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Abstract—Given the need to reduce greenhouse gas emissions
throughout society, methods are needed to estimate current emis-
sions reliably so that the effects of initiatives towards reducing
emissions can be assessed. This paper focuses on traffic and how,
given traffic data, we can provide insight into the total emissions
of the municipality. The data sources are Induction Loop Derived
Data and Floating Car Derived Data. A data warehouse design is
proposed, and the paper elaborates on the benefits of the design.
A fuel estimation model uses the processed traffic data to estimate
fuel consumption and CO2 emissions.

Furthermore, the model uses custom vehicle sets to reflect
the real-life traffic of a municipality. The paper offers insight
into the strengths and weaknesses of the approach and explores
alternative methods for modifying and improving the approach.
The system provides estimations for fuel consumption and CO2
from spatial and temporal queries through an interface.

1. INTRODUCTION

A. Motivation

On December 12, 2015, 196 parties to the UN adopted
The Paris Agreement [1]. The agreement’s goal is to limit
greenhouse gas emissions to slow global warming. Subse-
quently, Danish municipalities created the ”DK2020” [2] plan,
which represents the commitment to reaching the goals defined
in The Paris Agreement. Currently, 66 out of 98 Danish
municipalities have joined the plan. The plan centers around a
collaborative effort where the municipalities can share experi-
ences and solutions to create a framework to prevent climate
change. With the growing commitment to reduce greenhouse
gas emissions, it is necessary to create new solutions that
support this development.

In Europe, out of the total CO2 emissions, nearly 30%
comes from traffic, of which 72% is from road traffic. Thus, a
large part of greenhouse emissions comes from traffic. This
paper studies how to provide fuel consumption and CO2
emission estimates given two different sources of traffic data.
Thus, the solution gives insight into the current situation and
plan for future scenarios regarding fuel consumption and CO2
emission estimates.

B. Contributions

This paper introduces a system to compute fuel estimations
of vehicles traveling in a road network from two traffic data
sources. As fuel and CO2 emissions are proportional to each
other, the paper focuses on fuel estimations. The traffic data
sources are Induction Loop Derived Data (ILDD) and Floating
Car Derived Data (FCDD). The data in the ILDD is obtained

from stationary measurement stations, consisting of data from
points, which are a set of latitude and longitude coordinates.
The data in the FCDD is obtained from GPS devices in
vehicles given from road segments as a stretch of road.

Additionally, we use OpenStreetMaps (OSM) as a common
representation. Separated, these data sources cannot represent
the density of the traffic in a traffic network. However, the
strengths of the data sources cancel out the weaknesses of
the opposite source. Thus, we integrate the data sources into
a common representation. However, as the data sources have
different spatial and temporal representations, the integration is
not straightforward. It includes, among others, map matching
of ILDD and FCDD to OSM road segments. Section 6
describes the entire data integration process. The FCDD and
ILDD register the Annual Average Daily Traffic [3] (AADT),
which is the yearly number of vehicles on a given road.
Throughout this paper, the AADT will be referred to as hits
for a given road segment. The FCDD and ILDD also register
the average speed.

However, the FCDD does not register the total density of
traffic on its road segments as it only registers a subset of
all vehicles. This is due to the data being vehicle dependent
and not location dependent. Likewise, ILDD does not capture
the entire traffic flow since it registers data from stationary
stations located at specific points. Unfortunately, not every
road segment has a measurement station, as the deployment
maintenance of such stations is costly. Thus, stations register
complete data, but their coverage of a road network is sparse.
In order to extrapolate the hits from the FCDD to the complete
hits number given from the ILDD, we use linear regression.
The approach creates a model which can predict the ILDD
hits value given an FCDD hits value. Additionally, a model
to predict the ILDD average speed given the FCDD average
speed us also used. When the data integration of the sources is
complete, we utilize a fuel estimation model to estimate fuel
consumption on road segments. The fuel estimation model
takes different vehicle parameters as input, capturing the
variations among vehicles and affecting fuel consumption. As
an example, a small car usually uses less fuel than a large car,
and a truck uses more fuel than a large car. For that reason,
the system supports creating custom vehicle types. This works
by specifying the parameters of the given vehicle to be used
in the fuel estimation model. The vehicle parameters include,
e.g., the weight of the vehicle and the idle fuel consumption.

Furthermore, one can specify the vehicle distribution of
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trucks, buses, and cars. This allows analyzing different sce-
narios such as traffic with or without electric buses. Thus, it is
possible to see how fuel usage will decline as electric vehicles
increase. The results of the system are accessible in a web
application. The application takes a temporal input in the form
of a number of days and a time period. Thus, it is possible to
specify the time period, e.g., between 15.00 and 16.00, down
to a 15-minute range. The web application also contains a map
from which the users can draw polygons to query on the road
network. This usage enables, e.g., investigation of fuel usage
in a city versus on motorways. Appendix A shows an example
of the result page from the web application.

C. Overview

The paper first covers the related works in Section 2. Next,
Section 3 describes the use cases of the system. Following
this, Section 4 explains the system flow. Here we give an
overview of the functionality of the entire system. Section 5
describes the used fuel estimation model SIDRA-RUNNING.
We go through which parameters are necessary for the model
to function and support vehicle sets. Section 6 explains the data
sources and integration and covers the steps from raw data to a
common representation. Section 7 explains the data warehouse
architecture. Section 8 looks at linear regression models to pre-
dict accurate hit numbers and accurate average speed numbers.
Section 9 reiterates our use cases and showcases the results.
Following this, Section 10 will discuss the decisions through-
out the paper and the processes leading to the final results.
Finally, Section 11 will summarize and conclude the paper.

