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Preface

Nowadays, the ubiquitous presence of digital devices and cut-edge technologies
presents new and thrilling challenges for using them to handle and solve prob-
lems that otherwise are unmanageable. A recurrent exponent is sensor-based data,
which is very valuable to evaluate procedures continuously, but requires the help
of automatic processing because the data produced is massive. Thus, the current
work tackles the problem of processing data in form of time series using no super-
vision for detecting atypical conditions recognized as outliers.

This work presents a model based on state-of-the-art deep learning techniques,
including sequence-to-sequence processing for capturing temporal dependencies
and ensemble modeling. An ensemble uses several basic models to achieve better
performance, following the idea of the wisdom of crowds. Then, the ensemble
is implemented using a diversity criterion to enhance its performance and using
sharing knowledge and convolutional networks to reduce the running time.

The model is efficiently evaluated using a detailed schema that maximizes the
resources used within a framework. The structure facilitates a fair comparison
with several competitive baselines. This work makes contributions to amplify the
framework scope including new tools and design the schema to the systematic
evaluation for all models. Then, using that infrastructure, extensive experiments
are performed over real-world time series from diverse domains, allowing a trust-
worthy evaluation with state-of-the-art methodologies. Finally, the work shows
insights over the model efficacy to improve the accuracy and reduce the execution
time.

Aalborg University, June 4, 2021
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Chapter 1

Introduction

The availability of digital devices in the everyday life is currently widespread
among many fields including numerous industries, scenarios, and applications.
Accomplish the condition where many people around the world could access a mo-
bile phone, or including digital features in industrial machinery is feasible, became
possible as part of continuous miniaturization and optimization of these technolo-
gies. Thus, when the electronic circuits are smaller and they have a low energy
consumption, their possibilities of use are expanded to a great range of settings.

The sensors, which are devices that monitor continuously a specific activity,
have been very beneficial for the development of new technologies. They are en-
hanced in terms of capabilities and are smaller and efficient, which allows their
implementation inside consumer products and industry-related machines, such as
mobile phones and scientific instruments. Therefore, they have a very extended
scope including tasks such as counting the steps of a phone user or monitoring a
pond water level, allowing the design of new innovative applications.

On a relatively small scale, the readings from a sensor could be interpreted and
analyzed by people. For example, a weather station with five measuring instru-
ments and updates every minute would be checked periodically by a meteorologist
in charge of a small number of stations. Even so, as the precision of the instruments
is increased, with several updates per second, and the number of sensors is larger,
considering more variables, the monitoring task becomes unmanageable for be-
ing supervised by operators. For that reason, the development of algorithms that
allows processing big amounts of data with no supervision is becoming highly de-
sirable, since they perform the monitoring tasks and reduce a repetitive workload
for the experts of the field.

The readings associated with sensors are large time-ordered sequences of data
recognized as time series. Then, a particular activity could be monitored at the
same time evaluating different variables. For instance, a weather station has sen-
sors for precipitation and wind, so it is possible to analyze both readings together
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as they occur at the same time. In that case, the time series is multivariate, while
the scenario with only one is called univariate.

Other scenarios that use time series involve settings with high-frequency up-
dates, which represent several readings for each time unit. For example, the finan-
cial market indicators are usually represented by time series since they are driven
by timestamped transactions around the world. Other cases involve usage metrics
for products and services, such as the server workload during a day or data flow
through a network.

Independently of the field, time series usually involved the same kind of anal-
ysis. For example, identifying when the monitoring conditions resemble a known
scenario, or when they are changing significantly concerning the normal operation.
The first case is recognized as time series classification and helps, for instance, to
identify activities such as running, walking, or sleeping for a person wearing a
heart rate monitor. Then, the second scenario is called outlier detection, which
supports the tasks for recognizing anomalous conditions that need to take some
type of action. For example, detecting low blood glucose levels with a wearable
would prevent that a person loses consciousness if an action is taken on time.

Outlier detection analysis is becoming a very important topic in recent years
in connection with the growing availability of time series data and the intrinsic
difficulty of processing it on time. Regardless of the scenario, identifying anoma-
lous conditions promptly is very critical, since it helps to prevent inconvenient
situations where an important system can be out-of-service or a health problem
could arise. Therefore, the models designed to address this problem should fo-
cus on working completely unsupervised and providing high levels of accuracy,
supporting the prevention of major issues.

In recent years, with the parallel thrive of powerful hardware for processing
deep learning models, the outlier detection subject is getting great attention since
this kind of model is effective for identifying anomalies in an unsupervised setting.
Thus, to the extent that new deep learning techniques are continuously presented
for several domains, it is very suitable to design new models addressed particularly
for processing time series in an outlier detection setting.

The current work presents a model that considers state-of-the-art deep learning
techniques inspired from different fields to address the outlier detection problem.
Then, the model is incorporated into an under-development framework that con-
siders many baselines to be evaluated fairly and homogeneously. The complete
system is implemented in a database-friendly setting which contributed to efficient
processing, faster performance evaluation, and straightforward results reporting.
The complete scope for this work is shown as follows:
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1.1 Outlier Detection Model

Following the effectiveness achieved by autoencoder-based techniques for unsuper-
vised outlier detection [1], this work presents a model considering the autoencoder
principle with the next improvements:

• Convolutional sequence-to-sequence: inspired by language processing and
translation works [2], the method processes time-series considering temporal
dependency between observations in a given sequence. Thus, one point is
evaluated by its value and its relative position across the sequence. Also,
as the method is convolutional, it takes advantage of Graphics Processing
Units (GPUs) for a faster execution than previous methods that relied upon
recurrent and low-paralleled calculations.

• A diversity-driven ensemble: the model introduces the use of diverse ensem-
bles [3] for the outlier detection setting. Therefore, the selection of single
models is guided by how relevant the new model is for the current setting, a
fact that previously depended on random choices.

• Transfer parameters between models: derived from the ensemble modeling,
to reduce the execution time, a portion of the knowledge for a single model
is shared to the new one, reducing the processing workload since it is not
necessary to re-learn all the parameters.

The model is evaluated against several baselines using an extensive in-development
framework with real-world data sets, demonstrating its effectiveness in terms of
accuracy and execution time.

1.2 Evaluation Framework

The model and the baselines are evaluated using an outlier detection framework
that is maintained by several developers. As part of this work, the following fea-
tures are included in the system, allowing to use them to evaluate all applicable
models:

• Time-series processing for linear baselines: linear outlier detection methods
are not designed for managing time series and their particularities, such as
temporal dependency. Thus, a method for preprocessing the data is intro-
duced to make fair comparisons concerning the deep-based techniques.

• Time-series data augmentation: to derive more cases for evaluating the meth-
ods using the same data sets, an augmentation process was deployed to in-
cluded artificial shifts and slopes inside the time series, in order to evaluate
the robustness of the methods in relatively different scenarios.
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• Validation process for autoencoder-based methods: inspired by the work
of [4] for evaluating their model parameters, a similar process was included
in the framework for choosing the parameters for autoencoder-based meth-
ods. It helps to reduce the uncertainly in unsupervised models since it is
possible to define a criterion for selecting parameters.

• Data management: to improve the efficiency of the complete evaluation pro-
cess, a database engine was included in the framework to support how the
input data and the results are distributed across several servers. Thus, the
data access is centralized, reducing space consumption and facilitating model
reporting and evaluation.

1.3 Execution Procedure

The outlier detection framework is supported by a database engine and a group
of tools that are organized in a procedure to maximize the available resources and
are prepared for future scalability. It includes the following components:

• Code repository for homogeneous distribution of sources between different
execution servers.

• Centralized data sets manager for automatic data provisioning according to
the experiment requirements.

• Database engine for storing the results derived from the experiments, facili-
tating the reports design.

• Reporting tools directly connected to the database to evaluate each model
performance.

1.4 Contributions

As a summary, the current work makes the following contributions:

• It presents a deep-learning model for outlier detection that outperforms the
state-of-the-art methodologies in terms of accuracy and running time.

