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1 Summary.

This paper will cover the importans of timeseries data in general, and some of the problems
of having abnormal points in the data set. Beside describing the issues of abnormal points
in the data set, we are proposing a application for testing different algorithms for detecting
these abnormal points. Like describing different options for detecting abnormal points we
will be covering, some of the techniques of software development. The different techniques
for software development to be covered and used doing the development process are:

• Project life circle management – By Project life circle management we mean the way
that the whole development process is organized in order to ensure the costumer gets
the right product. Here the Waterfall and the agile method Scrum will be described,
and the advantages and disadvantages will be highlighted.

• Application design – Before we as developers will be able to start a new project,
we may first have to clarify to the costumer what the reequipments may by. Then
it is importantant to understand the context where the new product is going to
be used. This part is based on some of the techniques from the OOA&D (Object
Orientated Analytic & Design) method. These techniques have the purpose to make
the developer understand the domain where the new product is going to be used.

• Database design – Data redundancy or inconsistent is a huge problem to many
domains. Therefor we doing this project will propose the database design method
called normalization. The purpose of this method is to provide a good structure for
the database, without redundant data.

• Source control – It is critical to almost all businesses to be in control when it comes
source code. Different tools like GitHub and Microsoft Team Foundation Server, is
trying to deal with that. And we will try to clarify why it is that important.

When it comes to abnormal data points these can not be found by using normal classification
methods. Because in normal classification we relay on a set of labeled training data, which
in the most cases may not be available to the timeseries data set. And in the normal
classification we are trying to classify a object to be belonging to one class or another, but
in the case of detecting abnormal points we consider all the objects to belong to the same
class, with a number of abnormal (outliers) points. This project will cover the algorithms,
for detection of outliers:

• OneClassSVM

• IsolationForest

• LocalOutlierForest

• Replicator Neural Network (RMLP)

• OmniAnomaly

• Donut

To evaluate these algorithms the ‘Outlier Score’ is introduced. Because we did not have
any labels for the evaluation of the predictions, then we are not able to use the evaluation
methods from the normal classification methods. The ‘Outlier Score’ is a number from 0
to 1 telling how normal the object is.
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2 Abstract.

Time series data set is highly important to many business areas, that may be healthcare,
finance, or the industry. Often in these cases it is not the normal data that is important to
the users but instead the abnormal points. Etc. a doctor may not pay that much attention
to all the normal heartbeat at an electrocardiogram (ECG) but instead the cases where
the heartbeat is differing from normal. Therefor it is a huge research area to find suitable
methods to finds these abnormal points.

These time series data set is often unsupervised meaning they do not contain any
labeled (information about the object state) training data sets to be used for classification.
That is the reason why normal classification can´t be used, in these cases and leads us
to the demand of a set of algorithms that can detect these abnormal points without that
kind of predefined information.

This project will cover six different algorithms for unsupervised outlier detection. These
algorithms will in general base their ability to detect outliers on their ability to learn the
normal distribution of the data. And they will try to do this by different methods like:

• Try if some objects can be isolated faster than other objects.

• Using neural networks to learn the normal pattern.

• Using variational autoencoders to learn the normal pattern.
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3 Introduction.

Time series the term for data where the same variable has been captured many times, and
the value and time stamp are stored as a sequence. This type of data is widely used in
many applications such as finance, healthcare [5], or the industry manufacturing [7]. It
can be measurement data from a temperature sensor, or an electrocardiogram (ECG) that
is used by doctors to monitor the heartbeat. Analyses time series is important because it
reveal important information of the time series generator. Figure 1 shows an example of a
time series from Yahoo finance.

Figure 1: Example of stock time series - Microsoft stock price

Time series data often contain abnormal points, that means a few data points that
is captured in the exact same way as the rest of the dataset but is significantly different
from the remaining data points. These data points in the literature often referred to as
abnormalities, discordant, deviants, abnormal or outliers. The fact that a single point
is defined as an outlier, is not necessarily the same as being worthless. Often these
objects provide abundant information about the domain where it has been captured. For
example, outlier detection at time series may be useful at a hospital where a doctor is
using an electrocardiogram (ECG), for monitoring the heart condition of a patient. In such
situations a algorithm will be able to learn the normal pattern of the heartbeat signal, and
then point out the cases where the beat signal is differing form the normal pattern. The
abnormal heartbeats may indicate potential heart attacks. In industry, the production of
parts for wind turbines must be tested. When performing these tests, the manufacturing
process is equipped with large number of sensors, that is normally being used measure the
forces at the material. Some of the ongoing projects in this field is trying to detect cracks
in the material, by using outlier detection algorithms, in this case, the business case lays
in if a crack is detected a soon as possible it will reduce the downtime for maintenance,
and finally be able to perform the test faster. Time series outlier analysis is not a trivial
task, it is often involving a huge amount (high dimensional) data. Time series outlier
analysis also require expensive cost for domain experts, who have serious understanding
the domain data.

Figure 2 Shows example of a time series containing outliers.
Although many algorithms are proposed for time series outlier detection, there is no

study that combine all algorithms in an unified frameworks. In this project, we propose
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Figure 2: Global outlier example.

an unified framework, which is composed of state-of-the-art algorithm to help the domain
experts can have more insight about time series anomaly detection. The framework
comprise 6 algorithms which is range from tree-based method to density-based method
and neural networks based methods. We employ the framework for extensive evaluation
on 200 time series. These time series are collected from large number of domains. The
results show that our framework is able to do something.
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4 Preliminary & Problem statement.

4.1 Time Series

A time series T = 〈s1, . . . , sC〉 is a sequence of C observations, where each observation
si ∈ RD. If D = 1, T is univariate. If D > 1, T is multivariate (or multidimensional).

4.2 Time Series Outlier Detection

Given a time series T = 〈s1, s2, . . . , sC〉, we aim at computing an outlier score OS(si) for
each observation si such that the higher OS(si) is, the more likely it is that observation si
is an outlier.

4.3 Time Series Outlier detection Benchmark Dataset

The dataset that will be used for the first phase of the project, where the application is
created is the ‘A2Benchmark’ and ‘A4Benchmark’ dataset from Yahoo (Webscope — Yahoo
Labs). The ‘A2Benchmark’ contains 100 synthetic time series. And the ‘A4Benchmark’
contains 100 real-world time series. All the time series in these two data sets contain a
label for each observation for indicating if the current data point is an outlier. Figure 3a
shows the synthetic time series and Figure 3b show the real-world time series

(a) Synthetic Time Series.

(b) Real-world Time Series.

Figure 3: Example of Time Series in Yahoo.
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5 Application Overview.

Figure 4: Application Overview.

Figure 4 shows an layout overview of the complete application:

• The Benchmark data set from Yahoo, consist of a number of .csv file, one for each
time series. All these files is transformed into a normalized SQL server (Microsoft
SQL Server Express 2019) structure, by using SQL Server Integration Services (SSIS).

• The user interface consist of a C#.NET application. This application is only
intended to act like a data presentation layer. When a user has configured a test,
all information about the particular test is stored in the SQL server, and from the
interface a Python application, is then executed.

• The Python application then reads the configuration in the database for that
particular test, and executes the outlier detection algorithm. The finally result is
stored in the SQL server.

• When the Python application has terminated, the user interface is then showing the
results from the database.

• Doing the process of creating the system a GitHub repository has been used to share
the Python code with my supervisor at https://github.com/MikChristensen/

OutlierDetection_Mik_Christensen

This project had been a one-man project, so doing my work I have not been following
all the normal development strategies completely. Doing this development process, I have
been trying to follow the waterfall model, because it is simple, and easy to understand.
But I have not been able to follow it completely, by the reason the number of algorithms
for outlier detection was increased over time. The below list shows some development
strategies that may be beneficial to follow or at least have in mind doing the process:

• Project management life circle - The way that the complete team around a software
project are working together.
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• Application design.

• Database design.

• Source Control – A method of sharing and control software elements.

5.1 Project management life circle.

In my daily work, I work in a department where we had tried to implement the agile
method called Scrum (And that means we did not follow it completely but uses the parts
that make sense), because it good for supporting large ongoing projects. Another popular
work model is the Waterfall model.

5.1.1 Waterfall model.

In the waterfall model a software project is starting at the top of a waterfall, as an idea,
and doing its journey down the waterfall it changes state multiple times and, in the end,
it ends up as a final deployed software. The overall idea is that first when one a phase has
been finalized the next one in the chain can be started.

Figure 5: Waterfall model - Structure overview.

Figure 5, shows the structure overview of the Waterfall model:

• Requirements – This is the phase where the customer and developer is going to agree
on the project scope. The output of this phase will be a contract that’s described
the project. This is meant to ensure that the costumer is receiving the expected
work and the developer knew the scope of the project.

• Design – The design phase, is where the overall structure of the project is made.
That means both the logical and the physical design. The logical design is covering
the overall data-flow and actions in the application, then the physical part is covering
the hardware part. That means if the project is requiring a SQL server or a Spark
computation cluster it is in this phase these decisions is made. And the systems are
ordered. Before the design step can be finished a design document must be approved.
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• Development – In the Development phase the development task is divided into small
chunks, that can be tested individual. When all the small chunks have been tested,
the project can continue to the next step.