2. RELATED WORK

EcoMark 2.0 [4] studies multiple fuel estimation models
to compare their results to ground truth data measured from
vehicles. The paper tests both instantaneous and aggregated
fuel models, where instantaneous models use point data and
aggregated models use road segment data. As for relevance to
this paper, they concluded that the SIDRA-RUNNING model
was suitable for assigning eco-weights to road segments, thus
making the model viable for fuel consumption estimations.
They also used the SIDRA-Avg model, but the model does
not apply to all road categories, as it becomes unreliable
when the average speed excels 50 km/h. For this paper, we
use the fuel model SIDRA-RUNNING based on the results
from EcoMark 2.0.

”Estimating traffic volume on Wyoming low volume roads
using linear and logistic regression methods” [5] describes
a method to try and estimate the AADT traffic density
measurement on low-volume roads in Wyoming using linear
and logistic regression. The intended usage of the method
was for low-volume rural roads. The study used linear and
logistic regression to try and give an estimate based on several
predictor variables, which include, e.g., the surface of the
roads and the population near the roads. They found that
land usage near the roads was the most significant predictor
variable. Their model scored an R2 value varying from 0.44
up to the best score of 0.64. For this paper, we use a similar

approach as we also will use a linear regression model. We
take a different approach for this paper as we use a second
AADT measurements source for the model instead of variables
surrounding the roads.

In ”An Advanced Data Warehouse for Integrating Large
Sets of GPS Data” [6], they implemented data warehouses for
GPS data using PostgreSQL [7] with the PostGIS [8] exten-
sion. For the ETL flow, they used a programmatic approach
using pygrametl, which ”pygrametl - ETL programming in
Python” [9] and ”Programmatic ETL” [10] documents. We
will use PostgreSQL with the PostGIS extension for the data
warehouse and pygrametl for the ETL process for this paper.

3. USE CASES

As described in Section 1-A, the paper aims to aid Danish
municipalities in estimating traffic fuel usage. In order to
get an understanding of the use cases, we cooperated with
a Danish consultant company which specializes in traffic
data solution for the Danish municipalities. The usage of the
system is intended to be made available by said company to
the Danish municipalities.

A. Yearly Estimate

One of the primary requests is to get a yearly estimate
of the fuel consumed and CO2 emitted in a user-specified
geographical region. This is the primary feature, and thus the
system needs to present this properly. The feature considers
multiple traffic states with free-flowing traffic and spike hours,
based on our data sources. Another aspect is to distinguish
weekdays and weekends as the total traffic will be different.
Thus, we must calculate the yearly total estimate accordingly.

B. Estimate Scaling

In addition to the yearly estimate, the yearly development
of the total emissions is also relevant to investigate. As the
number of vehicles increases in municipalities, the total fuel
and CO2 will also increase. Thus, a parameter to alter the
total number of vehicles can provide additional information
for future scenarios.

C. Vehicle Sets

Finally, an aspect that affects the total fuel used is the type
of vehicles driving in the municipalities. If the vehicles are
primarily gas and diesel vehicles, the total fuel used will be
greater than a scenario where a subset of the vehicles are
electric vehicles. The ability to model an increase in electric
vehicles means seeing how electric vehicles impact the total
fuel and CO2 usage.

4. SYSTEM DESIGN & FLOW

We created the system as a web application, from which all
the functionality is available. To be specific, the functionality
manages the traffic data upload, applies the fuel estimation
model with different parameter sets, and presents the results.
Figure 1 shows the flow of the system.

The center column consists of the three main pages,
Upload, Parameters, and Cases, and the ETL flow. Each of
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Fig. 1: System flow

them has their process flow mapped through the rounded
rectangles following their small arrow. The system starts
from the Upload page, where the users upload the FCDD and
ILDD. The ETL flow then processes the data and integrates it
into a common source. The ETL process is described further
in Section 6 and Section 8.

When the ETL flow is complete, the user can, through the
Parameters page, create custom parameter sets and apply them
to the uploaded data. A parameter set contains a vehicle growth
parameter which is a percentage indicator to scale the total
number of vehicles from the uploaded traffic data. A parameter
set also contains a vehicle set that represents the vehicles
present in the road network. Furthermore, the user can specify
vehicle sets, giving complete control of which vehicles to
apply to the traffic data and the percentage each vehicle should
represent. It is possible to apply many parameter sets to the
same uploaded data, enabling comparison between multiple
models of the data.

After applying the chosen parameter sets, the user can go
to the Cases page to view the results. The Cases page allows
the user to input an upload name, an applied parameter set,
a time period, a number of days, and a polygon. Then, the
system returns the fuel consumption for the area in the given
time period. The user creates polygons using Leaflet1, a library
that allows the user to draw a polygon point by point. The user
can then compare different model results from the uploaded
traffic data. Appendix D shows the different functionality of
the web application.

5. SIDRA

To provide fuel estimates based on the data sources, we
use a model that utilizes the data features. As mentioned
in Section 2, Eco-Mark-2.0 tested several fuel estimation
models to determine how closely they compared to ground
truth fuel data. One of the methods used was the SIDRA-
RUNNING model, which showed promising results based on

1https://leafletjs.com

road segment data. Another option was the SIDRA-AVERAGE
model, which also uses segment data. However, the original
paper [11] declared the model unfit to estimate fuel when
the average speed exceeds 50 km/h. Furthermore, since the
traffic data concerns both rural and urban driving, the model is
not viable. Based on SIDRA-RUNNING’s features and given
the inapplicability of SIDRA-AVERAGE, we use SIDRA-
RUNNING as the fuel estimation model.

A. Model Description

The SIDRA-RUNNING model uses variables regarding a
road segment and a vehicle to estimate the fuel required to
traverse that given road segment with the given vehicle. For a
road segment, the model uses the variables listed below from
the input data. However, the model uses additional variables
not available from the data. Thus, they are estimated based on
the calculations from the original paper [11]. To summarize,
the variables we use from our data sets are the following two.

