
P e t e r  G r i n d e r s l e v  S t e g g e r  

M a s t e r  T h e s i s  

M a s t e r  o f  I T ,  4 t h  s e m e s t e r  

A a l b o r g  U n i v e r s i t y  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Malware cluster analysis 
based on Windows API function call sequences  

 
 

30/04/21 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

1 
 

 

Table of content 

1 Abstract ................................................................................................................................................... 3 

2 Reading guide .......................................................................................................................................... 4 

3 Introduction ............................................................................................................................................ 5 

4 State of the art ........................................................................................................................................ 6 

4.1 Static analysis ........................................................................................................................................ 6 

4.2 Dynamic analysis ................................................................................................................................... 6 

4.3 Malware evasion techniques ................................................................................................................. 7 

4.4 Summary ............................................................................................................................................... 8 

5 Problem statement ............................................................................................................................... 10 

6 Theory ................................................................................................................................................... 11 

6.1 Feature selection ................................................................................................................................. 11 

6.2 Distance metric ................................................................................................................................... 11 

6.3 Clustering techniques .......................................................................................................................... 14 
6.3.1 Hierarchical clustering .................................................................................................................... 14 
6.3.2 OPTICS ............................................................................................................................................. 14 

6.4 Evaluation techniques ......................................................................................................................... 15 

6.5 Summary ............................................................................................................................................. 17 

7 Analysis setup ....................................................................................................................................... 18 

7.1 Data collection .................................................................................................................................... 18 

7.2 Dynamic analysis ................................................................................................................................. 18 

7.3 Feature extraction ............................................................................................................................... 21 

7.4 Clustering ............................................................................................................................................ 24 

7.5 Summary ............................................................................................................................................. 24 

8 Analysis results ...................................................................................................................................... 25 

9 Discussion ............................................................................................................................................. 29 

10 Conclusion ............................................................................................................................................. 31 

11 Perspectivation ..................................................................................................................................... 32 

12 References ............................................................................................................................................ 33 

13 Appendix A – All recorded API function calls ......................................................................................... 36 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

2 
 

14 Appendix B – Filtered list of API function calls ....................................................................................... 38 

15 Appendix C – Source code – Main.py ..................................................................................................... 39 

16 Appendix D – Source code – FeatureProcessing.py ................................................................................ 47 

17 Appendix E – Source code – my_sorter.py ............................................................................................. 50 

18 Appendix F – Source code – process_cuckoo_reports.py ....................................................................... 51 

 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

3 
 

1 Abstract 
This project examines how malware samples can be analysed to find malware clusters based on 

sequential behaviour in sequences of API function calls. The analysis is conducted by running 

malware samples through a Cuckoo sandbox hosting a virtual Windows machine. The reports 

generated is processed in a Python application to extract the API function calls as sequences of API 

names. Three data sets are created from the API sequence calls. All sets are cut and only the first 

200 API function calls are included from each malware sample. In addition to this the second dataset 

have select API function calls filtered out, so only the most significant calls are included. The last 

dataset is like the second, but repeated sequences of API function calls are collapsed. 

Calculation of distances between API call sequences are done with the Levenshtein distance and 

transformed into a ratio by dividing with the longest sequence length. The datasets are clustered 

using the OPTICS and hierarchical clustering algorithms. The silhouette score coefficient is used to 

evaluate the fitness of the clusters and distance matrixes are plotted to allow for visual evaluation as 

well. 

The project concludes that it is possible to cluster malware by looking at the sequences of API 

function calls. Optimal clusters are found using the OPTICS algorithm on the third dataset. The best 

result is a mean Silhouette score of 0.8 disregarding noise and 0.6 including it. This shows that highly 

cohesive clusters of malware can be found using the proposed approach. 

The project shows a potential in continuing research into temporal analysis of malware in general, 

but also specifically when considering API function calls. 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

4 
 

2 Reading guide 
The report is structured with an introduction followed by a state of the art, before the problem 

statement is introduced. This is order is chosen to point out the research gap before the problem is 

stated. 

The theory section explains the theory chosen for the analysis. The section is presented before the 

analysis design section is. This order is chosen because the choice of theory affects the analysis 

design. 

The analysis results section presents and evaluates the findings of the analysis.  

The discussion highlights the issues with the analysis design and gives some ideas to how they can be 

solved. 

Finally, a conclusion is given, followed by a perspectivation on how the research can be carried on 

from here.   



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

5 
 

3 Introduction 
Malware is a threat towards private persons as well as professional corporations jeopardizing 

confidentiality, integrity and availability of data and services. 

Every day more than 350,000 new malware1 is registered on the internet (AV-Test, 2021). This is only 

the tip of the iceberg. One can only guess as to how large the number would be if all malware were 

registered. But even without this knowledge the number speaks volumes. 

This volume is a problem because defeating new malware requires analysis. When all malware is 

analysed separately the process is extremely time consuming.  

Malware is written by malware developers but most often it is not written from scratch (Calleja, 

Tapiador, & Caballero, 2016) (Ollmann, 2008). The developers continuously build existing malware 

into newer and more improved version. The different variants of malware that stems from the same 

source code is often defined as families or strains. Similarities can be detected between different 

versions within the same family. Clustering newly detected malware with known strains of malware 

will speed up the malware threat analysis process. 

