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Abstract 
Stone walls are structures present in the landscape of Denmark and are protected not only for their 

cultural and historical significance, but also for their vital role in supporting local biodiversity. A 

considerable number of stone walls structures have either disappeared, suffered substantial damage, 

or had segments removed. Additionally, as it stands today, the registry of these structures, managed 

by each municipality respectively, is not up-to-date and lacks completeness. Recent developments in 

Machine Learning and CNN’s, and the increasing availability of LiDAR-based (Light Detection and 

Ranging) terrain models have enabled new methodologies in the extraction and mapping of terrain 

features and structures. With this in mind, our study aims to analyse the publicly available terrain data 

derived from the Danish LiDAR data (40 cm resolution), using a U-Net-like CNN model, in order to 

assess the stone walls dataset, and provide for an update of the registry. The study was focused on 

the Danish municipality of Ærø. Good results were seen using the Digital Terrain Model (DTM) alone, 

however better results were obtained when adding Height Above Terrain (HAT) and an additional DTM 

layer with a Sobel filter applied. Using a pixel-wise evaluation, there was an overall agreement of 93% 

between ground truth and prediction of stone walls in a validation area, and 88% overall agreement 

for the whole predicted area. Good generalizability was found when externally validating the model 

on new data, showing positive results for either the existent stone walls, as well as predicting new 

potential ones, upon visualization. The method performed best in open areas, however positive 

results were also seen in forested areas, although denser areas and urban areas presented as 

challenging. Given the inexistence of a reference dataset or other studies on this specific matter, the 

evaluation of our study was heavily based on the stone walls registry itself, and visual inspection of 

the predictions and on the ground. Further improvements can come from the inclusion of aerial 

imagery and other relevant data, as well as further optimization of the CNN model. This application 

demonstrates the potential of automatization the process of identification and update of the stone 

walls’ registry in Denmark, of great relevance to the local governments. We suggest that a Decision 

Support System be developed to allow municipalities access to the results of this method.  

Keywords: stone walls; LiDAR; DEM; Convolutional Neural Networks; UNet; Deep Learning; structure 

detection; topographic analysis 
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1. Introduction 
Stone walls are structures that populate the landscape of Denmark and are protected for their cultural 

and historical significance. The most recent structures were built in the 1800s and were used to divide 

and mark agriculture fields during agrarian reforms. Additionally, they were used to mark forests and 

woods which had been planted by regal decree at the time [1]. The oldest structures were built in the 

first century, where they most commonly were erected as property boundaries and to mark 

administrative divisions.  In addition to their intended purpose, stone walls also serve as vital green 

corridors between landscapes [2]. Therefore, these structures are important to preserve not only for 

their historical importance, but also for their vital role in supporting local biodiversity. 

As a consequence of urban expansion and development of agricultural land, a substantial number of 

Denmark’s stone wall structures have either already disappeared or have suffered considerable 

damage [1]. As a result of this, Danish stone walls and sand walls were classified as protected in 1992 

by the nature protection law [3], which was followed by an update in 2004 with the “Museums’ law”, 

which transferred responsibility to the individual municipalities. Today, each municipality is 

responsible for the management and protection of its culturally significant stone walls and sand walls. 

Additionally, it is the municipalities responsibility to inform the Ministry of Culture of the stone walls’ 

locations so they can be updated in the ministry's central registry. However, as it stands today, the 

Danish Ministry of Culture dataset is not necessarily up to date and, in all likelihood does not fully 

account for all the stone walls and sand walls in each municipality [4]. Recent acknowledgement of 

this, triggered reaction from the Ministry to set up a “reference group” to research methods to update 

the registry in an automated fashion. 

The definition of stone walls by the law characterizes them as “Man-made, linear elevations of stone, 

earth, turf, seaweed or similar materials which function or have functioned as fences and have or have 

had the purpose of marking administrative property or use boundaries in the landscape” [1].  

Protected stone walls include the structures falling under this definition, as well as those already 

registered in the 1:25 000 topographic map [5], in public domain and those that are situated on or 

near protected habitats. Their physical characteristics vary in size, shape and materials. Generally, the 

walls are between 0.5 and 1.5m in height, 1.5m in width; made of either of stone, heather peat, earth 

or a combination thereof (Fig. 1). 

 

 

 

a) Stone walls original characteristics 
 

b) Sand and dirt walls 
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c) Stone walls as they look today d) Stone walls and dirt walls with different 
vegetation 

Fig. 1 - Different shapes and forms of stone walls and sand walls, in its original form (a and b) and how they look like today 
(c and d). Source: [1] 

According to official guidelines [1], structures located in dense urban areas don’t fall under the 

protection classification by the Museums law, because of continuous urban expansion which has led 

to the removal of most of these structures. Besides urban areas, stone walls located on summerhouse 

areas, around churches, or protection dikes are generally not classified as protected.  

The removal or partial destruction of protected stone walls is against the established law [3], however 

it is possible to apply for a dispensation to the respective municipality, who will assess the case for 

removal or alteration. For this, an up-to-date registry is necessary, to not only verify the structure in 

question, but also to monitor and ensure the preservation of the protected stone walls. 

With this in mind, this study aims to analyse terrain data derived from the Danish LiDAR (Light 

Detection and Ranging) dataset, in order to assess the stone walls dataset, and provide for an update 

of the registry. For updating the registry, the study will focus on two main tasks: 

1) Analyse stone walls with the terrain data, and identify stone walls or segments of walls that 
no longer are existent on the ground, and were removed; 

2) Find and map potential new stone wall structures that are not registered but should be 
included in the registry. 
 

To accomplish this, we will engage in the analysis of LiDAR derived data in order to profile the stone 

walls in Ærø, then we will use a simplified morphometric algorithm to identify their topographic peak 

points. This analysis will also validate the stone walls dataset and serve as feature-engineering to 

prepare the dataset for the second task. We will apply a Deep Learning method by using a Convolution 

Neural Network (CNN) model in order to find and map potential stone walls that are not registered, 

using the validated stone walls dataset. With this we intend to provide for an automated method for 

updating the registry of protected stone walls, which coupled with a visualization tool, as well as on-

site confirmation by experts, could be of great use to the municipalities in Denmark. The rest of the 

study is structured as followed: Section 2 references previous work related to the data and methods 

used in similar contexts to this study; Section 3 describes the materials and methods utilized for 

accomplishing this work, namely the validation of the stone walls dataset and its pre-processing, the 

U-Net-like model for the prediction of new stone walls, as well as its post-processing; Section 4 
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provides the results obtained and their assessment; Section 5 engages in the discussion of the results 

and its applications; and finally Section 6 summarizes the work performed in this study. 

2. Related Work 

2.1 LiDAR Data  
Stone walls are prominent features of the Danish landscape. They are visible in aerial imagery in clear, 

open landscapes; however, it is harder to observe them when they are located in woods and forests. 