• Average speed
• Total segment distance
In addition to the driving behavior variables, the SIDRA-

RUNNING model also uses vehicle-specific parameters, as
there is a difference between the fuel usage among vehicles,
e.g., a heavy truck uses more fuel than a small car. In order
to accurately provide fuel estimations that also account for
vehicle diversity, we are taking two approaches. First, we use
the vehicle set defined by Akçelik et al. in [12]. This set
contains three car types, one bus type and one truck type,
which were created and calibrated by the authors of the SIDRA
models. Additionally, we include an electric vehicle type with
a fuel usage of 0 to take into account the growing percentage of
electric vehicles. Second, we support custom vehicle creation
by the users of our system to accommodate for the evolution
of vehicles, e.g., vehicles driving farther using less fuel. The
result of the model is an estimate of the fuel consumed on a
road segment given in mL. To get the CO2 emitted, the fuel
estimate is multiplied by 2.29 for gas or 2.66 for diesel [13].

The SIDRA-RUNNING model is given as:

Fs =

{
α+ ti + fr + xs for 0 < fr + xs

α+ ti otherwise

fr = fi/vr +A+Bv2r +Q1 +Q2 + 0.0981KGβ1MG

Q1 = KE1β1MEk+

Q2 = KE2β2ME2
k+

KE1 =

{
0.675− 1.22/vr for 0.5 < 0.675− 1.22/vr

0.5 otherwise

KE2 = 2.78 + 0.0178vr

KG =

{
1− 1.33EK+ for G < 0

0.9 otherwise

EK+ =

{
0.35− 0.0025vr for 0.15 < 0.35− 0.0025vr

0.15 otherwise
(1)

3



In the model, Fs is the fuel consumed in mL, fr is the fuel
consumption in mL/km, xs is the segment length in km, vr
is the travel speed in km/h, ts is the travel time in seconds,
ti is the idle time in seconds, EK+ is the sum of positive
kinetic energy changes per unit mass per unit distance, and G
is the road grade. The parameters fi, α, A, B, β1, β2, and
M are vehicle parameters, and lastly KE1, KE2, and KG are
calibration parameters. The complete model can be found in
the literature [11].

B. Vehicle Sets

When using SIDRA-RUNNING, many of the variables are
vehicle specific, and thus the result becomes vehicle specific.
As there is a wide variety in the type of vehicles in everyday
traffic, the system must account for this. To accomplish this, it
is possible to create custom vehicles with the parameters spec-
ified. This allows for custom vehicle sets creation consisting of
a set of vehicles and the percentage each vehicle makes of the
full set. Currently, the vehicles separate into three categories;
cars, buses, and trucks. The reason is to be able to distinguish
different vehicle types from each other. It is also possible to
create electric vehicle types to reflect the number of electric
vehicles currently driving, which do not consume fuel such as
petrol or diesel. For this paper, we do not consider the electric
energy for electric cars in terms of CO2 output.

6. DATA

A. Overview

As mentioned in Section 1-B, the paper uses the traffic
data sources FCDD and ILDD and uses a map representation
from OSM. Since FCDD uses a proprietary map and ILDD
only provides coordinates of its stations, we use OSM’s road
network to connect them.

The traffic information from FCDD and ILDD are con-
trasting. The FCDD consists of traffic data for many road
segments, which, when combined, creates a road network.
In this regard, the data is complete. However, the registered
traffic data in FCDD is sparse, as it does not reflect every
vehicle that has been in the road network. This is because
the registrations are from, e.g., navigation systems. ILDD
only provides the specific point for each measurement station.
These are stationary and registers the total traffic at a given
time in a specific place. The traffic data from ILDD is then
complete as it registers all vehicles at a specific point. In
regards to a road network, it is a sparse data source since
there are only a limited number of stations. Appendix B gives
an overview of the FCDD road segments and the ILDD points.

Both FCDD and ILDD support varying time granularity,
with the finest being 15-minute intervals. The system proposed
in this paper supports these temporal representations. This
section describes how we integrate the finest time granularity
as it requires additional processing. Furthermore, it enables
the system to make more fine-grained temporal queries.

The data used for this paper is from February 2019 to Febru-
ary 2020 for Odense municipality. The time granularity is 15-
minute intervals. The ILDD is composed of 85 measurement

stations, and the FCDD road network is composed of 58.484
road segments.

B. OpenStreetMaps

To combine FCDD and ILDD to a common representation,
we use OpenStreetMaps’ road network (OSM). The road
network consists of a number of road segments. The road
segments can vary in length and structure. Figure 2 shows
an example with five segments where a single blue line with
a black border represents a road segment.

Fig. 2: OpenStreetMaps road segments

The road segments in OSM also have associated metadata.
Table 1 shows an example of the information used from OSM.

Id Name Highway Max Speed
121390376 Skovalléen tertiary 50

Table 1: Example of OSM road segment

C. Floating Car Derived Data

As mentioned, the FCDD provides traffic data assigned to
road segments. Since there are different ways to model road
networks, the road segments can vary in length. This is the
case with the FCDD road network compared to the OSM
road network. To illustrate, Figure 3 shows the same street
with road segments from the FCDD. The road segments have
a black border to indicate where they begin and end. As
mentioned, there are a total of 58.484 road segments for the
FCDD road network.