• It introduces a group of techniques for enhancing the evaluation of outlier
detection methods via a standard framework.

• It deploys a schema for evaluating outlier detection methods focusing on the
efficient use of storage and computation resources.
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1.5 Document Organization

The document is organized as follows. Chapter 2 introduces some necessary con-
cepts for a comprehensive understanding of the developed method. Chapter 3
presents the model for outlier detection, evaluating its novelty concerning the
current available techniques. Chapter 4 outlines the model inside the evaluation
framework and the contributions to this system, while Chapter 5 presents the over-
all implementation for maximizing the available resources. Then, the model is
evaluated and compared to several baselines in Chapter 6, which results are dis-
cussed in Chapter 7. Finally, related work is reviewed at Chapter 8 and Chapter 9
provides conclusions and future work.



Chapter 2

Preliminary Concepts

The concepts examined in the following sections are important to understand the
model since they support the ideas that contribute to its development. They are
reviewed including some examples that help to illustrate them.

2.1 Time Series

Usually, they are recognized as sequences of data ordered by time. Formally, a
time series T = 〈t1, t2, . . . , tC〉 is a sequence of C observations, where each data
point ti ∈ RD is a D-dimensional vector. If D = 1, T is a univariate time series. If
D > 1, T is a multivariate time series.

In Fig. 2.1 an example for a multivariate time series is shown, where each color
represents a different variable, so each ti is represented by a two-dimensional vec-
tor. As many variables are included, the dimensions for the series are increased.

time

Figure 2.1: Multivariate time series example.

6
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2.2 Unsupervised Learning

It consists of a type of algorithm that learns representations from the data with no
requirement of labels. In contrast, the supervised setting uses labeled data, which
requires the intervention of humans. For example, a classifier for tagging pictures
needs to be trained using examples where the images have a label, previously
assigned for an operator. In a similar unsupervised setting, the algorithm will not
assign tags to the pictures, but instead, it will able to define groups for the images
that share some characteristics. Fig. 2.2 shows an example, where the supervised
model is trained with tagged birds and dogs, and then, it is evaluated with an
unknown example, so the model assigns a label. In the unsupervised case, the
model uses unlabelled examples, so it aims to classify them between unnamed
groups.

Figure 2.2: Supervised and unsupervised models example.

Unsupervised algorithms are particularly relevant because they do not require
people who assign labels to the data. Thus, they could manage extensive amounts
of data and provide insights with no intervention. Also, they can identify facts
that people could miss, such as subtle differences between similar examples. For
those reasons, the development of unsupervised algorithms is a topic of continuous
interest, coupled with the fact the available data in many fields is steadily growing.
Thus, it is likely that processing those scenarios becomes unmanageable being
necessary to automatize algorithms as much as possible.



8

2.3 Autoencoder

It is a type of algorithm consisting of two parts, encoder, and decoder. They are
used to compress an input into a small representation and then try to decompress
it to resemble the original data. Formally, the first part encodes a D-dimensional
input x into an intermediate and compact vector h ∈ RM, where M < D. Then,
the decoder takes the intermediate vector h and produces an output vector x̂ ∈ RD

that aims to resemble the input. The goal is producing an output x̂ with very little
difference to the input x.

In Fig. 2.3 an example is shown considering a picture. In the encoding phase,
the image is compressed to a small representation, and using it the decoder tries to
reproduce the original input. Even so, it is noticeable that during the process some
information is lost, for instance, an output with no fill.

Figure 2.3: Autoencoder example.

The gap of missing data between the input and output is a valuable insight for
autoencoder modeling because some features could be learned using that property.
For example, the model could compress only the most relevant parts for the input,
dismissing relatively uncommon facts. The attribute is especially useful for detect-
ing outliers because if the model is reconstructing the most relevant segments, it is
likely that it will miss anomalous points since they are unusual.

Using autoencoders to reconstruct time series for identifying atypical points
was introduced by [1] and it is illustrated with an example in Fig. 2.3. For that
case, an original input x is reconstructed by the output x̂, which only outlines a
general trend for the series. Then, comparing the input to its reconstruction, it is
possible to delimit outliers as the differences at those points are possibly higher.

2.3.1 Outlier scores

For time series T = 〈t1, t2, . . . , tC〉, the computation of an outlier score OS(ti) for
each observation ti is a value such that the higher OS(ti) is, the more likely is that
the observation ti is an outlier. Therefore, the difference between the input and
output in autoencoders, asserted as reconstruction error, is a suitable property to
be used as outlier score.
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Figure 2.4: An autoencoder reconstruction example for time series.

2.3.2 Outlier

Considering a time series T = 〈t1, t2, . . . , tC〉, an outlier is an observation ti ∈ T,
where ti has an score OS(ti) which is larger than a specific threshold ε. Thus, con-
sidering the Fig. 2.3 and a higher ε, it is likely that the observation t11 is considered
as the only outlier. Then, using a lower ε is possible that also the timestamps t5

and t19 are classified as anomalous points.

2.4 Sequence-to-Sequence Analysis

It is a technique commonly used for text processing and language translation,
which consists of processing the data in smaller sequences, such as sentences.
Thus, a sequence input from one domain could be processed as a whole and get an
output that reproduces it in another domain. For example, in Fig. 2.5 a translation
is illustrated, where the sentence in English is processed completely, so the output
in French will reproduce the same meaning, which has fewer words.

Figure 2.5: English to French translation example.
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Processing sequences completely provide a context, which is a valuable insight
for reproducing it in other domains since the surroundings for a particular ob-
servation are recognized. For instance, in language translation, if the sequence is
processed word by word, the context is lost, so the sentence meaning could be
completely different. For time series, this type of processing helps to identify data
properties such as temporal dependency and trends.

In terms of execution, sequence-to-sequence techniques usually are recurrent
tasks, since each observation requires the precedent ones to build a context. There-
fore, they have a reduced degree of parallelism, since each sequence requires to be
executed as a whole.

2.5 Ensembles

It corresponds to an extensively used technique in machine learning tasks where
single models are joined to build a single one that points to be the optimal repre-
sentation for all cases. In some implementations, an ensemble can act as a voting
system, where single models are trained independently to achieve a result and
then, the overall result is considered as the final output.

Fig. 2.6 shows an example where four classification models try to predict a
label for a picture. In independent conditions, two models failed to assign the
labels, while using the ensemble it is possible to get the correct answer, even when
some models are incorrect. Thus, single model output is somehow unreliable in
comparison to an extensive overview, a reason why the ensemble models are useful
in unsupervised settings, where the uncertainty is higher.

Figure 2.6: Ensemble as a voting system example.



Chapter 3

Outlier Detection Model

Current deep learning methodologies used for outlier detection mainly rely on
autoencoder-based methods, since they established a frame for unsupervised mod-
eling. Thus, the model reviewed in this work, called CAE-Ensemble, uses this type
of neural network, introducing recent techniques that help to improve the overall
performance in terms of accuracy and execution time. They are detailed in the
following sections and are based on the concepts reviewed in the previous chap-
ter. The complete model was developed as part of a previous project [5], and it is
currently in process for publication [6].

3.1 Convolutional Sequence-to-Sequence

As an alternative for the recurrent Sequence-to-Sequence shown before, the ap-
proach presented by [2] establishes a different way for managing positional data
in sequences of text. Thus, it addresses the drawback for recurrent methodologies
concerning the parallel execution of each sequence, since it is possible to complete
the computation without losing the positional information.

Redefining the example shown in Fig. 2.5, in Fig.3.1, a translation case is shown,
where each word now has an associated position, running through a parallel pro-
cess with no dependency for the result from previous stages.

Using that approach, each sequence could be processed in parallel, since the
position information is maintained during the complete process. Also, it enables
to use of convolutional operations, taking advantage of specialized hardware for
faster processing. To achieve that, it is necessary to examine how the position is
managed, which is detailed next.

11
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Figure 3.1: Parallel English to French translation example.