• Testing – The testing phase is where the whole project is tested as a complete unit.
And where the end-user is able test it to find bugs.

• Deployment – In this phase the system is going to production.

• Maintenance – Here the software has been delivered to the end-user and is running
in production.

Advantage and disadvantage of the Waterfall model: Advantage.

• Easy to understand.

• Easy to manage.

• Often only a few production issues.

Disadvantage.

• Not flexible.

• Not good for handling unexpected changes.

• Not good for complex for long term projects.

• Difficult to capture all requirements upfront.

• The user will first see the progress at the end.

5.1.2 Scrum.

The Waterfall model is not flexible, or suitable for large projects. That leads to another
project life circle management model called Scrum. Scrum follows a completely different
approach, when the Waterfall model first returns something to the user in the end of the
development process, Scrum is delivering the product in small pieces. The development
process is divided into small steps called ‘sprints’, each sprint consists of four steps:

• Planning.

• Build.

• Test.

• Deliver.

The idea of a sprint is that after each ‘delivery’ phase, then the user should be able to
see a running application, that’s going to be improved by each of the following sprints.
In that the development process is open for domain changes, and the costumer / user
can follow the progress. Depending on the situation or the project these sprints will be
running for one to four weeks (it is the normal). A Scrum based project is based on three
different roles:
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• Product owner – The product owner is also the costumer, he/she got the requirements
for the project.

• Scrum master – the Scrum master is a kind of a organizer for the scrum process.
Who is trying to lead the team in the right direction. It may be the task of the
Scrum master to ensure that the team consist of the right people.

• Team – The team will consist of developers and database administrators or other
people who may be a part of the actual work. The Scrum team is intended to be
self-organized, meaning it is not the Scrum masters task to tell the team members
who should do what.

Figure 6 shows an overview of the Scrum framework.

Figure 6: Scrum framework - Structure overview.

• Product backlog – The product backlog is an ordered list of unsolved task or features
that is needed to improve the product.

• Sprint planning – The Sprint planning is the event that starts a new sprint. In
collaboration the whole scrum team, will figure which backlog items should be
implemented, and how it will be done. Another task of this event is to decide the
length of the particular sprint.

• Sprint backlog – The Sprint backlog consist of the backlog items from the product
backlog, that has been divided in to smaller and easier to implement tasks. It is a
backlog for the developer team.

• Daily Scrum – Is a short daily event for all the developers at the project, where they
have the opportunity go through the last day process.

• Increment – The goal for the Increment step is to merge all the small pieces from
the sprint backlog to a running project.

11



• Sprint review. The running product is then reviewed, by the product owner, scrum
master and the team.

• Retrospective – Is the step where the team can evaluate their work for the past week,
so they can improve their work.

Advantage and disadvantage of the Scrum framework: Advantage.

• Easy to the manager or costumer to follow the process.

• Change can be applied doing the development process.

Disadvantage.

• If the development teams are to large Scrum may be a challenge.

• When the project is starting no one had the overview of the final product, that may
lead to an unbeneficial code structure.

• The daily scrum meetings may frustrate the developers.

• Difficult to capture all requirements upfront.

• The user will first see the progress at the end.

5.2 Application design.

First a short real-world example from the company where I Work: ‘An engineer was
planning to implement a feature for variable sample rate to a measurement system. The
intension was that the user of the measurement system should be able to simply slide
up and down the frequency of the measurement signal.’. In this case the problem is
that this new feature may work fine, in all the cases where the other engineers is only
monitoring the measurements in a chart. But some of the other users may be applying
some postprocessing to the same measurement channel, where they take two channel and
transform those to a new calculated channel. And it may give some problems or changes
to the output of the calculated channel. My intension for this small example is to make it
clear that it is important to the designer of a system to understand the domain where the
product is going to be used and the consequences of the different decisions.

Situations as the above one is exactly what the OOA&D design method is trying to
deal with. The OOA&D stands for Object Orientated Analytic and Design and is proposed
by Lars Matthiessen in the danish book ‘Objekt Orienteret Analyse & Design’. The model
is intended for object orientated development, but the way it analyses the domain may be
applied to all other software projects to.

OOA&D tries to enforce the following principles:

• Try to modularize the domain. Meaning that a useful system must be designed to
match the specific domain, and therefor it is important to understand the domain.

• Highlight the architecture. The idea is spent time on a good architecture. It is
important to have a flexible and understandable architecture.
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• Reuse components. Make the different modules as reusable as possible, it will speed
up the development process and improve quality.

The first tasks the OOA&D suggests is to draw a ‘rich’ diagram of the domain, where
the new model is going to be used. By rich diagram they mean a very basic drawing of
the domain and situations where the new product is going to be used (Issues like the
real-world example above, may have been avoided by creating such a diagram). The
diagram should be used to show the different use cases in the domain, an increase the
general understanding of the problem. Figure 7 shows, an example of an rich diagram.

Figure 7: Rich diagram.

The next task is to modularize the domain, the model is suggesting doing this by
creating a table with class candidates and actions. As shown in table 1.

DB OneClassSVM LOF SSIS Interface
Add Configure X X
Read configure X X X
Display prediction X
Display timeserie X
Display outliers X
Store result X X X
Store execution time X X X
Read source file X

Table 1: Event table

From the above table 1, the needed classes may be found. These classes can then
be represented in a UML diagram. Figure 8 shows, a UML diagram is used to show
relationships between classes, in the python part of the project. Where the SQL class
is represented as a super class to the rest of the classes. Meaning the other classes can
inherit the objects from that class.

Finally the behavior of the different objects, can be described as in figure 9.
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Figure 8: UML diagram for the Python part of the project.

Figure 9: Behavior of the OneClassSVM class.

5.3 Database design.

Data redundancy in a database may lead to problems in many different cases, as an
example if you are trying to update or delete a particular value in the database, how then
to be sure that you are updating the value all the places. Or if you have a field ‘firstName’
in two different tables and they contain two different names for the same person which on
is then the right one? To overcome that kind of problems the database may be normalized.
The data normalization is a design method consist of six different steps called normal
forms. It is not necessary to normalize through all the six normal forms, but instead
simply just normalizing until the data quality is matching the requirements of the system.
For the case of this project, I was not able to normalize further than the third normal
form. The normalization steps are:

• NF1 – Criteria for at table to be at the first normal form.

– All columns must be atomic (only containing a single value).
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– All values of a single column must be of the same type (not only data-types
but also, the meaning of the value).

– Each column must have a unique name.

– Each row in the table must be equally identified by a primary key. That primary
key may be a natural or surrogate key.

• NF2 – Criteria for at table to be at the second normal form.

– Must be normalized to 1NF

– And there may not be any partial dependencies between the columns, a column
that is only dependent on a part of the primary key.

• NF3 – Criteria for at table to be at the third normal form.

– Must be normalized to 2NF

– And there may not be any transactive dependencies between the non-primary
key columns (as an example there may be a partial dependency between zip
code and city).

• BCNF – Criteria for at table to be at the Boyce-Codd Normal Form (BCNF).

– Must be normalized to NF3

– If multiple natural keys are used to form the primary key, then, then all non
attributes must be a part of the candidate key.

• NF4 – Criteria for at table to be at the fourth normal form.

– Must be normalized to BCNF.

– There should be no multiple value dependencies.

Figure 10 shows the normalized table structure for the project. I had often heard
people saying that they fear that the structure is going to be to complex, and they will
get a performance decrease at the database when splitting up all the tables, because they
in some cases risk to create long join statements. My own experiments are that is not the
case, because when we have smaller tables, it is often easier to apply the right indexes.
And that experiments are based on the normalization of a 130TB SQL Server containing
turbine measurement data, where we in the end got much less blocked sessions.

One way to handle the complexity question, may be to apply an abstraction level in
form of views and stored procedures. For this project, the interface between the different
software components and the database has also been defined as a set of views and stored
procedures. Another advantage using views and stored procedures will be in a security
context, it is easier to provide access to a single object instead of multiple tables. That
means for this small software project I had made the following objects:

• VI DonutParameters - View to be used for the Python application to extract the
last DoNut test configuration.

• VI IsolationForestParameter - View to be used for the Python application to extract
the last IsolationForest test configuration.
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Figure 10: Normalized database structure.

• VI LocalOutlierFactorParameter - View to be used for the Python application to
extract the last LocalOutlierFactor test configuration.

• VI OmniAnomalyParameters - View to be used for the Python application to extract
the last OmniAnomaly test configuration.

• VI RnnForestParameter - View to be used for the Python application to extract the
last RNN test configuration.

• VI SvmParameters - View to be used for the Python application to extract the last
OneClassSVM test configuration.

• VI SampleDefination - View to be used for the C#.NET user interface to extract
the name of the different time series. All the time series from the Benchmark2 and
Benchmark4 data collections contains an identification number, but that cannot be
used as a meaningful name for the application. So, inside the view the belonging
class of the time series and the number is combined like ‘Benchmark2 1 ’.

• VI Prediction – Returns prediction of the last performed test, to be used in the user
interface.
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• VI TimeSerie – View to be used in the Python code to return, all time-series in the
database.