Table 2 shows an example of the traffic data associated with
a road segment. Hits is the number of vehicles registered for
the road segment in the time period, AvgSp is the average
speed in km/h of the vehicles, and AvgTt is the average travel
time in seconds.

id length frc speedlimit streetname AvgSp AvgTt Hits
13203 24,07 6 35 Skovalléen 33,55 3,82 201

Table 2: Example of FCDD row, weekday during 11.45–12.00
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Fig. 3: FCDD Segments Example

This paper uses the data in 15-minute intervals, e.g., from
11.45–12.00, and in two periods. The first period is Tuesdays,
Wednesdays, and Thursdays to represent a weekday, and the
second period is Saturdays to represent a weekend day. Notice
that the FCDD does not have a date specified with it. This is
due to the data is aggregated. This means that the vehicles
registered in a time period are for the entire year. Looking at
Table 2 again, the 201 hits registered are from every Tuesday,
Wednesday, and Thursday between 11.45 and 12.00 for the
entire year.

D. Induction Loop Derived Data

The ILDD is point based and registers every vehicle that
passes a point with a measurement station on the road. To
illustrate this, Figure 4 shows a red dot which the location of
a single ILDD measurement station.

Fig. 4: ILDD Example

In the data used for this paper, there is a total of 85
measurement stations. These measurement stations register
traffic information from their specific location, such as the total

number of vehicles and their average speed. Table 3 shows an
example of this.

Road
Id

Place
Id

Road
Name

Date Direction Count Speed

... ... Skovalléen 01.02.2019 - 57 34,1

Table 3: Example of ILDD row, 01.02.2019 during 11.45–12.00

Contrary to FCDD, ILDD contains dates, which means there
are rows for every day of the year, with 15-minute intervals
associated with it.

E. Data Integration

Both FCDD and ILDD have their strengths and weaknesses.
The goal is to integrate the two sources into a single solid
data source. This integration includes the date representation in
ILDD and the lack of it in FCDD. Also, the integration corrects
the spatial representations to a common representation.

The data integration integrates FCDD, ILDD, and OSM into
a unified format. Furthermore, the resulting rows capture the
combined data of the road segments. The process is three steps.
One step for the ILDD, one step for the FCDD, and the last
step is merging the two.

1) ILDD Transformation: Each measurement station reg-
isters independent data from the other. For that reason, we
perform the transformation for every station. Since we want
to integrate the ILDD and the FCDD, we group the individual
dates to reach the same aggregation. This works by setting
the date as a weekday or a weekend day. Following that, it is
possible to group the measurement station based on if it is a
weekday or not.

Example: Table 4 shows four rows from the measurement
station on Skovalléen during 11.45–12.00. Depending on the
date of the measurement, a weekday flag determines whether
it is a weekday or weekend day. We omit the coordinates of
the measurement stations for brevity.

Road Name Date Direction Count Speed Weekday
Skovalléen 01.02.2019 - 57 34,1 true
Skovalléen 02.02.2019 - 84 35.4 false
Skovalléen 03.02.2019 - 60 34,1 false
Skovalléen 04.02.2019 - 37 37.4 true

Table 4: ILDD station on Skovalléen during 11.45–12.00

As the data for each station spans multiple days, we group
it to fit a generic weekday and weekend day. We do this by
taking the average of the hits and the average of speed from
the days.

Example: Table 5 shows two rows from the same measure-
ment station as before. These two rows are found by taking
rows 1 and 4 from Table 4 and averaging their speed and
count. Row 2 is found by taking rows 2 and 3, the weekend
days, and averaging their speed and count.

This results in a single row, for a specific interval, for each
station. Furthermore, the aggregation for speed and count is
now comparable with FCDD, as they both have the same
time format.
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Road Name Direction Count Speed Weekday
Skovalléen - 72 35,75 true
Skovalléen - 47 34,75 false

Table 5: ILDD station Skovalléen during 11.45–12.00 with grouped
values

Following this, the stations need to be map matched on
to OSM. The map matching process is naive by matching
the stations to their nearest road segment. As there were no
falsely mapped points in our data source, the method is valid.
This process results in the road segment now containing a
corresponding OSM id.

Example: Table 6 shows the rows after the matching
process.

Road Name Direction Count Speed Weekday OSM id
Skovalléen - 72 35,75 true 121390376
Skovalléen - 47 34,75 false 121390376

Table 6: ILDD station Skovalléen during 11.45–12.00 with grouped
values and OSM id.

2) FCDD Transformation: The transformation of FCDD
focuses on moving the FCDD road segments to OSM road
segments. We do the following process for every FCDD road
segment provided from the data.

As the FCDD road segments differ from OSM road seg-
ments, a naive map matching process is inaccurate as it
resulted in too many falsely matched cases. Instead, we use
Project OSRM22. This provides a routing API for OSM
with a matching service that matches GPS points to OSM
road segments. After the map matching, each FCDD road
segment has a corresponding OSM id. As multiple FCDD road
segments can have the same OSM id, we map the data together.

Example: Table 7 shows many FCDD road segments which
map to a single OSM road segment. The column OSMid
represents the OSM road segment. We omit the Streetname,
speedlimit, and length for brevity.

id AvgTt AvgSp Hits OSM id
3297 3.87 34.63 425 121390376
8554 10.98 33.41 431 121390376
8555 1.24 34.93 440 121390376
8556 7.08 35.18 440 121390376
8557 2.37 34.89 433 121390376
8559 2.61 33.73 435 121390376
8560 2.97 32.88 437 121390376

19942 0.97 34.69 443 121390376
19943 3.11 34.72 442 121390376
25463 6.61 37.10 431 121390376
25464 0.96 37.76 435 121390376
25465 6.10 37.07 436 121390376
25466 2.35 35.92 429 121390376
25467 1.38 32.75 1 121390376
25468 2.45 35.12 428 121390376

Table 7: All FCDD rows for weekday during 11.45–12.00

To integrate this, we aggregate all segments with identical
OSM ids to a single row. This is done by taking the average of

2http://project-osrm.org/

the average speed values and using the max value of the hits
values. We disregard the travel time as it can be calculated
using the length of the OSM road segment and the average
speed. Table 8 shows the result.