This project explores how malware samples can be clustered based on temporal analysis of API 

function calls.   

 
1 new malicious programs (malware) and potentially unwanted applications (PUA)”  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

6 
 

4 State of the art 
Malware analysis can be divided into several approaches as seen in Figure 1. Statical analysis where 

the suspected malwares binaries are analysed without being executed. Signature based detection is 

a kind of statical analysis though it is not represented in Figure 1. Dynamic analysis that requires the 

malware to be run to analyse its interactions with its environment. Finally, some approaches are 

hybrids that combines static and dynamic analysis. A fourth approach is analysis of the volatile 

memory of the operating system where ”… the memory of the target machine is dumped to obtain a 

memory image …” (Sihwail, Omar, & Ariffin, 2018) so the analyst can “… analyse the memory image 

looking for malicious activities…” (Sihwail, Omar, & Ariffin, 2018).  

4.1 Static analysis 
The most widely spread form of malware detection is signature based. This is used by most of the 

antivirus software and works by extracting a “… unique signature from captured malware file and 

use this signature to detect similar malware” (Sihwail, Omar, & Ariffin, 2018). File hashes or byte 

sequences can be examples of signatures used to identify malware. It is an efficient approach against 

common types of malware, but it requires an updated signature database. This requirement makes 

it inefficient against new forms of malware since malware not in the database will not be recognised 

(Damodaran, Di Troia, Visaggio, Austin, & Stamp, 2017). However, once a new malware has been 

identified keeping a signature of it can ensure rapid detection. But to come up with signatures for 

new malware, new malware-suspects must first be analysed to determine if it is malicious or benign. 

For clustering of malware strains using a hash signature might prove ineffective since small changes 

in the malware binary can lead to completely new hashes.  

4.2 Dynamic analysis 
Dynamic analysis of malware is when malware under execution is observed. To do this several 

analysis techniques can be applied. Recording network traffic to and from an infected host machine 

is one approach. Running the malware on a host machine and recording its interactions with the 

operating system is another.  

Figure 1 Malware analysis techniques and features (Sihwail, Omar, 
& Ariffin, 2018) 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

7 
 

Others point to the risk of not observing all relevant information due to the high complexity of 

capturing all relevant events. This is being used as an argument for why dynamic malware analysis 

always should be accompanied by dynamic code analysis like debugging (Higuera, Aramburu, 

Higuera, Urban, & Montalvo, 2020).  

A common issue with sandboxes used for dynamic malware analysis is also that they only explore 

one execution path before the test is concluded (Higuera, Aramburu, Higuera, Urban, & Montalvo, 

2020). The issue here is that the malware might employ evasion techniques (Afianian, Niksefat, 

Sadeghiyan, & Baptiste, 2020), or only perform malicious activity under certain conditions.  

A lot of research in dynamic analysis looks at API function calls. This makes sense because API 

function calls reveals high level information about the behaviour of the malware. Different takes on 

this data have been done in the field of research. Some research treats the individual API function 

calls as features. Then clustering of the malware can be done based on statistical information about 

individual API function calls. Other research however has “observed that sequences of function calls 

generally describe an action better” (Széles & Coleşa, 2019). They split the API call sequences into N-

grams and used those as features. Furthermore, API function calls were grouped into levels of 

importance, based on system impact, allowing the researcher to focus on the most significant API 

function calls. The clustering in this case was performed using the k-means algorithm, and the 

similarity measure was a comparison of n-gram frequency. They concluded that N-grams where N 

varied from 5-7 worked best, and that a mid to high level significant API function calls gave the best 

trade-off between noise and information. The lower value n-grams where presumed ineffective 

because of the loss of semantic information. This study is like what (Hansen & Larsen, 2015) did 

where they also looked at frequencies of API n-grams in malware. 

Clustering analysis on data from static analysis seems to be mostly OpCode n-grams. Here sequences 

of OpCodes are used to make the n-gram to create classifiers. The basic idea is that “different 

versions of the same application or different generations of the same malware family will share 

similar code” (Oprisa, Cabâu, & Pal, 2018). But n-grams are only a small subsequence of the 

malwares full behaviour. It would be interesting to consider the whole sequence. In a recent survey 

the authors concluded that “… temporal analysis was found to be very effective in many domains, 

especially in the biomedical informatics domain. Such an approach can shed new light on malware 

behaviour by discovering frequent time-oriented patterns that differentiate between malicious and 

benign behaviour. Since every piece of data collected during dynamic malware analysis has a 

timestamp, we believe temporal analysis has great potential in creating advanced machine-learning 

solutions for the malware detection and categorization tasks” (Or-Meir, Nissim, Elovici, & Rokach, 

2019). This conclusion, together with the research results from analysing API function calls, indicates 

an interesting area of research that I do not find to be fully covered.  

4.3 Malware evasion techniques 
The different analysis methods face different challenges from the malware. The presence of 

software like Wireshark2 (Wireshark Foundation, 2021) on the host machine can trigger evasive 

behaviour within the malware. Some malware shuts down if it runs in a virtual environment. 

Triggering evasive behaviour often causes the analysis to fail. But the evasive measures are part of 

the malware functionality, and certain types of malware will have the same defensive measures. As 

 
2 Wireshark is an application that captures network traffic and stores it in a file. It also provides functionality 
for analysing the network traffic. 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

8 
 

evasive techniques are a crucial functionality within malware, is not a problem if it shows up during 

analysis. It is just important that the evasive techniques are not triggered. 

