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Reading guide

This written report serves as a means to capture the theory, methods, assumptions and
simulations necessary for the completion of this thesis. In order to attain a clear understanding
of the whole project the report should be read in the presented order.

The report includes a table of contents displaying the chapters and sections with their
corresponding starting page numbers. Nomenclature, as well as lists of both tables and figures
are also part of this report. Elements such as tables, figures and equations are numbered for
reference. A list of bibliography can be found at the end of the report. Citations to these
references follow the IEEE style and are presented in order of appearance in the report.

This report is structured as follows: Chapter 1 introduces the topic of battery’s state es-
timation and presents a state-of-the-art review of previous research. The chapter ends with
the description of the methodology and the thesis statement. Chapter 2 explains background
theory regarding Li-ion batteries and their most relevant characteristics, with a focus on degra-
dation. Chapter 3 sets forth the basic concepts of artificial intelligence and neural networks.
A state-of-health estimation method based on voltage measurements is designed and tested
in Chapter 4, while a charge gradient-based approach is developed in Chapter 5. Lastly, an
impedance-based state-of-health estimator is implemented in Chapter 6. Results are discussed
in Chapter 7, conclusions are drawn in Chapter 8 and ideas for possible future works are pre-
sented in Chapter 9. Additionally, a thorough description of publicly available battery data
sets is made in Appendix A.
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Thesis summary
Over the last decade, a progressive adoption of electric vehicles by the general public has

taken place, although nowadays they just constitute a tiny fraction of the sales worldwide.
Even so, the field of battery technology is still in a high-paced development stage. This
includes not only research on materials, form factors and arrangements, but also software
aspects such as charge and health monitoring. At the same time, artificial intelligence appli-
cations have experienced an exponential growth, mostly due to increased availability of cheap
powerful computing power and high-speed communications, as well as to the generation of
massive amounts of data. This facilitates the deployment of this type of algorithms in tightly-
constrained hardware, as it could be the case of the battery management system of an electric
vehicle.

The main emphasis of this thesis is put on developing and evaluating new methodologies
which take advantage of powerful, yet lightweight, intelligent algorithms in order to monitor
the state of health of Li-ion batteries intended for usage in electric vehicles. Thus, after the
current problems and state of the art had been discussed in Chapter 1, a study of the funda-
mental theory regarding Li-ion batteries was carried out in Chapter 2. It was composed of
two parts: first, to review the main testing procedures used in this field, the information they
provide and the way they are affected by e.g. ageing or temperature. Secondly, a thorough
analysis of the main factors that have an impact on the way Li-ion cells deteriorate, includ-
ing various usage conditions and chemistries. Since it was chosen to only use intelligent
algorithms for this project, a basic explanation of their fundamental theory was presented in
Chapter 3 in order to provide a knowledge base so that the developed methods are better
understood. The first method was designed in Chapter 4. It was based on measuring the
terminal voltage at a reduced amount of state-of-charge milestones. For practicality reasons,
intermediate values were chosen. Then, in Chapter 5, another algorithm was proposed, but
using the charge gradient of the battery as inputs to the neural networks. In this case, the
measuring points were selected based on how this characteristic evolved throughout ageing
in order to detect the most promising ones in terms of performance. Both types of algorithms
were tested in scenarios of future, long-term predictions; estimation at multiple temperatures;
and diversity of ageing procedures. The last approach was introduced in Chapter 6 from a
completely different perspective: rather than using the measured voltage during charge, it
received as inputs a very limited set of impedance measurements. In this case the algorithm
was tested for different scenarios with cells which had undergone storage ageing in assorted
conditions.

Analysis of the obtained results proved that all the proposed approaches were capable of
delivering very low error rates when facing new situations, with a few exceptions in which
the algorithms failed to learn the underlying behaviour. The diversity of methods and exper-
iments allowed for a better comparison of which ones would be more appropriate for a given
scenario.

The conclusion of this thesis is that artificial intelligence is a very powerful tool which
can have plenty of applications in battery management systems, providing simplicity, great
accuracy and generalisation capabilities. On the other hand, these algorithms require vast
amounts of clean experimental data to learn a certain behaviour, which in the specific case of
batteries may take several years to collect.
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Nomenclature

Table 1: Description of symbols

Symbol Description Unit

b Neuron’s bias [-]
Ci ith-branch polarization capacitance F
ei ith-sample estimation error [-]
f (α) Neuron’s activation function [-]
H Enhancement nodes’ output in BLS [-]
It Terminal current A
J Cost function of FC-FNN [-]
MAE Mean absolute error [-]
ME Maximum absolute error [-]
N Number of samples [-]
Qmax,ch,aged Maximum available charge capacity at aged stage A h
Qmax,ch,pristine Maximum available charge capacity at pristine stage A h
Qmax,dis,aged Maximum available discharge capacity at aged stage A h
Qmax,dis,pristine Maximum available discharge capacity at pristine stage A h
Ri ith-branch polarization resistance Ω

R0,c Charge-branch internal resistance Ω

R0,d Discharge-branch internal resistance Ω

RMSE Root mean squared error [-]
VOC Open-circuit voltage V
Vt Terminal voltage V
wx,n

n,1,m Weight from input xn to mth neuron in 1st hidden layer in FC-
FNN

[-]

wz,i−1,l
n,i,p Weight from lth neuron in (i-1)th hidden layer to pth neuron in ith

hidden layer in FC-FNN
[-]

wz,i,p
y,k Weight from pth neuron in ith hidden layer to output yk in FC-

FNN
[-]

wx,p
f,n,l Weight from input xp to feature mapping fn,l in BLS [-]

wz,n,l
e,m,s Weight from feature mapping fn,l to enhancement node em,s in

BLS
[-]

wz,n,l
y,q Weight from feature mapping fn,l to output yq in BLS [-]

we,m,s
y,q Weight from enhancement node em,s to output yq in BLS [-]

W Weight matrix in BLS [-]
xi ith input to neural network [-]
yi Real ith-target value [-]
ŷi Estimated ith-target value [-]
Z Feature mappings’ output in BLS [-]
γ Learning rate [-]
δ Hidden layer neuron’s error [-]
ηch-dis,aged Cell efficiency at aged stage %
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Contents ix

Continuation of Table 1

Symbol Description Unit

ηch-dis,pristine Cell efficiency at pristine stage %
λ Ridge-regression regularisation coefficient [-]
µres Residuals’ mean value [-]
σ∆Q

∆V
Charge gradients’ standard deviation A h

V

σIm(Z) Impedance’s imaginary part’s standard deviation Ω

σRe(Z) Impedance’s real part’s standard deviation Ω

σres Residuals’ standard deviation [-]
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Table 2: Description of abbreviations

Abbreviation Definition

AI Artificial intelligence
ANN Artificial neural network
BLS Broad learning system
BMS Battery management system
BoL Beginning of life
CC Constant current
CCCV Constant-current, constant-voltage
CV Constant voltage
DoD Depth of discharge
DRBS Discrete random binary sequence
DV Differential voltage
ECM Equivalent-circuit model
EIS Electrochemical impedance spectroscopy
EoL End of life
EQM Electrochemical model
ESS Energy-storage system
EV Electric vehicle
FC-FNN Fully-connected feed-forward neural network
FFT Fast Fourier transform
FNN Feed-forward neural network
FOM Fractional-order model
FPGA Field-programmable gate array
GPU Graphics processing unit
HPPC Hybrid-pulse power characterization
IC Incremental capacity
ICEV Internal combustion engine vehicle
LCO Lithium-cobalt-oxide
LFP Lithium-iron-phosphorus
LMO Lithium-manganese-oxide
LSTM-RNN Long short-term memory recurrent neural network
LTO Lithium-titanium-oxide
ML Machine learning
NCA Nickel-cobalt-aluminium
NE Negative electrode
NMC Nickel-manganese-cobalt
OCV Open-circuit voltage
PE Positive electrode
PRBS Pseudo-random binary sequence
PRTS Pseudo-random ternary sequence
RC Resistor-capacitor
ReLU Rectified linear unit
RNN Recurrent neural network
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Continuation of Table 2

Abbreviation Definition

RPT Reference performance test
RVFLNN Random-vector functional-link neural network
SEI Solid-electrolyte inter-phase
SGD Stochastic gradient descent
SoC State of charge
SoH State of health
SoHQ Capacity-based state of health
SoHR Resistance-based state of health
SoP State of power
SoX Battery states
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Chapter 1

Introduction
In this chapter, a brief introduction to the topic of electric vehicles and battery technology is made, as
well as an analysis of the problem this thesis aims at solving, followed by a state-of-the-art discussion.
A project methodology is outlined next. The chapter ends with the thesis statement and the project
limitations.

Contents
1.1 Problem analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 State-of-the-art review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The transportation systems of the world are undergoing a deep transformation, moving
from internal combustion engine vehicles (ICEV), which use petroleum- or gas-derivatives as
fuel, to electric vehicles (EV) where the power is obtained from some kind of energy storage
system (ESS). The most common ones nowadays are electrochemical batteries, hydrogen fuel
cells and super-capacitors [1, pp. 237, 497]. This transition is mainly motivated by social and
economic reasons. First, society is becoming increasingly concerned regarding the negative
impact of pollution, which includes health risks and climate change. Then, fossil-fuel reserves
become scarcer every day, which leads to rising prices until they become eventually depleted.
Although driving performance is not usually listed as an argument for this transition, it has
been demonstrated that EV have some advantages over traditional ICEV, such as more power-
ful acceleration thanks to the instantaneous torque availability in electric motors. On the other
hand, driving range extension is still a significant obstacle to be overcome in order for EV to
become mainstream. Since these technologies have only been thoroughly researched for less
than two decades, there remain plenty of challenges and problems to be solved.

1.1 Problem analysis

One of the main problems when it comes to electric vehicles is the proper monitoring of the
battery pack. These are very complex electrochemical systems and, thus, it is very difficult to
derive accurate models which cover every possible operation scenario. Furthermore, a battery
pack can be composed of hundreds of individual cells, which can present some differences
between them due to manufacturing and operation conditions. Among many others, one of
the main tasks of battery management systems (BMS) is precisely to try and keep all the cells
as equalized as possible, which is a considerable challenge still under intensive research [2,
p. 91], [1, p. 270].

There are three metrics of special interest in a battery, namely the state of charge (SoC), the
state of health (SoH) and the state of power (SoP), referred to as SoX in general. The first one

2



1.1. Problem analysis 3

is related to the remaining electric energy in the cells, while the second one represents battery
degradation through time and use; the SoP quantifies how much power the ESS can exchange
under certain conditions. The SoX cannot be directly measured, therefore the estimation of
these states is usually also carried out by the BMS based on the available measurements,
typically voltage, current and temperature. Some of the challenges of SoX estimation are:

• Sensitivity analysis: before trying to model the behavior of an electrochemical cell, it is
essential to analyse which factors and variables affect the system and how they do so.
This implies extensive testing of battery cells under controlled laboratory conditions.
Since some of the system’s dynamics are very slow (in the order of days or months), this
testing stage can last up to several years until a solid knowledge base is formed. Besides
exogenous factors, such as temperature, endogenous ones also have a major influence,
as is the case of the manufacturing process or the specific battery chemistry.

• System modelling: after the variables of interest have been identified, several types of
models can be derived depending on the phenomenon which needs to be studied. A
common remark is that there is usually a trade-off between accuracy and simplicity or
performance. For example, electrochemical models can be very accurate in both short-
and long-term, but they also require finding values for many parameters based on design
and experimental data.

• Online operation: some of the states, especially SoC, can actually be measured under
specific conditions. In this case, if experimental conditions can be tightly controlled
and a high-accuracy current sensor is used, the remaining charge in the battery can be
obtained by integrating the measured current, which is referred to as ampere or coulomb
counting. However, in realistic driving scenarios, the conditions can change constantly
and the quality of the measurements is considerably lower than the ones in a laboratory
set-up. Thus, estimation algorithms should be designed in a way so that they can be
applied in as diverse as possible scenarios.

These arguments support the idea that new methodologies are needed in order to improve
the SoX estimation process in electric vehicles. Since SoH has a significant impact on the other
two states, the focus will be put on the online estimation of the battery’s degradation stage.
This information can afterwards be used by the BMS to adapt the controllers, to provide more
accurate range estimations and to avoid potentially hazardous situations for the battery pack.
The next section discusses some of the relevant research that has been carried out in this field
in recent years.
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1.2 State-of-the-art review

In the last two decades, battery-related research has experienced an exponential growth, in
part due to the progressive adoption of, mainly, hybrid electric vehicles. This research includes
different approaches for modelling batteries and several methods for SoH estimation.

1.2.1 Modelling

Over the years, researchers have developed several ways to describe and model the be-
haviour of electrochemical cells. One of the main goals is to try to estimate the open-circuit
voltage (OCV) from the terminal voltage. According to [1, p. 258] and [3, p. 63], there are three
prominent classes: the electrochemical models (EQM), which describe the physical-chemical
reactions within the cells based on differential and algebraic equations; the equivalent-circuit
models (ECM), which use resistor-capacitor (RC) networks and voltage sources to try and
mimic the static and dynamic voltage characteristics of the system; and the fractional-order
models (FOM), which replace the capacitors in the ECM by constant-phase elements and use
fractional calculus to solve the equations in the time domain. A comparison between two
simplified EQM-based SoC estimation algorithms was presented in [4]. Both of them showed
great performance when tested on driving cycles in a laboratory setup, as shown in Fig-
ure 1.1a. Here it can be observed that both methods yield voltage errors under 3 % for most
of the capacity range. The study serves as an example of how complex these models can be,
even in their simplified versions. [5] proposed a solution to the modelling problem with two
ECM: one for constant-current charging and one for dynamic operation. Each model, whose
parameters are found by means of a least-squares optimization algorithm, contains two RC
networks, so that both short- and long-term dynamics can be modelled. In [3, p. 81], the au-
thor compared the accuracy of several ECM with different amounts of RC units, being the one
with a single RC network the best trade-off between complexity and accuracy, as observed in
Figure 1.1b. It clearly shows that at least one RC branch is necessary to model the battery’s
behaviour. Adding more branches can increase fidelity at the cost of having to estimate more
parameters. Even though results come from different sources, Figure 1.1 supports the idea
that ECM can reach similar accuracy levels to EQM but with a much simpler structure. Yet
another modification to the ECM, as employed in [1, p. 258] and [6], is to bifurcate the internal
resistance branch of the model. This is motivated by the fact that there exists some hysteresis
effect between charge and discharge processes. Furthermore, the efficiency can also differ
slightly. An FOM-based SoC estimation method was proposed in [7]. The model’s parameters
were fitted from experimental data using a genetic algorithm and the estimation was done by
means of an unscented Kalman filter. Good accuracy was proved when validated in several
driving cycles. A common remark for these works is that none of the algorithms accounts for
the effects of temperature nor ageing, which are known to have a significant influence in the
battery’s behaviour.