As mentioned in Section 6-C, the hits are a sum from the
entire year. This value needs to be an average for a weekday to
integrate with ILDD. Thus we divide it by the number of days
from the data. It is, however, a more complicated process as,
e.g., the FCDD omits vacation days. In our case, the number
of Tuesdays, Wednesdays, and Thursdays sum to 120. Thus
we need to divide the hits by 120. The average hits are shown
in the column named average hits.

AvgSp Hits Average Hits OSM id
34.985 443 3,6 121390376

Table 8: Single FCDD row created by OSM id for weekday during
11.45–12.00

3) Result: With ILDD and FCDD matched to OSM and
ILDD aggregated to the identical date format as FCDD,
merging the two data sources is now possible. The merging
process is done based on the OSM id, whether it is a weekday
and the corresponding interval. This process results in rows
with both FCDD and ILDD but also yields rows where there
only is FCDD. The total output is a collection of 9.164 road
segments with 14 different categories describing the road.

Example: Table 9 shows the data resulting from merging
the FCDD and the ILDD.

ildd hits ildd speed fcdd speed fcdd hits OSM id
44 36.091 34.985 3 121390376

Table 9: ILDD and FCDD data merged for weekday 11.45–12.00

7. DATA WAREHOUSE DESIGN

In order to store and analyze the data, we use a data
warehouse. For the relational database representation, we use
a star schema. This representation has a fact table that holds a
row for each fact. The star schema has at most one dimension
table for each dimension. The fact table has a column for each
measure. It also has one column for each dimension table that
contains a foreign key value that references the primary key
values in a particular dimension table. We create the design
based on the principles from [14], and the complete design is
in Appendix C. We use Kimball’s [15, 16] multidimensional
modeling process. This process has four subprocesses:

1) Choose the process(es) to model.
2) Choose the granularity of the process.
3) Design the dimensions.
4) Choose the measures.

A. Process Modeling

For step 1, there are two processes to model, the process of
driving and the process of fuel usage during driving. For step
2, we need a data granularity that best matches the analysis
needs. The granularity of the driving process becomes every
road segment, for every time period, with the number of
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id dim time dim road dim junk fcdd hits fcdd speed ildd hits ildd speed predicted hits predicted speed
1275247 355 23560 3 76 112.6887 473 110.8142 TBD TBD
1235418 348 22372 3 6 38.7025 79 44.4272 TBD TBD

Table 10: Example of two rows from the fact tabel fact_osm

id length speed limit name osm id category direction ildd id ildd point
22328 191.3711 50 Højsagervej 372439609 tertiary + 461 420506-0 4/ 340 ...
22452 3012.0817 110 Fynske Motorvej 414187457 motorway - 0 40-0 159/ 400 ...

Table 11: Example of two rows from the road dimension dim_road

vehicles recorded and their average speed. The granularity
of the fuel usage of driving becomes every road segment,
for every time period, with the number of vehicles, their
average speed, and the estimated fuel usage. Section 7-B and
Section 7-C covers the design of dimensions and the selection
of measures.

B. Road Segment Fact

The process of driving is defined by the input traffic data,
consisting of ILDD and FCDD. The characteristics of this
process are that a given road segment in a given time period
has an average speed and a number of hits.

In the schema, the fact table fact_osm stores this
information. Table 10 shows an example of the fact ta-
ble rows. It shows the fact table fact_osm with the
columns dim_time, dim_road, and dim_junk that
hold foreign keys to their respective dimensions. Fur-
thermore, the fact table has columns for the measures:
fcdd_hits, fcdd_speed, ildd_hits, ildd_speed,
predicted_hits and predicted_speed.

The time dimension, dim_time, holds the time informa-
tion about a specific fact row. Table 12 shows an example of
rows stored in the time dimension. As mentioned in Section 6,
the data used in this paper is separated into 15 minutes
intervals and aggregated to a weekday or a weekend day. The
time dimension stores information. To do so, the table has
three columns, a weekday flag where true indicates it is a
weekday and false indicating it is a weekend day. The attribute
timerange stores the range of time, e.g., 15.00–15.15, and
a primary key integer stored in id. This enables temporal
queries through the time dimension. An example of this could
be a query for all the data between 13:00–14:30. As the time
dimension covers each 15-minute interval during the day and
separates weekday and weekend day, the total row count for
the dimension is 192.

id weekday timerange
62 false [1515,1530)

158 true [1515,1530)

Table 12: Example of two rows from the time dimension dim_time

To support spatial queries, the data about road segments put
into the road dimension, dim_road. Table 11 shows an exam-
ple of the rows stored in this dimension table. The dimension
table has nine columns. The attributes name, speed_limit,
length are self-explanatory. The attribute osm_id record
the road segment’s id in OSM from the matching process

described in Section 6. The attribute ildd_point records
the geometry of the ILDD measurement station, and ildd_id
is its corresponding id. The attribute category is the road
segments category from OSM, e.g., ’motorway’. The attribute
direction is the direction the ILDD measurement was, and
the id column stores the primary key for the table.

