As we have mentioned in our analysis of Sec-
tion 6.3.2, and is further argued in [93, 78], the approach we have taken for learning
a ranking between classes (based on [23]) is poorly suited for a task where the pre-
dicted levels are not based on a measurable quantity, as it requires defining inter-
class distances which are completely arbitrary yet directly influence classification
performance. In our case, for generating soft labels, we evaluated 3 distance met-
rics on 2 different inter-class difference definitions, with a close look at the effect
on mistake severity and segmentation quality, but the optimal choice of soft label
encoding for learning driveability remains an open question. To avoid having to
define these inter-class distances as a prior, [78] shows that the optimal soft label
encoding can be learned rather than pre-defined, while [93] proposes to predict
ranking probabilities rather than class probabilities, using a rank-based loss for
training, and thus bypassing the notion of inter-class distance altogether.

Cooler fusion for indexed un-pooling When designing the fusion architecture,
our main goal was to preserve SegNet’s topology and indexed un-pooling tech-
nique, in order to leverage previously trained models. To do this, we have taken
a simple (rather lazy) approach, which only considers the input and output of the
decoder as possible points of fusion, such that SegNet’s encoder-decoder connec-
tions (which encode max-pooling locations) are left undisturbed; unlike [109], no
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intermediate representations are shared during up-sampling. Techniques for fus-
ing sets of pooling indices from multiple encoders would be worth investigating,
especially for our mid-fusion configuration which currently only uses the pool-
ing indices from a single modality-specific encoder for up-sampling. Extending
the SegNet model, [69] shows that pooling indices can be learned adaptively as a
function of feature maps - a technique which could lend itself well in combination
with the adaptive fusion unit used in our architecture.

More small questions Does color in visible spectrum images matter for estimat-
ing driveability? How does cross-modal spatial misalignment at the input affect
performance for different fusion configurations, and how much of it can we get
away with? Is it necessary to up-sample feature maps back to the full original
image resolution if we don’t care much about details? Call me if you find out.

10.4 Towards navigation: next steps

From colours to planning We have tackled robotic perception purely as a com-
puter vision task, and have not explored how the resulting scene representation can
be used for path planning and navigation. However, the viability of our approach
and its applicability to autonomous navigation systems are supported by exist-
ing work. For instance, [45] plans safe collision-free routes for a mobile robot by
generating artificial potential fields from obstacle segmentation masks. [86] shows
that augmenting classical geometric maps with pixel-wise navigability affordance
remarkably improves goal-directed planning in dynamic environments. In predict-
ing a driveability level per pixel, our method directly outputs a quantity which a
planning algorithm can try to maximise when sampling and selecting trajectories.

Whenever, Wherever? While this work specifically considers outdoor scenes
since they bring interesting challenges (ambient conditions, complex scenes, di-
versity of objects), our methods could analogously be applied to images captured
in indoor environments. Indeed, unlike descriptive computer vision approaches
which train a network to recognize scene-specific elements withing a particular
domain (eg. {tree, road, bike} outdoors, and {chair, floor, table} indoors), learn-
ing driveability affordance places no prior constraints on the type of environment
in which the system can operate, enabling perception in mixed scenarios rather
than treating indoor/outdoor scenes as completely separate domains. Extending
our cross-dataset experiment from Section 9.2, it would be interesting to investi-
gate how a consistent notion of driveability can be learned across a combination
of indoor and outdoor scenes, paying closer attention to cross-dataset bias and
adaptation methods as described in [39].
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Need for speed Computational constraints for real-time operation on an embed-
ded system were not considered within the scope of this work, and the benchmark-
ing experiment in Section 8.3 shows that inference with our SegNet-based deep
fusion architecture at 20+ FPS requires a high-end (exorbitantly priced) GPU, mak-
ing it prohibitive for resource-constrained applications. However, the proposed
training strategies and fusion methods are not bound to a specific segmentation ar-
chitecture, and could be applied to other more lightweight networks with a lower
computational footprint. In this direction, [98] systematically compares different
encoder-decoder combinations with a focus on efficiency for autonomous driving.
Network pruning can also be applied to deep fusion architectures for parameter
reduction with a minimal performance trade-off [109].

