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SUMMARY

This paper presents the research of using Multi-View Learn-
ing (Multi-View Learning), Multi-Task Learning (MTL), and
dueling architecture based on deep double-Q network (D3QN)
to design a network for obstacle detection and dirt prediction,
which makes it possible for a robot to predict dirt without
hitting obstacles. The training should make it superior to robots
using random navigation, but using only a monocular camera
it should make it cheaper than robots from existing companies.

The system, , consists of two individual parts, FCRN
network with 2 outputs (FCRNO2) and D3QN network with
2 inputs (D3QNI2). FCRNO2 uses a modified version of the
Fully Convolutional Residual Network (FCRN) presented in
the paper “Towards Monocular Vision based Obstacle Avoid-
ance through Deep Reinforcement Learning” by L. Xie et al.
It has been modified to use MTL to do both depth prediction
and dirt detection. This is done using hard parameter sharing
which uses a number of shared layers to represent common
features that can be learned at the same time and then some
task specific layers for each task. The images in the “Depth
Image Stack” comes out in the same size as in the paper we
base our solution on, but the images in the “Dirt Image Stack”
have the top 40% cut off to focus on the ground and remove
noise from the walls. D3QNI2 consists of two separate parts
Convolutional Neural Network (CNN) and dueling architecture
based on deep Q network (DDQN). CNN is the part of that
uses Multi-View Learning to work on the layers using a one-
view-one-network strategy until flattening them. The DDQN
takes this as input and chooses the best action.

The reward function that is used consists of multiple parts.
This is the final reward function, but others were tried with e.g.
different amounts of punishment. The first comes from D3QN
and is about driving, the second is about hitting objects, and
the third comes from the added dirt detection.

rdrive “ v ¨ cospθq ¨ 0.2´ 0.01 (1)

It gives higher rewards if the robot drives fast and in a straight
line, but therefore also will get lower for turning. The one for
hitting objects sets the entire rewards to rtotal “ ´10. The last
is calculated based on the earlier found reward (Equation 1)
and returns the total reward if the robot has not hit an obstacle.
The reward is calculated based on 3 scenarios:

1) Getting closer to the closest dirt spot
2) Getting further away, after having been close enough
3) Getting further away from the closest dirt spot

In scenario 1 the robot is getting closer to the dirt tile that the
system has found to be the closest, and the reward returned is
doubled.

rtotal “ rdrive ¨ 2 (2)

In scenario 2 the robot is getting further away from the dirt
that the system has found to be the closest in the start, but is
still getting closer to some dirt, and the reward is added 1.

rtotal “ rdrive ` 1 (3)

In the final scenario, the robot is getting further away from
the dirt that the system has found to be the closest in the start,

but is not getting any closer to any other dirt. Here we have
tried to multiply it with e.g. ´2 and 0.5 to see the effect but
found ´1 to be the optimal of the values compared.

rtotal “ rdrive ¨ ka (4)

All of the training and testing was done using the Gazebo
Simulator and Robot Operating System (ROS). All the exper-
iments have been trained and tested on an Intel i9-9900 CPU,
16GB RAM, and an NVIDIA GeForce RTX 2070 Super 8GB
GPU. We have tested FCRNO2 with 1, 2, 3, and 10 task-
specific blocks, where 2 was the best of the 4 tested, showing
the least, most evenly distributed noise.

For the navigation part, the comparison that has been made
is between a robot using random algorithm and a robot using
. While testing we found that D3QN and FCRN trained with
dirt pictures instead of depth pictures showed the best test
results, with fewer hit obstacles on average compared to the
random robot. As for D3QNI2, the test configuration where the
reward is negated by ´1 when driving away from the closest
dirt, reached the highest total rewards, with fewer bumps than
the random robot on average.

We also discuss multiple ways to improve FCRNO2, e.g.
using different types and sizes of dirt where as in this paper it
has been static; and different loss functions for dirt and depth
prediction.

Another interesting improvement CleanNav would be to
give the D3QNI2 network another input from a downward-
facing camera, to tell whether or not it is driving over dirt or
not. This could improve the training by making the training
signal less noisy with regards to where the dirt is.

In this paper a multi-purpose network for dirt detection and
depth prediction is proposed.

The FCRNO2 network seems to give some good results
for dirt detection. It were seen that when driving only having
trained FCRN using dirt images, the robot drove for the dirt,
which means it is likely this part of CleanNav works. When
being trained together (FCRNO2 and D3QNI2) the results do
not show any positive results.

When looking at task-specific blocks we saw that L2 was
better to the others in the case of noise. Single task did also
have less noise than e.g. L1, but L2 was still better because
of the noise distribution.

This suggests there might be some potential for the dirt
detection and that the problems seems to originate in the way
that the D3QNI2 network uses the dirt detection and depth
prediction results. The depth prediction and dirt detection
seems promising, however, it does not seem like D3QNI2 is
the right choice in this setup.

Our final conclusion is therefore that FCRNO2 shows
potential, however, CleanNav with D3QNI2 and the current
setup does not seem to give a positive outcome.
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Abstract—Autonomous cleaning robots are becoming more
popular in the domestic sector and business sector. Many
companies, schools, airports, and such are using them to keep
large surfaces clean while freeing up employees to clean other
places that the robot cannot. Dirt detection is one of the newer
features in autonomous cleaning robots that enables smarter
cleaning. Dirt detection has the potential to make cleaning robots
more efficient both in time, but also in resources like water,
detergents, and energy. We try to use Multi-Task Learning (MTL)
for extending Fully Convolutional Residual Network (FCRN)
to make a single network for both depth prediction and dirt
detection. Furthermore, we use Multi-View Learning (Multi-View
Learning) in a dueling architecture based on deep double-Q
network (D3QN) network for making a robot able to learn to
navigate based on depth prediction and dirt detection. We use
the Gazebo Simulator combined with Robot Operating System
(ROS) to test the proposed solution on a simulated robot. We
test our solution against a random navigation algorithm as well
as some variations of our own solution. We conclude that our
solution does not perform better or worse than the random robot,
and that the D3QN network with 2 inputs (D3QNI2) architecture
might not be suitable for this kind of task.