Malware can make use of many evasion techniques that makes it harder to analyse them. A broad 

classification of evasion techniques could be the ability to detect debuggers, detection of antivirus 

installed and execution artifacts, as well as the detection of virtual machines, emulators, or 

sandboxes (Herzog, Tong, Wilke, Van Straaten, & Lanet, 2009). In more recent year’s complex 

systems such as “MalGene, an automated technique for extracting analysis evasion signatures” 

(Kirat & Vigna, 2015), has given a more detailed view on different evasion signatures. “MalGene 

leverages algorithms borrowed from bioinformatics to automatically locate evasive behaviour in 

system call sequences” (Kirat & Vigna, 2015). By analysing 2810 evasive samples with MalGene they 

were able to group them in to 78 evasion techniques. Their approach was to run the samples in 

different environments, where one environment would trigger an evasion technique, and another 

would not. By aligning sequence calls, an evasion point could be determined, by looking for a 

deviation in the environment that triggered it. Once the point was determined, a signature of the 

evasion technique was extracted by using multiple steps to reduce the amount of insignificant API 

function calls. Then the signatures were alle clustered using hierarchical clustering followed up by 

manual clustering.  

Dynamic analysis is being countered by detection of the analysis environment. This could be 

detecting the presence of known analysis tools or detecting if the environment is virtual. In fact,”… 

observations attest that evasive behaviour is mostly concerned with detecting and evading 

sandboxes” (Afianian, Niksefat, Sadeghiyan, & Baptiste, 2020) Malware can also use logic bombs, 

and other means of evasion.  

A recent survey concluded that defenders against malware evasion techniques were pursuing four 

major strategies: “Reactive approaches, more transparent analysis systems, bare-metal analysis, and 

several endeavours toward more generic approaches, namely, path exploration” (Afianian, Niksefat, 

Sadeghiyan, & Baptiste, 2020). They concluded that the first three approaches were mostly effective 

against specific types of evasion techniques, excluding a portion of known evasion techniques. 

Furthermore, they concluded that evasion techniques could be effective against evasion techniques 

that are detection-independent, such as control flow manipulation, lockout evasion, and fileless 

malware. 

Hardening of sandboxes has been a key component in some analysis designs. The strategies for 

during this include hiding all traces that the machine is virtual by uninstalling guest-additions, 

installing commonly used software like Java and PDF readers, and changing various setting to make 

the virtual machine look used (Muhovic, 2020). Other also point to simulating end-user behaviour, 

implementing time jumps to simulate passing time, editing registry values, and adding common 

artefacts like files (Mills & Legg, 2020). They found that employing these anti-evasive techniques 

scored higher under test. Showing that to efficiently do dynamic analysis of malware using anti-

evasive techniques is a must. 

4.4 Summary 
It can be concluded that researchers have many approaches to malware analysis. Furthermore, it 

can be concluded that the malware authors make all approaches more difficult with malware 

evasion techniques. To do clustering analysis all approaches hold promise, since all approaches have 

been proven to identify malware with great success. However, some research (Or-Meir, Nissim, 

Elovici, & Rokach, 2019) points to a research gap in the field of temporal analysis of malware. It is 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

9 
 

this gap I wish to contribute to by applying temporal analysis on malware API function call 

sequences. To record these in temporal, or sequential order, it is necessary to do dynamic analysis. It 

is also necessary to apply anti evasive measures to generate good data.   



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

10 
 

5 Problem statement 
The state of the art is very well developed and shows good results in doing binary classification, and 

clustering where a ground truth is known. It also shows that API function calls is a good feature to 

use for clustering and binary classification. As a feature it works both with individual API function 

calls as features, but also with API n-grams as features. 

I found that doing temporal analysis on data about malwares execution is encouraged as a research 

area. The encouragement is based on the effect the approach has had in domains like biomedical 

informatics (Or-Meir, Nissim, Elovici, & Rokach, 2019) (Zhao, Papapetrou, Asker, & Boström, 2017).  

Based on this I want to answer the following: 

How can malware samples be analysed, to find clusters, based on behaviour found in 

sequences3 of API function calls?  

The analysis will capture the behavioural pattern of malware using dynamic analysis. Using the 

malwares samples API function calls in sequential order as my data base. The results should show if 

sequential analysis can have a place in malware analysis. 

  

 
3 While the analysis is still temporal, I think the term sequential is more appropriate. This is because the API 
function calls will only be considered in their sequential order, with no consideration to the time at which they 
occured.  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

11 
 

6 Theory 
In the following I will address the theories needed to solve the problem of grouping malware by 

behaviour. The chapter helps to make informed choices about the design of the analysis. In general 

cluster analysis is used to identify groups of objects within a dataset. It is a kind of explorative data 

analysis and is great for explorative analysis large data sets. Cluster analysis is used on all kinds of 

domains from malware analysis, to deciding on target demographics for a marketing campaign. The 

same clustering algorithms works across different domains. This is because the algorithms are 

unbiased, and only consider the data fed to them. This emphasises the importance in selecting good 

features.  

