
Improving Global Localization
Algorithms for Mars Rovers with Neural

Networks

Master Thesis Report

Iñigo Moreno i Caireta

Aalborg University
Robotics MSc.

Copyright © Aalborg University 2021

This report was written on the Overleaf website using the LATEXtypesetting format and the AAU report
template v. 1.2.0. The citations are written in the IEEE format. The figures and plots are generated using
matplotlib.

Electronics and IT
Aalborg University (AAU)

https://www.aau.dk

Automation and Robotics Section
European Space Agency (ESA)

https://www.esa.int

Title:
Improving Global Localization Al-
gorithms for Mars Rovers with
Neural Networks

Theme:
Localization and Machine Learning

Project Period:
Spring Semester of 2021

Project Group:
1069

Participant(s):
Iñigo Moreno i Caireta

Supervisor(s):
Chris Holmberg Bahnsen (AAU)
Levin Gerdes (ESA)
Martin Azkarate (ESA)

Copies: 1

Page Numbers: 38

Date of Completion:
2021/06/03

Abstract:

This thesis investigates the possibility of using a Sia-
mese Neural Network in order to create an algorithm
for global localization in the context of Mars rovers. The
thesis details the whole process of creating the Neural
Network: from the acquisition and processing of two
datasets to the creation of the model and the tuning of
its hyperparameters. Then, the model is tested and its
resource usage analyzed. The whole model only takes
up to 9 megabytes of space and is able to give predic-
tions in 18 milliseconds. The thesis also shows how the
model can be used in a global localization algorithm by
implementing a sliding window approach that can be
compared with previous works. This sliding window
approach shows some promising results and seems to
perform better than the previous solution.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the

author.

https://www.aau.dk
https://www.esa.int

Contents

Preface vii

1 Introduction 1
1.1 Problem Analysis . 1
1.2 State of the Art . 2

1.2.1 State of the Art Conclusion . 4
1.3 Initial Problem Formulation . 4
1.4 Requirement specification . 4

2 Data preparation 5
2.1 HiRISE Dataset . 5

2.1.1 Processing the DTMs . 6
2.1.2 Local Patch Distortion . 6
2.1.3 Artificial Occlusion . 6
2.1.4 Validation Split . 7

2.2 Tenerife Dataset . 7
2.2.1 Downloading the Dataset . 8
2.2.2 Processing the Point Cloud . 8
2.2.3 Processing the Rover Sensor Data . 8
2.2.4 Processing the GPS data . 9
2.2.5 Generating the SLAM Local Maps . 9
2.2.6 Filtering the Tenerife Dataset . 10
2.2.7 Validation Split . 10

3 Model Implementation 13
3.1 Framework and Resources . 13
3.2 Structure . 14

3.2.1 Input Processing . 14
3.2.2 Convolutional Neural Network . 16
3.2.3 Dense Layers . 16
3.2.4 Weight Sharing . 17
3.2.5 Comparation Layer . 17
3.2.6 Loss Functions . 17

3.3 Training . 19
3.3.1 Batch Size . 19
3.3.2 Training Optimizer and Learning Rate . 19
3.3.3 Data Generators . 19

3.4 Python Library and Jupyter Notebooks . 20

4 Model Testing 21
4.1 Initial Tests . 21

4.1.1 HiRISE Dataset . 21
4.1.2 Tenerife Dataset . 22

4.2 Hyperparameter optimization . 23
4.2.1 Optimizer and Learning Rate . 23
4.2.2 Input Processing . 23
4.2.3 MobileNet Parameters . 23
4.2.4 Dense Layers . 24
4.2.5 Weight sharing . 24
4.2.6 Comparation Layer . 24
4.2.7 Choosing the Loss Function . 24

4.3 Prediction Results . 27

v

vi Contents

4.4 Resource usage analysis . 27
4.5 Comparison with Other Methods . 28

5 Conclusion 31
5.1 Future Work . 32

Bibliography 33

Software 35

Acronyms 37

List of Figures 37

List of Tables 38

Authors

Iñigo Moreno i Caireta
imoren19@student.aau.dk

vii

Chapter 1

Introduction

1.1 Problem Analysis

Due to the communication constraints, rovers on the surface of Mars can only be controlled
once a day and as such they require a high level of autonomy. An important task needed to
achieve this autonomy is self-localization. While robotics applications on earth can use external
sources of information such as a GPS system or known landmarks in earth, a rover on Mars is
mostly on its own and must therefore be able to determine its own location in order to success-
fully navigate the terrain and perform the scientific missions on the surface. Visual and inertial
odometry combined with a Simultaneous Localization And Mapping (SLAM) algorithm can be
used by the rover to self-localize. However, these methods only provide the location relative to
a previous location. This means that the small errors done by these algorithms will accumulate
over time and the rover will lead to large errors. To solve this, the rovers need a way to achieve
global localization, where an absolute measurement of the rover’s position with respect to the
planet can be done.

Another point to consider is that existing rovers in Mars move fairly slowly (around 25 m per
martian day), while future missions such as the Sample Fetching Rover (SFR) will need to move
at higher speeds (210 m per martian day) [1]. This increase in speed means that these future
missions will need to rely less on human intervention and more on automated algorithms in
order to perform global localization.

Luckily, there have been a few satellite missions to Mars and rover missions usually put a
satellite in an orbit close to the rover to be able to relay data back to earth. The data collected
by these satellites can then be used to generate an absolute map of the environment around
the rover. Then, the rover can then try to find a match between this global map and the map
generated by the SLAM algorithm. If a match is found, the global position can be corrected.
This is done in [2] by using a sliding window approach, where a downscaled version of the
local map is compared against all possibilities in the global map in order to find the best match.
However, this algorithm is time consuming and computationally expensive, which means that it
is only used when necessary. This is especially important when considering that the algorithm
will eventually need to run on the on-board computers of the rover, which are very limited in
terms of computing power and memory.

1

2 Chapter 1. Introduction

Figure 1.1: Graphical illustration of how template matching is performed in [2]

1.2 State of the Art

There have been many attempts at solving the global localization problem for martian rovers.
On one of the earliest examples of this is the Sojourner rover, which landed on Mars in 1997.
On this rover, human operators had to manually determine the location of the rover based on
the images received from it [3]. However, during that time some early attempts of performing
autonomous global localization appeared. Olson and Matthies [4] attempted to locate the rover’s
position by matching a local map generated from the robot cameras with a global map generated
by the lander’s cameras using a probabilistic approach.

Since then, a lot of different approaches have appeared to solve this problem. One of them is
Doppler tracking, where the Doppler effect in signals sent from the rover and the earth or other
spacecraft such as an orbiter is studied in order to estimate the position of the rover [5]. This
solution is the least accurate, but it can locate the spacecraft even without any prior knowledge
of its position.

Another solution is skyline matching, where the rover uses its cameras to measure the shape
of the horizon line (skyline) and comparing it to a set of simulated skylines generated at different
template positions [6].

A newer approach is constellation matching. Where sets of features are detected by the rover
and the distance between these features is studied to find a matching set of features in a global
map. Carle et al. [7] do constellation matching with peaks of the elevation maps as their feature.
Boukas et al. [8] do the same but using rocks and outcrops as their features.

A particle filter can be used in conjunction with map matching in order to localize a rover
[9]. This works by initializing a set of particles over the possible solution space and then for each
particle the correlation score between the local map and the global map cropped to the particle’s
position is computed. Then, the set of particles is re-sampled close to the particles with the
higher score. This is repeated several times until the particles converge to a solution.

Few approaches exist that use Neural Networks to solve the problem. Naguib et al. [10] try to
match images captured by a rover to an expected view of the rover at different locations that are
generated using the elevation maps. It uses a Generative Adversarial Network (GAN) to generate
fake images and train a Convolutional Neural Network (CNN) discriminator to differentiate
between the real and fake images. The output of this discriminator is then used as a score to
evaluate different hypotheses.

Wu et al. [11] uses four of each side of the rover and re-projects them onto a ground plane.
It then tries to match this re-projection with satellite images by using a Siamese Neural Network
(SNN) to classify the images between matching images and non-matching images.

Franchi [12] employs an SNN that tries to match the satellite image directly with a rover
image. It couples the output of the SNN with a particle filter in order to converge to a final
solution. It also utilizes a GAN to augment the dataset used.

1.2. State of the Art 3

(a) Doppler Effect [5] (b) Skyline Measurement [6]

(c) Constellation Matching [7] (d) SNN classifier [12]

(e) Discriminator CNN [10] (f) SNN classifier [11]

Figure 1.2: Overview of the different Localization Methods

4 Chapter 1. Introduction

1.2.1 State of the Art Conclusion

As the State of the Art has shown, while there have been many approaches to this problem,
not many of these approaches use Machine Learning. However, from the few Machine Learning
approaches found, three methods can be appreciated. In [10] two images are fed into a single
CNN to compute the probability. In [12, 11] each image passes through a SNN to extract two
embeddings which are then compared. In [12] the embeddings are compared with a distance
metric while in [11] the embeddings are compared with a separate Neural Network that tries to
compute the match probability.