1.2.2 Impedance-based SoH estimation

Considering the cell as an electrical system, an impedance parameter can be defined as the
ratio of voltage to current, both measured at the terminals. Battery impedance is commonly
frequency-dependent, and experimental data shows that it is also affected by ageing, tem-
perature and, to a lesser extent, SoC [8]. Thus, it can also be used to quantify the battery’s
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(a) Error comparison of the proposed reduced EQM [4] (b) Error comparison between ECM of different orders [3]

Figure 1.1: Validation results of EQM and ECM models in [4] and [3], respectively

degradation stage. The most straightforward approach to measure the impedance is to inject
low-amplitude, single-frequency sinusoidal current (or voltage) signals and measuring the
voltage (or current) response. This technique is known as electrochemical impedance spec-
troscopy (EIS) and its main disadvantage is that it can take a long time to complete, since the
interesting frequencies may be as low as 1 mHz. Therefore, a lot of focus has been put into
alternative ways of measuring the impedance online, with discrete pseudo-random sequences
having a prominent role. This is the case of [8], where a pseudo-random binary sequence
(PRBS) was injected into the battery and the impedance spectrum was obtained by means
of the fast Fourier transform (FFT). The paper also compares the performance of PRBS of
different bit lengths and discusses some implementation aspects in EV. A similar work was
done in [9], but the researchers used the continuous wavelet transform instead of the FFT. One
advantage of this method is that it keeps both time and frequency information, rather than
being limited to just the frequency domain. Figure 1.2a shows that this approach can provide
impedance measurements on par with EIS, specially at mid- to high-frequency, but taking
just 97 min to complete; the equivalent single-sine approach would take 54 h. The yellow
shaded region represents the confidence interval of the impedance estimates. [10] proposed
to use a pseudo-random ternary sequence (PRTS), which adds an extra excitation level to the
PRBS, and obtained better results at lower frequencies. These works demonstrated that these
methods can accurately estimate impedance while taking much less time than conventional
EIS tests. Artificial intelligence (AI) has also been applied to this topic. For example, in [11]
machine learning (ML) was used to obtain the full impedance spectrum based on a limited
set of EIS measurements. When compared to other polynomial interpolation methods, the
proposed approach performed considerably better, especially at low frequencies, as depicted
in Figure 1.2b. It also shows that remarkable accuracy can be obtained by using very limited
set of test points. Although none of the previous works explicitly mentions SoH as a result,
the obtained impedance measurements can be directly used as health indicators and, thus, to
estimate the state of health.
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(a) Comparison between EIS and PRBS in [9]
(b) Comparison between ML and polynomial interpolation
methods in [11]

Figure 1.2: Impedance spectrum measurement results from [9] and [11], respectively

1.2.3 Capacity-based SoH estimation

A state-of-the-art review of SoH estimation methods can be found in [12]. It considers
both experimental and adaptive approaches, as well as degradation-based ones, such as in-
cremental capacity (IC) and differential voltage (DV) curves analysis. A review of ML-based
techniques was also presented in [13]. In [14] calendar ageing was studied by storing several
Li-ion cells in different temperature and SoC conditions and conducting periodic EIS tests to
evaluate degradation. It concluded that cells aged faster when stored at high temperatures
and at intermediate charge levels. The same team proposed in [15] to estimate the SoH based
on the variation of the charge and discharge curves for cells exposed to several cycling and
calendar ageing conditions. They also conducted a detailed analysis in order to chose an ap-
propriate charging interval as a trade-off between accuracy and charging time. Incremental
capacity analysis was used in [16], [17] for SoH estimation. Based on experimental results of
cells of different chemistries and ageing states, it proposed to focus the analysis on a reduced
set of peaks and valleys, whose specific location was correlated with the battery’s degrada-
tion. The method, whose performance is shown in Figure 1.3a as a function of partial charging
capacity, presents good accuracy, although the error at car level rises above 5 %. In [18], an
ECM was developed first based on EIS experiments, taking into account the effect of SoC but
disregarding ageing and temperature. Then, a dual recurrent neural network (RNN) algo-
rithm was designed in order to generate an SoH indicator based on both capacity and internal
resistance degradation from voltage and temperature measurements, and SoC variations. The
method, however, was only verified with the previously developed ECM and not with actual
experimental data. [19] used a long short-term memory RNN (LSTM-RNN) to estimate SoH
using voltage and current sequences during charging. The algorithm was trained and tested
on cells which were aged using driving cycle-inspired data sets at different temperatures, as
shown in Figure 1.3b. It can be observed that the algorithm can provide accurate estimations
over a wide range of operating conditions. Lastly, [20] applied a Gaussian process regression
model to the charging curves of a Li-ion battery. This statistical approach tries to estimate the
SoH based on four features of the charging characteristic: constant-current (CC) and constant-
voltage (CV) stages’ duration, slope at the end of CC stage, and slope at the initial part of CC
stage. Gray relational analysis is used to evaluate the relevance of each of these features for
changes in SoH. High-accuracy results are obtained using a public battery-ageing data set,
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although temperature is not taken into consideration in this algorithm. In [21], deep neural
networks were used to predict a cell’s SoH and remaining useful life based on voltage, current
and temperature measurements. It showed improved results over simpler structures, but only
for SoH estimation. Researchers in [22] proposed a flexible method applicable during both
charge and discharge stages. A novel health indicator was used by measuring the voltage in-
crement over a fixed time interval. Then, SoH was estimated by means of an extreme-learning
machine. One of the main advantages of this technique is that it is not based on fixed volt-
age or charge measuring points. Good accuracy was shown, with an average error of 0.5 %.
A time series-based methodology was proposed in [23], where authors used LSTM-RNN to
estimate the maximum available capacity of cells and battery packs. Transfer learning was
also employed to fine-tune the parameters of the network. The charge duration between cer-
tain voltage levels was used as health indicator. Good results were obtained by the authors
even when a limited amount of early stages were used for training. [24] proposed to combine
several machine-learning algorithms to provide more accurate estimations, which were based
on the energy increment between two specific points during charging. The algorithm showed
performance levels on par with others based on a single neural network structure.

(a) SoH estimation error at cell and car level, from [16] (b) Algorithm performance at different temperatures, from [19]

Figure 1.3: Results of proposed approaches in [16] and [19], respectively

Finally, it is worth mentioning that, motivated by the highly-complex, time-consuming bat-
tery testing processes, several institutions around the world have developed data sets based on
comprehensive testing, which have then been published online for anyone to use. A detailed
analysis of these sources can be found in appendix A. As a last remark, the works discussed
throughout this section were carried out with cells of different chemistries and at different
testing conditions, so it should be kept in mind that this severely conditions the results and
comparisons.
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1.3 Methodology

The state-of-the-art review showed that, even though plenty of approaches already exist for
estimating an EV battery’s SoH, there is still room for improvement in terms of accuracy, on-
line execution or changing conditions. Furthermore, not a lot of attempts have yet been made
at using machine learning for this purpose, although the good results of the aforementioned
works imply that there is great potential for applying these techniques to BMS.
This thesis will therefore focus on facing some of these issues by, firstly, designing ML-based
algorithms that can provide online SoH estimations and, secondly, testing them in diverse
conditions which could occur in real-world applications. A key distinguishing feature of the
approach presented in this report is to take as knowledge base the effects of several types
of degradation, rather than the specific degradation processes themselves. At the same time,
using AI eliminates the need for fitting complex models whose parameters are affected by
several different factors and can only provide limited fidelity.

1.4 Thesis statement

Taking into account the information presented in the previous sections, the problem state-
ment for this project is formulated as follows:

How can artificial intelligence techniques be applied to perform online estimation of a battery’s state
of health in electric vehicles?

1.4.1 Thesis limitations

Some limitations are established here in order to further set the scope of this thesis:

• Only Li-ion cells will be considered

• The devices under test will be individual cells, rather than entire battery packs

• No experimental validation will be conducted due to the Covid-19 pandemic situation,
but data from real experiments will be used instead





Chapter 2

Fundamentals of Li-ion batteries
Li-ion batteries are very complex devices whose short- and long-term behaviour is conditioned by
many factors. Therefore, prior to trying to develop any kind of model or algorithm, it is essential to
understand the impact of these factors and the differences between them. To that end, a brief summary
of the inner workings of batteries and the most common materials is given first. Then, several
influences are investigated by analysing results of the main testing procedures. Lastly, a thorough
study of ageing mechanisms and effects is made.

Contents
2.1 Cell types and modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Standard testing procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Ageing of Li-ion cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Before diving into the fundamentals of electrochemical batteries, some basic concepts must
be defined first:

• Beginning of life (BoL): time reference when a pristine cell has not yet been used and
its properties remain as when it was manufactured.

• Chemistry: general term to denote the chemical species that constitute the various cell
components, e.g. electrodes, electrolyte. It usually refers specifically to the cathode’s
material, since nowadays most batteries have carbon-based anodes and organic-solvent
electrolytes.

• Impedance: from a linear point of view, ratio of voltage to current at a battery’s termi-
nals.

• Coulombic / Faradaic efficiency: difference in the amount of charge exchanged between
charge and discharge processes. It is usually defined as the ratio of measured discharge
capacity to charge capacity.

• Cut-off voltage: maximum and minimum voltages between which it is safe to operate
the device, as specified by the manufacturer. Exceeding these limits can lead to haz-
ardous situations, significant performance degradation or destruction of the cell.

• C-rate: current metric normalized to the cell’s rated capacity. A 1 C current is defined as
that capable of fully charging (or discharging) the cell in 1 h, for example 1 A for a 1 A h
cell.

• Depth of discharge (DoD): capacity range over which the battery is cycled, given as
minimum and maximum SoC levels, or as an SoC increment.

10
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• End of life (EoL): time reference when a battery has been extensively used and it is
considered unfit for the application. The threshold is usually defined as a 20 % drop
in maximum available capacity with respect to the rated value, or a 100 % increase in
internal resistance.

• Maximum available capacity: maximum capacity that can be charged (or discharged)
from a cell at a specific moment of its operational life and under some specific conditions.

• Rated capacity: initial capacity of a cell before any degradation occurs, as provided by
the manufacturer.

• Remaining useful life: estimation of the amount of time that a battery can still be used
for in certain conditions before reaching the end-of-life threshold.

• State of charge: remaining-capacity metric computed as the ratio of charge level to
maximum available capacity at a given moment.

• State of health: degradation metric which quantifies the degradation stage of the battery
in terms of maximum available capacity (SoHQ) or internal ohmic resistance (SoHR).

• State of power: amount of power that the battery can exchange at a given moment and
under certain conditions.

• Specific energy / Energy density: amount of energy that a cell can store per unit mass
(specific energy) or volume (energy density).

• Specific power / Power density: amount of power that a cell can exchange per unit mass
(specific power) or volume (power density).

2.1 Cell types and modelling

Internally, Li-ion batteries are electrochemical energy storage systems, that is, they store en-
ergy in chemical form and then transform it into electricity by means of a reduction-oxidation
(redox) reaction, and vice versa. The process that takes place within a cell can be described
in the general form of Equations (2.1) to (2.3), where rightwards indicates discharge and left-
wards indicates charge.

Positive electrode : Metal-Oxide + Li+ + e−
Discharge (red.)←−−−−−−−→

Charge (ox.)
Li-Metal-Oxide (2.1)

Negative electrode : LiC6
Discharge (ox.)←−−−−−−→
Charge (red.)

Li+ + C6 + e− (2.2)

Net cell reaction : LiC6 + Metal-Oxide
Discharge←−−−−→

Charge
Li-Metal-Oxide + C6 (2.3)

Depending on the specific chemical species (i.e. metal oxide) taking part in the redox
reaction, an associated reaction potential

(
E0) is obtained, which determines the cell’s rated

voltage. Oxidation always takes place at the anode, while reduction does so at the cathode.
During discharge, electrons detach from the negative electrode (NE), acting as anode, and
travel through the external load all the way to the positive electrode (PE), which acts as cath-
ode, where they contribute to the formation of the metal salt. At the same time, anions/cations
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flow through the electrolyte towards the NE/PE to donate/accept the transferred electrons,
respectively. The opposite happens during charge, i.e. electrons flow externally into the neg-
ative electrode (cathode) as cations drift from PE to NE through the electrolyte for reduction,
while anions move from NE to PE for oxidation.
In terms of materials, negative electrodes are most commonly built as a mix of graphite
and solid lithium (LiC6), although lithium-titanium-oxide salts (Li4Ti5O12, LTO) have also
been used. Many more possibilities exist for the positive electrode, being the most fre-
quent ones lithium-cobalt-oxide (LiCoO2, LCO), lithium-iron-phosphate (LiFePO4, LFP) and
lithium-manganese-oxide (LiMn2O4, LMO), as well as ternary salts such as lithium-nickel-
cobalt-aluminium-oxide (LiNi1−x−yCoxAlyO2, NCA) and lithium-nickel-manganese-cobalt-oxide
(LiNi1−x−yMnxCoyO2, NMC). Each of them presents different characteristics and the choice of
chemistry largely depends on the requirements for a specific application [1, p. 250], [3, p. 9],
[25], [26]. A brief summary of their key properties is presented in Table 2.1.

Table 2.1: Characteristic comparison between Li-ion chemistries. Data from [25], [27], [28]

Chemistry Specific capacity Capacity density Voltage Advantage Disadvantage

LCO 150 A h kg−1 550× 103 A h m−3 3.8 V Low
self-discharge

Lifespan

LFP 165 A h kg−1 589× 103 A h m−3 3.4 V Lifespan Specific
energy

LMO 120 A h kg−1 596× 103 A h m−3 4.1 V Specific power Thermal
stability

NCA 190 A h kg−1 700× 103 A h m−3 3.7 V Energy and
power density

Cost

NMC 170 A h kg−1 600× 103 A h m−3 3.7 V Specific
energy

Cost

As discussed in Section 1.2, there are several approaches for modelling the behaviour of
Li-ion cells. Among them, ECM are the most commonly used and represent a good trade-off
between accuracy and simplicity. Thus, only ECM are presented in this thesis to help un-
derstand the behaviour of electrochemical cells, although modelling is not part of this work.
Figure 2.1 shows a general schematic of this type of models, where VOC is the open-circuit volt-
age, R0 represents the internal ohmic resistance, and R1, ..., Rn, C1, ..., Cn are the polarization
resistances and capacitances, respectively, and It and Vt are the terminal current and voltage.
In literature, the most common order choices are n=0 (Rint model), n=1 (Thévenin model) and
n=2 (dual polarization model). The role of R0 is to quantify the static voltage change when
current flows between the electrodes and is related to the resistance of the electrodes, the elec-
trolyte and the connectors, while the RiCi networks model the dynamic behaviour of the cell,
which may include several different time scales, and correspond to polarization and diffusion
processes [29, p. 34], [3, p. 81].

This diagram represents an asymmetric model, that is, the charge and discharge paths
present different internal resistance

(
R0,c, R0,d

)
and, furthermore, may also differ in efficiency.
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R1

C1
. . .

Rn

Cn

R0,c

R0,d

VOC

It

Vt

Figure 2.1: General diagram of ECM topology

It should also be noted that the voltage source VOC is actually composed of two terms: an av-
erage term and a hysteresis one representing the offset between charge and discharge curves.
Based on experimental data, it has been observed in previous research that all elements shown
in Figure 2.1 can present some dependency with temperature, SoC and SoH [1, p. 258].

2.2 Standard testing procedures

Over the years, several experiments have become industry standards to measure and ob-
serve the behaviour of batteries, as well as to gather relevant data to estimate the values of
the different models’ parameters. These are usually referred to as reference performance tests
(RPT) [1, p. 263], [3, p. 33]. The experimental data used throughout this section corresponds
to public data sets from Battery Archive [30], [31], Sandia National Laboratory [32]–[35], Oxford
University [36], [37], McMaster University [38], and private data from Aalborg University. Some
of these cells will be later on used for testing the proposed estimation algorithms.

2.2.1 Time-domain tests

The goal of these tests is to analyse the short- and long-term response of the device by
means of time-varying excitation signals. The duration of these tests can range from a few
seconds to several days, depending on the phenomenon under study.

Constant-current, constant-voltage (CCCV)

The purpose of this test is to obtain the maximum available capacity of the cell at a given
moment and under certain conditions, and it is also the most common charging method. It has
two stages and it usually begins with a completely depleted battery. When charging, the first
stage consists on injecting the battery with a constant C-rate (e.g. 0.5 C or 1 C) until the upper
cut-off voltage is reached; then, in the second stage, the battery is charged at constant voltage
as the current progressively decreases. Commonly, the test is considered to end whenever
the current has dropped to around 0.05 C. After a resting period, a CC procedure with a
negative current applied for discharging until the lower cut-off voltage is reached, followed
by a CV stage. The charge levels at the end of the charging and discharge phases are taken as
SoC = 100 % and SoC = 0 %, respectively. For more reliable results, the test may be repeated
two or three times, and then the average is taken as the true value. Figure 2.2 shows the
terminal voltage and current during CCCV for cells of five different chemistries. Note that the
last CV discharge stage was not present in the data set and, thus, is not shown in the plots.
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Figure 2.2: CCCV tests. Data from [30], [31]
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Figure 2.2: CCCV tests. Data from [30], [31] (cont.)
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Figure 2.2: CCCV tests. Data from [30], [31] (cont.)
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These plots show that the materials employed in a battery’s electrodes have a significant
impact on its behaviour. This is particularly clear when comparing the voltage during charg-
ing of the LFP and LCO cells, for example. The former has a very flat shape and a narrow
voltage interval, while the latter is steeper and the voltage increment is larger. Another signif-
icant difference is that the LFP cell’s CV stage is significantly shorter than the rest. Hysteresis
effects and asymmetric efficiencies could also be observed by comparing each pair of consec-
utive charge and discharge cycles, although these are better studied by means of open-circuit
voltage tests. Experimental data shows that the shape of the voltage curves over time de-
pends on cell temperature, so several cells may need to be cycled to analyse the impact of
this parameter, as shown in Figure 2.3. For each of the diagrams, the upper-half curves cor-
respond to charge process (increasing SoC) and the lower-half ones to discharge (decreasing
SoC). It can be observed that, in general, curves during charge displace upwards (equivalently
downwards while discharging) as the temperature drifts away from 25 °C. This displacement
is almost negligible in the case of LFP, while it is quite significant for NCA and NMC ones.
Discharge data for the LCO unit at 44 °C was corrupt and is not shown here.
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Figure 2.3: CCCV tests for cells at different temperatures
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Lastly, Figure 2.4 shows how these CCCV voltage curves change as the battery undergoes
more and more cycles, i.e. as degradation increases. All plots correspond to near-EoL con-
ditions, that is, a maximum available capacity drop of around 20 % with respect to the rated
value.
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Figure 2.4: CCCV tests for cells at different ageing stages. Data from [30], [31]
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It is clear that terminal voltage while charging increases with the number of cycles for the
same SoC level, and it decreases during discharge. This leads to reaching the cut-off voltages
earlier and, thus, lower maximum capacity. Again, cell chemistry plays an important role
in the effects of degradation. LFP’s curves remain close together even when cells have been
severely cycled, whereas the gaps are more significant in NCA units.
The charged (or discharged) capacity in CCCV experiments is usually measured by integrating
the measured current (coulomb counting), but any other reliable method could be employed.
If the charge capacity is greater than the discharge one, this would indicate that inefficiencies
exist within the cell and, thus, an efficiency factor between charge and discharge could be
computed and used when modeling, as described in Section 2.1.