6.1 Feature selection 
It is important to select the most discriminative features to get good analysis results. Since there are 

so many dimensions to consider when analysing malware, it can be overwhelming but also infeasible 

to consider them all. Not only does it increase the computational overhead and the sheer amount of 

data collected. It also makes the analysis more complex and less efficient. With the aim of 

differentiating malware into strains the features that best provide separability between them must 

be selected.  

Given that malware has been successfully detected using models based on API function calls it 

makes for an obvious feature candidate. It also makes sense that API function calls would reveal 

information about the nature of the malware, since API function calls are the way malware gets 

information of its surrounding operating system. To get better results the dataset must be reduced 

to only include the most important API function calls. To cope with this the data will be processed 

like (Hansen & Larsen, 2015) did. Here all unimportant API function calls were filtered out first by 

only considering API function calls there were more dominant in malware compared to API function 

calls recorded when running benign software. 

Other issues with the collected data are the huge variety in API sequence call lengths. This can be 

seen simply in the distance in size of the generated malware reports that is spread evenly from just a 

few kilobytes to 1GB for the largest. Even if some similarity exists between samples in either end of 

the size spectrum the distance would be enormous. This can cause an issue if the selected distance 

metric has a bad time complexity. To cope with this issue, I will only analyse the first 200 API 

function calls of all samples. 

Thirdly repeating patterns are collapsed “to retrieve eventual hidden similarities, the sequence is 

modified so that it gives the succession of actions performed without taking care of their frequency.  

It is done by removing the repetition of the same API called in a row” (Pirscoveanu & Hansen, 2015).   

The problem with API function calls is that they are categorial data, and this makes it difficult to 

calculate distances between. So, a way of calculating the distance between two sequences of API 

function calls must be expressed. Once that has been done, any metrics-based clustering algorithm 

can be used on the data. 

6.2 Distance metric 
Choosing a good distance metric is important when doing cluster analysis and can have huge impacts 

on the results. The analysis process is also affected highly by the choice of distance metric. Finding 

clusters involves calculating the distances between all data objects. Choosing a distance metric with 

a poor time complexity will drastically decrease analysis speed.  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

12 
 

Distances between data objects can be many things. Naturally, an actual distance like kilometres is a 

good and comprehensible distance metric. When looking at sequences of API function calls it is more 

difficult to express a good comprehensible distance metric. Obviously, the metric must be 

meaningful when considering the domain, but it must also follow these four rules: 

The rules ensures that the distances between data points are comparable and can be used by the 

clustering algorithms.  Furthermore, the triangle inequality measure is important since it basically 

enforces the rule that the shortest path between two points is a straight line. If the distance metric 

does not follow this rule, it could cause cyclomatic issues when doing the actual clustering.  

Normal Euclidean distance calculations cannot be used directly on categorial data. I have chosen to 

use the Levenshtein distance instead (Levenshtein, 1965). The basic idea of the Levenshtein distance 

is to calculate how many inserts, edit or delete operations are needed to change one sequence of 

symbols into another. The metric is well known and can be applied to a range of domains (Dogan & 

Oztaysi, 2019) (Zhao, Papapetrou, Asker, & Boström, 2017). Besides being applicable to a range of 

usages, the metric also obeys the above-mentioned rules for distance metrics. This makes it suitable 

for cluster analysis.  

The Levenshtein distance is probably most known for being used on text, which is a sequence of 

characters. But the distance formular works for any sequence of comparable symbols. If for example 

we should change “cat” to “hat” it would be necessary to do one edit operation, changing the ‘c’ to 

an ‘h’. The distance would here be one. Considering the distance from the sequence “malware” to 

“software” it would be necessary to do one insertion and three edits to make the distance four. 

In this projects domain the symbols would be API function calls rather than letters. However, the 

approach remains the same. It makes good sense because if a malware author adds just a few API 

function calls to a new version of his creation then the distance would equate to the amount of 

inserted API function calls. But if two pieces of malware does the same API function calls, but in 

vastly different order, then the distance is larger because the sequential ordering of the symbols 

matter. This makes the distance metric highly suitable for the research question in this project.  

The major drawback of the Levenshtein distance its time complexity. For two sequences of length n 

the time complexity is 𝑂(𝑛2) typically referred to as quadratic time. This disastrous time complexity 

can have a major impact on the analysis process. Given long enough API call sequences it can 

drastically reduce the number of samples I will be able to process. This reinforces the choice of 

reducing all API sequences to a length of 200.  

The order of the API function calls made by malware, is a result of the sequence in which the code is 

written. So, the deterministic behaviour of software will result in equal API function calls if executed 

under identical conditions. If the conditions are changed however, the conditional statements based 

1. Symmetry:    𝐷(𝑥𝑖 , 𝑥𝑗) = 𝐷(𝑥𝑗, 𝑥𝑖) 

2. Positivity:    𝐷(𝑥𝑖 , 𝑥𝑗) ≥ 0 

3. Triangle inequality:  𝐷(𝑥𝑖 , 𝑥𝑗) ≤ 𝐷(𝑥𝑖, 𝑥𝑘) + 𝐷(𝑥𝑘 , 𝑥𝑗)   

4. Reflectivity:    𝐷(𝑥𝑖 , 𝑥𝑗) = 0 𝑖𝑓 𝑥𝑖 = 𝑥𝑗  

Figure 2 Distance metric rules 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

13 
 

on these changes can affect the sequence of API function calls. This emphasises the need for an 

identical execution environment to perform a successful analysis using the Levenshtein distance as a 

distance metric. This must be considered when designing the analysis process.   



