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Chapter 1

Introduction

This paper deals with the possibility of using structural reductions and parti-
tioning of the state space when checking reachability. It is inspired by a method
called Compositional Backwards Reachability (CBR) which was first introduced
in [4]. The CBR paper mentions functions for partitioning and heuristics for
which partition to explore first as areas for future research which is what we’re
examining.

We examine the possibility of partitioning the state space such that certain
edges are unavailable in one partition but available in another, in a way that
would ideally create at least one greatly simplified model which can be verified
very quickly. We combine this approach with structural reductions applied
seperately to the partitions with the goal of selecting partitions that can be
greatly reduced as our heuristic.

Model Checking

Model checking is a topic in computer science where a model of a system is
used to answer properties about a given model, such as whether a state in
the model is reachable or if the system contains deadlocks. It is used among
other things in industrial systems for examining setups of industrial robots and
internet protocols to check that distributed systems behave as intended.

Model checking[4] is done by exploring the model for a given query where a
starting state is given and rechable states from that state are gradually added
to a passed list until either a state matches the query or there are no remaining
reachable states that have not already been explored.

1.0.1 State Space Explosion Problem

As a model increases linearly in size the state space increases exponentially.
This is known as the state space explosion problem. Many papers address this
using different techniques like zones[2] for timed models, structural reductions
or stubborn sets[1], but it is the key limiting factor in model checking as ex-
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ponential complexity greatly limits how large models can be before the time it
takes to answer a query becomes impractical.

It is also a problem in terms of memory usage as the passed list eventually
grows too large to keep in memory.

1.0.2 Compositional Backwards Reachability

Compositional Backwards Reachability CBR is a method where the reachability
search is performed backwards, from the reachable state to the initial configu-
ration, allowing faster exploration via depth first search on models that support
the approach. Another advantage is that exploring a single step forward every
state produces exactly one successor state per edge, but for edges that set vari-
ables a single state can have many predecessors, letting CBR explore multiple
states in one step. It is described in greater detail in [4].

Compositionality allows the search to be performed over partitions in the
search space, for example by first exploring only some of the automata in a
composition. This does however require that the ignored partitions are unable
to influence the partition we are examining, such as by preventing delays in
timed systems or inhibitor arcs from petri nets.

For example the setup in figure 1.1 where we select automata A and B as
our partition. If we explore using only the partition we get a positive answer
for our query, but as automata C will enter a section that prevents delays due
to the invariant it is not actually reachable in the full model.

1.0.3 Structural Reductions

Structural reductions described in [2] is a technique for reducing the size of a
model by removing parts of it in a way that does not affect the outcome of a
query. For example in Figure 1.2 we can see this applied in a trivial case.

Removing a single state from a model can have a large increase in perfor-
mance for highly parallel models. If we have two parallel automata from our ba-
sic example we have a total of 32 states; {a, a}, {a, b}, {a, c}, {b, a}, {b, b}, {b, c}, {c, a}, {c, b}, {c, c}
whereas the reduced automata only have 22: {a, a}, {a, c}, {c, a}, {c, c}. Per-
forming reductions on models is also typically much faster than exploring them,
except for cases where the query is trivial to answer like in a single step.

As with CBR there are limits to when they can be applied. Structural
reductions are not deadlock preserving, and thus when applied to timed models
where it is critical at which times a location is accessible fewer reductions can
be applied, as demonstrated in figure 1.3.

Generally the more intricate the semantics of the system is, the harder it
becomes to perform structural reductions.

Structural reductions have primarily been applied to petri nets but we believe
this is mostly due to the types of problems that are natural to model in petri
nets; highly parallel systems where the processes have no internal impact on each
other. This problem area naturally meets the requirements for both structural
reductions and CBR, but one major limitation of petri nets is that they are
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Figure 1.1: An example of inappropriate partitioning for a set of Timed Au-
tomata with the semantics of the Uppaal model checker. If we try to explore A
and B without also exploring C we would find that the end locations for each
process are reachable, yet since C would prevent us from delaying more than 10
time units this would not actually be true.

Figure 1.2: Example of a basic reduction. This simple model starting in c where
it can only move to b then a can have the b location removed so we simply go
straight to a as long as b is not a part of the query.
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Figure 1.3: Timed vs Untimed reduction. While we can safely remove location
B, we cannot remove location J and preserve the behavior of the model, as K
must become unavailable at 10 time units, and I cannot become available before
20 time units.

not used for composition of parallel automata which is a major application
for model checking when checking compatibility between modular systems. We
believe this is an area where structural reductions could potentially prove highly
beneficial.

1.0.4 Combination Example

To give an example of how these two concepts can be used together, we consider
a single type of reduction which removes only locations with a single ingoing
edge and a single outgoing edge. We combine this with partitioning that takes
a place with two outgoing edges and creates two seperate models; one in which
the first edge is taken and one in which the second is taken, then we allow each
partition to move to the other partition when in that location.

Consider the example in Figure 1.4
We have our initial model first prior to any partitioning and reductions.

We first perform the reduction step, but since this model has no matching
pattern; every location has multiple ingoing or outgoing edges, we cannot reduce
anything.

We then partition the model into two new graphs; the top one being where
we always perform A −→ B and the bottom one always A −→ H. We do this
by copying the original branch from the branching location only copying the
locations connected via edges, until we reach the branch location again. This
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creates two new partitions missing some locations and edges which are now only
present in the other partition, and new purple edges leading between them.

Since we have removed connections from the graph we can now apply reduc-
tions again, this time eliminating location I in the top partition and locations
G, F and I in the bottom. Reduced paths marked with blue.

For step 4 we again partition this time on location B, producing two new
partitions one in which we always choose C in B and one where we always choose
E. Step 5 we again apply reductions which leaves us with three much smaller
partitions than the initial model.

Note that we can still eliminate duplicates across partitions, as every reach-
able state from any location in each partition is the same across partitions. This
means that even though the model has 8 locations only 5 of them are unique.