3.1.1 Positional input

On text processing, the words are transformed into vector representations, which
are easier to compute. Similarly, in time series, all the observations ti ∈ RD are
considered together as a vector representation, which is analogous to a word into
a sequence. Thus, the computation for both cases is very similar since they could
be represented in the same way with no distinction for their original domain.

Considering a multi-dimensional time series T = 〈t1, t2, . . . , tC〉, represented in
a distributional space as V = 〈v1, v2, . . . , vC〉 where each vi ∈ RD′ is a vector repre-
sentation in D′ dimensions for the original input. Then, for the same sequence, it
is possible to specify the absolute position M = 〈1, 2, . . . , C〉 for each observation
in an embedded representation P = 〈p1, p2, . . . , pC〉 where each pi ∈ RD′ .

Next, both vector representations that incorporate the actual data and the po-
sition information, could be joint as the sum x = 〈v1 + p1, v2 + p2, . . . , vC + pC〉,
which constitutes the input for the convolutional computation. The transforma-
tion is shown in Fig. 3.2, where a three-dimensional time series is represented in a
vector space, including the relative position in the series.

The process continues similarly to the text processing case, where a Convolu-
tional Neural Network (CNN) autoencoder processes the input x and returns its
reconstruction x̂, which maintains its positional information. Thus, each observa-
tion will be appointed considering its relative position inside the original series.

3.2 Diversity-Driven Ensemble

The ensemble modeling is limited by the fact that it is not possible to make distinc-
tions between singles models. Thus, for the example shown in Fig. 2.6, there is no
mechanism to weight better the models that classify correctly in detriment to the
inexact cases. For that case, each model has the same voting influence regardless



13

Figure 3.2: Convolutional sequence-to-sequence in time series.

of its actual output.
To address this problem, the work presented by [3] defines a method using the

lost function to discern some differences between single models, allowing a better
selection to improve the unified output. It is a useful approach, since it provides
a guide for choosing sequential ensemble members, a task that usually relied on
random assignations. Thus, a similar process was derived to use a diversity mea-
surement to choose single models in an unsupervised setting, for outlier detection.

3.2.1 Diversity measurement

It is a recognized fact that ensembles with diverse members are more accurate [7],
meaning that single models with different structures will benefit the overall output.
Therefore, if the most diverse models are identified, it is possible to join them
achieving a better performance than basic models and regular ensembles. Thus,
the proposed model defines a diversity measure that allows distinguishing the
models according to their degree of diversity.

The measurement considers a model Nt and defines its degree of diversity
by computing by the mean difference between it and the current ensemble Et,
modified by a factor of θ that represents the degree of expected diversity, as it is
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shown as follows.

Divt = θ × ||Nt − Et||2 (3.1)

Then, the measurement is included as a penalization inside an enhanced loss
function Lt that consists of the result for that metric, such as Mean Absolute Error
(MAE), including the diversity component.

Lt = MAE + Divt (3.2)

Lt = MAE + θ × ||Nt − Et||2 (3.3)

The diversity component inside the loss function sets the relative relevance for
each new basic model concerning the current ensemble. Thus, if a new model is
more different, it will weigh distinctly in terms of its loss function than another
model that is very similar to the previous ones.

3.2.2 Transfer learning

An additional limitation for ensemble modeling concerns the necessary time for
training multiple sequential models. In a simple implementation where a single
model takes a training time of H, it is likely that if I models are trained, the total
running time will be at least H × I. Thus, despite the benefits derived from using
ensembles, their results usually take longer.

One remarkable observation regarding the ensemble members is that they share
many parameters since every model has the same setting. For example, in an image
classification problem shown in Fig. 3.3, every model should process the pixels and
edges first, even when the output could be different. Thus, if the structure for the
models is similar it seems unnecessary to learn the parameters associated with
those steps because some facts such as the input are not changing.

Figure 3.3: Convolutional image classification process for two models and the same input.
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Reducing the running time for an ensemble is possible taking advantage that
some parameters are already learned in a previous model. So, the knowledge could
be transferred to the next model, which will be executed faster, since it only needs
to train a small portion of parameters. This process is implemented by selecting
a percentage of parameters that will be available in the following basic ensemble
model, as is illustrated in Fig. 3.4. The logic is that a completed trained Model
1 transfers a β portion of the knowledge to Model 2, which requires less time to
train the remaining parameters. Thus, it is possible to reduce the overall execution
time, since every model could transfer parameters to the next one, decreasing the
necessary training at each stage.

Figure 3.4: Transfer learning example.

3.3 Model Overview

The complete model overview is shown in Fig. 3.5, considering the necessary steps
from processing the original data to obtaining the metrics to evaluate and analyze
it. The integration into the framework and the execution schema will be review in
the following two chapters.

In the first step, the original univariate or multivariate times series are pre-
processed before start the training as it will be reviewed in Section 4.4.1. Then, the
already processed input data is used for all ensemble members, which are trained
sequentially, which allows to transfers of a portion of parameters β to the following
cases, reducing the overall running time. Also, they are subjected to the diversity
loss function to increase the ensemble diversity, a property that aims to improve
the model accuracy.

After training the ensemble, the model is tested considering the reconstruction
error, which allows defining the outlier score for each observation. Then, those
results are evaluated according to a defined threshold, which could be derived
from some domain knowledge or expert criteria. Using that threshold it is possible
to classify the points as outliers or normal data.

Finally, using the model results, represented by the observations classified be-
tween two categories, the threshold dependent and non-dependent metrics are
calculated to evaluate the model. Thus, it is possible to compare its performance
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with other models or assess its accuracy with respect to other settings.

Figure 3.5: Overall overview for CAE-Ensemble model.



Chapter 4

Framework Contributions

The model reviewed in the previous chapter was integrated into an outlier detec-
tion framework maintained by different developers. It is written in Python lan-
guage and has several components such as resources management, notification
services, and recognized baselines to evaluate models. Additional features are un-
der different stages of development, including an external Graphical User Interface
(GUI) and the inclusion of recent models presented in the field [8].

As part of the current work, some components were developed in order to
test the reviewed model performance and evaluate it in comparison to other base-
lines. They are available for all applicable models and could be modified for future
changes and improvements. The details for these contributions are shown as fol-
lows.

4.1 Non-deep Learning Baselines Data Processing

As part of the CAE-Ensemble evaluation, it was found that non-deep Learning mod-
els, for example, Isolation Forest (IS) [9], shown an inconsistent performance, ar-
guably related to not being design for processing time series. The problem was ad-
dressed by including a data processing method before running this kind of model.
It consists of partitioning the time series into smaller windows and processing them
separately. Then, to emulate some degree of temporal dependency, the windows
are overlapped, meaning that each case differs from the previous one only by one
step.

The complete process is detailed in Fig. 4.1 for a time series of size five. It
generates four cases for a window of size two, which constitutes the number of
non-deep learning model executions. Then, each model outputs a score for all the
processed observations, which are joined considering only the last observation for
each model, given an output equal to the number of executed models.

17
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Figure 4.1: Data processing for non-deep learning baselines.

4.2 Data Augmentation

A significant group of data sets for outlier detection comes from sources related to
monitoring tasks, such as sensor readings and server usage. One drawback for this
type of data involves that usually it does not includes some necessary scenarios for
an outlier detection algorithm. For example, a method should consider changes in
data that are not necessarily anomalous points, such as the differences in network
usage between weekdays and weekends.

Another case involves slow changes over time, for instance, a growing number
of website visits during a year. An algorithm must consider that property to avoid
false positives like identifying an outlier at the end of the year just because the
number is higher than at the beginning.

Addressing the special-case scenarios for detecting outliers and using data that
does not necessarily include them, involves augmenting its scope. The goal of this
technique is to increase the availability and variability of the data introducing slight
and artificial changes without losing generality. For instance, rotating an image
helps to train a classification algorithm for managing more cases based on the
same picture, so the label is preserved. It is illustrated in Fig. 4.2 where regardless
of the position, it is clear the figure retains its label.

