
Solving Euclidean Markov Decision
Processes with Neural Networks

Department of Computer Science
Aalborg University

June 10, 2021

Alexander C. Eilertsen
aeiler16@student.aau.dk

Abstract
When dealing with machine learning on cyber-physical systems, one problem is to train
the models without extensive cost or harm to the system or its surroundings as the
method learns. One method is to use Priced Timed Markov Decision Processes over
a Euclidean state space to define a formal model for these systems and train on. We
attempt to use Neural Networks to find optimal strategies for such models. We do
this by implementing Deep Q-Network in Uppaal Stratego, make a sweep over possible
hyperparamters for DQN, select three candidates and test these against the current state
of the art optimization algorithm in Uppaal Stratego. Our results show that DQN can
with the right hyperparameters find the optimal strategy for simple models in fewer
runs than the current method, and find better strategies on some of the more complex
models. However, we could not find improved strategies for all models within the tested
set hyperparameter configuration.

I. Introduction
For cyber-physical systems it is often either dangerous or costly to train machine learning
controllers directly on the system as the system might be at risk of damaging it self or
its surroundings while the controller learns such domains could be the railway[7] or
satellite systems[13]. However, if accurate formal models of the systems are available,
then preliminary controllers can safely be learned on data generated from these models.

Model checking tools such as Uppaal Stratego [5] facilitates the learning of near optimal
strategies for model that can be presented as a Priced Timed Markov Decision Processess
(PTMDPs)[6][4]. In [6] they develop a reinforcement learning strategies based on Q-
learning and online partition refinement techniques, which has show great experimental
results when it comes finding strategies for Markov Decision Processs (MDPs) over a
Euclidean state space. They test this method on several case studies each derived from one
of three different models. The tests are done using Uppaal Stratego. An alternative could
be Neural Networks (NNs) which has shown promising results in similar reinforcement
learning environments such as games[12][9] which could be modelled as PTMDPs. We
therefore propose to use NNs to learn strategies for PTMDPs.

2 II Neural Networks

In this paper we investigate the use of Deep Q-Network (DQN) to find strategies of
PTMDPs. This investigation is divided into two series of experiments. The first deals with
finding the optimal hyperparameters to use on the models. The second compares DQN
using three sets of hyperparameters found in the first series of experiments against the
current state of the art Q-learning method in Uppaal Stratego[6].

II. Neural Networks
Artificial Neural Networks are computational systems inspired by how the brain use a
system consisting of billions of small simple processing units called neurons to make fast
and complex computations. In comparison with the brain, artificial neural networks are
far smaller, often consisting of a few hundred neurons instead of billions. However, the
idea remains the same with having a set of small computational units, processing and
sending information between each other to tackle complex problems.

A. Network Structure
In a neural network, the neurons are organized in a graph structure with weighted
directional connections between them. These neurons are usually divided into layers.
The layers determine when a neuron is activated and process the information available
to it, since the neurons are activated one layer at the time going from the input layer
to the output layer. A common type of structure is the fully connected feed forward
Neural Network. This structure is defined by each neuron in a non-input layer being
connected to each neuron in the previous layer. The number of hidden neurons and
how they are connected are one of elements that determines the possible functions that a
neural network can approximate. An example of this is xor, a logical operation that checks
whether boolean inputs are the same. A result table of XOR can be seen in Table I. In
order for a neural network to be able to fully express a function that behaves as XOR it
needs at least two hidden neurons as seen in Figure 1. In this example x1

0 serves as an OR
operator activating if either x0

0 or x0
1 is 1, x1

1 functions as an NAND operator activating if
not both x0

0 and x0
1 is active, and x2

0 approximates an AND operator activating if both x1
0

and x1
1 is active. Using the tahn function as the activation function for x1

0 and x1
1 and the

sigmoid function as the activation function for x2
0, this neural network will have the input

output relation seen in Table II. Then by applying an interpreter that classify results above
0.5 as > and results less or equal than 0.5 as ⊥, this network can be used to emulate
XOR.

XOR I0 = > I0 = ⊥
I1 = > ⊥ >
I1 = ⊥ > ⊥

Table I: XOR logic operator, with I0 and I1 being the inputs for XOR

3

XOR Neural Network x0
0 = 1 x0

0 = 0
x0

1 = 1 0.06 0.60
x0

1 = 0 0.60 0.06

Table II: Outputs of example neural network for xor, for all possible states

Figure 1: The smallest neural network capable of solving xor, with x0
0 and x0

1 being the
input neurons, x1

0 and x1
1 being two hidden neuron, x2

0 being the output neuron, and the
small circles being the bias for the non-input neurons

B. Neurons
Neurons are small relatively simple processing units that when combined in multi-layer
feed-forward structure becomes a universal function approximator, assuming enough hid-
den neurons are available[3]. The neuron it self can be defined as the function composition
of two other functions. An input function λ, which converts the weighted outputs of the
previous layer into a numerical value, and an activation function φ which further process
this value. We will denote the ith neuron in layer l as xl

i and the output of that neuron
as ol

i . The relation between these variables can be seen in Equation 1.

ol
i = xl

i(O
l−1, W l , bl

i) = φl
i(λ

l
i(O

l−1, W l , bl
i)) (1)

In this function neuron xl
i takes as input the output vector of the neurons in layer l− 1,

Ol−1, the weight vector for the connections from these neuron to neuron xl
i denoted as

W l
i , and a bias bl

i . λl
i and φl

i is the specific input and activation function for neuron xl
i . One

of the most common input functions, and the one we will be using, is the sum function
shown in Equation 2

λl
i(O

l−1, W l
i , bl

i) =
j

∑
j=0

(ol−1
i · wl

i,j) + bl
i (2)

4 II Neural Networks

Figure 2: Fully Connected Feed Forward Neural Network Example

This function sums the weighted output of the neurons in the previous layer and adds
the bias to it. We use the notation wl

i,j as the weight of the connection from xl−1
j to xl

i ,
and J as the size of layer l− 1. Table III shows four commonly used activation functions,
their output boundaries, and their derivatives.

It worth noting that if we use the sum input function, and let Φl be a function that
applies the activation to all neurons in layer l then calculating the output of a whole layer
can be done efficiently through the matrix operations in Equation 3.

Ol = Φl(W l ·Ol−1 + Bl) (3)

In this function W l is the weight matrix for the connection from layer l− 1 to l and Bl

is a vector consisting of the biases for layer l.
Using this equation, we can see how the neural network in Figure 1 derived at the

results in Table II. We will do this for the data sample x0
0 = 1 and x0

1 = 0. The first step
will be update the input layer to O0 =

(
1
0
)
. Then we want to update O1, for this we

need W1 and B1, which is defined by the network to be
(1 1
−1 −1

)
and

(−0.5
1.5

)
respectively.

Plotting these values into Equation 3 we get:

O1 = Φ1
T(
(1 1
−1 −1

)
·
(

1
0
)
+
(−0.5

1.5

)
) =

(φT(0.5)
φT(0.5)

)
≈
(

0.46
0.46
)

The final step is to calculate X2, which we again do based on Equation 3, where we
derive W2 =

(
1 1
)

and B2 =
(
−0.5

)
from the network. Resulting in: X2 = ΦS(

(
1 1
)
·(

0.46
0.46
)
+
(
−0.5

)
) ≈ (0.6)

Which corresponds to the results in Table II. For fulling out the table simply go trough
this process but for the other states.