Therefore, elevation models and derived LiDAR data provide a valuable means to identify structures 

and objects on the surface, which collect data by measuring their range and reflectance and are not 

affected in the same way by vegetation [6]. In the field of archaeology, many studies focus on the 

identification of structures amongst terrain. A myriad of Archaeology mapping studies use derived 

elevation models from LiDAR data, to identify objects and structures on the topographic landscape [7] 

[8] [9]. This is because the ability of LiDAR data to penetrate forest and scrub canopies allows for the 

identification of structures on the surface that otherwise would remain hidden. Additionally, the high 

spatial resolution has provided new insights on more detailed landscapes, providing knowledge and 

context to archaeological studies. The increase of the availability of LiDAR data has also contributed 

to the expansion of the applicability of such data to many fields of research. This availability is also 

mirrored by the implementation of more ambitious projects, such as the LiDAR scanning of the 

entirety of the Earth surface, intended by the Earth Archive project [10], to create an open-source 

digital twin of the planet, to document the land surface at a high resolution. 

Furthermore, other studies use LiDAR data to identify and control vegetation distribution [11], the 

mapping of height vegetation [12], and research on biodiversity and support nature management [13]. 

These studies explore the impact and importance of topography for different aspects of biodiversity, 

by analysing different LiDAR-based measures such as terrain slope, roughness, aspect, hillshade or 

elevation above sea level, and their relationship with vegetation and local environment; emphasising 

their relevance and applicability. LiDAR-derived data have also been adopted for use in flood mapping 

and monitoring. The high resolution and accuracy of Digital Elevation models derived from LiDAR data 

are extremely important to identify critical areas at risk of flooding, due to their capability for 

identifying detailed features of the surface, hence with great impact on flood risk and hazard 

prediction [14]. 

The use of LiDAR derived data is therefore of great importance for planning and urban and land 

management. Its range of applicability is also justified by the time and cost effectiveness, which 

combined with automatization methods, allows for an optimization of otherwise time-consuming, 

expensive and labour-intensive tasks. LiDAR derived data facilitate the detection and extraction of 

land surface objects, especially at a finer scale, can allow for example the identification of land cover 

patterns [15] [16].  

2.2 Deep Learning 
Neural Networks (NNs) have been used in remote sensing and image analysis increasingly in recent 

years in a variety of applications. Deep Learning (DL) algorithms are an extension of NNs and have 

been used for image classification, object detection, segmentation, change detection, amongst other 

tasks [17]. Its successful performance during such tasks has helped in the automation of processes in 

many applications, and has proven to be a useful and valuable method of analysis and automation.  

Convolutional Neural Networks (CNN) are a sub-class of DL methods, and are used in state-of-the-art 

computer vision tasks. A CNN is a learning model which takes an image as input data and assigns 

importance to various objects in the image  [18]. A CNN is usually composed of convolution layers, 
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pooling layers and fully connected layers, performing feature extraction and generating a new feature 

map for data prediction as final output, either as classification or regression. During training of a CNN, 

units that are organized in a feature map are connected to local patches of units from the previous 

layer, by a set of weights (filters), and each of them go through a non-linear transformation, a process 

repeated for each convolutional layer. These set of weights, or filters, are called convolutional kernels, 

that go through the image as a moving window. Each convolution layer has many convolutional 

kernels with variable weights, extracting different feature maps. The performance of the kernels and 

weights is tracked by a loss function, calculated by forward propagation on the training data. These 

parameters are optimized during training, according to the loss value, to minimize the difference 

between the output of the model and the ground truth data, performed by backpropagation and 

gradient descent as optimization algorithms. Both convolution and pooling layers perform feature 

extraction, although the role of pooling layer is to extract and merge features with similar 

characteristics into one, by either computing the maximum (or the average), reducing the size of the 

representation (down-sampling), as well as the number of parameters to compute, helping in this way 

to control overfitting [18]. Fully Connected layers map the features extracted by the previous 

convolution and pooling layers to the final outputs of the network, followed by an activation function, 

which is selected depending on the requirements of the specific task. 

CNNs have been widely used to solve classification problems, such as Land Use and Land Cover (LULC) 

classification, and analysing hyperspectral data and high spatial resolution images, with a high rate of 

classification accuracy [19]. For LULC studies such as [19], a deep neural network structure is used 

where image patches are the input into the network and features are extracted using convolutions 

layers followed by normalization, an activation layer and pooling, connecting to a fully connected layer 

that will then classify into the respective land cover classes. According to [20] [21], image patch-based 

CNN is more suitable than pixel-based CNN, when using medium-resolution images, given the lack of 

fine detail.   

Other methods of classification, namely semantic segmentation and instance segmentation, use a 

pixel-wise classification, and are also widely used in remote sensing and image analysis. These 

methods use a fully convolution network, with fully convolution layers (FCN), where the network 

layers are up-sampled after down-sampling, usually producing an output of equal spatial dimensions 

to the input data [22]. These layers are also designated as encoding and decoding layers. An example 

of FCNs is U-Net, originally developed for semantic segmentation of medical images, first introduced 

in 2015 [23]. [24] has used semantic segmentation to detect surface disturbance caused by mining 

from topographic maps, where the study mentions a high level of accuracy achieved. The study uses 

a modified U-Net architecture, where the model first uses an encoder component (contracting path) 

whose feature maps learn spatial patterns at different scales, by utilizing blocks of 2-D convolutional 

layers followed by max pooling operations, obtaining a low-dimensional representation of the input 

image. These feature maps are then used in the decoder (also known as deconvolution, or expansive 

path) layers, to convert back to the original dimension of the image, to produce the final output 

segmentation map. In the mentioned study, a classification is performed at each pixel location, where 

the output is the probability of each pixel belonging to each of the classes defined in the model. This 

method differs from instance segmentation, where the goal is not only to identify the object from the 

background, but to identify and attribute a label to each pixel, as well as an individual object of a label. 

[25], proposes instance segmentation to map topographic features using LiDAR-derived data 

(slopeshapes). The study explores the application of Mask R-CNN and mentions successful accuracies 

with such method. Mask R-CNN is a derivation of R-CNN, which applied convolution to regions of 

interest in the image, instead of its entirety. The Mask R-CNN extension allows for polygon masks to 

be generated in each region of interest, outputting the predicted class for the region, the final 
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predicted bounding box and the predicted segmentation. The results of the study suggest that the 

method performs well when applied to LiDAR data, focusing on features with distinctive topographic 

and geomorphic characteristics. 

The methods applied to the research problem in focus is much dependent on data availability, the 

representation of the data and the problem itself. Defining a clear initial problem statement will 

dictate what would be the desired output for the DL model, thereby narrowing down the selection of 

the model architecture and problem according to the task at hand. However, data availability and its 

representation greatly affect the performance of the DL algorithm [17]. With a small dataset, the 

model might not be able to cope with bias (underfitting) or variance (overfitting), and lose its ability 

to fit the data and generalize well.  

Data quality is essential in achieving good model performance and significant results. While dealing 

with datasets that represent real world applications, it is all too common to have noisy and faulty data, 

often necessitating rigorous pre-processing. Neglecting the importance of data processing and 

preparation can lead to data cascades [26], where data issues cause downstream effects, leading to 

poor model performance and output. In our study, the stone walls dataset is a representation of the 

stone wall structures present in the Danish landscape, whose quality is not fit-for-purpose. The dataset 

is neither an accurate representation the stone wall’s precise geographic location, nor is it current 

with the ground truth. Such dataset characteristics determine the design and structure of the project 

and the approach to the problem statement. In order to update the stone walls registry, we will first 

engage in verifying the presence of the individual walls against the Danish elevation model, since most 

of the structures are easily observable in the terrain data. Here we intend to remove sections of stone 

wall that no longer exist, and adjust the position of the walls in the dataset in order to better reflect 

their actual location on the ground. We will then use the validated data to detect and map potential 

non-registered stone walls, by performing a regression task using a Deep Learning model with a U-

Net-like architecture. 