Index Terms—Deep Reinforcement Learning, Multi-Task
Learning, Multi-View Learning, Depth Prediction, Dirt Detection,
Gazebo, Simulation

I. INTRODUCTION

Autonomous cleaning robots are getting more popular
among companies. As a result the algorithms used in the
robots are becoming more advanced. Two important tasks for
autonomous cleaning robots to solve are obstacle avoidance
and dirt detection. Obstacle avoidance is important for the
robot to be able to navigate safely around in static and dynamic
environments. Obstacle avoidance often relies on sensors like
Light Detection and Ranging (LiDAR), depth camera, and
more.[3] It can also be a combination of the aforementioned
sensors, however, some of these solutions are expensive and
consume a lot of power. A solution to this could be to use
monocular RGB cameras as they are cheap, easy to use, and
dont consume as much power. They also tend to give richer
information than the other sensors, but they also have the
disadvantage that they do not give any depth information,
and that makes it difficult to navigate based on the data. We
will explore the use of deep neural networks to predict the
depth in a 2D image from a monocular RGB camera and the
use of Deep Reinforcement Learning (DRL) for navigating
without hitting obstacles. The other task, dirt detection, is
about detecting different amounts and types of dirt. Dirt
detection can be done in different ways with different sensors,
however in this paper we are focusing on using a camera for
dirt detection. We will also be focusing on locating the dirt,

and we will not focus on detection of the amount of dirt. Dirt
detection has multiple purposes. One purpose is cleaning on
demand, which can be used to keep certain areas clean. This
can make the cleaning more efficient because the robot does
not necessarily have to clean everywhere. Another purpose
is to optimize the usage of water, detergents, and power. By
estimating the level of dirt on the surface it should be possible
to estimate the level of resources needed to clean the area.
Usually dirt is spread unevenly on a surface and so there is no
reason to use equal amount of resources on every square meter.
This should also make it cheaper for the customer to run the
robot. Dirt detection could also be applied on non-autonomous
cleaning machines, but will not be explored further in this
paper as the focus is on autonomous robots.

The need for autonomous cleaning robots has already been
demonstrated by several public research projects like FLOBOT
[4] and BakeR [5]. Furthermore a couple of commercial
companies like Tennant [6] and Nilfisk [7] are also selling
autonomous cleaning robots for industrial use. Most of these
robots have an array of sensors to be able to navigate safely
around in dynamic or unknown environments. Some of the
sensors are mandatory because of safety regulations and these
regulations will vary depending on which situation the robot
is deployed in.

In this paper we propose a solution where dirt detection and
depth prediction is built into the same neural network. That
means that the only sensors needed to operate is a standard
monocular RGB camera. Our main contribution is a deep
learning system that use dirt detection and depth prediction
which can potentially be used to optimize the resource usage,
such as water, energy, and detergents, of autonomous cleaning
robots.

Our method is based on the method used in [1], where they
use a neural network for predicting the depth in an image and
a DRL network for navigating based on the predicted depth.
We will expand the two networks to do Multi-Task Learning
(MTL), such that the solution is capable of learning dirt and
depth detection at the same time.

II. RELATED WORK

This section is based on the related work section from our
previous paper [2] with extended related work about MTL and
dirt detection. In this section we will discuss work related to
obstacle avoidance, MTL, and dirt detection.

a) Reinforcement Learning and Depth detection:
Obstacle avoidance is a widely explored field with many
different solutions to the problem such as using LiDAR, RGB-
Depth (RGB-D) [8], stereo cameras [8], and monocular camera
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[9], [1]. Before deep Q-network (DQN) [10] was proposed,
reinforcement learning was used to solve the obstacle avoid-
ance problem [11]. A solution using a monocular camera to
solve the problem has also been presented [9]. A Visual SLAM
approach with only one camera as the primary sensor has also
been suggested [8]. When navigating using only a monocular
camera, scale is difficult to get right, as there are no depth
information [1], [8]. Various solutions to the problem has
been suggested, e.g. [8] proposes to use stereo cameras or an
RGB-D camera. A more advanced solution is depth prediction,
where neural networks is used to predict the depth in a 2D
image. Depth prediction only makes sense to use when only a
monocular camera is available. In [1], an Fully Convolutional
Residual Network (FCRN) network [12] is used for depth
prediction in combination with a dueling architecture based on
deep double-Q network (D3QN) network to teach a robot to
navigate without hitting obstacles. When using a monocular
camera, the method proposed in [13] seems to be the best
solution for depth prediction according to [14]. As mentioned,
there are many solutions to the obstacle avoidance problem,
where some requires more expensive hardware than others.
Monocular RGB cameras are generally cheap and easy to use,
and they have seen more use for obstacle avoidance in recent
times [1], [8], [14].

b) Multi-Task Learning:
MTL has been experimented with in many different settings
and domains. An overview of MTL with deep neural
networks can be found in [15] and [16]. In [17], [18], and
[19] are examples of neural networks used for MTL. In
[20], they use a network called MultiNet to do Multi-Modal
MTL for autonomous driving. MultiNet is a technique for
learning multiple different behavioral modes through a single
deep neural network. It is tested by controlling a model in
unstructured environments like unpaved roads. In [21], MTL
is used for combining the learning of object detection and
distance detection into one model. It is shown that the model
actually performs better than a single-task model. Another
example is [22], where a single-stream two-task network
is used to do both semantic segmentation and depth prediction.