However, all of these approaches try to take two images and compare them. Something
similar can be done for our approach but instead of using raw images, we can use the elevation
maps. Therefore our approach will try to compare the local elevation map generated by the rover
with a patch of the global elevation map.

1.3 Initial Problem Formulation

The goal of this Thesis is to see if Machine Learning can be used to improve global localization
from the sliding window algorithm described in Geromichalos et al. [2].

Is it possible to use a Machine Learning algorithm to perform global localization for a Mars rover while
being faster and more resource-efficient than the current solution?

In order to answer this question, these steps will be followed:

• Data preparation: All Machine Learning methods need big amounts of good quality data,
so the first step will be to prepare the data.

• Model Implementation: A Machine Learning Model will be constructed that will try to
compare a local elevation map with a global elevation map.

• Model testing: The Machine Learning Model will be tested and the best hyper-parameters
for the Model will be found.

• Localization Algorithm Implementation: If the Machine Learning Model is successful, it
will be used to construct a localization algorithm.

• Algorithm Testing: The localization algorithm will be tested against other methods.

1.4 Requirement specification

In the Problem Formulation, it is stated that the solution should be "faster and more resource-
efficient than the current solution". To specify this, a list of requirements is shown here:

• Accuracy: The algorithm should lead to a more accurate solution.

• Time: The algorithm should take as little time as possible.

• Memory Usage: Memory space in rovers is usually limited, therefore we need to use it as
little as possible.

• Communication: If data needs to be communicated between the rover and the satellite, this
needs to be limited.

Chapter 2

Data preparation

To train and test any Machine Learning method, big amounts of data are always needed.
Luckily, in 2017, European Space Agency (ESA) recorded a dataset with a lot of data from a rover
moving in the volcanic landscape of the island of Tenerife, Spain. However, as it took a while to
get access to the full dataset, download it and process it, another dataset was also used in the
mean time, which contained elevation data from the surface of Mars.

2.1 HiRISE Dataset

High Resolution Imaging Science Experiment (HiRISE) is a very high-resolution camera that
rides onboard NASA’s Mars Reconnaissance Orbiter (MRO). Its high resolution allows it to get
very accurate pictures of the Martian surface. From these images, some algorithms can construct
Digital Terrain Models (DTMs) with high accuracy. These elevation maps have a 1–2 m resolution
with vertical precision in the tens of centimetres. Many DTMs of different regions of the Martian
surface have been already computed by the University of Arizona and they are publicly available
on their website1. From these, two elevation maps were selected. These maps represent the
elevation of regions close to the landing site of two rovers, in order to get representative data of
possible traversable zones. These can be seen in figure 2.1.

0 5000
x [m]

0

5000

10000

15000

20000

25000

y
[m

]

0

129

elevation [m
]

(a) Oxia Planum (ESA’s ExoMars landing site)2

0 5000
x [m]

0

2500

5000

7500

10000

12500

15000

17500

20000

y
[m

]

0.0

155.7

elevation [m
]

(b) Jezero Crater (NASA’s Perseverance landing site) 3

Figure 2.1: HiRISE DTMs

1https://www.uahirise.org/dtm/
1https://www.uahirise.org/dtm/dtm.php?ID=ESP_037070_1985
2https://www.uahirise.org/dtm/dtm.php?ID=ESP_023247_1985

5

https://www.uahirise.org/dtm/
https://www.uahirise.org/dtm/dtm.php?ID=ESP_037070_1985
https://www.uahirise.org/dtm/dtm.php?ID=ESP_023247_1985

6 Chapter 2. Data preparation

2.1.1 Processing the DTMs

To be able to read the DTMs from python, the GDAL library [S1] was used. However, to use
these DTMs as training data for our models, some processing needs to be applied to them. Our
goal is to first generate a patch that resembles a local elevation map generated by the rover and
then a patch of the global map close to the local map.

To generate the local patch a random point within the DTM is selected. Then, a square
80 m × 80 m patch is extracted from the DTM that represents the elevation of the area around the
selected point. If the patch has too many NaN values (because it is outside the elevation map), it
is discarded and another point is selected. The local map is then distorted and artificial occlusion
is applied to simulate how a local map generated by a rover would look. This will be explained
in subsections 2.1.2 and 2.1.3.

To get the global patch, a random point close to the local patch is selected. This shift rep-
resents the possible uncertainty of the robot’s a priori position. The shift is computed following
a two-dimensional normal distribution. As with the local map, a patch of the elevation around
this point is extracted from the DTM and it is discarded if it has too many NaN values.

2.1.2 Local Patch Distortion

Local maps will never be the same as the global map. To simulate these differences, once a
local patch of the DTM has been extracted, it is distorted by adding some noise to it. Instead of
adding random white noise on each pixel, which would cause unnaturally big gradients between
individual pixels, simplex noise is used, which has smoother gradients. This is done using the
imgaug library [S2]. An example of the simplex noise generated is seen in figure 2.2. This noise
has a scale between zero and one and can be multiplied by a scaling factor to decide how much
noise to apply. For this thesis, a scale of 0.2 m of noise was used.

40 20 0 20 40
40

30

20

10

0

10

20

30

40

Figure 2.2: Simplex noise example

2.1.3 Artificial Occlusion

Local rovers are not able to see the whole terrain because part of the terrain will be occluded.
This means that the local DTM generated by the rover is usually incomplete. To simulate this,
an algorithm was written that, for each pixel in the DTM, checks if the pixel would be occluded
from the rover.

The algorithm works by, first assuming that the robot is at the middle of the patch, at some
fixed elevation above the ground. Then, the algorithm iterates over every pixel of the DTM to see
if its three-dimensional position (using the elevation from the DTM) would be visible from the
robots point of view. To check this, the algorithm needs to cast a three-dimensional ray from the
robot to the terrain and see if there is any obstruction along the way that would cause that part
of the DTM to be occluded.

See figure 2.3 for a visual explanation of the algorithm and figure 2.4 to see the algorithm
applied to a patch. As this algorithm was very costly (nearly two seconds per patch) it was

2.2. Tenerife Dataset 7

optimized to run on the GPU using Numba [S3]. The full code can be seen on GitHub 4.

Visible
Occluded

Figure 2.3: Simulated occlusion algorithm

40 20 0 20 40
x [m]

40

20

0

20

40

y
[m

]

Original DTM patch

40 20 0 20 40
x [m]

40

20

0

20

40
Artificial occlusion result

Figure 2.4: Artificial occlusion applied to a random DTM patch

2.1.4 Validation Split

As we have two different DTMs, we will use one of them for the training set (subfigure 2.1a)
and another one for the validation set (subfigure 2.1b).

2.2 Tenerife Dataset

As mentioned previously, this dataset was recorded by ESA in 2017 on Tenerife. It consists of
data recorded from a field test with the Heavy Duty Planetary Rover (HDPR), a Rover used by
ESA’s Automation and Robotics (TEC-MMA) section. The field test was performed around the
volcanic areas close to the Teide Volcano on the island of Tenerife, Spain. This is a highly repres-
entative environment of a planetary exploration mission scenario, due to the barren scenery and
the presence of many volcanic rocks.

The data captured during the field test consists of sensor data of the rover during several
traverses conducted in the span of a few days. This includes captured images from the stereo
cameras, measurements from the inertial measurement unit (IMU), wheel odometry data and a
differential GPS system. Figure 2.5 shows the rover and its sensors.

The dataset also includes a georeferenced point cloud of the area included in the field test
which was generated from images captured by a drone.

4https://github.com/InigoMoreno/deep_ga/blob/18a6518c67968fa4d6e2388c68aa3e6cf9984ea6/deep_ga/pa
tch_generator.py#L9

https://github.com/InigoMoreno/deep_ga/blob/18a6518c67968fa4d6e2388c68aa3e6cf9984ea6/deep_ga/patch_generator.py#L9
https://github.com/InigoMoreno/deep_ga/blob/18a6518c67968fa4d6e2388c68aa3e6cf9984ea6/deep_ga/patch_generator.py#L9

8 Chapter 2. Data preparation

Figure 2.5: HDPR in Tenerife field test at Teide Volcano [2]

2.2.1 Downloading the Dataset

The total size of the Dataset is over 5 TB and it was uploaded to a ownCloud online folder.
However, the dataset was too big to be downloaded on the laptop used for this thesis. Luckily,
the data could be downloaded to another desktop computer which could be accessed via ssh.
Even so, the Dataset was too big, so only the necessary files were downloaded. This was done
using a custom PowerShell script5 which communicated with the ownCloud folder to select the
necessary files and download them. This meant that only 2 TB of data needed to be downloaded.

2.2.2 Processing the Point Cloud

The point cloud is stored in a ply file and has a resolution of 0.5 meters. To read it in python,
the plyfile python library [S4] is used.

From the point cloud representing the terrain of the field test, a global elevation map needs
to be generated. This can be done by generating a 2D grid and on the XY plane and for each cell
of the grid select the points within the cell and average the Z coordinate of the points to get the
elevation.