3. Materials  

3.1 Terrain Data 
Terrain data for Denmark is made publicly available by The Danish Map supply1, which is the 

distribution channel for the Agency of Data supply and Efficiency (SDFE). A digital terrain model 

(DHM/Terræn 2014) [27] and a digital surface model (DHM/Overflade 2014) [28] were used in this 

study, both of which were downloaded from The Danish Map supply’s website, and are based on aerial 

laser scanning measurements taken in December of 2014. Both datasets describe Denmark’s surface 

in relation to mean sea-level and are provided as raster layers with a pixel size of 0.4m. For this study, 

the DSM refers to the representation of bare earth and the objects on the surface (trees, vegetation, 

buildings, etc.), while DTM is the representation of bare earth surface. Both datasets cover the entirety 

of Denmark and are available as a 32-bit GeoTiff, with a pixel resolution of 0.4m. Each individual pixel 

value is precise to 0.15m in the horizontal direction and 0.05m in the vertical direction, and were made 

available in the ETRS89 UTM 32N coordinate system (EPSG: 25832) [29]. All the data in this study had 

the same local projection. 

Additionally, a third dataset was created by subtracting the pixel-wise value of the DSM from that of 

the DTM to give the Height Above Terrain (HAT), also known as normalized DSM (nDSM) [6]. This was 

done over the extent of each raster, thereby creating a new raster of the same size, with pixel  values 

‘HAT = DSM – DTM'. The HAT can describe the height of structures above the surface, providing height 

 
1 Accessible at https://download.kortforsyningen.dk/ 

https://download.kortforsyningen.dk/
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information on individual objects, such as buildings, and in this case on stone wall structures. The 

analysis of the HAT alone was not sufficient to identify stone walls, as they proved hard to distinguish 

from other linear structures. However, given its potential of providing additional context of the stone 

wall structures’ location, it was considered as an additional layer to the training data. 

Additionally, a Sobel filter was used in conjunction with the DTM to create a new layer. The Sobel 

operation implements a 2D spatial gradient calculation on an image by sliding a pair of convolution 

masks (3x3) on the x-direction (horizontal) and on the y-direction (vertical), respectively [30]. The 

mask manipulates the pixels one by one, changing the value of the pixel according to the kernels. The 

Sobel layer was created in Python using the Buteo toolbox, accessible through the project repository 

https://github.com/casperfibaek/buteo. 

3.2 Study Site and Stone wall Dataset 
To reduce the amount of data required and overall processing time, a smaller study area was selected. 

The island Municipality of Ærø lies in the Baltic Sea between the Danish Island of Funen and the 

German Region of Schleswig and has an area of 88km^2 (Fig. 2). It was chosen for its smaller size 

relative to other municipalities, its abundance of stone walls, and its gently undulating landscape. 

 

Fig. 2 - Study site: the municipality of Ærø. 

A digitised Map of Denmark's protected stone walls is made available as part of the danish Ministry of 

Culture’s stone wall registry. This map was first digitised on the 1st of July 1992 and updated in 2006, 

and is made publicly available as a vector dataset for download through the Ministry’s data portal2 

[31]. On Ærø, the dataset contains 2766 stone walls for a total length of around 514 kilometres. Each 

wall in the dataset is represented as a vector linestring along with the walls’ associated metadata. The 

metadata contains information such as the date of registry, the walls’ current condition and the 

institution under responsibility. Given that the majority of stone walls on Ærø were registered as a 

 
2 Accessible at https://arealdata.miljoeportal.dk/ 

https://github.com/casperfibaek/buteo
https://arealdata.miljoeportal.dk/
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result of the digitisation of the 1:25 000 topographic map of Denmark, most of the metadata is either 

incomplete or no longer current. This is especially critical in some areas where almost 30% of the 

protected stone walls did not appeared in the subsequent versions of the topographic map [32]. 

However, there have been recent efforts to update the registry (Fig. 4). 

 

Fig. 3 - Stone walls and DTM in Ærø 

 

 

Stone walls Year 

1920 2006 

2 2014 

7 2015 

7 2016 

95 2018 

328 2019 

407 2020 

Fig. 4 - Stone walls registered per year in Ærø 

An analysis of the 2012 Corine Land Cover (CLC) [33] sourced from SDFE’s data portal, reveals that 

stone walls on Ærø are found in generally similar types of landcover as those in the rest of Denmark. 

Through this analysis it was found that ~80% of the stone walls in the data set were located on 

agricultural land, both on Ærø and in the rest of Denmark. This similarity continues with ~5% of stone 

walls being located in discontinuous urban fabric, both on Ærø and Denmark (Fig. 5). Where Ærø 

differs is in the number of stone walls found in forested areas. The municipality has very little forested 

land, and as a result almost no stone walls are found in forests, whereas ~15% of Denmark’s stone 

walls are found in forested areas.  It should be noted that in this analysis, each stone wall was only 

given one landcover category, however individual stone walls could traverse multiple landcover types. 
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Fig. 5 - Land Cover types where stone walls are located, in Denmark (top) and Ærø (down). 

 

4. Method 

4.1 Pre-process of Stone wall Dataset 
The initial step was to validate the stone wall dataset against the most recent DTM data. The Digital 

terrain Model is quite useful for detecting stone walls because of their topographic characteristics, 

standing out from their surrounding landscape. When performing a hillshade analysis, the structures 

are clearly visible (Fig. 6).  

 

Fig. 6 - DTM in Hillshade with stone walls dataset (red) 
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This initial step is deemed as necessary given the difference between the two datasets regarding their 

production date. The DTM data was current as of 2014, while the stone wall reference dataset was 

digitised in 2006. As discussed earlier, when the reference was digitized there was little effort to 

validate the individual walls. Reference data representation accuracy has a large effect on the overall 

performance and results of a DL model [17], and it was important to find and remove stone walls 

segments that had been removed or altered in the intervening time, to achieve the best possible 

results during the later stages of our study.  

The initial inspection and validation had four distinct steps: 

• Step 1: Create profiles along each line representing each stone wall 

• Step 2: Check each profile for the presence of stone wall 

• Step 3: Redraw the dataset with absent walls removed 

• Step 3: Validation of the corrected dataset 

Step 1: Creating Profiles 

The initial step taken was to segment each line in the dataset into 5m sections, with the purpose of 

creating a profile at the end of each section. Some walls were represented as straight linestrings and 

others were multi-linestring objects. The presence of multi-linestring objects required an initial step 

of segmenting each multi-linestring into its composite lines. This was necessitated by the later process 

of recreating the dataset in the adjusted positions. At each 5m subsection, a tangential line is created 

(cross-section) with a length of 10m, which is then broken up into 0.4m subsections, which 

corresponds to the pixel resolution of the DTM. At each of these points, the elevation value of the 

DTM is extracted, and a 3D multipoint object was created containing the x and y positional coordinates 

of the points in each profile, along with the value for the elevation. The initial dataset of 2.766 lines 

yielded 113.089 profiles, each comprising of 50 points. 