• SP AddParametersDonut – Used by the C#.NET user interface to store the DoNut
configuration.

• SP AddParametersIsolationForest – Used by the C#.NET user interface to store
the IsolationForest configuration.

• SP AddParametersLocalOutlierFactor – Used by the C#.NET user interface to store
the LocalOutlierFactor configuration.

• SP AddParametersOmniAnomaly – Used by the C#.NET user interface to store the
OmniAnomaly configuration.

• SP AddParametersOneClassSVM – Used by the C#.NET user interface to store the
OneClassSVM configuration.

• SP AddParametersRnn – Used by the C#.NET user interface to store the RNN
configuration.

It may seem to be a little bit elaborately, to create objects for all the operations
interacting with the database, but it makes the life of a database administrator much
simpler. Because changes can be made to the underlying table structure without breaking
down the whole chain of application using the database.

5.4 Source Control.

Source control is intended to track and manage changes to a project over time. And by
project it means not only code projects, but it could also be a set of documents that often
is going to be changed. The idea is to apply a system to the projects that always take care
of the project so we as developers did not end up in situations where we are not able to
find the code. Or as an example if multiple developers is working on the same project and
they must share the code. Then they can push all their changes to the Source Control
system. Another developer can then pull the changes into his own environment.

One of the advantages of using a source control system is that, as a team you can
have multiple branches of the project. As an example, you may have the main branch
containing the version of the code running in production. And another branch may contain
all the development tasks, the two tasks can then later be merged.

For this project I had been used a free version from GitHub.com. But in the company
where I work, we have been using GitHub and Microsoft Team Foundation Server, both
the tools provide the ability to the development teams to setup all the stages of their
development chain for their backlog items.

Figure 11 shows the GitHub repository for the project.
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Figure 11: GitHub repository for the project.

6 Proposed algorithms.

6.1 Unsupervised Outlier Detection.

The following section contains a set of unsupervised algorithms for outlier detection. By
unsupervised algorithms it means that the algorithms did not requires any label, with
information about if the object is an inlier or outlier. Unsupervised data sets is the
most normal type of data to be used in timeseries outlier analytic, because it is a highly
expensive task to generate that information.

6.1.1 One-Class SVM.

The book ‘Outlier Analysis [4] describes the One-Class SVM (OCSVM) algorithm as a
modification of the normal Support Vector Machine (SVM) algorithm used for two classed
classification. Where the main problem to the original SVM algorithm, is that it has
been made to classify a set of objects to belonging to one class or another class. And
another problem to the SVM algorithm is that the outlier detection area is most often an
unsupervised task, where the complete data set is expected to be belonging to the same
class, and no labels is available. In outlier detection the incoming data is expected to
belong to the same class, but it may contain a few outliers. When the regular SVM is
trying to classify the objects by separating the objects by a margin hyperplane, then the
the OCSVM is trying to define a decision boundary around the normal points to excludes
the outliers. Figure 12 Shows an illustration from Scikit-Learn that describes how the
decision boundary is working.
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Figure 12: OCSVM - Decision boundary

W̄ · ϕ(X̄)− b = 0 (1)

Equation 1 shows the equation for defining a linear decision boundary.
The above equation defines the corresponding decision boundary that’s separate inliers

from the outliers. W̄ represents the input vector, and the ϕ(X̄) defines the kernel function
that is used to transform the distribution to an higher dimension. And finally the bias
is represented by the b. If the value for this equation is positive the object is defined as
an inlier, and if negative it will be mark as an outlier. But the above equation should be
optimized, in order to ensure that as many as possible of the training samples N turns
out to be positive (because all the training samples is expected to belong to the positive
class). Equation 2 shows the optimized formula for defining the decision boundary.

J =
1

2
||X̄||2 +

C

N

N∑

i=1

max(b− W̄ · ϕ(X̄), 0)− b (2)

The constant C defines the differential weight of the normal points and the outliers.
That means trade-of between positive and negative classifications can be regulated by
modifying the C value.

When a model has been trained a score value, can be calculated for all the points in the
distribution. This score value describes how derived a value is from the decision boundary.
Equation 3 shows how to express the score of deviation from the decision boundary.

Score(X̄) =
N∑

i=1

αi ·K(X̄, X̄i)− b (3)

6.1.2 Local Outlier Factor.

The Local Outlier Factor (LOF) is a algorithm that makes it’s assumption of an object
being an outlier based on a score called local outlier score. LOF is a density-based algorithm
that means that the algorithms assume that the outliers are located on low density area.
The algorithm compares the local density of a point to the local density of K of its
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neighbours. If a point got significantly lower density than its neighbours, it is most likely
to be an outlier. But to decide if the outlier factor is variating enough to be an outlier
may be a decision for a domain expert. The first step is to choose a value for K, which is
a user defined constant parameter. Finding the right value for K may not be that easy,
because small value will make the algorithm focus on objects very near to the point. But
otherwise, a large value may expand the focus area to risk much and then missing an
outlier. The distance from a point to the Knearest point is called k-distance. Figure 13
illustrates the k-distance of the red point, where k=3. The distance measure can be both
the Manhattan or Euclidean distance.

Figure 13: LOF - k-distance

The k-distance value is then used to calculate the reachability-distance. The reachability-
distance is the maximum distance between two points, typically it will be equal to the
K-distance. Equation 4 shows the expression for the reachability-distance.

reach− dist(a, b) = max(K − Distance(b),Distance(a, b)) (4)

Then the average reachability-distance for a point a can be calculated. The average
reachability-distance is the average of reachability-distance for in the neighbourhood of a
particular object. Equation 5 shows the expression for the average reachability-distance.

ardK = meany∈Lk(a)(reach− dist(a, y)) (5)

Finally, the LOF value can be calculated for all the object. Equation 6 shows the
expression for the LOF value.

LOFK(a) =
ardK(a)

meany∈Lk(a)ardK(y)
(6)
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6.1.3 Isolation Forest.

In short terms the Isolation Forest (ISF) algorithms, is based on several isolation trees,
the core idea behind these isolation trees is that the object that first is being isolated
will most likely being an outlier. Following the literature this way of detecting outliers
should be performing similar to the LOF. This type of outlier detection algorithms is most
likely to be detecting global outliers, because they are located in a spars distributed area,
and therefor most likely to be quickly isolated. But just creating one single tree may not
give a precise picture of the data set. So multiple trees are created and the outlierness of
an object will be based on the average path of an object. And the one with the shortest
average path is likely to be an outlier. Figure 14 below is illustrating that first a splitting
point is randomly selected at 120 at the X axis and only one of the points Is above 120 so
it is isolated by the first split. And next a split is chosen at the Y axis, which turns out to
isolate the next object. That’s the way the Isolation trees is created.

Figure 14: ISF - Data points isolated by tree.

Just because an object has the shortest average path, it is not the same as it must
be an outlier. But to get an idea of how anomalous an object is, an outlier score must
be calculated. And based on this outlier score a domain expert may be able to identify
outliers. Equation 7 shows the expression for calculating the outlier score.

S(X,n) = 2− mean(path(x))

c(n)
(7)

It may seems like a hard task to create trees that splits the complete training sets. But
the report [8] by Zhi-Hua Zhou says that’s not necessary. The ISF algorithm turns out to
be performing well even when only doing the isolation process on a subset of the training
data.

Algorithm 1 shows the pseudo code for generating the isolation forest doing the training
process. Here the input parameters is the training data set, the number of trees in the
forest and the sub sampling size. The sub sampling size describes the number of points to
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Algorithm 1: Isolation Forest Algorithm

Input: Input data X, number of trees t, sub-sampling size ψ
Output: set of iTrees

1 Set height limit l = ceiling(log2 ψ);
2 for i = 1 to t do
3 X ′ ← sample(X,ψ);
4 Forest← Forest ∪ iTree(X ′, 0, l);

5 return Forest

be isolated at the isolation trees. At line two a value for the maximal height is set, this
height is used to avoid separating the tree unnecessary.

6.1.4 Replicator Multi-layer Perceptron.

Hawkins propose an outlier detection method where a multi-layer neural network is used
to detect outliers [6]. Neural network is also known as replicators and that is where the
algorithm got its name from. Neural Network is a way to try to transform the way the
human brain works into a software application.

The paper by Simon Hawkins implements its algorithm by using the Replicator
Multi-layer Perceptron (RMLP) algorithm. The RMLP algorithm is a supervised learning
algorithm that tries to learn the normal distribution of the data set and based on this
learning returns a classification. Figure 15 shows the overview of the MLP algorithm. In
the first part we have the input layer taking our input data set. In the middle we have the
hidden layer (the number of hidden layers will vary, between implementations, in order to
improve the learning phase) containing three neurons, the and finally we got the output
layer. All these tree layers is then connected and all the connections is applied a weight.
Then inside the neurons the input value and the wight is multiplied and added a bias value
the result is then inserted in to an activation function, that returns a value the algorithm
will be using for its classification.

Figure 15: MLP - Structure overview

In the RMLP algorithm the input variables are also the output variables, that means
that the RMLP is trying to reproduce the input pattern in the output. Doing the training
phase, the reconstruction error is calculated and then used to adjust the internal weights
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for improving the model. Finally, the reconstruction error is then used to measure the
outlierness of an object, to be understood that an object with a high reconstruction error
is most likely to be an outlier, because the normal points is easier to reconstruct.