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

14 
 

6.3 Clustering techniques 
Generating cluster can be done with a vast number of different clustering algorithms. Like the c-

means algorithm where centroids are defined by object density, and subsequently objects are 

assigned a centroid based on proximity. There are multiple clustering algorithms that works with 

centroids, and some research has combined this to make multi-centroid cluster analysis (Oprisa, 

Cabâu, & Pal, 2018). But unless objects from dataset are chosen as the centroids, like in the k-

nearest-neighbour algorithm, it requires the features to be numerical. For categorial data as in this 

domain suitable clustering algorithms must be selected. 

6.3.1 Hierarchical clustering 
Hierarchical clustering looks at linkage, and not centroids. This makes sense when analysing data 

that cannot be measured on some absolute scale. Here trees, or dendrograms, are formed using 

different linkage methods. The trees can be creates using either a bottom up (agglomerative 

method), or a top-down approach (divisive method). The difference is that in the bottom-up 

approach all objects are considered their own cluster at the start. The analysis approach will then cut 

down the number of clusters by merging similar clusters until trees reach a desired size. The 

bottoms-up approach does the opposite to reach the same result. So here all objects belong to one 

cluster from the start.  

The analysis will then consist of dividing the cluster into separate clusters until only singleton 

clusters exist. “Hierarchical clustering has the distinct advantage that any valid measure of distance 

can be used.  In fact, the observations themselves are not required; all that is used is a matrix of 

distances” (Spiegel, 2015). Getting the final number of clusters can be done by deciding on a 

minimum acceptable linkage. If displayed as a typical dendrogram this would be seen a horizontal 

cut. The downside of hierarchical clustering is the assumption that all data objects belong to a 

cluster. If the data set contains a lot of noise the algorithm is not good. Furthermore, the linkage 

method is also important. If single linkage is used it means that individual data points will be 

clustered together based on their single one closest neighbour. This approach could be thought to 

create chains where A is clustered with B first, and following that B is clustered with C. This creates 

the cluster ABC, but A and C may be direct opposites. If this pattern continues the cluster might end 

up having some endpoints that are highly unrelated. Therefor experimentation with linkage method 

would be a good idea. However, this experimentation is not within scope of this project. An average 

linkage method is there for chosen for this project. Well knowingly that different linkages will give 

different results. 

6.3.2 OPTICS 
A different approach to clustering that also does not make use of centroids is OPTICS (Ankerst, 

Breunig, Kriegel, & Sander, 1999). It works very similar to DBSCAN that “… uses a simple minimum 

density level estimation, based on a threshold for the number of neighbours, minPts, within the 

radius ε(with an arbitrary distance measure). Objects with more than minPtsneighbors within this 

radius (including the query point) are considered to be a core point” (Schubert, Sander, Ester, Kriegel, 

& Xu, 2017). Considering the domain under analyses here OPTICS is a good method since it allows 

arbitrary distance measures. Furthermore, OPTICS requires some density of data points before it will 

create a cluster. Changing the minimum density level will allow for more closely coupled clusters. 

Having a minimal density level will consider more data points to be noise. Within the current domain 

noise would be any malware sample that does not belong to any specific cluster. 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

15 
 

Deciding if two data points are neighbours depends on the threshold value for the distance metric. 

Setting a high threshold means that a longer distance between data points is acceptable, and visa 

versa. But this is a difficult task, since “… in an ideal scenario, there exists domain knowledge to 

choose this parameter (radius) based on the application domain. For example, when clustering GPS 

locations, a domain expert may decide that objects within 1 kilometre should be neighbors and we 

then can choose the appropriate distance function and set ε accordingly” (Schubert, Sander, Ester, 

Kriegel, & Xu, 2017). For this project, a big part of the problem is in fact figuring out how well the 

proposed distance metric works. Some experimentation will be required to make good clusters. As a 

result, it is also very important to have a good way of evaluating the results from any of the 

proposed clustering algorithms. 

6.4 Evaluation techniques 
After the clusters are found it is important to evaluate how fit they are. Without any form of 

evaluation it is impossible to conclude anything about the outcome of the analysis. 

Choosing an appropriate evaluation technique relies primarily on the presence of a priori knowledge. 

Having that knowledge will make for a ground truth. That can be used to evaluate if the clusters 

found fits the ground truth and then validate the analysis. This is called external validation. Since no 

prior knowledge is available for this project an external validation technique is not an option. 

Internal evaluation on the opposite is evaluating clusters ”… in terms of the inner structures of the 

datasets themselves, rather than a priori knowledge” (Abu-Jamous, Fa, & Nandi, 2015). A good 

coefficient for measuring how well a clustering algorithm has worked is the silhouette coefficient. 

The Silhouette coefficient for a single sample s is given as stated in figure 3: 

Calculating this  formular gives a result of -1 for incorrect clustering, basically saying that the sample 

is more closely aligned with the next cluster over. A value of +1 signals the opposite, and a value of 0 

indicates that the clusters overlaps. In general, the higher the scores, the better the clustering has 

worked. Most often cluster algorithms generate scores in the range of 0 to 1. The drawback of the 

Silhouette coefficient is that it generally does not perform the best on density-based clusters like 

OPTICS. But the fact that the coefficient gives some estimate of the success means that I will use it as 

an indication of success none the less. 