c) Dirt detection:
Dirt detection is a fairly new research area investigating how
to detect dirt on surfaces. In [23] and [24] an overview of
what advanced cleaning robots consists of can be found. It
provides an overview of the concept and its components. Dirt
detection based on vision approaches are presented in [25],
[26], and [27]. In [27], a solution based on the YOLOv3
framework is used to create an algorithm for dirt and office
item detection. The algorithm can be trained to 2 class task
classification to distinguish between dirt and office items.
The algorithm can also be trained to classify the office items
into specific categories with classification of 10 classes. In
[26], a solution that can detect dirt without any previous
training is presented. The solution is based RGB-D cameras
and achieves dirt recognition rates of 90% and with a false
positive rate of 45%. In [25] they present a dirt detection
solution based on Gaussian Mixture Models. They use
unsupervised online learning and approach the problem as

a single-class classification problem. The solution performs
particularly well on complex floor textures.

Our solution will not be using a predefined framework for
dirt detection, but will be using a modified version of the
FCRN and D3QN from [1]. The solution will require pre-
training of the FCRN before training the D3QN.

III. METHOD OVERVIEW

When referring to the entire system it will be called Clean-
Nav, when referring to the FCRN it will be called FCRN
network with 2 outputs (FCRNO2), and when referring to the
D3QN part it will be called D3QN network with 2 inputs
(D3QNI2).

A. Problem Definition

This section is based on the problem definition section from
our previous paper [2]. We are using DRL for navigation,
and therefore the problem can be formalized as a Markov
Decision Process (MDP). We are using a D3QN network with
2 inputs to solve the problem. The robot can choose between 7
different actions, 2 to control linear velocity, and 5 to control
angular velocity. The reward function is based on the dirt
detection and depth prediction (see subsection III-G). A state
st will be comprised of two images, the dirt image dit and
the depth image det, so st “ pdit, detq. So the next state will
be: st`1 “ pdit`1, det`1q For every state st at timestamp
t P r0, T s, the robot will choose an action at. Based on
action at, the robot will receive a reward, and thereafter it
will transition to the next state st`1 based on the reward. The
goal of DRL is to maximize the accumulated future reward,
which is the maximum future reward that the algorithm can
get from the current state st. The accumulated future reward
can be formalized like: Rt “ ř8

t“0γt ¨ rt, in which γ P r0, 1s
is the discount factor. If we then follow a policy starting from
a state s and an action a, it can be defined as in Equation 1:

Qps,aq “ Er
8
ÿ

t“0

γt ¨ rt|s0 “ s, a0 “ a, πs (1)

To always choose the optimal action we can use the Bellman
equation which describes the optimal Q-value function. The
Bellman equation can be seen in Equation 2. In Equation 2,
s1 and a1 signifies the next state and action following state s
and action a.

Q˚ps,aq “ Err ` γ ¨max
a1

Q˚ps1,a1q|s,as (2)

The Bellman equation states that the optimal Q-value in a
timestamp t is the immediate reward r added with discounted
future reward at timestamp t ` 1. This makes it possible
to approximate the optimal Q-value function with neural
networks, which makes it possible to use larger state spaces
than is possible with traditional reinforcement learning. As
a consequence DRL can be used to solve more complex
problems than traditional reinforcement learning algorithms
can.
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Figure 1: The network that the robot uses to decide on an action based on an image.[1] Notice the
cropping process right below the FCRNO2 network.

B. D3QN

This section is based on the D3QN section from our
previous paper [2]. We use a D3QN network to decide which
action the robot should take. A D3QN network consists of both
a dueling architecture based on deep Q network (DDQN) net-
work and a Deep double-Q network (Double DQN) network,
and is an improvement of the DQN network as well as the
two aforementioned networks. The D3QN network we use is
a slightly modified version that has two inputs and one output
as is explained subsection III-C.

The DDQN architecture was proposed by Wang. et al [29].
The idea is to use two streams of fully connected layers to
estimate the value of a state and the advantage of taking an
action separately. The two values are lastly added to get a
Q-value. The Q-function used in a DDQN can be seen in
Equation 3, where Aps,aq is the advantage function and V psq
is the state value function.

Qps,aq “ V psq `Aps,aq ´ 1

||a||
ÿ

a1

Aps,a1q (3)

In many reinforcement learning problems it does not make
sense to evaluate all actions in all states. In our case the robot
could drive into an dead end where it can only drive backwards
in order to continue. Since driving backwards is not one of
the actions it can choose, every action will make the current
episode terminate, thus the current state is overall bad and
should be avoided. The DDQN get around this problem by
evaluating the state value and advantage values separately, and
consequently this can actually make the network learn faster
in some situations.

Van Hasselt et. al proposed the Double DQN architecture,
which is an improvement of the original DQN [28]. A DQN
tends to overestimate the rewards because the network both
has to select the best action in the current state as well as
calculating the target Q-values of taking that action in the
subsequent state. This problem can also cause the training to
become unstable because the same network chooses and eval-
uates the actions. To solve this problem, two DQN networks
can be used to decouple these two tasks. So one network will
be used for selecting the best action to take in the next state,
which will be the action with the highest Q-value. The other

network is used for calculating the target Q-value of taking the
aforementioned action in the subsequent state. The networks
are called Online Network and Target Network respectively.
The formula used can be seen in Equation 4, where Q1 is the
Target Network and Q is the Online Network.