This has the potential to double the model’s size, but wont increase the state
space, as the new locations added are, for the sake of states, identical to existing
ones. This does however mean that as structural reductions are based on model
size which is normally tied to state space, become more expensive to apply with
more partitions relative to exploration, which is tied to state space. In addition,
since partitions only contain a portion of the total state space, intermediate
states removed via structural reductions may be reachable in another partition,
which also reduces efficiency of reductions.

To the best of our knowledge optimizing structural reductions has not been
examinined before as they are much faster than the exploration step, but with
partitioning we now have the expectation that each partitioning at worst dou-
bles the model size leaving exploration complexity untouched, but doubling the
time it takes to apply reductions, thus reduction performance is essential to
evaluating the algorithm. Because of this we assume that at some point the
cost of exploring the model will be lower than what is gained by continually
reducing it.

The goal of the combined algorithm is to partition the model in a way that
cases preventing reductions are constricted to one of the partitions, enabling
us to apply further reductions in at least one of them. We ultimately wish to
partition the state space such that compositions that are highly reduceable, and
thus presumed to be very fast to explore, are explored first.
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Chapter 2

Problem Analysis

In this chapter we go into details regarding the challenges of combining struc-
tural reductions with partitioning and the motivation for the algorithm.

2.1 Motivation

This section describes the expected benefits of the proposed algorithm.

2.1.1 Reductions vs Techniques

A lot of techniques exist for speeding up exploration, such as partial order
reductions [1], which solve the same problems as reductions, but because they
are applied mid exploration they are run repeatedly when answering a query
while reductions are only run once as preprocessing.

In figure 2.1 partial order reductions are applied for every state, while struc-
tural reductions are only applied once. This means partial order reduction might
never be applied if no state is reached that warrants it, or it may be repeated
millions of times. Generally runtime techniques have better best case scenarios
while reductions are best in worst case as it is a hard reduction of the total state
space.

2.1.2 Reductions in Parallel Automata

For petri nets reductions perform extremely well as they’re commonly used to
model highly concurrent processes. We believe the benefit of structural reduc-
tions is more closely tied to the kind of problems petri nets are naturally used
to model rather than the petri net semantics themselves.

However there are already existing optimizations that overlap with reduc-
tions, and especially for parallel automata symmetri reductions are very effi-
cient.[1] Symmetri redutions are shown to cause very high increases in perfor-
mance [3] and structural reductions tackle the same problem of many parallel,
identical automata.
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Figure 2.1: Partial Order is done during exploration, by combining the first and
second update into one exploration step the explorer can skip the intermediate
state saving memory. Just like the reduced example, both will produce a single
successor state with x+ 5.

Symmetri Reductions change the way states are represented for many iden-
tical automata, such that it tracks how many automata are in a specific state.
This means for example with 3 automata and two locations each instead of
having 1 : a, 2 : a, 3 : b, 1 : a, 2 : b, 3 : a, 1 : b, 2 : a, 3 : a we represent all three as
a : 2, b : 1.

2.1.3 Distributed Model Checker

Another advantage to structural reductions is that they are completely inde-
pendent of other parts of the model, which makes the reduction step easy to
parallelize. In distributed exploration it’s necessary to have a way to handle
duplicate checking for reachable states across nodes, but for structural reduc-
tions you can just send a partition to each worker node and it is dependent on
nothing else.

It is even possible to perform reductions and exploration simultaneously,
letting one worker explore while the rest reduce untouched partitions, although
this can lead to some states being explored that would’ve later been reduced,
it still allows for early termination if an answer is found before the remaining
partitions are removed through compositional backwards reachability [4].
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Figure 2.2: Fragmentation Problem. The variable sensitive section is marked in
green.

2.1.4 Preprocessing

Some organizations keep models in storage for example component interfaces
that are reused in new products. Structural reductions can be applied to ex-
isting models and compositions, saving reduced models to provide faster model
checking on new queries. This does require user defined significant locations, the
only locations accessible via query, in order to be useful, as the models may be
reduced to nothing without a query preventing locations from being discarded.

2.1.5 Fragmentation Problem

The fragmentation problem deals with localized variables in models. Consider
the example in figure 2.2

Here the variable is only accessed within a small part of the model, and is
reset when the part is re-entered. This is a potential case for control flow models
in particular, where we only access the variable for controlling components that
are not frequently in use.

Active clock reduction is a technique used in uppaal[1] which allows the
variable, or in this case clock, to be removed from the states. This is very
potent as it is often possible to exit the section accessing the variable with
many different values for the variable with everything else remaining the same
which results in many unique states that all produce unique successor states only
because of the difference in the local variable. This can multiply the reachable
state space by every possible permutation of the variable in question.

A way to incorporate this using structural reductions could be to list the
relevant variables in a partition, and ignore unlisted variables while checking for
duplicates.
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Figure 2.3: Partial Order is done during exploration, by combining the first and
second update into one exploration step the explorer can skip the intermediate
state saving memory. Just like the reduced example, both will produce a single
successor state with x+ 5.

2.2 Limitations

2.2.1 Deadlocks

one of the limitations in structural reductions is that they only preserve reach-
ability, not deadlocks.

In the figure 2.3 the intermediate red location is safe to remove, it won’t
change what states the system is able to reach, however before reducing the
model is able to deadlock by advancing to the red state when x is ¡= 5. The
reduced model can never deadlock

Timing provides ample opportunities for deadlocking as a deadlock occurring
somewhere else in the system affects which states are available. Same for global
variables.

This means that we cannot use structural reductions for answering a dead-
lock query.

2.2.2 Parallel Automata

In models with many identical, parallel automata structural reductions look
highly rewarding as removing a state in a duplicate automaton counts as mul-
tiple for each duplicate, so we would expect a 2n reduction in statespace when
applying it, where n is the number of parallel duplicates.

However due to optimization techniques like symmetri reductions described
in (reference uppaal paper) in which rather than keeping track of each individual
state of parallel automata, we instead count the number of automata in each
state. Combined with this technique we would not see the 2n gain but rather
nlogn gain, although this should still be quite good.