Figure 4.2: Data augmentation for a picture. Extra observations preserve the label.
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For time series, the scenarios with trends or regular data changes could be in-
troduced via augmentation techniques. To exemplify that, consider a multivariate
time series with no trends or changes, and an identified anomalous point at t7, as
it is detailed in Fig. 4.3.
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Figure 4.3: An multivariate time series with a labeled outlier at t7.

Then, it is possible to settle a temporary change in one segment of the series,
for example, in the second third of the sequence. Thus, the values on that area
are modified homogeneously by a defined shift, such as adding two units, as it is
shown in Fig. 4.4.
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Figure 4.4: An multivariate time series with a shift of two units in the central segment.

The change, depicted between observations t5 and t8, still preserves the outlier
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tag at t7 and introduces special scenarios that are valuable to evaluate. For instance,
an algorithm could misidentify the boundary points for that range as anomalous
if the temporal change is not recognized.

Then, following a similar approach, a trend could be included for the entire
sequence modifying the values for all variables by a defined slope. In Fig. 4.5, a
slope of 0.6 is introduced to the entire segment, simulating a positive trend. The
modification allows evaluating if algorithms can manage a trend without identi-
fying anomalous observations just because they have a high value. For example,
values at the end of the sequence are relatively high, but it does not mean they are
outliers.
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Figure 4.5: An multivariate time series with a 0.6 artificial slope.

Both methods are built into the framework allowing to test any method using
the same data sets with settings that reproduce special conditions for time series.
They are parameter-driven, so for any case, it is only necessary to specify the type
of augmentation (temporal shift or slope) and its specification (portion of affected
data and its degree).

4.3 Validation Process for Parameter Tuning

Using autoencoders for outlier detection relies on the reconstruction error (view
Section 2.3), which besides its role for scoring data points could be used for evalu-
ating the selection of parameters, as it is proposed by [4]. In that case, the model
uses the number of dimensions as an adjustable parameter, so they evaluate their
choice with respect to the associated reconstruction error. They do not use that
information to make a decision because their results are not conclusive, but the
approach is applicable in other scenarios.
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As the CAE-Ensemble model requires the choice for λ and β parameters, the
method for using the reconstruction error for driving this selection is appealing
because it reinforces the unsupervised setting approach. Also, as several baselines
depend on the autoencoder technique, the methodology is extensible for choosing
any parameter defined for each particular case.

The method for tuning parameters considers selecting a portion of the training
set for validation purposes, for example, reserving a 30% for adjusting them. Then,
the model is trained using different parameter configurations, and each one is
evaluated using the validation set to calculate the corresponding reconstruction
error.

The procedure is assessed independently for each parameter, meaning that the
remaining ones are constant during the evaluation. That technique is used for
reducing the training time because if all possible combinations are considered, the
validation process will be very slow. For instance, if it is necessary to adjust three
parameters with ten scenarios by case, a complete evaluation will take 103 = 1000
training models, while if they are independently evaluated, only 10× 3 = 30 cases
are considered. The solution is not necessarily optimal, but it is a good choice
considering the positive trade-off in terms of execution time.

After calculating the reconstruction error for each parameter validation, the
choice is based on the median values, as it is shown in Fig. 4.6 for five cases, where
the value b is chosen for model testing. The criterion for using the median error
is based on the fact that the smallest error is usually associated with overfitting,
while a very high value reflects a poor model performance. Thus, it is necessary to
select a balanced parameter, where a median is a suitable option.

Figure 4.6: Reconstruction error example for choosing a parameter value.

The process is applied in CAE-Ensemble for choosing the β and λ parameters
and could be applied for other models based on autoencoders. Also, the technique
is used for selecting the processing windows size, which is a variable that applies
to all baselines.
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4.4 Data Management

On a relatively small scale, the evaluation and testing of an analytic model are
usually simple because all the results could be managed as part of the execution
process. Even so, as it becomes necessary to evaluate more models with different
configurations, the task could be complex, requiring a more organized methodol-
ogy such as a standardized framework.

For the outlier detection case, the systematic infrastructure facilitates how each
model works, for example, defining a homogeneous input that is suitable for any
method. However, as the system scaled, it was certain that it needed some adjust-
ments since many experiments over several models and data sets were expected.
Also, it was possible to use several high-capacity servers, which involved recurrent
executions and the requirement for managing the related data accordingly.

Handling the scenario where multiple models run and interact with data across
several servers requires the incorporation of a database engine. It is a feature that
enhances the framework capabilities bringing scalability and reducing its direct
interaction with data sets, for example, reading or writing files. The component
works for all baselines and addresses the scenarios where data is involved as it is
detailed as follows.

4.4.1 Input data

Data for outlier detection come from different sources without following a stan-
dard, since every release depends on the monitored scenario and its design prop-
erties. Thus, before executing any model, data should be processed to get a con-
ventional format, including partitions and labels.

The cleansing process, detailed in Fig. 4.7, shows the necessary steps to make
the data ready for use in any model into the framework. It includes reading the
data from the sources and matching the labels, that usually come from technical
reports. Also, it is necessary to apply normalization to have a common scale, and
introduce any additional process such as the augmentation reviewed in Section 4.2
or sampling large series.

Figure 4.7: Data sets cleansing process.
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Even when the detailed process could be run as part of the model execution, it is
not efficient, because the tasks are repeated in many cases, for example, comparing
models in a given data set. Also, in a scenario with multiple servers, data should
be copied in all of them, which could use space unnecessarily. Therefore, the
process is segregated into an independent task that stores the processed data into
a database, which is accessible on demand for all the models.

The integration of the database engine in this part of the process facilitates how
the framework interacts with input data, reducing the execution overhead because
training, validation, and testing sets are ready to use. Also, it decreases the space
consumption, since only the necessary data is retrieved for executing an experi-
ment. Another advantage is that provisioning new servers is straightforward, the
only requirement is having access to the database.

4.4.2 Results management

Considering the framework deployment over different execution servers, a prob-
lem regarding how managing the results arouse. In a centralized implementation,
all experiments could be saved locally, for example, in a single file or a standalone
database. Even so, as many servers run the models, the task for consolidating
all the results is time-consuming, because it implies merging the results between
implementations, tracking updates, among other tasks. Therefore, the process for
getting the results is modified to store them in a centralized database, which man-
ages and controls all data regardless of the source.

Handling the experiment outputs with a database engine provides mainly two
benefits. First, it maintains data integrity, preventing duplicates and incorrect in-
sertions, while multiple clients can access it. Second, it eases the consolidation of
reports over the experiments even if they run across several servers. For example,
getting the current status and progress for a running model.

The implementation of this component, which includes the computation of
results and the insertion in the database, runs independently to the model training.
Thus, it maximizes the use of resources during the overall execution because it
runs in parallel to other tasks. Also, the database engine is connected to terminal
spreadsheets with already built reports, so the results are always updated as the
experiments are running.

4.5 Derived Work

During the model and framework development, some minor tasks were completed,
which are briefly described as follows.
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4.5.1 New data sources

New data sets were added to the framework following the structure and process
detailed in Fig. 4.7. It helped to understand better the task and migrate altogether
to the database approach.

4.5.2 Adjusted points

Following a method used in recent outlier detection works [4, 10], an additional
module was developed to adjusted the results for any method according to the
ground truth labels. It tries to reproduce the behavior of a human in the task of
detecting outliers, who, when find one will mark a complete area as anomalous.
The method was tested and it is available for use, but the results seem artificial,
and they partially relied on the labels, which make the methods supervised.

4.5.3 Model integration tasks

Coding tasks related to migrating the code from a previous implementation to
the framework involved segregating the model completely. For instance, it was
necessary to adjust the input to a unified data processing, introduce independent
testing tasks, create structures for managing parameters and results, among other
tasks.



Chapter 5

Execution Schema

For the framework implementation, including all the components and its dis-
tributed architecture, it became comprehensible the need for outlining the com-
plete process in a way that maximizes the resources use and reduces the execution
time as much as possible. Thus, as part of this work, a schema was designed to
evaluate the CAE-Ensemble model and the baselines, addressing most of the issues
that arose during the development. The complete overview of the layout is shown
in Fig. 5.1, and its components are reviewed as follows.

