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Chapter 1

Introduction

Procedural content generation for games has segmented itself as an efficient and
powerful method of authoring game content, both as tools for developers and as
fully computer-generated game content found in games such as No Mans Sky[10],
Minecraft[14] or Factorio[22] to name some of the more popular titles. In the do-
main of puzzle games procedural methods have also been utilized, but to a lesser
extent. In 2020 Kegel et al. surveyed the relevant work within the puzzle sub-
genre, which presents the state of the art procedural content generation methods
for the different categories of the puzzle sub-genre.

Procedural content generation is not always a successful way of creating game
content as the highly criticized game No Mans Sky experienced after its initial re-
lease in 2016, the content of the game was simply too repetitive and did not live up
to the expectations of the players. This concern births the question of how proce-
dural generation tools can be utilized effectively while the handcrafted quality of
the game does not suffer.

Based on this question this project sets out to create a procedural puzzle genera-
tion tool using state of the art and experimental methods to reduce the complexity
of creating puzzle levels, while still allowing the designer full control, within the
context of a physics path building puzzle game based on the domino effect that is
still in its early development phase.
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Chapter 2

Background

2.1 Domino The Game

Domino The Game is a Physics Puzzle game that has been in development for ap-
proximately 6 months. Its primary mechanic is placing domino bricks with even
spacing, that when tipped creates the classic Domino-effect of the bricks tipping
the next one in line, and so forth. The idea is to carry the force of the initial push
to huge chains of placed Domino bricks.

The Game builds on this mechanic, with special Domino bricks that modify the
classic static brick. Currently, there are 5 different modifiers a brick can have, each
has its colour to distinguish them, where the brick with no modifier is green

Starter Piece
Colour coded blue, When the player presses "Push" in a level after placing the
starter piece, an impulse force will be applied to it, making it fall over thus starting
the chain reaction. The direction of this force is visualized by a little arrow, which
is visible before pressing the "Push" button. The starter piece can only be placed
by the user within the "starter zone".

Pusher Piece
Colour coded yellow, when hit, this brick will have an impulse force applied to it,
this makes the brick fall over quickly but more importantly, it will push the next
brick in line with a much greater force than usual.

Ball Piece
Colour coded purple, instead of the brick being rectangular, this "brick" is a ball
that modifies the natural physical behaviour of the piece, this will allow the brick
sequence to transfer the physical chain reaction over greater distances or even

3



4 Chapter 2. Background

bounce against a wall thus changing direction.

Delay Piece
Colour coded teal, when hit, this block will remain standing for x seconds thus
delaying the chain reaction for that long before it applies the physical forces from
the prior piece.

Explosion Piece
Colour coded black, when hit, this brick will apply an impulse on every other brick
within a radius with a square falloff, thus carrying the chain reaction.

The game presents the player with a level, which is a flat novel maze like street
surrounded by walls, within the level, there are domino bricks already scattered
around all standing upright. The goal of the game is to tip over all of these pre-
placed bricks. A green highlighted rectangle will be found somewhere within the
level which is the aforementioned "starter zone". in the case that the level does not
already have a starter piece pre-placed within the level, the player will then have
to place it within the "starter zone", this is done by tabbing or clicking the button
resembling the starter piece found in the Domino toolbox UI seen in Figure 2.1.
This action will tell the system that, that tool is selected, then to place the brick,
the player has to tab at the desired location and drag the finger to orient the piece
to intention, then when lifting the finger or mouse cursor the transformation of the
brick will be final.

Figure 2.1: An image of the "Domino Toolbox" from the game, the different tools are colour coded
as they are still missing graphics.

Seen in Figure 2.2 is a level used for developing and testing the game, with a sim-
ple layout it offers very little in terms of a puzzle. One of the contributing factors
of the game that makes it a puzzle type game is the provided pieces in a level. In
the case of Figure 2.2, the player has at disposal 30 bricks with no modifiers and
one of each modifier type. Given some layout of a level, one could imagine that
a combination of these bricks would limit the solution space, however, this con-
straint alone provides very low dimensional puzzles where the only challenge is to
connect the bricks using the least amount of bricks. This is why the game makes
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Figure 2.2: An image of placing a starter piece, circled by red. The piece is a shade of transparent
green because of the placement being valid, if the piece is overlapping with another piece the domino
will turn red. When the cursor or finger is lifted, the domino placement will be final, then turn into
the colour code for the type.

use of environmental modifiers, which currently is represented by a pressure plate
that can be linked to one or more gates that open up another part of the level, this
pressure plate can be activated by constructing a line of bricks, making the last one
land on the plate causing it to activate.

Figure 2.3: Before building a brick line that
terminates on the pressure plate.

Figure 2.4: Brick line after being pushed over,
the gate has been opened.

Figure 2.5: These two pictures visualise building a line that terminates on the pressure plate, the
gate opening is an animation where the gate wall moves into the ground which takes approximately
3 seconds to complete.

The addition of the pressure plates and gate, adds the dimension of segmentation
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of space. Additionally by having several gates/ pressure plates that have to be
opened in a specific order combinatorics can be added to the puzzle space, which
in addition to the feature of the fallen over bricks blocking the path where they
were placed segments the space even further. The opening animation of the gates
as mentioned in Figure ?? takes approximately 3 seconds to complete, along with
the transfer of force of the domino effect, adds time as a dimension to the puzzle
space.

With the currently presented features of the game, it’s possible to make puzzle
levels which solutions are at first glance not obvious, where the tighter or more
specialized the constraints are in terms of the provided bricks, the fewer solutions
to a puzzle level there may exist.
creating levels for such a puzzle game is a time-consuming process that can be
divided into four very dependant main concerns:

• Physical boundaries & surface types

• Environmental modifiers layout

• Pre-placed bricks layout

• Provided bricks

Where the physical boundaries & surface types are the area in which the player
can place the bricks and the physical simulation is constrained to when the push
button has been pressed. The environmental modifiers are the previously men-
tioned starter zone, the pressure plates and the gates.

2.2 PCG for Puzzle Games

Kegel et al.[5] conducted a survey on the state of the art procedural content gener-
ation techniques (PCG) in the domain of puzzle games, to better understand and
differentiate puzzle game sub-genres they devised a categorisation which can be
seen in Figure 2.6. This categorisation allows one to identify similar puzzle games,
and learn from their use of PCG.
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Figure 2.6: Categorisation of puzzle game types from [5], Variability denotes how many puzzles
similarly matched left & right differentiates from one another.

Path-Building Puzzle

It’s important to note that the authors themselves specify that a puzzle game does
not necessarily fit into only one of the categories. In the case of this Domino puzzle
game, a combination of a physics puzzle and a path-building puzzle would ade-
quately describe the game. Now, these categorisations are important in the survey,
as they are used to summarise the methods and approaches used for procedu-
ral generation for the specific categories. With the combination of genres in the
Domino game, the important information to extract is the type of generation that
was used and the results they achieved. As for the path-building puzzle aspect,
Answer set programming (ASP) is very commonly used, an example of the use of
ASP is the constrainable automatic level design tools by Smith et. al.[21], where
they used ASP to constrain the search space of a generation tool for the game Re-
fraction, the concept of ASP they describe as

"Most ASP systems work by translating the programmer-provided problem
definition into a low-level, domain-independent representation through the pro-
cess of grounding (also called instantiation). Then the ground problem is solved
by a high-performance combinatorial search algorithm."[21].

A simplification of ASP is that the method is used on an already existing genera-
tion algorithm to constrain and pick from the infinite search space to improve the
quality of the PCG content.
One constraint of ASP in terms of this project is that the generation algorithms
must exist before ASP can be utilised for its potential.