As mentioned in Section 1, the RNN is a variation on the usual regression
model. Normally, input vectors are mapped to desired output vectors in multi-
layer perceptron neural networks. For the RNN, however, the input vectors are
also used as the output vectors; the RNN attempts to reproduce the input pat-
terns in the output. During training, the weights of the RNN are adjusted to
minimise the mean square error (or mean reconstruction error) for all training
patterns. As a consequence, common patterns are more likely to be well repro-
duced by the trained RNN so that those patterns representing outliers will be less
well reproduced by a trained RNN and will have a higher reconstruction error.
The reconstruction error is used as the measure of outlyingness of a datum.

3.1 RNN

The RNN we use is a feed-forward multi-layer perceptron with three hidden
layers sandwiched between an input layer and an output layer. The function of
the RNN is to reproduce the input data pattern at the output layer with error
minimised through training. Both input and output layers have n units, corre-
sponding to the n features of the training data. The number of units in the three
hidden layers are chosen experimentally to minimise the average reconstruction
error across all training patterns. Heuristics for making this choice are discussed
later in this section. Figure 1 shows a schematic view of the fully connected
Replicator Neural Network. The output of unit i of layer k is calculated by the
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Fig. 1. A schematic view of a fully connected Replicator Neural Network.

activation function Sk(Iki), where Iki, denoted generically as θ, is the weighted
sum of the inputs to the unit and defined as:

θ = Iki =

Lk−1∑

j=0

wkijZ(k−1)j (1)

Zkj is the output from the jth unit of the kth layer. Lk is the number of units
in the kth layer.

The activation function for the two outer hidden layers (k = 2, 4) is then:

Sk(θ) = tanh(akθ) k = 2, 4 (2)

where ak is a tuning parameter which is set to 1 for our experiments. For the
middle hidden layer (k = 3), the activation function is staircase like with pa-
rameter N as the number of steps or activation levels and a3 controlling the

Figure 16: RMLP - Structure overview

Figure 16, shows the structure of the RMLP. At layer 1 the data set is provided,
then a network of units is trying to recreate the shape in step 2-4. Then in layer 5,the
reconstruction error is measured, and in the training phase this error is used to adjust
the weights of the unit. For all the objects in the data set a Outlier Factor is calculated,
in order to describe the outlierness the object. Equation 8, shows the expression for the
outlier factor:

OFi =
1

n

n∑

j=1

(xij − oij)2 (8)

Based on the idea of trying to recreate the pattern of the incoming data at the output
level, RMLP algorithm may seems to be an autoencoder. But the construction of the two
types of algorithms is different.

6.2 Variational Autoencoder based algorithms.

The following section will describe the outlier detection algorithm DoNut and OmniAnomaly,
who have in common that they both has been based on Variational Autoencoder (VAE).
A normal auto encoder is a tool for dimension reduction, by roughly speaking it can be
described as a data compression existing of an encoder and a decoder part. The encoder
will use a neural network to transform the input data to a new dimension known as a
latent space. Following a decoder part will take this latent space and try to convert it
back to the original state. The difference between the original data set and the decoded
data is called the reconstruction error. This reconstruction error is then back-propagated
to update the internal weights of the neural networks, and in this way try to improve the
performance of the encoder and decoder as a pair. The normal neural network is returning
a single value to describe the output. To avoid the risk of overfitting the VAE is a little bit
different. The latent space of the VAE is not returning a single value but try to provide a
normal distribution representation of the incoming data set. The latent state consists of
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two vectors one representing the mean values of the distribution and another representing
the variance as shown in Figure 17.

Figure 17: VAE - Structure overview

In the step called ‘sample from distribution’ the two vectors from the latent space are
passed into the following equation which Is known as the reparameterization.

In the reparameterization step the mean µ and the standard deviation σ is multiplied
with the epsilon.

Z = µ+ σ · ε (9)

6.2.1 DoNut.

About algorithm: The paper [11] ’Unsupervised Anomaly Detection via Variational Auto-
Encoder for seasonal KPI in Web Applications’ is describing the outlier detection algorithm
DoNut (an easier understandable version was found at acolyer.org [1] ). DoNut is an
unsupervised algorithm based on a variational auto encoder for outlier detection, it can
work completely without any labels (reason why in is unsupervised), and then it is able
to take advantages of a non-complete set of labels. It may be normal that a time series
is missing some data points, those missing points is filled out with null values, but the
algorithm is not handling those as being outliers. The network structure of the DoNut
algorithm is very similar to the one used for variational auto encoders (VAE). But the
VAE is not intended to work with time series data set, to handle this problem the DoNut
algorithm is prepossessing the incoming data set, dividing the data into sliding windows
(Let’s say the size of the sliding window is set to 90 then the first window will contain
values from 0-90. The second sliding window will contain values from 1-91 and so on.). At
the training phase the VAE is trained. A part of that training is to optimize the ELBO
(Evidence Lower Bound). The training data set may include missing points that has been
replaced with null values, these will be excluded from the ELBO calculation and a scaling
factor. Therefore, it is called Modified-ELBO. Then a step called ‘Missing Data Injection’,
is inserting some point without data (null values), to train the VAE to reconstruct these
points. At the final ‘Detection’ phase, we would like to know how likely a observation is.
Which can be estimated the reconstruction probability from the VAE. But when doing so
the missing values that has been set to ‘null’ in the prepossessing phase may probably
disturb the result, to avoid that problem the ‘MCMC Imputation’ step is trying to guess
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what the original value may had been. And then the DoNut algorithm may be able to
return a probability that saying how likely an object is to be an outlier.

NN

xz

✓�

Figure 2: Architecture of VAE. The prior of z is regarded as
part of the generative model (solid lines), thus the whole
generative model is denoted as pθ (x, z) = pθ (x|z)pθ (z). The
approximated posterior (dashed lines) is denoted as qϕ (z|x).
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Figure 3: Overall architecture of Donut.

of pθ (x|z) is chosen according to the demand of task. The true pos-
terior pθ (z|x) is intractable by analytic methods, but is necessary
for training and often useful in prediction, thus the variational
inference techniques are used to fit another neural network as
the approximation posterior qϕ (z|x). This posterior is usually as-
sumed to be N(µϕ (x),σ2

ϕ (x)), where µϕ (x) and σϕ (x) are derived
by neural networks. The architecture of VAE is shown as Fig 2.

SGVB [16, 30] is a variational inference algorithm that is often
used along with VAE, where the approximated posterior and the
generative model are jointly trained by maximizing the evidence
lower bound (ELBO, Eqn (1)). We did not adopt more advanced
variational inference algorithms, since SGVB already works.

logpθ (x) ≥ logpθ (x) − KL
[
qϕ (z|x)



pθ (z|x)]
= L(x) (1)
= Eqϕ (z |x)

[
logpθ (x) + logpθ (z|x) − logqϕ (z|x)

]
= Eqϕ (z |x)

[
logpθ (x, z) − logqϕ (z|x)

]
= Eqϕ (z |x)

[
logpθ (x|z) + logpθ (z) − logqϕ (z|x)

]
Monte Carlo integration [10] is often adopted to approximate the
expectation in Eqn (1), as Eqn (2), where z(l ), l = 1 . . . L are samples
from qϕ (z|x). We stick to this method throughout this paper.

Eqϕ (z |x) [f (z)] ≈
1
L

L∑
l=1

f (z(l )) (2)

3 ARCHITECTURE
The overall architecture of our algorithm Donut is illustrated as
Fig 3. The three key techniques are Modified ELBO and Missing
Data Injection during training, and MCMC Imputation in detection.

3.1 Network Structure
As aforementioned in § 2.1, the KPIs studied in this paper are
assumed to be time sequences with Gaussian noises. However, VAE
is not a sequential model, thus we apply sliding windows [31] of
lengthW over the KPIs: for each point xt , we use xt−W +1, . . . ,xt as
the x vector of VAE. This sliding window was first adopted because
of its simplicity, but it turns out to actually bring an important and
beneficial consequence, which will be discussed in § 5.1.

Sliding Window x
W Dimensional

Hidden Layers
f�(x)f�(x)

Linear
K Units

SoftPlus + ✏✏
K Units

Latent Variable z
K Dimensional

µz �z

(a) Variational net qϕ (z |x)

Latent Variable z
K Dimensional

Hidden Layers
f✓(z)f✓(z)

Linear
W Units

SoftPlus + ✏✏
W Units

Reconstructed x
W Dimensional
µ

x

�
x

(b) Generative net pθ (x |z)
Figure 4: Network structure of Donut. Gray nodes are ran-
dom variables, and white nodes are layers. The double lines
highlight our special designs upon a general VAE.

The overall network structure of Donut is illustrated in Fig 4,
where the components with double-lined outlines (e.g., SlidingWin-
dow x, W Dimensional at bottom left) are our new designs and the
remaining components are from standard VAEs. The prior pθ (z) is
chosen to be N(0, I). Both x and z posterior are chosen to be diag-
onal Gaussian: pθ (x|z) = N(µx,σx2I), and qϕ (z|x) = N(µz,σz2I),
where µx, µz and σx, σz are the means and standard deviations of
each independent Gaussian component. z is chosen to be K dimen-
sional. Hidden features are extracted from x and z, by separated
hidden layers fϕ (x) and fθ (z). Gaussian parameters of x and z are
then derived from the hidden features. The means are derived from
linear layers: µx = W⊤

µx fθ (z) + bµx and µz = W⊤
µz fϕ (x) + bµz .