10.5 Future directions: dream big or go home

Once upon a time Aligning with related work, we treat each input image as
an independent sample. However, on autonomous navigation platforms, images
are captured at a high frame-rate with significant overlap between successive cap-
tures. Thus, it may be beneficial to rather consider the input as a sequence of time-
adjacent frames, in order to incorporate a temporal dimension in the prediction,
using previous frames to guide the segmentation of the current frame and enforce
temporal consistency. Recurrent networks are a common choice for modelling
spatio-temporal dependencies between pixels [76], however multi-modal scene un-
derstanding approaches in this direction remain scarce [25]. Such an approach
places additional requirements on the datasets used for training (we would have
to rely on video sequence datasets like Synthia [89] or Freiburg Thermal [113]).

Pixels holding hands Our method predicts driveability at the pixel level based
on local, appearance-based information, and by employing standard classification
loss, essentially treats images as bags of unrelated pixels. However, this often
results in speckled or fragmented segmentation, unnecessarily detailed contours,
and areas being labelled as driveable even though they would not be reachable
by a robot in practice, depending on its size and movement capabilities (eg. a
road on the other side of a barrier, a narrow passage between obstacles). Simpli-
fying and correcting the scene representation for planning could be performed as
a post-prediction step, but could also be incorporated during the learning itself,
by applying geometrical and topological constraints on the prediction, such that,
for instance, the driveable area starts from the bottom-center of the image (where
the vehicle is), and spreads out maintaining a single, smooth cohesive shape. Such
constraints can be incorporated in the loss term itself, as proposed in [8, 77].
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Less baby-sitting, more self-supervision Similarly to [71], we have taken a fully-
supervised approach for affordance segmentation, relying on pixel-wise ground
truth segmentation masks for training, which either limits us to existing image
segmentation datasets, or requires us to label new data ourselves, which is a rather
tedious process. This tempts us to explore weakly or self-supervised labelling
approaches, where driveability labels are generated with minimal human inter-
vention, by simply driving. For instance, [53] generates navigational affordance
labels by detecting collisions or bumpy terrain with on-board odometry and range
sensors. Another interesting yet under-exploited modality is audio: the acoustic
signature of a vehicle’s surroundings and of its own movement can reveal infor-
mative scene properties such as the type of surface that it is driving on, or the
direction of approaching vehicles with a 360◦ field of view, making auditory per-
ception an interesting candidate, not only as a form of weak or self-supervision
for labelling driveability, but also as a complementary modality during online op-
eration [74]. However, as argued in Section 3.1.4, labelling data from experience
by letting a robot explore an outdoor environment is time-consuming and risky, if
not impossible altogether (eg. on public roads). To learn from the physical world
without having to put a robot in harm’s way, an idea would be to label driveability
by observing the behaviour of other agents in a scene, following the intuition that
areas which are the most driveable are also the most likely to be driven/walked
on by others. Learning affordance from observation or demonstration is an active
field of research, however currently seems to be limited to human-object interaction
rather than locomotion [2, 40].

Robots should be confused when it matters Much like humans navigate the
world with varying degrees of confidence depending on how familiar and clear
their surroundings are, deep learning models should ideally exhibit lower certainty
in their predictions when encountering previously unseen or low-quality data, in
order to better inform control decisions, detect failures and exert necessary cau-
tion in challenging conditions. Ideally, prediction confidence should be a reliable
indicator of prediction accuracy, such that the network is less likely to make severe
mistakes with a high level of certainty. However, modern neural networks trained
with a standard softmax classifier only output relative probabilities between classes
rather than any meaningful measure of uncertainty, and have shown to produce
over-confident predictions even when faced with ambiguous or out-of-distribution
samples, making them poorly suited for safety-critical applications [1, 36, 81, 20].
In our experiments, we have simply taken the predicted driveability level for each
pixel as the class with the highest probability, without any consideration for data
or model uncertainty [68]. Motivated by the aforementioned works, extending our
approach with a probabilistic interpretation of driveability estimation would be a
interesting direction to pursue, with direct relevance to real-world operation.