Another example of a game project that uses ASP in the creation of their levels
is a game called Anza Island[4]. Their approach is to create a landscape using
common procedural methods, like the Voronoi and Delaunay algorithm. Then
they randomly pick a set of specifications that the level should contain, which is
fed to an ASP solver called Clingo, the result is a set of specifications for the in-
stantiation of zones and bridges to populate the level.
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Physics Puzzle

The Physics part of the Domino puzzle game is an interesting topic which search
space is greater than the path-building part of the game, this is also why the state
of the art generation algorithms relies on approaches such as evolutionary or ge-
netic algorithms presented in[5] include a paper by Shaker et. al. [19], which
implements a clone of the game Cut The Rope, a physics game where the goal is
to feed pieces of candy to a frog, this is done by the player triggering elements of
the game, firstly by cutting the ropes which the candy is restricted by. Then as
the candy is simulating its physics the player can affect it by triggering other game
elements like for example rockets. These rockets triggers when clicked, themselves
to propel in a direction and asserts forces on objects it hits. In essence, the goal for
the player is to find the set of physical interactions at the right timing that makes
the candy reach the frog’s mouth.

Figure 2.7: Image of a very trivial level in Cut
The Rope, swiping the rope with ones finger
makes the candy fall into the mouth of the
frog.

Figure 2.8: Image of a Cut The Rope level, if
the candy collides with the yellow stars, the
player earns bonus points

Comparing Cut The Rope with the Domino puzzle game, it’s apparent that the
physical interaction between objects in the Domino context are more uniform and
serves the purpose of carrying a tipping force. The Domino bricks with no mod-
ifiers could potentially be modelled by algorithms which should guarantee a suc-
cessful transfer of force, whereas the interactions in Cut The Rope are very depen-
dant on the starting position and rotation of every game element and the timing of
the player’s interactions.
Following this, the simplification of disregarding the error and randomness that
can follow from a solution or layout of domino bricks, without modifiers, that fails
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to transfer the force even though the bricks obey the rules of placement offset and
rotation could possibly be made.
This simplification could reduce the search space significantly and hints at the eli-
gibility of using algorithmic rules to evaluate and test solutions.

Constructive vs. Generate and test

An important factor to consider when choosing methods of generating puzzles
is the distinction between constructive and generate and test methods[5], Con-
structive algorithms generate and perform validity checks once to create content,
whereas generate and test generates content with fewer constraints, then evaluates
the generated content and continues to do so until a satisfying solution has been
found.
For this project the puzzle generation is not as simple as the examples presented
from[5], as the puzzle generation will rely on a level generation algorithm which
physical boundaries the puzzle will live within, this dependency complicates the
generation methodology, as a change to the level generation has potential to change
the puzzle entirely. With this consideration, a constructive approach to the level
generation seems as a better approach to make the platform on which to find puz-
zles using a search based approach like ASP.

Online vs. Offline Generation

When talking about PCG an important distinction to make between the methods
is the context in which they run and function. The first type of generation is called
online, it refers to the generation that happens after the game has been packaged
and built, online methods are commonly found in games with infinite worlds such
as Minecraft[14] No Mans Sky[10] or Factorio[22], online methods have to produce
very reliable and high-quality results, which in the context of puzzle generation
also limits them because of the potential complexity a puzzle can have. Offline
methods, on the other hand, can have a higher margin of error as the results can
be corrected by a designer before it reaches the user, thus allowing for much more
complicated methods. For this project an offline generator seems to be the best fit,
as modelling all of the features of the game into a generator in this project may not
be feasible and as such hand finishing would be required.
Besides the feasibility, good puzzle design is very much like art, where generated
puzzles might be good, the outstanding ones are usually designed or discovered
by a designer, as Jonathan blow creator of the game Braid reflects on its develop-
ment process:
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"The process of designing the gameplay for this game was more like discov-
ering things that already exist than it was like creating something new and
arbitrary."[2].

As this Domino game is still in development, things are still subject to change.
This is why the generation algorithms have to allow the designer to discover the
game, differently put the tool we are creating should be an extension of the de-
signer which has the ability to generate a concept or an idea that can be moulded
and discovered by the designer.
Practically this means that everything the generator produces should be modifiable
by the designer.

Degree and Dimension of Control

As we have established that the generation algorithms should be offline generation
and that the output should be modifiable by the designer, it’s important to think
about the degree and dimensions of control that should go into the algorithms. As
we have also established that the algorithms have a larger tolerance of error, the
ability for the designer to have a larger variance of output seems sensible. This
means that the designer should be able to easily modify the variables that have a
clear and direct impact on the generated outcome.



Chapter 3

Concept & Generator Design

In this chapter the concept and conceptual design of the generation tool is pre-
sented, the established requirements and design pillars from chapter 2, has influ-
enced many of the tooling and technology choices that were made for this project.

3.1 Concept

As the game is being developed within Unreal Engine 4[9], the generator naturally
also has to be developed in the same context to utilize the powerful editor tools
that come with the engine. One of the most fundamental tools that come with
Unreal is the ability to transform objects via gizmos, which also happens to be an
intuitive and control-able way of manipulating objects in 3d environments, these
gizmos can be seen in Figure 3.4.

Naturally, this should also be the method of manipulating the generated output
of the generation algorithm. This raises the question of how could this work in
practice? One solution is to separate the manipulated objects and the produced
outcome and use binary space partitioning (BSP) to define the space in which the
generated output should exist. BSP is an algorithm used for subdividing space
recursively via the use of hyperplanes, the algorithm stores these subdivisions of
space in a tree data structure known as a BSP tree. The algorithm of binary space
partitioning was developed in 1969 by Schumacker et al.[18], and later extended
by Fuchs et al.[7] to virtual 3d objects stored in the BSP tree.

Unreal Engine 4 has an implementation of the BSP algorithm which has a wide
variety of uses within the engines systems. One of the systems is known as the
Brush system[8], this system was originally designed as a tool for blocking out
levels with brushes shown in Figure 3.5. This process is a useful way of ensuring
uniform scale between 3D software and the level designer can easily create the

11



12 Chapter 3. Concept & Generator Design

Figure 3.1: Translation gizmo,
pressing any of the coloured
arrows allows the user to
translate the selected object in
3d on the axis of the arrow.

Figure 3.2: Rotation gizmo,
pressing any of the colored
quarter circles allows the user
to rotate the selected object
around their axis.

Figure 3.3: Scale gizmo,
pressing any of the coloured
box handles allows the user to
scale the selected object from
its pivot point.

Figure 3.4: The basic object manipulation gizmos used in Unreal Engine 4[9].

levels before the final visuals are created.
Another example of the Brush system can be seen in Figure 3.6, where the boolean
operations that the BSP tree implement is showcased.

Figure 3.5: An Example of using the Brush system to block out a level seen on the left, the blockout
has then been used in a 3D modeling software to create the final 3D models seen on the right. The
image is taken from Unreal Engines documentation[8].

This transformation from block-out to the final level is exactly what the puzzle
level generator should try to accomplish, where moving a brush in the left image
in Figure 3.5, should automatically update the final result seen in the right image
in Figure 3.5. Naturally, this presents the next problem, which is how this transfor-
mation can be achieved. The problem of generating procedural geometry is very
common and has been solved by many games and movies before. Libraries, tools
and even entire programs have been created to work with procedural geometry,
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Figure 3.6: Example of the BSP Brush system, red boxes are subtractive and the blue box is additive,
these volumes also come in different shapes or compounds, such as cylinders, linear stairs or curved
stairs, which are all modifiable by parameters.

one of the industry leaders within this area is a program made by SideFX which
was called PRISMS but has since then been renamed Houdini[20]. Houdini was
first started back in 1987 and has been developed ever since. Houdini uses a node-
based data programming language along with python and a C based language
called VEX. The powerful nodes capture the modifiable data that exists within
them and allows the user to easily apply pre-coded operations on that data, this
allows the realisation of one’s ideas very quickly and with powerful visualisation
tools for easy debugging.
SideFX has conveniently also made a plugin for UE4 which allows import of
the procedural geometry programs named Houdini Digital Assets (HDAs) made
within Houdini. These programs can be programmed to accept input in the form
of Meshes, Curves and BSP Brushes etc. from UE4 objects to generate their output.
These HDA programs will be used in this project for the generated output and the
BSP Brushes alongside user-modifiable curves will be generated within UE4 and
provided as input for these HDAs. At this point, the discussed generator design
can be visualised by the flowchart diagram seen in Figure 3.7.