The standard deviations are derived from soft-plus layers, plus a
non-negative small number ϵ : σx = SoftPlus[W⊤

σx
fθ (z) + bσx ] + ϵ

and σz = SoftPlus[W⊤
σz
fϕ (x) + bσz ] + ϵ , where SoftPlus[a] =

log[exp(a) + 1]. All the W-s and b-s presented here are param-
eters of corresponding layers. Note when scalar function f (x) is
applied on vector x, it means to apply on every component.

We choose to derive σx and σz in such a way, instead of deriving
logσx and logσz using linear layers as others do, for the following
reason. The local variations in the KPIs of our interest are so small
that σx and σz would probably get extremely close to zero, making
logσx and logσz unbounded. This would cause severe numerical
problems when computing the likelihoods of Gaussian variables.
We thus use the soft-plus and the ϵ trick to prevent such problems.

3.2 Training
Training is straightforward by optimizing the ELBO (Eqn (1)) with
SGVB [16] algorithm. Since it is reported by [16] that one sample
is sufficient for computing the ELBO when training VAE with the
SGVB algorithm, we let sampling number L = 1 during training.
The windows of x are randomly shuffled before every epoch, which
is beneficial for stochastic gradient descent. A sufficiently large
number of x are taken in every mini-batch, which is critical for sta-
bilizing the training, since sampling introduces extra randomness.

As discussed in § 2.2, the VAE based anomaly detection works by
learning normal patterns, thus we need to avoid learning abnormal
patterns whenever possible. Note that the “anomalies” in training
are labeled anomalies, and there can be no labels for a given KPI, in
which case the anomaly detection becomes an unsupervised one.

One might be tempted to replace labeled anomalies (if any) and
missing points (known) in training data with synthetic values. Some
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Figure 18: DoNut - Structure overview

6.2.2 Omni Anomaly.

Ya Su et al. [10] propose an unsupervised outlier detection algorithm called OmniAnomaly.
This paper claims that the algorithm is outperforming other algorithms like the DoNut.
The idea behind the OmniAnomaly algorithm is to is to learn the normal pattern of a
time series, and then use the reconstruction probability to decide the state of the object.
And based on this learned pattern compute an anomaly score for the outlierness of each
object. To determine if an object is an outlier an version of POT (peak over threshold),
is implemented to validate anomaly score. Figure 19, describes the overall layout of the
OmniAnomaly algorithm, where the solid line is denoting the offline training and the dashed
line is denoting the online testing.

• Through extensive experiments, we show thatOmniAnomaly
achieves an overall F1-Score of 0.86 in three real-world
datasets, significantly outperforming the best performing
baseline model by 0.09, demonstrating the benefits of explic-
itly modeling the temporal dependence among stochastic
variables in the latent space. OmniAnomaly exhibits great
robustness in working with three datasets from different
devices, with F1-Scores all higher than 0.84.

• We publicly publish our code and server machine dataset
of experiments on GitHub1 for better reproducibility of the
results of this paper.

2 RELATEDWORK
Multivariate time series anomaly detection is an active topic.
Supervised learning methods [17, 20] need labeled data for model
training and can only identify anomaly occurrences for known
anomaly types [13]. As a result, supervised methods have limited
usage and unsupervised approaches are desirable. The state-of-
the-art unsupervised solutions to multivariate time series anomaly
detection in literature can be categorized into the following types:

• Deterministic models [4, 6, 11]. To detect spacecraft anom-
alies, [6] applies LSTM for multivariate time series prediction
and determines anomalies using prediction errors. Similar
to seq2seq models, [11] proposes an LSTM-based Encoder-
Decoder which aims at reconstructing “normal” time series
behaviors, and uses reconstruction errors for multi-sensor
anomaly detection. Although LSTM can deal with the
temporal dependence of time series, it is deterministic
without stochastic variables.

• Stochastic based models [16, 27]. [27] proposes a model
DAGMMwhich joints Deep Autoencoder (AE) and Gaussian
Mixture Model (GMM) simultaneously. It reduces the dimen-
sion of input observations to get latent representations by
AE, and estimates the density of the representations using
GMM. However, this method is designed for multivariate
variables (not multivariate time series), and ignores the
inherent temporal dependence of time series. Previous work
suggests that, in general, stochastic variables can improve
the performance of RNN, because they can capture the
probability distributions of time series [5]. [16] simply
combines LSTM and VAE by replacing the feed-forward
network in a VAE to LSTM, but ignores the dependence of
stochastic variables.

Compared with the above approaches, OmniAnomaly is a
stochastic recurrent neural network which glues VAE and GRU
such that the temporal dependence and stochasticity of time
series can be explicitly modeled. Moreover, OmniAnomaly applies
techniques such as stochastic variable connection to model the
temporal dependence between stochastic variables. As a result, the
stochastic variables can capture more information from historical
stochastic variables and represent the input data better, as will be
demonstrated in Section 5.

3 PRELIMINARIES
In this section, we present the problem statement of multivariate
time series anomaly detection in detail and introduce the overall

1https://github.com/smallcowbaby/OmniAnomaly

structure of our model. In addition, we provide preliminaries about
GRU, VAE, planar NF, the key components of our model.

3.1 Problem Statement
A time series contains successive observations which are usually
collected at equal-space timestamps [10]. In our study, we focus on
multivariate time series, defined as x = {x1, x2, ..., xN}, where N is
the length of x, and an observation xt ∈ RM is anM-dimensional
vector [6] at time t (t ≤ N ): xt = [x1

t ,x
2
t , ...,x

M
t ] , and x ∈ RM×N .

In Fig. 1, the observations are equally spaced by 1 minute, the total
number of observations is N = 2 ∗ 24 ∗ 60, and each observation
has a dimension ofM = 8. We use xt−T:t (∈ RM×(T+1)) to denote a
sequence of observations {xt−T, xt−T+1, ..., xt} from time t −T to t .

For multivariate time series anomaly detection, the objective is to
determine whether an observation xt is anomalous or not. For time
series modeling, historical values are beneficial for understanding
current data. Therefore, a sequence of observations xt−T:t instead
of just xt is used to calculate the anomaly result. Our anomaly
detection approach returns an anomaly score for xt, and then the
anomaly result can be obtained by comparing against a threshold.

3.2 Overall Structure
Data Pre-
processing

Multivariate time
series data

Model
Training

Online
Detection

Anomaly
Result

Model Threshold

Threshold
Selection

Anomaly
Score

Anomaly
Scores

Anomaly
Interpretation

Figure 2: Overall Structure of OmniAnomaly. The solid
lines denote offline training and the dash lines show the
procedure of online detection.

As shown in Fig. 2, the overall structure ofOmniAnomaly consists
of two parts: offline training and online detection. Data Prepro-
cessing is a module shared by both offline training and online
detection. During data preprocessing, the dataset is transformed
by data standardization, and then it is segmented into sequences
through sliding windows [21] of length T + 1. After preprocessing,
a training multivariate time series, usually spanning a period of
time (e.g., a couple of weeks), is sent to Model Training module
to learn a model that captures the normal patterns of multivariate
time series and outputs an anomaly score for each observation.
These anomaly scores are used by the Threshold Selection module
to choose an anomaly threshold automatically following the POT
method (see later in Section 4.4). This offline training procedure
can be conducted routinely, e.g., once per week or month.

The Online Detection module stores the trained model. A new
observation (e.g., xt at time t ) after preprocessing can be fed into
Online Detection module to get its anomaly score. If the anomaly
score of xt is below the anomaly threshold, xt will be declared as
anomalous, otherwise, it is normal. If xt is detected as an anomaly,
we interpret it by estimating and ranking the contribution (i.e.,
reconstruction probability) of each dimension in xt.

3.3 Basics of GRU, VAE and Planar NF
RNNs [5] are able to represent the time dependence by adopting
deterministic hidden variables. Simple RNN could fail to learn the
long-term dependence in a sequence [1]. RNN variants, LSTM

Figure 19: OmniAnomaly - Structure overview

Understanding the diagram:

• Data pre-processing – At the pre-processing phase, the data set is normalized. And
then divided into a sequence of sliding windows. By sliding windows, it means that
if we set the windows size to 90 then the first window will be based on the elements
from 0-90, an the next window will contain elements from 1-91, and continue like
that. In that way the data set is transformed into a format that can be handled by
the VAE.

• Model training – First a GRU network is used to capture the most important
movements in the data set. A GRU network is a neural networks that is able to
capture the important part of a data set, and then remember what it has been
learned earlier. Then a normal VAE is trying to learn the pattern of the time series.
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The outcome of this phase is an anomaly score for each object, that describes how
well the object matches the learned pattern. Unlike a normal outlier score this
anomaly score denotes an object that is highly different from the model with a low
score.