I will also plot the results of various runs of the clustering algorithms to see how fit the clusters are. 

Since the two clustering algorithms takes different parameters, they must be evaluated differently. 

The OPTICS algorithm takes one important argument that is the minimum number of samples 

required to form a cluster. Whereas the hierarchical algorithm takes the desired number of clusters. 

The output of both algorithms will naturally be the clusters for the samples. It is important to 

evaluate the clusters found in comparison to the fitness gained – here measured with the silhouette 

𝑠 =
𝑏 − 𝑎

max (𝑎, 𝑏)
 

Where: 

 a is the mean distance between a sample and all other points in the same cluster 

 b is the mean distance between a sample and all other points in the next nearest cluster 

 Figure 3 The Silhouette coefficient score 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

16 
 

score. If the score can be continuously increased by adding clusters, it might be a sign of over-fitting. 

At an extreme this could result in every sample being in individual clusters. Therefor I will use the 

elbow method to visually validate the analysis results. This will help me to spot where increasing 

different parameters starts to give diminishing returns. Since the OPTICS algorithm labels some of 

the samples as noise this will also be taken into evaluation since I would consider less noise better. 

Visualising the data can also help to validate the clusters found. In a feature space where Euclidean 

distances makes sense it is easy to visualise the data. Given a simple feature space of 2 dimensions 

the individual data points can be plotted in a scatter plot, and it might be possible to see the actual 

clusters. However, with categorial data this does not work. To visualise the clusters, I will order the 

distance matrix based upon the clusters found, to see if a crisp pattern will show up. This can be 

done by plotting all the malware samples into a chart with all samples plotted in same positions 

alongside both the x and y axis. To this I am using MatPlotLib (Hunter, 2007). In the intersection 

between two malware samples their distance is plotted as a colour. The colour signals the distance 

between the samples, as displayed in the colour-bar to the right.  

Since the Levenshtein ratio is used the max distance is one, and the shortest is zero. Zero is black, 

and one is white. If the malware is just plotted in randomly a noisy pattern will show up. When 

sorting the distance matrix by clusters, they will show up along the diagonal. Below is seen two 

examples. The clusters in the example are formed using two different clustering algorithms, yielding 

different matrices:  

Distance matrix with clear and dense clusters Distance matrix with clear but not so dense clusters 

  
Figure 4 Sample visualisations of distance matrices 

In the figure above to the left, it is clear to see the dark clusters of malware samples (Like the one 

highlighted by a green circle). The right matrix has a large cluster (marked by a green circle), but its 

colouring Is not dense. This means that the cluster is large, but its samples are not very similar. 

Inter-cluster relationships can also be seen. If a dark shade is visible in the area where two clusters 

intersect (marked by a red circle pointing to the intersecting clusters), it is an indication of 

similarities between clusters. Given the domain it means the clusters share some API function calls 

sub-sequences. To truly understand what the shared functionality is, it would be necessary to do a 

deeper analysis of the intersecting clusters.  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

17 
 

If white coloured bands form a cross centred on a cluster, it shows that the malware in the cluster, is 

dissimilar to other clusters (As seen in the green circle in the left example). The lighter coloured the 

cross, the more dissimilar the cluster is to any other clusters found. 

The validation technique can be used to visually confirm the found clusters, but also to see the effect 

of changes made to the distance calculation, by comparing different results. Making it possible to 

compare the changes made during analysis and evaluate the best outcome. 

6.5 Summary 
A good foundation in theory is important to create an informed analysis. The foundation for the 

analysis in this project is to apply processing of API function calls as seen in previous comparable 

projects, with the aim of reducing complexity, and revealing more distinct functionality. 

A tried and tested distance metric that analyses full sequences, and still adheres to the distance 

metric rules like triangular equality must be used to achieve the goals of the project. Here I have 

chosen the Levenshtein distance. 

Many different clustering algorithms have been created throughout time. Picking the right one is a 

matter of matching its capabilities and restrictions to the project at hand. This project is not suitable 

for centroid based algorithms. OPTICS and hierarchical algorithms are both suitable for the domain. 

Both are chosen to do a comparison to find the best match for the project.  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

18 
 

7 Analysis setup 
Devising a good analysis setup is imperative in reaching good results. For this project where 

reduction of workload is a parameter for success it is important that the analysis setup considers 

efficiency. Furthermore, the setup must be created so that it introduces the least amount of error 

sources. 

Following is a description of how I will conduct the analysis of the malware. Overall, the analysis 

process will consist of several phases that feed into each other, as seen in the figure below: 

 

The first phase is a dynamic analysis of a selection of malware samples. The purpose of the phase is 

to generate analysable data about the malware samples. The second phase processes the data 

generated from phase one, making it suitable for further analysis. The preparation of the data will 

include calculating a distance matrix, that is used to perform the clustering analysis in phase three.  