Qps,aq “ rps,aq ` γQ1ps1, argmaxQps1,a1qq (4)

The Online Network chooses the best action to take in the
next state s1 using the argmax function as can be seen in
Equation 4. This action is then used by the Target Network
to calculate the Q-value of taking that action in state s1. With
this method the network is less prone to overestimation and
the learning should also be more stable. All of this should also
contribute to faster learning.

C. Network architecture

In this paper we use a network similar to the one we used
in our previous paper [2]. Due to the similarity in the overall
structure of the network, the following section is largely based
on the network architecture section from our previous paper [2]
with new content added about MTL and Multi-View Learning.
In Figure 1, the network architecture is outlined.

The network consist of two building blocks, FCRNO2 and
D3QNI2.

The first building block, FCRNO2, consists of a modified
FCRN which takes an RGB image as input and learns multiple
tasks, which is depth prediction and dirt detection. The depth
output of the FCRN is stacked as is, while the dirt output
is cropped as explained in subsection III-F and then stacked.
They are then used as inputs in the next block, with the 4
latest images in each stack at any time. At t “ 0, all images
in each stack are the same.

The second building block, D3QNI2, consists of two Con-
volutional Neural Network (CNN) and a DDQN. In the two
CNN, the two image stacks are run through the convolutional
layers and lastly combined with a flatten layer. The dimensions
shown in Figure 1 in the middle of each layer, e.g. Conv 1, is
the dimension of the image after it has been run through the
given layer. For the depth image CNN, the image size after
the first layer is 16x20x32. As for the dirt image, the CNN
produces a smaller output, 10x20x32, due to the smaller input
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size. The numbers below each layer are the size and number
of filters in the given layer, including the stride. So in the first
convolutional layer in each CNN “10x14@32” means that this
layer uses 32 filters of size 10ˆ 14 with a stride of 8.

The DDQN consists of 3 dense layers, which creates two
streams. The numbers of units in each layer of the two
streams can be seen in the layers, so the first layer of the two
streams has 512 units. The output of the D3QNI2 network is
a combination of linear and angular actions, whichever has
the highest Q-value. There are 7 actions in total, 2 for linear
velocity and 5 for angular velocity.

D. Multi-Task Learning

In this paper we will be using MTL to take a single input
from a monocular RGB camera and provide two outputs from
one model: an output for dirt detection and another for depth
prediction. There are two types of MTL, which are called hard
parameter sharing and soft parameter sharing. The principle
of hard parameter sharing can be seen in Figure 2. In hard
parameter sharing a network contains shared layers and task-
specific layers. It is called hard parameter sharing because the
weights of the shared layers should generalize to work for all
tasks. The network also contain task-specific layers for each
task, and here the network will learn specific features for each
task. An advantage of this method is that it reduces the risk
of overfitting, because the network will have to learn general
features between the different tasks. So the risk of overfitting
will be reduced in relation to the number of specific tasks
[16]. The other type of MTL is soft parameter sharing, and
the principle of this can be seen in Figure 3. This works
a bit differently from hard parameter sharing as we use a
specific model for each task, instead one model for all tasks,
and instead of shared layers it uses constrained layers. The
constrained layers all have their own weights, but to enable
MTL the weights are constrained usually by minimizing the
difference between the weights. This way the models can learn
common attributes in the data. As with hard parameter sharing
the models also contain task-specific layers [16].

We have chosen to use hard parameter sharing in FCRNO2
because depth prediction and dirt detection has some common
features that can be learned by the shared layers. In both tasks
the network should learn about the brightness and contrast in
the image. So by that we mean, that the network should learn
to create a depth image from an RGB image, which can be
used later to learn about distance in the D3QNI2 network.
The network should also learn about the placement of dirt,
which can also be used by the D3QNI2 network to about
the distance to the dirt. Thus there is a good chance the two
tasks has some common features. Furthermore, by using hard
parameter sharing we can reuse most the previous network for
both tasks.

For depth prediction and dirt detection, we make use of an
FCRNO2 network. We observe that FCRN, without modifica-
tion, is able to be trained to detect dirt, exactly in the same way
it is trained to predict depth. The input RGB images used for
training FCRN for dirt and training FCRNO2 for dirt detection
and depth prediction are the same. However the target images

Task A

Task B

Shared layers Task-specific layers

Figure 2: Multi-Task Learning hard
parameter sharing [30].

Task A

Task B

Constrained layers Task-specific layers

Figure 3: Multi-Task Learning soft
parameter sharing [30].

are different, where FCRN only use dirt images as target and
FCRNO2 use both dirt and depth images as target. Thus, to
implement MTL, the last few blocks are duplicated such that
there are specific blocks for both tasks. With these duplicated
blocks, the network should be able to learn more task-specific
features to predict and detect both depth and dirt, with the first
part of the network being the shared layers. With duplicated
blocks it is meant that it is the same layers that already existed
in the network, but using data specific for each task.

The output from training this network gives both a distin-
guishable depth prediction and dirt detection, with the excep-
tion of the top part of the dirt detection output since the top
40% of these are cut of as explained in subsection III-F. The
process for overcoming this is described in subsection III-F.

E. Multi-View Learning

The idea behind Multi-View Learning is to learn one
function behind each of multiple different views which can
describe the same problem [31], [32]. In our case as it can be
seen on Figure 1 our first view is the “Depth Image Stack” and
our second is “Dirt Image Stack” which will then run through
the same function: CNN.