• Threshold selection – At the threshold selection phase, a mechanism following the
principles of the Extreme Value Theory, is applied to choose a threshold to define an
object as an outlier or not.

• Online detection – At the Online detection phase, the new unseen data is fitted
to the trained model from the ‘model training’ phase. And an anomaly score is
returned.

• Anomaly result – If the returned anomaly score is below the threshold from the
‘threshold selection’ phase it is denoted as an outlier.

A model is first trained by taking a set of historical data and then pass these through
the ’Data prepossessing’,’Model training’ and ’Threshold selection’. This part of the
process is known as the offline model training. When detecting outliers at normal data
the data set is first send through the ’Data prepossessing’, in order to be normalized
and segmented into sliding windows, then the ’Online detection’ part takes the trained
model from the offline ’Model training’, and use that model to calculate an anomaly score.
Finally the ’Anomaly Result’ takes the anomaly score and apply it to the threshold from
the offline ’Threshold selection’, to label the objects as outliers or inliers.
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7 Experiments.

7.1 Performance measures.

Most often outlier detection is an unsupervised task, and for that reason it is difficult to
describe how a model performs in each case.

7.1.1 Outlier score.

Outlier Score is a probability measure for binary classification, telling how sure the model
is of an object belongs to a given class. The score goes from 0 to 1, where 0 means that the
model predict the object as an inlier and 1 means the object has been predicted as outlier.
One of the benefits, by using an Outlier Score is that it can be applied to unsupervised
data sets, and it is easy for a user to understand. The two data sets used for this task
A2Benchmark and A4Benchmark contains labels for outlier detection (the data set is
supervised). Then the normal measures for classifications can be performed, like the ROC
curve. So, the outlier score will be supported by a ROC curve.

7.1.2 ROC Curve.

The outlier score was returning the probability of an object belongs to a certain class.
Then the ROC curves are a measure function for supervised learning, and it returns a
plot showing the True Positive Rate and the False Positive Rate. The best possible curve
is a curve that reach as fare possible, up in the upper left corner. The False Positive Rate
(FPR) is calculated by dividing the number of False Positive predictions, by the number
of False Positive (FP) and True Negative (TN ) predictions. The FPR (Equation 10)
describes how well the model predicts the False Positives when the outcomes are negative.

FPR =
FP

FP + TN
(10)

The True Positive Rate (TPR) is calculated by dividing the number of True Positive
(TP) predictions, by the number of True Positive (TP) and False Negative (FN ) predictions.
The TPR (Equation 11) describes how well the model predicts the True Positives when
the outcomes are positive.

TPR =
TP

TP + FP
(11)

7.1.3 Extreme Value Theory (EVT).

Some algorithms [9] for outlier detection did not return an outlier score in the range of 0
to 1. Instead, they return an anomaly score, this anomaly score fare beyond this range.
But this anomaly score is still needed to be able to decide if an object is an inlier or
outlier. To overcome this problem the Peak Over Threshold (POT), from the Extreme
Value Theorem (EVT) may be applied, to find a threshold for deciding if an object is an
inlier or outlier. Basically, the POT method says that all values that exceeds a certain
threshold may be an outlier. Equation 3 shows the expression, to define the POT theory:
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Ft = P (X − t ≤ x|X > t))
∼

t→ T
(1 +

γx

σ(l)
)−

1
γ (12)

Figure 3 shows the pseudo-code for implementing the POT algorithm. The steps:

1. Initialize the procedure – pass time series (X1, . . . , Xn) and the risk parameter (q).

2. In the initialization step, a threshold t is chosen. In practice the value of t is often
set to a high empirical quantile (98%).

3. Yt - finds all the peaks higher than the threshold t.

4. The Grimshaw trick is applied to fins extreme candidates between the values from
step 3.

5. Finally the threshold is calculated.

6. Threshold is returned

The issue to the POT algorithm is that, before it can be used, we must specify a threshold.
And that may be a hard task that requires some knowledge about the dataset. And then
it has some limitations for streaming data. For stationary datasets another version of the
POT algorithm is available, called Streaming Peak Over Threshold (SPOT). The goal for
the SPOT algorithm is to detect outliers in streaming or time series data, without any
knowledge about the distribution. It works by first performing the POT algorithm on the
first n values, this gives an initialization threshold. That is used to detect outliers, doing
the process the threshold is getting updated.

Algorithm 3: Pseudo-Code for the POT algorithm.

Input: X1, X2, . . . , Xn, q
Output: zq, t

1 t← SetInitialThreshold(X1, X2, . . . , Xn);
2 Yt ← {Xi − t|Xi > t};
3 γ̂, σ̂ ← Grimshaw(Yt);
4 zq ← CalcThreshold(q, γ̂, σ̂, n, Nt, t);
5 return zq, t
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7.2 One-class SVM experiments.

The implementation of the OCSVM algorithm is based on the Scikit-learn implementation
[3] of the algorithm. This implementation takes the following parameters:

• kernel – the kernel function is used to specify the function to transform the data set
to higher dimension.

• degree – is used for the ‘poly’ kernel.

• gamma – defines the force of each object to the boundary.

• nu – the proportion of expected outliers.

The outcome of this implementation:

• predict – Returns an array where -1 means outliers and 1 means inliers..

• score samples - A score value defining diversion from the decision boundary.

To gather some insight into the performance of the OCSVM algorithm, I was running
the algorithm a few times against the synthetic data set A2Benchmark 1, and all the time
adjusting the parameter. When a parameter with a positive effect to the ROC value was
found, then it was optimized in that direction.

kernel degree gamma nu ROC execution time
rbf 3 3.0 0.5 0.54 0.3
rbf 2 3.0 0.5 0.32 0.3
rbf 4 3.0 0.5 0.42 0.3
rbf 3 2.0 0.5 0.27 0.5
rbf 3 4.0 0.5 0.31 0.4
rbf 3 4.0 0.5 0.62 0.3
rbf 3 5.0 0.5 0.28 0.3
rbf 3 4.0 0.2 0.41 0.3
rbf 3 4.0 0.5 0.46 0.3
linear 3 3.0 0.5 0.34 137.9
linear 2 3.0 0.5 0.65 407.2
linear 1 3.0 0.5 0.35 284.9
linear 2 2.0 0.5 0.64 153.2
linear 1 3.0 0.2 0.41 44.5
linear 1 3.0 0.7 0.40 211.8

Table 2: OCSVM - Execution results for the synthetic data set

The table 2, shows the results of all these tests. I was expecting the ‘nu’ value to have
a stronger effect to the result. And then I find it very suppressing that changes to kernel
function, was giving that high difference in the execution time. To me it may seems like
‘linear ’ kernel function struggling a lot to do the job, without generating a better result.

When using the ‘linear ’ kernel function, the algorithm is trying to catch the normal
pattern by a straight line. But the ‘rbf ’ is trying to shape a decision boundary as a curve
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Figure 20: OCSVM - Execution test for the synthetic data set

Figure 20, shows one of the test results for the OCSVM prediction on a synthetic data
set. The algorithm succeeds predicting the outliers but it also got a few misclassified
objects. Which also has been supported by the ROC curve and the Outlier factor.

Like for the synthetic A2Benchmark 1 data set several tests have been performed to
the real-world time series A4Benchmark 1. Below the table shows the result set. By a
mistake I was changing the parameter ‘Degree’ for the ’rbf ’ and ’linear ’ kernel, following
the Scikit-learn documentation this parameter is ignored for all other kernel function than
the ‘poly ’. But still there seems to be a relatively high difference in the ROC score, from
time to time. I assume that this may be related to the amount of data available for this
test. When looking at the test results for the real-world data set in table 3 below, it may
be interesting to see that the execution time for both the ‘rbf ’ and ‘linear ’ kernel function
stays the same. Regarding the best ROC score it seems to be slightly better than for the
synthetic data set. A possible reason for this may be that the ‘rbf ’ kernel finds it easier to
create a decision boundary when the distribution is more dense.
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kernel degree gamma nu ROC execution time
rbf 3 3.0 0.5 0.59 0.1
rbf 2 3.0 0.5 0.49 0.1
rbf 4 3.0 0.5 0.77 0.1
rbf 5 3.0 0.5 0.57 0.1
rbf 4 2.0 0.5 0.61 0.1
rbf 4 4.0 0.5 0.74 0.1
rbf 4 3.0 0.2 0.51 0.1
rbf 4 3.0 0.7 0.16 0.1
linear 3 3.0 0.5 0.32 0.5
linear 2 3.0 0.5 0.38 0.4
linear 1 3.0 0.5 0.42 0.6
linear 1 2.0 0.5 0.01 0.6
linear 1 4.0 0.5 0.46 0.5
linear 1 5.0 0.5 0.39 0.6
linear 1 4.0 0.2 0.48 0.4
linear 1 4.0 0.1 0.57 0.4

Table 3: OCSVM - Execution results for the real-world data set
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Figure 21, shows the test result for the OCSVM prediction on a real-world data set.
Here it was not possible, to get the same positive result as shown in the test table above.
By looking at the picture (Figure 21), we see that if we compare two lowest charts the
‘Outlier score’ and the ‘Predicted inliers / outliers ’, in the beginning of the data set where
the data distribution is going up, then the amount of objects in the ‘Outlier score’ chart,
close to one is less than the rest of the chart. That observation can also be reflected in the
number of red dots in the ‘Predicted inliers / outliers ’ chart for the same area.