Figure 5.1: Framework deployment. The steps for the flow are numbered.

25
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5.1 Code Distribution

All the code used in this work is written in Python, with some high-level function-
ing deployed via Bash Scripting. All the functionality is implemented directly into
the code and controlled via execution arguments, with no user interface. There
are other developments to include Graphical User Interface (GUI) in the frame-
work, but this work does not use them. For running new code, the next steps are
followed.

5.1.1 Developing and testing

New functionalities and changes are programmed using a Python editor in a non-
GPU server loaded in CLAAUDIA1, which is a cloud computing service provided
by the Aalborg University (AAU) IT department. The deployed Ubuntu instance
has 16 vCPUs, 128GB of RAM, and 128GB of storage, and it is remotely accessed
via public IP.

The code is tested in the instance using small sub-sets via command-line scripts
or the notebook interface Jupyter. The evaluation for the code is mainly focused
on checking the correct functionality, since running large models in a CPU-only
machine takes a very long time.

5.1.2 Distribution to execution servers

With tested code, the next step involves uploading it to a GitHub repository, a task
that provides mainly two benefits. First, it maintains the historical progress for
the development, enabling a review for all changes, and second, it consolidates the
most updated sources for their execution.

The private repository is shared among the developing instance, the GPU-
enabled execution servers, as well with other developers. So, as the new code
is updated into the repository, the servers are able to get the new sources, main-
taining the latest version across all of them. The released version always prevailed,
so local code changes are dismissed. Also, scaling the system with extra machines
only requires cloning the repository to get the last code.

5.2 Data Provisioning

As it was reviewed in Section 4.4.1, the database engine manages the already
cleansing data input. So, when the execution servers run an experiment, the neces-
sary data is requested directly to the database, reducing the storage requirements
for running the models.

1https://www.claaudia.aau.dk/platforms-tools/compute/compute-cloud/

https://www.claaudia.aau.dk/platforms-tools/compute/compute-cloud/
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The Database Management System (DBMS) is based on SQL Server Express,
running in the same CLAAUDIA instance used for coding. The selection is based
on its integration with reporting tools and the relatively small scale of the system,
which is an application aligned with its license terms.

5.3 Parallel Execution

To maximize the use of resources, distributed across three execution servers with
eight GPU processors overall, the following tasks were conducted to reduce the
execution time considering other processes that could be running in there.

5.3.1 Server distribution

First, each server was checked via the GPU manager to know the current load
and define which is a better case to run a specific experiment. Fig. 5.2 shows an
example, where the load is relatively high in terms of memory consumption, so
running a process there could represent an issue if the memory requirements are
higher than the available in both cores.

Figure 5.2: NVIDIA System Management Interface example.

Future developments would automatize this task using a controller server,
which could manage the assignation according to the current system load and
the memory requirement for each experiment.

5.3.2 GPU cores assignation

When a process is executed in a given server, the framework already has a task
that assigns it to the GPU core with the reduced load, balancing the execution.
Then, considering this property, a bash script maintains a batch with the next
experiments, which will be executed as the previous ones finished and the load in
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the server is balanced. The goal is not to overload the server while other processes
are running, but using all resources if they are free.

5.3.3 GPU and CPU tasks detachment

During the experiment execution, the deep learning models run in GPU cores,
while other calculations, such as computing metrics and writing data relied on
the CPU. Thus, for maximizing the GPU use, the CPU tasks run independently in
background threads, preventing that a GPU process enters an idle mode without
freeing memory while waits for the CPU task to finish.

An example is shown in Fig. 5.3 illustrating how the GPU processes only mod-
els, while the remaining tasks are delegated to CPU threads, reducing the overhead
of the system and maximizing server resources.

Figure 5.3: GPU and CPU threads management example.

5.4 Results Storage

A task executed by CPU threads concerns the insertion of the results in a central-
ized database, as it was reviewed in Section 4.4.2. It is managed by the same engine
used for data provisioning, relying on SQL Server at a CLAAUDIA instance. One
reason for using this platform is because the results could be accessed directly by
reporting tools such as Microsoft Excel and Power BI. Other DMBS usually require
specific Open Database Connectivity (ODBC) drivers to do that, so a simpler choice
was adopting the SQL Server system.

5.5 Reporting

All experiments executed in any server with different configurations store the re-
sults in a centralized database. Then, to evaluate and compare between settings,
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models, and data sets, it was necessary to introduce reporting tools such as Mi-
crosoft Excel. It allows efficiently analyzing the results using tables and charts.

The software has a direct connection with the database, so the results are up-
dated as soon as the experiments were completed. Therefore, already made re-
ports are continuously growing as new experiments are including, which prevents
redesigning them.

An example for a reporting table is shown in Fig. 5.4, which evaluates a single
data set (ECG) and twelve models considering the five metrics represented by the
columns. The colors highlight the highest value for each case, given a complete
overview of the performance.

Figure 5.4: Report table example in Microsoft Excel.

Then, a chart in Fig. 5.5 illustrates the evolution for three metrics in different
threshold configurations, giving insights about a possible trend in the scenario.

Figure 5.5: Report chart example in Microsoft Excel.
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The reports were made using pivot tables, a tool that shows the data in arrange-
ments of rows and columns, and provides control over several variables dynami-
cally. For instance, Fig. 5.6 shows a controller including some scenarios to evaluate,
the model configuration that is tested, the use of adjusted points (Section 4.5.2), and
the data set.

Additionally, the figure displays an unavailable data set (SWaT) which illus-
trates how the spreadsheet is connected to the database. At that moment, there
was no data for the scenario of SWaT meaning that the experiment was under
execution, so the results will be eventually available.

Figure 5.6: Dashboard manager for pivot tables.



Chapter 6

Experiments

The reviewed model is tested in terms of accuracy and execution time using real-
world data sets and compared to several baselines. Therefore, the experiments
show the applicability and effectiveness of the model for addressing the outlier
detection problem. The implementation details are outlined as follows.

6.1 Data Sets

• ECG1 is a two-dimensional time series related to electrocardiogram readings
for seven patients. Each time series contains around 3,700 and 5,400 observa-
tions. The outlier ratio is 4.88%.

• SMD2 is a public data set for server metrics released by [10]. It has 28 time
series, where each one has 38 dimensions, containing 708,405 observations
for training and 708,420 for testing. The outlier ratio is 4.16%.

• MSL3 consist in telemetry data from the Curiosity Rover on Mars. It com-
prises 36 time series with 55 dimensions, containing 58,317 training observa-
tions and 73,729 for testing purposes. The outlier ratio is 9.17%.

• SMAP3 is a data set from a Soil Moisture satellite consisting in 69 time series
with 25 different variables. In total, they consist of 138,004 training times-
tamps and 435,826 testing observations. The outlier ratio is 12.27%.

• SWaT4 is a public data set from sensors and actuators for a water treatment
plant. It is a single time series with 51 dimensions under normal opera-
tion (495,000 training observations) and during a period of intrusion attacks

1https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
2https://github.com/NetManAIOps/OmniAnomaly/
3https://github.com/khundman/telemanom
4https://itrust.sutd.edu.sg/itrust-labs_datasets/
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(449,919 testing timestamps). The percentage of outliers during the attacks is
12.14%.

• WADI4 consists in two time series with 127 dimensions representing a wa-
ter distribution system under normal operation (1,994,172 observations) and
during intrusion attacks (345,604 testing timestamps). The outlier ratio is
5.76% and it is sampled every ten timestamps, given its extensive size.

• Yahoo5 is a dataset with real and synthetic time series for metrics of different
Yahoo services. It includes 162 time series with around 1,400 observations
for each time series. The outlier ratio is less than 1%.

6.2 Baselines

The model CAE-Ensemble is compared to the following deep and non-deep learning
methods in order to demonstrate its effectiveness.