 

   

   
Fig. 7 - Examples of stone wall profiles. The top three profiles show the presence of stone walls, while the bottom three are 

examples of profiles where a wall is no longer present 
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Step 2: Identifying Stone walls 

The datasheets provided by the Culture Ministry provide a reference of which dimensions a stone wall 

can have. Additionally, even by plotting for a with cursory visual inspection, it is clearly observable 

whether or not a profile represents a wall. With a small number of walls or profiles it would be possible 

to sort the profiles manually. However, due to the large amount of profiles created in Ærø alone, an 

automated method was necessary. The ‘find peaks’ function of the SciPy Python package [34], 

originally intended for use in Computational Biology and Bioinformatics, was utilized to identify 

‘peaks’, which in our case were the peaks of the walls. This method was extremely successful at 

identifying stone walls that had a prominent peak, which luckily was the case for the bulk of the 

dataset. However, walls that were damaged, partially removed or covered with earth over time, were 

more challenging for the algorithm to correctly categorize. Walls of such type were marked with an 

‘unclear’ category for later manual inspection, while the remaining walls were designated either the 

‘wall’ or ‘not wall’ category.  

Additionally, the ‘find peaks’ function stored the index of each peak. This allowed for the calculation 

of the position of the peak in relation to the cross-section. In the event that multiple peaks were found, 

only the peak that was closest to the centre of the profile were stored. These peak indexes were used 

to adjust the position of the linestrings in the stone walls dataset to the stone walls actual position on 

the ground, in the following step. 

Step 3: Rebuilding the Dataset 

Firstly, it was necessary to recreate the dataset with only the sections that were categorized as wall. 

This was achieved by redrawing the linestrings after their categorization. For an individual segment of 

stone wall, starting at the first profile, a linestring was drawn between the peak of the current wall 

and the peak of the following wall. This was performed only in the case that the current and next wall 

were categorized as walls. In this way, the entire dataset was redrawn with the non-wall sections 

removed, and with the remaining walls adjusted to their actual position as reflected in the DTM. This 

provided for the feature engineering of the dataset, in order to maximize the extraction of features 

suited to represent the target data for the CNN model training [35]. 

Step 4: Validation 

For the majority (>90%) of the profiles, the presence of a stone wall was easily identified. However, 

for the cases where the wall was either very low, or partially removed, the profiles could not be reliably 

classified by our simple algorithm. As described above, any profile that was not quickly identified (the 

prominence of the peak was less than 0.3m), a third class ‘unclear’ was attributed. In lieu of developing 

a more robust and complex algorithm, it was necessary to manually inspect these profiles with a 

visualization software tool (QGIS [36]). This inspection was done by visually comparing the ‘unclear’ 

profiles against the DTM in hillshade, coupled with the profile tool plugin3. Any profiles that suggested 

the wall no longer was present, or if verification was not possible using these methods, were removed 

from the dataset. 

4.2 Profile Based Machine Learning 
During the earlier stages of development, Deep Learning was used on the profiles to see if an 

improvement in profile classification could be observed. This was done in Python using Keras [37] with 

TensorFlow on the backend [38]. Deep Learning was done on elevation array of a profile (1x50 array 

of float values). The concept was to train a relatively shallow Deep Learning Model on the classified 

 
3 Available at the repository https://github.com/PANOimagen/profiletool 

https://github.com/PANOimagen/profiletool
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walls, and use this model to classify the walls again. By doing this we hoped to see an improvement 

on our algorithm-only classification model. The problem was approached in the following two ways: 

1) regression and 2) classification. 

A regression-based algorithm used an integer label which represented the index location of the peak 

in the elevation array. The output of each input profile is a value that designates the peak index in the 

array, between 0 and 50 for a peak, and -1 for no peak. 

A classification-based algorithm simply sorted the arrays into two categories. The same model 

architecture (Fig. 8) was used as in the regression problem, with changes to the loss function. Instead 

of each array being accompanied by the integer of the peak index, it was designated a ‘wall’ or ‘no 

wall’ category.  

 

Fig. 8 - Classification model architecture used 

After a period of experimentation, it was decided that the method did not yield significantly different 

results from the results where no DL was used. Additionally, the regression-based model was not 

effective at identifying the peak index. While there seemed to be an improvement on the classification 

of profiles using the classification-based method, it was difficult to quantify how much better given 

the input data itself had a degree of uncertainty. For this reason, neither of these methods were 

pursued further, and neither process was used in producing the final results.  

4.3 Data Preparation and image patches generation 
The next step was to train a CNN on the updated stone wall dataset. For this, the stone wall would 

first need to be converted into a raster format. The DEM data, which would be used as training data, 

had a spatial resolution of 0.4m per pixel, therefore the stone walls dataset would need to be 

rasterized to match this resolution. During the transformation to raster format, a down-sample of 

pixels was first performed (down-sampled to 10 cm), in order to expand the number of presence 

pixels. The pixels were then restored back to the target resolution of 0.4m, resulting in an anti-aliased 

walls dataset (example on Fig. 9). All the pixels covering the location of the wall were given a float 

value (0 < x <= 1), commensurate to the distance from the centre of the pixel to the centre of the wall. 

Pixels which intersected the centreline of the wall were given a value 1.0. This transformation helped 

to account for spatial uncertainty, but also gave flexibility to the output prediction. In doing this, we 

turn the problem into one of regression, which we hoped would help to compensate for the number 

of absence pixels present in the patches, while extracting the target data for training the model.  
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Fig. 9 - Example of a stone wall anti-aliased 

 
Fig. 10 – Example the location and size of 64x64 pixel 

patches in the label data 

Deep Learning models that employ CNNs require the training data be in the form of small patches, 

since the spatial context information is learned by filters. Additionally, labels must be provided along 

with associated environmental data. In our case, the rasterized stone walls acted as the labels, and 

the stacked DTM, HAT and Sobel filter were the associated image data. Using scripts produced in 

Python, the training data was broken into 64x64 pixel patches, which resulted in a total of 24.782 

patches of stacked DEM data, and the same amount of associated rasterized stone wall labels 

(example on Fig. 10).  

Given the size of our training data, and in order to increase generalizability and decrease overfitting 

within the model, Data Augmentation was used [39]. Data Augmentation is the process of increasing 

the amount of available data by adding manipulations to the ‘real’ dataset, to create additional data 

that is similar – this new data is called ‘synthetically modified data’. Specifically, we implemented a 

geometric transformation by rotation augmentation on each patch, such that each patch was rotated 

0, 90, 180, and 270 degrees. In the case of our data, this method is considered as “safe” augmentation 

transformation, given its likelihood in preserving the label [39], because the assumption was that 

stone wall structures do not have a specific orientation. The rotation was applied to the data after 

splitting the dataset into train and test sets, applied only to the latter. Such transformations can help 

reduce overfitting by creating more training data [39]. 

For the image inputs, patches were extracted in the buffered area around the rasterized stone wall 

dataset. Due to the relationship between the buffer distance and the size of the patches (64x64 pixels), 

there were some patches which contained no stone wall at all. These types are patches are known as 

absence data. In order to investigate the effect this absence data had on our results, additional 

absence data was added to the final dataset, which was created by extracting patches from other 

areas on Ærø. Because it was initially theorized that the model would have most difficulty in urban 

areas and in differentiating modern walls from historic stone walls, 9.307 patches of absence data 

were added to the dataset from urban areas. This was done by analyzing the land cover of the island 

using a CORINE landcover type layer, and extracting the patches from urban areas where no protected 

walls were located. Once the absence data was added, the initial dataset of size 24782x64x64 was 

increased to size 33819x64x64.  