5

Activation Function Equation output boundaries Derivatives
Linear φL(X) = X (−∞, ∞)

dφL
dX = 1

Relu φR(X) = max(0, X) [0, ∞)
dφR
dX =


1, if X > 0
0, if X < 0
unde f ined, if X = 0

Sigmoid φS(X) = 1
1+e−X (−1, 1) dφS

dX = φS(X) · (1− φS(X))

Tahn φT(X) = eX−e−X

eX+e−X (0, 1) dφT
dX = 1− φT(X)2

Table III: Four common activation functions, their equations, result values, and derivatives

C. Training
The goal training a Neural Network is to adjust the weights and biases in order to increase
the accuracy of the network. This is usually done through an optimization function and
backpropagation. One of the simpler optimization functions are gradient decent which
functions by repeatedly taking steps in the opposite direction of the gradient of a cost
function C, that describes to what extent our Neural Network solves the problem, with
a higher cost indicating worse accuracy. The reason we move in opposite direction of
the gradient is because we want to move towards a local minimum of the cost function.
Taking these steps, i.e. updating the weights and biases of the neural network, is done
based on Equation 4 and Equation 5 for weights and biases respectively. Where we get
the new weight and bias w′ and b′

w′ = w− α · dC
dw

(4)

b′ = b− α · dC
db

(5)

In the above functions α is a constant variable called learning rate, which determines
the size of the steps. dC

dw and dC
db are the partial derivatives of cost function C with respect

to weight w and bias b.
Backpropagation is the algorithm used to compute dC

dw and dC
db . We will describe back-

propagation by using our xor example from before, but instead of having a Neural
Network already capable of emulating xor we have a fresh Network with randomly
initialized weights and biases as seen in Figure 3.

Before we can get started on backpropagation We have to define our dataset and our
cost function. The data set we define in Table IV with one data sample for each possible
state, and for the cost function we will use the quadratic function in Equation 6,

C(N) =
1

2n ∑
s
||y(s)−OL(s)||2 (6)

Where L is the number of layers in the network, n is the total number of samples in
our training data, the sum is done over individual training samples s, y(s) is the desired

6 II Neural Networks

Figure 3: New xor neural network with random initialized weights.

output vector of the network for sample s, and OL(s) is the actual output vector of the
network when given sample s.

The cost function in Equation 6 is the average cost for all data samples in the data set.
For the purpose of backpropagation we want to rewrite this into C(N) = 1

n ∑s C(N)s,
where C(N)s is the cost for a single data sample, i.e. C(N)s = 1

2 ||y(s) − OL(s)||2 =
1
2 ∑i(yi(s)− oL

i (s))
2. The reason we want the cost to be for single data sample is because

backpropagation function by finding dCs
dw and dCs

db and then average those to get dC
dw and

dC
db [10].

In order to calculate dCs
dwl

i,j
and dCs

dbl
i

we will first rewrite them into dCs
dwl

i,j
=

dλl
i

dwl
i,j
· dCs

dλl
i

and dCs
dbl

i
=

dλl
i

dbl
i
· dCs

dλl
i
. The reason behind the rewrites is that it splits the derivatives into

simpler derivatives that easier to calculate and allows for reuse of dCs
dλl

i
when calculating the

gradient of every weight and bias going into neuron xl
i . The gradient dCs

dλl
i

is often referred

to as the error of neuron xl
i and will from here on be denoted as δl

i for simplicity.

Since we are using the sum function in Equation 2 for λ then dλl
i

dwl
i,j
= ol−1

j and dλl
i

dbl
i
= 1.

The method for calculating δl
i depends on whether δl

i belongs to a hidden layer or the

output layer. If δl
i belongs to the output layer, i.e. l = L then δL

i =
dφL

i
dλL

i
· dCs

dφL
i

, if instead δl
i

belongs to a hidden layer, i.e. l 6= L, then δl
i =

dφl
i

dλl
i
·∑j(w

l+1
j,i · δ

l+1
j).

The way backpropagation work sis by first calculating the error for the neurons in the
output layer, using Equation 7, these are then used to calculate the error of the neurons
in the previous layer, as described in Equation 8, until all non-input neurons has been
assigned an error. Once the error for each non-input neuron has been computed, then we
can use them to compute the gradient of the weights and biases in the network, as seen

7

in Equation 9 and Equation 10.

δL
i =

dφL
i

dλL
i
· dCs

dφL
i

(7)

δl
i =

dφl
i

dλl
i
·∑

j
(wl+1

j,i · δ
l+1
j) (8)

dCs

dwl
i,j

= ol−1
j · δl

i (9)

dCs

dbl
i
= δl

i (10)

Now that we have defined the data set and the necessary equations, then let us continue
our example, focusing on the data sample s0.

We First propagate the data and note the output of all neurons in Table V.
The next step is to compute δ2

0 , which we do based on Equation 7. We get the derivative

of the sigmoid activation function from Table III, dφ2
0

dλ2
0
= o2

0(s0) · (1− o2
0(s0)), the derivative

of our cost function becomes, dCs
dφ2

0
= y(s0)− o2

0(s0), we can then use these to compute the

error of our output neuron as, δ2
0 = (o2

0(s0) · (1− o2
0(s0))) · (y(s0)− o2

0(s0)) = (0.59 · (1−
0.59)) · (1− 0.59) = 0.1.

We can now use Equation 8 to compute the errors of the neurons in our only hidden

layer. The first step is to convert dφ1
i

dλ1
i

into 1− (o1
i (s0))

2 as we are using the Tahn activation

function for these neurons. We can then calculate the errors as δ1
0(s0) = (1− (o1

0(s0)
2) ·

(w2
0,0 · δ2

0) = (1− 0.292) · (0.7 · 0.099) = 0.006 and δ1
1(s0) = (1− (o1

1(s0)
2) · (w2

0,1 · δ2
0) =

(1− 0.82) · (−0.4 · 0.099) = −0.014. Noting the results in Table V, as we will need them
for the next step, which is to compute the gradients.

These computations can be seen in Table VI, where each row corresponds to the
calculations for a single weight/bias. The functions used in the second column to calculate
the gradient, is Equation 9 for weights and Equation 10 for biases.

The last step of backpropagation is to do all that we just did for data sample s0, and
also do it for the samples s1, s2, and s3 and average the gradients. These results can be
seen in Table VII.

Now that we have finished backpropagation and have computed dC
dw and dC

db for all
weights and biases, then we are ready to use our gradient decent optimizer to update
the weights and biases. We will do this based on Equation 4 for weights and Equation 5
for biases, both with the learning rate α set to 0.1. Table VIII shows the calculations for
each weight and bias, as well as the new weights and biases.

For training a neural network, the cycle of backpropagation and optimization is re-
peated until a stop criteria is met. Common stop criterias are a certain number of epochs,
a certain amount of time, or once the network stops improving significantly, i.e. the error
does not decrease enough.

8 III Euclidean Markov Decision Process

I y
s0 {1, 0} 1
s1 {0, 1} 1
s2 {0, 0} 0
s3 {1, 1} 0

Table IV: Xor data set, I is the input values, and y is the label.

x0
0 x0

1 x1
0 x1

1 x2
0

ol
i(s0) 1 0 0.29 0.8 0.59
δl

i - - 0.006 −0.014 0.01

Table V: The output and errors of the neurons with regard to data sample s0.