2.2.3 Antisynergy

If we can double the speed of model checking with reductions and double the
speed with exploration techniques do we get 4x the performance? Sadly, no. Re-
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Figure 2.4: Example of a bad edge split. Here we split from the purple loca-
tion but immediately rejoin in the red location, giving us only a single unique
successor for each partition.

ductions and techniques often eat into the same mathematical principles, which
means when used in conjunction they cannibalise each other’s gains. As de-
scribed with symmetri reductions, partial order reductions and path reductions
also rely on the same principles and reduce each other’s performance. While
this is not always the case, it is not enough to show that structural reductions
improves the answer time, it has to do better than existing techniques or show
synergy where reductions + techniques outperform just techniques.

2.3 Partitioning

When we partition we duplicate the model while allowing exploration across
them. This is different from the CBR approach which aims to partition the state
space such that every state belongs to a unique partition. Our approach aims
to split the model such that more reduction conditions can be satisfied. This
means we have states occuring in multiple partitions from different predecessors,
a property that is examined more closely in chapter 6

2.3.1 Edge split vs guard split

An edge split means from some location we choose one of multiple outgoing
edges and direct it to another partition, while the successor locations from the
original model. As shown in the partition overreach problem example this can
lead to situations where each partition eliminates non-overlapping intermediate
states. This problem occurs when e1 and e2 converge quickly after the partition.

We refer to the number of steps x in both partitions, sstart −→x sshared,
as the unique successor value, where sstart is the state before the split into
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seperate partitions and sshared is the average successor state encountered in
both partitions. The problem is more pronounced when x is low, .

As seen in the example a bad split with low unique successor value occurs
when the partitions immediately rejoin.

A guard split, where a single edge is split into two edges leading to the same
location in seperate partitions more closely partitions the state space rather than
the physical model. Since the states reachable initially in each partition differ
on at least one variable, only variable updates are capable of producing shared
successor states. A guard split simply needs to happen with no immediate
updates to the variable used to partition. However, unlike the edge split, there
is no guarantee that an arbitrary guard split will lead to any reductions, unlike
edge split which will always reduce the number of ingoing edges in at least one
location.

For this reason it is important to develop and test a good heuristic for where
to split, especially for guard partitions.
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Chapter 3

Problem

This section specifies the semantics and problem for the paper. As explained
during introduction this algorithm is intended for use with highly parallel sys-
tems, however this paper is concerned with exploring the feasibility of such an
algorithm first. Thus our semantics are kept within very limited functional-
ity only considering basic variable manipulation without parallel automata or
timing to focus on the reductions and partitioning of a single process.

3.0.1 Preliminaries

A Simple Integer Automaton P is a tuple P = (L,Linit, Lcrit, E, V, Vmin, Vmax)
where

L is the set of locations. Linit is the initial location and nonempty. Lcrit =⊆
L is the set of critical locations and Linit ∈ Lcrit

E is the set of edges defined as E ⊆ L×G× U ×G× L
G is the powerset of guards: G = P(g)
min and max are the minimum and maximum values variables are allowed

to take. These are needed to keep the state space finite in case of loops.

Guards

A guard g is defined as a lower and an upper bound, gl, gu such that 0 ≤ gl ≤
gu ≤ max All edges have guards for every variable, if no guard is specified
then the guard is {min,max}.

A valuation satisfies a guard, v ` g ⇐⇒ gl ≤ v ≤ gu

Domination For a single variable we define domination as g ⊆ h ⇐⇒ gl ≥ hl
and gu ≤ hu

Non-intersecting Two guard sets are Non-intersecting, G × H if gl > hu or
hl > gu

13



Figure 3.1: Predate and Postdate in relation to the original guard. Think of
these as copying a guard forwards or backwards one edge in a path, modifying
them by the updates they cross, such that the path will permit the same states
to travel across.

intersection Guard intersection specifies the set of guards that will allow states
allowed by both sets of guards:J = G ∩H
We first define the guard intersection for a single variable:

g ∩ h = j where

G1∩G2 = G′ =

{
jl = max(gl, hl), ju = min(gu, hu) for gl ≤ huandgu ≥ hl
∅ for else

}
G ∩H = J |∀j ∈ J.∀v ∈ V.jv = gv ∩ hv

Guard Transformations are used during reductions to create guards that are
satisfied by the predecessor or successor states in relation to an update.
For example when defining the guard of a new edge that’s the combined
edge of taking e1 then e2 we would need to allow values that satisfy the
guard for e2 after applying the update of e1.

these are:

Predated Guard g/u = g′ is the guard g′ that accepts the values that are
accepted by g before applying update u such thatv ` g −→ u(v) ` g′ It
is defined as

g/u = g′ =


max(Vmin, u(gl),min(Vmax, u(gu)) for u± ∈ {”+ = ”, ”− = ”}
min,max for u± = ” = ”, g1 ≤ uk ≤ gu
∅ for u± = ” = ”, uk < gl
∅ for u± = ” = ”, uk > gu


where uv = yv

Postdated Guard g.u = g′ is the guard g′ that is satisfied by the values sat-
isfying g when updated by u after g such that v ` g′ −→ u(v) ` g It is de-

fined as . g/u = g′ =


max(Vmin, u

−1(gl),min(Vmax, u
−1(gu)) for u± ∈ {”+ = ”, ”− = ”}

uk, uk for u± = ” = ”, g1 ≤ uk ≤ gu
∅ for u± = ” = ”, uk < gl
∅ for u± = ” = ”, uk > gu


14



where uv = yv

Updates

U is the powerset of updates U = P(u)

An update u = uv, u±, uk|u± ∈ {=,+ =,− =}, v ∈ V and k is a constant.

The inverse update u−1 swaps plus with minus and is unchanged for equality.