When training the model, the dataset was shuffled and then split in train and test sets, in a ratio of 

70-30% respectively, using Scikit-Learn’s function ‘train_test_split’ [40]. For the train set, after 

augmenting the data with rotations, the final size of the dataset was 94692x64x64.  

The inherent imbalance in the dataset, where each patch contained many more ‘0’ (no wall) pixels, 

compared to the number of ‘1’ (wall) pixels, caused difficulties with the loss function. Mean Squared 
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Error (MSE) was used as the model’s loss function, and given its calculation method, the loss values 

ended up being very small. Due to difficulties with the model while using very small loss values, initial 

attempts at training the model resulted in failure, due to a complete inability of the model to learn. 

By multiplying the label patches by 1.000 (with a final target value between 0 and 1.000), we were 

able to solve this issue. The values of the labels on the output were then converted back to their 

original scale.  

4.4 Model Training and Prediction 
The creation and training of the DL model was done using the Python programming language. The 

Keras [37] and TensorFlow [38] packages were used to create the model.  

For this step, A Fully Convolutional Neural Network (FCCN) model design was used, as this allowed for 

the output of a prediction raster of the same size as the input (64x64 pixels). The model used has a U-

Net-like architecture, with initial down-sampling followed by up-sampling. The U-Net model has an 

expansive path symmetric to the contracting path, leading to a U-shaped architecture. After each 

down-sampling convolution (a 3x3 convolution followed by a rectified linear unit (ReLU) and a 2x2 

max pooling layer of stride 2), a skip connection (concatenation of a corresponding layer between the 

contracting and expansive path) is performed, to provide information of localization accuracy, reduced 

by the use of max-pooling layers [23]. In this study,  the model architecture followed a similar 

architecture to that of U-net, employing 6 down-sampling blocks, each containing two convolution 

layers of 3x3-sized filters, where each block was followed by a 2x2 max pooling layer of stride 2 and 

with ‘0’ padding. The three down-sampling blocks used 32, 64 and 96 filters each respectively. For the 

expansive path, two 3x3 transposed convolution layers were used, with 64 and 96 filters respectively, 

followed by a concatenation of the previous transposed layer with a layer from the expansive path 

(see Fig. 11 for a visualization of the model’s architecture). The model accepted input an input vector 

of size 64x64x3, one channel each for the layers DTM, HAT and DTM with Sobel filter. The output was 

a vector of size 64x64x1. A ReLU activation function was used in the final layer, where each individual 

pixel within the patch was designated with a value higher than 0, corresponding to the likelihood that 

each pixel contained a stone wall. Each pixel corresponds to an area of 0.4m^2 on the original raster. 

 

Fig. 11 - Model architecture of the CNN model with a shallower structure compared to the U-Net original model 



20 
 

Besides the lower number of blocks and filters used in both the contracting and expansive paths, the 

activation function used in the convolution layers differed from the original U-Net architecture. 

Instead of the ReLU function, a similar function named Swish [41] was applied4, after testing the model 

through various iterations with both, and the latter resulted in better overall model performance. The 

adaptive moment estimation (Adam) optimization was used [42], and the learning rate was initialized 

at 0.001. In order to optimize learning and have the model quickly converge to a good solution, a step 

decay for the learning rate was scheduled, whereby the learning rate was set to decrease by 0.5 after 

5 epochs of similar loss results. Early stopping was also applied, by monitoring the validation loss 

function during training, where the training comes to an end when the loss is no longer decreasing. 

This is decided by setting the minimum change that qualifies as improving (patience), corresponding 

to the number of epochs after which the training will stop if there is no improvement (set to 5). The 

early stopping function was applied using Keras package callback ‘EarlyStopping’. The validation loss 

is calculated on the validation data, which is split from the training data (20%). 

The optimization of hyperparameters is important in achieving the best possible results with a CNN 

[18] [17]. With a FCCN, the most significant being the number of filters used in each convolution layer, 

the size of the kernel that executes the filter, the size of the ‘stride’ as the kernel moves across the 

patch, and the padding for the cases where the kernel area goes off the edge of the patch. A complete 

grid search of the entire hyperparameter space was not possible due to time constraints, however 

after narrowing down to certain number parameters, the final set of values previously described was 

defined, after iterating the model 5 times, averaging the results and selecting the values with overall 

best performance. This evaluation method also includes the additional parameters previously 

described.   

The loss function used was the Mean Squared Error (MSE), also known as L2.The MSE loss function 

minimizes the squared differences between the estimated and the target values, and is one of the 

most typically used for regression problems [43]. According to [44] study, the choice of a loss function 

to use is dependent on the on the dataset and on the model architecture, and it is recommended to 

try different losses at the initial stage of the process. During training, four different losses were used 

to run the model, namely the Mean Absolute Error (MAE), also known as L1, Huber loss, a smooth 

mean absolute error, log cosh, a smooth mean squared error, and MSE. We iterated the model training 

multiple times over the same loss function, and adapting the parameters in order to understand the 

impact of the loss in the results. Given that in the present work we do not attempt to make a 

comparison of the different possible loss functions to be used in a regression problem, we will not go 

deeper on this analysis, leaving it instead as a possibility for future development. However, from the 

various functions tried, only MSE provided a stable learning and usable results.  

After model training, a prediction could be made using stacked DTM, HAT and Sobel filter data as 

inputs, outputting a series of patches representing the predicted areas of stone walls. The output was 

in the form of a 3-Dimensional array which was then converted to raster format. This was done using 

the already referenced Buteo Toolbox in Python. During the prediction, offsets were applied on the 

predicted patches in order to reduce the noise produced by the patches borders during the extraction 

of the images. A sequence of offsets were used: 1) 16x16, 2) 32x32 and 3) 48x48; merged with the 

median. 

 
4 Swish was developed by Google Brain Team as an alternative to ReLU, where tends to work better in deeper 
models and on different datasets for image classification. For a more thorough explanation and 
comprehension of the function, see the reference paper [41]. 
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4.5 Assessment and Post-Processing 
The lack of studies referencing this stone walls dataset, as well as the dataset’s inaccuracy and overall 

poor condition, present a serious challenge when comparing our results. Because of this, the results 

of our analysis are compared with original dataset, where the assumption is made that the locations 

of the stone walls here are ground truth. 

The assessment of the results was undertaken using a combination of quantitative and qualitative 

analysis. During quantitative assessment analysis, the performance and results from the loss function 

(MSE), additional metrics (MAE and RMSE), and the validation loss were analysed. This was done after 

iterating the model multiple times and averaging the results. An assessment based on the pixel value 

of the prediction was done by comparing the true values and the predicted values for each patch. 

Taking the intersection of the presence pixels in the input and prediction, as well as the intersection 

of the absence pixels, and dividing by the number of pixels, giving a number between 0 and 1, a 

representation of the overall accuracy of the prediction was calculated.  