As described in [33] the CNN multi-view architecture
uses either one-view-one-net mechanism or multi-view-one-
net mechanism as shown in Figure 4. The multi-view-one-net
mechanism takes multiple views and feeds the input to same
network which then gives the final representation, where as the
one-view-one-net mechanism has one network for each view
and then extracts each feature separately and at last all the
representations are fused.
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Our system will be using a “One-view-one-network strat-
egy” since we have two CNNs that are later fused, one for
each view.

View 1

View 2

View V

(a) Multi-view-one-network
strategy.

View 1

View 2

View V

(b) One-view-one-network
strategy.

Figure 4: Multi-view CNN [33].

F. Preparing dirt prediction images

(a) The input RGB dirt image. (b) Dirt truth. Note the empty
top part.

(c) Dirt prediction output of
modified FCRN.

(d) Cropping the image to
bottom 60% of the dirt

prediction output.

Figure 5: Dirt predicted compared to
the dirt truth and cropped image.

The dirt prediction output of FCRNO2 has a few issues.
The top part of the output, around 50%, is mostly noise, as
can be seen in Figure 5c. The content in this part of the output
falls into two categories:

1) Walls of the simulation environment
2) Floor of the simulation with dirt spots 1 to 2 pixels high
As we are aiming to make a robot to clean floors, and not

walls, we can ignore the top part all together, as we do not
place dirt on the walls during training. Thus, even if it were
to correctly predict dirt on a wall, it would not matter as the
robot only drives on the floor.

As for the second category of content in the top part,
D3QNI2 might be able to learn something from these 1-2
pixel thick dirt spots, though it seems questionable at best.

Based on the above, all dirt prediction output images are
cropped to bottom 60% of the image, preserving the floor
part and allowing D3QNI2 to focus on finding features in this
part alone.

Removing the top does not limit the future improvement of
FCRNO2 either in training or network structure.

The end result of this cropping is shown in Figure 5d. The
raw RGB image can be seen in Figure 5a, and it is clear
that the top 40% of the image is indeed walls. The cropping
process is also included in the figure showing the network (see
Figure 1).

G. D3QNI2 training

To train D3QNI2, we first train the FCRNO2 and lock the
weights.

a) Reward:
The reward consists of multiple parts. The first comes from
D3QN and is about driving, the second is about hitting objects,
and the third comes from the added dirt detection. The first
part lays the ground for the total reward and is the same reward
function used in [1]. It can be seen in Equation 5, where v is
the linear velocity and θ is the angular velocity.

rdrive “ v ¨ cospθq ¨ 0.2´ 0.01 (5)

This means that the robot gets higher reward for driving fast
and in a straight line. It also means that the robot gets a lower
reward for turning. The maximum value attainable in a single
step is thus 0.4 ¨ 1 ¨ 0.2´ 0.01 “ 0.07.

The second part is also from the paper [1] where if the robot
hits an obstacle, the current episode is terminated, and given
a reward of ´10.

rtotal “ ´10 (6)

The last part uses the calculated reward from Equation 5 to
return the total reward. This part relies on a constant, kf , and
two factors, kc and ka for which different values will be tested
and compared to find the best combination. The distance to
the closest dirt spot at step t noted as dt, is used to calculate
the the difference, m, between dt and dt´1.

m “ dt´1 ´ dt (7)

It is defined such that the robot has visited a dirt spot when
the robot is within 0.5m of its center, dt ă 0.5. The total
reward rtotal is calculated based on three different scenarios
that depend on the values of m and dt.

1) m ą 0: Getting closer to the closest dirt spot
2) m ă 0 and dt ă 0.5: Getting further away, after having

been close enough
3) m ă 0 and dt ą 0.5: Getting further away from the

closest dirt spot

In scenario 1 the robot is getting closer to the dirt tile that
the system has picked as the closest and the reward returned
is multiplied by kc.

rtotal “ rdrive ¨ kc (8)
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In scenario 2 the robot was close enough to the closest dirt
tile, and the return reward is added kf .

rtotal “ rdrive ` kf (9)

In scenario 3 the robot is getting further away from the first
picked tile, but is not getting closer to another one the dirt
tiles, the reward from Equation 5 is multiplied by ka.

rtotal “ rdrive ¨ ka (10)

IV. EXPERIMENTS AND RESULTS

In this section we will present the experiment setup and
results. To test our algorithm we use the Gazebo simulator
and Robot Operating System (ROS). We will also report on
the results of the FCRNO2.

A. Data collection

To train the FCRNO2 network we use a dataset consisting
of 3 three types of images. The three types of images will
be an RGB image, a dirt image, and a depth image which
can be seen in the following figures respectively: Figure 6a,
Figure 6b, and Figure 6c. Our datasets will be collected in the
Gazebo Simulator. We collect the data by letting the simulated
robot drive 2 identical runs, where RGB images and depth
images are captured. The first run will be in a world with dirt
spots on the surface, and the second run will be in the same
world without dirt spots on the surface. The dirt image is then
retrieved by subtracting the RGB images from the first and
second run. To train the network, the RGB image will be given
as input and the two outputs will be the depth image and the
dirt image. This way we should be able to get a network that
can predict depth in an image as well as detecting dirt. So the
two outputs of FCRNO2 will be images similar to Figure 6c
and Figure 6b.

(a) RGB image. (b) Dirt image. (c) Depth image.

Figure 6: Example images from a dataset.

B. Simulation setup

In the simulation setup we use broadly the same Gazebo
worlds as in our last paper [2]. We have made some mod-
ifications to the Gazebo worlds to be able to train our new
algorithm. The Gazebo worlds are squares of 10ˆ 10 meters
and contain several simple shapes like cylinders, boxes, and
triangles. In this project the ground surface of the worlds are
composed of tiles that can have custom textures. We use the
textures to simulate dirt as it is a simple way to represent
something similar to dirt. We only use one type of dirt and

thereby only one type of texture to represent the dirt. The size
of the tiles can be varied in order to simulate different amount
of dirt on the ground surface. When the robot drives over a
tile with dirt on it, the dirt is hidden until the world is reset
(e.g. between episodes). All of this is the same for testing.