To do this in a more efficient way, we can take advantage of the histogram2d function of the
numpy library 6. The 2d histogram with the Z coordinate as weights is used to get the sum of
the Z coordinates in each cell. Then, the 2d histogram is used again but without weights to get
the number of points in each cell. Finally, the algorithm divides the sum of Z by the number of
points to get the average elevation. The resulting image can be seen in figure 2.7.

The same process can be repeated with the colours of each point to get a colour image which
can be seen in figure 2.6. The code for this can be seen in GitHub 7

2.2.3 Processing the Rover Sensor Data

Much of the sensor data from the rover is stored as Rock log files. Rock[S5] is a robotics
development environment where the code is split up into libraries and components that interact
with each other through data streams. For more information, see the "About Rock" section (4.1)
in [13].

In order to read these from python, pocolog-pybind[S6] can be used. This is a tool that reads
these log files directly from python. However, when doing this a problem was encountered, as
the log files were old, the Rock version had changed and the files could not be opened. Luckily,
Rock has a tool for converting old logfiles into the newer version, which was used to recover the
old files.

5https://github.com/InigoMoreno/deep_ga/blob/main/rock/download.ps1
6https://numpy.org/doc/stable/reference/generated/numpy.histogram2d.html
7https://github.com/InigoMoreno/deep_ga/blob/0aaa42be131563515b872c58dcba5f1c4667cd7a/deep_ga/fu

nctions.py#L7

https://github.com/InigoMoreno/deep_ga/blob/main/rock/download.ps1
https://numpy.org/doc/stable/reference/generated/numpy.histogram2d.html
https://github.com/InigoMoreno/deep_ga/blob/0aaa42be131563515b872c58dcba5f1c4667cd7a/deep_ga/functions.py#L7
https://github.com/InigoMoreno/deep_ga/blob/0aaa42be131563515b872c58dcba5f1c4667cd7a/deep_ga/functions.py#L7

2.2. Tenerife Dataset 9

400 200 0 200 400
x [m]

300

200

100

0

100

200

300
y

[m
]

Figure 2.6: Tenerife Color Map

2.2.4 Processing the GPS data

Once the GPS data was opened, it needs to be aligned with the map obtained from the drone
data. To properly align the data, there is an offset that needs to be applied added to the GPS
data. This offset was already computed in Geromichalos et al. [2], so it was recovered from their
code. The resulting GPS traverses are plotted overlaid on top of the Tenerife map in figure 2.8 to
show the proper alignment.

2.2.5 Generating the SLAM Local Maps

In order to generate the Local Maps, the Simultaneous Localization And Mapping (SLAM)
algorithm from Geromichalos et al. [2] is used. This algorithm is able to generate the local maps
based on the images coming from the stereo cameras of the rover. In theory, the algorithm can
use all of the cameras at the same time, but due to the blurriness of the other cameras, only the
LocCam was used (see figure 2.5). The algorithm is designed to work at any resolution. However,
to match the global map, the same resolution of 0.5 meters was used.

This algorithm is available as a stand-alone C++ library8 or as a Rock library 9. As all of the
data is already stored as Rock logfiles, it is more convenient to use the Rock library. To be able
to use Rock installation, a Docker image was used which contained Rock and all of the libraries
used in the by ESA’s Planetary Robotics Lab (PRL).

Once the Rock installation was complete, a Rock script10 was written that would replay the
data stored in the logfiles and feed it to the SLAM algorithm, storing the generated local maps
into new Rock logfiles. An example of a few local maps alongside their corresponding global
maps can be seen in figure 2.9. These log files were much smaller than the whole dataset, around
5 GB, and could be loaded directly to python for training.

8https://github.com/esa-prl/slam-ga_slam
9https://github.com/esa-prl/slam-orogen-ga_slam/

10https://github.com/InigoMoreno/deep_ga/blob/main/rock/tenerife_log_dems.rb

https://github.com/esa-prl/slam-ga_slam
https://github.com/esa-prl/slam-orogen-ga_slam/
https://github.com/InigoMoreno/deep_ga/blob/main/rock/tenerife_log_dems.rb

10 Chapter 2. Data preparation

400 200 0 200 400
x [m]

300

200

100

0

100

200

300
y

[m
]

0.0

179.8
elevation [m

]

Figure 2.7: Tenerife Elevation Map

2.2.6 Filtering the Tenerife Dataset

The Tenerife Dataset contains many errors. These need to be filtered out of the dataset if
possible.

When the algorithm is starting, it has not gathered sufficient stereo images to generate a
correct local map. This means that the local map is very empty. To remove these maps, the
percentage of the map that is empty (NaN value) is computed and the maps that have more than
65 % empty space are removed.

As it can be seen in figure 2.8, the global map captured by the drone has some data missing.
This is only important when the traverses of the rover go through these missing parts. This
happens on some parts of the two right-most traverses. To remove these from the dataset, a
patch of the global map is computed around the location of the GPS. If this patch has more than
5 % empty space, the point is removed from the dataset.

In the first plot of figure 2.9, some artefacts with a triangular shape can be observed. These
artefacts come from errors of the SLAM algorithm when joining together data from some of the
stereo images. Unfortunately, this error is quite common and difficult to detect, so it is impossible
to remove it from the dataset.

In the second plot of figure 2.9, a small mound can be observed on the left of the elevation
maps. One can see that the mound is in a slightly different position on the local map than on
the global map. This is because the alignment of the GPS data with the global map explained in
subsection 2.2.4 is not perfect. This can be corrected by adjusting the offset manually, but it is
difficult to get a perfect alignment.

2.2.7 Validation Split

In order to split the Tenerife dataset, some of the traverses of the rover will be used as valida-
tion data and the rest will be used as training data. This ensures that the data from the validation
dataset is completely new. The traverses chosen were those of the 10th of June (see figure 2.8),
which resulted in a validation split of 15 %.

2.2. Tenerife Dataset 11

100 0 100 200 300
x [m]

150

100

50

0

50

100

y
[m

]

07/06 22h11
07/06 22h39
08/06 16h04
09/06 14h13
09/06 14h50
09/06 15h56

09/06 19h09
10/06 13h15
10/06 14h48
10/06 16h15
10/06 18h18
10/06 19h26

11/06 14h07
11/06 15h13
11/06 16h38
13/06 09h30
13/06 09h48
14/06 05h48

Figure 2.8: Tenerife Traverses overlaid on top of the color map

12 Chapter 2. Data preparation

20 10 0 10 20
x [m]

20

10

0

10

20

y
[m

]

Local DEM

20 10 0 10 20
x [m]

20

10

0

10

20
Global DEM

20 10 0 10 20
x [m]

20

10

0

10

20

y
[m

]

Local DEM

20 10 0 10 20
x [m]

20

10

0

10

20
Global DEM

20 10 0 10 20
x [m]

20

10

0

10

20

y
[m

]

Local DEM

20 10 0 10 20
x [m]

20

10

0

10

20
Global DEM

Figure 2.9: Tenerife local and global maps

Chapter 3

Model Implementation

3.1 Framework and Resources

To build and train the Neural Network, the Keras framework was used [S7]. Keras is a
high-level API for Deep Learning in python which lets us quickly develop the structure without
having to worry too much about the low-level details. Another advantage of Keras is that it is
built on top of Tensorflow, which means that tools like Tensorboard or Tensorflow Lite can be
used seamlessly.

To develop the Neural Network, it will be necessary to make a lot of decisions about the
structure of the network and certain parameters. A tool that can help with this is Talos [S8], a
hyperparameter optimization framework for Keras. Talos lets us define a list of parameters and
a list of possible values for each of these parameters. Then, Talos will test all of these possible
values and save all of the information of each test to be able to decide which value is the best for
each parameter.

To be able to train the Neural Networks, access to computational power is required. A very
useful service for this is Google Colab 1. Google Colab is a hosted service that stores and executes
Jupyter2 notebooks using computing resources including GPUs. This is a free service by Google,
but it aimed only for interactive use and for shorter runtimes. Therefore, while it is ideal to write
code and testing to see if everything works correctly, something more powerful is needed.

Aalborg University (AAU) has a cloud service called CLAAUDIA AI Cloud 3. This is a cluster
of servers with many GPUs where students and researchers from AAU can submit jobs that are
run with the GPUs. The jobs are submitted using Slurm4, a workload manager that manages
the order of execution of each job using a queue with priority. Each job can run a Singularity
command.

Singularity is a container framework similar to Docker. To create the container with the
necessary software to run our code, a Singularity file needs to be written. In this file, all of
the dependencies are installed into the container. The file can be found on GitHub5. Once the
singularity file is created we can use it to run the same Jupyter notebooks developed and tested
in Google Colab.

1https://colab.research.google.com/
2https://jupyter.org/
3https://git.its.aau.dk/CLAAUDIA/docs_aicloud/src/branch/master/aicloud_slurm
4https://slurm.schedmd.com/
5https://github.com/InigoMoreno/deep_ga/blob/main/Singularity

13

https://colab.research.google.com/
https://jupyter.org/
https://git.its.aau.dk/CLAAUDIA/docs_aicloud/src/branch/master/aicloud_slurm
https://slurm.schedmd.com/
https://github.com/InigoMoreno/deep_ga/blob/main/Singularity

14 Chapter 3. Model Implementation

3.2 Structure

As seen in subsection 1.2.1, there are many approaches when it comes to building the struc-
ture of the neural network. However, the most common one is to build a Siamese Neural Net-
work (SNN). However, in order to find which structure is better for the SNN a modular approach
was chosen. With this approach, the SNN is broken into its most basic components. This can
be seen in figure 3.1. Each of these components can be tweaked or interchanged by different
versions of the component.