The last dimension which fact_osm uses is the junk
dimension, dim_junk. The information contained in this
dimension is the information needed in the schema but did
not have enough precedence to have an entire dimension for
itself or did not fit into any of the existing dimensions. This
schema contains a load_number, a load_name for the
data inserted, and a primary key id. Table 13 shows an
example of the rows contained in this dimension.

id load number load name
1 1 First import
2 2 Second import

Table 13: Example of two rows from the junk dimension dim_junk

A star scheme can result in redundancy. This is this case for
the time dimension in our schema. Here the weekday value
will be the same for each interval of the day. This means we
have 96 duplications per weekday entry since there are 96
intervals during a day. It can be a good idea to have this kind
of redundancy in the dimensions tables as it can support more
straightforward queries

C. Fuel Estimate Fact

The second process concerns the fuel consumption asso-
ciated with driving. The fact table, fact_sidra, stores
this information. This utilizes a mix of a star schema and
a snowflake schema as one of its dimensions is a snowflake
dimension. The dimension in question is the parameter di-
mension dim_parameter. A snowflake dimension contains
several tables for the dimension. The dimension tables contain
a key, columns holding textual descriptions of the values, and
possibly columns for level properties. Tables for lower levels
also contain a foreign key to the containing level. The dimen-
sion dim_parameter contains seven columns, the primary
key id, the parameter set name name, a value to increase the
hits as an indication for future traffic called hit_increase,
the percentage of which each vehicle type amounts, and lastly,
a foreign key to vehicle_set. The vehicle_set table
has three columns, id, the percentage of which a given vehicle
makes of the full set called vec_percentage, and lastly,
a foreign key to vehicle. The vehicle table has eight
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id dim time dim road dim parameter dim junk car fuel truck fuel bus fuel hits avg speed
572495 492 28804 20 3 62.4881 272.5049 219.3438 37 36.4212

1086607 492 28606 20 3 30.7307 125.3208 102.0861 18 28.0105

Table 14: Example of two rows from the fact tabel fact_sidra

id hit increase percentage vehicle set id name car percentage truck percentage bus percentage
15 0 15 Standard 75 15 10
16 0 16 Electric 15 75 15 10

Table 15: Example of two rows from the parameter dimension dim_parameter

columns, its primary key id, and the rest are parameter values
for the SIDRA-RUNNING model Section 5.

The reason for the parameter dimension being a snowflake
dimension table is that the system supports applying different
vehicle types to the SIDRA-RUNNING model. The vehicle
table stores the vehicles, which allows the users of the system
to add custom vehicles. By storing the custom vehicles, it
is possible to reuse them in different vehicle sets without
inputting them every time. Table 15 shows an example of the
data contained in the parameter dimension. Table 16 shows an
example from the vehicle_set dimension, and Table 17
shows an example of the data in the vehicle dimension.

id vehicle id percentage
15 3 35
15 4 25

Table 16: Example of two rows from the vehicle set table
vehicle_set

id category name fi a b beta1 m
3 100 Small Car 891 9.6 0.00373 0.1012 1250
4 100 Medium Car 1504 19.39 0.00406 0.109 1810

Table 17: Example of two rows from the vehicle table vehicle

The fact table fact_sidra also uses the road dimension
dim_road, the junk dimension dim_junk, and the time
dimension dim_time. It has a five measures car_fuel,
truck_fuel, bus_fuel, which stores the calculated fuel
estimate for the specific road segment for cars, trucks, and
buses, respectively, and hits and avg_speed, which en-
ables faster querying. Table 14 contains an example of the
rows in the fact table.

D. Extract-Transform-Load

As the data integration handles all extraction and transfor-
mation, the data is ready to be loaded into the warehouse. We
use pygrametl [9, 10] to load it into the data warehouse, as
the data integration is written in Python.

After the data loads into the database, the table size
for dim_road is 1.048 kB consisting of 9.241 rows, for
dim_time, the size is 72 kB consisting of 192 rows, for
dim_junk, the size is 32kB consisting of 1 row, and for
the fact table fact_osm the size is 125 MB consisting of
994.351 rows. The dimension dim_parameter table size
is 32 kB for 3 rows, with vehicle_set table size being
24kB with 21 rows and vehicle table 32 kB with 6 rows.
The fact_sidra size is after one parameter run 125 MB

with 988.299 rows. For two parameter runs, the size scales
accordingly to 250 MB with 1.976.598 rows

8. PREDICTION

When estimating fuel consumption, a necessary variable is
the total number of vehicles on a road segment. This number
fluctuates throughout the day, with mornings and afternoons
having more traffic than the rest of the day. As described
in Section 6, we have two sources with their number of
vehicles registered on their road segments. As mentioned in
Section 6, the hits in FCDD are incomplete as they are only
counting a subset of the vehicles. Table 18 shows an example
of the absolute difference in hits between the data sources.
The numbers stem from all road segments, which have both
ILDD and FCDD, which is 165. When also divided by time,
we get 31.428 records of data for the models. Furthermore,
we do not have access to the raw data from either source, so
we can not clean the data ourselves. Thus, we assume that
domain experts have processed the data, and we set the ILDD
as our ground truth data.

FCDD HITS ILDD HITS
138.534 1.026.361

Table 18: Total hits from data sources on common road segments

Another area of focus is the average speed of the vehicles
driving on a given road segment. As both data sources estimate
the average speed, we assume that the data registered in ILDD
is correct and deem it ground truth.

This section describes the usage of linear regression models
to estimate the attributes on a given road segment from the
incomplete FCDD using the ILDD. We use the R2 metric to
determine the validity of the models. The models are created
using the scikit-learn [17] library in Python.