• Isolation Forest (IS) [9]: an ensemble of randomized clustering trees, where
the goal is isolating outliers in sparse clusters. It works by generating par-
titions over the data, where the points with a relatively small number of
partitions are likely to be anomalous. It is a non-deep learning method not
designed for processing time series, so it could miss properties as a temporal
dependency.

• Local Outlier Factor (LOF) [11]: it is a clustering-based method, which detects
outliers according to their local deviations with respect to their neighbors. It
assigns a density score for each point given by its distance to a group of k
neighbors, where the points with a lower score are likely anomalous. It is
also a non-deep learning method not specifically designed for time series.

• One-Class SVM (SVM) [12]: it corresponds to a one-class classification method,
which employs Support Vector Machines to learn the boundary that covers
normal data. Using that information classifies observations between positive
and negative regions. Thus, it is able to distinguish between normal data
points and outliers.

• Moving Average Smoothing (MAS): a simple method used for time series,
where the values that are more deviated from a moving average window
are likely to be considered as outliers.

• Autoencoder Ensemble (AE-Ensemble) [1]: an ensemble constituted by feed-
forward autoencoders that aim to reconstruct the original input, a process

5https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
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that could miss some information and allows to distinguish anomalous points.
The method is the base for several deep-learning methodologies since the au-
toencoder constitutes a valuable unsupervised technique.

• Recurrent Autoencoder (RAE) [13]: it extends the autoencoder modeling us-
ing Long Short-Term Memory LSTM units to reconstruct time series via a
sequence-to-sequence architecture.

• Convolutional Autoencoder (CAE): the simplified case for the presented con-
volutional sequence-to-sequence autoencoder, which dismisses the use of an
ensemble, only considering a single base model.

• Correlation Matrices Recurrent Autoencoder (MSCRED) [14]: it corresponds to
a state-of-the-art method for multivariate time series outlier detection, which
uses an autoencoder to reconstruct correlation matrices instead of using the
time series directly.

• Variational Recurrent Autoencoder (RNNVAE) [15]: another extension to the
autoencoder model that introduces a stochastic latent component for learning
a probabilistic distribution to improve the reconstruction output.

• Temporal Variational Autoencoder (OMNIANOMALY) [10]: an elaboration over
the previous variational modeling including an additional component to cap-
ture the temporal dependency in a context of stochastic variables.

• Recurrent Autoencoder Ensembles (RAE-Ensemble) [16]: a state-of-the-art re-
current autoencoder ensemble, which is created using recurrent neural net-
works with random architectures, which captures better the temporal depen-
dencies than other methods.

6.3 Evaluation Metrics

The model and the baselines are evaluated considering two types of metrics, de-
pending on how the threshold is used, as detailed as follows.

6.3.1 Threshold-dependent metrics

They are calculated after defining the criterion for separating outliers from normal
data. For instance, considering a defined number of observations with the highest
outlier score, or selecting values with a great deviation from the mean. In the
current case, a threshold is fixed where 99% of data is considered normal points,
and the remaining outliers. The metrics calculated using a threshold are shown
next, where for each case, a higher value represents a better performance:
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• Precision: it is the proportion between the true positive (tp) observations and
the total number of positive instances: true (tp) and false (fp).

Precision =
tp

tp + f p
(6.1)

• Recall: it corresponds to the detected instances (true positives) divided by the
real number of outliers: true positives (tp) and false negatives (fn).

Recall =
tp

tp + f n
(6.2)

• F1: it is the harmonic mean between Precision and Recall, showing a balance
over those metrics, and facilitating their comparison.

F1 =
2

Precision−1 + Recall−1 (6.3)

F1 = 2× Precision× Recall
Precision + Recall

(6.4)

6.3.2 All-threshold metrics

They consider all possible thresholds for the calculation, which is useful when
the threshold definition is not clear, as it arises in unsupervised models. The two
metrics are detailed next, where higher results reflect better model accuracy.

• PR-AUC: it means Precision-Recall Area Under Curve and it is used to rep-
resent the average Precision scores for each Recall, computed over all possible
thresholds ε. It is represented by the overlap for the following functions.

Precision(ε) =
∫ ∞

ε
Precision(x)dx (6.5)

Recall(ε) =
∫ ∞

ε
Recall(x)dx (6.6)

• ROC-AUC: it means Receiver Operating Characteristic Area Under Curve,
and it represents the probability that a random positive value has a higher
outlier score than a random negative instance. It represents the overlap be-
tween the following two curves for the true positive (TPR) and false positive
(FPR) rates, with a varying threshold ε. f1 represents the true positive rate



35

given a threshold, while f0 is the false positive one. tn stands for true nega-
tive results.

TPR(ε) =
∫ ∞

ε
f1(x)dx (6.7)

f1 =
tp

tp + f n
(6.8)

FPR(ε) =
∫ ∞

ε
f0(x)dx (6.9)

f0 =
f p

f p + tn
(6.10)

6.4 Experiment Results

The accuracy results for all data sets are shown as follows. Table 6.1 presents
the results for ECG where CAE-Ensemble outperforms all baselines in almost every
metric. For ROC, the model is the second-best, even when the overall performance
of RAE is deficient.

Table 6.1: ECG accuracy results.

Model Precision Recall F1 PR ROC

ISF 0.0347 0.0076 0.0198 0.0501 0.5062
LOF 0.0713 0.0174 0.0436 0.0500 0.4912
MAS 0.0483 0.0100 0.0266 0.0578 0.5342
OCSVM 0.0426 0.0094 0.0243 0.0588 0.5342
MSCRED 0.0429 0.0113 0.0275 0.1046 0.5062
OMNIANOMALY 0.2364 0.0419 0.1198 0.1410 0.5584
RNNVAE 0.1583 0.0283 0.0808 0.0895 0.5500
AE-Ensemble 0.2684 0.0529 0.1445 0.1511 0.5692
RAE 0.1249 0.0222 0.0634 0.0936 0.5922
RAE-Ensemble 0.1952 0.0378 0.1042 0.1092 0.5669
CAE 0.2324 0.0494 0.1309 0.1297 0.5633
CAE-Ensemble 0.2813 0.0635 0.1634 0.1682 0.5761

The results for SMD shown in Table 6.2 are similar to the previous case, with the
ROC being better in non-deep method MAS, which in this case is a good contender.
Even so, as before, CAE-Ensemble achieves the second-best accuracy in this metric,
which reflects its very good performance.
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Table 6.2: SMD accuracy results.

Model Precision Recall F1 PR ROC

ISF 0.1288 0.0277 0.0669 0.0635 0.5094
LOF 0.2531 0.0945 0.1526 0.1208 0.5695
MAS 0.4813 0.2101 0.3165 0.3261 0.7520
OCSVM 0.4021 0.1462 0.2486 0.1934 0.5783
MSCRED 0.0233 0.0036 0.0097 0.0472 0.4956
OMNIANOMALY 0.2497 0.1165 0.1699 0.1507 0.6148
RNNVAE 0.4340 0.1667 0.2723 0.2408 0.6917
AE-Ensemble 0.3782 0.1481 0.2372 0.2481 0.7137
RAE 0.4794 0.1996 0.3073 0.2651 0.6998
RAE-Ensemble 0.4781 0.1901 0.3013 0.2646 0.7139
CAE 0.5281 0.2267 0.3454 0.3351 0.7435
CAE-Ensemble 0.5316 0.2269 0.3479 0.3368 0.7441

For MSL, detailed in Table 6.3, the CAE-Ensemble model outperforms the base-
lines only in the all-threshold metrics, showing the importance for choosing a good
threshold. For that case, a single threshold shows a worse performance for the
model, even when considering all Precision and Recall scenarios, represented by
PR, the performance is better.

Table 6.3: MSL accuracy results.