Calculation Result
w1

0,0 1 · 0.006 0.006
w1

0,1 0 · 0.006 0
w1

1,0 1 · −0.014 −0.014
w1

1,1 0 · −0.014 0
w2

0,0 0.29 · 0.01 0.003
w2

0,1 0.8 · 0.01 0.008
b1

0 0.006 0.006
b1

1 −0.014 −0.014
b2

0 0.01 0.01

Table VI: The gradient of all weights with regard to Cs for s0, with the equations in the
calculation column taken from Equation 9 and Equation 10.

dCs0
dw

dCs1
dw

dCs2
dw

dCs3
dw

dC
dw

w1
0,0 0.006 0 0 −0.094 −0.022

w1
0,1 0 0.075 0 −0.094 −0.005

w1
1,0 −0.014 0 0 0.011 −0.001

w1
1,1 0 −0.032 0 0.011 −0.005

w2
0,0 0.003 −0.048 0.026 −0.014 −0.008

w2
0,1 0.008 0.075 −0.052 −0.121 −0.023

b1
0 0.006 0.075 −0.092 −0.094 −0.026

b1
1 −0.014 −0.032 0.047 0.011 0.003

b2
0 0.01 0.125 −0.136 −0.136 −0.034

Table VII: Gradients of all weights and biases with regard to each data sample and the
whole datasample.

9

old weight gradient decent function new weight
w1

0,0 0.5 0.5− 0.1 · −0.022 0.498
w1

0,1 −0.2 −0.2− 0.1 · −0.005 −0.201
w1

1,0 0.7 0.7− 0.1 · −0.001 0.700
w1

1,1 0.3 0.3− 0.1 · −0.005 0.301
w2

0,0 0.7 0.7− 0.1 · −0.008 0.701
w2

0,1 −0.4 −0.4− 0.1 · −0.023 −0.398
b1

0 −0.2 −0.2− 0.1 · −0.026 −0.197
b1

1 0.4 0.4− 0.1 · 0.003 0.400
b2

0 0.5 0.5− 0.1 · −0.034 0.503

Table VIII: The left column contains the initial weights, the middle column the gradient
decent function with values, and the last column contains the new weights after one
training step.

III. Euclidean Markov Decision Process
In this section we present the system model and controller synthesis objective that we
use, both originate from [6].

Definition 1 ((K-Dimensional, Euclidean) Markov Decision Processes[6]) A MDP is a
tuple M = (S , Act, sinit, T, C,G) where:
• S ⊆ RK represents all our possible states, as a bounded and closed subset of the Euclidean

space,
• Act is a finite set of possible actions,
• sinit ∈ S is the initial state,
• T : S × Act −→ (S −→ R≥0) is a probability density function over S i.e. ∀(s, α) ∈ S × Act

then
∫

t∈S T(s, a)(t)dt = 1,
• C : S × Act×S −→ R is a cost-function that takes in a state-action-state triple, and returns

the cost for moving from the first state to the second state through the action,
• G ⊆ S is a set of goal states.

We refer to a run of an MDP as π where π is a sequence of alternating states s and
actions α, i.e. π = s1α1s2α2 . . . where s1 = sinit and T(si, αi)(si+1) > 0 for all i > 0. The
set of all runs of MDPM is denoted as ΠM and all finite runs ofM as Π f

M. To indicate
a run up to si we use the notation π|i, i.e. π|i = s1a1s2a2 . . . ai−1si. |π| denotes the length
of run π such that if π = s1a1s2a2 . . . sn then |π| = n. We define the cost of π as the total
cost until a goal state is reached. Let simin be the first state s in π where s ∈ G, then we
define the cost of π as CG(π), where CG(π) is defined in Equation 11[6].

CG(π) = ∑
siaisi+1∈π|imin

C(si, ai, si+1) (11)

Definition 2 (Strategy[6]) We define a strategy for a MDP as a function σ : S −→ (Act −→
[0, 1]), which maps a S to a probability distribution over Act.

10 III Euclidean Markov Decision Process

Figure 4: Bouncing Ball model, the red circle is the ball, the black figure is the piston
which moves down when the action hit! is taken[6]

We evaluate strategies based on their expected cost to reach a goal state G.

Definition 3 (Expected Cost of Strategy[6]) Given a strategy σ over MDP M, then the ex-
pected cost of σ reaching G from a state s, is define by the following system of equations:

EMσ (CG , s) =

{
EMσ (CG , s) = 0, if s ∈ G
sumα∈Actσ(s)(α) ·

∫
t∈S T(s, α)(t) · (C(s, a, t) + EMσ (CG , t))dt, if s /∈ G

The problem we address is to find an optimal strategy σ.

Definition 4 (Optimal Strategy) Strategy σ is an optimal strategy for MDP M if for any
other σ′:

EMσ (CG , sinit) ≤ EMσ′ (CG , sinit) (12)

We denote this strategy as σ∗

A. Bouncing Ball Example
An example of a model that can be defined as an EMDP is the bouncing ball model from
[6], which we will be using for our experiment.

The environment of this model consist of a ball and a piston, as seen in Figure 4. The
goal of the agent in this model is use the piston to make sure that the ball keeps bouncing.
It is worth noting that the piston can only hit the ball if it has a height above 4. We model
this as a two dimensional state space S ⊆ R2, where the first dimension s0 ⊆ R ≥ 0
is the height of the ball and the second dimension s1 ⊆ R is the vertical velocity of the
ball. The action space Act = {a0, a1} is of size two, where a0 signifies that the piston is
not activated while a1 signifies the action that activates the piston. The cost function is as
follows, if the piston is activated add one to the cost, if the ball is determined dead i.e.
it will never be able to get within reach of the piston, add 1000 to the cost. This means
that the goal is to avoid death states while activating the piston as few times as possible.

The transition function T is modeled in Uppaal Stratego with the models in Figure 5.
Figure 5 (b) shows a model of the agent that we want to make a policy σ to control. The
agent has two locations, an initial location marked W, and a control location marked C.

11

(a) (b)

Figure 5: Uppaal Stratego Models for Bouncing Ball 1, (a) models the environment (b)
models the agent.

When the agent is in the control location it has to make a choice of either activating the
piston and thus following the left edge to location W, or do nothing and thereby follow
the right edge to location W. These choice correspond with action a1 and a0 in our action
space Act, respectively. The agent has to make this decision once every 0.3 seconds, which
is demonstrated by the guarded edge from W to C which must be done when x = 0.3.
Note in this figure that when the agent takes the left edge from C then lhit! is used to
tell the environment that the piston is being activated.

To simulate the environment the model in Figure 5 (a) are used. In this model the
variable p is the vertical position of the ball, v is the vertical velocity of the ball and c
is a counter for how many times the piston has hit the ball. In the initial location I sini
is set where the position of the ball is set to a random value between 7 and 10, and a
velocity set to 0. From this location the environment moves over to location B. This is the
primary location used to model the behaviour of the environment. While in this location
the state of the ball is continuously updated, with the velocity of the ball being decreased
with 9.81 every simulated second and the position of the ball being changed with regard
to the velocity. This node has three loop edges, each representing a scenario for when
the agent activates the piston. From left to the right the scenarios is as follows, the first
scenario is for when the position of the ball is below 4, and thereby out of reach for the
piston, in this scenario the simulation continues without the next state, i.e. p or v being
affected by the activation. The next edge represents the scenario where the the ball has a
positive velocity, and is within range of the piston, in this scenario the velocity of the ball

12 IV Deep Q-Network

is adjusted to be downwards with a small random energy loss, and the kinetic energy of
the piston is added to it, thereby accelerating the ball further downward. The last scenario
is when the ball is already moving downwards and is within range of the piston, in this
scenario the velocity of the ball is set to match the −4 velocity of the piston. The last two
transitions define the impact our agent can have on the ball.

From location B there is also an edge going to an is_dead location which is taken every
time the ball bounces and is responsible for checking if the ball died when it bounced, if
the balls velocity post bounce is above 1 then we take an edge back location B where the
simulation continues. If on the other hand that the balls velocity is below 1 then the ball
is declared dead as it will no longer be able to get within reach of the piston. The model
goes to the dead location and from there back into the initial location I thereby resetting
the environment.