Based on the labels generated from the clustering analysis, the results will be analysed in the final 

phase. The analysis includes automated and manual steps. Following is a detailed description of the 

individual phases. The  

7.1 Data collection 
Normally collecting malware data is a tricky process. Malwares evasive behaviour is part of this 

reason. Furthermore, organisations tend to try and get rid of malware, not store it for later. Thus, 

the malware researcher has different options. One option would be to setup a honeypot which is a 

deliberately vulnerable machine. These machines are typically isolated in networks of no real 

production value but will still be connected to the Internet. This approach is time consuming, and 

results may vary depending on how much malware the honeypot attracts. It is not possible to 

predict how many malware samples that can be collected from the honeypot.  

Alternatively, collection of malware can be obtained through collaborations with different 

organisations. This could be an organisation like VirusTotal that offers a “free service that analyses 

files and URLs for viruses, worms, trojans and other kinds of malicious content… (their) goal is to 

make the internet a safer place through collaboration between members of the antivirus industry, 

researchers and end users of all kinds” (VirusTotal, 2021). Through this collaboration I have acquired 

a ranges of malware samples collected from 2017 – 2020, and these will be used as data objects in 

the analysis. The dataset is quite large and contains hundreds of gigabytes of compressed malware 

binaries. I will only use a limited portion of the samples due to the projects limited time and 

computational resources. 

7.2 Dynamic analysis 
Cuckoo Sandbox (Guarnieri, n.d.) will be used as the malware analysis system. Cuckoo “is an 

advanced, extremely modular, and 100% open-source automated malware analysis system with 

Dynamic 

malware 

analysis 

Feature 

extraction 

and 

processing 

Clustering 

analysis 

Evaluation 

of results 

Figure 5 The analysis process 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

19 
 

infinite application opportunities” (Guarnieri, n.d.). Using a readily available system has some 

benefits over creating a custom solution. Cuckoo allows me to go straight to the analysis phase, 

without first developing a system that does the same. Considering the scope of the project this is 

important4. Secondly Cuckoo comes packed with many tools for analysis that can capture the data 

necessary to conduct the desired analysis.  

Cuckoo works by utilizing sandboxing. Sandboxing is a way of compartmentalizing runtime 

environments. Cuckoo uses virtualization where a fully operating system is hosted in a virtual 

environment. A key component in virtualization is the hypervisor which is the software that the 

virtual operating systems runs on. The hypervisor is basically an abstraction of physical hardware. A 

hypervisor can host multiple guest operating systems of different types, like Windows, Linux variants 

and Android5. This means that hypervisors are very versatile to use in malware analysis where it 

might be necessary to analyse samples on different operating systems. 

Hypervisors come in two version, Type-1 ad Type-2. Type-1 hypervisors are bare-metal which means 

that they run directly on the host machines hardware. Type-2 are hosted which means that they run 

as software on an operating system running on the host machine. Seen from the guest operating 

systems perspective it makes no difference which type of hypervisor that is used. However, there is 

less overhead on a Type-1 hypervisor since there is no host operating system to fight with over 

resources. In my setup I am using a Type-2 hypervisor to run a single virtual machine. The drawback 

is that installing a guest operating system on a hypervisor requires a large amount of disk storage. 

Most hypervisors support dynamic allocation of storage meaning that a virtual machine can be 

created with a 100 GB hard drive without taking up more space than what is installed on the disc. 

For my test I have a laptop with a 450 GB hard drive available. This limits the number of virtual 

machines I can execute, and also the amount of malware I can have on disc at a time. The dataset 

from VirusTotal consist of 100’s of GB data.  

To further separate my host machine operating system from the malware samples I host my Cuckoo 

installation inside a virtual machine. This creates a setup that does require some configuration to run 

properly. 

 
4 The specific limitations in mind are manpower and time. Here the scope is one man, me, and part time. 
5 Android is a variant of Linux and as such it’s a bit redundant to mention it here. However it felt appropriate 
due to the special status it holds as the worlds most widely used smartphone operating system. 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

20 
 

 

Basically, it can be described as seen in the illustration above. On the host machine Win 10 is 

installed as the operating system, and VMware is installed as a Type-2 hypervisor. I call this part of 

the setup layer 1. On this layer an Ubuntu 20.04 LTS virtual machine is installed. This virtual machine 

hosts another Type-2 hypervisor, this one is a VirtualBox installation. I call this part of the installation 

layer 2. The second layer has Cuckoo installed next to the VirtualBox. The setup could be done using 

only 1 layer, but then Cuckoo would have to be installed on the host operating system. This would 

greatly increase the risk of getting infected with malware. So, the added layer further 

compartmentalizes my host operating system. Given access to a dedicated testing environment the 

setup could have been done differently with many added benefits. 

Zooming in on layer two of the test setup it can be seen how cuckoo is placed within the Operating 

system next to the hypervisor. Cuckoo works by interacting with the hypervisor. Basically, the 

interaction consist of starting the virtual machine at a predefined snapshot. Secondly Cuckoo will 

submit the malware sample using the hypervisors interface, and run it in the virtual machine. During 

its execution time multiple information about the malware will be collected by an installed Python 

agent. The agent communicates over the network back to the Cuckoo host.  

Therefor it is important that proper networking is setup on the Ubuntu host. I have set up a host-

only adapter for the internal network. This connects the host and the guest allowing for network 

communication. To achieve a truly realistic test system full internet connectivity would be needed. 