A. Hits Model

For the hits model, we aim to get a reliable model that
can predict FCDD hits to ILDD hits. The initial model is
a flat linear model with only two variables: the FCDD hits
and the ILDD hits. The model gave an R2 score of 0.933,
which is excellent. We tried to improve the model by using a
multi-linear regression model with additional variables such as
speed and time. This model showed improvement but not to a
significant degree as the R2 value only increased to 0.94. To
simplify the model, we use the model created using only the
FCDD hits to predict. However, this model showed an apparent
flaw when predicting hits on road segments with very low
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hits from the FCDD. When applied, the model would scale
0 hits from the FCDD to 4̃0 hits. This inflates the number
of hits during the night as many road segments have zero
or close to zero hits. To solve this, we decided to use two
models to predict hits. One model using the hits from FCDD
below 3, and another model using the hits from the FCDD
being 3 or greater. The ”low” model scored an R2 value of
0.56. For the numbers [0,1,2], the model returned [4.39, 14.36,
24.32], which are very close to the averages from the ILDD.
To compare, we took the average hits count from the ILDD
when the hits from the FCDD were [0,1,2]. The results showed
the averages to be [4.31, 14.83, 24.09], which corresponds to
the model’s output. The ”large” model decreased a bit in the
R2 score to 0.89. However, we still consider it a valid model
to predict roads and predict the hits when the FCDD hits are
greater than 3.

B. Speed Model

The speed model also yielded excellent results. The R2

value for this model was 0.931 when using only the FCDD
speed to predict the ILDD speed. We attempted to further
improve the model by using multi-linear regression as well.
We added road segment length, speed limit, and category, as
well as the time. There was an improvement to the model as
R2 value increased to 0.933. The increase was too insignificant
to apply the added dependency to the model.

C. Road Segments Without Data

The last aspect of getting accurate hits to the data is to
estimate hits to road segments without ILDD or FCDD. From
OSM, it is possible to get attributes about the road segments,
e.g., their length, category, and speed limit. We attempted to
apply a multi-linear regression model with these parameters
to predict the ILDD hits on a road segment. This model only
resulted in an R2 score of 0.209, which is too low.

The second attempt to enrich the road segments without
data was to predict the average speed on the road segments.
We used the attributes for each road segment from OSM and
obtained a model that achieved an R2 value of 0.551. This
value, although better, is also insufficient to predict values
without too many inaccuracies.

To handle road segments without data, we thus take a
different approach than a linear regression model. Instead, we
use an average k-nearest neighbor (kNN) approach for the
unknown road segments. We collect the k nearest neighbors’
speeds and hits and take the average for a given road segment
without data. We use this method based on the assumption of
homophily in a road network, where road segments close in
proximity will share similar attributes. By using this method,
we also account for road category such that, e.g., city roads
are not affected by nearby highways.

9. RESULTS

In order to validate the system, we look at the use cases
defined in Section 3. The cases center around three aspects;
yearly estimates, estimate scaling, and vehicle sets. Three

cases will demonstrate the yearly estimates. One with a full
year and the whole day, one with a full year during 06:00–
22:00, and one with a full year during 06:00–16:00.The
estimates scaling will be shown by the same cases as the
yearly estimates, but with a 5% vehicle growth. To show the
implementation of vehicle sets, we have created a Standard
set, Standard Growth 5% set, and an Electric set. Figure 5
shows the sets.

Fig. 5: Vehicle sets

Additionally, we wanted to enable users of the system to cre-
ate spatial queries, to get results based on a specified geograph-
ical region. To demonstrate this, the results of the cases are
recorded from two different geographical regions, as demon-
strated in Figure 6 and Figure 7. The figures have the user
input on the right and the returning road segments on the left.
To summarize, the results will be an example of how to use the
first version of the system and explores the core functionality.

Table 19 shows the results from the large polygon. The
results of the queries are displayed in Table 20 and Table 19
and show the small and large polygon. The large polygon has
a total of 5259 road segments, and the small polygon has a

Fig. 6: Small polygons with results

Fig. 7: Large polygon with results
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Parameter Set Total Fuel Car Fuel Bus Fuel Truck Fuel Road Segments Time Frame
Standard 161.916K L 68.460K L 30.656K L 62.799K L 5259 00:00-23:45
Standard 150.010K L 63.424K L 28.404K L 58.182K L 5259 06:00-22:00
Standard 99.643K L 42.096K L 18.914K L 38.633K L 5259 06:00-16:00
Electric 147.471K L 54.015K L 30.656K L 62.799K L 5259 00:00-23:45
Electric 136.628K L 50.041K L 28.404K L 58.182K L 5259 06:00-22:00
Electric 90.758K L 33.211K L 38.633K L 18.914K L 5259 06:00-16:00
Standard Growth: 5% 169.426K L 71.638K L 32.074K L 65.714K L 5259 00:00-23:45
Standard Growth: 5% 157.000K L 66.381K L 29.723K L 60.895K L 5259 06:00-22:00
Standard Growth: 5% 104.302K L 44.065K L 19.796K L 40.441K L 5259 06:00-16:00

Table 19: Large polygon results

Parameter Set Total Fuel Car Fuel Bus Fuel Truck Fuel Road Segments Time Frame
Standard 16.731K L 7.024K L 3.371K L 6.336K L 940 00:00-23:45
Standard 14.809K L 6.215K L 2.985K L 5.609K L 940 06:00-22:00
Standard 9.606K L 4.036K L 1.936K L 3.634K L 940 06:00-16:00
Electric 15.234K L 5.527K L 3.371K L 6.336K L 940 06:00-16:00
Electric 13.485K L 4.891K L 2.985K L 5.609K L 940 06:00-22:00
Electric 8.746K L 3.176K L 1.936K L 3.634K L 940 00:00-23:45
Standard Growth: 5% 17.457K L 7.329K L 3.518K L 6.611K L 940 00:00-23:45
Standard Growth: 5% 15.453K L 6.486K L 3.115K L 5.852K L 940 06:00-22:00
Standard Growth: 5% 10.027K L 4.212K L 2.020K L 3.793K L 940 06:00-16:00

Table 20: Small polygon results

total of 940 road segments.
As shown in Table 19, the large polygon results show that

the total fuel for full days with the standard set is 161.916K
liters of fuel. It is worth noting that despite cars being 75%
of the vehicle set and trucks only being 15%, the trucks are
contributing to approximately 38% of the total fuel emitted.
This could relate to the model, which applies every vehicle
type defined in the parameter set to every road segment. In
other words, the road segments located in residential areas
have the truck percentage applied to them, which inflates the
fuel from trucks.