3.2 Generator Design

With a high-level conceptual understanding of what the generators concerns are,
the visual output remains an unanswered question, at least in terms of the aesthet-
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Figure 3.7: The high level flowchart of the level generation, when a user makes a change to the data
which feeds into the HDAs, the user can enable automatically recooking the geometry output.

ics and construction. In the early stages of this project, concept art was assembled,
which helped us understand how we would like the levels to be constructed and
their visual style to be. The first draft of images found on the internet can be seen
in Figure 3.8, the final guiding pillars for the visual style which was selected from
the draft can be seen in Figure 3.9. To translate this style, it was agreed to create an
island to house each of the individual levels, the island should be surrounded with
calm water to frame the island, and keep the visual interest focused on the level.
The island should consist of a surrounding harbour wall like the top left pictures
in Figure 3.9, within the surrounding wall a street layout should mark the area on
which the player can place domino bricks, surrounding that street-layout buildings
should be placed to create a sense of depth and visual variety, the buildings should
also act like a wall which can be used in the physical simulation to aide the player.
For the rest of the island, grass, dirt, rock and trees should be scattered to keep the
island plane from being too repetitive.

With the graphical elements established, we can divide the HDAs block from
Figure 3.7, into sub-generators which has their responsibility. there are three main
components which were the island, the streets and the buildings, however since
the island and the streets turned out to share the same data, they were merged
into one, which then leaves two sub-generators: The house generator and the is-
land generator. To dictate the graphical style of the HDAs geometry output and
not couple the final look too tightly to the implemented generator rules we defined
a set of modular building blocks which each represents a component of the gen-
erated output as inputs for the generators, this way it is very easy to modify the
generated output just by changing the input. As for the Island generator, this input
was fairly simple, a set of tree meshes, rocks and grass. For the building generator,
the list is long, as buildings are made up of floors we wanted some visual variety
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Figure 3.8: The draft for the visuals of the levels, these were the images which had some potential
from our visual brainstorming session.

between the first, last and middle floors, as such the user can specify for each of
the floors: windows, walls and pillars which has to adhere to 2x2 meter segments.
For the first floor, the user can specify doors and a porticus additionally. For the
roof, a setting controls whether the roof is tiled or flat with a fence, here the user
can specify the tile, fence post and fence railing. A setting also controls whether
the windows should have overhangs and or flower boxes. Finally, a list of props
that will be scattered around the building can be specified, for this project we made
a wooden barrel and a wooden cart. The final visual result excluding the streets
can be seen in Figure 3.10, it’s important to note that the generated geometry, in
this case, is based on hand-placed BSP brushes and is independent of the puzzle
generator.

Referring back to chapter 2, four dependant concerns of the generation was pre-
sented, we see that apart from the physical boundaries and surface types solved by
the HDAs, three remain to be delegated. As for the puzzle generation, the Environ-
mental modifier’s layout and pre-placed bricks layout is concerned with the puzzle
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Figure 3.9: The final visual inspiration for the game. The upper two pictures to the left capture the
setting and simplicity that we want to strive for, the lower-left picture has some fantasy elements in
the architecture that we want to try and incorporate with the somewhat roman style of the middle
picture. Rightmost is the colour palette that we decided on inspired heavily from Studio Ghibli[11].

Figure 3.10: A showcase of the visuals of the game, hand-placed BSP brushes are manually specified
for the HDAs, in this image the streets is not added and the trees are also hand-placed.

generation, one issue that has not been discussed yet is a small amount of error that
is introduced in the island HDA, which alters the output geometry slightly from
the inserted BSP brushes, this transformation requires the puzzle generator block
from Figure 3.7, to be split into a level generation block and a puzzle generation
block which should be executed after the outputted geometry. The last concern
which was the provided bricks is very important for a meaningful level, the con-
straints of the puzzle are what makes it meaningful, this is also why an entire block
concerned with verifying the validity and evaluating the level should be executed
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after the puzzle generation. Updating Figure 3.7, with the additional consideration
of the two HDAs and the evaluation step we can update the flowchart as seen in
Figure 3.11.

Figure 3.11: Final flowchart of the generation process and its components.





Chapter 4

Implementation

In this chapter we will present how the generators were implemented, besides the
used algorithms, the generator uses a combination of technology in which context
the presented generator flow from Figure 3.11, has to be implemented. Using and
modifying existing software can present interesting challenges and this project was
no different.

4.1 Bridging Houdini & Unreal

As discussed earlier in chapter 3, the generation was delegated between Unreal
Engine 4 and Houdini Engine, this meant that for it to work in the editor context
of Unreal engine we needed to use Houdini Engines plugin for Unreal Engine,
now the developers at SideFX whom created this plugin has created a nice way for
a user to specify parameters, input meshes and level data, such as the curves and
BSP Brushes, however, the interface which supplies this data to Houdini Engine
is only exposed privately and when the link between the two programs is estab-
lished. This meant that for another part of the program to supply this data we had
to extend the plugin. Luckily the source code is freely available to read and mod-
ify if one so desires within Unreal Engine, unlike other big modern game engines.
Now, the functionality we need is to supply inputs via. what Houdini Engine calls
"world selection" and to specify the mesh inputs to the HDAs, on top of that we
also need to be able to respond to some messages to carry and time the program
flow, the first one is when a Houdini asset component is done baking and the last
one is when the Houdini asset component has been supplied new parameters. To
add this functionality we can add the function and event definitions to the file
located within the plugins folder in HoudiniEngineRuntime, called HoudiniAsse-
tActor.h seen in listing 1.
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Now, the implementation of the functions from listing 1 are pretty trivial, for Up-

UFUNCTION(BlueprintCallable, Category="Houdini Asset Component")
bool UpdateWorldSelectionInputs(FString Name, const TArray<AActor*>& Actors, int Index=0);

UFUNCTION(BlueprintCallable, Category="Houdini Asset Component")
void SetMeshInputs(TArray<FNamedMesh> Meshes);

UFUNCTION(BlueprintImplementableEvent)
void OnHoudiniAssetComponentPostCookBake();

UFUNCTION(BlueprintNativeEvent)
void OnHoudiniAssetComponentPreCookSupplyParams();

Listing 1: Function and event declarations needed for the UE4 generator to communicate with the
HDAs. UFUNCTION() is a macro that tells UE4s c++ based reflection system to expose the function
in the specified context, in this case "BlueprintCallable" or "BlueprintImplementableEvent" to UE4s
visual scripting language called Blueprint, which is used to assemble the generators execution flow
from a high level architecture.

dateWorldSelectionInputs, it sets the type of input to EHoudiniInputType::World
and the HoudiniAssetComponents input is set to the TArray of Actor references.
For the SetMeshInputs function, it takes a structure with a FName (string type)
that should match the mesh inputs name you want to set, and the actual asset ref-
erence it should be set to. The last two are delegation functions, meaning that they
can be overridden via. the reflection system in Blueprint, the difference between
BlueprintNativeEvent and BlueprintImplementableEvent, is that the native event
can also have an implementation in the c++ layer.

4.2 High Level Architecture

To implement the functionality from the flowchart in Figure 3.11, the best way to
achieve this is to utilise blueprints, as they are not constrained by Unreal Engines
module structure, the module structure in unreal is a way of reinforcing good de-
sign patterns in terms of the generated dependency graph, however, this module
structure also limits any dependency across modules. A plugin lives within its
module, a default module is provided for the game code. This means that for
these modules to call into each other, blueprints is the intended way to do so. The
type of blueprint that is the best fitting for our purposes is called a Bluetillity, a
Bluetillity is an editor UI widget blueprint that can be used to create editor win-
dows and contain code for the buttons, sliders etc. that they contain. The Bluetillity
user interface that is used in this project can be seen in Figure 4.1.
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Figure 4.1: The editor UI created for the Bluetillity, used by the designer to call into the generators.