In [6] they address the problem of approximating an optimal strategy σ for models
such as this bouncing ball example, through Q-learning and and finite partitioning of
the state space S . We instead propose to approximate the optimal strategy using NNs as
they are universal function approximators[3] and can handle the continues nature of S
without directly dividing into partitions.

IV. Deep Q-Network
For solving the problem of approximating the optimal strategy σ∗, we use the deep
reinforcement learning method Deep Q-Network (DQN)[9].

The goal of DQN is to make an agent that interacts with an environment by selecting
actions which minimizes future cost [9].

An assumption is made that future cost is discounted by a factor of γ per time step,
i.e. the future discounted cost from time step t to the termination step T is defined
as Ct = ∑T

t′=t γt′−tct. We then define the optimal action-value function Q∗(s, a), as the
minimum expected Ct achievable by following any policy, when taking action a in state
s. This function obeys the Bellman equation, which is based on the intuition that if the
optimal value Q∗(st+1, a′) is known for all possible actions a′, then the optimal policy is
to select the action a′ which minimizes the expected value of ct + Q∗(st+1, a)[9].

The idea behind DQN is to use a neural network to define an action-value function
Q(s, a; N), and then make it approximate Q∗(s, a) by using the equation as an iterative
update for the network, i.e. Q(s, a; Ni+1) = ct + γmin

a′
Q(st+1, a′; Ni). This means that

we can train the network by minimizing the following loss function sequences of loss
functions Li(Ni), where yi = ct + γmin

a′
Q(st+1, a′; Ni).

Li(Ni) = (yi −Q(s, a; Ni))
2 (13)

It is worth noting that the target value, yi is dependent on the network, in contrast to
how supervised learning utilises a fixed predetermined target value. Differentiating the

13

loss function in Equation 13 with regard to the network, gives the following gradient:

dLi
dNi

(Ni) = (ct + γmina′Q(st+1, a′; Ni)−Q(st, at; Ni)) ·
dQ
dNi

(st, at; Ni) (14)

A. Training
When training DQN there are two key elements, the training policy, which is the policy
used to select actions during training, and data sampling, which is how we store and
sample data.

The training policy defines what action DQN takes during training. The training policy
is responsible for balancing exploration and exploitation. To do this we are using an ε-
greedy policy, which given a state will pick the estimated best action with a probability
of 1− ε, and has a probability of ε to pick a random action.

Data sampling defines how we create and use the data samples that we train our
network on. For this we are using experience replay, which means that every time we
take action at in state st, we observe the cost ct and the resulting state st+1 and store
the experience, (st, at, ct, st+1) in our experience replay memory D. For optimizing our
network we uniformly sample a minibatch of experiences from our replay memory, and
use them to perform a gradient descent step, with Equation 13 as our loss function.

A full overview of how DQN function can be seen in algorithm 1, where line 1 and
2 initializes our memory D and then the neural network N. Line 5 to 7 represent our
ε-greedy policy and the last lines describes how we sample and train based on our replay
memory.

Algorithm 1: Deep Q-learning with Experience Replay[9]

1 Initialize replay memory D to capacity |D|
2 Initialize Neural Network N0 with random weights and biases
3 for run = 0 to R do
4 for t = 1 to T do
5 with probability ε select a random action at
6 otherwise select at = minaQ(st, a; Ni)
7 Execute action at in emulator and observe state st+1 and cost ct
8 store experience (st, at, ct, st+1) in D
9 sample random minibatch of experiences (sj, aj, cj, sj+1) from D

10 Set yj =

{
cj, for terminal st+1

cj + γmina′Q(Qj+1, a′; Ni), for non-terminal st+1

11 Update Ni to Ni+1 by performing a gradient descent step on
(yj −Q(sj, aj; Ni))

2

14 IV Deep Q-Network

Experience {st, at, ctst+1}
t0 {(6.8,−7.5), a0, 0, (4.3,−10.3)}
t1 {(2.7, 6.2), a1, 1, (4.8, 3.1)}
t2 {(5.8, 2.4), a1, 1, (4.6,−6.3)}

Table IX: Replay memory D

Figure 6: Neural Network used for DQN example, the two input node x0
0 and x0

1
corresponds to the state dimensions s0 and s1 respectively and the two output neurons
x2

0 and x2
1 corresponds to the actions a0 and a1 respectively, for input functions the sum

function is used by all neuron, for activation functions the hidden layer uses tanh and
the output layer uses Linear.

B. Bouncing Ball Example
To illustrate how DQN functions let us do an example of a learning step using the
Bouncing Ball model described in Section III-A. To do this we will define a replay memory
is Table IX, and a Neural Network in Figure 6. The two input neurons of the network each
represents one dimension in our state space, and the two output neurons each represents
one of the actions in our action space. For activation function we use the tanh function
in the hidden layer, and the linear function in the output layer.

We will in this example process the state (4.1,−2.1). The first step will be to select
whether to take a random action or an action decided by our network, as described in
algorithm 1 line 5 and 6. Let us continue with the action being selected by out network. We
then have to propagate the state through the network, which gives the following output
vector

(−0.02
0.87

)
. In accordance with line 7 of the algorithm we then tells the environment

to take action a0 as it has the lowest estimated cost. The environment will then return
the next state (3.4,−5.0). We then combine the initial state the chosen action and the
resulting state into a transition and store it in D as follows:

D = D] {(4.1,−2.1), a0, 0, (3.4,−5.0)} (15)

15

Now that a new transition has been stored in the memory, we make a minibatch of
stored transitions and update our network based on those. We will be using a batch size
of one for simplicity. With a uniform chance between our four experiences, the original
3 and the new one, we sample the experience t1 = {(2.7, 6.2), a1, 1, (4.8, 3.1)}. We first
calculate the loss, it is worth noting that since the action taken in experience t1 is a1,
then we only consider the loss with regard to that action. The first step of calculating
the loss is to calculate the target value y for neuron x2

1, as this experience does not end
in a terminal state. Which means that the target value is equal to ct plus the discounted
estimated future cost:

y = 1 + γ · a′
min

Q({4.8, 3.1}, a′; N) = 1 + 0.9 · −0.09 = 0.92

We then compute the cost estimate for action a1, which through propagation equals
0.43, we therefore has the following loss:

Li(N) = (y−Q((2.7, 6.2), a1; N))2 = (0.92− 0.43)2 = 0.24

The last step is then to back propagate the loss and update the Network through gradient
descent, as described in Section II-C.

C. Prioritized Experience Replay
One of the important elements of DQN is experience replay method, i.e. how we sample
our memories, currently we have only discussed uniform sampling where each memory
has an equal chance of being sampled when training. However, this assumes that all
experience has can contribute equally to the learning of the NN, while this is not always
the case, e.g. the ball dying in bouncing ball is an important experience has avoiding this
is the main goal, but is also a rare experience meaning it will only fill a small portion of the
experience replay buffer. In [11] they introduce methods to prioritize which experiences
are sampled for replay during training. These methods are prioritized based on TD-
error, which DQN already calculates as our loss over a single experience. One of the
prioritization methods in [11] is rank-based prioritization, which prioritizes relative to the
rank of an experience in experience replay buffer sorted on the TD-error. The priority
of experience i is calculated in accordance to Equation 16, where rank(i) is the rank of
experience i in the sorted experience replay buffer, such that the experience with the
highest TD-error has rank(i) = 1.

pi =
1

rank(i)
(16)

This priority pi is then used to calculate the probability that experience i is sampled
during learning. This probability is computed based on Equation 17, where ρ is used to
determine how much prioritization impacts the sampling, with ρ = 0 being equivalent
to uniform sampling

P(i) =
pρ

i

∑k pρ
k

(17)

16 V Experimental Setup

Using this prioritizes memory introduces a bias, which when we get close to con-
vergence we would like to avoid. To achieve this [11] introduces importance-sampling
weights, which are used to correct for the bias. The importance sampling is calculated in
Equation 18, where β determines how much importance sampling compensates for the
bias, with β = 1 fully compensating for the bias.

vi = (
1
N
· 1

P(i)
)β (18)

vi is used under training such that the loss with regard to experience i is weighted
with regard to vi, thereby weighting the impact experience i has on the training update.