Open-circuit voltage (OCV)

This test serves as a means to characterise the OCV-SoC relationship, that is, between open-
circuit voltage and state of charge, under certain specific conditions. In this experiment, start-
ing from a resting, fully depleted cell, a CCCV procedure is performed to charge the battery
in fixed SoC increments, usually ∆SoC = 5 % or 10 %. After every milestone is reached, the
battery is left resting for a sufficiently long time, which may range from 1 h to 5 h, and then the
measured voltage is recorded for the corresponding SoC level. The iterative process continues
until the battery is fully charged. Similarly, the discharge phase follows the same approach,
but starting with a rested, fully charged battery. Both processes are shown in Figure 2.5 for a
pristine, NCA-type cell. As in the previous case, the charge and discharge curves are slightly
different due to hysteresis, which is almost negligible according to Figure 2.5b. Since this
experiment is usually performed prior to deriving an SoC estimation algorithm, the cell’s SoC
used as milestones are based on measurements, such as coulomb counting.
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Figure 2.5: OCV test of a pristine NCA cell. Data from [36], [37]

Due to the significantly long time required to conduct a complete OCV test, sometimes
a pseudo-OCV test is performed instead. In this case, the cell is charged and discharged at
a very low C-rate (around 0.05 C) so that the voltage drop due to resistive elements is low
and the terminal voltage approaches the value of the open-circuit voltage. Therefore, this is
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also referred to as low-current OCV test and it is shown in Figure 2.6 for the same cell as in
Figure 2.5, at both pristine and severely aged stages.
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Figure 2.6: Pseudo-OCV test of an NCA cell at pristine and aged stages. Data from [36], [37]

The plot confirms the behaviour observed in Figure 2.4, with the voltage curves drifting
away as damage accumulates. Based on these data it is also possible to study the difference
between charge and discharge efficiencies, as well as the way they change as the cell degrades.
For the specific case of Figure 2.6, these effects are computed in Equations (2.4) to (2.6), taking
the maximum available charge capacity as reference. It can be observed that, even when the
cell is halfway through its useful life, efficiency is still very close to 100 %.

ηch−dis,pristine =
Qmax,dis,pristine

Qmax,ch,pristine
=

3.0958
3.0982

= 99.923 % (2.4)

ηch−dis,aged =
Qmax,dis,aged

Qmax,ch,aged
=

2.7585
2.791

= 98.836 % (2.5)

SoHQ =
Qmax,ch,aged

Qmax,ch,pristine
=

2.791
3.0982

= 90.085 % (2.6)

Hybrid-pulse power characterisation (HPPC)

In this case, a sequence of current pulses are injected into, or withdrawn from, the cell. This
allows for analysing the dynamics of the system and, thus, fitting the corresponding model
parameters. If parameter variations are to be taken into consideration, the procedure would
need to be repeated at different temperatures, degradation stages and charge levels. Figure 2.7
shows the HPPC tests for an NCA-type cell at three different SoC levels, both when the cell is
pristine and severely aged.
For a characterisation over the entire SoC range, the battery is first fully charged and allowed
to rest until voltage equilibrium is reached. Then, the cell is excited with the sequence of
current pulses, which are normally symmetric in polarity so that the SoC is not significantly
modified during the test and to measure the response for both charge and discharge condi-
tions. There is not a specific rule for the pulse amplitude, and they may range from 0.5 C
to 10 C, and each of them may present a different amplitude. Similarly, pulse duration and
time between pulses may also be freely chosen, as long as there is enough time for the cell’s
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dynamics to manifest and settle. The battery is then discharged to the next SoC milestone,
rested until equilibrium for e.g. 1 h and excited again with another sequence of pulses.

0 50 100 150 200

3.3

3.4

3.5

Time [s]

V
o
lt

a
g
e

[V
]

Pristine

Aged

0 50 100 150 200

−1.5

−1

−0.5

0

C
u

rr
en

t
[A

]

HPPC test - NCA @ 20 % SoC, 25.4 °C

(a) 20 % SoC

0 50 100 150 200

3.5

3.55

3.6

3.65

3.7

Time [s]

V
o
lt

a
g
e

[V
]

Pristine

Aged

0 50 100 150 200

−1.5

−1

−0.5

0

C
u

rr
en

t
[A

]

HPPC test - NCA @ 50 % SoC, 25.4 °C

(b) 50 % SoC

Figure 2.7: HPPC test at multiple SoC and SoH levels. Data from [36], [37]

0 50 100 150 200

3.8

3.9

Time [s]

V
o
lt

a
g
e

[V
]

Pristine

Aged

0 50 100 150 200

−1.5

−1

−0.5

0

C
u

rr
en

t
[A

]

HPPC test - NCA @ 80 % SoC, 25.4 °C

(c) 80 % SoC

Figure 2.7: HPPC test at multiple SoC and SoH levels. Data from [36], [37] (cont.)

Once the experiment is concluded, terminal voltage and current measurements can be
used to estimate ECM parameters, as well as the power capabilities of the cell. Two effects
can be observed in the voltage response: a static voltage step, corresponding to the internal
ohmic resistance (R0), and a transient voltage change and recovery, related to the polarization
networks (RiCi) in the ECM [29, p. 51], [3, pp. 38, 93]. It is clear how the voltage drop becomes
larger as the cell undergoes more and more cycles, and also the transient seems to be slower.
In terms of ECM parameters, this would correspond to increased R0 value, and larger time
constants in the RC networks.
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2.2.2 Frequency-domain tests

In order to further observe and analyse the frequency-dependent behaviour of the cell,
experiments at several excitation frequencies need to be conducted [1, p. 267], [3, p. 42].

Electrochemical impedance spectroscopy (EIS)

The premise of this procedure is that, under the assumption that the cell can be regarded
as a linear system at each operation point, a cell impedance can be defined as the ratio of
terminal voltage to current. The linearisation point variables include temperature, SoH and
SoC, which are the main factors affecting this parameter. The excitation signal can be either
voltage (potentiostatic mode) or current (galvanostatic mode), and it consists on a sinusoidal
signal of a certain frequency which may have a constant offset. The injected amplitude must be
high enough to produce a measurable response, but low enough to keep the operating point
unchanged. When conducting this experiment with laboratory equipment only one frequency
is excited at a time, although multi-frequency approaches also exist for online applications, as
discussed in Section 1.2. The frequency range of the excitation signals usually goes from a few
mHz to several kHz. An example of the outcome of an EIS test is presented in Figure 2.8 for an
NCA cell at several SoC levels. Another application of EIS experiments is to help computing
the parameters of the ECM, as it has been shown in previous research [14], [1, p. 267], and
also for the FOM [3]. The Nyquist plot, which represents the real and imaginary parts of the
impedance’s complex conjugate value, is shown in Figure 2.8a with a zoom in two areas of
interest to help the analysis. Frequency-wise, the points in the lower-left corner correspond
to high-frequency inputs, while the ones in the top-right zone proceed from low-frequency
excitation. This is more clearly seen in the Bode plot in Figure 2.8b. In the leftmost plot of
Figure 2.8a an evident tendency in the curves is observed, which is that the real part decreases
for higher values of SoC. On the other hand, the rightmost plot shows how the differences
between SoC levels are much more significant. In this segment it can be observed how the
valley moves to the right (higher real part) as the SoC drifts away from 50 %, although the
pattern is not symmetric.
Similar observations can be made from Figure 2.8b. At low frequency (top-right zone in
the Nyquist plot) both the impedance’s magnitude and phase reach their maximum absolute
values, whereas at high frequency (bottom-left area in the Nyquist plot) the magnitude reaches
its lowest value while the phase increases with the opposite sign. In the mid-frequency range
the impedance approaches the 0° line, although never crossing it back. It is also clear that SoC
has a much more sensible influence on impedance at low- to mid-frequencies, and becomes
negligible beyond 10 Hz.
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Figure 2.8: EIS for NCA cell at various SoC levels. Data from [38]

Figure 2.9 portrays the EIS data for an NMC cell which has only undergone storage ageing
(see C1 in Table 6.1). Again, the Nyquist plot shows that differences at both low and high
frequencies appear as the cell ages. In the former, it is clear that the real part of the impedance
grows as damage accumulates. Meanwhile, the valley at middle frequencies seems to displace
rightwards as time passes, although the tendency here is not as clear as in the previous case. In
the Bode plot in Figure 2.9b it can be observed how the magnitude of the impedance increases
with ageing, specially at high frequencies, which is coherent with the previous analysis.
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Figure 2.9: EIS for NMC cell at various ageing stages. Own data (see Chapter 6)

Lastly, Figure 2.10 shows the impact of temperature on the impedance of an NMC-type
cell. It can be observed how, as the temperature decreases, the real part of the impedance
increases, which leads to higher losses when charging or discharging the battery. As a final
remark, it is interesting to see that chemistry also determines the shape of the impedance
spectrum, in this case between NCA and NMC cells.
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Figure 2.10: Influence of temperature on NMC-type cell impedance. Replicated from [3, p. 52]

2.3 Ageing of Li-ion cells

As electrochemical cells are used, they accumulate damage and their internal structure
changes due to e.g. solid-electrolyte inter-phase (SEI) film formation, material adsorption at
the electrodes or loss of active material [12]. Among the factors which can influence the degra-
dation process of a Li-ion battery the most relevant are C-rate, temperature, DoD and storage
conditions. These are analysed in the following. Although these data may not quite represent
realistic usage, they allow for studying each of the aforementioned factors independently. It
should also be considered that each set of data corresponds to a unique individual cell, so it
would be expected to have some slight behaviour differences due to manufacturing and not
to the processes themselves. There is one general comment which is applicable to any of the
ageing diagrams shown next, which is that usually two different stages can be distinguished:
in the first one the capacity decreases very fast in just a few cycles, while in the second one the
reduction becomes nearly linear and the slope is smaller. The former can be linked to the con-
sumption of active material during the formation of the SEI film, and the latter corresponds
to the scenario after this layer is completely formed [3, p. 55].
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Since only constant-temperature and -current tests were available for LCO and NMC-LCO
units, their ageing characteristics are shown in Figure 2.11. These two types of cell present
a quite linear degradation with the number of cycles, thus the first stage lasts for only a few
cycles.

2.3.1 C-rate’s impact on cell degradation

The current withdrawn from an EV battery is directly linked to the power demand of the
vehicle, which will be higher whenever the motor needs to produce more torque for acceler-
ating or climbing a slope [39]. On the other hand, the current injected into the battery comes
from charging most times and, therefore, it depends on the capabilities of the charging station.
Figure 2.12 shows the evolution of the maximum available capacity of three different types
of Li-ion cells for several discharge C-rates. The charge C-rate is 0.5 C for all of them, since
it was the only one available in the data set. The plots show that this parameter has a clear
effect on capacity degradation and that some differences exist between chemistries, being the
most significant the large amount of cycles that the LFP cell can withstand compared to the
other two. This is in agreement with the analysis of Figure 2.4.
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Figure 2.12: Maximum capacity degradation for different discharge C-rate. Data from [30], [31]
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For the LFP unit in Figure 2.12a, deterioration is lowest at 0.5 C and 1 C, while degradation
at 2 C seems worse because of lower initial capacity. In terms of slope all three scenarios
are very similar. The main difference occurs for 3 C, whose slope is much steeper than the
rest and, thus, the cell loses capacity much faster. Identical observations can be made for
the NCA unit in Figure 2.12b, although data for 3 C was not available. Lastly, Figure 2.12c
shows that the NMC device is the most immune to the discharge current’s magnitude and all
experiments have alike degradation slopes. It is also in this case in which the two stages are
best distinguished, the transition happening at around 100 cycles.

2.3.2 Temperature’s impact on cell degradation

Electrochemical reactions taking place within the Li-ion cells are affected by the ambient
and internal temperatures, so it would be expected for this parameter to have an influence
on ageing. Figure 2.13 depicts the available charge capacity degradation as a function of the
number of cycles for three different temperatures, which are kept nearly constant throughout
both charge and discharge processes. Specific information regarding the cells and the cycling
conditions is presented in Table 4.4.
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Figure 2.13: Maximum capacity degradation for different temperatures. Data from [30], [31]
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It must be pointed out that the temperatures presented here constitute a quite narrow range
and, therefore, similar experiments with a wider interval (e.g. from −20 °C to 50 °C) should
be conducted and analysed to get a better grasp of the influence of temperature in active
operation. It can be observed in Figure 2.13a that the LFP unit’s capacity decrease is faster
the higher the cycling temperature is, with a very significant difference between 15.7 °C and
34.8 °C, while the initial charge capacity is slightly higher at 34.8 °C. For the NCA cell (see
Figure 2.13b), degradation is also worst at the highest temperature. Nevertheless, initial max-
imum capacity is significantly higher at 38.1 °C, which indicates that the battery cannot hold
as much charge at low temperatures as it can when it is warmer. According to Figure 2.13c,
degradation and initial maximum capacity in the NMC-type device are worse when the tem-
perature decreases. Although similar performance is obtained at 26 °C and 36 °C, the capacity
loss at 17.7 °C is much higher and it even shows an entirely different pattern.

2.3.3 DoD’s impact on cell degradation

The amount of charge used and refilled when driving an EV also has a severe influence on
how capacity decreases throughout the cell’s lifetime, as it would be expected for deterioration
to become worse as the DoD approaches 0-100 %. Figure 2.14 shows the capacity degradation
for cells following CCCV cycling with three different DoD intervals.
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The plots confirm the hypothesis that capacity loss occurs faster whenever the battery is
used in wider SoC ranges. Note that much fewer data points were recorded for 40-60 % and
20-80 % since, in order to find the maximum available capacity, a full charge and discharge cy-
cle must be completed, which modifies the DoD-based ageing procedure. Figure 2.14a shows
that, for the LFP cell, degradation with full cycles is just slightly worse than with 20-80 %
DoD, but it is much more accentuated than with 40-60 %. For example, approximately the
same capacity drop happens at 1000 cycles with full-range CCCV and at 5000 cycles for the
narrowest DoD procedure. For the NCA cell, according to Figure 2.14b, more differences exist
between the two widest intervals, following the same tendency as before. In this case, equiv-
alent degradation happens at 320 cycles for 0-100 %, 1300 cycles for 20-80 % and 6500 cycles
for 40-60 % DoD. From Figure 2.14c it can be observed that the degradation pattern in the
NMC unit resembles that of the NCA one. A similar capacity decrease occurs at around 400,
2300 and 8600 cycles for the widest to the narrowest cycling intervals, respectively. Further-
more, the slope difference between early and late stages becomes smoother when the battery
is operated in small intervals.

2.3.4 Storage conditions’ influence on capacity loss

Since EV batteries may spend a significant amount of time in an idle state, it is worth
analysing whether storage conditions affect the way the device degrades. For this purpose,
data from NMC-type cells stored in different conditions (see Table 6.1) were recorded and are
presented in Figure 2.15.
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Figure 2.15: Maximum capacity degradation for different storage ageing conditions. Own data (see Chapter 6)

The main observation is that, for the same SoC level, degradation becomes worse as the
ambient temperature is increased. On the other hand, for constant temperature, extreme SoC
levels seem to be more beneficial than intermediate ones and, among the extremes, low ones
preserve the cell’s health better than high ones. The capacity drop between the best (C6, cyan
dots) and worst (C3, green crosses) ageing procedures is quite significant, retaining 58.7 A h
and 28.8 A h after 1000 days, respectively. In terms of capacity loss, these correspond to 93.2 %
and 45.7 % of the initial capacity.
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2.3.5 Operation mode’s impact on cell degradation

The final ageing factor accounted for in this thesis is hybrid ageing, that is, the combination
of cycling and storage periods, which aims at better representing the real usage of an EV
battery. Data from four groups undergoing different procedures are recorded. The specific
details are presented in Table 4.6 and the results are depicted in Figure 2.16 for one cell in each
of the groups. It is clear from the plots that the specific type of hybrid ageing does not seem
to have a huge impact on capacity degradation, as all four groups present a similar patterns.
The capacity decay does not show a clear border between early and late stages, which was
also observed for the NCA-type cell in the previous analysis.
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Figure 2.16: Maximum capacity degradation for different hybrid ageing procedures. Data from [36], [37]

After analysing the main factors affecting the ageing of Li-ion cells some conclusions can be
drawn. In general, in order to maximize the lifetime of these devices, they should be operated
at relatively low C-rate (see Figure 2.12) and narrow DoD intervals (see figure 2.14). However,
when it comes to temperature, LFP and NCA cells degrade less at low temperature (at least
up to 15 °C), while NMC cells keep higher capacity when cycled at high temperature (at least
up to 36 °C), as it is shown in Figure 2.13. Analysis of calendar ageing data proved that Li-ion
cells, or at least NMC-type ones, can lose a large amount of available capacity depending on
how they are stored. Among the several options considered, the best one was to keep the
battery at half charge (50 % SoC) and very low temperature (7 °C). Finally, it was observed
that, when it comes to hybrid ageing, differences between procedures are not significant. A
direct comparison between purely-cycling and hybrid ageing could not be made since data
belonged to different data sets, although a brief comparison between Figures 2.13b and 2.16
points towards the hypothesis that full-range and hybrid cycling do not lead to significant
differences in the pattern of capacity decrease. Once the fundamental background theory
of Li-ion ESS has been set forth, the next chapter will do the same for the topic of neural
networks.