Model Precision Recall F1 PR ROC

ISF 0.1154 0.0183 0.0380 0.1085 0.5036
LOF 0.2101 0.0456 0.0758 0.1433 0.5268
MAS 0.2477 0.0680 0.1058 0.1596 0.5469
OCSVM 0.2286 0.0528 0.1019 0.1583 0.5629
MSCRED 0.2016 0.0057 0.0251 0.1456 0.5157
OMNIANOMALY 0.1877 0.0245 0.0695 0.1619 0.5429
RNNVAE 0.1699 0.0291 0.0608 0.1380 0.5335
AE-Ensemble 0.2590 0.0192 0.0594 0.1424 0.5456
RAE 0.1766 0.0416 0.0887 0.1573 0.5714
RAE-Ensemble 0.1935 0.0500 0.1003 0.1588 0.5720
CAE 0.1980 0.0386 0.0731 0.1604 0.5760
CAE-Ensemble 0.2128 0.0415 0.0823 0.1643 0.5843

The accuracy for SMAP, shown in Table 6.4, is the best for the variants of the
developed model, with and without an ensemble, in almost every case. The Pre-
cision for RAE and its ensemble are relatively high, representing that they are very
selective, dismissing several positive instances since the Recall is low. The results
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present that this data set could be not benefited from the ensemble approach, be-
cause most of its metrics are better in single models. Even so, it could be tested
further, since it is a relatively unexpected condition.

Table 6.4: SMAP accuracy results.

Model Precision Recall F1 PR ROC

ISF 0.0904 0.0115 0.0239 0.1338 0.4976
LOF 0.1259 0.0197 0.0370 0.1316 0.5035
MAS 0.1285 0.0486 0.0675 0.1651 0.5251
OCSVM 0.1497 0.0362 0.0526 0.1474 0.4902
MSCRED 0.0431 0.0021 0.0075 0.0934 0.4343
OMNIANOMALY 0.0883 0.0229 0.0308 0.1558 0.5402
RNNVAE 0.0764 0.0217 0.0250 0.1192 0.5119
AE-Ensemble 0.1040 0.0357 0.0479 0.1987 0.5773
RAE 0.1528 0.0414 0.0542 0.1660 0.5641
RAE-Ensemble 0.1460 0.0420 0.0492 0.1628 0.5601
CAE 0.1302 0.0659 0.0733 0.2123 0.5905
CAE-Ensemble 0.1208 0.0609 0.0709 0.2118 0.5959

For SWaT in Table 6.5, the best results are achieved in a simple autoencoder
scenario, so possibly the components included in other autoencoder-based meth-
ods do not fit in this case. Also, for MSCRED, the results for the threshold-dependent
metrics are zero, meaning the current setting is very restricted for the method.

Table 6.5: SWaT accuracy results.

Model Precision Recall F1 PR ROC

ISF 0.0956 0.0079 0.0296 0.1268 0.5005
LOF 0.0889 0.0073 0.0275 0.1144 0.4838
MAS 0.1067 0.0088 0.0330 0.0786 0.2272
OCSVM 0.0889 0.0073 0.0275 0.0901 0.3457
MSCRED 0.0000 0.0000 0.0000 0.0727 0.5666
OMNIANOMALY 0.9822 0.0807 0.3036 0.7041 0.8123
RNNVAE 0.2644 0.0218 0.0819 0.1629 0.6311
AE-Ensemble 0.9867 0.0812 0.3054 0.7567 0.8490
RAE 0.9687 0.0802 0.3045 0.7494 0.8420
RAE-Ensemble 0.9844 0.0810 0.3048 0.7536 0.8488
CAE 0.4156 0.0342 0.1286 0.3849 0.7634
CAE-Ensemble 0.8778 0.0722 0.2717 0.6521 0.8358

The WADI data set, detailed in Table 6.6, has excellent results in most metrics,
although ONMIANOMALY shows a better ROC even when its remaining results are
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very poor in comparison to the baselines.

Table 6.6: WADI accuracy results.

Model Precision Recall F1 PR ROC

ISF 0.0520 0.0090 0.0266 0.0610 0.5248
LOF 0.1590 0.0275 0.0813 0.0703 0.5284
MAS 0.4538 0.0785 0.2320 0.1500 0.5788
OCSVM 0.3815 0.0660 0.1950 0.1193 0.5754
MSCRED 0.0000 0.0000 0.0000 0.0993 0.6730
OMNIANOMALY 0.0872 0.0150 0.0444 0.1724 0.7261
RNNVAE 0.4682 0.0810 0.2393 0.1737 0.5739
AE-Ensemble 0.1647 0.0285 0.0842 0.1356 0.6261
RAE 0.2630 0.0455 0.1344 0.1580 0.6516
RAE-Ensemble 0.0983 0.0170 0.0503 0.1263 0.6527
CAE 0.3353 0.0579 0.1713 0.1243 0.5994
CAE-Ensemble 0.5462 0.0945 0.2793 0.1912 0.6023

In the Yahoo data set, shown in Table 6.7, the best results are achieved in non-
deep learning methods. Possibly, the synthetic time series available in that data set
benefit non-deep learning methods since the anomalous point are not difficult to
distinguish as they are introduced artificially.

Table 6.7: Yahoo accuracy results.

Model Precision Recall F1 PR ROC

ISF 0.1251 0.4457 0.1335 0.4065 0.8580
LOF 0.2629 0.6891 0.2748 0.6597 0.9053
MAS 0.3177 0.7901 0.3279 0.6792 0.9335
OCSVM 0.3290 0.7813 0.3390 0.7779 0.9115
OMNIANOMALY 0.3116 0.6794 0.3145 0.6523 0.9212
RNNVAE 0.2248 0.4382 0.2191 0.3754 0.8345
AE-Ensemble 0.3087 0.6969 0.3155 0.7144 0.9188
RAE 0.2893 0.6649 0.2938 0.6512 0.9187
RAE-Ensemble 0.3170 0.7260 0.3223 0.7298 0.9445
CAE 0.2751 0.6381 0.2769 0.4700 0.9144
CAE-Ensemble 0.2648 0.6202 0.2647 0.5191 0.9186
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6.5 Execution Time

In order to evaluate the execution time for the CAE-Ensemble, it is compared with
RAE-Ensemble because both have a similar architecture. Also, as the former is based
on convolutional networks instead of recurrent ones, it is relevant to overview how
this change reduces the running time.

Table 6.8 shows the execution time for RAE and CAE with and without ensemble.
First, in all data sets, the results for CAE-Ensemble are very low in comparison to the
recurrent model, demonstrating its effectiveness in terms of reducing the execution
time. Then, comparing the ratio between every single model and its ensemble, the
results are better for CAE, showing the effect of using transfer learning where each
new single model takes less time to be trained.

Table 6.8: Training Time Comparison (in minutes).

Model ECG SMD MSL SMAP SWaT WADI Yahoo
RAE 7.84 246.43 16.63 32.19 12.88 72.32 59.13
RAE-Ensemble 59.66 1959.13 129.99 254.83 102.44 566.89 470.80
Ratio 7.60 7.95 7.82 7.92 7.95 7.84 7.96
CAE 4.16 74.34 7.65 20.36 4.45 22.37 31.05
CAE-Ensemble 24.05 452.06 45.45 122.13 25.92 129.58 188.98
Ratio 5.78 6.08 5.94 6.00 5.82 5.79 6.09



Chapter 7

Discussion

The current work consolidates the development for an outlier detection model in
different stages over a year, which are detailed next. Also, as part of this process, a
paper is likely to be published in a high-ranked conference.

1. Development of model components in Spring 2020.

2. Paper sent to International Conference on Data Engineering (ICDE) in Au-
tumn 2020.

3. Paper rejected by Winter 2020 with observations about some inconsistencies
in the results.

4. Overall model review, incorporation into a framework, new baselines, and
tests during Spring 2021. The current work.

5. The paper is under review by International Conference on Very Large Data
Bases (VLDB).

After overseeing the context of the current project, its evaluation considers the
features that contribute to improving the model and its evaluation process, not
exclusively its comparable performance, as it is detailed as follows.