Global ImageLocal Image

Input Processing Input Processing

Convolutional
Neural Network

Convolutional
Neural Network

Dense Dense

Compare

Loss Function True Distance

Shared

weights?

Figure 3.1: Structure of the SNN approach

3.2.1 Input Processing

The input to many pre-built Convolutional Neural Networks (CNNs) is usually a three-layer
RGB image without any missing values. The Digital Terrain Models (DTMs) have only one layer
(depth) and have missing values. Therefore, before the DTMs to the CNN, some processing
needs to be done to remove the missing values and turn one layer into three. There are several
ways to do this.

Raw Elevation

The most straightforward way to turn the elevation layer into three is to just make three
copies of the elevation layer. To remove the missing values, a custom Keras layer was created
that replaces them with zeros. This custom layer can be seen on GitHub6.

6https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/la
yers.py#L110

https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/layers.py##L110
https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/layers.py##L110

3.2. Structure 15

Raw Elevation and Mask

A problem with the previous approach is that the data is repeated, and, therefore the Network
will have to do more calculations for data that is essentially the same. One think that can be
changed from the previous approach is to make only two copies of the elevation layer, and, for
the third layer, pass a mask that shows which pixels are missing values. To generate the mask,
another custom layer was created7.

Convolution

The two previous approaches still repeat a lot of data. One approach would be to add a
Convolution layer that goes from one layer to three layers. This approach lets the Neural Network
control how the Input Processing is done. The convolution layer in Keras is not able to handle
missing values. Therefore, we need to set the missing elevation values to zero before passing
them to the convolution.

Partial Convolution

Not being able to handle missing elevation values can be a big problem for the network. If
we just set them missing values to zero before the convolution (such as in the previous method),
the convolution might give unexpected results around the edges of the elevation map.

A type of Convolution that is able to handle missing values is a Partial Convolution [14]. A
custom implementation of the Partial Convolution was written and can be seen in GitHub 8.

Sobel Filter

In Geromichalos et al. [2], they mention that there is possible drift that could lead to errors
in the z-axis. This means that the absolute elevation values should not be compared, only the
gradients of the elevations. One such way of computing (used in [2]) these gradients is to use a
Sobel Filter. As we need three layers, we can compute the horizontal, vertical and diagonal Sobel
filters:

Sx =

1 0 −1
2 0 −2
1 0 −1

 Sy =

 1 2 1
0 0 0
−1 −2 −1

 Sxy =

2 1 0
1 0 −1
0 −1 −2

 (3.1)

We can use these matrices as the kernels of the Partial Convolution described previously.

Skew-Centrosymmetric Convolution

When it comes to computing the gradient of an image, there are many variants of the So-
bel filter described above, such as the Sobel-Feldman or the Scharr operators. All of these are
matrices of the form:

S =

 a b c
d 0 −d
−c −b −a

 (3.2)

These are called skew-centrosymmetric matrices. For the Sobel filters in equation (3.1), we can
verify that they follow the patter in equation (3.2):

a b c d
Sx 1 0 -1 2
Sy 1 2 1 0
Sxy 2 1 0 1

Knowing this, we can create a custom convolution layer that behaves like a partial convolu-
tion, but that forces the weights to have the shape described in equation (3.2). This forces the

7https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/la
yers.py#L122

8https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/la
yers.py#L74

https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/layers.py##L122
https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/layers.py##L122
https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/layers.py##L74
https://github.com/InigoMoreno/deep_ga/blob/a3e62303535aaecc9f4569d7de9487c266690e24/deep_ga/layers.py##L74

16 Chapter 3. Model Implementation

convolution to compute a gradient of the elevation, solving the problem of the errors in abso-
lute elevation, while also giving some control to the Neural Network in how to compute these
gradients.

3.2.2 Convolutional Neural Network

There are many pre-built CNNs available on Keras9. Most of these models are developed
and trained for the ImageNet dataset, a huge dataset of images that can be used to train neural
networks for image classification. As they are built for such a big dataset, these networks can be
very large and have large inference times. As we mentioned in the Problem Analysis (section 1.1),
the on-board computers of the rover are very limited. Therefore, we need to use a lightweight
Neural Network.

The smallest network available in Keras is MobileNet-V2[15], which is also the network used
in Franchi [12]. This network is so small because it was designed to be able to run on low resource
platforms such as mobile devices. This makes it a perfect fit for the limited onboard computers
of the rover.

MobileNet Width Multiplier

The MobileNet-V2 Network has a width multiplier hyperparameter. This multiplier propor-
tionally changes the number of filters on each layer. This effectively changes the width of the
network and lets us do a trade-off between accuracy and performance. In the original MobileNet-
V2 paper, Sandler et al. [15], the values of 0.35, 0.5, 0.75, 1 and 1.4 are tested, so these are the
ones that we test.

MobileNet Pooling

MobileNet-V2 has another hyperparameter that lets us choose how the pooling is done at the
end of the Neural Network. This lets us choose between average, max or no pooling.

MobileNet Weights

The Keras team has trained MobileNet-V2 on ImageNet and has made the weights of these
pre-trained networks available on Keras10. These are available for several Width Multipliers and
input sizes. Using these pre-trained weights gives us the option to reduce the number of trainable
parameters, but can also lead to worse results.

To allow for the use of our arbitrarily sized elevation maps as an input for the pre-trained
network which is only available for certain input sizes, a resizing layer needs to be added to
scale the elevation maps to the available sizes. This is possible thanks to the Resizing layer in the
experimental branch of Keras 11.

3.2.3 Dense Layers

After the features are extracted by the CNN, the network can then use up to two dense layers
to construct an embedding space from these features. This is an optional phase, which allows for
higher complexity of the network and reduces the size of the embeddings. To allow for testing
of different shapes of dense layers, four hyperparameters were created.

First and Second Layer Size

These hyperparameters control the number of neurons on each of the dense layers. If the size
of a layer is zero, the layer is removed, which means that one can also control how many dense
layers there are using these parameters.

9https://keras.io/api/applications/
10https://github.com/JonathanCMitchell/mobilenet_v2_keras/releases/tag/v1.1
11https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing/Resizing

https://keras.io/api/applications/
https://github.com/JonathanCMitchell/mobilenet_v2_keras/releases/tag/v1.1
https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing/Resizing

3.2. Structure 17

Activation

The dense layers can be configured to have an activation layer using an activation hyperpara-
meter.

Dropout rate

A dropout layer is used between the first and second dense layers. Dropout layers randomly
set some of the activations to zero, forcing the network to counteract this by adding redundancy
to the network, which can lead to lower over-fitting of the network. This dropout is controlled
by the rate hyperparameter, which controls the rate at which the dropout happens.

3.2.4 Weight Sharing

In the model structure shown in figure 3.1 an arrow indicates that the two of the SNN can
share weights. This is usually the norm for SNNs, as they reduce the number of parameters that
need to be trained and reduce over-fitting. However, due to the differences between the local and
the global patch, the network might actually perform better without sharing the weights between
the two branches. There will be a hyperparameter to choose if the weights are shared.

3.2.5 Comparation Layer

The computation layer takes the two embeddings and compares them to generate a single
output value that represents the difference between the embeddings. In many of the works
described in the State of the Art, the Euclidian Norm is used [12, 16, 17]. To implement this into
our Network, a custom Keras layer was written12.

An alternative to this is suggested in Wu et al. [11], where instead of using an Euclidean
Distance, a small dense network is used to predict the output of the neural network from the
concatenation of the two embeddings. A hyperparameter will be able to choose between these
two alternatives.

3.2.6 Loss Functions

From the true distance that separates the local and global elevation maps (dtrue) and the
distance predicted by the network (dpred), the loss function computes the loss. This loss is what
the network will try to minimize, so one can think of the loss function as a tool to penalize the
errors that the network makes. A good loss function needs to be easy to derive, as the neural
network will take many derivatives of the loss function in order to search for the minimum value.
There many options to choose from and a hyperparameter will be able to control which of the
loss functions is used.

Mean Average Error and Mean Squared Error

Two of the most basic loss functions are Mean Average Error (MAE) and Mean Squared
Error (MSE), which just compute the squared and average errors respectively (see equation (3.3)).
A plot of these errors can be seen in subfigures 3.3a and 3.3b.