Chapter 3

Fundamentals of Artificial Neural Net-
works
This chapter provides a theoretical background to the topic of artificial neural networks, with a focus
on the two specific structures implemented later on in this thesis, namely fully-connected feed-forward
neural networks and broad learning systems.
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Artificial intelligence is the knowledge field related to the design and development of com-
putational systems which, rather than just being programmed to perform a fixed, specific
task, have the ability to learn a certain ground truth, understand a context and adapt their
operation to achieve a certain goal. Although an explosive expansion of AI has taken place
over the last two decades, its principles date back to the first half of the 20th century [40].
Some of the most important areas within this field include fuzzy logic [41], machine learning
[42] and deep learning [43]. Despite being based on similar general concepts, each of them
presents unique characteristics which make them better fit for different applications, such
as autonomous driving, system modeling and control, computer vision or natural-language
processing [44, p. 46], [43, p. 443]. A key aspect of these algorithms is that, just like human
knowledge, are based on heuristics, that is, they try to learn from previous experiences and
then apply the attained knowledge to new scenarios.

3.1 Feed-forward neural networks

Artificial neural networks (ANN) are computational models inspired by biological brains.
As such, their fundamental building block is the artificial neuron, which tries to mimic the
behaviour of the individual neurons in the nervous system. A neural network is then formed
by stacking several neurons at the same depth, forming a layer, and several layers consecu-
tively within the network, forming a sequence of hidden layers. A key milestone in the history
of ANN was the formal proof that these are universal function approximators, meaning that
any arbitrarily complex function can be accurately approximated by an ANN [45]. Figure 3.1a
shows the functional diagram of a single neuron, where x = (x1, ..., xn) are the inputs to the
neuron, w = (w1, ..., wn) are the input weights, b is the bias term and y is the neuron’s out-
put. The mathematical expression describing an individual neuron is given by Equation (3.1),
where f (α) is the activation function. This simple expression shows that ANN fundamentally
perform linear algebra operations, which makes them very efficient when implemented in
hardware.
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The design and choice of the activation function is one of the most important aspects
when designing AI systems, since it will determine the complexity of the operations that the
algorithm can accomplish. Systems without activation function or with threshold-like ones
are only able to produce linear discrimination functions at the output and, thus, they cannot
carry out non-linear tasks. On the other hand, using non-linear activation functions extends
the capabilities of the network to more complex problems. The most commonly used ones
are sigmoid-like (such as the hyperbolic tangent), although alternative types have gained a
lot of prominence over the years (e.g. the rectified linear unit function, shortened ReLU)
[44, p. 11]. For reasons that will become evident later, a major requirement for designing
activation functions is that their derivatives are simple and easy to compute. These derivatives
should also have values nor too large nor too close to 0 in order to avoid the exploding-
and vanishing-gradient problems, respectively [44, p. 129]. Graphical representations of sign
(green), tanh (orange) and ReLU (blue) activation functions are shown in Figure 3.1b, and their
mathematical expressions and derivatives are given by Equations (3.2) and (3.3).

fsign(α) =

{
1, if α > 0

−1, otherwise
ftanh(α) =

e2α − 1
e2α + 1

fReLU(α) =

{
α, if α > 0

0, otherwise
(3.2)

f
′
sign(α) = 0 f

′
tanh(α) = 1−

Ç
e2α − 1
e2α + 1

å2

f
′
ReLU(α) =

{
1, if α > 0

0, otherwise
(3.3)

However, the introduction of non-linear functions is not enough to solve non-linear prob-
lems. Neural networks consisting only on a single layer of neurons can only solve problems
which are linearly separable, such as logic AND and OR functions. In order to enhance the
capabilities of the network so that it can solve non-linear discriminant functions, such as logic
XOR, multiple layers with non-linear activation functions need to be stacked together [44,
p. 32]. The number of hidden layers, the amount of neurons in each layer and the activation
function will determine the level of complexity of the tasks that the ANN has to learn, also
referred to as network’s capacity.

Figure 3.2 shows a generic diagram of a fully-connected feed-forward neural network
(FC-FNN) with p inputs, i hidden layers, m and s nodes in the first and last hidden layers,
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Figure 3.2: Diagram of a fully-connected feed-forward neural network

respectively, and q outputs. A description of the symbols is presented in Table 3.1. For the
remainder of this report, the nomenclature employed to describe an FC-FNN structure will
be FNN (n1 − ...− ni, AF), where n1 is the number of neurons in the first hidden layer, ni is
the amount of neurons in the last one and AF denotes the activation function employed in all
neurons. Note that each circle represents a complete neuron as depicted in Figure 3.1a, that
is, including bias, summation and activation function. Each hidden layer may have a different
number of neurons, and different activation functions may be set for each neuron. In an FC-
FNN, each neuron within a layer takes as inputs all the outputs from the preceding layer,
multiplied by the corresponding weights and added to the bias. A quite important advantage
of ANN can be inferred from Figure 3.2: at each layer many calculations are performed
independently and, therefore, could be executed in parallel to speed up the process. This
is the reason why they are normally deployed in concurrent-computing hardware, such as
graphics processing units (GPU) or field-programmable gate array (FPGA) boards [44, p. 156].

Table 3.1: Description of variables of FC-FNN in Figure 3.2

Symbol Description

x =
(
x1, ..., xp

)
Input vector

y =
(
y1, ..., yq

)
Output vector

wx,p
n,1,m Weight from input xp to mth neuron in 1st hidden layer

wz,i−1,l
n,i,s Weight from lth neuron in (i-1)th hidden layer to sth neuron in ith hidden

layer

wz,i,s
y,q Weight from sth neuron in ith hidden layer to output yq

The cornerstone in AI applications is to find a way to train the system so that it learns
the behaviour that the developer has designed. In the case of FC-FNN, this process consists
on setting appropriate values for the weights and biases within the network. Due to the
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complexity of the structure and the task to be solved, there is not an analytical expression to
compute such weights in a single step. Instead, an iterative numerical optimization process is
carried out trying to minimize a loss function. This training process consists on three stages,
which together constitute an epoch:

1. Forward pass: first, input samples (features) are fed to the FC-FNN and the output values
(labels) are computed. Initially, the weight matrices are randomly initialised, unless
more advanced techniques (e.g. transfer learning) are implemented [42, p. 630]. The
derivative of the loss function with respect to the outputs is also computed.

2. Backward pass: for the second stage, the desired output values (targets) for these inputs
are used for computing the output error of the network, which is usually taken as the
loss function. Then, the error is propagated layer by layer from the outputs to the
inputs to calculate the gradient of the loss function with respect to the parameters for
each neuron in a process referred to as back-propagation. The error at a neuron within
a hidden layer is obtained by multiplying the errors in the next layer’s neurons by the
connecting weights.

3. Parameter update: finally, the gradient of the loss function is employed to update the
values of the weights and biases of the network. Normally, the chosen method for
solving the optimization problem is based on the steepest-descent method, that is, the
gradient of the loss function with respect to the weights is computed first and, then,
the parameters are updated in the opposite direction of the one that yields the largest
gradient [44, p. 21].

For a certain weight wi,j connecting the ith neuron in layer L-1 and the jth neuron in layer
L, the partial derivatives of the cost function J are computed by means of the chain rule as
in Equation (3.4), where αj is the internal state of the jth neuron, that is, before the activation
function is applied, k and l are the indices of the neurons in layers L-1 and L, respectively, and
δ is the output error of a neuron in a hidden layer.

∂ J
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During back-propagation, the task is to compute each of the elements in the right-hand
side of Equation (3.4) by applying Equations (3.5) to (3.8). Note that, for demonstration pur-
poses, ReLU as activation function and mean squared error as loss function are chosen. The
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process for computing the gradient with respect to the bias terms is analogous and only Equa-
tion (3.5) needs to be modified. By repeating this set of operations from the output layer all
the way to the inputs, the complete gradient of the loss function can be obtained collecting all
the partial derivatives as in Equation (3.9).

∇J (w, b) =
Å

∂ J
∂ w1

, ...,
∂ J

∂ wn
,

∂ J
∂ b1

, ...,
∂ J

∂ bm

ã
(3.9)

Lastly, the weights and biases are updated by applying the steepest-descent algorithm in
the form of Equation (3.10), where γ ∈ (0, 1) is the learning rate.

w [k + 1] = w [k]− γ∇J (w) [k] b [k + 1] = b [k]− γ∇J (b) [k] (3.10)

Another key aspect when developing intelligent algorithms is the appropriate choice of a
learning strategy. For example, as opposed to weights and biases, the learning rate (γ) is a
parameter which is not updated during training (hyperparameter) and, thus, the problem of
choosing an suitable value arises. Furthermore, having a constant learning rate throughout
the entire learning process may result in poor performance. A better approach is to set a
large initial value so that the algorithm quickly approaches an optimal solution, and then
reduce it to keep the system from oscillating or diverging from it. Likewise, better results may
be obtained if some history of the cost function’s gradient is used rather than just the latest
value. These techniques are known as learning rate decay and gradient momentum, respectively,
and they are part of optimizer algorithms which help improve the performance of the neural
network. Some popular examples are RMSProp and Adam [44, p. 134].

One of the main problems that AI applications may face during training is overfitting, which
means that the algorithm tends to memorise the input-output training data, rather than learn-
ing the underlying characteristics of the process [44, p. 25]. It is usually caused by too-low
amount or diversity of samples in the training data set. This phenomenon can be detected
during training if, when feeding the network with data from the test data set, the training er-
ror keeps decreasing but the test error starts increasing. In other words, a system experiencing
overfitting will show very high accuracy for the training data set, but poor performance when
tasked with new, unseen data. Fortunately, many techniques have been proposed to avoid
this situation, such as early stopping, batch training and neuron drop-out. When using early
stopping, a certain limit is set to the number of consecutive epochs for which the validation
error does not decrease, so that the training process is halted whenever the system stops im-
proving and before overfitting occurs [44, pp. 27, 192]. Batch training means that, rather than
updating the weights every time a new set of inputs is used, the optimization routine is only
executed after a certain number of randomly selected samples have been processed. Thus, the
average error of the entire batch is used to update the weights instead of the individual errors.
This helps the system have a more robust progression towards the optima, since the effect of
outlier values is mitigated by the good ones in the same batch, and can reduce computational
cost. In this case, the steepest-descent method becomes the stochastic gradient descent (SGD)
[44, p. 121]. Lastly, as its name indicates, neuron drop-out consists on randomly deactivating
some neurons in each layer throughout the entire network. This way, the algorithm becomes
better at generalising and the influence of individual paths is reduced [44, p. 188].
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3.2 Broad learning system

The broad learning system (BLS) is a novel ML algorithm which was first introduced in [46],
[47] and has been further extended and applied to various engineering problems [48]–[50]. It
is an evolution of a sub-class of FNN referred to as random-vector functional-link neural net-
works (RVFLNN), whose main feature is that the output is directly connected to both a hidden
layer and the input. Figure 3.3 shows a generic diagram of a BLS algorithm with p inputs,
q outputs, n feature-mappings windows, k feature maps per window, and m enhancement
nodes. Some of the weights’ labels have been omitted and their lines dashed to improve read-
ability. The diagram’s symbols are explained in Table 3.2. For the remainder of this report,
the nomenclature employed to describe a BLS structure will be BLS

(
n f ea − nwin − nenhan, AF

)
,

where n f ea and nwin are the number of features per window and the amount of feature win-
dows in the feature-mapping layer, nenhan is the amount of enhancement nodes, and AF de-
notes the activation function employed in all neurons.
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Figure 3.3: Structure of a BLS. Inspired from [46]

One of the improvements of BLS over RVFLNN is that the inputs are not directly con-
nected to the output layer. Instead, a hidden layer of feature mappings is inserted between
them. The purpose of this modification is to introduce a first stage in which some features
are already extracted from the input data, which is a very common practice in deep-learning
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Table 3.2: Description of variables of BLS in Figure 3.3

Symbol Description

x =
(
x1, ..., xp

)
Input vector

y =
(
y1, ..., yq

)
Output vector

wx,p
f ,n,k Weight from input xp to feature mapping fn,k

wz,n,k
e,m,s Weight from feature mapping fn,k to enhancement node em,s

wz,n,k
y,q Weight from feature mapping fn,k to output yq

we,m,s
y,q Weight from enhancement node em,s to output yq

algorithms. This is done by means of a sparse autoencoder [43, p. 502], that is, a compact neu-
ral network trained to replicate the input information at its output. Evidently, a perfect copy
of the inputs would not provide any benefits and, therefore, the system has to be constrained
somehow. When done properly, an autoencoder is capable of transferring the information
from the inputs and, at the same time, extracting relevant features from them. Another useful
application of these elements is dimensionality reduction in problems with a large number of
variables. In Figure 3.3, the sparse autoencoder is simply represented by the weights between
the input layer and the feature mappings.

The nodes in the feature-maps layer take as inputs the outputs of the sparse autoencoder,
and their outputs are directly fed to both the enhancement nodes and the output layer. All
these nodes are also basic neurons with a set of weights, bias and activation function as de-
picted in Figure 3.1a. The operations carried out between the inputs and the feature mappings,
between the feature mappings and the enhancement nodes, and between these and the out-
put are shown in Equations (3.11) to (3.13), respectively, where H denotes the output of the
enhancement nodes.

Z = f
Ä

W x
f x + Bx

f

ä
(3.11)

H = f (W z
e Z + Bz

e) (3.12)
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[
Z|H

] î
W z

y|W e
y

óT
= A W (3.13)

Although the weights in the BLS could be computed by means of SGD-based optimiza-
tion, the original authors took advantage of the very flat and compact structure of the network
and used matrix-inversion methods instead. More precisely, they decided to apply a ridge-
regression algorithm (also known as norm-regularization), which is a very efficient way of
approximating a matrix’s pseudo-inverse. The optimization problem is thus reduced to solv-
ing Equation (3.14), where λ is a positive regularisation coefficient and I is the identity matrix.
Consequently, rather than back-propagating the output error to compute the gradient of some
loss function with respect to each parameter, the entire weight matrix is optimised at once.
This makes training the BLS significantly faster than an equivalent FC-FNN.

W =
Ä

λI + AAT
ä−1

ATY (3.14)
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One of the features that make BLS particularly interesting is its incremental learning ca-
pabilities. This means that the structure can be augmented, by increasing the number of
either feature maps or enhancement nodes, without the need of training the entire network
from scratch. Instead, only the new parts of the network are taken into account to update
the system’s weights. This can largely reduce both computational power requirements and
training time when working with large data sets or a very high amount of parameters. In
the original work, algorithms were derived to update the network whenever its structure was
modified or new training samples were used. Furthermore, since machine learning mod-
els have a tendency to exponentially grow in size as the problems become more complex, a
structure-simplification method was also proposed based on singular-value decomposition.

The two architectures presented in this chapter are just two examples in the ever-broadening
field of artificial intelligence. More advanced algorithms exist for other types of tasks, such as
recurrent neural networks for time-series data [44, p. 271] or convolutional neural networks
for data with a grid-like topology [43, p. 330]. Neither is the case of this thesis. The FC-FNN
structure was chosen because it is the most basic one and can perform well in a wide variety
of applications, while BLS was used since it is still a recent development and comparative
studies with other architectures are necessary to determine its potential.
The field of AI is very extensive and new strategies, algorithms and applications are con-
stantly being developed. Thus, only the very basic and strictly necessary concepts have been
discussed in this chapter. For a more in-depth study of the topics, the reader is referred to
dedicated references [41]–[44], [51]. After the fundamental knowledge regarding batteries
and neural networks has been presented, the following chapters are focused on the design,
development and testing of intelligent algorithms for SoH estimation.



Chapter 4

SoC-based State-of-Health Estimation
In this chapter, an intelligent algorithm for SoHQ estimation based on voltage measurements at
certain SoC milestones during charging is derived and evaluated, taking into consideration different
chemistries, temperatures and ageing procedures.