Apart from the parameters, the designer can tweak to modify the output, the far
most important element in the editor user interface is the "Generate Level" but-
ton, which if we look at the OnClick Event implementation seen in Figure 4.2 it
demonstrates the architecture earlier described where the Blueprint layer calls into
the underlying exposed c++ code.
The call order is not as simply implemented as it is shown in Figure 3.11, rather it

Figure 4.2: The Generate level Blueprint event implementation, we see that the event first calls an
event called clear level, then calls an event to get a valid generator and calls the GenerateBSPLevel
function on the returned object, which is the exposed UFUNCTION from the DominoLevelGenerator
C++ class, see listing 2.

UFUNCTION(BlueprintCallable)
void GenerateBSPLevel();

Listing 2: The UFUNCTION GenerateBSPLevel has been exposed by the UE4 c++ reflection system
and is called by the Blueprint graph seen in Figure 4.2.

is a call-stack which starts from the GenerateBSPLevel Event, the final functionality
of that c++ function spawns the two HDAs, now the HDAs are Blueprint actors
that extent from the earlier mentioned HoudiniAssetActor class. This means that
we can extend or override the functionality of the HDA object, which we want. The
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functions we declared in 1, can now be used to provide the desired data and in-
put to the HDA by the event OnHoudiniAssetComponentPreCookSupplyParams,
which is called when the default parameters or input is supplied.
The creation of the HDAs takes some initialisation time and the next step in the
generation flow requires the generated geometry, here the earlier mentioned event
OnHoudiniAssetComponentPostCookBake, allows us to continue the generation
process, the Blueprint event can be seen in Figure 4.3. Now the function that is
called deviates from the final flowchart, an additional step of baking a Navigation
mesh that UE4 uses for their AI systems, is used by some of the implemented
algorithms, their specific uses shall become apparent later. However, the process
of baking the navigation mesh is implemented as an asynchronous routine and
as such only after the bake has been completed is the Puzzle Generation function
called.

Figure 4.3: Blueprint code that is executed when the OnHoudiniAssetComponentPostCookBake
event is fired, the code is from the Blueprint extension of the Island HDA.

4.3 Level Tree Generation

The first algorithm of the level generation process is responsible for creating the
data used to place the first user-modifiable layer. The algorithm works like a simple
tree, where at each node, there’s a configurable probability of N branches. A
height of the tree is specified before the generation, until that height is reached
the tree will continue to grow. There are also some simple rules governing the
growth of branches, the branches can only grow in a random direction constrained
by a cone, which centre is parallel to the difference vector of the parent node
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and the leaf node on which we are standing. The angle of this cone is given by
π
2 . The length of the branch is defined by a random unit scalar which is then
remapped to a user-controlled range, which parameters are called MinBranchDist
and MaxBranchDist. The pseudo-code for the algorithm can be found in Figure 4.9.
This tree generation algorithm is used in the function called GenerateBSPLevel,
as described in Figure 4.2. The tree is then used to guide the placement of the
BSP Brushes, which is placed on every edge and every vertex of the Level Tree,
the algorithm used to spawn the BSP Brushes can is seen inFigure 4.10. Example
results of the two described algorithms can be seen in Figure 4.8. The BSP Brushes
are placed on all of the edges, at sharp corners this leaves a wedge gap, to fill this
gap a BSP Brush is also placed on every vertex.

Figure 4.4 Figure 4.5

Figure 4.6 Figure 4.7

Figure 4.8: Examples of the Generate BSP Level algorithm. The red lines are the generated tree edges
from the Generate level tree algorithm seen in Figure 4.9. Note that the intersections of the edges
has deliberately been accepted, as limiting the generation with too many rules will limit the amount
of random outcomes.
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Algorithm 1: Generate Level Tree
input: A Pointer to a container object of the LevelTree

Compute first branch of the tree;
RandScalar ← RandomInRange(MinBranchDist, MaxBranchDist);
RandVector ← RandUnitVector();
RootEnd← RandVector ∗ RandScalar;
CurrentLeaves←(empty list);
Start← TreeVertex(zeroVector, zeroVector);
End← TreeVertex(RootEnd, (RootEnd − zeroVector).Normalize());
End.Parent← Start;
Start.Children.Add (End);
LevelTree.Vertices.Add(Start);
LevelTree.Vertices.Add(End);
LevelTree.Edges.Add(TreeEdge(Start, End));
CurrentLeaves.Add(End);
CurrentHeight← 0;
Compute all other branches of the tree;
while CurrentLeaves.Num() > 0 do

NewLeaves←(empty list);
for Leaf in CurrentLeaves do

Rand← RandomInRange(0, 1.0);
Compute number of branches at node;
N←WeightedRandomFromBranchWeights();
for i← 0 to N do

if CurrentHeight >= TreeHeight then
return;

end
PointInCone← RandPointInCone(Leaf.Direction, π ∗ 0.5);
RandConeScalar ←
RandomInRange(MinBranchDist, MaxBranchDist);

PointInCone← (PointInCone ∗ RandConeScalar ) + Leaf.Position;
NewVertex← TreeVertex(PointInCone, (PointInCone −
Leaf.Position));

NewVertex.Parent← Leaf;
LevelTree.Vertices.Add(NewVertex);
Leaf.Children.Add(NewVertex);
LevelTree.Edges.Add(TreeEdge(Leaf, NewVertex));
NewLeaves.Add(NewVertex);
CurrentHeight← CurrentHeight +1;

end
end
CurrentLeaves← NewLeaves;

end

Figure 4.9: Generate Level Tree Algorithm
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Algorithm 2: Generation of the BSP Brush Level

Tree← LevelTree();
GenerateLevelTree(&Tree);
Brushes← (empty list);
for Edge in Tree.Edges do

ABDif ← Edge.GetA().Position − Edge.GetB().Position;
ABAvg ←(Edge.GetA().Position + Edge.GetB().Position) ∗ 0.5;
DimX← ABDif.Size();
Forward← ABDif.Size();
Rot← MakeRotFromXZ(Forward, UpVector);
Brush← SpawnBSPBrush(BrushType :: Add, Vector(DimX, LevelWidth,
100));

Brush.SetActorLocation(ABAvg);
Brush.SetActorRotation(Rot);
Brushes.Add(Brush);

end
for Vertex in Tree.Vertices do

if Vertex == nullptr or Vertex.Parent == nullptr then
continue;

end
if Vertex.Children.Num() >= 1 then

for Child in Vertex.Children do
VertexChildDir ← (Child.Position − Vertex.Position).Normalize();
VertexParentDir ← (Vertex.Parent.Postion −
Vertex.Position).Normalize();

AvgDir ← (VertexParentDir + VertexChildDir) ∗ 0.5;
Rot← MakeRotFromXZ(AvgDir, UpVector);
OrthoDir ← VertexChildDir ×UpVector;
OrthoDirScaled← OrthoDir ∗ LevelWidth;
ProjOnAvgDir ← OrthoDirScaled.ProjectOnTo(AvgDir);
DimX← ProjOnAvgDir.Size() ∗ 2;
Brush← SpawnBSPBrush(BrushType :: Add, Vector(DimX,
LevelWidth, 100));

Brush.SetActorLocation(Vertex.Position);
Brush.SetActorRotation(Rot);
Brushes.Add(Brush);

end
end

end

Figure 4.10: Generation of the BSP Brushes that define the level
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4.4 House Generation

The next concern of the level generation is the houses, which like the Island genera-
tion is based on BSP Brushes. The placement of these Brushes has to conform to the
existing level layout, with a limited margin of error in terms of the degree to which
the house overlaps with the BSP Brushes. An algorithm is therefore required to
find the placements such that the error is minimised. Once the placement is found
the next algorithm should divide the selected space into a 2x2 meter grid which
is randomly populated with Brushes based on the desired volume percentage of
the total volume of the space. These Brushes will be used to generate the houses.
Brushes will also be generated for the foundation of the houses which will later be
used to make the overlapping area of the island conform to the houses, such that
the street layouts curb described in chapter 3, will flow around the houses.
The first algorithm used for placing the houses bases the placement on the level
tree, where each node of the tree acts as a socket for a house to be placed on, thus
occupying that socket or node index. The pseudo-code for the house node indices
generation can be seen in Figure 4.11.