Chapter 11

Conclusion

This project was primarily undertaken as a curiosity-driven exploration, drawing
from recent developments in computer vision and scene understanding to try to
interpret ego-centric images in a useful and reliable way. We specifically work with
images taken out in the wild - compared to indoor scenes, the environment tends
to be more diverse, unpredictable and ambiguous, motivating the use of depth and
infrared as complementary modalities to visible spectrum imaging. Although the
robots and vehicles considered in this work remain nothing more than figments of
our imagination, framing the problem of scene understanding within the context
of autonomous navigation allows us to deviate from conventional task-agnostic
vision, and develop methods which are tailored to an outdoor driving task. Our
starting point is a conventional one: fully-supervised image segmentation with a
well-established encoder-decoder CNN, using public datasets for training and eval-
uation. Our contribution lies in the way that we formulate the learning problem,
and integrate the network into a multi-modal architecture for adaptive fusion.

For useful perception, following the concept of affordances, we propose to seg-
ment images at the functional level: for every pixel in the image, the network
directly predicts an estimate of how suitable it is to drive on. We generate ground
truth labels by blindly mapping object labels from pixel-annotated datasets to 3
driveability levels, and soften the labels into a class probability distribution which
encodes a ranking between the 3 levels. We show this to be an effective way to
reduce error and mistake severity compared to a standard one-hot labelling ap-
proach, while requiring no architectural changes. We also explore the idea of
adjusting the contribution of each pixel based on its position and distance from
segmentation boundaries: correctly segmenting areas closest to the ego-vehicle is
more important than precisely delineating objects across the whole image. We
implement this as an importance map which weighs the loss at the pixel-level dur-
ing learning, and find it most beneficial as a final training step to consolidate the
segmentation, as done in our cross-dataset experiment.
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For reliable perception, we evaluate deep fusion approaches in a bi-modal and
tri-modal configuration across urban and forested scenes. Compared to single-
modality prediction, our early fusion baseline shows mixed results, depending
on the modalities stacked at the input: combining visible spectrum with near-
infrared images improves segmentation for instance, while the addition of less
correlated data such as noisy stereo depth degrades it. By giving each modality
a dedicated encoder for feature extraction, and shifting the point of fusion deeper
into the network, we out-perform early fusion and single-modality baselines for
every modality combination in our experiments, especially in the segmentation of
obstacles. In our final experiments, we highlight the limitations of solely relying on
a monocular RGB camera for learning to segment driveability across a wide range
of challenging datasets, and show that the incorporation of thermal imaging brings
substantial benefits for out-of-dataset generalization to new scenes and obstacles.

In sum, considering the lack of prior work jointly tackling affordance-based
and multi-modal approaches for outdoor perception, we would like to think of
this pile of pages as a pretty cool (albeit mildly useful and definitely too long) first
step towards something potentially much cooler.
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Appendix A

Miscellaneous mess

A.1 Mapping from object classes to driveability

driveability level original object class

void/unlabeled
ignore
ego-vehicle

out of ROI
rectification border

unlabeled void

impossible
background
bicycle
boat
bridge
building
bus
car
caravan

cat
cone
curve
dog
dynamic
fence
guardrail
human

license plate
minibus
motorcycle
obstacle
pole
sky
static
traffic light

traffic sign
trailer
train
tree
truck
tunnel
vegetation
wall

possible
bump
grass

parking
railtrack

sidewalk terrain

preferable
curb
ground

lane marking path road
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A.2 Dataset overview

Platform Sensors Scene Annotation Conditions Diversity Size

ROB7 [46] golf cart stereo RGB, LWIR university campus N/A day-time w/ glare
& shadows

2 days 800

Freiburg
Forest [110]

mobile
robot

stereo RGB, NIR, NRG, NDVI,
EVI

unstructured forest
environments

pixel-level for: obstacle, trail,
sky, grass, vegetation, void

day-time w/
shadows, various
sun angles

3 days, same area 266

ViViD [62] vehicle
stereo RGB, LWIR, event,
LIDAR, IMU

indoor and outdoor
trajectories

N/A day and night-time same area 8k

FieldSAFE [57] tractor
stereo RGB, LWIR, webcam,
360◦ camera, LIDAR, radar,
IMU, GNSS

grass field geo coordinates and labels for
obstacles

day-time w/ glare
& shadows

2 hours, single day,
same area

?