Upmerge : An upmerge U ′ = U
⊕
Y is a an update applied to the outcome

of another update; applying U then Y . For example, if the first update
is + = 3 and the second is + = 5 we can combine it into one update
of + = 8, while if it was + = 3 followed by = 2 we skip the first as its
overwritten. We first define this for a single variable:

u
⊕
y = u′ =



u′ = y for y± =′=′

u′ = uv, ” = ”, uk + yk for u± =′=′, y± = ”+ = ”
u′ = uv, ” = ”, uk − yk for u± =′=′, y± = ”+ = ”
u′ = uv, ”+ = ”, uk + yk for u± ∈ {”+ = ”, ”− = ”}′, y± ∈ {”+ = ”, ”− = ”}, 0u±uky±yk > 0
u′ = uv, ”− = ”, uk + yk for u± ∈ {”+ = ”, ”− = ”}′, y± ∈ {”+ = ”, ”− = ”}, 0u±uky±yk < 0
∅ for u± ∈ {”+ = ”, ”− = ”}, y± ∈ {”+ = ”, ”− = ”}, 0u±uky±yk = 0


where uv = yv For full updates we define ∀v ∈ V U ′v = uv

⊕
yv

We refer to the preceding location before edge e as •e and the destination after
taking the edge as e•. Similarly, the sets of ingoing and outgoing edges from a
location l is referred to as •l and l• respectively.
∀e = {l1, g, u, g′, l2}: l1 = •e, l2 = e•, e ∈ •l2, e ∈ l1•
A state s is defined as l,W where l ∈ L is a location, and W is a function

assigning values to all variables, such that ∀v ∈ V : W (v) = Z≥0 and 0 ≤
W (v) ≤ max. We refer to S as the powerset of states.

A state satisfies a guard, s ` g, if ∀v ∈ V : W (v) ` k.
Invariants assign guards to locations.
I ⊆ {L×G}
A transition s,

e−→, s′ is the result of taking an edge such that s = {l1,W}, e ∈
E = {l1, G1, U,G2, l2}, s′ = {l2,W ′} where ∀g ∈ G1 : s ` g,∀g′ ∈ G2 ∪ I(l2) :
s′ ` g′, ∀v ∈ V : W ′(v) = u(W (v))

A query φ is defined as a subset of states which we wish to know whether
or not they are reachable: φ ⊆ S, We use l ∈ φ as a shorthand for any states in
the query that are in location l.

3.0.2 Reachability

In verification asking whether a state is reachable given an initial state is known
as a reachability query. Given an initial state and model does a sequence of
transitions exist sinit

e1−→ s1
e...−−→ s...

en−→ sn|sn ∈ φ such that we can perform
legal transitions from the start state to reach any state specified by the query.
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3.0.3 Exploration Algorithm

This section defines the exploration part of the algorithm, for the purpose of
establishing problem areas in partitioning and reductions.

As we concern ourselves primarily with reductions and partitioning, we use
only a basic exploration algorithm with no optimizations. While this will skew
performance testing in favor of reductions, we aim to test on the number of
states explored, so exploration time is not a factor in evaluating the algorithm
in this stage.

We first describe a conventional reachability algorithm for exploring the state
space. This is done in algorithm 1

Data: Model M , initial state to explore from s0, target states sfinal
Result: boolean answer to φ
initialization;
waiting queue ← s0;
while waiting queue 6= ∅ do

s←pop(waiting queue);
l← location of s;
for edges e originating from l do

if e’s guards are satisfied by s then
newstate ← update effects on s;
if newstate 6∈ passed list then

passed list ← newstate if newstate ∈ sfinal then
return

end
true;

end

end
waiting queue ← newstate;
discard newstate and go to next edge;

end
go to next edge;

end
return false

Algorithm 1: Basic exploration algorithm - Keeps a queue for unexplored
states and a list of all passed states. For every state in the waiting list we get
all reachable states in one step. If a state is not in passed list it is added to the
waiting queue, unless it is part of the query in which case we terminate with
a positive answer. Once the waiting queue is empty and we have not found a
positive answer we terminate with a negative one.

We next consider a basic algorithm for CBR in algorithm 2. We first need
to redefine states as stateclusters that allow us to represent a group of states
as Sc ⊆ L × G. Now when we explore s′

e−→ s going backwards, so taking
s as the original state and s′ as the new state cluster after exploring edge e,

16



∀s∗ ∈ S|s∗ e−→ s : s′c
e−→ s =⇒ s∗ ` s′c

For example, if e has no guards and a single update x” = ”5 our s′c would
have the guard g(x) = {min,max}

Data: Model M , initial state to explore from representing φ s0, partition
queue P, target states sfinal

Result: boolean answer to φ
initialization;
partition waiting queue ← sfinal;
while partition waiting queue 6 ∅ do

waiting queue ← pop partition waiting queue;
while waiting queue 6= ∅ do

s ← pop waiting queue;
l← location of s;
for edges e originating from l do

if e’s guards are satisfied by s then
newstate ← update effects on s;
if newstate 6∈ passed list then

passed list ← newstate if newstate ∈ s0 then
Return true

end
if newstate belongs to current partition then

waiting queue ← newstate
else

add newstate to appropriate partition. If the
partition it belongs to is higher priority we return
to that partition

end

end
discard newstate and go to next edge;

end

end

end
go to next partition;

end
return false;

Algorithm 2: Basic CBR algorithm - The two differences are the addition of a
queue for each partition and the reverse exploration. Although each partition
has it’s own waiting list, they all use the same passed list.

3.0.4 Partition Overreach

A new problem arises when reducing separate partitions. Consider the example
in figure 3.2.

17



Figure 3.2: The Partition Overreach Problem. M is the initial model, M ′A
and M ′B are partitions and blue locations are locations removed by the simple
structural reduction introduced in the combination example. In the original
model M if we have location E in our waiting queue and location F in our
passed list, exploring E will yield no successor states. However, since F does
not exist in partition M ′A if we explore E we will reach G.

18



The problem here is that the reductions reduce the state space within each
partition, but since the removed states remain reachable in the other partition
the reductions effectively do nothing. Since we’re also removing intermediate
states in this case duplicate elimination cannot occur until later, because the
partitions have no common locations until returning to A.

The severity of this is at worst negating the gain from structural reductions
performed after the partitioning

3.0.5 Problem Formulation

In the following chapters we answer the following:

• Given a simple integer automaton and a query; can structural reductions
and partitioning be applied such that we maintain correctness and reduce
the explored state space?