Algorithm 3: Generate House Indicies
Output: A List of Integers corresponding to random indices in the

LevelTree

RandomIndices← (empty list);
VertCount← Tree.Verticies.Num() − 1;
if AmountHouses > VertCount then

return RandomIndices;
end
Indices← (empty list);
for i← 0 to VertCount do

Indices.Add(i);
end
while RandomIndices.Num() != AmountHouses do

Sample← RandomInRange(0, Indices.Num() − 1);
RandomIndices.Add(Sample);
Indices.RemoveAt(Sample);

end
return RandomIndices;

Figure 4.11: Algorithm that randomly picks indices in the LevelTree to be used as sockets for houses
to be generated.
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The second part of the house generation algorithm is a continuation of the
GenerateBSPLevel function shown in Figure 4.10, this algorithm takes the ran-
dom indices, from that it then generates a point in space on which we define a
volume in which the house should be generated. This is done by picking a ran-
dom point within a torus, then evaluating the distance to all of its neighbouring
nodes(neighbouring nodes are in this case defined by Euclidean distance) and cen-
tres of edges, if all of those distances lie between a user-defined lower and up-
per bound denoted HouseMinDistance and HouseMaxDistance, the point is then
added as added valid point and can be used to generate a house. The house point
and extent generation algorithm is shown in Figure 4.16. Generating the actual
Brushes that make up the house is a process that involves some math to place the
boxes on the 2x2 grid and random number generation which will be randomly
limited to constrain the amount of volume a sub-box can occupy. The resulting
generated level so far can be seen in Figure 4.15.

Figure 4.12 Figure 4.13

Figure 4.14

Figure 4.15: Examples of the BSP Level Generation with houses, the houses are neatly place along
the perimeters of the level, only overlapping slightly.
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Algorithm 4: Generate House Locations and extents

HousePoints← (empty list);
for I in Indices do

Vertex← Tree.Vertices[I];
Get the nodes, and edges within 2000cm of the Vertex;
Neighbours← GetAllSubdividedNeighboursByDistance(Vertex, 2000);
Point← RandomUnitVector();
Point← Point ∗ RandomInRange(HouseMinDistance, HouseMaxDistance);
Valid← IsBulidingPointValid(Vertex.Position + Point, Neighbours,
HousePoints, HouseMinDistance);

Tries← 50;
Itr ← 0;
while ! Valid do

Point← RandomUnitVector();
Point← Point ∗ RandomInRange(HouseMinDistance,
HouseMaxDistance);

Valid← IsBulidingPointValid(Vertex.Position + Point, Neighbours,
HousePoints, HouseMinDistance);

if Itr > Tries then
Success← false;
break;

end
Itr ++;

end
if ! Success then

continue;
end
HousePoints.Add(Vertex.Position + Point);
Child← Vertex.GetRandomChild();
AvgLength← 0;
if Vertex.Parent != nullptr and Child != nullptr then

AvgLength← Distance(Vertex.Position, Vertex.Parent.Position) +

Distance(Vertex.Position, Child.Position) ∗ 0.5;
else if Child != nullptr then

AvgLength← Distance(Vertex.Position, Child.Position);
else if Vertex.Parent != nullptr then

AvgLength← Distance(Vertex.Position, Vertex.Parent.Position);
end
Brush← PlatformBrushes [I];
XDim← AvgLength ∗ 0.5 ∗ RandomInRange(0.75, 1.0);
YDim← LevelWidth ∗ 0.5 ∗ RandomInRange(0.75, 1.0);
ZDim← (100 ∗ RandomInRange(1, MaxHouseStories)) + 50;
Position← Vector(Vertex.Position.X + Point.X, Vertex.Position.Y +
Point.Y, Vertex.Position.Z + Brush.Z + ZDim − 100);

end

Figure 4.16: This algorithm generates a point adjacent to the LevelTree, the point is only used to
generate a house if its distance to all neighbouring nodes and edges is within a lower and upper
bound. From this point, we then calculate the extents XDim, YDim, ZDim which we want to generate
a random house within.
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4.4.1 House HDA

The HDAs was implemented by Victor the collaborator of this project with consul-
tancy from the author, and as such the credit shall go to him. The House HDA
is a complicated interdependent generation program that we will not explain on a
deep technical level in this report. Rather a flowchart showcasing the rough process
using simple explanations of the methodology can be seen in Figure 4.17.

Figure 4.17: Flowchart crudely explaining the methodology behind the House HDA.
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4.5 Island Generation

With the BSP Level fully generated we can begin to tackle the problem of generat-
ing an island that encompasses the level, the way we decided to tackle this problem
was to generate a curve with modifiable control points, such that the result can still
be edited by the designer. The problem of generating a bounding curve from a set
of vertices and building points can be solved by computing an ordered map of dot
products between a reference vector that goes from the bounding box centre of all
the points to a chosen reference point by rotating the reference vector incremen-
tally around the centre we can divide a circle into bins, these bin’s points can be
found by comparing the dot product of all other vectors from the bounding centre
to the reference vector, if they lie within the percentile of divided points given by:

1
NumBins ∗ 0.5 meaning that the dot product can not be less than 1− ( 1

NumBins ∗ 0.5).
The radial dot sorting algorithm can be seen in Figure 4.19. Then using these
points, we can create a curve by selecting the furthest point from the centre of each
bin. The curve creation algorithm can be seen in Figure 4.20. An example of a
generated curve can be seen in Figure 4.18.

Figure 4.18: This image shows a top-down view of the generated curve around a level.
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Algorithm 5: Radial Dot Sorted Points
input : A Centre Vector, amount of bins
output: A Map of bins and their set of points

Map← (empty map);
DotStepSize← (1.0 / BinDivisionCount) ∗ 0.5;
RotationStepSize← 360 / BinDivisionCount;
RotatedDotVector ← (Center − Tree.Vertices[0].Position).Normalize();
for i← 0 to BinDivisionCount do

if i != 0 then
RotatedDotVector ← RotateAngleAxis(RotationStepSize, UpVector);

else
RotatedDotVector ← RotateAngleAxis(RotationStepSize ∗ 0.5,
UpVector);

end
Pts← (empty list);
for Vert in Tree.Vertices do

Dir ← (Center − Vert.Position).Normalize();
if Dir × RotatedDotVector > 1 − DotStepSize then

Pts.Add(Vert.Position);
end

end
for HousePt in HouseLocations do

Dir ← (Center − HousePt).Normalize();
if Dir × RotatedDotVector > 1 − DotStepSize then

Pts.Add(HousePt);
end

end
Map.Add(i, Pts);

end
return Map;

Figure 4.19: This algorithm sorts a cluster of points by finding the bounding box centre, then by
rotating a vector around a circle based on the centre we divide the circle into bins where the points
with very similar dot products to the rotated vector will be added.
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Algorithm 6: Curve Creation

Pts← (empty list);
for i← 0 to Map.Num() do

SmallestDist← 0;
FurthestPoint← ZeroVector;
if Map.Vertices.Num() > 0 then

for Pt in Map.Vertices do
if NewDist > SmallestDist then

SmallestDist← NewDist;
FurthestPoint← Pt;

end
end
if FurthestPoint != ZeroVector then

Map.Add(FurthestPoint);
end

end
end
ScaledPts← ScaleVectorArray(Pts, Center, IslandScale);
Sets the UE4 Spline Class points;
SetSplinePoints(ScaledPts);

Figure 4.20: This algorithm creates the curve that is used to specify the extents of the island walls in
the Island HDA.

4.5.1 Island HDA

The HDAs was implemented by Victor the collaborator of this project with consul-
tancy from the author, and as such the credit shall go to him. The Island HDA will
likewise not be explained on a deep technical level in this report. Rather a flowchart
showcasing the rough process using simple explanations of the methodology can
be seen in Figure 4.21.
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Figure 4.21: Flowchart crudely explaining the methodology behind the Island HDA.