CATS [106] hand-held stereo RGB, stereo LWIR static outdoor N/A day-time 10 different
locations

100

PST900 [96] hand-held stereo RGB, LWIR underground
pixel-level for: background, fire
extinguisher, backpack, drill,
survivor

poor illumination &
visibility

single location 894

Brno Urban [65] car RGB, LWIR, 3D LIDAR, IMU,
GNSS

urban, suburban &
country roads

N/A day-time 375.7 km, 10 hours ?

Table A.1: RGB-D-IR datasets

http://deepscene.cs.uni-freiburg.de/
http://deepscene.cs.uni-freiburg.de/
https://sites.google.com/view/dgbicra2019-vivid/
https://vision.eng.au.dk/fieldsafe/
http://bigdatavision.org/CATS/index.html
https://github.com/ShreyasSkandanS/pst900_thermal_rgb
https://github.com/Robotics-BUT/Brno-Urban-Dataset
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Platform Sensors Scene Annotation Conditions Diversity Size

Freiburg
Thermal [113]

car RGB, LWIR regular traffic

pixel-level for: road, sidewalk,
building, curb, fence, pole,
vegetation, terrain, sky, person, car,
bicycle, background

day-time, good
weather

diverse driving
scenarios, same
city

10k+

KAIST
pedestrian [47]

car RGB, LWIR regular traffic
bounding boxes for: person, people,
cyclist

day and night time 3 types of roads /
locations

95k

ThermalWorld
VOC [55] hand-held RGB, LWIR indoor and outdoor

pixel-level for: person, car, truck,
van, bus, building, cat, dog, tram,
boat

different temperatures
and weathers

different cities, all
seasons

5098

FLIR ADAS vehicle RGB, LWIR regular traffic
bounding boxes for: car, bike,
person, dog, other vehicle

day and night-time same city, several
months

14k

RGB-NIR Scene [13] fixed RGB, NIR static indoor &
outdoor

N/A day-time, good
weather

wide range of
scenes / locations

954

MIR Semantic
Segmentation [38] mobile cart RGB, LWIR traffic scenes

pixel-level for: car, person, bike,
curve, car stop, guardrail, cone,
bump

day and night-time same city 1569

MIR Object
Detection [104] mobile cart

RGB, NIR, MWIR,
LWIR

traffic scenes
bounding boxes for: car, person,
bike, curve, car stop, guardrail,
cone, bump

day and night-time,
motion blur

same city 7521

Driveable
region [116] vehicle RGB, LWIR campus roads pixel-level driveable region night-time 3 types of roads /

locations
191

Table A.2: RGB-IR datasets

http://thermal.cs.uni-freiburg.de//
http://thermal.cs.uni-freiburg.de//
https://soonminhwang.github.io/rgbt-ped-detection/
https://soonminhwang.github.io/rgbt-ped-detection/
http://www.zefirus.org/ThermalGAN/
http://www.zefirus.org/ThermalGAN/
https://www.flir.com/oem/adas/dataset/
https://ivrlwww.epfl.ch/supplementary_material/cvpr11/index.html
https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
https://sites.google.com/site/drivableregion/home
https://sites.google.com/site/drivableregion/home
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Platform Sensors Scene Annotation Conditions Diversity Size

IDD
Multimodal [111]

car RGB, LIDAR, GPS unstructured traffic in
India

N/A
daytime, different
weathers, illumination
and air quality

2 cities 10k+

DIML/CVLAB [17] hand-held stereo RGB indoor & outdoor N/A daytime, variations in
illumination

diverse scenes
and perspectives 1M

SYNTHIA
video [89] simulation RGB, depth virtual realistic urban

environment

pixel-wise for: misc, sky, building,
road, sidewalk, fence, vegetation,
pole, car, sign, pedestrian, cyclist,
lane-marking

different weathers,
illuminations, seasons

7 sequences,
different settings
and cities

560k

Cityscapes [21] car
stereo RGB, odometry,
GPS, temp. traffic scenes

pixel-wise for 30 classes, 8
categories: flat surfaces, humans,
vehicles, constructions, objects,
nature, sky, void