Figure 21: OCSVM - Execution test for the real-world data set
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7.3 Local Outlier Factor experiments.

The task of this project will be based on the implementation from Scikit-learn. This
implementation takes the following parameters:

• n neighbors – Value for K, describes how many objects to be in the local area.

• algorithm – Algorithm used to compute the nearest neighbours. (ball tree, kd tree,
bruteforce)

• leaf size – Parameter to be used to control the creation of the isolation trees in the
ball tree or kd tree algorithm. This parameter can be used to improve the execution
time.

• p – Describes the distance function to be used for calculating the distance between
to objects. (Manhattan – p value of 1) or (Euclidean – p value of 2)

This Scikit-learn implementation, is not returning an outlier score in the range of 0 to 1.
That normally will have been used to describe the outlierness of an object. Instead, it
returns a ‘sample score’ for each object that has been observed to be in the range of -52
to 1, 2. Doing the implementation process I had been in a discussion to myself how to
handle this issue. And my final decision turned out to be that I will print out this ‘sample
score’ for two reasons:

• The algorithms is returning a matrix telling if the particular object has been detected
as an inlier or a outlier. So I do not have to use this outlier score to decide if it may
be an outlier or not.

• In a real-world situation, a person having domain knowledge, may have to detect
outliers from this behaviour. And even if the algorithm was able to return a real
outlier score, the it may still require a domain expert to decide when an object is an
inlier or an outlier.
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To gather some insight into the performance of the LOF algorithm, I was running the
algorithm a few times against the synthetic data set A2Benchmark 1, and all the time
adjusting the parameters. When a parameter with a positive effect to the ROC value was
found, then it was optimized in that direction. Below table 4 shows, the test results for
the first test case. Doing these tests, I was very impressed about the effect of changing
the algorithm.

algorithm p n neighbors leaf size ROC execution time
ball tree 1 20 30 0.76 0.36
kd tree 1 20 30 0.91 0.31
bruteforce 1 20 30 0.56 0.36
kd tree 2 20 30 0.59 0.32
kd tree 1 15 30 0.48 0.33
kd tree 1 25 30 0.88 0.36
kd tree 1 20 20 0.77 0.34
kd tree 1 20 40 0.58 0.35

Table 4: LOF - Execution results for the synthetic data set

Unfortunately, I was not able to recreate the fine result from the table above, when
creating the screenshot for the report. The only outlier in this test data set, was not
captured by the algorithm, but at least the algorithm did not misclassify any other objects.
If we look at the ‘Original time series ’ and ‘Outlier score’ charts in ‘28-12-24’. Then we
may see the object that should have been mark as being an outlier in the original dataset.
And in the same area for the ‘Outlier score’ chart we may find a object at -1,50, and nearly
all other objects is located around -1. Unfortunately, the documentation from Scikit-learn
did give that much information about this score. But it seems like the smallest values is
most likely to be outliers.
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Figure 22: LOF - Execution test for the synthetic data set

Like for synthetic data set A2Benchmark 1 I was trying to find a good set of matching
parameter for the real-world data set A4Benchmark 1. Table 5 shows the results, for the
test performed on the real-world data set. When looking at the ROC curve it seems to
have a hard job by separating the objects. But if we are looking at the ‘Predicted inliers
/ outlier ’ (figure 23) chart it actually captures one of the outliers, but sadly it did also
misclassify a number of objects which may lead to that bare curve.

algorithm p n neighbors leaf size ROC execution time
ball tree 1 20 30 0.38 0.36
kd tree 1 20 30 0.27 0.42
bruteforce 1 20 30 0.27 0.40
ball tree 2 20 30 0.45 0.40
ball tree 2 15 30 0.95 0.43
ball tree 2 10 30 0.41 0.35
ball tree 2 15 20 0.53 0.40
ball tree 2 15 40 0.30 0.35

Table 5: LOF - Execution results for the real-world data set
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Figure 23: LOF - Execution test for the real-world data set
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7.4 Isolation Forest experiments.

For the IF implementation for the project, I had chosen the Scicit-learn package. This
implementation takes the following parameters:

• n estimator – Numbers of trees in the forest.

• max samples - Number of objects to be used for training the individual trees.

• contamination – Is used to control the proportion of inliers / outliers.

The outcome of this implementation:

• predict – Returns an array where -1 means outliers and 1 means inliers

• score samples - The lower the output score is, then the point is more likely to be an
outlier.

To gather some insight into the performance of the IF algorithm, I was running the
algorithm a few times against the synthetic data set A2Benchmark 1, and all the time
adjusting the parameter. When a parameter with a positive effect to the ROC value was
found, then it was optimized in that direction. Table 6, shows the result of the different
executions of the algorithm. I was expecting to see that changing the number of estimators
was having a large impact to the performance. But that was not the case, instead it
turns out that changing the contamination values was having the largest impact to the
performance, which may make sense because the algorithm may use this as a threshold.

n estimators contamination max samples ROC execution time
100 0.1 10 0.55 0.98
110 0.1 10 0.54 0.80
90 0.1 10 0.56 0.72
80 0.1 10 0.54 0.65
90 0.1 20 0.56 0.79
90 0.1 30 0.54 0.73
90 0.01 10 0.50 0.84
90 1.0 10 0.49 0.68
90 0.5 10 0.76 0.68
90 0.3 10 0.15 0.75

Table 6: IF - Execution results for the synthetic data set

By looking at the ’Predicted inliers / outlier ’ of the Figure 24, it seems like the
algorithm was having a hard job by distinguish between the object in a spars curve pattern.
But it is interesting to notify that the red dots are located next to each other at the same
position at the curves.

Like for the synthetic data set A2Benchmark 1 I was trying to find a good matching
set of parameters for the real-world data set A4Benchmark 1. Table 7, is showing the
result. The most interesting things for the second test, is to see that the missclassified
object is in a very dense area of the distribution (See chart ’Predicted inliers / outlier ’ at
Figure 25. I was expecting the outlier at ’23-12-2014’ to be classified as an outlier object
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Figure 24: IF - Execution test for the synthetic data set

because of it position fare away from the rest of the objects, but instead a large amount of
objects in the middle of the data set was captured as outliers. That pour result is also
reflected in the ROC curve.

n estimators contamination max samples ROC execution time
100 0.1 10 0.55 0.81
110 0.1 10 0.54 0.73
90 0.1 10 0.53 0.79
80 0.1 20 0.39 0.72
90 0.1 5 0.56 0.73
90 0.1 3 0.55 0.69
90 0.5 10 0.29 0.75
90 0.3 10 0.40 0.75
90 0.09 10 0.55 0.76
90 0.05 10 0.50 0.74

Table 7: IF - Execution results for the real-world data set

38



Figure 25: IF - Execution test for the real-world data set
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7.5 Replicator Multi-layer Perceptrion experiments.

For the implementation of the RMLP algorithm in this project, I have been used the
multiple layer perceptron algorithm from Scikit-learn. And for the experiments of testing
this algorithm, I made the following parameters available:

• hidden layer sizes – Defines the size of the hidden layer.

• activation – The activation function is used to define the out of each unit.

• alpha – Is used to control the border, that is defines the different classes.

• solver – The ways that the internal weights is updated.

To gather some more insight into the performance of the RMLP algorithm, I was
running the algorithm a few times against the synthetic data set A2Benchmark 1, and all
the time adjusting the parameter. When a parameter with a positive effect to the ROC
value was found, then it was optimized in that direction. And as shown in table 8, it seems
to be doing relatively fine. When trying to recreate the pattern, at least it return a ROC
score at 0.94, which is much better than some of the other algorithms.

hidden layer sizes activation alpha solver ROC execution time
100 relu 0.1 adam 0.59 0.16
150 relu 0.1 adam 0.85 0.35
160 relu 0.1 adam 0.73 0.18
150 tanh 0.1 adam 0.71 1.14
150 logistic 0.1 adam 0.94 0.81
160 logistic 0.1 adam 0.93 0.79
150 identity 0.1 adam 0.60 1.03
160 logistic 0.2 adam 0.33 1.01
150 logistic 0.1 sgd 0.66 0.93
150 logistic 0.1 lbfgs 0.65 0.21

Table 8: RMLP - Execution results for the synthetic data set

When trying to recreate (see figure 26) the fine result from the table above, it looks
like we are getting a similar result, by comparing the ROC value and the ROC curve. But
unfortunately the algorithm was not able to catch the two outlier objects.

Like for the synthetic data set A2Benchmark 1 I was trying to find a good matching
set of parameters for the real-world data set A4Benchmark 1, as shown in table 9. Here it
might be worth noting the effect of changing the size of the hidden layers. And the fact
that in the report ‘Outlier Detection Using Replicator Neural Network’ [6], they were only
testing with three hidden layers.