The training and test worlds can be seen in Figure 7. In the
figures the dirt spots on the ground surface can be seen.

(a) Training world. (b) Testing world.

Figure 7: The environments used for
training and testing the robot.

For the experiments we use a computer with an Intel i9-
9900 CPU, 16GB RAM, and an NVIDIA GeForce RTX 2070
Super 8GB GPU for training and testing.

C. Dirt and depth prediction results

To test the precision of the dirt detection and depth pre-
diction network, we have conducted some experiments where
we vary the number of task-specific blocks in order to observe
what difference it makes. We have conducted experiments with
1 layer and 2 task-specific blocks. Furthermore we have trained
the network both to do only dirt and depth prediction to test
if both tasks are actually possible.

In the network, an AdamOptimizer is used with a learning
rate of 0.00005. During the training the batch size is 16 and
it is run for 150 epochs.

As previously mentioned the network for dirt detection and
depth prediction consists of 21 blocks that contain some con-
volutional layers. We have tested the network in three different
configurations for both dirt detection and depth prediction.
These three configurations are as multi-task network with both
1 task-specific block and also with 2 task-specific blocks,
and lastly training the network as single-task. We trained the
network with both 1 task-specific block, and 2 task-specific
blocks to see if we could improve the prediction/detection by
allowing more precise weights through less shared layers. The
network with 1 task-specific block will be referred to as L1,
and the network with 2 task-specific blocks will be referred to
as L2. The results can be seen in Figure 8. The ground truth
for dirt and depth can be seen in Figure 8a and Figure 8e
respectively.

The results for the L1 network can be seen in Figure 8b and
Figure 8f. In Figure 8c and Figure 8g the results for the L2
network is shown. Lastly the results of the networks trained for
only dirt detection and depth prediction is shown in Figure 8d
and Figure 8h. The loss graphs from the training can be seen
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(a) Ground truth. (b) 1 task-specific layer. (c) 2 task-specific layers. (d) Single task.

(e) Ground truth. (f) 1 task-specific layer. (g) 2 task-specific layers. (h) Single task.

Figure 8: Dirt images above and depth images below.

in Figure 9, with depth test shown in Figure 9a and dirt test
in Figure 9b.

The dirt detection images are a lot more different when
comparing between the configurations unlike the depth images.
If one compares Figure 8a to both Figure 8b and Figure 8c, it
can be seen that the network actually detects most of the dirt
spots correctly. There are some problems with the small dirt
spots in the background where there is a lot of noise in the
predicted images from the L1 network. In the image from the
L2 network, it is clear that there is considerably less noise in
the image.

The depth prediction images in Figure 8f, Figure 8g, and
Figure 8h are all pretty similar. There seems to be a tiny
difference between Figure 8f and Figure 8g, where the latter
image looks a tiny bit more clear. Other than that, using more
task-specific blocks does not seem to make much difference on
the depth images. However it does actually make a noticeable
difference on the dirt images.

When looking at the test loss graphs for depth, it can be
seen that the loss graphs for the L1 network, L2 network, and
depth-only network are very similar. They converge at pretty
much the same rate, where as the L2 network converges a
little slower. However all three network ends up with the same
results, which is also clear from the predicted depth images.
So it seems like the network is capable of accurately predicting
the depth both with 1 and 2 task-specific blocks, when trained
with 10,000 images. When looking at the test loss graphs for
dirt, it is a little bit different. The L1 network converges faster
at the early stages than the L2 network, however after 2,000
images the graphs are very similar. The L2 network ends up
with a slightly smaller loss than the L1 network, and therefore
the images predicted with the L2 network contains less noise
which can be seen in the predicted images. It can also be
seen that the dirt-only network has the lowest as expected,
however the L1 and L2 network are very close to having the
same loss, so the practical difference is likely to be small.
We also experimented with L3, and L10. The L3 network has

same precision on depth prediction as L2, however on dirt
prediction it was slightly better than the L2 network. The L10
network also has same precision on depth prediction as L2
and L3, but on dirt prediction it performed slightly worse than
the L3 network. Because of time and resource constraints the
experiments with the D3QNI2 network was run with the L2
network for dirt and depth information.

One thing to notice about the depth images in Figure 8 is
that the background on the ground truth image in Figure 8e
is black, where as on the predicted images the background
is white. The black background in Figure 8e seems to be
caused by how it is represented or some wrongly configured
camera setting in the Gazebo simulator where the image is
captured. The background should be white as in the predicted
images, since the white color indicate a farther distance and
black indicates closer distances. So the whiter an object is the
further away it is, and the darker an object is the closer it is.
Theoretically it should also not matter whether the background
is white and the objects black or the other way around, as
long as there is a clear difference between the background
and objects.

0 2,000 4,000 6,000 8,000

0.5

1

1.5

2

steps

loss

1 task-specific block
2 task-specific blocks

Depth-only

(a) Depth test.

0 2,000 4,000 6,000 8,000

0.5

1

1.5

2

steps

loss

1 task-specific block
2 task-specific blocks

Dirt-only

(b) Dirt test.