daytime, good
weather

50 cities, several
months

3k+

Kitti [30] car RGB, LIDAR
traffic scenes incl.
rural areas &
highways

same as Cityscapes daytime, good
weather

same city 200

RADIATE [94] car
stereo RGB, LIDAR,
RADAR, GPS/IMU traffic scenes

bounding boxes for: car, van, truck,
bus, motorbike, bicycle, pedestrian

sunny, overcast, night,
rain, fog, snow

same city 200k+

Lost and Found [85] car stereo RGB
road with small
obstacles

coarse pixel-wise for road &
different obstacle categories

daytime, good
weather

same city 2k+

Table A.3: RGB-D datasets

https://soonminhwang.github.io/rgbt-ped-detection/
https://soonminhwang.github.io/rgbt-ped-detection/
https://dimlrgbd.github.io/
http://synthia-dataset.net/
http://synthia-dataset.net/
https://www.cityscapes-dataset.com/dataset-overview/
http://www.cvlibs.net/datasets/kitti/
http://pro.hw.ac.uk/radiate/paper/
http://www.6d-vision.com/lostandfounddataset
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A.3 Depth completion

We first define thresholds for the pixel-wise depth i (in meters) to distinguish be-
tween invalid pixels (eg. i < 0.1 for Cityscapes), near pixels (0.1 < i ≤ 15.0),
mid-range pixels (15.0 < i ≤ 30.0) and far pixels (30.0 < i). We also define a ROI
beyond which any depth value is treated as invalid. These thresholds and ROI
are manually adjusted for each dataset (eg. for Cityscapes, we exclude the front
of the ego-vehicle and the top of the image from the ROI, since they always con-
tain invalid or missing values). Figure A.1 illustrates these zones, followed by the
steps in the depth completion step, which we detail them below using the same
numbering:

1. select valid pixels, and invert + offset them such that they remain much larger
than invalid ones during the whole process

2. select near, mid, and far pixels and dilate them with different cross kernels
(3× 3 for far, 5× 5 for mid, 7× 7 for near); then combine the dilated maps,
starting from farthest to nearest

3. small hole closure with full 5× 5 kernel, followed by 5× 5 median blur to
remove outliers

4. fill holes with masked dilations (full 9× 9 kernel)

5. extrapolate from the edges of the ROI: starting from the top edge, then bot-
tom, left, and right

6. fill holes with masked dilations (full 5× 5 kernel) - repeated 6 times

7. median blur followed by bilateral blur for valid pixels

8. final hole filling step with with masked dilations (full 51× 51 kernel)

9. invert and offset (to revert the 1st step)

10. finito :D
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Input depth map

invalid
near

mid-range

far

Pixel masks

outside ROI

Input depth map Invert valid pixels Multi-scale dilation

Small hole closure & median blurHole fillingExtrapolation

Hole filling Median & bilateral blur Hole filling

InvertOutput depth map

1 2

6

5 34

9

87

Figure A.1: Steps in the depth completion process, illustrated with a sample from the Cityscapes
dataset. Depth maps in the intermediate steps are colorized for visualization.
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A.4 Effect of batch normalization when training SSMA fu-
sion units

As evidenced by the model learning curves in Figure A.2, omitting the batch nor-
malization layer from the SSMA unit (presented in [109]) improves validation loss
stability and pixel accuracy.
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Figure A.2: Learning curves of the middle and dual architecture variants on different modality
combinations (cf. Table 8.2). The models are grouped based on whether the SSMAMid fusion unit
applies batch normalization after its last convolution layer. We show the mean and min-max range
for the loss (left) and pixel accuracy (right) per epoch. The loss is plotted on a log-scale for clarity.
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A.5 Benchmarking - implementation details

Inference time For measuring and comparing inference time of the different seg-
mentation architectures in our evaluation, we use Pytorch’s Benchmark module1,
which automatically handles warm-up and CUDA synchronization. Measure-
ments are performed with the models in evaluation mode (no gradient calculation,
drop-out layer, or computation of running statistics for batch normalization). In-
put tensors are generated randomly, with batch size of 1, channel size equal to the
number of modalities, and height × width of 240× 480 (the same image size used
in all our experiments) and values ranging from 0 to 255. For a given model, the
runtime of a forward pass is repeatedly measured until the variance is low enough
to be confident in the measurement.

Memory consumption We make use of Pytorch’s Profiler2 which reports the
amount of (CPU or CUDA) memory used by the model’s tensors. For each model,
measurements are taken for a forward pass on a single input sample, since the
amount of memory allocated is not influenced by system activity.