MAE = dpred − dtrue MSE =
(
dpred − dtrue

)2 (3.3)

12https://github.com/InigoMoreno/deep_ga/blob/fd63a57cbf3199bf2a27ec7fd953d0629104b60d/deep_ga/la
yers.py#L135

https://github.com/InigoMoreno/deep_ga/blob/fd63a57cbf3199bf2a27ec7fd953d0629104b60d/deep_ga/layers.py##L135
https://github.com/InigoMoreno/deep_ga/blob/fd63a57cbf3199bf2a27ec7fd953d0629104b60d/deep_ga/layers.py##L135

18 Chapter 3. Model Implementation

Weighted Mean Squared Error

A problem with MAE and MSE is that they treat errors equally, for example, if dtrue = 2 and
dpred = 12 the error will be the same as if dtrue = 100 and dpred = 110, while the first one should
be much more severe. To solve this, we can use Weighted Mean Squared Error (WMSE), which
adds a weight component to the MSE. The formula for WMSE can be found in equation (3.4)
and it is plotted in subfigure 3.3c.

To choose the weight function, we need something that gives a higher weight to low values,
and almost zero weight to values past a certain scale. The function should also be easily derivable.
The chosen weight function is equation (3.5), which uses the tanh function, which is very easy to
differentiate.

WMSE =
W
(
dpred

)
+ W (dtrue)

2
(
dpred − dtrue

)2 (3.4)

where, W (d) = 1 − tanh
d

scale
(3.5)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
y

0.0

0.2

0.4

0.6

0.8

1.0

W
(y

)

Figure 3.2: Weight function (scale = 5)

Pairwise Contrastive Loss

Pairwise Contrastive Loss (PCL) is a loss that is used in some of the works found in the State
of the Art [12, 16]. It tries to minimize dpred if dtrue is below the margin and maximize dpred
otherwise

PCL =

{
d2

pred if dtrue < margin

max(margin − dpred, 0)2 otherwise
(3.6)

3.3. Training 19

0 2 4 6 8 10
True Distance [m]

0

2

4

6

8

10
Pr

ed
ict

ed
 D

ist
an

ce
 [m

]

0

10

M
AE loss

(a) Mean Average Error

0 2 4 6 8 10
True Distance [m]

0

2

4

6

8

10

Pr
ed

ict
ed

 D
ist

an
ce

 [m
]

0

100
M

SE loss

(b) Mean Squared Error

0 2 4 6 8 10
True Distance [m]

0

2

4

6

8

10

Pr
ed

ict
ed

 D
ist

an
ce

 [m
]

0.00

53.82

W
M

SE loss

(c) Weighted Mean Squared Error (scale = 5)

0 2 4 6 8 10
True Distance [m]

0

2

4

6

8

10

Pr
ed

ict
ed

 D
ist

an
ce

 [m
]

0

100

PCL loss

(d) Pairwise Contrastive Loss (margin = 5)

Figure 3.3: Losses

3.3 Training

3.3.1 Batch Size

Training on Neural Networks is done in batches, which are groups of training data that are
used to compute the loss and the gradient of the loss with respect to the weights of the Neural
Network, this gradient is then used to update the weights after each batch. This means that a
smaller batch size will train faster, as the network is updated more often. However, a small batch
size can lead to instabilities, as the gradient is computed using less samples and is therefore less
representative of the gradient of the whole dataset.

3.3.2 Training Optimizer and Learning Rate

When training the model, we need to choose an optimizer. The two most common ones are
Stochastic Gradient Descent (SGD) and Adam. Both of these optimizers can also be tuned with a
hyperparameter called the learning rate, which controls the speed at which the training occurs.
Increasing the learning rate might speed up training but it can also lead to unstable results.

3.3.3 Data Generators

As explained in the previous chapter, the goal of both datasets is to generate pairs of images,
one that represents the local elevation map as seen by the rover and another that represents the
the global elevation map of the area around the rover, but with a random shift that represents
the possible localization error. To generate this, we could generate a lot of random shifts and
store each data point in memory, but this would take a lot of memory space during training. An
alternative is to use data generators. This is a style of training in Keras where instead of passing
an array with all of the training data, we pass a python class that generates each training batch.
These generators can be found in GitHub13

13https://github.com/InigoMoreno/deep_ga/blob/main/deep_ga/patch_generator.py

https://github.com/InigoMoreno/deep_ga/blob/main/deep_ga/patch_generator.py

20 Chapter 3. Model Implementation

3.4 Python Library and Jupyter Notebooks

As mentioned in section 3.1 (Framework and Resources), all of our code needs to run in
jupyter notebooks. These started to get big quickly, so a python library was created that houses
the custom Keras layers, the data generators, the model implementation and various other helper
functions. This library is available in GitHub14. With the library created, the jupyter notebooks
are much smaller and more manageable. These are also on GitHub 15.

14https://github.com/InigoMoreno/deep_ga/tree/main/deep_ga
15https://github.com/InigoMoreno/deep_ga/tree/main/notebooks

https://github.com/InigoMoreno/deep_ga/tree/main/deep_ga
https://github.com/InigoMoreno/deep_ga/tree/main/notebooks

Chapter 4

Model Testing

4.1 Initial Tests

4.1.1 HiRISE Dataset

Initial tests were done using the HiRISE dataset and just guessing some values for the hy-
perparameters. The first attempts to train the network were unsuccessful, as the training was
not actually reducing the loss function much and the results showed that the model was not
predicting the distance correctly and was instead predicting only the mean. This can be seen in
subfigure 4.1a. However, after a days weeks of debugging, some issues were found in the way
the model handled the NaN values, and some results started to appear (see subfigure 4.1b).

0 10 20 30 40 50
Distance between local and global patch

0

10

20

30

40

50

Pr
ed

ict
ed

 d
ist

an
ce

(a) Model just predicting the mean

0 10 20 30 40 50
Distance between local and global patch

0

10

20

30

40

50

60

70

Pr
ed

ict
ed

 d
ist

an
ce

(b) Model predicting very poorly

Figure 4.1: Failed initial tests with the HiRISE Dataset

However, one can see in the plot of subfigure 4.1b that the results predicted by the model,
while they seem to follow the true distance, they are not very accurate. This was later found to
be the consequence of an issue with the code that generated the datasets. With the issue fixed,
the results became much better. This can be seen in figure 4.2. Subfigure 4.2a shows that the
predicted distance is very close to the real distance. Subfigure 4.2b shows how the progress of
both the training and the validation loss go down together with each epoch, with the validation
loss being even lower than the training loss, which indicates that the model is not overfitting at
all. This makes sense, as the HiRISE is almost infinite thanks to the big size of the Digital Terrain
Model (DTM) and the fact that data generators are being used to train, which use a new patch of
the DTM every time.

21

22 Chapter 4. Model Testing

0 10 20 30 40 50 60
Distance between local and global patch

0

10

20

30

40

50

60
Pr

ed
ict

ed
 d

ist
an

ce

(a) Successful predictions

0 20 40 60 80 100
Epoch

0

50

100

150

200

250

W
M

SE
 lo

ss

Training
Validation

(b) Training and validation loss history

Figure 4.2: First Success with the HiRISE Dataset

4.1.2 Tenerife Dataset

After the success of the initial tests of the model on the HiRISE Dataset, the model was then
trained and tested on the Tenerife Dataset. The first results for this can be seen in figure 4.3, and
they show that the model is not training properly on the Tenerife Dataset. The loss history in
subfigure 4.3b shows how the training loss is decreasing, but the validation loss stays very high.
This means that our model is overfitting heavily on the Tenerife Dataset. This is possibly due to
the dataset being too small or to the network having too many weights. From here, the next step
was to look for the optimum hyperparameters to use on the Tenerife Dataset.

0 5 10 15 20 25 30 35
Distance between local and global patch

0

2

4

6

8

Pr
ed

ict
ed

 d
ist

an
ce

(a) Predictions

0 20 40 60 80 100
Epoch

0

50

100

150

200

W
M

SE
 lo

ss

Training
Validation

(b) Training and validation loss history

Figure 4.3: First attempt at training on the Tenerife Dataset

4.2. Hyperparameter optimization 23

4.2 Hyperparameter optimization

As discussed in the previous section, the training on the Tenerife Dataset with the default
hyperparameters was not successful, so the next step is to look for the optimal hyperparameters.
As mentioned previously, the tool that will be used for this is Talos[S8], which repeats the training
process for each new set of parameters. As the training can take very long (up to two hours),
each experiment ran with Talos can take days, which limits the number of runs that can be
performed. This, coupled with the fact that each training session can lead to different results
even if they have the same parameters, means that the results of the Talos experiments can be a
bit unreliable. However, they are still a very useful tool to determine which hyperparameter to
use.

4.2.1 Optimizer and Learning Rate

One of the things noticeable in subfigure 4.3b is that the validation loss is very erratic, it
moves up and down a lot. One of the things that could cause this is the optimizer or the learning
rate, as discussed in subsection 3.3.2. Therefore, a Talos experiment was set up where these
hyperparameters were tested. The training history of each experiment of the test can be seen in
figure 4.4. The results are summarized in subfigure 4.5b with a boxplot of the final validation
loss. From these results, one can conclude that the best optimizer for our task is Stochastic
Gradient Descent (SGD), with a low learning rate.