As mentioned we are mainly interested in this bias compensation when nearing con-
vergence, as we are interested in this bias to early on learn from significant but rare
experiences. To accomplish this β is linearly changed from its initial value β0 to 1 over
the cause of training.

V. Experimental Setup
To test DQN’s ability to find optimal strategies for MDPs, we will use the experimental
setup form [6] and compare DQN against the Q-learning methods proposed in that paper.
This setup consists training and comparing the methods on several case studies, all but
one derived from one of three scalable models, the last one derived from XOR.

To test DQN’s ability to find optimal strategies for MDPs, we conduct two series
experiments. In the first series of experiments we test a variety of hyperparameter setup
configurations for DQN on simple case studies from [6] after 250 runs. The goal of this
series experiments is to study which hyperparameters have the biggest impact on the
strategies DQN can learn for a given case study, and to find the best hyperparameter
configuration for each model to use in the second series experiments. In the second series
of experiments we conduct an in depth comparison between the best performing DQN
configuration for each model from the first series experiments against the Q-learning
method proposed in [6]. These experiments consist of comparing the strategies that the
models create for several case studies, all but one derived from one of the three scalable
models in [6], with the last one being derived from XOR. These models are as follows:
• Bouncing Ball:

– In the Bouncing Ball model the goal is to keep N balls bouncing by activating
a piston to hit them. Each activation of the piston has a unit of cost associated
with it, and only affects balls above a certain height, as describe in Section III-A.

• Floor Heating:
– The second model is a modified version of the Floor Heating case study from [8],

where the outdoor temperature measurements/predictions are replaced with a
simple sinusoidal curve.

• Highway:

17

– For the last model a set of different scenarios for autonomous vehicles on a
highway has been modeled. The goal in this model is to control a single vehicle
while avoiding collisions[6].

VI. Hyper Parameter Experiments
When using DQN then there are several parameters that define how the method be-
haves. In this series of experiments we will divide these parameters into two different
categores, constant parameters which are set to the same value for all setups, and varying
parameters, that for each setup, are given a value from a pre-determined set of possible
values.

The constant parameters consist of:
• ε for our ε-greedy policy,
• γ future discount for cost,
• batch size,
• ρ for prioritized replay,
• Neuron input function,
• Neuron activation function, and
• Optimizier.

For ε it starts at 1.0 and then linearly degrades down to 0.1 during the first 10% of the
allocated training budget, after which it stays at 0.1. The future discount modifier γ is set
to 0.9. The batch size is set to 32. For prioritized experience replay ρ is set to 0.7 as it was
found to be best for rank-based prioritization in [11]. Our input and activation functions
for our neurons, batch size, and our optimizer. For our input function we use the sum
function and for the activation function we use the Tanh function for the hidden layers
and the linear function for our output layer. The optimizer we use is the RMSprop[2] as
it was used in the original DQN paper[9].

The varying parameters consists of the following:
• Number Of Hidden Layers ∈ {1, 2}
• Size of Hidden Layers ∈ {2, 4, 8, 16, 32, 64, 128}
• Learning Rate α ∈ {0.005, 0.01, 0.05, 0.1}
• Memory Size |D| ∈ {10.000, 100.000, 1.000.000}
• Memory Type ∈ {Uniform, Prioritised}

– For prioritised we also search for β ∈ {−1, 0.0, 0.2, 0.4}
• Normalisation ∈ {>,⊥}
• Learning type ∈ {online, semi-offline}
These parameters refer either directly to the network structure or the learning parame-

ters that has been explained in Section II for number of hidden layers, size of hidden layer,
learning rate or in Section IV for memory size, memory type, and β >= 0. We here only
explain what β = −1, Normalisation, and Learning type. We use β = −1 to denote when
we disable the bias correction. If Normalisation = >, then all input variable and costs are
normalised based on the highest observed value for the input and cost respectively after 5

18 VI Hyper Parameter Experiments

runs. The learning type, describes when we sample and train the network. When learning
type = online, then we take one training step after each interaction with the environment,
as described in algorithm 1. When instead learning type = semi-offline then each run is
done without updating the network, DQN is then fed the experience in a reverse order,
i.e. from the termination state to the initial state, where it takes one training step after
each state, action, state tuple it is fed.

To determine the values of our varying parameters we will conduct a test on the
simplest case study from each model with a training budget of 250 runs and 25 repetitions.
The exception is the highway model, where we increased the complexity of the model
two times from 1car to 3car overtake to 4car overtake5, as multiple setups was
capable of finding the optimal strategy for both 1car and 3car overtake after only
250 runs.

A. Hyperparameter Results
Figure 7 shows the results of our hyper parameter Experiments. To create these graphs
we sorted all configuration, on the median of their cost of a run after the 25 repitions,
which is what the blue shaded are represents, with the Y-axis denoting the cost and
the sorted list of configurations being along the X-axis. The red line shows Q-learnings
median cost after 250 runs, and the green line shows its median cost of 10000 runs. The
yellow vertical lines denotes points of interest we will go over.

When looking at Figure 7, then there are a few interesting observations to note. For
Bouncing Ball 1, then all setups that got an average cost below 399, which is the cost
for always choosing hit, and is marked by the yellow vertical line, had normalisation
= >, Memory Type = Prioritised, and the vast majority only used one hidden layer. We
speculate that the reason why normalisation is important is due to the high cost value
associated with the ball dying, as this will mean that our gradient will be steep and cause
big changes to the weights of our network. Thus, making it difficult to develop a more
fine tuned policy. We hypothesis that the reason the prioritised memory is needed, is
that it allows the network to more quickly find and learn on the rare edge cases, such as
when a ball die. As the network is more quickly updated to reflect when a ball dies, it
is also more likely to properly trace the reason for the death back to the actual time step
where it should have hit, thus allowing for a more fine tuned policy to emerge.

For Floor heating1_5, the right side of yellow vertical line consist only of setups
where normalisation = ⊥, and the 14 best setups, including the only 4 that outperformed
Q-learning after 250 runs, all had a network size of 2 hidden layers with 128 neurons
in each. The reason for the size is likely due to the high input/output dimension and
the complex function between them. Which means that the network needs a certain
level complexity to properly map the correlations. For the normalisation it is interesting
that even though floor heating has a higher cost value than bouncing ball, then in
contrast to bouncing ball, it needs to have it disabled. This is likely an artefact of the
normalization which normalises an input variable based on the observed values of all
input variables, rather than normalising based only on the observed values for the given

19

(a) (b)

(c) (d)

(e)

Figure 7: Hyper Parameter Results

input variable. This can be a problem nn floor heating there as there is a variable that
tracks time in seconds, the value of this variable greatly out range the possible values of
any other variable, thus when normalising, it is possible that the other values becomes too
small to have any significant impact on the network. More experiments with a different
normalisation method could test this hypothesis.