4.6 Puzzle Generation

As the Island and House HDAs has completed their generation of the geometry, it
is time for the generation of a puzzle that is more clearly visualised in Figure 3.11
on the level. Now this puzzle generation has two concerns which are the second
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and third item in the list of concerns see chapter 2, namely the environmental
modifiers layout and the layout of the pre-placed bricks. In the projects current
state, the generation of these two concerns is trivial in terms of the complexity of
the generated puzzle. Currently, the pre-placed bricks has no modifiers and the
only environmental modifier included in the gates and pressure plates seen in Fig-
ure ??. However, the process of creating a layout where the elements are placed
to some degree of an informed decision quickly becomes non-trivial. One causing
factor of the complexity is the unconstrained growth of the level tree, where in-
tersecting edges are allowed. The intersecting edges can cause branches to grow
together creating connections in the level, which as far as the tree is concerned are
not there. With the current data representation of the level, it is therefore hard
to compute subdivisions within the level as would be required for a gate and the
pressure plate to fulfil their purpose. Or to compute an even distribution of the
pre-placed domino bricks.

The current solution involves computing an undirected connectivity graph where
it is possible to travel in more or less a straight line from a given node to its
neighbours on the generated geometry. Now the travelling from one node to its
neighbour is a problem that requires knowledge about the generated mesh, luckily
UE4 provides a solution to this problem as also described earlier in this chapter. It
is possible to generate a navigation mesh, which can be configured to generate on
specified geometry and to follow specified rules. With this navigation mesh, UE4
has implemented path-finding algorithms that can be used to find paths from a lo-
cation on the mesh to another. The path consists of a list of corner points required
to travel on the navigation mesh to the destination. If it’s possible to traverse from
point A to point B in a straight line the resulting list of corner points will only
contain the point A and B.
In addition to computing the connectivity graph, we also want to compute whether
an edge is part of a cycle, ignoring the cycles between connected nodes given the
graph is undirected. The acylic edges will be used later as the connecting edge on
which we want to place the gates.

4.6.1 Connectivity Graph Algorithm

With the navigation mesh, we can compute the earlier mentioned connectivity
graph by computing the paths from a node to all other nodes, if the path obeys the
following rules, then we can accept them as connected.
If the path from node A to node B has a total length that is at a maximum 5%
greater than the maximum branch distance, the total length is less than or equal to
the euclidean distance and if the path from node A to node B consists of less than
5 corner points we can accept them as connected. The connectivity graph creation
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algorithm can be seen in Figure 4.22, and the result of the algorithm can be seen in
Figure 4.23.
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Algorithm 7: Connectivity Graph Creation Algorithm
input : The Level Tree
output: A Graph from the Level Tree, where the edges are recomputed by

connectivity.

NavigationSys← GetCurrentNavigationSystem();
Vertices← (empty list);
Edges← (empty list);
for i← 0 to Tree.Vertices.Num() do

Vertices.Add(CreateVertex(Tree.Vertices[i].Position,
Tree.Vertices[i].Direction, i));

end
for i← 0 to Vertices.Num() do

for j← 0 to Vertices.Num() do
if i == j then

continue;
end
EuclidianDistance← Distance(Vertices [i].GetLocation(), Vertices

[j].GetLocation());
NavigationPath← NavigationSys.FindPathToLocation(Vertices
[i].GetLocation(), Vertices [j].GetLocation());

Length← NavigationPath.GetPath.GetLength();
if Length == 0.0 then

continue;
end
if Length > MaxBranchDist ∗ 1.05 then

continue;
end
if Length <= EuclidianDistance and
NavigationPath.GetPathPoints.Num() < 5 then

Edge← CreateEdge(Vertices [i], Vertices [j], Length);
Edges.Add(Edge);
Vertices [i].Edges.Add(Edge);

end
end

end
return← Graph(Vertices, Edges);

Figure 4.22: This algorithm takes the Level Tree as input, it then computes the connectivity of
the vertices in the tree by using UE4’s navigation systems pathfinding algorithm on the generated
navigation mesh, to find the path length, it then compares this path-length to the euclidean distance
between the vertices. If the path length is less than the euclidean distance and the path consists of
less than 5 points then we create an edge between the two vertices. Finally, a Graph of the new
vertices and edges is returned.
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Figure 4.23: This image shows the connectivity graph (purple lines) that was computed from the
Level Tree, the green surface is the generated navigation mesh that was used to determine whether
the two nodes are connected.

4.6.2 ACylic Edge Detection

The problem of detecting if a graph has a cycle is commonly solved by either using
a DFS(depth-first search) or BFS(breadth-first search), in this case, we know from
the nature of the connectivity algorithm and visual proof see Figure 4.23 that many
of the edges will be cyclic edges, armed with this knowledge, the optimal approach
for this application is to use the BFS approach, as many of the cycles will be found
in the proximity of the concerning edge. To detect the cyclic edges we start at an
edge, we then add one of the vertices to a queue, by traversing all edges connected
to that vertex and so on, only visiting a vertex once, we try to reach the other ver-
tex of the original edge. If we can reach the other node, the edge is cyclic if not
the edge is acyclic. The implementation of the algorithm can be seen in Figure 4.24.
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Algorithm 8: Acyclic Edge Detection
input : The Edge to test if cyclic
output: true or false

VFlags← (empty list);
for i← 0 to TotalVertCount do

VFlags.Add(false);
end
VFlags [Edge.GetA().ID]← true;
VertQueue← (empty queue);
VertQueue.Enqueue(Edge.GetA());
while ! VertQueue.IsEmpty() do

Vert← VertQueue.Peek();
for E in Vert.Edges do

if E == Edge then
continue;

end
Other ← E.GetOther(Vert);
if VFlags [Other.ID] then

continue;
end
if Other == Edge.GetB() then

return true;
end
VertQueue.Enqueue(Other);
VFlags [Other.ID]← true;

end
VertQueue.Pop();

end
return false;

Figure 4.24: This algorithm is used on an edge that has references to its vertices A and B, it tries to
traverse the graph using BFS, it starts with A and if it can reach B the edge is part of a cycle.

4.6.3 Level Subdivision algorithm

The final puzzle generation algorithm uses the connectivity graph and acyclic edge
information which was computed earlier to find a suitable location to divide the
level by placing the gate, then it searches the graph to figure out which nodes
belong to which sub-graph it also finds the side which is closest to the starter
volume, to place the pressure plate such that the puzzle will be solve-able. The
idea is to end up with a graph in which nodes represent a sub-graph of a part of
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the level, which has the same neighbours as the sub-graph, the super-graph should
also have a reference to the edge that connects the sub-graphs. The maintenance
of all this data, when splitting the graph is what makes this algorithm a bit tricky.
Pseudo-code for the algorithm can be found in Figure 4.26.
One can question the necessity of maintaining these data structures, when we
could have just found the edge and then found the side which is closest to the
starter volume to place the gate and pressure plate. However, these data structures
provide a good way of representing the space and constraints of the puzzle in a
structured manner, which is going to be useful later when evaluating the puzzle.
An example of the gate and pressure plate placement can be seen in Figure 4.25.