Another point to note from the results is the improvement
when removing nightly hours. When comparing the Standard
parameter set with time periods 00:00–23:45 and 06:00–22:00,
we see an 8% difference. This aligns well with the assumption
that the majority of traffic is during the day.

The Electric parameter set also shows promising results, as
the total for the cars for a full day is 54.015K liters of fuel.
This total is approximately 22% less than the Standard set and
can reflect how increasing the total amount of electric vehicles
can affect the total fuel usage.

When comparing the Standard parameter set to the Standard
Growth 5% parameter set, we see that the 5% increase result
in a total fuel difference for the full day of approximately 5%.
This enables scaling the different uploads to fit future growth.
Table 20 shows the results for the small polygon and shows
similar results for the center of the municipality.

10. DISCUSSION

A. Data Integration

The data integration proved to be a difficult task. Both data
sources had strengths, and our goal was to integrate these into
a common source that incorporated those strengths.

One of the weaknesses of the FCDD was that it did not
have a date attribute. If a date had been accessible, merging

the data sets would have allowed us to enrich the data with
a specific date. Furthermore, it would enable date-specific
temporal queries, e.g., before a holiday.

Both resources provided traffic data, yet neither used the
same representation. To fix this, we map matched both to
OSM. For ILDD, this was simple: single points needed to be
matched to road segments. FCDD was more challenging as
we tried with the same approach as ILDD, but too many false
positives were triggered. To get an accurate representation, we
needed a map matching service. It would have been optimal if
both data sources could use the naive map matching approach
as the runtime of the map matching service is high. However,
after the initial map match of the FCDD, we store the relations
between them such that it is not needed to run again unless
the users provide a new area. Thus, the initial load of a data
set has a longer load time.

The result of the data integration proved very well. It
resulted in the data sets being correlated. The prediction
models confirm this as they were almost linear.

B. Traffic Direction

As FCDD provides road segments, which, when combined,
form a road network with the driving directions from the road
segments. The ILDD had problems here. Each point from
the ILDD registers at a specific point and does so for both
directions. This is, however, only documented with a + for
one direction and - for the other. This data is not translatable
to the common source, which means it is lost. Thus we use the
total from ILDD and assign it the road segment. This means
we need to take the total for FCDD to make it representative.
This is not ideal, as we lose some information regarding traffic
flow direction. However, since the system aims to estimate fuel
for larger areas and not single roads, the damage is minimal.
This is because the polygons created from the web application
will rarely include both directions for a given road segment.
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So as we do not lose any information about the number of
vehicles on a given road segment, the damage is minimal.

C. Predictions

We decided to use a linear regression model to predict hits
from FCDD to ILDD. The original model showed excellent
results in terms of R2 value, but the model’s actual usage
showed problems in predicting the nightly values of roads.
We decided to use a low model and a high model to get more
accurate predictions on the road segments with low values.

As we deemed this method acceptable, it could also be
interesting to look at other ways to predict the data. As our
data is mapped to a road network, prediction methods utilizing
graphs could have been explored.

D. Vehicle Specific Road

As mentioned in Section 9, the trucks amounted to approx-
imately 38% of the total fuel. One of the reasons for the high
percentage is that trucks are present on every road segment for
our system. For residential areas, trucks are not as common
as they are for industrial districts or motorways. Vice versa,
cars are probably more likely to drive on residential area roads
than in industrial districts compared to trucks. Thus, a possible
improvement would be assigning specific vehicle percentages
to road types instead of the total number of road segments.

11. CONCLUSION

Throughout this paper, we have presented a fuel estimation
system based on real data sources. These data sources were
integrated to combine their strengths, and the result was a
nearly linear correlation between them. The system supports
temporal and spatial queries, full customization in vehicle
parameters for the fuel estimation, and multiple vehicle types.
Additionally, it is possible to specify a traffic growth percent-
age and create vehicle sets with electric vehicles. All of which
stem from the use cases presented in Section 3.

To support the cases, we have used a data warehouse design
structure. This proved beneficial as it made fuel estimation
computation fast and straightforward. Additionally, it made it
possible to store and compare different results. Furthermore,
it made querying simple both in temporal and spatial regard.

Since neither data source captured every vehicle in the
road network, we created a prediction model to improve the
estimate of the number of vehicles in the road network. This
linear regression model scored an R2 of 0.89, which was
excellent. The same method was applied for predicting the
speed, which also gave an excellent R2 score of 0.931.

Another strong point of the system is extendable of the
components. The system relies on three central processes: the
ETL, the predictions model, and the fuel estimation model.
The prediction and fuel estimation models chosen for this
system are possible to change if a better option becomes
available. This ensures the lifespan of the system as outdated
components are replaceable or updateable.

To summarize, we have developed a system to aid the
municipalities of Denmark in estimating their fuel consump-
tion. We have developed support for both larger areas and a

more local focus by providing spatial query support. We have
created a system that allows the municipalities to create many
different cases based on the same data or upload different data
sets and compare them on the same parameter sets.
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APPENDIX A
WEB APPLICATION

Fig. 8: Example of the result page of the system

13



APPENDIX B
ROAD NETWORK

Fig. 9: FCDD road segments (black lines) and ILDD points (red dots)
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APPENDIX C
DATA WAREHOUSE APPENDIX

Fig. 10: Data warehouse design
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APPENDIX D
WEB APPLICATION APPENDIX

Fig. 11: Upload a new data set

Fig. 12: Create a parameter set

Fig. 13: Apply the parameters to the uploaded data
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