• Do partitions improve the performance of structural reductions?

• Can we preserve correctness across partitions?

• What can be done to avoid the Partition Overreach problem?

• How can reductions be applied efficiently?

• Where and how should partitioning be done?

19



Chapter 4

Algorithm Foundation

This chapter describes the overall structure of the algorithm, the exploration
step and the architecture of the implementation.

With just structural reductions the algorithm has two primary steps:

• Apply Reductions

• Explore

We add the partitioning step after reductions, and repeat until we reach
the condition for stopping partitioning, such as partition depth, described in
algorithm 3.

4.1 Specification

As our goal is to examine the viability of a new algorithm we require a testbed
that’s highly configurable.

• Able to enable/disable specific reductions, ideally during execution

• Implementation for individual stages should not interfere with each other

• Performance of reduction step is important as it is repeated recursively,
cannot reiterate over entire model after every reduction.

• Exploration performance not important, we will compare reduction per-
formance by counting the number of states explored instead of time. As
long as we do not explore redundant states testing should be accurate.

To keep the stages separate we use the visitor pattern for implementing
Explorer, Reducer and Partitioner classes described in the following chapters,
along with the support classes ReductionChecker and HeuristicChecker.

20



Data: Model M , initial state to explore from representing φ s0, partition
queue P, target states sfinal

Result: boolean answer to φ
initialization;
M ← Reduce(M);
partitions ←M ;
while partition depth ¡ desired depth do

P ←Pop(partitions);
M,M ′ ← partition(P );
M ←Reduce(M);
partitions ←M ;
M ←Reduce(M ′);
partitions ←M ;
partition depth ++

end
while partitions 6= ∅ do

P ← Pop(partitions);
if BackwardsReachability(P) then

return true
end

end
return false;

Algorithm 3: Partition-Reduce algorithm - Repeatedly partitions the model
before exploration. Out-of partition states reached during exploration are
added to their respective partitions.
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4.2 Implementation of Model and Exploration
Step

Based on algorithm 2 this includes the reduction and partition steps.
The implementation used in this project is described in the class diagram in

figure 4.1
While this is only concerned with classes related exploration, reduction and

partitioning steps are implemented using the visitor pattern, reusing the Mod-
elVisitor interface.

Guard operations are handled in the Update and GuardCollections, imple-
mented as dictionaries that map keys to values, specifically variables to guards.
The GuardCollection returns a static member OPENGUARD if it contains no
entry for a variable. OPENGUARD will accept any value between min and
max. They return NULLGUARD the GuardCollection is unsatisfyable. This
happens for example when you get the guard intersection between x : 1− 3 and
x : 5− 7.

22



Figure 4.1: Class Diagram showing only classes relevant to exploration.
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Chapter 5

Reductions

In this chapter we discus the reductions applied to each partition.
We define a reduction as follows.
A reduction is a function R(M,φ) = M ′ that when given a model M , and

a query φ function is applied to M matching some condition, it produces a
modified model M ′ such that M |= φ ⇐⇒ M ′ |= φ.

5.1 Successor Boundedness

When applying reductions it is important that they do not alter the answer for
the query. In theorem 5.1.1 we formulate the binary relation ≡φ between two
models to mean that given the query φ the models will return the same result.

Theorem 5.1.1 Models M and M ′ satisfy M ≡φ M ′ only if M |= φ⇐⇒M ′ |=
φ where M,M ′ are models and φ is a reachability query.

We next define a graph manipulation function as a function which given
M,φ, l where M is a model, l is a location and l ∈ loc(M) returns M ′ :
f(M,φ) −→M ′

In order for graph manipulation functions not to violate theorem 5.1.1 we
introduce the attribute of successor boundedness in theorem ??.

Theorem 5.1.2 Successor Boundedness for a graph manipulation function, F (M, l, φ)
implies that M ≡φ M ′ defined as ∀s ∈ Succ∗(Linit)∃s′ ∈ Succ∗(L′init) such that
s = s′ or s′ ∈ Succ∗(s) or 6 ∃st ∈ Succ∗(s)|st |= φ

The theorem can be read as for every state in the original model, there
exists an equivalent state in the reduced model, or the original model’s state
can perform transitions to reach a state which is equivalent or it can never reach
a state that would satisfy the query.

For graph manipulation functions that create modified models, this means
that when removing parts of a model, the states removed have to either satisfy
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Figure 5.1: Path Reduction example. Location 2 is cut away and the two edges
connecting it are merged into one.

6 ∃st ∈ Succ∗(s)|st |= φ or ∃s′ ∈ Succ∗(st)|s′ ∈ Succ∗(s), where st is a removed
state from M ′ and s is a reachable state in M .

We show successor boundedness holding in a single step here:

s0
e1−→ s1

e2−→ s2
|| ||
s′0

e′−−−−−→ s′2

The reduced model removes the intermediate state s1, but s2 ∈ Succ∗(s0)
and s′2 ∈ Succ∗(s′0) still holds.

Since the property holds for any model, it will hold for repeatedly applying
functions that satisfy the successor bounded property as defined in lemma 5.1.3.

Lemma 5.1.3 M and M ′′ satisfy M ≡φ M ′′ ⇐⇒ M ≡φ M ′ and M ′ ≡φ
M ′′|F1(M, l1, φ) = M ′ and F2(M ′, l2, φ) = M ′′

5.2 Path Reductions

A Path Reduction applies when we have a state with a single ingoing edge and
a single outgoing edge. We merge both edges and their guards and updates into
a new edge e′:
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Condition

A location l1 with a single ingoing and outgoing edge. ∃l such that •l = {e1}
and l• = {e2} and l 6∈ Lcrit

5.2.1 Function

We define M ′ = {L′, Linit, LCrit, E′, V,min,max} where L′ = L \ l, E′ = E \
{e1, e2}

⋃
e′ where e′ = {l1, G′, U ′, l2}|l1 = •e1, l2 = e2•. We specify the guards

and updates for e′ as follows:
The new update function U ′ is the upmerge of e1 and e2: U ′ = U(e1)

⊕
U(e2)

The guard is the Guard Intersection of G(e1), the guard intersection G(e2)∩
I(l) predated by U(e1) meaning any state taking the edge must satisfy the guard
for e1 and the guard for e2 and invariant for l after applying the update from
e1. in G′ = G(e1) ∩ (G(e2) ∩ I(l))/U(e1)

If the guard cannot be satisfied by any state which can happen if G(e1) ×
G(e2)/U(e1) the function instead removes the location l and both connected
edges: M ′ = {L′, Linit, LCrit, E′, V,min,max} where L′ = L \ l, E′ = E \
{e1, e2}.