For highway, it is worth noting that out off the 527 setups that solved 3car overtake,
marked by the yellow vertical line, only 16 of them used Memory Type = Unitform, a trend
that is also reflected in the group of setups that outperformed Q-learning after 250 runs

20 VII Comparison Experiments

in 4car overtake5, also marked by the yellow vertical line. This is likely due to the
cost function, which only has two cost for state-action-state triple, one if the car crashed
and one if it did not crash. Therefore, learning on or near the experience where the car
crashed are crucial for learning good strategies on the model. However each run has
at most one experience of a crash, thereby making it a relatively rare occurrence. Which
could explain why uniform sampling has difficulties learning good strategies for highway
cases.

For XOR, the deciding factor appear to be whether the data is normalised. This is evident
by all configurations where normalisation = ⊥, being to the left of the yellow vertical line
with an average cost of 0.5, which corresponds to random play.

From this series of experiments we will take the best performing configuration from
each model and use in the comparison experiments. The configurations we use are as
follows:
• Configuration 1 (1x16), derived from Bouncing Ball 1:

– Number of Hidden Layers = 1
– Size of Hidden Layers = 16
– α = 0.01
– |D| = 100.000
– Memory Type = Prioritised
– β = 0.4,
– Learning type = semi-offline
– normalisation = >.

• Configuration 2 (2x2), derived from 4car overtake5:
– Number of Hidden Layers = 2
– Size of Hidden Layers = 2
– α = 0.005
– |D| = 100.000
– Memory Type = Prioritised
– β = 0.0,
– Learning type = semi-offline
– normalisation = ⊥.

• Configuration 3 (2x128), derived from floor heating 1_5:
– Number of Hidden Layers = 2
– Size of Hidden Layers = 128
– α = 0.005
– |D| = 1.000.000
– Memory Type = Prioritised
– β = 0.4,
– Learning type = online
– normalisation = ⊥.

21

VII. Comparison Experiments
In our comparison experiments we compare the three DQN configurations found in
Section VI against the Q-learning method from [6]. These experiments are done over
the several case studies from [6], and a model of XOR. For each case study we test the
strategy that the methods can create after utilising a training budget ranging from 100
runs to 10000 runs, each experiment is repeated 25 times as to accommodate for stochastic
nature of the experiments.

A. Comparison Results
We here present the results of our comparison experiments. They are presented as the
25% quantile, the 50% quantile of the 25 repetitions of each experiment. The results of
all the Bouncing Ball, and Floor Heating experiments as well as a selected subset of the
Highway experiments can be found in Table X. The remaining Highway results can be
found in Appendix A. In these tables, Q, denotes the results of the Q-learning method,
while the DQN configurations are named based on their network size, e.g. 1x16 is the
DQN configuration with one hidden layer of size 16.

The results show that for XOR both Q-learning and setup 1x16 are capable of solving
it, though configuration 1x16 does this much faster than Q-learning, after only 250 runs,
while Q-learning show little sign of improvement prior to 5000 runs.

For Bouncing Ball Q-learning outperforms all setups of DQN, with the best performing
DQN configuration always being 1x16, though noticeably not always after 10000 runs.
When studying the Bouncing Ball results for the DQN configurations, then a few interest-
ing observations can be made. The first being that for Bouncing Ball 2 and Bouncing
Ball 3 the configuration 2x2 always has a median value of 399 and 25% quantile value
of no more than 391.2. This interesting as the 399 mark denotes the strategy of always
choosing the hit action. This means that for this configuration the network quickly learns
to be afraid of dropping the ball, but it appears to be almost impossible for it to improve
upon this strategy. One possible explanation for why it cannot improve might be the
high cost associated with a non-normalised costs in this model, which means that the
changes in weights can often be relative big, thereby making it hard to take the small
learning steps necessary to find a fine tuned strategy. A second interesting observation is
the small difference between the best achieved strategy by DQN for Bouncing Ball 2
and Bouncing Ball 3. For Bouncing Ball 2 this strategy is achieved after 5000 runs
with a median cost of 326.6, while for Bouncing Ball 3 a similar median cost of 325.9
is achieved after 10000 runs. This is in contrast to Q-learning where the difference in cost
is much higher with 80.2 for Bouncing Ball 2 and 136.8 for Bouncing Ball 3. This
could indicate that DQN are better at handling the scaling issue of this task. However, a
simpler explanation could also be that since both the best performing strategies for DQN
is relative close to the always hitting strategy with a cost of 399, then it simply does not
require much to improve to that state for either case study, and DQN might notice similar
scaling issues as Q-learning if it achieves a sufficiently well performing strategy.

22 VII Comparison Experiments

Runs 100 250 500 1000 2500 5000 10000
Conf: 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50%

XOR:
Q 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.0 0.4 0.0 0.0 0.0 0.0

1x16 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2x2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

2x128 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5
Bouncing Ball 1:

Q 74.2 88.2 44.3 49.4 42.7 46.0 42.4 50.3 39.6 41.6 40.2 41.9 39.6 39.7
1x16 106.4 1198.4 135.6 842.7 83.6 194.2 101.4 108.5 88.9 131.3 159.4 227.9 149.6 452.4
2x2 399.0 5046.4 5053.0 5063.8 399.0 5046.0 5053.0 5062.0 399.0 5056.0 5042.0 5056.0 399.0 5041.0

2x128 5058.0 5078.2 5053.0 5068.1 5044.0 5065.2 5058.0 5078.9 5048.0 5053.0 5057.8 5061.6 5061.0 5061.0
Bouncing Ball 2:

Q 182.2 250.6 114.9 183.9 96.8 241.8 92.0 137.5 93.2 117.5 78.3 95.1 70.4 80.2
1x16 353.3 695.7 323.4 2509.7 258.1 810.8 210.5 786.1 167.2 817.6 216.0 326.6 303.3 374.3
2x2 391.2 399.0 397.4 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0

2x128 5110.2 6676.4 4101.0 7082.3 6130.3 7969.3 6248.6 8226.0 9598.4 9636.2 5167.7 7634.9 9547.6 9547.6
Bouncing Ball 3:

Q 217.8 331.5 240.9 505.4 188.1 313.5 180.1 218.5 144.0 239.4 117.7 149.0 108.5 136.8
1x16 332.6 951.9 193.9 857.0 301.3 811.6 226.0 443.5 298.3 526.7 266.1 345.7 274.6 325.9
2x2 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0 399.0

2x128 350.8 556.4 450.0 4506.3 4914.3 7195.0 7720.3 11070.8 11339.6 12449.2 7786.6 10095.4 14225.2 14225.2
Floor Heating 1_5:

Q 490.5 567.9 361.3 402.0 327.7 405.1 285.5 308.6 284.3 288.0 275.9 286.9 273.1 280.7
1x16 437.5 437.7 437.4 437.9 437.0 440.1 348.4 428.0 284.4 314.1 277.3 309.4 270.7 279.9
2x2 638.7 845.1 510.5 648.3 437.2 437.7 437.3 437.6 437.6 437.9 438.2 567.2 510.5 567.8

2x128 437.5 437.9 369.9 424.8 319.4 327.7 302.7 324.0 294.5 305.2 282.6 316.9 292.1 317.4
Floor Heating 6_11:

Q 867.6 1305.2 645.4 731.8 440.3 536.6 346.7 408.2 291.4 305.3 287.3 292.5 276.4 286.9
1x16 737.0 1221.8 640.4 1157.2 599.1 612.2 530.3 530.8 - - - - - -
2x2 642.2 862.4 912.8 1179.0 598.9 1145.9 658.9 991.1 - - - - - -

2x128 612.5 861.7 530.5 586.9 530.8 585.4 530.9 592.1 481.6 530.6 434.7 530.9 316.4 392.1
3 Car Overtake:

Q 0.0 12.2 0.1 45.6 0.0 0.0 0.0 4.0 3.0 5.7 1.2 3.8 1.3 2.5
1x16 58.5 111.4 20.4 61.5 1.4 3.4 0.1 18.3 0.3 1.5 0.2 2.3 0.0 0.4
2x2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2x128 152.6 163.5 103.1 195.9 105.9 189.3 109.1 163.3 103.9 196.7 102.3 163.6 101.8 163.7
4 Car Overtake 3:

Q 113.5 146.5 61.8 104.7 13.1 45.6 21.7 52.5 20.4 43.5 11.0 15.3 3.8 6.4
1x16 113.3 125.2 36.4 67.8 2.6 19.5 10.3 36.0 21.3 59.9 5.2 11.1 3.4 16.9
2x2 103.1 103.5 102.6 103.0 102.9 103.3 102.8 103.1 102.7 103.4 102.9 103.3 102.5 102.8

2x128 173.7 189.4 164.2 197.0 189.3 198.9 163.6 183.7 104.3 163.4 103.6 163.5 163.6 189.3
4 Car Overtake 5:

Q 116.3 174.0 114.6 138.7 96.0 110.1 98.4 113.9 44.1 57.9 30.1 40.5 18.1 28.4
1x16 142.7 157.0 46.1 122.5 26.3 31.2 10.9 53.2 22.6 61.9 11.0 50.4 3.0 9.5
2x2 102.2 102.7 102.5 102.8 102.4 103.2 102.3 102.7 103.0 103.7 103.0 163.5 102.6 102.9

2x128 163.6 187.2 163.6 188.0 103.3 188.0 163.7 189.4 163.5 188.0 103.3 188.0 163.4 188.0

Table X: Results from XOR, all the Bouncing Ball, all Floorheating experiments, and a
selected subset of the Highway experiment results

For floor heating 1_5, Q-learning and DQN configuration 1x16 performs similarly
well, though it should be noted that configuration 2x128 outperforms 1x16 until it starts
to worsen in performance after 2500 runs. So if it had been able to continue to improve
it might have outperformed both configuration 1x16 and Q-learning.

For floor heating 6_11, Q-learning significantly outperforms all DQN configura-
tions, the missing values for configuration 1x16 and 2x2 is due to error in the code causing
the program to crash. An interesting observation for the two floor heating cases, is that
Q-learning does not appear to be suffer a significant penalty in the cost after 2500 when
scaling from floor heating 1_5 to floor heating 6_11, which is in contrast to
configuration 2x128.

23

Generally the right DQN configuration seems to be on pair with or outperform Q-
learning for most highway cases, with the exception being 4car overtake3. More
specifically, for 3car overtake Q-learning solves it after 500 runs, but then seems to
degress in performance as it after 10000 runs has a median cost of 2.5, while configuration
2x2 finds the optimal strategy already after 100 runs and does not degress. For 4car
overtake5 performs significantly better than Q-learning, with Q-learning best achieved
median cost being 28.4, while the 1x16 configuration achieves a median cost of 9.5,
both after 1000 runs. Finally for 4car overtake3 Q-learning outperforms the best
DQN configuration. However, with a noticeably smaller margin than the right DQN
configuration outperforms Q-learning with in 4car overtake5. Overall our highway
results indicates that for this model, the right configuration of DQN hyperparameters are
capable of outperforming Q-learning, but if the hyperparameters are not optimal then
DQN performs significantly worse. An example of this is for both 4car overtake3 and
4car overtake5 neither configuration 2x2 or 2x128 manage to get bellow a cost of 100.

One observation that can be seen in several cases is that DQN seems prone to start
degress significantly in performance as the training budget increases. One example of
this is Bouncing Ball 1 configuration 1x16, which with a training budget of 1000
runs achieve a median average cost of 108.5 which then steadily increases to 452.4 at
10000 runs. This is notably above the 399 mark, which is the always hit strategy. This
means that the strategy has started to drop the ball sometimes. In [1] they found similar
behaviour of a deep reinforcement learning method and tested the cause of it. Through
extensive experimental testing, they concluded that the reason behind this is duo to old
memories being replaced with new ones which are less diverse as our ε has decreased
and our policy has settled. This means that as the network trains on these samples, which
has a limited coverage of the state-action space, it forgets the knowledge that it obtained
through the early samples which had more exploration. Furthermore, [1] illustrated that
since our exploration has decreased significantly at this point, then the algorithm does
not explore enough to create a diverse enough experience replay memory to recover from
this loss in performance.

Overall our results shows that within the limitation of our DQN configurations Q-
learning significantly outperforms any tested DQN configuration on all bouncing ball
cases and floor heating 6_11, while the right configuration of DQN is on pair with
Q-learning for floor heatin 1_5. For the highway model, the right configuration of
DQN is either on pair with Q-learning if they both solves it, is better than Q-learning, or
in the case of 4car overtake3 and 4car overtake2 performs slightly worse.

Furthermore the Q-learning method appears to continue to converge to a better solution
as run budget is increased, while our current experience replay memory method prevents
this behaviour for DQN, aligning with the observations of [1].

VIII. Conclusion
In this paper we hypothesised that by using NNs we could improve upon the current
state of art methods used to find strategies in Uppaal Stratego.

24 IX Future Work

We tested this hypothesis by first sweeping over a set of hyperparameters, selecting
three configurations of hyperparameters and then do an extensive comparison of them
against the Q-learning method from [6].

The results of our experiments shows that within the limitations of our hyperparameter
selection, we were not able to find a single set of hyperparameters suiting all problem
domains. However, if the right set of hyperparameters is found DQN does appear able
to find the solution within less runs, as it did in XOR where the right DQN configuration
solved it within 250 runs, where as Q-learning needed up to 5000 runs. DQN can also
with the right hyperparameters find better strategies, as was the case for the highway
model. Lastly similarly to [1] we aw that a better method is needed to decide which
memories we keep in the experience replay buffer and which are forgotten, in order to
keep diversity in the experience replay buffer, as without it DQN seems to forget what
it learned early on.

IX. Future Work
Two issues that this investigation has revealed when using Neural Networks to find
strategies in Uppaal Stratego is firstly setting the right hyperparameters, and secondly
overcoming diversity loss in our experience replay memory as our training budget in-
creases. We therefore suggest the following, finding and implementing automated hyper-
parameter search that is capable of finding both simple parameters such as learning rate
and more complex parameters such as network structure. Finding and implementing a
method that decide which memories to keep in our experience replay memory, such that
that network does not forget the knowledge gained early on.

25

References
[1] Tim de Bruin et al. “The importance of experience replay database composition in deep reinforcement

learning”. In: Jan. 2015 (cit. on pp. 23, 24).
[2] Vitaly Bushaev. Understanding RMSprop — faster neural network learning. 2018. url: https://towardsdatascience.

com/understanding-rmsprop-faster-neural-network- learning-62e116fcf29a (visited on 05/20/2021)
(cit. on p. 17).

[3] Balázs Csanád Csáji. “Approximation withArtificial Neural Networks”. In: (2001) (cit. on pp. 3, 12).
[4] Alexandre David et al. “On Time with Minimal Expected Cost!” In: Automated Technology for Verification

and Analysis. Ed. by Franck Cassez and Jean-François Raskin. Cham: Springer International Publishing,
2014, pp. 129–145. isbn: 978-3-319-11936-6 (cit. on p. 1).

[5] Alexandre David et al. “Uppaal Stratego”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Christel Baier and Cesare Tinelli. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 206–211. isbn: 978-3-662-46681-0 (cit. on p. 1).