A.6 Examples of loss weight maps

Loss weight mapVisible spectrum image Ground truth
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1https://pytorch.org/docs/stable/benchmark_utils.html
2https://pytorch.org/docs/stable/autograd.html#profiler

https://pytorch.org/docs/stable/benchmark_utils.html
https://pytorch.org/docs/stable/autograd.html#profiler
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Figure A.2: Example of a loss weight map generated for each dataset in our experiments. The loss
weight map is only generated based on the ground truth segmentation mask; the input image is
shown for reference only.
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A.7 Demo videos

We showcase some of our main results on publicly available video sequences for
qualitative comparison. Links and details for each video are included below.

A.7.1 Visible spectrum models

We compare the following 3 visible spectrum models from our evaluation:
• the baseline model from Section 6.3.4, trained to learn driveability via transfer

learning with standard one-hot labels

• the SORD SLDα=1 model from Section 6.3.4, trained to learn driveability via
transfer learning with soft ordinal labels

• the loss weighting model from Section 6.4.3, trained to learn driveability
via transfer learning with one-hot labels and our pixel-wise loss weight-
ing scheme

Freiburg Forest We show predictions on RGB video sequences from Freiburg
Forest Raw3. This is the raw large-scale (non-annotated) dataset from which the
authors selected and annotated the samples which ended up in Freiburg Forest.
Note that the model was trained from scratch on less than 230 images.

Cityscapes We use the RGB video sequences from the leftImg8bit_demoVideo
set4; similarly to Freiburg Forest Raw, these are sequences from which a small
number of samples were selected for annotation in the Cityscapes semantic bench-
mark. The model was trained from scratch on approximately 3000 images.

(a) Freiburg Forest:
https://youtu.be/R2zTY3hGKQg

(b) Cityscapes:
https://youtu.be/n8BYNp3wfH4

Figure A.3: Preview and links to video demos for the visible spectrum models

3http://deepscene.cs.uni-freiburg.de/
4https://www.cityscapes-dataset.com/downloads/

https://youtu.be/R2zTY3hGKQg
https://youtu.be/n8BYNp3wfH4
http://deepscene.cs.uni-freiburg.de/
https://www.cityscapes-dataset.com/downloads/
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A.7.2 Visible+Thermal fusion models

Freiburg Thermal We compare 3 models from our final visible-thermal fusion
experiment in Section 9.3.2:

• the baseline VFreiburgThermal SegNet model, trained to learn driveability from
visible spectrum (V) images via transfer learning with soft ordinal labels
(SLDα=1)

• the VFreiburgThermal + TFreiburgThermal dualCustom fusion model trained to learn
driveability from a combination of visible spectrum (V) and thermal (T) im-
ages with soft ordinal labels (SLDα=1)

• the VFreiburgThermal + TFreiburgThermal dualCustom fusion model trained to learn
driveability from a combination of visible spectrum (V) and thermal (T)
images with soft ordinal labels (SLDα=1) combined with pixel-wise loss
weighting

Since the dataset was captured as a video sequence, we simply show prediction
on the test set. Note that the video includes the ground truth for reference, shown
in the top-center, to highlight the fact that the network was trained on very ap-
proximate (and often incorrect) segmentation masks generated by an RGB teacher
network (cf. [113]).

KAIST Pedestrian Lastly, we show predictions by the VFreiburgThermal +
TFreiburgThermal dualCustom model on out-of-dataset video sequences from KAIST
Pedestrian5 (cf. the dataset overview in Section 5.1.2). We select day-time se-
quences from the test set. In the video, we show samples from the Freiburg Ther-
mal dataset on the top row, to highlight the fact that the model was trained on
approximate ground truth data and different thermal sensor characteristics, mak-
ing this a challenging task.

(a) Freiburg Thermal:
https://youtu.be/b-r5lAvPwr8

(b) KAIST Pedestrian:
https://youtu.be/aJxhqTdemCQ

Figure A.4: Preview and links to video demos for the visible spectrum + thermal fusion models

5https://soonminhwang.github.io/rgbt-ped-detection/

https://youtu.be/b-r5lAvPwr8
https://youtu.be/aJxhqTdemCQ
https://soonminhwang.github.io/rgbt-ped-detection/
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