5.2.2 Proof

The proof falls into two simple cases:

• Successor exists

• No Successor exists because we cannot satisfy φ

We show that theorem 5.1.2 holds for path reductions. To show this, we need
to show that ∀s ∈ l either Succ∗(s) 6|= φ or ∀s1 ∈ Pre(s)∃s2|s2 ∈ Succ∗(s1).

We begin by examining the regular reduction function. As per our condition,
l has only a single ingoing edge, thus s1 = Pre(s) ∈ ˙̇l If s satisfies the query,

then there must be s2 still reachable by s1
e′−→ s2 and our first case for theorem

5.1.2 holds.
If there is no transition s

e2−→ s2, s can only satisfy the query if s |= φ but
by our condition l 6∈ Lcrit that cannot be the case.

In the second case where the location is removed, again by l 6∈ Lcrits cannot
satisfy the query and successor boundedness is preserved.

5.2.3 Parallel Reduction

Parallel reductions take two edges going from and to the same locations and
combines them into one as long as they have identical update functions.
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Figure 5.2: Parallel Reduction

Condition

The conditions for this reduction is that the two edges have the same loca-
tions as input and output, they must have identical update functions and have
continuous guards:

• Edges e1, e2| • e1 = •e2, e1• = e2•

• U(e1) = U(e2)

• G(e1) 6 ×G(e2)

Function

We remove the matching edges and add a new edge with the same update and
the guard intersection between the old edges:

M ′ = M \ e1, e2
⋃
e′ where e′ = {•e1, G(e1)

⋃
G(e2), U(e1), e1•}

Proof

Parallel reduction maintains all reachable states, as s
e′−→ s′ =⇒ s

e1−→ s′ or
s
e2−→ s′

As condition two requires the edges have identical updates every state reach-
able via e1 will be identical to e2, and the guard union means that either G(e1)
or G(e2) will be satisfied.

5.2.4 Dead End Reduction

A Dead End Reduction removes locations that have no outgoing edges which
are not part of LCrit as exploring them can never result in a positive answer.
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Condition

The condition is a location with no outgoing edges that is not a part of our
critical locations and thus cannot impact the query if removed:
∃l|l 6∈ LCrit and e• = ∅

5.2.5 Function

On a match we remove the location and all ingoing edges from the model.
M ′ = M \ (l

⋃
•l)

Proof

Trivial as reaching l is not part of the querry and there is no way to progress
from l: 6 ∃e such that s

e−→ s′|l ∈ s

Island Reduction

This reduction takes a location l with no ingoing edges, •l = ∅, and removes
the location along with all outgoing edges.

5.2.6 Guard Propagation

Guard Propagation does not normally remove locations, it just propagates
guards through the graph and only removes if it creates an unsatisfyable guard.

If every outgoign edge has a guard, every ingoing edge gets has the predate
of that guard and its update function added.

Condition

For a location there is a guard intersection for all outgoing edges
∃l|∀(e1, e2) ∈ l : e1 \ e2 6=

5.2.7 Function

Modify ingoing edges to prevent exploring states that can’t proceed one more
step:
∀e ∈ l : G(e′) = G(e) \G′|G′ = e1 \ e2

Proof

Trivial as reaching l is not part of the querry and there is no way to progress
from l: 6 ∃e such that s

e−→ s′|l ∈ s
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Figure 5.3: Class diagram for condition checking and reductions.

5.3 Reduction Implementation

We extend the implementation in 4.2 to add reductions. Our new components
as described in the class diagram 6.1 are Conditionals, ConditionalSubscriber
and Reduction, and the two visitors Checker and Reducer.

• Conditionals are instantiated on locations or edges and are responsible
for checking the conditions specified by reductions. They use the ob-
server pattern with IReducable as subject and ConditionalSubscriber as
subscriber.

• ConditionalSubscriber subscribes to Conditionals with an argument and
a priority.

• Reductions instantiate ConditionalSubscribers then wait for them to be
satisfied. If a reduction takes multiple conditions it will instantiate the
second after the first is satisfied and continue until a full chain subscribers
are satisfied, then it will apply the Reduce method on the relevant sub-
scriber target.

The reduction step is initiated by the Checker being called on the partition.
The checker goes through all edges and locations, where it calls Instantiate for
each reduction in it’s list, as shown in the event diagram in figure 5.4. This
creates the relevant conditionals at the current location if they are missing, and
creates a subscriber for the reduction at the conditional.
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Figure 5.4: Event diagram for condition checking. This gives the example for
path reductions where the reduction requires two Conditionals; IngoingCount-
Conditional and OutgoingCountConditional to both have a value of 1.

Once created the conditional computes its result. The Checker will keep
going through the model until all reductions have been instantiated on their
locations.

Compute depends on the exact Conditional, for example IngoingCountCon-
ditional will get the number of ingoing edges at the location it is subscribed to
and save the value as result. It will then go through all ConditionalSubscribers
subscribed to it and see if result satisfies the argument they subscribed with.

The effect of the compute method can be seen in the other sequence dia-
gram in figure 5.5. Once a ConditionalSubscriber has it’s argument satisfied it
will notify the Reduction that owns it that it has been satisfied. The reduction
will then either require more subscribers to be satisfied, leading to a repeat of
figure ?? without involving the checker. If the Reduction is fully satisfied it will
apply it’s function on the model, using the Reducer to remove model compo-
nents. The reducer is responsible for cleaning up references to the reducable,
as well as calling the Checker on adjacent reducables to re-calculate any condi-
tionals that may have changed, for example removing an ingoing edge will cause
IngoingEdgeConditional to recalculate.