7.1 Model Performance

The setting shown in this work, based on the premise of 99% of observations are
normal data, shows very good accuracy for CAE-Ensemble in five of seven data
sets. It is a remarkable achievement since this threshold selection is a rigorous
choice and the domain for the time series is very different. For instance, there are
web server metrics, health readings, satellite measurements, among others, and the
results are consistently correct for all of them.
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Then, for almost every case, the performance is better for deep learning meth-
ods showing how they were improving the state-of-the-art techniques for this prob-
lem in recent years. Also, for threshold-dependent metrics, most non-deep learn-
ing methods have a performance one degree of magnitude below the deep learning
cases, reflecting that the selected threshold declines significantly their performance.

In an unsupervised setting, choosing a good threshold is a difficult decision be-
cause there is no domain information available. For instance, knowing in advance
the outlier ratio (see Section 6.1) allows choosing the threshold that fits better for
each data set, but this is only possible in supervised scenarios. Thus, the 99%
of normal data was a random selection among all the evaluated cases, aiming to
evaluate all methods fairly. Other scenarios, such as [6], reported the best pos-
sible metrics derived from PR, but for the current case, that choice could be not
illustrative enough. It is relevant to show how the threshold affects some results,
something that is not clear when only the best cases are outlined.

In terms of execution time, the direct comparison between CAE-Ensemble and
RAE-Ensemble shows a significant improvement for the convolutional model even
in the single configuration, a result that was expected. Therefore, this setting en-
hances the previous recurrent method satisfactorily, getting more accurate results
in less time.

7.2 Framework

The migration of CAE-Ensemble into an outlier detection framework introduced
several advantages for its evaluation. First, it allowed a homogeneous comparison
between all models, since the input and output are processing equally for every
case. Usually, when the original implementation for models is executed directly
some differences could arise between them. For instance, data processed with no
standard scale, or dissimilar parameters would point to unmatched results. Using
a framework helps to control these scenarios providing fair measurements.

Moreover, the infrastructure enables to make common tasks independent for
any model, data set, and experiment. Thus, introducing changes for these functions
is transparent over the system, reducing programming work and possible mistakes.
For instance, new results calculations and database management is unconstrained
to each scenario, facilitating its use and future scalability of the system with new
models and functions.

Using a framework also increases the number of experiments that were per-
formed over all the models and data sets. For the evaluation of CAE-Ensemble and
the baselines at least fifty types of settings were tested, a situation that would be
unmanageable if each model was evaluated independently.
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7.3 Scalability

The progress achieved by the inclusion of parallel features and distributed execu-
tion for the experiments reduces significantly the running time allowing to make
more testing and evaluation. During the development, it becomes necessary to
manage better the workload for a single server, so incorporating a database en-
gine potentializes its distribution across several machines with a unified point for
provisioning data and results.

Also, as the tasks for calculating metrics worked independently in CPU threads,
it was possible to build a set of metrics without affecting the model training time. It
allowed evaluating even more scenarios for a single setting, such as using different
thresholds to illustrate their evolution. Thus, every model has metrics for different
threshold configurations, for example, using percentiles, standard deviations, best
possible cases, among others.



Chapter 8

Related Work

The outlier detection problem had been studied for a long time since it is closely
related to critical circumstances. For example, it is important to keep systems work-
ing and monitor any issue with them. Also, it is desirable the early detection of
problems in health, environment, and many other scenarios, to execute preventing
actions accordingly.

The existent methods for addressing the outlier detection problem could be
classified in at least five groups, as it is detailed in Fig. 8.1. The categories lead to
define some differences between the models, so they are not unique, and there are
methods that be could be merged in between.

Figure 8.1: Outlier detection methods classification.
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8.1 Distance-based Methods

The first category, related to distance-based methods, considers the distance cal-
culation between data points and then finds those that comply with some rules,
like the highest-ranked. A classic method is k-Nearest Neighbors (k-NN) algo-
rithm [17], while there are recent developments with refined distance calculations
and different rules [18, 19].

8.2 Density-based Methods

Derived from the distance case, the density-based methods calculate a local den-
sity measurement for each point, defining principles to classify them using the
metric. Local Outlier Factor (LOF) [11] is the main exponent for this methodology,
while other works introduced improvements with probability distributions and
parametrizations [20, 21].

8.3 Clustering-based Methods

Clustering-based methods create groups of similar data points and measure the
distances between them, usually selecting the highest-ranked as outliers. Some
works developed adaptations from (LOF) [22], or use a different criteria such as
DBSCAN [23], Gaussian Mixture Models (GMM) [24] and k-means [25].

8.4 Statistical Methods

Statistical methods for outlier detection usually relied on some parametric features,
for example, assuming a data distribution and considering the points outside it
as outliers. In a normal distribution, the Z-Score rates the points according to
mean and variance. Following a similar approach, an extensively used method
corresponds to Principal Component Analysis (PCA), while other methods depend
on graphical representations, such as histograms and scatter plots.

8.5 Classification Methods

Classification methodologies define a criterion to separate groups into two or more
classes. For outlier detection, there are two categories, normal data, and anomalous
points, so the One-Class Support Vector Machines [12] is a recognized method that
uses a hyperplane to separate data between positive and negative instances. Then,



45

most deep learning methods use this principle to address the problem, incorporat-
ing better techniques to classify the observations. In most cases, they follow two
types of strategy: discriminative and generative processes.

8.5.1 Discriminative Strategy

A discriminative model categorizes data instances between several classes, which
is basically the task of assigning labels. For outlier detection, it involves build-
ing a network that outputs a binary categorization for each observation, which is
developed in works such as [26].

8.5.2 Generative Strategy

The generative strategy aims to characterize and identify valuable data over the
observations. For instance, it provides details over a picture or creating a new
one based on that information. For outlier detection, the autoencoder model is a
usual example because it generates a reconstructed input to identify anomalous
points [1, 4, 10], as it was developed in this work. Other techniques usually involve
probabilistic distributions, such as the Random Sum-Product Networks introduced
by [27].

Training deep learning models is constrained by the availability of labels, which
depends on a data recollection and tagging process completed by a domain expert.
Thus, it is very likely that many data sets have limited or not labels, so the mod-
els are developed considering this drawback. When there is plenty of labels, a
model could be trained using them, which is a supervised setting including works
as [28]. Then, if there are some labels, the training would use them barely in a
semi-supervised scenario, which is followed by [29, 30]. The unsupervised case
does not use labels, as this work, which is an extended used technique since does
not need any human intervention [10, 8]. Also, recent works [31] are leveraging
the labeling stage to the model itself, which is called a self-supervised setting.

8.6 Time Series Application

Most outlier detection methods are applicable for time series processing because
an anomalous point in an ordered series usually does not differ very much from
an outlier observation in other settings. Even so, as recent deep learning methods
surge the performance for ordered data such as sequences [32], it becomes coherent
to apply it for time series. Thus, current developments take advantage of temporal
properties to specialize the techniques for its use in time series [4, 16, 33]. This
work is part of this process, including contributions for modeling and supporting
infrastructure for evaluating them fairly.



Chapter 9

Conclusion

The current work integrates the outlier detection model CAE-Ensemble, designed
and improved as part of previous projects, into an extensive under-developing
framework for managing and maintaining models related to that domain. The
process supports the future development of the algorithm and its possible deriva-
tions, including further evaluation with updated techniques.

Then, the work introduces new features to the framework allowing more ex-
haustive evaluations for the models, considering advanced scenarios and improved
optimization techniques. Also, the incorporation of data management tools allevi-
ates the system workload and establishes a milestone that assures stable scalability
across different machines and environments.

Finally, the integrated process was delineated over a complete schema that max-
imizes the available resources, providing efficient mechanisms to run, evaluate and
analyze different outlier detection models. CAE-Ensemble was tested in comparison
to several baselines to show its good performance and prove the system efficacy.

As future work, the paper publication [6] is under review, with an expectation
of getting an acceptance in the following months. Also, further automatization
in the framework is under consideration, mainly to control the model execution
across current and future instances via a load-balancing mechanism.
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