In order to obtain a more accurate assessment of the predictions on the true values, a small validation 

area was selected. This area, as best as could be ascertained given the dataset, reflected the ground 

truth. The values of the pixels for the selected area ‘ground truth’ were compared with the predicted 

values using the same pixel-wise metric.  

The qualitative analysis was focused on the assessment based on the visualization of the predicted 

images. The results from the different training runs were inspected, comparing with the original stone 

walls dataset, to verify for: 1) the prediction of stone walls in relation to the existing structures; 2) new 

predicted walls; 3) walls or segments of walls that were no longer present, therefore not predicted; 4) 

prediction errors and false positives; 5) general noise present in the predictions, surrounding the 

predicted values and the absence areas. As a final assessment, a field inspection was conducted, by 

first selecting cases of stone walls that would be relevant to verify. In this way, a verification of 

predicted stone walls and comparison with the ground truth was done in order to provide additional 

validation. 

The output of the model shows predicted wall locations in the study area, where pixels with a value > 

0 indicated the presence of a stone wall. The final step of the analysis is to separate the walls into their 

respective categories: 1) walls that appear both in the initial dataset and the prediction 2) walls that 

appear in the initial dataset and not in the prediction, 3) walls that are not present in the initial dataset 

but do appear in the prediction. 

The method chosen to do such analysis was to compare the original dataset with the final prediction, 

and to observe the differences between the two datasets. Removing walls that appear in both the 

prediction and the original wall dataset from the prediction raster reveals the new walls that have 

been ‘discovered’ by the algorithm. Removing walls that appear in both the original dataset and the 

prediction from the original dataset raster leaves only the walls that have been ‘removed’.  

Because of the discrepancies in wall placement between the original data and the prediction raster, it 

was unfortunately not possible to use simple raster algebra (original – prediction = result). Instead it 

was necessary to create a proximity raster, and use this raster to delete any wall that was within 

25pixels (10m) distance of the wall. This lead to the final ‘found’ and ‘removed’ walls being 

represented as shorter than they were in reality, however it gave the clearest and simplest to interpret 

results. Lastly, a field visit was conducted to the study area, in order to validate some of the predictions 

obtained. 
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5. Results 

5.1 Quantitative Assessment 
Fig. 12 shows the loss results per epoch, averaged from after 5 iterations of the model. The average 

run had 21 epochs with early stopping (set to run for 50 epochs), which monitored the validation loss 

(the loss calculated for the validation data), after reaching a maximum of 5 epochs without 

improvement on its value.  

 
Fig. 12 - Loss and validation loss with calculated median for all the final 

model interations 

 
Train Validation Test 

(Evaluation) 

MSE 7,976 8,642 7,294 

MAE 0,018 0,017 0,016 

RMSE 0,089 0,092 0,085 

Table 1 - Summary statistics of the model for 
training, validation and evaluation (test) data 

The evaluation on the test data shows a MSE value of 7,29 (Table 1), indicating the summed error for 

all pixels that compose one patch. This was useful to compare between the iterations of the model, 

as well as during the testing of other additional attempts, alterations and improvements to the model. 

Since comparable data or previous research is not existent, to the best of our knowledge, we are not 

able to compare such evaluation results with reference values. These values were used to measure 

the results from constant optimization and improvement of the model. The results from the model 

training with using only the DTM, or DTM and Height above Terrain (HAT) were slightly similar in 

comparison to the ones obtained with the three layers, where the evaluation loss and MAE had higher 

values (Table 2).  

 
DTM 

DTM & 
HAT 

DTM, Sobel & HAT 
Without Absence data 

DTM, Sobel & 
HAT 

Loss (MSE) 6,329 6,414 11,029 7,294 

MAE 0,015 0,014 0,024 0,016 

RMSE 0,079 0,080 0,105 0,085 

Pixel-wise metric 0,86 0,88 0,83 0,88 

Table 2 - Evaluation metric results for different training datasets 

With more significance in the evaluation metrics’ values, the inclusion of absence data provided 

improvements to the output results and significantly lower loss and MAE values. The absence data 

added represented the areas where stone walls are not supposed to be present (mainly representing 

urban areas). The difference between the pixel values predicted and the true pixels representing a 

stone wall for the validation area also changed with the different data layers used in the prediction 

model. The addition of the Sobel filter and the HAT increased the similarity on the number of pixels 

representing stone walls, during the prediction on the test data. The final model add an average of 

0.88 for the pixel-wise metric, corresponding to 88% of overall matching of number of pixels between 

predicted and true data. However, such numbers are to be considered with some reservation, since it 

does not provide much knowledge on the accuracy in the prediction of existent structures, or of new 

walls, despite shedding a light on differentiating the performance results of the different model runs.  
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More significatively, the pixel-wise metric calculated for the validation area, from the overall 

prediction of the municipality of Ærø, was of 0.93 for the final model, indicating a high prediction 

performance. 

               1        2  3 4 

a) 

 

b)  

 

 

 

c) 

 

d) 

  

 

 

Fig. 13 - Example of patches of stone wall predictions and respective labels and ground truth, where column 1, 2 and 4 are 
example of correctly predicted stone walls, and column 3, a suspiciously predicted stone wall. Horizontally: a) prediction 

patches; b) dtm in hillshade; c) stone wall dataset (label); d) aerial image from kortforsyning.dk (Spring 2020). 

The output of the predictions on the evaluation data (test dataset) show a clear picture of the ability 

of the terrain data to identify stone walls on the landscape. Fig. 11Fig. 13 shows some examples of 

predicted stone walls (first row (a)), where image 1 and 4 display a clear detection of stone walls, as 

confirmed by the ground truth data (rows b and d) and stone walls dataset (row c). On column 3, an 

example of an unsure result of a stone wall prediction is displayed, where no stone wall is existent in 

the dataset, and the aerial image shows on what might be a ridge, in need of further validation. 

5.2 Qualitative Assessment and External Validation 
The final predictions for the municipality of Ærø showed positive results for both the identification of 

removed segments and walls, and new stone walls. The visualization of the final predictions, suggests 

that the model can generally identify stone walls, corresponding to the stone wall dataset, even in 

areas with more dense vegetation. However, for walls located in areas of dense forest, or wall 

structures that have very little salience, some errors of false negative predictions can occur (Fig. 14).  
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Fig. 14 - Examples of model predictions: Top left, shows an example of the challenge in predicting on dense forested areas, 
and top right, on shallower structures (on the top corner to the right, an error of  prediction can be detected); Bottom left, an 
example of an unregistered wall predicted, and a wall that seems to have been removed; and bottom right, examples of 
registered as well as unregistered walls predicted. 

For the models trained only on the DTM, or DTM and HAT layers, it is possible to identify the 

differences on the predictions. For the first one, a lower ability to identify the stone walls was 

detected, especially in differentiating amongst different types of edges, while for the latter, the level 

of noise, composed of low pixel values was considerable (Fig. 16). A considerable difference is also 

visible for the predictions that included absence data, where much of the noise and scattered pixels 

were removed (Fig. 15). 

 

  
Fig. 15 - Difference between prediction with absence data (left) and without (right) 



25 
 

   
Fig. 16 - Difference of predictions between using DTM alone (left), DTM and HAT (center), and the final model (DTM, Sobel 

filter and HAT) (left). In yellow: stone walls dataset. 