0 20 40 60 80 100
Epoch

0

50

100

150

200

250

Va
lid

at
io

n
W

M
SE

 lo
ss

learning_rate
0.01
0.001
0.0001

(a) Using Adam optimizer

0 20 40 60 80 100
Epoch

0

50

100

150

200

250

Va
lid

at
io

n
W

M
SE

 lo
ss

learning_rate
0.01
0.001
0.0001

(b) Using SGD optimizer

Figure 4.4: History of validation loss for different values of learning rate and optimizer

4.2.2 Input Processing

In subsection 3.2.1 several ways of processing the input data were discussed, to decide which
of them is better, a Talos experiment was run. The experiment tried the different input processing
options a total of three times each. The results are shown in subfigure 4.5c. These results indicate
that the two best options for input processing are to do a simple convolution or to use the skew-
centrosymmetric convolution. From these two, the latter was chosen, as it guarantees that no
information about the absolute height of the DTM is used by the network (see subsection 3.2.1).

4.2.3 MobileNet Parameters

The hyperparameters of the MobileNet-V2 Convolutional Neural Network (CNN) were dis-
cussed in subsection 3.2.2. These are the width multiplier, the pooling and the weights. As before,
a Talos test was run for each of these parameters and the results are shown in subfigures 4.5d
to 4.5f. Looking at the results, it seems like the pooling does not have a very noticeable effect, so
average pooling will be chosen. As for the width multiplier, it seems like the 1.0 width multiplier
is the best one. However, using a lower width multiplier might give us similar results with lower
resources, this will be investigated later.

For the MobileNet weights, it seems like using pre-trained ImageNet actually worsens the
validation results of the network. This might be because the data from ImageNet is very different
from the elevation maps, so the features extracted from ImageNet don’t make much sense for
elevation maps.

24 Chapter 4. Model Testing

4.2.4 Dense Layers

Subsection 3.2.3 describes the implementation of the dense layers. While doing some manual
testing, it was seen that using two dense layers was excessive and just one of them was enough.
Talos tests were created for the layer size, the dropout and the activation function. The results
can be seen in subfigures 4.5g to 4.5i. The results show that it is better to use the ReLu activation
function and to use a large dropout.

As for the layer size, the plot shows that the network performs better without size 0, which
means that the layer is removed. This might be because adding a Dense layer adds a lot of extra
weights, which can increase the over-fitting of the network. However, an advantage of using
the Dense layer is that the size of the embedding vector is reduced from the output size of the
MobileNet (1280) to the size of the dense layer. A smaller embedding space might be useful, as
it could mean that less data needs to be transmitted between the rover and the satellite.

4.2.5 Weight sharing

Subsection 3.2.4 discussed the possibility of having the Siamese Neural Network (SNN) not
share the weights between the two branches. This was tested with a Talos experiment and
its results can be seen in subfigure 4.5j. Surprisingly, the results show how sharing weights
actually decreases the performance of the network. This might be because the local and the
global elevation maps are very different and not sharing the weights lets the network treat them
differently.

4.2.6 Comparation Layer

In subsection 3.2.5, two alternatives on how to do the comparison Layer were suggested:
computing the euclidean distance between the embeddings or using a small neural network.
However, during manual testing of both of these options, it was found that the usage of a small
neural network increased over-fitting by quite some margin and made the model un-trainable.

4.2.7 Choosing the Loss Function

In subsection 3.2.6 several loss functions were discussed as potential candidates for our model.
To choose the loss function one cannot simply compare the final loss, as they would be in different
units. The only option is to look at plots of the predictions of the model after being trained with
each loss function and choose the one that looks better. To get an idea of the best-case scenario,
the HiRISE Dataset will be used instead of the Tenerife Dataset for these plots. The plots can be
seen in figure 4.6 and they show that, apart from the MAE loss, the other ones seem to perform
similarly.

4.2. Hyperparameter optimization 25

Adam SGD
optimizer

0

5

10

15

20

25

30

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(a) Optimizers

0.01 0.001 0.0001
learning_rate

0

5

10

15

20

25

30

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(b) Learning Rate

Conv PConvRaw Raw Mask Sobel SymConv
Input Processing

0

5

10

15

20

25

30

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(c) Input Processing

avg max
mobileNet_pooling

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(d) MobileNet Pooling

1.41.00.750.50.35
Width Multiplier

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(e) MobileNet Width Multiplier

None imagenet
MobileNet Weights

0

5

10

15

20

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(f) MobileNet Pre-trained Weights

500100502520150
Layer Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(g) Dense Layer Size (0 means no dense layer)

0 0.001 0.003 0.01 0.03 0.1 0.3
dropout

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(h) Dense Layer Dropout

None relu
activation

0

2

4

6

8

10

12

14

16

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(i) Dense Layer Activation Function

TrueFalse
sharedWeights

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fi
na

l v
al

id
at

io
n

W
M

SE
 lo

ss

(j) Weight Sharing

Figure 4.5: Boxplots of the final validation loss depending on different hyper-parameters

26 Chapter 4. Model Testing

0 10 20 30 40 50
Distance between local and global patch

0

10

20

30

40

Pr
ed

ict
ed

 d
ist

an
ce

(a) Model trained with MAE loss

0 10 20 30 40 50 60 70
Distance between local and global patch

0

10

20

30

40

50

Pr
ed

ict
ed

 d
ist

an
ce

(b) Model trained with MSE loss

0 10 20 30 40 50
Distance between local and global patch

0

10

20

30

40

Pr
ed

ict
ed

 d
ist

an
ce

(c) Model trained with WMSE loss

0 10 20 30 40 50 60 70
Distance between local and global patch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pr
ed

ict
ed

 d
ist

an
ce

(d) Model trained with PCL loss

Figure 4.6: Predictions of Models trained with different loss functions

4.3. Prediction Results 27

4.3 Prediction Results

After all of the experiments to test the hyperparameters, the model that uses all of the best
parameters can be constructed and tested on both datasets. These predictions of these models
can be seen in figure 4.7. In these plots, one can see that, while the model performs better on the
HiRISE Dataset, the predictions on the Tenerife Dataset still show some promising results.

0 10 20 30 40 50 60
Distance between local and global patch

0

10

20

30

40

50

60

Pr
ed

ict
ed

 d
ist

an
ce

(a) HiRISE Dataset

0 5 10 15 20 25 30 35 40
Distance between local and global patch

0

5

10

15

20

25

30

35

40

Pr
ed

ict
ed

 d
ist

an
ce

(b) Tenerife Dataset

Figure 4.7: Prediction Plots

4.4 Resource usage analysis

In this section, the resource usage of the neural network will be analyzed. As discussed in
the previous section, one can alter the size of the network with some of the hyperparameters,
namely the width multiplier of the MobileNet and the dense layer size. This means that the
resource usage will depend on these two parameters. Table 4.1 shows the number of parameters
(in millions) of the model, depending on these parameters.

In section 1.4, some of the requirements of the network were introduced, memory usage and
prediction time. To estimate the memory usage TensorFlow Lite will be used, a Deep Learning
tool that lets us compress our models into a simple C library file that could be used by the rover
directly. Table 4.2 shows the size of this library in MegaBytes. To approximate the prediction
time in the rover, the C library generated by TensorFlow Lite can be run on Google Colab’s CPU
environments (without using GPU). The resulting prediction times are shown in milliseconds in
table 4.3.

Layer Size
1000 500 100 50 0

W
id

th
M

ul
t. 1.4 6.16 5.26 4.54 4.45 4.36

1.0 3.54 2.90 2.39 2.32 2.26
0.75 2.66 2.02 1.51 1.45 1.38
0.5 1.99 1.35 0.83 0.77 0.71
0.35 1.69 1.05 0.54 0.47 0.41

Table 4.1: Number of parameters (in millions) depending on layer size and width multiplier

Layer Size
1000 500 100 50 0

W
id

th
M

ul
t. 1.4 23.57 20.15 17.41 17.07 16.73
1.0 13.68 11.23 9.28 9.03 8.79
0.75 10.38 7.94 5.99 5.74 5.50
0.5 7.86 5.42 3.46 3.22 2.97
0.35 6.76 4.32 2.37 2.12 1.88

Table 4.2: TF Lite model size in MB. Depending on layer size and width multiplier

28 Chapter 4. Model Testing

Layer Size
1000 500 100 50 0

W
id

th
M

ul
t. 1.4 30.53 29.47 29.38 29.25 28.94

1.0 19.32 19.08 18.57 18.70 18.35
0.75 16.05 15.83 15.21 15.58 15.20
0.5 11.84 11.43 10.94 11.57 10.79
0.35 10.26 10.18 9.55 9.48 9.40

Table 4.3: TF Lite average prediction time in milliseconds. Depending on layer size and width multiplier

4.5 Comparison with Other Methods

In this section, the performance of our model will be compared against the method intro-
duced in Geromichalos et al. [2]. As explained in section 1.1, their method uses a sliding window
approach to calculate a correlation score between the local map and all the possible global maps
to generate a 100x100 meter grid and select the one with the highest score. Each score is com-
puted in a mere 0.24 ms.

To do the same with our model, a similar sliding window approach is implemented, that
compares the local map against all of the possible global maps, computing the predicted distance
between the local map and each of the global maps. The chosen model predicts this distance in
18.7 ms, and the whole grid in 3 minutes. In order to transform the predicted distance into
something comparable to the score of the other method, the same function used in equation (3.5)
will be used.