Contents
4.1 Approach A1: terminal voltage at SoC milestones with incomplete data . . . . . . . . 39
4.2 Approach A2: terminal voltage at SoC milestones with multiple temperatures . . . . 44
4.3 Approach A3: terminal voltage at SoC milestones with realistic ageing . . . . . . . . 47

It was shown in the previous chapters that two generally accepted definitions of state of
health exist: the first one is related to the maximum available capacity of a battery at a certain
moment and under certain conditions, while the second one is based on the change in battery
impedance as the device degrades. Furthermore, these definitions also allow for establishing
end-of-life thresholds, that is, some criteria such that, when met, the battery is considered
to have lost significant performance capabilities and cannot be properly used anymore. In
the first case, EoL is usually defined as the point at which the maximum available capacity
is 80 % of the nominal capacity of a pristine unit. In the case of impedance the definition
becomes more complex, since it largely depends on the excitation frequency. There is however
a common agreement to use the internal resistance value, that is, the one with null complex
part. Thus, the cell is said to have reached EoL whenever this value becomes 200 % of the
original one. Both definitions are shown in Equation (4.1). Practically, each of these definitions
is linked to a specific application: for those cases where capacity is most relevant, such as
battery electric vehicles, the capacity-based definition is regularly used, while the impedance-
based definition is the one used for applications where power delivery is more important,
such as hybrid electric vehicles. It is important to note that, as pointed out in Chapter 2, both
capacity and impedance depend on the cell’s conditions and, therefore, these must also be
included in the previous definitions. Most authors use 25 °C as the reference temperature and
100 % SoC, as well as some specific C-rate.

SoHQ =
Qmax

Qrated
· 100 % SoHR =

R0

R0,pristine
· 100 % (4.1)

It was shown in Section 1.2 that many methodologies exist for SoHQ estimation, each of
them studying a different phenomenon, such as CCCV curve displacement or IC and DV tra-
jectory variations. For this thesis, the proposed approaches here and those in Chapter 5 are
based on the voltage-capacity relationship during charging, since this process is considerably
more controllable than discharge, which makes the methods more applicable and reliable. As
a consequence, these algorithms cannot be applied in real time while driving, and they have
to wait until the vehicle is stationed at a charger. This is considered acceptable, since the SoHQ

38
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is a slow-varying parameter and does not need to be continuously estimated.
Two AI-based estimators are designed and tested for this algorithm, namely a fully-connected
feed-forward neural network and a broad learning system (see Chapter 3). For all the FC-FNN
algorithms employed throughout this thesis the configuration in Table 4.1 is used for training,
unless noted otherwise. Many FC-FNN structures in terms of number of hidden layers, num-
ber of neurons per layer or activation functions are tested for each of the approaches, and the
one with best performance in the test data set is selected. For the BLS algorithms, the struc-
tures are generated by applying a grid-search iterative procedure to the three parameters, i.e.
number of feature windows, number of features per window and number of enhancement
nodes, and the model is selected as in the FC-FNN case. For each case, the FC-FNN and the
BLS are trained and tested on exactly the same samples to make comparisons easier.

Table 4.1: FC-FNN configuration parameters

Early stopping Batch size Optimizer Epochs Loss Train / Validation split

50 epochs 5 %, min. 5 samples Adam 2500 MSE 70 % / 30 %

The performance metrics used for comparison and model selection are the root mean
squared error (RMSE), the mean absolute error (MAE) and the maximum absolute error (ME),
as well as the residuals’ mean (µres) and standard deviation (σres), all of them normalized.
The formulas for these metrics are as given by Equations (4.2) and (4.3), where ŷi, yi are the
estimated and real output values of the ith sample, respectively, and N is the total number of
samples.
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4.1 Approach A1: terminal voltage at SoC milestones with incom-
plete data

In this first approach it is proposed to measure the battery’s terminal voltage at certain
SoC milestones while charging. These milestones could be chosen according to one of two
criteria: either analysing which ones present bigger differences as the cell ages, or based on
real applicability considerations. The former one could lead to better results, but it may be
less practical if the most significant differences happen at extreme capacity milestones which
may not be reached during regular charging processes. Here the latter is chosen in order to
guarantee good applicability, taking 40 %, 50 % and 60 % SoC as milestones. This algorithm
is applied to several cells aged by means of CCCV full charge-discharge cycles trying to keep
a constant temperature of 25 °C. All cells’ data are part of Battery Archive’s data set [30], [31]
(see Appendix A) and the cycling conditions are presented in Table 4.2.
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Table 4.2: Cells used for approach A1. Data from [30], [31]

Chemistry C-rate (ch/dis) Cut-off voltage Rated capacity Temperature ID

LCO 0.5 C / 0.5 C 2.7 V / 4.2 V 1.35 A h 25 °C e
LFP 0.5 C / 3 C 2 V / 3.6 V 1.1 A h 25.5 °C d
NCA 0.5 C / 1 C 2.5 V / 4.2 V 3.2 A h 27.5 °C a
NMC 0.5 C / 1 C 2 V / 4.2 V 3 A h 26 °C b
NMC-LCO 0.5 C / 1.5 C 2.8 V / 4.3 V 2.8 A h 25 °C a

The algorithm operates as follows: as the battery is being charged at constant current,
terminal voltage is measured and registered whenever one of the SoC milestones is reached.
Then, all three measurements are fed to the SoHQ estimator, which returns the estimated max-
imum available capacity of the battery. This algorithm assumes that a reliable SoC estimator
is available and that temperature does not significantly change while charging.
The charging curves for all cells are shown in Figure 4.1 for some of the cycles in the time
series. In general, it can be observed that, as the cell ages, the slope becomes steeper and the
constant-current zone limit is reached faster, thus the maximum available capacity decreases.
This behaviour is specially clear in the case of LCO and NMC-LCO cells (see Figures 4.1a
and 4.1e), and the distance between the curves is higher at high SoC than at low SoC, while
NCA and NMC experience the opposite behaviour and the difference is less significant. LFP
cells present nearly flat CCCV curves and, therefore, the voltage trajectory barely changes
as the cell ages. Based on these observations, the algorithms would be expected to perform
best on NCA and NMC cells, but poorly on LFP cells, since the curves are further apart from
each other. For LCO and NMC-LCO cells great performance would not be expected, since
these types, when severely aged, may reach the CV region at 60 % SoC. Thus, cells at different
degradation stages would show the same voltage at this milestone.
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Figure 4.1: CCCV charge curves evolution with ageing
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Figure 4.1: CCCV charge curves evolution with ageing (cont.)
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Figure 4.1: CCCV charge curves evolution with ageing (cont.)

Figure 4.2 shows the evolution of the voltage at the three chosen SoC milestones as the
cell degrades. Only LFP and NMC types are shown for comparison. The amount of points
has been reduced in order to improve readability. As expected from the analysis of Figure 4.1,
terminal voltage increases at all three points as the maximum available capacity decreases.
Besides the clear general tendency, it should be noted how, in the LFP cell, different levels
of maximum capacity have the same terminal voltage, which is a natural consequence of the
voltage curves staying almost unchanged throughout ageing (see Figure 4.1b). This could pose
a significant challenge for the estimator, because the same input values would be linked to
different output ones. The plots also give insight regarding the magnitude of voltage change
with ageing. In the case of the NMC units, the variation is around 100 mV across the entire
range, while for the LFP ones it is just 10 mV. The fact that this voltage variation is very low
could imply that the intelligent algorithm has difficulties learning the behaviour. Furthermore,
this also means that very accurate and noise-proof voltage sensors would be required for this
application, since just a small deviation could lead to significant capacity estimation errors.
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Figure 4.2: Terminal voltage evolution with ageing of cells for approach A1
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To further test the capabilities of the algorithm, three scenarios are considered: one in which
90 % of the entire data set is available for training, another one in which the first 60 % of the
cycles can be used and, lastly, one in which only the earliest 25 % is available. This aims at
exploring the performance of the methods in the case that reference cells have not yet been
cycled until EoL but the application needs to be deployed. The results obtained when applying
this algorithm to the testing data set are summarised in Table 4.3.

Table 4.3: Results for approach A1

Cell Structure Data split RMSE MAE ME µres σres

LCO BLS(1-6-3, tanh) 90 % 5.15 % 3.45 % 13.8 % 1.6 % 4.9 %
BLS(2-5-4, tanh) 60 % 10.1 % 8.8 % 30.2 % 8.6 % 5.3 %
BLS(2-1-7, tanh) 25 % 8.03 % 6.43 % 38.5 % 3.4 % 7.3 %
FNN(30-30-30, ReLU) 90 % 15.8 % 15.8 % 17.3 % 16 % 0.9 %
FNN(30-30-30, ReLU) 60 % 17.7 % 15.2 % 43.2 % 15 % 9 %
FNN(30-30-30, ReLU) 25 % 30.1 % 25.1 % 75.6 % 25 % 17 %

LFP BLS(1-2-2, tanh) 90 % 3.14 % 2.25 % 18.2 % 0.03 % 3.1 %
BLS(1-2-2, tanh) 60 % 9.15 % 7.58 % 39 % 7.3 % 5.6 %
BLS(1-4-2, tanh) 25 % 9.7 % 7.8 % 56 % −6.1 % 7.6 %
FNN(20-20-20-10, ReLU) 90 % 6.13 % 4.82 % 14.7 % 0.5 % 6.1 %
FNN(20-20-20-10, ReLU) 60 % 16.2 % 15.6 % 22.6 % 16 % 4.4 %
FNN(20-20-20-10, ReLU) 25 % 14.5 % 12.2 % 27.8 % 12 % 8 %

NCA BLS(1-1-12, tanh) 90 % 0.85 % 0.7 % 3.29 % −0.1 % 0.9 %
BLS(2-14-14, tanh) 60 % 1.63 % 1.43 % 4.9 % −0.3 % 1.6 %
BLS(2-2-12, tanh) 25 % 1.89 % 1.63 % 6.18 % 1.1 % 1.6 %
FNN(100-100-100, ReLU) 90 % 1.56 % 1.27 % 2.71 % 0.6 % 1.5 %
FNN(100-100-100, ReLU) 60 % 2 % 1.37 % 4.32 % 0.9 % 1.8 %
FNN(100-100-100, ReLU) 25 % 17.1 % 15.2 % 31 % 15 % 7.9 %

NMC BLS(1-4-2, tanh) 90 % 0.45 % 0.38 % 0.84 % −0.03 % 0.45 %
BLS(1-2-2, tanh) 60 % 1.05 % 0.88 % 2.9 % 0.8 % 0.7 %
BLS(6-2-3, tanh) 25 % 1.24 % 0.98 % 4.2 % 0.3 % 1.2 %
FNN(50-50-50-30, ReLU) 90 % 1.13 % 0.66 % 3.27 % 0.7 % 0.9 %
FNN(50-200-200-30, ReLU) 60 % 2.52 % 2.41 % 3.69 % 1.8 % 1.8 %
FNN(50-200-200-30, ReLU) 25 % 6.85 % 6.51 % 11.5 % 6.5 % 2.1 %

NMC-
LCO

BLS(3-4-1, tanh) 90 % 5.55 % 4.04 % 15.1 % 1.2 % 5.4 %
BLS(7-5-1, tanh) 60 % 6.7 % 4.31 % 31.2 % 2.8 % 6.1 %
BLS(3-1-8, tanh) 25 % 4.68 % 2.9 % 33.9 % 0.9 % 4.6 %
FNN(20-20-20, ReLU) 90 % 9.16 % 6.19 % 40.3 % −3.6 % 8.4 %
FNN(20-20-20, ReLU) 60 % 25 % 23 % 44 % 23 % 9.9 %
FNN(20-20-20, ReLU) 25 % 9.55 % 6.7 % 44.7 % −5.8 % 7.6 %
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It is evident that, in general, having more data available for training leads to better pre-
diction capabilities. It can be observed that, indeed, the best results correspond to the NCA
and NMC chemistries, which show good accuracy even when only early data are available,
although some overfitting was present when the FC-FNN was trained with only 25 % of the
samples. Both algorithms experienced overfitting for the LFP cell even when almost the entire
data set was used for training. Similarly, relatively large errors were obtained for the LCO
and NMC-LCO units. Using the regularization techniques as discussed in Section 3.1 did
not improve their performance. These results are as expected based on the previous analysis.
Lastly, the BLS was more accurate than the FC-FNN in all cases.

4.2 Approach A2: terminal voltage at SoC milestones with multiple
temperatures

In the previous approach it was assumed that the batteries were always cycled at the same
temperature. However, this may not be the case in a real scenario and, since this parameter has
a significant impact on the voltage-capacity curves (see Chapter 2), the SoHQ estimator should
be capable of performing well even when the charging temperature is different from the one
used during training. Therefore, the approach presented here aims at taking temperature into
consideration in order to predict the cell’s capacity. In this case, the cells have been cycled
at three temperatures, as shown in Table 4.4. The data used here come from Battery Archive’s
data set [30], [31]. This algorithm also takes as inputs the measured terminal voltages at 40 %,
50 % and 60 % SoC, and produces an estimation of the maximum available capacity as output,
which corresponds to the temperature at which the voltage has been measured. The algorithm
assumes constant-current charging and constant temperature for each individual cycle. Data
from cycling at approximately 15 °C and 35 °C are used for training, while data at 25 °C are
used for testing. The entire time series for each temperature is used for training or testing.

Table 4.4: Cells used for approach A2. Data from [30], [31]

Chemistry C-rate (ch/dis) Cut-off voltage Rated capacity Temperature ID

LFP 0.5 C / 1 C 2 V / 3.6 V 1.1 A h 15.7 °C b
0.5 C / 1 C 2 V / 3.6 V 1.1 A h 24.3 °C c
0.5 C / 1 C 2 V / 3.6 V 1.1 A h 34.8 °C a

NCA 0.5 C / 1 C 2.5 V / 4.2 V 3.2 A h 19.3 °C b
0.5 C / 1 C 2.5 V / 4.2 V 3.2 A h 27.5 °C a
0.5 C / 1 C 2.5 V / 4.2 V 3.2 A h 38.1 °C a

NMC 0.5 C / 1 C 2 V / 4.2 V 3 A h 17.7 °C a
0.5 C / 1 C 2 V / 4.2 V 3 A h 26 °C b
0.5 C / 1 C 2 V / 4.2 V 3 A h 36 °C c
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Charging cycles for pristine and severely aged LFP and NMC cells are shown in Figure 4.3
for all three temperatures in the data set. It can be observed that voltage levels are higher as
the temperature drifts away from 25 °C. When it comes to ageing, both types show the same
tendency: voltage increases with ageing at any temperature. This is in accordance with the
analysis elaborated in Sections 2.2 and 2.3.
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Figure 4.3: CCCV charge curves evolution with ageing and temperature for cells used in approach A2

Voltage variation at the chosen SoC milestones for all considered temperatures is shown
in Figure 4.4 for both LFP and NMC cells. The number of points has been reduced to improve
readability. It can be observed that the patterns of the two cells are very different. The
NMC cell has a more consistent behaviour, with a voltage increase as the maximum capacity
diminishes as previously noted. The effect of temperature is that the voltage is higher as
the temperature drifts away from 25 °C, in accordance with Figure 4.3b. This is congruent
throughout all three SoC milestones. Even though there is a clear tendency regarding both
temperature and ageing, the superposition of points from two different temperatures could
make the learning process more difficult. On the contrary, the LFP cell only shows significant
differences at 15.7 °C and the voltage variation at any temperature is quite small, also in
accordance with Figure 4.3a. The lack of large differences and the limited diversity of data
available could make it very challenging for the algorithms to learn the underlying behaviour
of the LFP cell. Thus, it would be expected to obtain superior performance on NMC cells than
on LFP ones.
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Figure 4.4: Terminal voltage evolution with ageing of cells for approach A2
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The results are presented in Table 4.5. According to the performance metrics, only the
BLS algorithm provides great accuracy for all cells. Nonetheless, a visual inspection of the
individual results confirmed that, for the LFP unit, both BLS and FC-FNN had a tendency to
overfit the training data. Some overfitting was also observed in the FC-FNN tests with NCA
and NMC cells. This is caused by the low variety of samples in the data set, as having only two
temperatures for training does not seem enough for learning the influence of this parameter.
Furthermore, the fact that the LFP’s curves barely change due to ageing and temperature
made the algorithm prone to overfitting the training data. Similarly to approach A1, the BLS
results are considerably better than the FC-FNN ones in all scenarios.

Table 4.5: Results of approach A2

Cell Structure RMSE MAE ME µres σres

LFP BLS(12-4-1, tanh) 1.05 % 0.8 % 6.46 % −0.04 % 1.1 %
FNN(30-30-30, ReLU) 2.31 % 1.95 % 5.24 % −1.2 % 2 %

NCA BLS(1-4-4, tanh) 1.77 % 1.38 % 5.56 % −0.5 % 1.7 %
FNN(30-30-30, ReLU) 6.69 % 5.8 % 12.4 % −5.6 % 3.6 %

NMC BLS(1-2-2, tanh) 1.39 % 1.08 % 3.38 % 0.58 % 1.3 %
FNN(30-30-30, ReLU) 5.32 % 4.37 % 13 % 1.4 % 5.1 %

4.3 Approach A3: terminal voltage at SoC milestones with realistic
ageing

In all the previous approaches the cells had been aged by means of full CCCV charge-
discharge cycles, which do not represent how batteries are actually used in EV applications.
In order to explore the capabilities of the proposed approaches under realistic ageing condi-
tions, the same algorithm is applied to cells from Oxford University’s data set [36], [37] (see
Appendix A). The cells are NCA-type with the same characteristics presented in Table 4.2.
Each iteration of the realistic ageing procedure consisted on two stages: a series of constant-
current cycles followed by some idle days in storage, as described in Table 4.6. The first one
represents the active usage of the battery while driving in a real application, while the second
one represents calendar ageing when the vehicle is not being used. As it would be the case
of an actual EV, the time allocated for calendar ageing is considerably larger than that for cy-
cling. Furthermore, reference performance tests were conducted periodically to characterise
the degradation of the units. All aforementioned tests were carried out at a constant chamber
temperature of 24 °C. The whole process was repeated until the cells reached EoL conditions.