Figure 9: Test loss graphs.
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D. Navigation experiments

We will use one experiment to test two different navigation
methods. The experiment will be testing how effectively a
robot can find and visit all dirt spots in the environment. For
this purpose we will use the worlds presented in Figure 7. We
will use the following navigation methods:

‚ Random navigation
‚ CleanNav
‚ CleanNav with dirt detection and without depth prediction

Since the papers we would be able to compare CleanNav to is
from companies and do not contain any information about how
well the robot performed, we will create our own solution to
compare against. Furthermore, there does not seem to be much
information on how more advanced robots navigate, so it is
not possible to compare to those solutions. There is also time
constraints that does not allow implementing more advanced
methods to compare against.

We train the robot in two different types of dirt layout. One
is a static world where the dirt layout is the same for every
episode (for layout see Figure 7a). For the other the layout,
random, it begins changing after the first 100 episodes and a
new random layout will be used every 5 episodes to try to
avoid overfitting. The layout will contain between 15 and 25
dirt spots.

We are hindered by hardware constraints therefore all train-
ing runs for D3QNI2 will be using a replay memory of 25,000
and will run for 800 episodes. During the first 10 episodes, the
robot will only make random actions and after that the robot
will make actions based on what it sees. Each of these episodes
will run until it hits an obstacle, drives for a maximum of
500 steps, or all dirt spots have been visited. The starting
point will be the same for each run, but the orientation will
be different. The robot that is used in Gazebo Simulator is a
modified version of the robot presented in [34].

E. Metrics

We will be using four metrics to evaluate our solution. The
first one is how well dirt is identified, and the metric for this
will be amount of steps used to visit all dirt spots. A step
corresponds to an action made by the robot, which could be to
turn left or drive straight. The second metrics is the efficiency
of the training, which will be the time it takes to train in
relation to the reward results. The third is obstacle avoidance,
which will be measured on the amount of obstacles hit while
testing. The fourth and last metric is how long it takes to
reach all dirt spots and finish the test. Obstacle hits will also
be called to bump into something or bumps.

F. Navigation results

We first train D3QNI2 with different configurations for the
reward function. Afterwards, the algorithms is tested in a world
with 11 dirt spots distributed across the whole simulation
world, where the grid used in the test is 10 ˆ 10, same size
as when trained.

a) Training configurations:
To find the values for the constant and factors described
in subsection III-G, we set up multiple different training
configurations to cover a variety of different settings. The
different configurations can be seen in Table I, and are split
into three parts.

# Solution Layout kc kf ka Training time

1 Random - - - - -

2 CleanNav Static 2 `1 ´1 5h 04m
3 CleanNav Static 2 `1 ´2 3h 25m
4 CleanNav Static 2 `1 0.5 3h 33m
5 CleanNav Random 2 `1 ´1 3h 04m
6 CleanNav Random 2 `1 ´2 2h 52m
7 CleanNav Random 2 `1 0.5 3h 42m

8 Dirt only Static 2 `1 ´1 4h 04m

Table I: Training configurations including how long it
took to train each configuration. Training time has
been normalized to a realtime factor of 2 for the
Gazebo simulator, i.e. for every 1 ’real’ second, 2

seconds pass in simulation time.

The first is a robot built using a random algorithm (random
robot), that we will test and use as a base case. It is not
be trained, as it drives randomly, but is included as test
configuration number 1.

Test configurations 2-7 cover the second part of the con-
figurations. They consist of training D3QNI2 in 2 types of
layout. The random layout starts switching dirt layout every
5 episodes after the first 100 episodes, while the static layout
uses the same throughout all episodes. For all test, kc is set to
meaning, the reward is doubled for driving closer to the closest
dirt spot. We vary ka, to find the best value for punishing
the robot for driving away from the closest dirt spot. We try
halving the reward and negating it by a factor of ´1 and ´2.
From testing, we found that for kf , a value of `1 seemed good
based on the idea that it is good to drive over dirt (giving `1),
but not so good as it is bad to crash into an obstacle (giving
´10).

Test configuration #8 is to test how good the robot trained
only with dirt prediction (e.g. no depth information) is com-
pared to the rest. This setup is based on test configuration #2,
as the training graph for that config shows the highest rewards
among the other configurations.

The total reward over steps collected by the robot during
training is show in Figure 10. We see that #8 reaches the
highest rewards, while #2 drives the most steps during the
800 episodes they each were trained. It can also be observed
that despite #4 halving the reward for driving away from the
closest dirt, #2 and #8 still reach the higher total rewards,
suggesting the punishment works as intended.

b) D3QNI2 testing:
In Figure 11 the route for the random navigation test (#1) can
be seen. The red lines are the route that the robot has driven,
the blue spots are the bumps, the orange spots is the starting
point of the robot, and the brown spots are the dirt spots.
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Figure 10: Total reward for the different reward
function configurations. Smoothed with a factor

of 0.95.

The results of the test in relation to the metrics described in
subsection IV-E can be seen in Table II. We ran each test
3 times and Table II shows the average steps, bumps, and
testing time for each configuration. The random robot (#1)
used on average 8,410 steps to visit all dirt spots, and it on
average made 211 bumps. As an example, one test run from the
random robot is shown in Figure 11. The random robot is not
very effective as it has visited most dirt spots multiple times
while doing an average of about 32 steps between bumps. This
was also expected, as the robot is using the simplest form of
navigation.

In comparison, we see the best configuration (#8) in Fig-
ure 12, where the driving is more structured, with far fewer
bumps. It uses on average 12,085 steps and only bumps on
average 160 times during each test, meaning it drives about
75 steps between each bump on average. Still, it has the same
problem as the random navigation, where it ”visits” the same
dirt spots multiple times.