This can be done for both the HiRISE and the Tenerife Datasets and the results can be seen in
figures 4.8 and 4.9 respectively. Note that in these plots one should expect higher values (yellow)
in the centre, as it is the true position of the local map and lower values outside.

40 20 0 20 40
x shift [m]

40

20

0

20

40

y
sh

ift
 [m

]

0.0

0.2

0.4

0.6

0.8

1.0

(a) Using our model: 1 − tanh
(
dpred/15

)
40 20 0 20 40

x shift [m]

40

20

0

20

40

y
sh

ift
 [m

]

0.0

0.2

0.4

0.6

0.8

1.0

(b) Using the score in [2]

Figure 4.8: 100x100m grids of results for the HiRISE dataset

These results look very promising. For the HiRISE dataset, figure 4.8 shows that both al-
gorithms correctly identify the centre as being the one with the highest score. However, while
the correlation of [2] only marks the immediate centre with a high score and the rest with lower
scores, our model is capable of giving high scores to values close to the centre. This means that
an algorithm such as Hill Climbing or a Particle Filter could be used in conjunction with our
model to find the maximum score without having to compute every value on the grid.

As for the Tenerife dataset, figure 4.9 shows that both methods seem to struggle. The score
of [2] seems to not be able to find any correlation between the local map and the global map.
With the maximum score being only 0.52 and at a location 44.18 m off the centre. In contrast, our
model seems to also struggle, but the plot shows that the values close to the centre have higher
values than the rest. The maximum score of our model is 0.68 and is only 14.14 m off the centre.
To make sure this is not a fluke, this process was repeated for 20 random local maps from the
Tenerife validation dataset, and the error for each method is plotted in figure 4.10.

4.5. Comparison with Other Methods 29

40 20 0 20 40
x shift [m]

40

20

0

20

40

y
sh

ift
 [m

]

0.0

0.2

0.4

0.6

0.8

1.0

(a) Using our model: 1 − tanh
(
dpred/15

)
40 20 0 20 40

x shift [m]

40

20

0

20

40

y
sh

ift
 [m

]

0.0

0.2

0.4

0.6

0.8

1.0

(b) Using the score in [2]

Figure 4.9: 100x100m grids of results for the Tenerife dataset

Correlation Score Our Model
0

10

20

30

40

50

60

70

Er
ro

r

Figure 4.10: Comparison in the error between the two methods for the Tenerife Dataset

Chapter 5

Conclusion

The initial problem formulation of this thesis was to see if it is possible to use a Machine
Learning algorithm to perform global localization for a Mars rover. Due to time constraints, a
full algorithm could not be written. However, this thesis has shown that a Machine Learning
model can be used to estimate the distance between a local and a global elevation map. The
thesis has also introduced a preliminary version of a global localization algorithm in the form of
a sliding window approach and shows that it can outperform the previous approach in terms of
accuracy.

In this thesis, we showed the full process of the development of the Machine Learning model.
After analyzing the state of the art and setting out our requirements, two datasets were gathered.
The HiRISE dataset utilizes real global maps and artificial local maps generated by adding some
simplex noise and simulated occlusion. The Tenerife dataset consists of real local maps captured
by a rover in a representative environment and global maps captured by a rover.

After generating the two datasets, the Machine Learning model was constructed in a way
that permits a lot of adjustment through the use of hyperparameters. The training on the HiRISE
dataset was successful, but the training on the Tenerife dataset was having a lot of over-fitting. In
order to reduce the over-fitting and reach a lower validation loss, several experiments were run
that would help discover the best hyperparameters to use for the model. With these experiments,
we managed to bring the validation loss by quite some margin and got some decent results from
the Tenerife dataset. However, these results are still nowhere near the quality achieved using the
HiRISE dataset. This might be in part because the Tenerife dataset, while big, might not have
enough data to train a Deep Network model. Another reason might be that the dataset contains
a lot of errors that cannot be filtered out of the dataset.

After the model was created, the number of resources that it utilizes was analyzed. The model
is capable of doing predictions in about 18 milliseconds in a single-core CPU while only taking
up around 9 megabytes of memory space. To test the model against the previous algorithm
introduced in Geromichalos et al. [2], we created a similar sliding window approach but using
our model to predict the score and compared the two. Our method showed promising results
and was able to more accurate results.

Computing the whole 100x100 meter grid with the sliding window approach means that we
need to run the prediction 10000 times, resulting in 3 minutes of total computation time. While
this is high, it is still a manageable amount in a rover scenario. The results could be made even
better by the introduction of an algorithm that looks for the maximum value without computing
the whole grid, like a Hill-Climbing algorithm or a Particle Filter.

31

32 Chapter 5. Conclusion

5.1 Future Work

Here are some potential avenues for future work on this topic:

• Algorithm Implementation: As mentioned before, it would be possible to write an al-
gorithm that looks for the maximum score without having to compute the whole grid.

• Different resolutions: In the data processing, we set the resolution of the Tenerife local
maps to be 0.5 meters, the same as the global maps. This was mainly done because the goal
was to build a Siamese Neural Network (SNN) with identical branches. However, we saw
that having the branches be different actually increased performance. Therefore, we could
test if increasing the resolution of the local maps would improve the results.

• More data: It would be interested the approach tested with different datasets and see if
they perform better.

• Testing on real rovers: It would be interesting to see the model being actually implemented
and run directly on the rovers.

Bibliography

[1] Andrea Merlo, Jonan Larranaga and Peter Falkner. ‘Sample fetching rover (sfr) for msr’. In:
Advanced Space Technologies in Robotics and Automation. 2013.

[2] Dimitrios Geromichalos et al. ‘SLAM for autonomous planetary rovers with global localiz-
ation’. In: Journal of Field Robotics 37.5 (Aug. 2020), pp. 830–847. doi: 10.1002/rob.21943.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21943.

[3] D. Shirley and J. Matijevic. ‘Mars Pathfinder Microrover’. In: Autonomous Robots 2.4 (Dec.
1995), pp. 283–289. doi: 10.1007/BF00710795. url: https://doi.org/10.1007/BF0071079
5.

[4] C. F. Olson and L. H. Matthies. ‘Maximum likelihood rover localization by matching range
maps’. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.
No.98CH36146). Vol. 1. May 1998, 272–277 vol.1. doi: 10.1109/ROBOT.1998.676398.

[5] Joseph R. Guinn. ‘Mars surface asset positioning using in-situ radio tracking’. In: American
Astronautical Society (Feb. 2001).

[6] S. Chiodini et al. ‘Mars rovers localization by matching local horizon to surface digital
elevation models’. In: 2017 IEEE International Workshop on Metrology for AeroSpace (Met-
roAeroSpace). June 2017, pp. 374–379. doi: 10.1109/MetroAeroSpace.2017.7999600.

[7] Patrick J. F. Carle, Paul T. Furgale and Timothy D. Barfoot. ‘Long-range rover localization
by matching LIDAR scans to orbital elevation maps’. In: Journal of Field Robotics 27.3 (Mar.
2010), pp. 344–370. doi: https://doi.org/10.1002/rob.20336. url: http://onlinelibra
ry.wiley.com/doi/abs/10.1002/rob.20336.

[8] Evangelos Boukas, Antonios Gasteratos and Gianfranco Visentin. ‘Introducing a globally
consistent orbital-based localization system’. In: Journal of Field Robotics 35.2 (July 2017),
pp. 275–298. doi: https://doi.org/10.1002/rob.21739. url: http://onlinelibrary.wil
ey.com/doi/abs/10.1002/rob.21739.

[9] Bach van Pham, Artur Maligo and Simon Lacroix. ‘Absolute Map-Based Localization for a
Planetary Rover’. In: May 2013, p. 1. url: https://hal.archives-ouvertes.fr/hal-0102
0989.

[10] Ahmed M. Naguib et al. ‘Planetary Long-Range Deep 2D Global Localization Using Gen-
erative Adversarial Network’. In: Journal of Korea Robotics Society 13.1 (Mar. 2018), pp. 26–30.
doi: 10.7746/jkros.2018.13.1.026. url: http://jkros.org/_common/do.php?a=full&b
=33&bidx=2201&aidx=26169.

[11] B. Wu et al. ‘Absolute Localization Through Orbital Maps and Surface Perspective Imagery:
A Synthetic Lunar Dataset and Neural Network Approach’. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Nov. 2019, pp. 3262–3267. doi: 10.1109
/IROS40897.2019.8968124.

[12] Valerio Franchi. ‘Vision-based localization of a rover on a planetary-like surface using mon-
ocular cameras, IMU and a known bird-view map of the environment’. MA thesis. Edin-
burgh, Scotland: Heriot-Watt University, Dec. 2020.

[13] Iñigo Moreno-Caireta. Fusion of velocity and relative pose measurements for localization of extra-
terrestrial rovers. 3. semester Intenship Report. Jan. 2020, p. 55. url: https://projekter.aa
u.dk/projekter/da/studentthesis/fusion-of-velocity-and-relative-pose-measurem
ents-for-localization-of-extraterrestrial-rovers(96ddd0b4-37f5-44f3-b2ea-fc39
6e4ff62d).html.