Figure 27 shows the performance of the RMLP algorithm at the real-world data set
A4Benchmark 1. The test result from the above test table seems to be reflected at the
ROC curve. By looking at the ‘Outlier score’ in the beginning the algorithm seems to be
having a hard job learning the pattern, but it quickly falls to the same level as for the rest
of the data set. But again, is disappointing to see that it was not able to catch the real
outliers.
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Figure 26: RMLP - Execution test for the synthetic data set

hidden layer sizes activation alpha solver ROC execution time
100 relu 0.1 adam 0.52 0.14
150 relu 0.1 adam 0.34 0.18
110 relu 0.1 adam 0.18 0.99
50 relu 0.1 adam 0.83 0.49
40 relu 0.1 adam 0.50 0.49
50 tanh 0.1 adam 0.57 0.42
50 logistic 0.1 adam 0.58 0.44
50 identity 0.1 adam 0.43 0.45
50 relu 0.2 adam 0.36 0.08
50 relu 0.1 sgd 0.49 0.24
50 relu 0.1 lbfgs 0.51 0.54

Table 9: RMLP - Execution results for the real-world data set
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Figure 27: RMLP - Execution test for the real-world data set
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7.6 DoNut experiments.

The implementation of the DoNut algorithm in this project will be based on the imple-
mentation from NetManAIOps/donut [2]. This implementation takes the following set of
parameters:

• batch size – Number of training objects, for the model to work through, before the
internal parameters of the model is updated.

• max epoch - Controls the number of times the model is looping through, all the
objects and tries to improve itself.

The output of this model is an anomaly score, that did not look like the normal outlier
score that is goes from 0 to 1. To be able to determine if an object is an outlier the SPOT
algorithm was applied. SPOT stands for Streaming Peak Over Threshold and is a part of
the Extreme Value Theory. The SPOT algorithm is a modification of the POT algorithm.

To gather some insight into the performance of the DoNut algorithm, I was running
the algorithm a few times, and all the time adjusting the parameter. When a parameter
with a positive effect to the ROC value was found, then it was optimized in that direction.
Table 10 shows, the results of these test. To these test it is clear the most important
parameter, is the ’max epoch’ by starting at 10 and returns a ROC value a 0.0. But was
changed to 40 the returned ROC value was 0.80. I find it very surprising that it was the
smallest ’batch size’ value that returns the best result.

max epoch batch size ROC execution time
10 10 0.00 6.8
20 10 0.39 7.7
30 10 0.62 10.5
40 10 0.80 8.4
50 10 0.59 12.5
40 20 0.47 7.7
40 5 0.98 16.1

Table 10: Donut - Execution results for the synthetic data set

Figure 28, shows the DoNut algorithm, executed against the synthetic time series
A2Benchmark 1. I was hoping to see an algorithm that was able to capture the pattern of
the sinus like curve, but when looking at the ’Outlier score’ chart it did not seems to be
the case.

Table 11, shows the DoNut algorithm, tested against the real-world time series
A4Benchmark 1. By searching the ROC column shows that it seems like DoNut algorithm
find it hard to capture normal the pattern of the time series.

Figure 29, shows the performance of the DoNut algorithm executed against the real-
world data set. Here the algorithm fails to capture the two outliers but instead it was
missclassifying a group of objects in the beginning of the time series.
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Figure 28: DoNut - Execution test for the synthetic data set

max epoch batch size ROC execution time
10 10 0.44 6.2
20 10 0.11 8.8
5 10 0.50 4.8
2 10 0.51 4.5
2 20 0.26 3.8
2 5 0.40 4.5
100 10 0.28 17.40
100 100 0.24 6.4

Table 11: DoNut - Execution results for the real-world data set
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Figure 29: DoNut - Execution test for the real-world data set
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7.7 OmniAnomaly experiments.

The implementation of OmniAnomaly in this project will be based on the implementation
from (NetManAIOps, n.d.). This implementation takes the following set of parameters:

• rnn cell – An RNN Cell is performing the same task as neurons in a neural network,
but the RNN Cell can take a state and remember information’s from the past. For
this test I had been working with GRU and LSTM.

• rnn number hidden

• windows length – The length of each sliding windows.

• max epoch - Controls the number of times the model is looping through, all the
objects and tries to improve itself.

To gather some insight into the performance of the OmniAnomaly algorithm, I was
running the algorithm a few times against the synthetic data set A2Benchmark 1, and all
the time adjusting the parameters. When a parameter with a positive effect to the ROC
value was found, then it was optimized in that direction. Table 12 shows, the results of
these test. In the literature the OmniAnomaly is claimed to be able to out-perform the
DoNut algorithm. In this case they seems to be performing equally, when it comes to the
ROC value. But when it comes to the execution time the OmniAnomaly algorithm seems
to be much slower than the DoNut algorithm.

rnn cell windows length rnn num hidden max epoch ROC execution time
GRU 200 500 20 0.46 530.52
GRU 150 500 20 0.70 522.69
GRU 100 500 20 0.51 551.61
GRU 50 500 20 0.35 515.56
GRU 80 500 20 0.26 544.39
GRU 150 400 20 0.66 496.52
GRU 150 500 10 0.98 528.85

Table 12: OmniAnomaly - Execution results for the synthetic data set

As shown in figure 30, I was trying to recreate the fine result, without success. Here it
the algorithm was not able to capture the outliers nor it was missclassifying any objects.
The ROC curve shows a ROC value near 0.20 which I did not seem reflected in the chart.

For the real-world A4Benchmark 1 data set I was doing the same test as shown in
table 13.Here the algorithm was not performing as god as in the synthetic tests.

When looking at the table 13 showing the result of the tests performed on the real-world
data set, it is clear that the algorithm find it hard to capture the normal pattern.

Figure 31, shows the OmniAnomaly algorithm executed at same data set. And the
same badly result seems to be reflected, specifically when we look at the ROC curve. Here
the bad result from the above earlier tests is reflected, in the ROC curve showing a low
true positive rate. And the chart shows non of the original outliers was captured by the
algorithm.
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Figure 30: OmniAnomaly - Execution test for the synthetic data set

rnn cell windows length rnn num hidden max epoch ROC execution time
GRU 150 500 20 0.19 574.57
GRU 100 500 20 0.39 580.50
GRU 50 500 20 0.38 581.30
GRU 10 500 20 0.27 548.00
GRU 150 400 20 0.36 531.94
GRU 100 400 20 0.57 537.67
GRU 100 300 20 0.76 572.56
GRU 100 200 20 0.62 553.95
GRU 100 300 10 0.46 600.29
GRU 100 300 40 0.59 457.44
GRU 100 300 30 0.37 552.77

Table 13: OmniAnomaly - Execution results for the real-world data set
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Figure 31: OmniAnomaly - Execution test for the real-world data set
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8 Conclusion

Algorithm Synthetic data set. Real-world data set

OCSVM The best ROC value was 0.64. It
was acting robust, when executing
multiple times. But it may have a
hart job, creating a decision bound-
ary, around the spread objects.

The best ROC value was 0.77. It
seems to be performing better when
the objects are closely distributed.

IF The best ROC value was 0.76 The best ROC value was 0.56. The
result was not impressive, but when
executing the algorithm multiple
times, the result was stable.

LOF The best ROC value was 0.91. LOF
is made for detecting global outliers.
And it seems to be the same case
here.

The best ROC value was 0.9. LOF
is made for detecting global outliers.
And it seems to be the same case
here. But when executing the algo-
rithm multiple times, the result was
differing.

RMLP The best ROC value was 0.94. Fol-
lowing the ROC curve, it seems
like the RMLP algorithm is good for
learning the pattern, it was just not
reflected in the predicted outliers.

The best ROC value was 0.83. Com-
paring to the synthetic data set, it
seems to have a harder job detecting
the normal pattern.

DoNut The best ROC value was 0.98. And
an execution time at 16.1 sec.

The best ROC value was 0.51. The
bad performance at the real-world
data set bay be related to the way
the data is split in to training and
test. Because of the sliding window
the first 70% of the data is used for
training.

OmniAnomaly The best ROC value was 0.98. It
seems to be good at detecting the
pattern, but it got a very high exe-
cution time.

The best ROC value was 0.76.The
bad performance at the real-world
data set bay be related to the way
the data is split in to training and
test. Because of the sliding window
the first 70% of the data is used for
training. I was the slowest executed
test a 572.56 sec.

Table 14: Comparison of outlier detection algorithm.

When starting the project, I thought the algorithm to be used for outlier detection was
the same as used for normal classification task. But doing the project I learned that, it
was not completely the case. The classification is the task of classifying the objects to
belonging to one class or another class, but in outlier analytic all the objects is expected
to be belonging to the same class, with some outliers. The algorithm to be used in this
project is very different from each other like the time series data set. Therefor to compare
the algorithm I had summarized my experiments in the table 14 below.

When looking at the comparisons table above it is important to have in main, that
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this test has been performed on two relatively small data sets a only 1400 points. And
special for the DoNut and OmniAnomaly test at performed against the real-world data set
the result may change when they are executed at a larger data set. The problem to this
data set is that the data distribution I changing, and when start using the first 70% of
the samples for training and the last 30% for testing. Then the algorithm may see the
training an testing data sets as two different distributions.

Regarding my future work, in this area. Then I would like to implement the DoNut
algorithm at one of our blade-test rigs at Siemens Gamesa Renewable Energy, in order to
see if it can be implemented for detection of cracks in the surface.
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