Similarly to approaches A1 and A2, this algorithm takes as inputs the measured voltages
at 40 %, 50 % and 60 % SoC, and its output is the estimated maximum available capacity of
the cell. Figures 4.5a and 4.5c show the voltage curves during charging corresponding to
the CCCV reference performance tests of cell C4 in ageing group G2, and cell C10 in ageing
group G3, respectively. It is clear that the curves displace upwards as deterioration increases.
Capacity degradation for all cells in groups G2 and G3 is displayed in Figures 4.5b and 4.5d,
respectively. It can be observed that all cells belonging to the same group experience nearly



48 Chapter 4. SoC-based State-of-Health Estimation

Table 4.6: Ageing groups of cells used for approach A3. Data from [36], [37]

Group Cells Cycling ageing Calendar ageing

G1 C9, C15, C20 1 day at 0.5 C 5 days at 90 % SoC
G2 C3, C4, C8 1 day at 0.25 C 5 days at 90 % SoC
G3 C10, C11, C14 2 days at 0.5 C 10 days at 90 % SoC
G4 C12, C18, C19 2 days at 0.25 C 10 days at 90 % SoC

identical degradation, which is almost linear with the number of cycles. The same applies to
cells that have been aged in different ways. This is a very important feature, since cell-to-cell
differences in the any of the data sets could lead to wrong estimations as the algorithm would
be affected by a phenomenon which should not exist. On an additional note, the features
observed in Figure 4.5 are coherent with those of similar cells in other data sets explored
previously.
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The evolution of the measured voltage at the SoC milestones for all the cells in ageing
groups G2 and G3 is shown in Figure 4.6.
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As expected, there exists an almost linear relationship between capacity decay and voltage
increase that all cells align with, and cell-to-cell differences are negligible. This situation indi-
cates that a relatively simple pattern exists, so it would be expected to obtain good accuracy
when trying to predict the cell’s maximum capacity. However, some differences in voltage
levels for the same maximum capacity are present between the two groups, which may im-
pact the algorithms’ performance given the low amount of data available.

Two different scenarios are used to verify the performance of this approach. First, two
groups are used during training and the remaining two are used for testing. Each of the
training groups (G2 and G3) corresponds to one of the shorter and longer ageing procedures
and to the lowest and highest C-rate, so that the algorithm could learn both types of behaviour
during training and then it would be tested on similar scenarios. For the second one, the
algorithm is trained only on one of the groups (G3) and then tested on the rest. This represents
a more realistic situation, since it would be unlikely to have experimental data for each and
every possible scenario. The set-up for both cases and the obtained results are presented in
Table 4.7.

Table 4.7: Results of approach A3

Training Testing Structure RMSE MAE ME µres σres

G2, G3 G1, G4 BLS(1-5-1, tanh) 0.53 % 0.44 % 1.16 % 0 % 0.5 %
FNN(30-300-30-30, ReLU) 0.95 % 0.74 % 2.26 % 0 % 0.9 %

G3 G1, G2, G4 BLS(1-6-8, tanh) 1.67 % 1.33 % 3.78 % −0.8 % 1.4 %
FNN(30-300-30-30, ReLU) 1.87 % 1.48 % 3.83 % −1.2 % 1.4 %

It is clear that both the BLS and the FC-FNN can provide highly-accurate predictions
regarding SoHQ even when the algorithm is facing new situations on which it has not been
trained, although performance slightly worsens when only one of the groups is taken as the
training data set. Results would probably improve if more data, both from more cells and
more frequent RPT, were available. In this case the BLS and the FC-FNN are on par in terms
of performance, nevertheless the former contains less parameters, and thus requires lower
computing power, which makes it more appealing for real-world implementations.





Chapter 5

Charge gradient-based State-of-Health Es-
timation
A novel, intelligent algorithm for SoHQ estimation is designed in this chapter based on charge
gradient data. As before, three approaches are implemented and tested in scenarios with different
chemistries, temperatures and ageing procedures.
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5.3 Approach A6: charge gradient at voltage milestones with realistic ageing . . . . . . . 62

Although very effective, the three previous approaches presented some drawbacks, mainly
the need for an accurate SoC estimator in order to detect the milestones for making the volt-
age measurements. Nevertheless, this can be avoided by reversing the strategy: rather than
measuring the voltage at some specific SoC points, the charge increment between a sew spe-
cific voltage points is measured instead. Therefore, this algorithm requires accurate charge
measurements, by means of e.g. coulomb counting, to obtain the increments between volt-
age milestones, as opposed to an absolute SoC estimation. This procedure is inspired by
other IC-based methods, and these curves are analysed to decide the most favourable voltage
milestones for each type of cell chemistry.

5.1 Approach A4: charge gradient at voltage milestones with incom-
plete data

The first test is the same as in A1, that is, trying to make long-term SoHQ predictions
based on a reduced amount of data. The cells used for this approach are the same as in
Section 4.1 in order to better compare the results between both methods. Cells’ information
is presented in Table 4.2 and their IC curves are shown in Figure 5.1 for some of the cycles in
the time series. Note that these have been smoothed with a moving average of window size
5 samples. The most relevant feature portrayed in these plots is the existence of peaks and
valleys at different points of the charging process, as well as the way they displace and change
throughout degradation. This pattern has been used in previous research for SoHQ estimation
[16]. Nonetheless, the approach proposed here simplifies the peak/valley-tracking ones, since
it removes the need for implementing a zone-detection algorithm and reduces the processing
and memory requirements. Moreover, it relaxes the applicability constraints because it does
not require to register the entire charging process.

52
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Figure 5.1: IC curves evolution with ageing of cells for approach A4
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These plots show that all five chemistries follow a similar tendency, that is, the curves
displace right- and downwards as degradation becomes larger, and the peaks and valleys
become smoother. Displacement is predominant in NCA and NMC cells, while attenuation
is more significant in LCO and NMC-LCO ones. The charge gradient in the LFP unit is
not severely affected by degradation, except for the attenuation of the second peak at 3.4 V.
The interesting feature for this approach is not the magnitude of the charge gradient at a
certain voltage, but the magnitude of the variation of such gradient as the cell ages. Thus, the
preferred voltage milestones would be those for which the gradient of a pristine cell is very
different from that of a severely aged one. In order to further analyse this characteristic, the
standard deviation of the charge gradient at 50 mV increments is shown in Figure 5.2. This
provides a clearer overview of how the charge gradient varies as the cell degrades. LFP- and
NMC-LCO-type cells follow a similar pattern with one voltage level significantly larger than
the rest, although in the former case the rest of the values are very close to 0. The peaks are
in the expected positions after observing Figures 5.1b and 5.1e. The LCO unit also has an
unique peak, but the standard deviations at the surrounding voltage milestones are not far
away from it, in accordance with Figure 5.1a. The most complex patterns are those of the NCA
and NMC cells. For the former, the distribution is as expected from Figure 5.1c, i.e. peaking
between 3.6 V and 3.8 V, and low values thereafter. For the NMC unit, the peaks at 3.5 V and
3.7 V match the ones in Figure 5.1d, although the difference in magnitude between all points
is quite small. Based on the analysis of the standard deviation for the different chemistries,
it would be expected to obtain good performance when working with the LFP cell, and poor
with the NMC one.
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Figure 5.2: Standard deviation of charge gradient for cells for approach A4
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After considering the aforementioned remarks, the chosen voltage milestones for each
chemistry are shown in Table 5.1. The OCV-SoC curves were not available in the data set,
so it is not possible to find the equivalent SoC at each voltage milestone. The main drawback
of this approach is that, in order to reach the most useful voltage milestones, the charging
range might need to be extended or it may correspond to not very practical ones, which re-
duces its applicability. The first value in the list is taken as reference for the rest. Then, the
gradient is computed as in Equation (5.1) at each milestone, where Qi, Vi are the charge and
terminal voltage measured at the ith milestone, respectively, and Qre f , Vre f are the charge and
voltage measured at the reference milestone. Once all points have been reached, the values
are fed as inputs to the AI algorithms. As previously mentioned, the charge increment may
be computed by means of any method deemed reliable.

xi =
∆Qi

∆Vi
=

Qi −Qre f

Vi −Vre f
(5.1)

Table 5.1: Voltage milestones for approach A4

Cell Voltage milestones

LCO 3.85 V / 3.9 V / 3.95 V / 4 V
LFP 3.3 V / 3.35 V / 3.4 V / 3.45 V
NCA 3.6 V / 3.7 V / 3.8 V
NMC 3.6 V / 3.7 V
NMC-LCO 3.9 V / 3.95 V / 4 V / 4.05 V

The evolution of the charge capacity gradients with ageing at the chosen voltage milestones
are shown in Figure 5.3 for LFP and NMC cells. The LFP clearly follows the expected be-
haviour based on Figure 5.1b, that is, it decreases with the maximum available capacity. The
plot also shows that some noise still remains in the measurements, since there are some sig-
nificant drops which deviate from the underlying trend. It should be noted that, specially
at 3.35 V, the same gradient is obtained for different degradation levels, which could have
a negative impact in the algorithms’ performance. On the other hand, the NMC cell only
presents a clear tendency at 3.7 V and, even so, the same problem of equal gradient for dis-
tinct maximum capacity occurs. This is expected from Figures 5.1d and 5.2d, seeing as how
the IC curves are close together and have similar slope after this point. This reinforces the
expectation of achieving far superior performance for the LFP cell than for the NMC one.
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Figure 5.3: Charge gradient evolution with ageing of cells for approach A4

The results obtained when testing this approach are summarised in Table 5.2 for both BLS
and FC-FNN estimators. They show that the algorithms are capable of providing highly-
accurate capacity estimations when a large part of the data set is used for training. As ex-
pected, performance for the LFP cell was very high in all cases, although an individualized
observation of the algorithms’ predictions showed that they had a tendency to overfit the
training data set as the amount of training samples was reduced. This is accentuated by the
phenomena observed in Figure 5.3. A similar problem occurred with FC-FNN trying to pre-
dict the LCO cell’s SoHQ. In the case of the NMC one, this already happened when training
on 90 % of the time series, which was expected since only one valid voltage milestone was
found, while the BLS kept a fair amount of error until trained on only 25 % of the samples.
Accuracy for the NCA device was good in general and only decayed when a very limited part
of the data set was used for training. Results were also positive for the NMC-LCO unit, al-
though the error increased significantly when using the earliest 60 % samples. As in previous
cases, the BLS was more accurate than the FC-FNN.
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Table 5.2: Results for approach A4

Cell Structure Data split RMSE MAE ME µres σres

LCO BLS(2-12-8, tanh) 90 % 1.84 % 1.39 % 8 % 0.3 % 1.8 %
BLS(1-7-6, tanh) 60 % 2.22 % 1.81 % 12.1 % 1.1 % 1.9 %
BLS(3-8-12, tanh) 25 % 1.78 % 1.24 % 19 % −0.2 % 1.8 %
FNN(10-10-10-10, ReLU) 90 % 2.9 % 2.3 % 13.1 % 1.8 % 2.3 %
FNN(10-10-10-10, ReLU) 60 % 8.51 % 7.24 % 22.1 % 7.2 % 4.5 %
FNN(10-10-10-10, ReLU) 25 % 12.3 % 8.88 % 36.4 % 8.9 % 8.5 %

LFP BLS(6-9-6, tanh) 90 % 0.51 % 0.36 % 3.81 % 0.2 % 0.5 %
BLS(7-12-8, tanh) 60 % 0.91 % 0.67 % 6.9 % −0.3 % 0.9 %
BLS(4-12-3, tanh) 25 % 3.44 % 2.91 % 9.67 % −2.2 % 2.6 %
FNN(10-100-10-10, ReLU) 90 % 0.92 % 0.8 % 3.38 % 0.8 % 0.5 %
FNN(10-100-10-10, ReLU) 60 % 0.97 % 0.74 % 5.95 % −0.4 % 0.9 %
FNN(10-100-10-10, ReLU) 25 % 3.71 % 3.19 % 9.95 % −3.1 % 2 %

NCA BLS(12-12-1, tanh) 90 % 0.85 % 0.6 % 2.36 % 0.1 % 0.9 %
BLS(7-1-2, tanh) 60 % 1.37 % 1.06 % 3.69 % 0.6 % 1.3 %
BLS(2-1-1, tanh) 25 % 4.02 % 3.66 % 8 % 3.7 % 1.7 %
FNN(20-50-50-20, ReLU) 90 % 1.35 % 1.13 % 2.63 % −0.3 % 1.3 %
FNN(20-50-50-20, ReLU) 60 % 4.3 % 3.56 % 9.36 % −3 % 3 %
FNN(20-50-50-20, ReLU) 25 % 2.62 % 2.18 % 6.36 % 2 % 1.7 %

NMC BLS(1-1-1, tanh) 90 % 0.33 % 0.22 % 1.73 % 0 % 0.3 %
BLS(1-2-1, tanh) 60 % 2.02 % 1.6 % 6.55 % −0.9 % 1.8 %
BLS(1-4-9, tanh) 25 % 3.53 % 2.94 % 9.65 % 1.1 % 3.3 %
FNN(10-50-10, ReLU) 90 % 2.07 % 2.06 % 2.8 % 2.1 % 0.2 %
FNN(10-50-10, ReLU) 60 % 1.65 % 1.25 % 5.65 % 0.8 % 1.4 %
FNN(10-50-10, ReLU) 25 % 4.72 % 4.47 % 9.24 % 4.5 % 1.5 %

NMC-
LCO

BLS(4-7-12, tanh) 90 % 1.49 % 1.24 % 3.69 % −0.6 % 1.4 %
BLS(1-1-1, tanh) 60 % 8.36 % 7.45 % 33.1 % −4.9 % 6.8 %
BLS(11-1-1, tanh) 25 % 9.83 % 8.59 % 46.3 % 5.2 % 8.4 %
FNN(10-100-100-20, ReLU) 90 % 3.17 % 2.57 % 6.35 % 2.5 % 2 %
FNN(10-100-100-20, ReLU) 60 % 24.9 % 23.2 % 42.5 % 23 % 9 %
FNN(10-100-100-20, ReLU) 25 % 11 % 8.85 % 27.6 % 8.8 % 6.6 %

5.2 Approach A5: charge gradient at voltage milestones with multi-
ple temperatures

Following the same path as with the approaches in Chapter 4, after the charge gradient
method has been tested for incomplete data sets in approach A4, the next step is to apply
it to scenarios where temperature cannot be considered constant. The cells are the same as
for approach A2 and their characteristics are presented in Table 4.4. Figure 5.4 shows the
incremental capacity curves for LFP and NMC cells at early and late degradation stages for
each one of the available temperatures after being smoothed with a moving average of width
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5 samples. For both of them, for the same ageing stage, it can be observed how the curves
displace to the right as temperature drifts away from 25 °C. Then, as previously mentioned,
degradation pushes the curves to the right and, in the case of the LFP cell, attenuates the
second peak. Meanwhile, all peaks become smaller in the NMC one, with a very significant
degradation at 17.7 °C, which is coherent with the analysis in Section 2.3
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Figure 5.4: Charge gradient evolution with ageing at multiple temperatures of cells for approach A5

Figure 5.5 shows the standard deviation of the charge capacity gradients as the cell ages
and at the three available temperatures. The LFP cell maintains a coherent behaviour across all
temperatures and presents only peaks at 3.35 V and 3.4 V at 24.3 °C and 15.7 °C, respectively.
These match the position of the main peaks in Figure 5.4a. The differences are more noticeable
in the NMC case, specially when it comes to the peaks at 3.6 V and 3.75 V, which are only
present at 17.7 °C. For the other temperatures, the major differences are located at 3.5 V and
3.7 V for 26 °C, and at 3.55 V and 3.7 V for 36 °C, which is also coherent with the curves
in Figure 5.4b. As before, the lack of a clear pattern or large differences may lead to bad
estimation results when testing the algorithms. Based on these observations, the voltage
milestones are chosen as those in Table 5.3.