[6] Manfred Jaeger et al. “Teaching Stratego to Play Ball: Optimal Synthesis for Continuous Space MDPs”.
In: Automated Technology for Verification and Analysis. Ed. by Yu-Fang Chen, Chih-Hong Cheng, and
Javier Esparza. Cham: Springer International Publishing, 2019, pp. 81–97. isbn: 978-3-030-31784-3 (cit.
on pp. 1, 2, 9, 10, 12, 16, 17, 21, 24).

[7] Shyam Lal Karra et al. “Safe and Time-Optimal Control for Railway Games”. In: Reliability, Safety,
and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. Ed. by Simon Collart-
Dutilleul, Thierry Lecomte, and Alexander Romanovsky. Cham: Springer International Publishing,
2019, pp. 106–122. isbn: 978-3-030-18744-6 (cit. on p. 1).

[8] Kim G. Larsen et al. “Online and Compositional Learning of Controllers with Application to Floor
Heating”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Marsha Chechik
and Jean-François Raskin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 244–259. isbn:
978-3-662-49674-9 (cit. on p. 16).

[9] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013. arXiv: 1312.5602 [cs.LG]
(cit. on pp. 1, 12, 13, 17).

[10] Michael Nielsen. How the backpropagation algorithm works. Apr. 2021. url: http://neuralnetworksanddeeplearning.
com/chap2.html (cit. on p. 6).

[11] Tom Schaul et al. Prioritized Experience Replay. 2016. arXiv: 1511.05952 [cs.LG] (cit. on pp. 15–17).
[12] Kun Shao et al. A Survey of Deep Reinforcement Learning in Video Games. 2019. arXiv: 1912.10944 [cs.MA]

(cit. on p. 1).
[13] Erik Ramsgaard Wognsen et al. “A Score Function for Optimizing the Cycle-Life of Battery-Powered

Embedded Systems”. In: Formal Modeling and Analysis of Timed Systems. Ed. by Sriram Sankara-
narayanan and Enrico Vicario. Cham: Springer International Publishing, 2015, pp. 305–320. isbn: 978-
3-319-22975-1 (cit. on p. 1).

https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://arxiv.org/abs/1312.5602
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1912.10944

26 A Future Work

Appendix A
Highway Results

Runs 100 250 500 1000 2500 5000 10000
Conf: 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50%

1 Car
Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1x16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2x2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2x128 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 188.0 0.0 0.0 0.0 0.0
2 Car Fast Back:

Q 0.0 2.1 0.0 0.5 1.8 35.3 0.2 4.4 1.0 5.6 0.2 1.8 0.8 1.2
1x16 7.0 142.8 0.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0
2x2 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.4 0.2 0.4 0.1 0.4 0.3 0.3

2x128 132.5 191.5 0.3 188.0 0.4 191.5 0.2 0.5 0.0 0.7 0.0 0.3 0.0 0.0
2 Car Slow Front

Q 0.0 157.6 0.0 0.0 0.0 0.0 0.0 1.5 0.0 3.7 0.0 1.2 1.1 1.9
1x16 5.3 133.1 0.5 15.4 0.0 0.4 0.0 0.1 0.0 1.8 0.2 3.8 0.5 13.9
2x2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2x128 157.0 157.6 0.0 178.1 0.0 157.2 0.0 178.2 0.0 157.4 0.0 157.6 0.0 157.6
2 Car Overtake:

Q 0.0 0.8 0.0 0.0 0.0 2.8 0.1 4.4 1.9 4.2 2.0 3.9 0.4 0.6
1x16 2.5 104.8 0.0 1.8 0.0 0.3 0.0 0.0 0.0 0.0 0.1 25.1 0.0 0.7
2x2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2x128 179.7 188.0 0.0 188.0 0.0 44.9 41.6 188.0 0.0 22.6 0.0 0.0 0.0 0.0
3 Car:

Q 65.6 153.4 73.3 111.2 43.0 71.1 16.5 29.5 6.7 9.7 6.6 13.5 5.9 6.5
1x16 95.4 136.4 22.6 102.3 1.1 10.1 1.6 11.3 7.5 27.8 2.2 10.5 1.9 5.6
2x2 102.3 103.1 102.5 103.1 102.4 103.0 102.6 103.0 102.7 103.0 102.8 104.1 102.7 102.8

2x128 163.5 186.5 163.3 189.3 103.1 188.0 163.6 189.3 163.8 189.4 102.9 163.4 104.2 189.3
3 Car Slow Front:

Q 125.0 170.0 44.0 121.0 93.0 125.0 54.0 109.0 0.0 0.0 0.0 0.0 0.0 0.0
1x16 68.0 137.0 45.0 84.0 0.0 48.0 0.0 37.0 0.0 0.0 0.0 0.0 0.0 37.0
2x2 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0

2x128 125.0 172.0 125.0 189.0 125.0 172.0 125.0 172.0 172.0 185.0 187.0 190.0 172.0 189.0
3 Car Fast Back:

Q 125.0 170.0 44.0 121.0 93.0 125.0 54.0 109.0 0.0 0.0 0.0 0.0 0.0 0.0
1x16 68.0 137.0 45.0 84.0 0.0 48.0 0.0 37.0 0.0 0.0 0.0 0.0 0.0 37.0
2x2 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0

2x128 125.0 172.0 125.0 189.0 125.0 172.0 125.0 172.0 172.0 185.0 187.0 190.0 172.0 189.0
4 Car Overtake 1:

Q 108.7 130.5 81.4 104.5 48.7 96.4 33.3 59.6 24.4 58.1 8.4 14.9 4.7 7.9
1x16 109.1 145.3 7.3 58.6 3.6 22.3 1.1 5.5 3.2 7.3 0.3 3.6 2.4 23.9
2x2 102.4 102.7 102.3 102.7 102.7 102.9 102.9 103.1 102.5 103.0 102.8 104.1 102.6 103.5

2x128 187.0 189.3 120.4 163.7 163.9 188.0 163.8 189.4 188.0 201.0 102.8 163.5 163.6 188.0
4 Car Overtake 2:

Q 93.0 128.1 58.8 83.9 46.3 96.5 12.2 59.5 28.2 34.9 8.0 24.1 4.6 6.2
1x16 93.4 148.9 17.5 37.2 8.8 15.0 16.2 39.7 1.2 12.5 26.4 84.1 2.1 9.7
2x2 102.6 103.1 102.7 102.9 102.5 103.2 102.7 103.2 102.9 103.5 102.9 103.2 102.3 102.6

2x128 163.6 188.3 163.1 196.8 163.1 199.0 108.4 188.0 118.6 197.0 103.2 163.4 107.0 163.5
4 Car Overtake 4:

Q 161.5 175.8 138.7 161.1 87.2 112.8 108.4 120.6 45.3 88.8 40.2 53.3 12.3 25.5
1x16 133.8 141.1 62.4 75.0 26.4 69.6 6.8 65.6 27.9 58.7 8.6 19.6 6.9 29.7
2x2 102.6 103.1 102.3 103.0 102.8 103.3 102.5 102.8 102.9 103.1 102.6 103.3 103.0 103.7

2x128 187.2 197.9 169.0 197.0 154.5 189.4 163.7 189.3 163.5 163.7 163.7 199.0 163.3 163.6

Table XI: Results from all highway cases

	Contents
	I Introduction
	II Neural Networks
	II-A Network Structure
	II-B Neurons
	II-C Training

	III Euclidean Markov Decision Process
	III-A Bouncing Ball Example

	IV Deep Q-Network
	IV-A Training
	IV-B Bouncing Ball Example
	IV-C Prioritized Experience Replay

	V Experimental Setup
	VI Hyper Parameter Experiments
	VI-A Hyperparameter Results

	VII Comparison Experiments
	VII-A Comparison Results

	VIII Conclusion
	IX Future Work
	References
	Appendix A: Highway Results