Figure 4.25: This image shows the connectivity graph which knows its acyclic edges, these edges are
used to place the gate and the pressure plate. The image shows one of the better examples of the
gate and pressure plate placements.
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Algorithm 9: Graph Splitting Algorithm
input : The Edge at which we want to split
output: Updated data structures of the super-graphs & sub-graphs

AVertices← (empty list);
BVertices← (empty list);
AEdges← (empty list);
BEdges← (empty list);
VisitedCount← 0;
VFlags← (empty list);
for i← 0 to TotalVertCount do

VFlags.Add(false);
end
VFlags [SplitEdge.GetA().ID]← true;
Populates AVertices, AEdges and tries to find the start in A;
VisitedCount← BFS(SplitEdge.GetA(), VFlags, AVertices, AEdges);
if VisitedCount < TotalVertCount then

Populates BVertices, BEdges and tries to find the start in B;
VisitedCount← BFS(SplitEdge.GetB(), VFlags, BVertices, BEdges);

end
if SuperGraph.Vetices.Num() > 0 then

Initializes the SuperGraph & SubGraphs with the first split;
InitSplitGraph(SuperGraph, SubGraphs, AVertices, AEdges, BVertices,
BEdges, SplitEdge);

else
Splits the Graphs further, updating the SuperGraph and SubGraphs

accordingly;
SplitGraph(SuperGraph, SubGraphs, AVertices, AEdges, BVertices, BEdges,
SplitEdge);

end

Figure 4.26

4.7 Level Evaluation

The last part of the puzzle generation process is to evaluate the generated output,
as also discussed in chapter 3, the evaluation process has additional responsibili-
ties other than verifying that there exists a solution. namely to provide the player
with a set of domino bricks that solve the level. However, the level evaluation,
unfortunately, is the part of this project that received the least amount of attention
and as such the latter part i.e providing the user with bricks was not solved. The
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algorithm that was implemented for evaluating the level tries to solve the problem
of finding a set of connections that is an optimal solution in terms of minimising
the distance required to travel to complete the level. Now this distance only takes
into account the functionality of bricks with no modifiers and as such should only
be considered as a hint for the designer to provide an adequate amount of bricks
to solve the level.
The algorithm that solves the level tries to find a tree that connects all of the pre-
placed Domino bricks with the starter volume without introducing any cycles. An
efficient solution in which data format matches this application, to this problem,
was found in 1956 by Kruskskal[12]. Kruskal’s algorithm finds a minimum span-
ning tree (MST), one important thing to note though is that the tree found, is not
guaranteed to be the least cost minimum spanning tree (LC-MST) there exists. As
such there might exist more optimal solutions to the problem, there does exist
solutions for finding the LC-MST see[13] however for this application Kruskals al-
gorithm do suffice as all we need is a good approximation. Kruskal’s algorithm
works by starting at a vertex, then we add all of its weighted edges to a candi-
date list, we pick the lowest cost edge and add it to our solution tree, the newly
visited vertices edges should be added to the candidate list, however, if the edge
terminates at a vertex we already have visited we ignore it. This is continued until
all vertices are connected. The implementation of Kruskals algorithm can be seen
inFigure 4.27. Now Kruskals algorithm requires a graph as input, the nature of
this graph is very important as it ensures that the solution found is an optimal
one. This graph is computed by utilising the earlier mentioned navigation mesh
also seen in Figure 4.23, by creating a vertex at all of the pre-placed bricks and
starter volumes position, we can then compute the navigation path from a vertex
to all other vertices, then pick the 4 shortest paths and construct edges between
those vertices. As we are constructing edges from all vertices to their 4 nearest
neighbours in the navigation mesh domain we ensure that all vertices in the graph
are connected which is a requirement for Kruskal’s algorithm. A small note on
loosely versus densely connected graphs is that the more dense a graph is con-
nected the higher the probability of finding the LC-MST is, but this comes with
a computational trade-off as the algorithm uses a sorting algorithm for the edges
after newly visited vertex edges are added to the candidate list. An example of an
MST solution in a constructed level can be seen in Figure 4.28.
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Algorithm 10: Kruskals Algorithm
input : A Graph of (V,E) with all vertices connected
output: A set of edges representing a minimum spanning tree

Size← Graph.Vertices.Num();
for i to Size do

VFlags.Add(false);
end
VFlags [0]← true;
MSTEdges← (empty list);
Edgelist← (empty list);
NewVert← Graph.Vertices[0];
while MSTEdges.Num() < Graph.Vertices.Num() − 1 do

for i to NewVert.Edges.Num() do
Flags← VFlags [NewVert.Edges[i].GetA ().ID] and VFlags
[NewVert.Edges[i].GetB().ID];

if ! Flags then
Duplicate← false;
for Mst in MSTEdges do

if Mst == NewVert.Edges[i] then
Duplicate← true;

end
end
if ! Duplicate then

Edgelist.Add(NewVert.Edges[i]);
end

end
end
Edgelist.Sort(SortByWeight());
MSTEdges.Add(Edgelist [0]);
if VFlags [Edgelist [0].GetA().ID then

NewVert = Edgelist [0].GetB();
else

NewVert = Edgelist [0].GetA();
end
VFlags [Edgelist [0].GetA().ID]← true;
VFlags [Edgelist [0].GetB().ID]← true;
Edgelist.RemoveAt(0);

end
return MSTEdges;

Figure 4.27: this projects implementation of Kruskals algorithm[12] used to find a set of edges that
represent a minimum spanning tree.
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Figure 4.28: This image shows an example of Kruskals MST algorithm in use in an example level.





Chapter 5

Final Solution

In this chapter the final solution is showcased in the images seen in Figure 5.1 and
Figure 5.2. The first image in Figure 5.2, shows a selected that was produced by the
generator in unreal, the image is excluding the generated geometry that was gen-
erated by the HDAs. The second image in Figure 5.2 shows the data from the first
image transformed by the HDAs. The generated result is a near completed level
that, with some designer modification easily could make it into the final game.
The ability to generate levels as shown in Figure 5.2 by the click of a button is
immensely powerful and will greatly reduce the required man-hours to complete
the game. This reduction in man-hours also as a result enables us to focus more
time on the puzzles rather than constructing levels the traditional way.
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Figure 5.1: This image shows a selected level that was produced by the generator, the level excludes
the HDAs final generated geometry to showcase the building blocks the designer can modify to
change the level.

Figure 5.2: This image shows the same selected level from Figure 5.1, but with the HDAs enabled,
the image represents a level that with some designer modifications could be a candidate for the final
game.



Chapter 6

Discussion

In this chapter I will present some reflections on the produced artefacts, some
aspects of the generators was a success, while others lack features. with these re-
flections in mind, I will present some of the ideas and approaches that were not
finished in time or has at the end of development dawned on me in terms of future
development.

6.1 Successful Aspects

Great Tool that Provides Workflow improvements

The first successful aspect of the project was the whole workflow of the generation
process, the modifiable BSP Brushes and curves, that updates the results of the
HDAs in near real-time is an immensely powerful way of creating game content
that allows the designer to make small changes to levels, with little to no effort
and see the updates after some seconds of processing. The fact that the interplay
between the Unreal based generator and the Houdini Digital Assets was a success
that set up entire levels with the click of a button was a huge success. The level gen-
erator in it allows the designer to discover level configurations that present ideas
of puzzle layouts, referring back to the reflections of Jonathan Blow on the devel-
opment of Braid[2] that was presented in chapter 2, the level generator achieves
what we set out for it to do.
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Successful Use of Graph Theory

In terms of puzzle generation, one can argue that the produced artefacts in terms
of their configurations are trivial, which is to a certain extent is true. However, the
approach of using graph theory to model the problems turned out to be a success-
ful way of analysing the generated levels. Here I want to highlight the acyclic edge
detection, subdivision of a graph into two sub-graphs. Even though their applica-
tion is currently trivial and Kruskal’s MST, these methods represent an API that
allows the programmer to easily create a random puzzle level. The methods repre-
sent the beginning of a toolbox that in the future could be used to create complex
puzzle levels.

Understanding the Problem

The puzzle evaluation algorithm was a success even though it only solved a very
small subset of the total problem. At the beginning of the project, I used a signif-
icant amount of time trying to model the actual placement of Domino bricks as a
step towards simulating the level to verify if the level was solve-able. This process
was a catalyst for reflections about the actual problem that the generator should
try to solve. upon realising that the problem we were trying to solve was simply
to evaluate if the level afforded a solution and to provide a set of Domino bricks to
do so, the margin of error in terms of oddly oriented bricks and slightly misplaced
entities was quite large. As any level produced by the generator would have to be
hand-corrected/ manipulated by a designer anyways.