In order to test the generalization of the model, an external validation was done, by predicting for a 

new dataset. The municipality of Silkeborg in the region of Jutland, has a more diversified landscape, 

and has a larger extent.  

  

  
Fig. 17 - Example of External validation predictions in Silkeborg: Top, left shows the prediction of registered walls and a 
possible unregistered wall; Top, right the prediction follows the stone walls registry; Bottom, left possible unregistered stone 
walls are clearly predicted; Bottom, right shows where probable inexistent registered walls that were not predicted as such. 

On a visual inspection, the prediction shows an overall good generalization of the model, where the 

stone walls are clearly distinguished. New stone walls seem also to appear on the prediction, some 
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with a high level of definition, suggesting a good application of the model for detecting new potential 

stone walls in Denmark (Fig. 17). 

5.3 Postprocessing 
An initial postprocessing method was done, in order to reduce the noise created by the edges of the 

patches, by applying offsets during the prediction. Such method allowed to create clearer prediction 

images and eliminate unrelated values. For the visualization of the predictions, a visual scale was 

applied, where first values between 0 and 1 would be considered (corresponding to the reference 

values of stone walls), but ending up to include only values above 0.2. Most of the values below this 

threshold were shown to be mostly noise values. 

The final step of postprocessing analysis, which highlighted the ‘removed’ and ‘found’ stone walls from 

the final prediction, showed that, around 391 stone walls (Fig. 18) were flagged with either segments 

or entire removed walls (a total of around 37 km). These were mostly located on agriculture areas, 

where it is possible to identify whole segments of wall removed on crop fields, as well as segments on 

the edges of walls, for perhaps accessibility purposes.  

 

Fig. 18 - Stone walls predicted as removed or damaged after postprocessing 

Many new stone walls were found in the prediction for Ærø, where varying sizes and definition could 

be identified. Such structures were then filtered by their pixel value and length, where only structures 

with values above 0.50 were considered, and smaller structures with less than 10 meters, were 

excluded (Fig. 19). 
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Fig. 19 -  Examples of post-processed found walls in Ærø 

For a final validation, a field visit was conducted to the study site, and in this way evaluate our results 

with ground truth. It was possible to verify some of the predictions, namely the removal of edges of 

stone walls, confirmed by the visit on-site. An entire wall that was identified as removed by our 

predictions was also verified and confirmed. Verification on-site allowed also to confront the 

predictions of unregistered stone walls, confirming in at least some of the cases, the existence of 

similar structures to protected stone walls, indicating the positive output of the prediction results (Fig. 

20).  

 
Fig. 20 – Onsite Photo 1: Hidden wall structure, where it is 
possible to observe the untouched primary composed by 
stones and rocks. This structure was predicted as stone 
wall, and it is not included in the registry. 

 

 
Fig. 21 – On-site Photo 2: The model indicates a stone wall 
here running parallel to a sealed section of road. This 
transpired to be a small earthen embankment. These 
sections of predicted wall span the length of the study area 
and indicate a systemic inaccuracy in the prediction. 

Additionally, errors of prediction were also verified, and the validation on-site allowed to perceive the 

nature of the visited  predicted stone walls. This included structures identified as unregistered stone 

walls, but were in fact embankments and/or ridges (Fig. 21). A more detailed description of the field 

visit validation, see Annex 1 – Field site validation on p. 36. 

The final results of the analysis can be seen here displayed in a prototype of a WebGIS visualisation 

tool. This tool was created using Leaflet [45] for JavaScript (Fig. 22). The development of such tool can 

be improved to include visualization options, namely the number of unregistered stone walls 

predicted, the number of segments and walls that have been predicted as removed, as well as the 

metadata necessary to identify the stone wall and update the registry. 
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Fig. 22 - Example of a prototype for a WebGIS to visualize the results of the predictions 

 

6. Discussion 
Our results suggest that LiDAR derived digital elevation data can be used to extract terrain features 

from digital elevation data, as also found by [9] [25] [8]. Our first step sought to validate the stone 

walls dataset, by comparing them with the DTM and analysing their elevation profile. Interestingly, 

this method proved successful in identifying protected stone walls or segments of walls that no longer 

are present in the landscape, but are still registered, which was easily validated by inspecting the aerial 

images and elevation model to confirm the results. This method was applied as feature engineering 

for the Deep Learning step in the project, preparing the proper target data to be compatible with the 

model training [35]. 

The application of Deep Learning techniques, specifically the use of Convoluted Neural Networks on 

digital elevation data presented good results in identifying specific pixels where stone walls are 

present. Pixel-wise based analysis of the output predictions in the validation area suggested a high 

level of regression based accuracy (0.93), and on the overall area, an average of 0.88. The algorithm 

discovered areas both where the existent dataset needed to be updated due to the removal of stone 

walls and discovered new stone walls. These discrepancies seemed to be correct with the results from 

the first step analysis, as well as manual verification on location, where a selected number of new 

predicted stone walls presented similar characteristics as the ones already registered, however this 

remains to be confirmed by an expert in stone walls. Additionally, the postprocessing of the 

predictions identified a total of 391 stone walls removed or having segments that were 

removed/taken down, in Ærø. 

The use of multiple data sources showed an improvement over using the DTM alone. The results of 

the model improved with the inclusion of additional data layers, with the best model being trained on 

a combination of the DTM, HAT, and DTM(Sobel) layers. The visual inspection showed a decrease of 

noisy pixels on detected edges that are not stone walls, especially in urban areas. Future studies could 

also look at the effects of including supplementary data such as aerial imagery, historical maps, or the 

locations of municipality borders, where the presence of walls is most likely. Given the relation of 

stone walls with the presence of vegetation (where some structures have vegetation and even trees 
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located on top), the use of NDVI imagery could potentially yield interesting results. In fact, a future 

study should relate the presence of stone walls with a biodiversity measurement such as the bioscore 

[46], relevant not only for structures detection, but also engage in the promotion of their value in 

biodiversity conservation in areas of persistent habitat fragmentation due to agricultural 

development. 

The results of this analysis could be compared to a raster-based analysis where the Sobel filter or 

comparative edge detection techniques could be used. Such approach was initially considered, but 

dismissed after first analysis. The difficulty with this approach is that it is far less discriminating, 

identifying all of the images present in the image, making necessary to sort then differentiate the walls 

from other edge-type objects. For this specific case, it showed that additional spatial context is needed 

in order to distinguish amongst the different structures. The findings of this study show a significant 

improvement on the edge-detection method, because the algorithm is able to distinguish a stone wall 

apart from most edge-like structures. However, given the unique nature and context of our dataset, 

we are not able to relate our findings with other studies approaching the same problem, nevertheless 

our findings do support those of [7] and [25], who also explored the value of CNNs for extracting 

features from digital terrain data. 

The dataset itself diverges from classical deep learning problems, in that the training data itself is not 

completely validated. Given the data science adage “garbage in garbage out”, it is paramount in all 

machine learning tasks that the training data is correctly labelled. In the case of our study, the original 

dataset from which the study is based, is not actually representative of ground truth. The first step of 

our analysis sought to curb the effects of this issue, by removing as many walls as possible from the 

dataset that were either absent, or dubious. Additionally, given that the task was to find new walls 

within the dataset, it is notable that our aim was not to achieve the lowest possible loss value, as 

perfect agreement between the prediction and the test data would suggest no new walls, which we 

knew not to be the case. 