The implementation of the reduction stage satisfies our stated goals as fol-
lows:
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Figure 5.5: Event diagram for condition satisfied. This gives the example for
when a ConditionalSubscriber is satisfied by a Conditional.

• We can enable and disable different reductions whenever a new partition is
created. Each partition has a separate instance of Checker which contains
the list of reductions to apply, so we can for example skip computationally
heavy reductions after x partitions have been applied.

• The reduction step only scans the partition once during the initial pass
by the Checker, and only the new partition. The old partition rechecks
relevant conditionals via the Reducer as necessary.

Please note that while the conditional setup and use of visitors comes with
a relatively high overhead for simple conditionals like the IngoingCount condi-
tional which only has to get the number of ingoing edges in a location when it
is computed. We justify this overhead on the basis that time spent on condi-
tion checking would primarily come from more complex conditionals involving
guard comparisons where the overhead is negligible, the overhead does not in-
crease time complexity, and the conditional structure is reused during Heuristic
calculations as described in section 6.5.
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Chapter 6

Partitioning

In this section we discus how we partition the model. First we need to define
partitions and partitioning:

6.1 Partition Definition

A Partition P is a Simple Integer Automaton with a new set of edges, EP
which is the set of edges connecting partitions together. They are defined as
l1, P

′, l2|l2 ∈ P ′. For our partition P either l1 ∈ P or P ′ = P . As with regular
edges l1 is the origin, l2 is the destination, but l2 does not exist in the same
partition as l1. P ′ refers to the partition of the destination.

Partitioning is a graph manipulation function similar to structural reduc-
tions with a condition and function as well, but unlike reductions a partitioning
returns two partitions.

For Partitioning we require a stricter condition that preserves all states as
defined in theorem ??.

Theorem 6.1.1 A graph manipulation function F (M, l, φ) −→ M ′|l ∈ M ′is
state preserving if ∀s ∈ l(M),∀s′ ∈ l(M ′) : Succ∗(s) = Succ∗(s′)

Basically state preservation just means that Partitionings do not alter the
state space. Since any function that maintains all successor functions automat-
ically satisfies the successor boundedness theorem 5.1.2 we have lemma 6.1

Theorem 6.1.1 =⇒ theorem 5.1.2
We next wish to show that we can eliminate duplicate states when encoun-

tered in seperate partitions, as specified by theorem 6.1.2

Theorem 6.1.2 If s is reachable in P , s is reachable in P ′ and F (P, l, φ) −→
P ′ satisfies theorem5.1.2 then ∃s1 ∈ P, Succ∗(s)|s′ ` φ ⇐⇒ 2 ∈ P ′, Succ∗(s)′

We first consider partitioning without reductions. Since partitioning pre-
serves all states and transitions, the conditions holds trivially as exploring s in
any partition will yield all the same successor states.
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Figure 6.1: By repeatedly applying partitioning functions we break the model
into many smaller models.

Next we consider what happens when we apply reductions. by theorem 5.1.2
reductions must maintain at least one successor state that either satisfies φ or
has a successor state which does. Thus if s ` φ in partition P then s ` φ in
partition P ′ as well, so it is sufficient to explore either one.

6.2 Split Partition

We’ve been referring to partitioning via split partitions so far. A split partition
starts at a location with multiple outgoing edges where it selects an edge. It
copies the model into a new partition, then converts all outgoing edges to jump
edges leading into their respective locations in the other partition.

This means the other edges are removed as ingoing edges from their desti-
nations in the new partition, which can enable reductions such as unreachable
reductions or path reductions. It also removes the edge used to enter the new
partition from its destination in the original partition.

6.3 Partition Overreach

There is another interesting property for partitioning, which is not only can
we skip states that have been explored in other partitions, but we can also
skip states that would be reachable, but have had their location removed by
reductions and have no successors. These states can never satisfy the query, as
defined in theorem 6.3.1.

Theorem 6.3.1 If s is reachable in P and Succ(s) ∈ P = ∅ then forallP ′s 6` φ
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Figure 6.2: Partition Overreach example. We partition using split partition on
L1. Note that any state has to use the loop on L2 to satisfy the guard leaving
the section.

We prove this by contradiction. Suppose that existss′ such that s′ ∈
Succ ∗ (s)|s′ ` φ then whichever function removed the location was not suc-
cessor bounded.

We examine this in figures 6.2 and 6.3
What is interesting here is that if we explore the right partition first, we end

up eliminating duplicate states in L4 for the left partition; {L4 : x = 0, y =
0}, {L4 : x = 0, y = 1}, ... although these states have reachable successors in the
left partition, none of them can satisfy the x > 1 guard,but some can still reach
L5.

This shows us two things:

• Exploration order can be used to mitigate partition overreach.

• Applying reductions, such as removing L4 from the right partition can
make partition overreach worse.

While the second point is technically true, reductions often lead to more
reductions and should overall always be worth it. One way to take advantage
of this could be to mark reduced locations that contain a predecessor of a lot of
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Figure 6.3: Partition Overreach example. Since the right partition can never
satisfy the guard leaving L5, we can remove that edge without violating succes-
sor boundedness, although it is not a defined reduction. We can then apply a
deadend reduction on L5 leaving the right partition stuck in L4

successor states across partitions, give it priority during exploration and deny
reductions on this location in other partitions, but that is beyond the scope of
this report.

We introduce a new edge type for edges leaving the current partition. These
edges have an origin and a destination as usual, however it is not required
that the origin exists in the α partition, only in the β partition (Relevant for
reductions). In addition they refer to a specific queue as partitioning is nested.
When these edges are taken, the state cluster performing the action and the
edge are placed in the β queue if unique.

When a partition has no states remaining in its pending queue, we move
onto the next partition until there are no remaining partitions to explore.