A Time Saver & Workflow Improvement

Even though the generator tool was not finished, it was still completed to a level
where with some final polish, the development load of the game is reduced signif-
icantly as instead of focusing on creating 3d models for the levels and modifying
those models when a change is needed the developer can produce more levels with
greater quality.
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6.2 Lacking Aspects

Shallow Generated Puzzles

As also mentioned in the positive aspects, the lack of puzzle elements makes to
produced puzzles quite shallow in their complexity, it would be quite nice if we
could achieve the same measure of exploration with the puzzle generation that
we do with the level generator. The solution to this problem is not that far off,
however, it also requires the game to implement more features that can be em-
ployed at random. These features would be environmental modifiers that alter the
solution space by for example introduces a timing window in which something
has to happen, this could be an automatically opening door, a rotating axle with
beams attached to it, a combination of pressure plates that needs to be triggered
in/order to open a gate, A pressure plate which opens a door when it is triggered
but closes another. Now some of these ideas will be extremely hard to model in
the evaluation step, for the physics-based interactions one could look at race car
simulation problems in[16] they made a model to control the racecar using the A*
algorithm, however, alternatives such as reinforcement learning could be used to
solve the physics interaction aspect of the problem.

Evaluator Provided Bricks

Another low-hanging fruit that did not make it was the evaluator providing bricks
for the generated level, at the very least we already computed the total path length
needed to be travelled along the MST tree which could be translated into subdi-
visions plus some error that could provide the designer with an amount of non-
modifier bricks, that roughly represents how many bricks is required to complete
the level, from there the designer can then translate some of the provided bricks
into ones with modifiers manually.

HDA Cook Duration

One more straightforward problem was the HDAs processing duration, this is ap-
parent when they are spawned by the generator. It takes up to several minutes
for the cooking process to be completed, which leaves the designer losing focus
and makes it impossible to enter a state of flow. The solution is to optimize the
HDAs and there is a lot of low hanging fruits for optimizing in terms of unneeded
computations, duplicate computations and better alternatives for algorithms with
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bad complexity.

The bridge between UE4 and Houdini Engine was a success, however, it also pre-
sented a lot of problems that needed and still needs to be solved. Working with
released open-source software, it is possible to modify the engine and rebuild it.
However in the act of doing so, when UE4 or Houdini updates their code, manual
work would be needed to merge to changes that we made with the new plugin.
As such it would be nice to try and contact developers of each engine and request
the APIs to be modified/ extended to better fit the requirements of the project, as
others who might walk the same path, would have a much easier time bridging
the two tools.

6.3 Future Work

Designer User Experience

In chapter 2, we briefly touched on the degree and dimension of control, which
was to some degree put aside in this project, in Figure 4.1, in chapter 4, a UI was
presented that contains a few variables that modify the generated level, however,
currently, none exists for the puzzle generation. A big focus for the future develop-
ment of this project is going to be focusing on making the interaction with the tool
as easy as possible. One way of achieving this is by better communicating what the
individual parameters do, currently, they have a name that is heavily influenced
by their use in the code, though in the future a better description for each of them
will be needed. Another point to make here is to find sensible bounds for each
of the parameters to constrain the generation to behave in a way that is intended.
Currently, it is possible to insert values in some of the parameters that will entirely
break the generation process. In[5], they also present the idea of representing the
puzzle parameters as a feature vector, where each element should be representa-
tive of something tangible within the puzzle eg. producing many pressure plates &
gates that makes the puzzle more difficult in the combinatorics domain, the vector
should be normalized meaning a value of 1 in the combinatorics domain would
produce very hard problems and a value of 0 would ignore this aspect. Having
such a feature vector would make it easy for the designer to experiment within a
generated level, to produce the type of puzzle that fits the best.
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Algorithms

The use of graph theory opened a world of a whole new set of solutions and prob-
lems for us to explore in the context of Puzzle PCG. In this little section, we will
present algorithms that show promise to solve or some of the remaining problems
or improve existing ones.

Re-representing the Connectivity Graph

The connectivity graph that was presented in chapter 4, represented to some extent
how the level was connected, however, the skewed distribution of nodes, where
branches have grown on top of each other, resulted in a graph that reduced the
number of possibilities in terms of gate placement. With the same methodologi-
cal approach but with different algorithms, this connectivity graph might be more
representative of the actual level. If instead we re-sampled the navigation mesh
Figure 4.23, with points scattered in an evenly distributed grid, with a modifi-
able distance between them and construct a graph using the same algorithm to
construct the connectivity graph we would have a much more evenly distributed
graph. However, this would render the current acyclic edge approach obsolete, as
the graph would be more densely connected as such we would have to find an
alternative algorithm to accomplish the same thing.
Another useful feature of the re-represented connectivity graph is its potential to
create informed distributions of the pre-placed Domino bricks where the error of
oddly oriented bricks could be used by computing the average direction of the
graph at randomly sampled vertices.

Maximum Flow Problem

One solution to detecting bottlenecks in the level that pose a good way of find-
ing natural gate locations could be the maximum flow problem. The maximum
flow problem that posed in 1955 by T.E. Harris and F.S. Ross[17], in the context of
locomotive transportation bottlenecks. A solution to the maximum flow problem
was not soon after found by Ford, L., & Fulkerson, D[6]. With the idea of rep-
resenting the maximum flow that can pass through a network, one can imagine
a great method of finding the bottlenecks. If we could compute flow weights be-
tween selected nodes, we could find several candidates for placements, which is
an improvement from the current method.
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Delay Constrained MST

Another dimension of the puzzle that was discussed inchapter 2, is the time do-
main. The time-domain presents a new dimension in terms of the evaluation which
was proved to be NP-Complete by[15]. However, they also presented heuristics
based on Prim’s algorithm that could find a solution that is close to optimal.
Prim’s algorithm uses a very similar approach to Kruskal’s algorithm. Now the
delay constraint is a value that can be assigned to every edge, but in our situation,
this would have to be done after the initial MST has been found, as the delay value
would only be known for a certain solution, then we could modify the MST with
the delay constraint in mind. Now it’s important to note that it might not work at
all but it seems like a possible solution to the problem.

Physarum Shortest path computation

At the very end of this project, I discovered an article that shows an algorithm
that presents an alternative solution to the path-finding problem. This algorithm
is based on the "natural algorithm" that dictates the growth of the fungi Physarum
Polycephalum[3]. The growth of the fungi can be seen in a video[23], this algorithm
presents an interesting alternative to many of the current approaches that were
used in this project, potentially this could be used before the MST algorithm, where
the fungi approach models a unique optimisation that can split an edge heading
towards two neighbouring nodes, thus creating a new node to optimise the graph
instead of just connecting the nodes. This approach could potentially produce a
more optimal MST.

Answer Set Programming

Finally, the placement of environmental modifiers layout and the layout of the
pre-placed bricks could be solved by using ASP which was also done in Anza
Island[4]. ASP was set aside for this project as it requires the game to be complete
to generate results, which is an important point about the puzzle generation, it
is only something that can be modelled after the game has been discovered and
described by a set of rules that must be well defined. This was not entirely the case
for this project as we are still in the early development phase.



Chapter 7

Conclusion

This project set out to explore the creation of a procedural puzzle generation tool
that allows the designer full control of manipulating its generated artefacts at each
stage in its generation process. To achieve this, the state of the art game devel-
opment tools Unreal Engine 4 & Houdini Engine was used as a platform. The
generation process was divided into three stages, level generation, puzzle gener-
ation and puzzle evaluation. Each stage presented a unique set of problems that
were tackled with varying success. A tree generation algorithm that created a level
layout of BSP volumes, a BSP house generation algorithm and a curve generation
algorithm was used to supply data to Houdini Digital Assets that would gener-
ate the final geometry that makes up the levels. Upon the generated geometry a
puzzle creation algorithm was used to create a layout of game elements. Finally,
the level could to some extent be evaluated for solvability. The puzzle generation
and evaluation still needed some work to be considered done. Although no eval-
uation was conducted the level generation process of the tool can still be regarded
as a success as it reduces development time and the resulting quality significantly.
Finally, we presented existing algorithms and methods that could be used for the
further development of the project.
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