Table 5.3: Voltage milestones for approach A5

Cell Voltage milestones

LFP 3.3 V / 3.35 V / 3.4 V / 3.45 V
NCA 3.6 V / 3.7 V / 3.8 V
NMC 3.6 V / 3.7 V / 3.8 V
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Figure 5.5: Standard deviation of charge gradient through ageing at multiple temperatures of cells for approach
A5

The evolution of the charge gradients at the chosen milestones is shown in Figure 5.6.
As before, the LFP cell presents a consistent behaviour across the three temperatures, which
follow the expected trend of decreasing gradient with ageing. This change is less pronounced
at 15.7 °C, as it could be inferred from the previous analysis. The differences between temper-
atures are most significant at 3.4 V, while they overlap each other considerably at 3.45 V. For
the NMC cell, the gradient shows a very clear general tendency at any temperature, although
the fact that the points for all three temperatures overlap with each other may make it difficult
for the AI systems to learn and make accurate predictions in changing conditions. Thus, it
would be expected to obtain considerably better results for the LFP cell than for the NMC
one.
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Figure 5.6: Charge gradient evolution with ageing at multiple temperatures of cells for approach A5
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The algorithms were trained on data at 15 °C and 35 °C, then tested at 25 °C. Results for
this approach are presented in Table 5.4. The best performance was obtained by the BLS in all
three scenarios. Overall accuracy was high, having the LFP cell the best results. Nevertheless,
the FC-FNN algorithm showed some overfitting for the NCA and NMC tests when predic-
tions were analysed individually. These results match the expectations, being the higher errors
related to the fact that the charge gradient did not show significant differences between tem-
peratures in the analysis. Then again, trying to learn the impact of temperature by using only
two experiments is very complicated, specially if this influence is not linear or monotonic.

Table 5.4: Results of approach A5

Cell Structure RMSE MAE ME µres σres

LFP BLS(3-1-4, tanh) 0.64 % 0.49 % 1.81 % −0.1 % 0.6 %
FNN(300-300-30, ReLU) 1.51 % 1.34 % 3.36 % −1 % 1.2 %

NCA BLS(8-12-4, tanh) 2.16 % 1.76 % 5.96 % 0.1 % 2.2 %
FNN(300-300-30, ReLU) 3.23 % 2.59 % 9 % 2 % 2.5 %

NMC BLS(9-10-2, tanh) 1.93 % 1.65 % 5.08 % −0.3 % 1.9 %
FNN(300-300-30, ReLU) 4.13 % 3.42 % 8.58 % −3.3 % 2.5 %

5.3 Approach A6: charge gradient at voltage milestones with realis-
tic ageing

For this last approach, the intelligent algorithm is tasked with predicting the maximum
available capacity based on the measured charge increments at fixed voltage milestones, simi-
lar to approaches A4 and A5, but using the hybrid ageing data set (see Table 4.6). Figure 5.7a
shows the IC curves for one of the cells, smoothed with a moving average of window size 2
samples. This plot has a higher voltage resolution than the one obtained from the previous
data set for a similar cell (see Figure 5.1c), however there is also slightly more noise in the
measurements. The tendency of the curves is to attenuate the first peak and to displace the
second one rightwards as the number of cycles increases, although beyond 3.8 V all curves
overlap. This is in accordance with the standard deviation analysis of the charge gradient in
Figure 5.7b, where the points with highest dispersion are 3.55 V and 3.65 V. It can also be ob-
served how all three cells in the same group present similar evolution of the charge gradient,
which remarks that cell-to-cell differences are negligible.
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Figure 5.7: IC curves analysis of cell for approach A6

Based on these plots, the reference voltage milestone is taken as 3.65 V, and the measuring
ones are 3.7 V and 3.75 V, which correspond to 48 %, 58 % and 62 % SoC, respectively, for a
pristine cell (see Figure 2.5). This means a total range of approximately ∆SoC = 14 %, which
is shorter than the ones used in Chapter 4. The evolution of the charge gradient at each of
the milestones is shown in Figure 5.8 for all cells in group G2. At both 3.7 V and 3.75 V, it
decreases as the device loses capacity, with a steeper slope below 2.8 A h. However, the gap
between a pristine and an aged cell is more significant at the first milestone. This behaviour
is in accordance with what was depicted in Figure 5.7a. Once again it becomes clear that no
relevant cell-to-cell differences exist since all of them follow a similar pattern.
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Figure 5.8: Charge gradient evolution with ageing of cells for approach A6
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The same two scenarios as for approach A3 are used here, that is, a first scenario where data
from two types of ageing are used for training, and a second one where only one of the groups
is used for training and the other three are reserved for testing the algorithms. The results of
this approach are presented on Table 5.5. It is clear that both algorithms perform quite well
in any of the two designed scenarios. It is also interesting to note that similar accuracy was
achieved in any of them, which points towards the hypothesis that the specific conditions in
which the cells are aged do not have a severe influence on the effects of degradation, at least
when it comes to hybrid ageing. As a final remark, it should also be taken into consideration
that this data set contained a very small amount of data, which definitely had a negative
impact on performance.

Table 5.5: Results of approach A6

Training Testing Structure RMSE MAE ME µres σres

G2, G3 G1, G4 BLS(1-2-4, tanh) 3.02 % 2.5 % 5.82 % −0.4 % 3 %
FNN(20-100-20-10, ReLU) 3.53 % 3.16 % 5.88 % 1.1 % 3.4 %

G3 G1, G2, G4 BLS(5-1-5, tanh) 2.79 % 2.34 % 5.66 % −0.3 % 2.8 %
FNN(20-100-20-10, ReLU) 3.2 % 2.67 % 6.28 % 0.5 % 3.2 %





Chapter 6

Impedance-based State-of-Health Estima-
tion
In this chapter, an intelligent method to simultaneously estimate SoHQ and SoHR based on a very
small amount of impedance measurements is developed and then tested on cells undergoing storage
ageing.

Contents
6.1 Approach A7: impedance measurements at limited frequency points . . . . . . . . . . 66

One of the main drawbacks of the previously presented approaches is that they require the
vehicle to be stationed at a charger and that the charging process covers the pre-established
SoC or voltage milestones. In real-world applications, this may not happen each and every
time the battery is being recharged. For those scenarios in which a faster, more flexible method
for monitoring the battery’s health is required, an estimation algorithm based on impedance
measurements is developed here. The advantages over the previous methods are that it can
be executed online, and that the amount of time required to perform the measurements can
be drastically reduced. Furthermore, the algorithm is capable of providing estimations of
degradation for both the battery’s maximum available capacity (SoHQ) as well as its internal
ohmic resistance (SoHR).

6.1 Approach A7: impedance measurements at limited frequency
points

In order to design and test this method, data from cells aged in different storage conditions
were used, as presented in Table 6.1. Unfortunately, these data are part of Aalborg University
E-Mobility and Industrial Drives research group and are not publicly available, although papers
describing and using the data set have been published in the past [14], [16]. This arrangement
allows for analysing the impact of both SoC level and ambient temperature while in storage.
The cells were taken out to undergo reference performance tests approximately every month
over a total period of 33 months. These included, among others, EIS and CCCV charge and
discharge experiments, all of them conducted trying to keep a constant temperature of 25 °C.
The impedance measurements were conducted at 10 %, 50 % and 90 % SoC, and it has been
shown by the original authors that this factor does not have a significant influence and, thus,
just measurements at 50 % can be used for simplification [14]. For this reason, combined with
he fact that, in realistic scenarios, it would be expected to be at 50 % SoC more often than
at the rest, only these measurements will be used in the remainder of the section. However,
it would be possible to develop similar approaches for any given SoC level. On the other
hand, the lack of EIS measurements at multiple temperatures makes it impossible to quantify

66
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the impact of this parameter on impedance, so the approach presented here is only valid for
estimation at the same temperature as in the original data set. This is not ideal, since it was
shown in Section 2.2.2 that temperature has a sensible effect on cell impedance and should be
included in the design of experiments and algorithms.

Table 6.1: Storage conditions and characteristics of cells used for approach A7 [14], [16]

Cell C1 C2 C3 C4 C5 C6 Chemistry NMC
SoC 50 % 50 % 50 % 10 % 90 % 50 % Cut-off voltage 3 V / 4.125 V
Temperature 35 °C 40 °C 45 °C 45 °C 45 °C 7 °C Rated capacity 63 A h

Based on the collected data, it is possible to analyse how cells stored at different tem-
peratures and SoC levels age. A capacity degradation-focused analysis of these data was
previously done in Section 2.3.4, while impedance is the variable of interest in this section.
Figure 6.1 shows the Nyquist plots of severely-aged cells (around 33 months) which were
stored at the same temperature and multiple SoC levels (see Figure 6.1a), and at the same SoC
and multiple temperatures (see Figure 6.1b). It can be observed that, when it comes to SoC,
degradation is much more significant at intermediate levels (C3) than when the battery is al-
most entirely depleted (C4) or charged (C5), while the differences are minimal at the extremes.
For cells stored at different temperatures, capacity loss is worse for those which underwent
higher temperatures (C3). Furthermore, the plots also show that, in general, cell degradation
leads to increased impedance’s real part at all frequencies or, in other words, a rightwards
displacement of the Nyquist plots. These observations are coherent with those discussed in
Section 2.3.4.
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Figure 6.1: Effects of long-term storage ageing at constant SoC and constant temperature

The choice of frequency points at which to measure the cell’s impedance is a critical part
of this approach. Using low-frequency excitation signals would largely extend the process’
duration, while high-frequency ones would increase the magnitude of the inductive effects
of the wires and could make noise-filtering more difficult [1, p. 267]. At the same time, the
amount of points should be kept as small as possible so that the estimation can be carried
out faster and the computing requirements are low. Moreover, it is necessary to analyse if
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the effects of degradation are more significant at some frequencies than others, as points with
large variations would be preferred. This is done by computing the standard deviation of
the complex impedance at each frequency throughout the entire ageing process of each of the
cells, as shown in Figure 6.2. It is clear that the imaginary part does not significantly change
with ageing except at very high frequencies, no matter the ageing procedure. In terms of
real-part variation, it is larger for the cell stored at 50 % (C3) when looking at the constant-
temperature data, while it is higher for the one kept at 45 °C (C3) when comparing data at the
same SoC. These observations match the ones outlined before. Based on these considerations
it was chosen to use the following frequencies as milestones: 10 Hz, 20 Hz, 50 Hz, 100 Hz,
200 Hz, 500 Hz and 1 kHz. It must be noted that these are approximated values, since they
do not perfectly match the ones present in the data set. Exactness is not a critical aspect,
as long as the frequencies used during training are the same ones as in the real application.
Impedance may be measured by means of a regular EIS test or, to save time, with any of the
random sequence-based methods discussed in Section 1.2.

10−2 10−1 100 101 102 103 104

0

1

2

3

4
·10−4

Frequency [Hz]

σ
R
e(
Z
)
,
σ
I
m
(Z

)
[Ω

]

Constant temperature

C3 | Re

C3 | Im

C4 | Re

C4 | Im

C5 | Re

C5 | Im

(a) SoC influence (45 °C)

10−2 10−1 100 101 102 103 104

0

1

2

3

4
·10−4

Frequency [Hz]

σ
R
e(
Z
)
,
σ
I
m
(Z

)
[Ω

]

Constant SoC C1 | Re

C1 | Im

C2 | Re

C2 | Im

C3 | Re

C3 | Im

C6 | Re

C6 | Im

(b) Temperature influence (50 % SoC)

Figure 6.2: Standard deviation of impedance spectrum with ageing

In order to validate the proposed approach, the intelligent algorithms were tested on two
scenarios. In the first one, data from four cells were used for training and the rest for testing.
The training data selection here is based on using different temperatures and SoC levels,
giving priority to the first ones since they seemed to have a bigger impact on ageing and
more diverse situations were considered. This aims at verifying if, by only using data from
a very limited set of conditions, it is possible to predict the SoH of cells stored in different
ones. In the second one, the algorithms were trained on early degradation data and then
they were tasked with predicting the SoH at late stages. Thus, this one investigates how
accurate estimations are when only early data are available. There were however problems
with the testing equipment and data between 17 and 24 months were missing. The training
configuration for the intelligent algorithms is presented in Table 6.2 and the obtained results
are summarised in Table 6.3.
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Table 6.2: FC-FNN configuration parameters for approach A7

Early stopping Batch size Optimizer Epochs Loss Train / Validation split

250 epochs 5 %, min. 5 samples Adam 5000 MSE 70 % / 30 %

Table 6.3: Results of approach A7

Train Test Structure Variable RMSE MAE ME µres σres

C1-C4
0-33 M1

C5-C6
0-33 M1

BLS(16-19-1, tanh) SoHQ

SoHR

1.2 %
0.3 %

1 %
0.2 %

2.7 %
0.5 %

0.6 %
−0.1 %

1.1 %
0.2 %

FNN(200-200-200-
200-30, ReLU)

SoHQ

SoHR

2.2 %
0.5 %

1.9 %
0.4 %

3.2 %
0.7 %

1.1 %
0.4 %

1.9 %
0.7 %

C1-C6
0-26 M1

C1-C6
27-33 M1

BLS(10-18-3, tanh) SoHQ

SoHR

1.1 %
0.3 %

0.9 %
0.3 %

1.8 %
0.5 %

−0.3 %
0 %

1 %
0.3 %

FNN(100-100-100-
100-30, ReLU)

SoHQ

SoHR

2.1 %
0.9 %

1.6 %
0.8 %

3.8 %
1.4 %

−1.1 %
−0.8 %

1.8 %
0.3 %

Results show that the algorithms can accurately estimate both SoHQ and SoHR, specially
the latter one, in any of the scenarios. During testing it was observed that modifying the
algorithm so that it only estimated SoHQ led to even higher accuracy, specially for the FC-
FNN-based methods. This is due to the fact that this one takes into account the MSE of
both outputs to update the weights during training and, since the resistance’s error proved to
decrease much faster than the capacity one, the training ended when the latter was still rela-
tively high. A possible solution to this problem would be to choose the excitation frequencies
so that they are close to the cross-over point, and then performing some form of interpolation
to obtain the SoHR. In the specific case of the NMC cells employed in this approach, the in-
tersection with Im(Z) = 0 occurred in the range from 200 Hz to 400 Hz (see Figure 2.9b) and,
therefore, there would be no need for additional frequency measurements. Another possibil-
ity would be to reconstruct the entire impedance spectrum using machine learning, as shown
in Section 1.2.
It was also observed that similar accuracy was obtained when using data at 10 % and 90 %
SoC, which implies that, potentially, the algorithm could be applied to any given charge level.
Lastly, data scarcity definitely had a negative impact on the system’s performance, as a signif-
icant part of the time series was not available. As a final remark, no specific methodology has
been established for impedance measurements since many fast and reliable approaches have
already been proposed in literature, as discussed in Section 1.2.

This was the final method developed in this thesis and, thus, the practical aspects of this
report come to an end here. The next chapter contains a discussion regarding methodologies
and results.

1Data from months 17 to 24 were not available.
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Discussion
Throughout this report a total of seven machine learning-based approaches for SoH estima-

tion have been proposed. They can be split into three types, each of them based on different
considerations and with different requisites:

1. The first one (A1, A2, A3; see Chapter 4) is SoC-based, that is, terminal voltage is mea-
sured at certain SoC levels and then these data are used as inputs for the estimator. These
SoC milestones were chosen based on applicability rather than potential performance.
In other words, rather than analysing which SoC levels would show more differences
with ageing, intermediate values (40 %, 50 % and 60 %) were chosen instead, as it was
considered that these would be more frequent in real EV applications. No specific SoC
estimation algorithm was designed for this approach, but plenty of reliable methods are
available in the recent literature [13], [52]–[54].

2. The second one (A4, A5, A6; see Chapter 5) is voltage-based, which means that charge
increments are measured between some pre-established voltage points. Then, charge
gradients are computed based on these increments and used as inputs for the intelligent
algorithms. In this case, an individualised analysis of each chemistry was performed
in order to find those voltage milestones at which the charge gradient showed a larger
variation as the cell deteriorated. When choosing the voltage milestones, the ones fur-
ther away from the cut-off voltages were preferred to try and make the method more
applicable. One of the main advantages of this approach was that it did not require the
existence of an SoC estimator, but only accurate charge measurements.

3. The last type (A7; see Chapter 6) is based on impedance spectrum and attempts to
estimate both SoHQ and SoHR from a very limited amount of frequency measurements.
The improvement of this method over the previous two is that it can truly be executed
online, rather than demanding the car to be connected to a charging station. On the
other hand, the measurement process becomes slightly more complex, since injecting
a series of excitation signals at a number of frequencies is necessary for computing
the cell’s impedance. Moreover, the intelligent algorithms were trained to work with
measurements at a certain SoC and temperature and, thus, the vehicle would need to be
in some specific conditions prior to conducting the SoH estimation. As with the second
type, the selection of frequencies was based on a variation analysis through degradation
and, at the same time, very low and high ones were avoided in order to reduce execution
time and inductive effects from the wires, respectively. No specific method for signal
injection was derived, although random sequence-based ones [8]–[10] are recommended
over single-frequency excitation so that impedance measurements are made faster.
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In order to test the accuracy of the methods proposed in Chapters 4 to 6, several different
scenarios were considered. The aim of these experiments was to verify if the AI-based methods
were capable of providing accurate estimations when facing new, demanding conditions. The
best results for each scenario are summarised in Table 7.1.

1. First (A1, A4; see Sections 4.1 and 5.1), a situation in which the reference cells have not
yet been cycled until EoL in the laboratory, as a way of simulating an incomplete lifetime
data set. The algorithms were trained on progressively early stages of the data set and
then tested on the later ones. Good all-round accuracy was obtained for most of the
cells in both approaches, with the exception of e.g. the LFP cell in A1, which showed
overfitting problems. This was caused by the voltage curves being very close to each
other throughout ageing. In most cases, training the algorithms on increasingly earlier
stages led to performance deterioration, which is a natural consequence of the reduction
in training samples and the increased differences with the test data set.