6.4 Guard Partition

Given that the cause of partition overreach is shared successor states, a parti-
tioning that more resembles the CBR partitioning by splitting the state space
between partitions would help negate it. For this we introduce the Guard Par-
titioning.

A guard partitioning is done on a single edge, which is split into two with
mutually exclusive guards. Consider the model in figure 6.4

We create a guard split on the red edge splitting around x = 5 which gives
us two partitions in which all ingoing jump edges have either x > 5 or x <= 5.

We can use this to determine that the x > 5 guards in the right partition
of figure 6.5can never be satisfied,we remove those edges and repeatedly apply
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Figure 6.4: Guard Partition example. Note the multiple guards with x > 5. if
we create a guard partition around this so that only one partition can satisfy
those guards it will allow us to remove those edges.

deadend and unreachable reductions to get figure 6.6.
Unlike edge partitioning, guard partitioning is capable of making no progress

for reducing a model as we can create many partitions with small guards. We
would need a good heuristic for locating edges and guards to perform guard
splits.

6.5 Partitioning Implementation

In this section we describe the third stage of the algorthm, in which we find a
suitable location then split the model on that location into two partitions.

As seen in the class diagram in figure 6.7 we reuse the model components
from the reduction phase, specifically Conditionals and their subscribers. Sub-
scribers have a new value added, which represents the heuristic value of meeting
the argument of that subscriber.

Our heuristic is calculated by getting the conditionals to check which sub-
scribers would become satisfied if it’s result changed to some other value, and
then pass it the value we expect it to take after applying the partitioning. For
example, Split Partitioning on some edge would reduce the ingoing count for
the following location by 1, so we pass −1 as argument to GetBestHeuristic on
the IngoingCountConditional and that will give us a value indicating that some
reduction will become available if we perform the split there.
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Figure 6.5: Model after guard split. All new jump edges have added guards to
them.
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Figure 6.6: Reductions after guard split

Figure 6.7: Class diagram for relevant classes during partitioning phase.
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Figure 6.8: Sequence Diagram for finding the base heuristic for a Conditional
type

This process is described in the Sequence Diagram for Heuristic Checker in
figure 6.8. Here the Partitioner gives the HeuristicChecker a list of the condi-
tionals that are relevant for it. In the case of split partitioning that’s ingoing and
outgoing count. Next it starts the HeuristicChecker on the reducables where
it gets the value for each relevant Conditional and saves it on the reducable.
Note that this means if nothing has subscribed to the Conditional during the
reduction phase nothing is calculated, so if path, deadend and unreachable re-
ductions are disabled, we don’t need to do anything else the HeuristicChecker
will assign no values.

After the HeuristicChecker has assigned values on all reducables for each
conditional the HeuristicPropagator is started. This visitor is for propagating
the values across the model, for example by adding the ingoingCountHeuristic
to all outgoingCountHeuristic on the successors of the current reducable. This
is described in figure 6.9.

The Propagator keeps track of the highest encountered heuristic value for
each partitioner, and once it has finished propagating it starts the appropriate
partitioner on the reducable with the highest value.
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Figure 6.9: Sequence Diagram for propagating heuristic values
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Chapter 7

Discussion

In this chapter we discus the results of the paper. We have introduced structural
reductions with simple variable semantics where they can be shown to work well
especially with backwards reachability. We examined the viability of combining
CBR with structural reductions and have formulated an experimental algorithm.

7.1 Algorithm

We have introduced a new algorithm for combining reductions with partitioning
and proven correctness of the algorithm and basic reductions, however no per-
formance testing has been done. We have shown the algorithm to be viable and
have not found any reason for it to increase time complexity from O(Model Size)
with reductions to beyond O(2× Model Size ), as reductions, heuristic search
and partitioning traverse the model in its entirety only once, with additional
checks only when reductions are applied. Since the application of reduction
guarantees great performance payoff for constant time only the condition search
is considered relevant. We have highlighted a key problem area with combining
structural reductions and partitioning, Partition Overreach, which can lose the
advantage of structural reductions in the worst case scenario. While we believe
this to be unlikely, testing is needed to determine the actual impact. We also
show that the problem can be mitigated to some extent by manipulating the
exploration order to eliminate states that have no successors able to answer the
query earlier.

The implementation can be found at https://github.com/misterpaws/Partition-
Reduce/releases/tag/0.9 (Refers to implementation at time of hand-in)

7.1.1 Testing

As no implementation is complete, this section discusses the tests that would
need to be performed in order to determine the usefulness of the algorithm.

While we have proofs for the correctness of reductions, as the paper shows
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there are some new challenges when combined with partitioning. Testing the
algorithm against an existing model checker such as UPPAAL, as well as testing
results between unpartitioned and partitioned models would help showing we
have not missed anything.

Testing the time of reducing and partitioning a model compared to the time
it takes to explore is a key component as we can essentially keep partitioning
forever, but at some point it needs to stop. While reductions take much less
time than exploration without partitioning, the more we break the model down
the smaller the state space the reduction is actually applied to so there are
diminishing returns when applying partitiong recursively.

Testing the severity of partition overreach both in general and worst cases
should also be done.

Testing heuristics for priority of reductions and partitionings is a key con-
cern as partitionings do not ensure any improvement at all, and thus carefully
selecting them to optimize potential reductions will improve the algorithms per-
formance.

With the partitioning creating copies of states and edges, even if we do not
increase the state space, the memory cost of all the new models may become a
concern and should also be tested for.

7.1.2 Future Work

Creating an implementation for testing is necessary to determine how well it
actually performs, as the paper has only concerned itself with correctness of the
algorithm.

Further exploring the partition overreach solution in section6.3
The most crucial if the algorithm is to see any use will be expanding the

semantics for parallel automata and potentially timing. While timing will place
more constraints on structural reductions, parallel semantics should not be a
big problem.

Several types of structural reductions exist that can be applied to the model
in addition to the four discussed in this paper. Adding more reductions and
partitionings will improve performance of the algorithm by increasing the state
space reduction.

Developing good heuristics for which reductions and especially partitionings
to apply when is also important.

Depending on test results looking into ways to handle successor boundedness
could also be important.
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