The advantage of analysis of DEM data is that the algorithm is able to identify patterns that are not 

visible using aerial or satellite imagery. This useful in archaeological applications for example, where 

vegetation cover can be an issue [8]. 

There are some limitations associated with our study. Firstly, we are limited by the availability of our 

terrain data. This data is available for the entirety of Denmark, but is only released in connection with 

a new aerial LiDAR mission, which currently is renewed only every 7 years. The data used in this study 

was from 2014, and therefore is unable to detect and map changes that have occurred in the 

intervening time. The results can also highly depend on the quality of the LiDAR derived data, where 

point cloud densities can influence the ability to detect and correctly identify small and narrow objects 

and structures, as mentioned by [47]. In order to apply the same analysis on an updated product from 

a new LiDAR mission, such differences and consequent biases need to be considered.  Additionally, 

while terrain data is available for Denmark, it is not necessarily available in other locations, nor with 

the same characteristics. Although the application of this study can be generalized to the context of 

other countries with similar protected structures, such as Sweden, Norway or Scotland, it is dependent 

on the level of resolution of their available national LiDAR data, a relevant component, as confirmed 

by [47]. 

Due to length computational time, it was not possible to fully optimise the CNN method for the task 

of identifying stone walls. Exhaustively testing the model for the best possible hyperparameters and 

architecture was not practical given time constraints and computer power, and was also outside the 

scope of this study. In either case: 1) all findings would probably require validation by an expert in the 
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field, 2) small increases in model accuracy were unlikely to result in the discovery of new walls, only 

that the walls extent would be slightly more accurate. If this method were to be utilized for a similar 

task, it may be worth experimenting with other model architectures such as Mask R-CNN, as has been 

used by [25], or ResNet, as in [7].  

Some difficulties were encountered in applying the CNN performing a regression task, given the 

challenge in evaluating the results. Considering that the target data presented an high imbalance 

between presence and absence data for each patch extracted, a classification into wall/no-wall proved 

to be less stable while running the same model with a classified output (where the last layer activation 

function was switched to Sigmoid, and the loss function to binary cross entropy). Therefore, a deep 

regression was applied for this specific problem, especially given that it was relevant to analyse and 

predict with continue values representing the probability of a protected stone wall to be present or 

not. Nonetheless, the regression-based method produces results which are harder to interpret and 

compare. Furthermore, to the best of our knowledge, there are no previous studies on automatically  

identifying stone walls, that would enable for a comparison of performance or results, where the only 

reference source is the stone walls dataset itself. 

The application of this study is undoubtably of relevance to the municipalities of Denmark. It can 

contribute to the automatization of the identification and update of the stone walls’ registry, and in 

this way fulfil the recommendations outlined by the Ministry of Culture in Denmark [4]. The 

development of such tool can come in a shape of a Decision Support System, where each municipality 

could visualize and apply analysis on their specific dataset, and in this way, contributing to the update 

of the national registry. A prototype is already in development, and will also require the involvement 

of experts, and feedback of its usability by municipalities. Additionally, it would also be interesting to 

consider the benefits that citizen science can offer, whereby citizens could contribute to the updating 

of the stone walls registry by providing information on the field, similar to other nature-related 

applications (GBIF or iNaturalist)5 . 

7. Conclusion 
This study shows the value of using a CNN Deep regression for extracting features from Digital 

Elevation Data, by attempting to map stone walls in a study site in Denmark, and in this way update 

their registry. We used publicly available data and concentrated on the Danish municipalities of Ærø, 

and Silkeborg (for external validation). Using pixel-wise evaluation, there was an overall agreement of 

93% between ground truth and prediction of stone walls in the validation area. Good results were 

seen using the DTM alone, however better results were obtained when adding HAT and an additional 

DTM layer with a Sobel filter applied. Good generalizability was found when externally validating the 

model on new data, showing good results for either the existent stone walls, as well as predicting new 

potential ones. The method performed best in open areas, however positive results were also seen in 

forested areas, which suggests that this method could be useful in the identification of features that 

might be challenging to detect, using remote sensing techniques alone.  In order to further improve 

the identification of stone walls, we suggest that the inclusion of a multi-modal dataset could be 

beneficial, in order to add additional context and improve differentiation. Further improvements can 

also be made by exploring the methodology and optimization of the deep learning CNN model. 

Recent developments in Machine Learning and CNN’s, and the increasing availability of LiDAR-based 

terrain models is an exciting development, which facilitates new methodologies in the extraction and 

mapping of terrain features, structures and objects. This application demonstrates the usefulness in 

 
5 https://www.gbif.org/ and https://www.inaturalist.org/  

https://www.gbif.org/
https://www.inaturalist.org/
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using such methods, with the potential to not only automatize processes in local and land 

management, but also to engage in innovative analysis in order to find scalable solutions for relevant 

problems.  

The code used in this study can be found in the associated GitHub repository 

(https://github.com/AnaCMFernandes/stonewalls).  

  

https://github.com/AnaCMFernandes/stonewalls
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9. Annex 1 – Field site validation 
The following images detail the examples of stone walls verifications on site, marked by their 

corresponding location in the study area. 

 

 
Fig. 23 - On site photos for location 1, with corresponding prediction and orthophoto image on backrgound  

(source: Kortforsyning) 

1) The model indicates that the section of these walls close to the road have been removed. A on-
site inspection indicates that this is the case, and that the approximate length of the removed 
sections is also reflected correctly in our prediction. 
 

 



37 
 

 
Fig. 24 - On site photos for location 2, with corresponding prediction and orthophoto image on background  

(source: Kortforsyning) 

2) The model indicates a long section of new stone wall dividing a residential block from its 
neighbouring field. An on-site inspection indicates that this is the case, and that the wall spans 
the entire length of the field. Additionally, the prediction also indicates the presence of a new 
stone wall on the northern border of the field, which was also confirmed on-site, and also spans 
the entire length of the field. 

 

 
Fig. 25 - On site photos for location 3, with corresponding prediction and orthophoto image on background  

(source: kortforsyning) 

3) The model indicates that an entire stone wall has been removed which originally stood as the 
border between two fields. At the time of on-site inspection a crop of rapeseed had been 
planted, making it difficult to ascertain the wall’s exact status, though it did appear to be 
removed. Aerial photography of the area seems to confirm this. 
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Fig. 26 - On site photos for location 4, with corresponding prediction and orthophoto image on background  

(source: kortforsyning) 

4) The model indicates a long section of new stone wall dividing two neighbouring fields. On-site 
inspection indicates that this is the case. The stone wall spans the entire length of both fields. 

 

 
Fig. 27 - On site photos for location 5, with corresponding prediction and orthophoto image on background  

(source: kortforsyning) 

5) The model indicates two parallel sections of new wall. On-site inspection indicates that this is 
not the case, rather than the model has falsely identified two embankments running parallel to 
an unsealed road.  
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Fig. 28 - On site photos for location 6, with corresponding prediction and orthophoto image on background  

(source: kortforsyning) 

6) The model indicates several sections of stone wall in a large area dividing fields adjacent to a 
farm house. These walls are located on private land, so the presence of all of them could not 
be confirmed on-site, however inspection seems to strongly indicate that all of the walls 
predicted in this area are new stone walls.  

 