2. Secondly (A2, A5; see Sections 4.2 and 5.2), the case where temperature is taken into
consideration as a parameter conditioning cell behaviour. The estimators were trained
on two temperatures and tested for prediction at a different one. Here, for example, it
was observed how, for the LFP cell, the results of the SoC-based method were not good,
but they were the best when using the charge gradient-based one. This supports the
idea that each of the methods may be a better option depending on the battery’s specific
chemistry. The employed data set, however, was quite limited in terms of temperature
diversity as only three levels were available. This severely conditioned the algorithms’
capabilities, since they had to learn the general effect of temperature based on just two
of them and, as observed in Chapter 2, this relationship can be rather complex. It would
be interesting to conduct these experiments over a wider range and to evaluate again
the goodness of the proposed approaches.

3. For the third one (A3, A6; see Sections 4.3 and 5.3), data from realistic hybrid ageing
procedures were used to assess the accuracy of both types of approaches. Out of a total
of four available ageing groups, the algorithms were trained on either one or two of
them, and then tested on the other ones. The good overall results corroborated that the
intelligent algorithms were capable of estimating the SoHQ even when tasked with cells
aged in different ways. It was observed how the SoC-based approach was significantly
better than the voltage-based one, and that performance did not largely worsen if only
one of the ageing groups was used for training. A key limiting factor in this case was
the relative scarcity of data, as RPT were only conducted once every many cycles.

4. Since it required a different type of measurements, approach A7 (see Section 6.1) could
not be applied to the aforementioned scenarios. Instead, two types of situations with
incomplete data were investigated: one in which just a few cases of storage ageing were
available, in order to explore whether the approach could be trained on limited scenarios
and then used for general predictions, and another one in which only data from early
degradation stages was used for training, to verify if the algorithms could make good
predictions for future events. Quite low error was obtained in both of them, with no
signs of overfitting. Predictions when training and testing at other SoC levels were also
accurate, which implies that this approach could potentially be applied to any SoC.
Nevertheless, the reduced size of the data set and, more importantly, the absence of
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several months’ data definitely burdened the ability of the methods to provide accurate
long-term predictions.

Table 7.1: Summary of results of SoH estimation algorithms

Case Structure RMSE MAE ME µres σres

A1, LCO, Train: 90 % BLS(1-6-3, tanh) 5.2 % 3.5 % 13.8 % 1.6 % 4.9 %
A1, LFP, Train: 90 % BLS(1-2-2, tanh) 3.1 % 2.3 % 18.2 % 0 % 3.1 %
A1, NCA, Train: 90 % BLS(1-1-12, tanh) 0.9 % 0.7 % 3.3 % −0.1 % 0.9 %
A1, NMC, Train: 90 % BLS(1-4-2, tanh) 0.5 % 0.4 % 0.8 % 0 % 0.5 %
A1, NMC-LCO, Train: 25 % BLS(3-1-8, tanh) 4.7 % 2.9 % 33.9 % 0.9 % 4.6 %

A2, LFP, Train: 15 °C, 35 °C BLS(12-4-1, tanh) 1.1 % 0.8 % 6.5 % 0 % 1.1 %
A2, NCA, Train: 15 °C, 35 °C BLS(1-4-4, tanh) 1.8 % 1.4 % 5.6 % −0.5 % 1.7 %
A2, NMC, Train: 15 °C, 35 °C BLS(1-2-2, tanh) 1.4 % 1.1 % 3.4 % 0.6 % 1.3 %

A3, Train: G2, G3 BLS(1-5-1, tanh) 0.5 % 0.4 % 1.2 % 0 % 0.5 %

A4, LCO, Train: 90 % BLS(2-12-8, tanh) 1.8 % 1.4 % 8 % 0.3 % 1.8 %
A4, LFP, Train: 90 % BLS(6-9-6, tanh) 0.5 % 0.4 % 3.8 % 0.2 % 0.5 %
A4, NCA, Train: 90 % BLS(12-12-1, tanh) 0.9 % 0.6 % 2.4 % 0.1 % 0.9 %
A4, NMC, Train: 90 % BLS(1-1-1, tanh) 0.3 % 0.2 % 1.7 % 0 % 0.3 %
A4, NMC-LCO, Train: 90 % BLS(4-7-12, tanh) 1.5 % 1.2 % 3.7 % −0.6 % 1.4 %

A5, LFP, Train: 15 °C, 35 °C BLS(3-1-4, tanh) 0.6 % 0.5 % 1.8 % −0.1 % 0.6 %
A5, NCA, Train: 15 °C, 35 °C BLS(8-12-4, tanh) 2.2 % 1.8 % 6 % 0.1 % 2.2 %
A5, NMC, Train: 15 °C, 35 °C BLS(9-10-2, tanh) 1.9 % 1.7 % 5.1 % −0.3 % 1.9 %

A6, Train: G3 BLS(5-1-5, tanh) 2.8 % 2.3 % 5.7 % −0.3 % 2.8 %

A7, Train: C1-C4, 0-33 M BLS(16-19-1, tanh) 1.2 % 1 % 2.7 % 0.6 % 1.1 %
0.3 % 0.2 % 0.5 % −0.1 % 0.2 %

A7, Train: C1-C6, 0-26 M BLS(10-18-3, tanh) 1.1 % 0.9 % 1.8 % −0.3 % 1 %
0.3 % 0.3 % 0.5 % 0 % 0.3 %

While designing the tests, it was decided to make them quite demanding in order to find
how powerful the algorithms were in challenging situations. Although it has not been stated
in this report, the performance on the validation data sets, which are extracted from the same
group as the training data, was always significantly better than that obtained on the test data
set. This implies that, even though the proposed methods were good in new situations, they
were even better when operating in situations similar to those they were trained on. On a
similar consideration, it was chosen to keep the data as raw as possible in order to have a
closer situation to real-world conditions. Thus, only evident outliers or erroneous measure-
ments were taken out of the data sets. Most likely, a more thorough pre-processing would
have considerably improved the results, although in that case the problem of distinguishing if
information of only noise is being removed arises. The same applies to the amount of avail-
able data for training, which was very reduced for some of the approaches.
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As a final remark, the BLS showed higher performance than the FC-FNN in all cases,
which proves its potential as an ML algorithm. This, combined with the fact that it contained
less parameters and that the training process was much faster, are very relevant arguments to
choose this strategy when deploying it in real-world applications.

To provide some context for the previous results, Table 7.2 summarises some of the best
SoH estimation methods found in Section 1.2. This should not be taken as a direct comparison
of the algorithms, since the data, the pre-processing and the implementation methodologies
differ for each of them. This shows that all seven approaches proposed in this thesis can
provide similar or superior accuracy than already existing methods, both data- and model-
based. Furthermore, the algorithms in this project have been tested for more diverse cell types,
demonstrating good applicability for all of them, as well as for combined, more realistic ageing
procedures.

Table 7.2: Summary of capacity-based SoH estimation methods from state-of-the-art review

Method Observations Results

SVM [55] Single chemistry. Multiple temperatures. CCCV
and driving-cycle ageing. No long-term degrada-
tion

MSE: 0.4 %

LSTM-RNN [19] Single chemistry. Multiple temperatures. CCCV
and driving-cycle ageing. Long-term degradation.

MAE: 2.5 %

Peak/valley track-
ing in IC curves
[16]

LMO and NMC chemistries. Calendar ageing at
multiple temperatures and SoC levels.

MSE: 1.8 %

Partial charging [15] NMC chemistry. Calendar and cycling ageing at
multiple temperatures and SoC levels.

MSE: 2.3 %

The approaches proposed throughout this thesis should not be considered as a final solu-
tion, since plenty of improvements are still possible and necessary, as discussed in Chapter 9.
These affect both the methodologies themselves and the validation experiments. The next
chapter draws some relevant conclusions regarding the entire work presented in this report.



Chapter 8

Conclusion
As stated in Section 1.4, the purpose of this thesis was to investigate if machine learning

algorithms could be applied for online SoH estimation of batteries in electric vehicles. For
this purpose, several strategies were designed based on different considerations and types of
measurements. Then, they were evaluated in different scenarios trying to cover several diverse
ageing procedures and cell chemistries. The results proved that, indeed, all the algorithms
can accurately estimate a Li-ion cell’s maximum available capacity even when tasked with
challenging situations.

This thesis makes several contributions to the topic of SoH estimation of Li-ion batteries.
First, a very thorough analysis of the effects of several factors related to cell degradation was
done in Chapter 2, along with a study of the main reference performance tests and the way
they are affected by the experiment’s conditions. Then, three completely novel approaches
were developed in Chapters 4 to 6 based on various effects of cell degradation, which had
been identified in the previous analysis. All methods can be applied online, but without
the need of completing an entire charging cycle nor wide-range, high-resolution impedance
spectrum measurements. Then, it was shown how these methods were capable of estimating
a cell’s maximum available capacity when making long-term predictions based only on early
data, when operating at temperatures other than the ones used in the laboratory tests, and
when applied to cells which had undergone different types of ageing.

Lastly, this work is one of the few to consider several types of Li-ion cells, it constitutes the
first attempt at applying the novel BLS algorithm to battery management systems, and also
the first time that the majority of publicly available data sets are explored and compared in
depth.
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Chapter 9

Future work
Battery pack validation The proposed approaches have been applied to individual Li-ion
cells, rather than large battery packs. According to some literature in Section 1.2, battery-pack
curves may present some differences with those of single cells. It would therefore be necessary
to evaluate the performance of the algorithms for a real EV battery.

Large-scale data set In order to develop algorithms which can operate in very diverse sce-
narios it would be necessary to build a reliable data set which contains RPT data from several
units of different chemistries, cycled at different C-rates, temperatures, DoD, but also real-
istic driving cycles and calendar ageing in different conditions. For example, no data were
available for LMO nor LTO cells, and some methods could only be tested on a single type.

Multi-temperature SoHQ interpolation Some of the proposed approaches have limited ap-
plicability in terms of ambient conditions. For example, methods proposed in Chapters 4
and 5 provide an estimate of the maximum available capacity at a certain temperature, but
cannot extrapolate it to a different one. However, this could be possible if consecutive RPT
were conducted in different conditions at certain points of a cell’s ageing process.

Realistic SoC milestones If real data from user habits were available, these could be used
to choose the most common SoC interval for the approaches A1 and A4 to further increase
applicability. Another option would be to obtain several models with different SoC milestones
and then using the one corresponding to the specific case. Nevertheless, this could largely
increase the computation requirements of the algorithm.

BLS smart structure selection The BLS algorithms for this application did not require a
lot of nodes and, therefore, a grid-search procedure was efficient enough. If, however, the
problem had been more complex and required many nodes, it would have been interesting to
develop some intelligent or adaptive method to iterate between promising structures in order
to save training time.

Publicly available data Due to their intrinsic characteristics, Li-ion-cells testing for degra-
dation is a process that may take up to several years and require costly equipment. To favour
the advancement of this field, research institutions and companies should consider making
their data sets publicly available so that more researchers can use them to develop better
methodologies.

Test for different DoD or C-rate Although the algorithms have been extensively tested for
different ageing conditions and procedures, they have not been applied to other relevant
factors such as multiple DoD or C-rate. Since the algorithms learn the effects of degradation
rather than its causes, it would be expected for them to work well on these situations too.
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Appendix A

Summary of publicly available data sets

Table A.1: Description of publicly available data sets

Organization Devices Content Link

National
Aeronautics
and Space
Administration

Li-ion.
35 units

Charge/discharge cycles at several temperatures and with
different current profiles. EIS experiments after every half-
cycle to quantify cell aging. Includes terminal voltage
and current, impedance, temperature, charger/load volt-
age and current, and discharge capacity measurements as
MAT files.

[56]

18650
Li-ion.
24 units

Charge/discharge cycles using random-walk-like currents,
generated using different probability distributions. Tests
are conducted at different temperatures. Reference CCCV
and pulsed-current cycles every several iterations to evalu-
ate SoH and dynamics degradation. Includes voltage, cur-
rent and temperature data as MAT and R files.

[57],
[58]

Sandia
National
Laboratories

18650
LCO,
LFP,
NCA,
NMC.
6 units
each

CCCV charge/discharge cycles at several temperatures.
EIS experiments at every iteration to quantify cell degra-
dation. Some tests are conducted in abusive conditions,
that is, disregarding recommended operation conditions.
Includes voltage, current, capacity, energy and tempera-
ture measurements.

[32],
[33]

18650
LFP,
NCA,
NMC

CCCV charge/discharge cycles until reaching EoL criteria
under different temperature, DoD and discharge current
conditions. Includes voltage, current, temperature, capac-
ity and energy measurements as CSV files.

[34],
[35],
[59]

McMaster
University,
University of
Wisconsin-
Madison

18650
NCA

Combination of multi-level HPPC and driving cycles, with
EIS experiments at certain SoC milestones, as well as refer-
ence capacity tests. The procedure is repeated at different
temperatures, both constant and varying. Includes voltage,
current, impedance, capacity, energy, power and tempera-
ture measurements as MAT and CSV files.

[38]

18650
NMC

Combination of multi-level HPPC and mixed driving cy-
cles. Reference charging tests are conducted between cy-
cles. The procedure is repeated at a wide temperature
range. Includes voltage, current, capacity, energy, power
and temperature measurements as MAT and CSV files.

[60]
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84 Appendix A. Summary of publicly available data sets

Continuation of Table A.1

Organization Devices Description Link

Jožef Stefan
Institute

18650
NMC

Impedance measurement by means of DRBS excitation,
with EIS data as reference. Includes voltage, current, fre-
quency and EIS measurements as MAT files.

[61],
[62]

University of
Maryland

18650
LFP,
NMC.
Pouch
LCO.
Pris-
matic
LCO

Several types of experiments: low-current and
incremental-current OCV modelling, driving cycle
tests, CCCV lifetime cycling and storage life tests with
impedance measurement. Most of the tests are repeated at
different temperatures. Data is available as XLS files.

[63]

Battery
Archive (U.S.
Department
of Energy)

18650
LCO,
LFP,
NCA,
NMC.
Pouch
LCO.
Pris-
matic
LCO.

Compilation of data from several research institutions. Fo-
cused on life cycling of cells at different conditions (tem-
perature, DoD, SoC range, current profile). Includes volt-
age, current, temperature, capacity and energy measure-
ments as CSV files.

[30],
[31]

Stanford
University,
Mas-
sachusetts
Institute of
Technology

18650
LFP, 124
units

Several fast-charging experiments at constant temperature
for profile comparison. Internal resistance measured by
means of HPPC. Includes voltage, current, charge and re-
sistance measurements as MAT and CSV files.

[64]

18650
LFP, 137
units

Several fast-charging experiments at constant temperature
for profile comparison and optimization. Internal resis-
tance measured by means of HPPC. Includes voltage, cur-
rent, charge and resistance measurements as MAT and
CSV files.

[65]

University of
Oxford

Pouch
LCO, 8
units

CCCV charging followed by Artemis-profile driving cycle
at constant temperature. Periodic characterization proce-
dures in order to assess long-term degradation effects. In-
cludes voltage, current, charge and temperature data as
MAT files.

[66],
[67]

18650
NCA, 12
units

Long-term degradation tests following different combi-
nations of cycling and calendar ageing at constant tem-
perature. Reference performance tests including EIS and
HPPC performed periodically to characterise cell degrada-
tion. Includes voltage, current, temperature, capacity and
impedance data as MAT files.

[36],
[37]
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Continuation of Table A.1

Organization Devices Description Link

Hawaii Nat-
ural Energy
Institute

18650
NMC-
LCO, 14
units

CCCV charging and discharging tests at constant temper-
ature from BoL to EoL. Includes voltage, current, temper-
ature, capacity and energy data as CSV files.

[30],
[68]

Beijing Insti-
tute of Tech-
nology

LFP;
NMC;
NCA;
LiPb;
LTO;
LMO

Periodic characterization tests, including maximum capac-
ity, HPPC and OCV, every 100 iterations of an ageing pro-
cedure. Tests are conducted at several temperatures. For
some of the chemistries, EIS and driving cycle tests are also
available. More focused on battery packs than in individ-
ual cells. Data is available upon request to the organiza-
tion.

[29],
[69]

Table A.2: Content in publicly available data sets

data set CCCV OCV HPPC EIS DC 1 CA 2 MT 3 MD 4 MC 5

[56] X X X X X
[57], [58] X X X X X
[32], [33] X X X X X X
[34], [35] X X X X X
[38] X X X X
[60] X X X X X
[61], [62] X X X X X X X X
[63]
[30], [31] X X X X X
[64] X X X X X X X
[65] X X X X X X X
[66], [67] X X X X X X X
[36], [37] X X X X
[30], [68] X X X X X X X X
[29], [69] X

1Driving cycles
2Calendar ageing
3Multiple temperatures
4Multiple DoD
5Multiple C-rate
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