G. Never-ending tests

In Table II, configuration #6 has missing data due to never-
ending test runs. We noticed during testing that the robot
would drive around just like the other configurations for a few
minutes, after which it started driving in circles. The same
behaviour has been observed three times, two of which it
drove in circles for 2 hours each. As a result, we assume that
it would continue that way forever. Combined with the total
reward graph for #6 presented in Figure 10 that did not even
cross 0 in total reward, we have decided to omit the results
because of a lack thereof.

H. D3QNI2 results compared to random navigation

Based on the results in Table II, we can see that the best
solution is #8, based the fact that it has the fewest bumps in
relation to the testing time while being a smaller network all-
together. Though this is not the result we hoped for, it shows

Figure 11: Showing test #1. The orange circle is the
robot’s starting position, the blue shows bumps, the
red shows the route, and the dirt is shown by the

brown dots. The dirt layout is the same as shown in
Figure 7b.

Figure 12: Showing test #8. The orange circle is the
robot’s starting position, the blue shows bumps, the
red shows the route, and the dirt is shown by the

brown dots. The dirt layout is the same as shown in
Figure 7b.

it can follow the dirt and find all spots with fewer bumps
than the other configurations. Specifically, it is also better than
#1, the random navigation, tough not faster on average. We
also see that configurations trained with random layouts, on
average, use more steps, bumps more, and takes longer, than
the rest of the configurations. This might be because the total
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# Layout ka Avg. steps Avg. Bumps Avg. Testing time

1 Random nav - - 8,410 211 28m 35s

2 CleanNav Static ´1 9,891 190 29m 24s
3 CleanNav Static ´2 15,245 293 49m 26s
4 CleanNav Static 0.5 32,533 615 1h 42m 52s
5 CleanNav Random ´1 14,685 461 44m 37s
6 CleanNav Random ´2 - - -
7 CleanNav Random 0.5 66,768 455 3h 01m 15s

8 Dirt only Static ´1 12,085 160 29m 31s

Table II: Results of steps, bumps, and training time for Random navigation,
CleanNav, and Dirt only. Missing results for #6 are explained in subsection IV-G.

reward reached for the configurations in Figure 10 were not
very good compared to the static configurations and the dirt
only configuration.

V. DISCUSSION

In this section we will discuss the results of the depth
prediction and dirt detection. We will also discuss future
possible research directions that can improve the CleanNav
solution. The FCRNO2 network seems to have some potential
for dirt detection and depth prediction, so therefore we will
discuss possible improvements. While we do not think that the
D3QNI2 network has potential to work well in this problem,
we will discuss some possible future improvements.

a) Fully Convolutional Residual Network:
In this section we will discuss the results of FCRNO2 as well
as future research directions. The FCRNO2 network seems
to still predict depth images as accurately as FCRN and
also detect dirt accurately. As can be seen from the results
section, the L10 network has the lowest loss of the network
configurations that we tried. However the practical value of the
dirt images could be limited because of the distribution of the
noise. So the practical limit for the FCRNO2 could seem to
be somewhere between 3 and 10 task-specific blocks. Since
we are using MTL there would also be a practical limit in
terms how of many task-specific blocks that makes sense to
use. As it would not make sense to have 20 out of 21 blocks
being task-specific, because then we might as well just use
two separate networks.

One future direction to investigate would be to generalize
the dirt detection to work on variable sized and types of dirt.
In this paper we have chosen a base case with a static test
world as well one type of dirt with one size in order to proof
the principle. To generalize the solution, there is probably a
need for images from additional environments, so that it can
work in different settings. With that it should be possible to
make the FCRNO2 network, work in different settings such
as different floor textures, dirt sizes, and dirt types.

Another direction to investigate could be to use different
loss functions for dirt detection and depth prediction. Right
now we use the same loss function for both branches of the
network. But it is possible that there is a loss function that
works better for dirt detection than for depth prediction.

Implementing an extra output branch in the FCRNO2 net-
work to indicate if the robot is directly on top of a dirt spot
is also a possible future improvement. Right now the training
of the D3QNI2 network could have a problem with delayed
rewards. We have observed that the robot might get a reward
for visiting a dirt spot after it has visited the dirt spot. The
problem with this, is that the robot might then associate a wall
or something else with the reward instead of the dirt spot. And
because this maybe is not a problem every time, the training
signal might contain some noise. A way to fix this could be
to give the robot a signal to indicate that the robot is now
directly on top of a dirt spot. This way we can make the robot
clearly associate the reward with the dirt spot. A possible way
to do this could be to install a second monocular RGB camera
facing directly down, such that it gives images of the surface
in a perpendicular angle to the robot. And then we could add
one more input and output to the FCRNO2 network, which
could then give a true or false to indicate if there is a dirt spot
or not. This could maybe improve the training by making the
training signal less noisy.

VI. CONCLUSION

In this paper a multi-purpose network for dirt detection and
depth prediction is proposed.

The FCRNO2 network seems to give some good results
for dirt detection. It were seen that when driving only having
trained FCRN using dirt images, the robot drove for the dirt,
which means it is likely this part of CleanNav works. When
being trained together (FCRNO2 and D3QNI2) the results do
not show any positive results.

When looking at task-specific blocks we saw that L2 was
better to the others in the case of noise. Single task did also
have less noise than e.g. L1, but L2 was still better because
of the noise distribution.

This suggests there might be some potential for the dirt
detection and that the problems seems to originate in the way
that the D3QNI2 network uses the dirt detection and depth
prediction results. The depth prediction and dirt detection
seems promising, however, it does not seem like D3QNI2 is
the right choice in this setup.

Our final conclusion is therefore that FCRNO2 shows
potential, however, CleanNav with D3QNI2 and the current
setup does not seem to give a positive outcome.
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