[14] Guilin Liu et al. ‘Image Inpainting for Irregular Holes Using Partial Convolutions’. In:
Proceedings of the European Conference on Computer Vision (ECCV). Sept. 2018.

33

https://doi.org/10.1002/rob.21943
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21943
https://doi.org/10.1007/BF00710795
https://doi.org/10.1007/BF00710795
https://doi.org/10.1007/BF00710795
https://doi.org/10.1109/ROBOT.1998.676398
https://doi.org/10.1109/MetroAeroSpace.2017.7999600
https://doi.org/https://doi.org/10.1002/rob.20336
http://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20336
http://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20336
https://doi.org/https://doi.org/10.1002/rob.21739
http://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21739
http://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21739
https://hal.archives-ouvertes.fr/hal-01020989
https://hal.archives-ouvertes.fr/hal-01020989
https://doi.org/10.7746/jkros.2018.13.1.026
http://jkros.org/_common/do.php?a=full&b=33&bidx=2201&aidx=26169
http://jkros.org/_common/do.php?a=full&b=33&bidx=2201&aidx=26169
https://doi.org/10.1109/IROS40897.2019.8968124
https://doi.org/10.1109/IROS40897.2019.8968124
https://projekter.aau.dk/projekter/da/studentthesis/fusion-of-velocity-and-relative-pose-measurements-for-localization-of-extraterrestrial-rovers(96ddd0b4-37f5-44f3-b2ea-fc396e4ff62d).html
https://projekter.aau.dk/projekter/da/studentthesis/fusion-of-velocity-and-relative-pose-measurements-for-localization-of-extraterrestrial-rovers(96ddd0b4-37f5-44f3-b2ea-fc396e4ff62d).html
https://projekter.aau.dk/projekter/da/studentthesis/fusion-of-velocity-and-relative-pose-measurements-for-localization-of-extraterrestrial-rovers(96ddd0b4-37f5-44f3-b2ea-fc396e4ff62d).html
https://projekter.aau.dk/projekter/da/studentthesis/fusion-of-velocity-and-relative-pose-measurements-for-localization-of-extraterrestrial-rovers(96ddd0b4-37f5-44f3-b2ea-fc396e4ff62d).html

34 Bibliography

[15] Mark Sandler et al. ‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’. In: arXiv:1801.04381
[cs] (Mar. 2019). url: http://arxiv.org/abs/1801.04381.

[16] D. Kim and M. R. Walter. ‘Satellite image-based localization via learned embeddings’. In:
2017 IEEE International Conference on Robotics and Automation (ICRA). May 2017, pp. 2073–
2080. doi: 10.1109/ICRA.2017.7989239.

[17] S. Hu et al. ‘CVM-Net: Cross-View Matching Network for Image-Based Ground-to-Aerial
Geo-Localization’. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
June 2018, pp. 7258–7267. doi: 10.1109/CVPR.2018.00758.

http://arxiv.org/abs/1801.04381
https://doi.org/10.1109/ICRA.2017.7989239
https://doi.org/10.1109/CVPR.2018.00758

Software

[S1] GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. 2021.
url: https://gdal.org.

[S2] Alexander B. Jung et al. imgaug. 2020. url: https://github.com/aleju/imgaug.

[S3] Siu Kwan Lam, Antoine Pitrou and Stanley Seibert. ‘Numba: a LLVM-based Python JIT
compiler’. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
- LLVM ’15. Austin, Texas: ACM Press, 2015, pp. 1–6. isbn: 978-1-4503-4005-2. doi: 10.114
5/2833157.2833162. url: http://dl.acm.org/citation.cfm?doid=2833157.2833162.

[S4] Darsh Ranjan et al. plyfile. 2021. url: https://pypi.org/project/plyfile/.

[S5] DFKI GmbH Robotics Innovation Center. Rock, the Robot Construction Kit. 2011. url: http:
//www.rock-robotics.org.

[S6] Maximilian Stölzle. pocolog_pybind, python bindings for rock. 2020. url: https://github.com
/esa-prl/tools-pocolog_pybind.

[S7] François Chollet et al. Keras. 2015. url: https://keras.io.

[S8] Autonomio. Talos. 2019. url: http://github.com/autonomio/talos.

35

https://gdal.org
https://github.com/aleju/imgaug
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
http://dl.acm.org/citation.cfm?doid=2833157.2833162
https://pypi.org/project/plyfile/
http://www.rock-robotics.org
http://www.rock-robotics.org
https://github.com/esa-prl/tools-pocolog_pybind
https://github.com/esa-prl/tools-pocolog_pybind
https://keras.io
http://github.com/autonomio/talos

Acronyms

AAU Aalborg University

ESA European Space Agency

HDPR Heavy Duty Planetary Rover

IMU inertial measurement unit

PRL Planetary Robotics Lab

TEC-MMA Automation and Robotics

CNN Convolutional Neural Network

SNN Siamese Neural Network

GAN Generative Adversarial Network

SLAM Simultaneous Localization And Mapping

HiRISE High Resolution Imaging Science Experiment

MRO Mars Reconnaissance Orbiter

DTM Digital Terrain Model

MSE Mean Squared Error

WMSE Weighted Mean Squared Error

MAE Mean Average Error

PCL Pairwise Contrastive Loss

SGD Stochastic Gradient Descent

SFR Sample Fetching Rover

List of Figures

1.1 Graphical illustration of how template matching is performed in [2] 2
1.2 Overview of the different Localization Methods . 3

2.1 HiRISE DTMs . 5
2.2 Simplex noise example . 6
2.3 Simulated occlusion algorithm . 7
2.4 Artificial occlusion applied to a random DTM patch 7
2.5 Heavy Duty Planetary Rover (HDPR) in Tenerife field test at Teide Volcano [2] . . . 8
2.6 Tenerife Color Map . 9
2.7 Tenerife Elevation Map . 10
2.8 Tenerife Traverses overlaid on top of the color map 11
2.9 Tenerife local and global maps . 12

3.1 Structure of the SNN approach . 14
3.2 Weight function (scale = 5) . 18
3.3 Losses . 19

4.1 Failed initial tests with the HiRISE Dataset . 21

37

4.2 First Success with the HiRISE Dataset . 22
4.3 First attempt at training on the Tenerife Dataset . 22
4.4 History of validation loss for different values of learning rate and optimizer 23
4.5 Boxplots of the final validation loss depending on different hyper-parameters . . . 25
4.6 Predictions of Models trained with different loss functions 26
4.7 Prediction Plots . 27
4.8 100x100m grids of results for the HiRISE dataset . 28
4.9 100x100m grids of results for the Tenerife dataset . 29
4.10 Comparison in the error between the two methods for the Tenerife Dataset 29

List of Tables

4.1 Number of parameters (in millions) depending on layer size and width multiplier . 27
4.2 TF Lite model size in MB. Depending on layer size and width multiplier 27
4.3 TF Lite average prediction time in milliseconds. Depending on layer size and

width multiplier . 28

38

	Front page
	Title page
	Contents
	Preface
	1 Introduction
	1.1 Problem Analysis
	1.2 State of the Art
	1.2.1 State of the Art Conclusion

	1.3 Initial Problem Formulation
	1.4 Requirement specification

	2 Data preparation
	2.1 HiRISE Dataset
	2.1.1 Processing the DTMs
	2.1.2 Local Patch Distortion
	2.1.3 Artificial Occlusion
	2.1.4 Validation Split

	2.2 Tenerife Dataset
	2.2.1 Downloading the Dataset
	2.2.2 Processing the Point Cloud
	2.2.3 Processing the Rover Sensor Data
	2.2.4 Processing the GPS data
	2.2.5 Generating the SLAM Local Maps
	2.2.6 Filtering the Tenerife Dataset
	2.2.7 Validation Split

	3 Model Implementation
	3.1 Framework and Resources
	3.2 Structure
	3.2.1 Input Processing
	3.2.2 Convolutional Neural Network
	3.2.3 Dense Layers
	3.2.4 Weight Sharing
	3.2.5 Comparation Layer
	3.2.6 Loss Functions

	3.3 Training
	3.3.1 Batch Size
	3.3.2 Training Optimizer and Learning Rate
	3.3.3 Data Generators

	3.4 Python Library and Jupyter Notebooks

	4 Model Testing
	4.1 Initial Tests
	4.1.1 HiRISE Dataset
	4.1.2 Tenerife Dataset

	4.2 Hyperparameter optimization
	4.2.1 Optimizer and Learning Rate
	4.2.2 Input Processing
	4.2.3 MobileNet Parameters
	4.2.4 Dense Layers
	4.2.5 Weight sharing
	4.2.6 Comparation Layer
	4.2.7 Choosing the Loss Function

	4.3 Prediction Results
	4.4 Resource usage analysis
	4.5 Comparison with Other Methods

	5 Conclusion
	5.1 Future Work

	Bibliography
	Software
	Acronyms
	Acronyms
	List of Figures
	List of Tables