But this could result in spreading the malware further to other machines which could have all kinds 

of negative results for the people that depends on the machines affected. However, for the sake of 

my analysis it would give more insight into the malware behaviour. Having no internet connectivity 

could also make the malware self-terminate giving no insight at all.  

Hardware 

Windows 10 

VMware Hypervisor 

Ubuntu 20.04 LTS Guest OS 

VirtualBox Hypervisor 

Windows 7  
L

a

y

e

r  

2 

L

a

y

e

r  

1 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

21 
 

To deal with this I use InetSim (Hungenberg & Eckert, 2021) to simulate the internet. InetSim can 

emulate most known protocols and will respond to queries thrown at it. Naturally, it cannot figure 

out the data to transfer, but it can craft a response that would look normal. Hopefully normal 

enough to trick the malware into proceeding as it normally would. 

Other tweaks have been done to the guest operating system to make it more vulnerable to malware 

infection. Inspired by the best literature (Muhovic, 2020) I could find on the topic I have done the 

following to create a realistic environment to run the malware in: 

1. Removed VirtualBox Guest Additions 

Consist of device drivers and system applications that optimise the guest operating 

system for better performance and usability.  These are by default a part of the OS 

when installed via. VirtualBox. 

2. Added Programs and Updates 

Adobe Reader (XI 11.0.01), Adobe Flash player 11.9, Java 7, Windows Update 

KB958830 (Re-mote Server Administration Tools), LibreOffice, VLC Media Player, 

Firefox, Google Chrome,7Zip, paint.net. 

3. Anti VM Detection part 1 

Changes settings,  registry  entries  and  add  randomisation  in  the  form  of  files  

with  common extensions. 

4. Anti VM Detection part 2 

On every reboot, registry entries and settings that are reset are changed again. 

Besides the above the environment has also been made vulnerable by disabling the firewall and 

disabling Windows User Access Control.  

With everything in place, the malware samples are fed to the Cuckoo sandbox. The sandbox will 

automatically submit, and execute the malware samples one at a time, and generate one report per 

sample. After execution of a sample, the virtual machine is reverted to a clean state ready to get a 

new malware sample.   

7.3 Feature extraction 
After the initial phase I will have one cuckoo report per malware sample. The reports detail the 

gathered information about the malware samples. But the data in the report needs to be processed 

to be suitable for cluster analysis.  

I will extract all API function calls done by the malicious process during the dynamic analysis. The 

data can be extracted from the JSON file the Cuckoo sandbox generates. The structure of the JSON 

file is as follows: 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

22 
 

 The highlighted attribute API contains the name of the API call performed at the given time of 

execution. The API function calls are extracted in sequential order. However, the value is not as 

simple as just being a name, which basically corresponds to a windows method that the malware 

calls. Methods sometimes takes arguments, and these are also recorded. To compare the behaviour 

of malware samples it would seem logical to include the arguments as they can greatly affect the 

behaviour and return value of the method called. So, it could be suspected that when looking for 

malware families, uniformity would also be seen in arguments passed to API function calls.  

“Using the  APIs  together  with  the  argument  values,  it  is  possible  to  track  all  the  actions 

performed by the malware.  This not only include the used APIs, but also the paths, mutexes and 

REGkeys accessed or modified during the experiment” (Hansen & Larsen, 2015).  

To try and get some insight into which kind of API function calls are frequently called by the malware 

I try to draw some statistics from the dataset. First some basic stats calculated based on the 

extracted Cuckoo reports: 

Malware samples:  1279 

Unique API function calls: 259 (See Appendix A) 

Total API function calls:  15.073.378 

Top 20 API function calls: 

# API function Count Frequency 

1 LdrGetProcedureAddress 8440905 56% 

2 RegQueryValueExW 491676 3% 

3 FindResourceExW 486114 3% 

{ 
 ”info”: 
 ”procmemory”: 
 ”target”: 
 ”network”: 
 ”signatures”: 
 ”static”: 
 ”dropped”: 
 ”behaviour”: 
  ”generic”: 
  ”apistats”: 
  ”processes”: 
   ”process_path”: 
   ”calls”: 
    ”category”: 
    ”status”: 
    ”stacktrace”: 
    ”api”: 
    … 
 … 
}  

Figure 6 Structure of a Cuckoo analysis report in JSON format 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

23 
 

4 GetSystemMetrics 443047 3% 

5 NtClose 367465 2% 

6 NtAllocateVirtualMemory 365843 2% 

7 RegOpenKeyExW 266629 2% 

8 NtFreeVirtualMemory 242361 2% 

9 NtQueryDirectoryFile 242323 2% 

10 LdrGetDllHandle 238316 2% 

11 LdrLoadDll 221685 1% 

12 GetTempPathW 216632 1% 

13 NtDelayExecution 213363 1% 

14 __exception__ 186883 1% 

15 NtProtectVirtualMemory 168955 1% 

16 NtCreateFile 166958 1% 

17 NtWriteFile 162642 1% 

18 GetFileAttributesW 151603 1% 

19 OutputDebugStringA 150109 1% 

20 NtReadFile 149680 1% 
Table 1 Top 20 API functions called with frequency of all API function calls 

That stats show me that the most called API function is far more frequently called than all the other 

malware samples. If you query the Microsoft documentation for the Windows API functions it states 

that the functionality of the LdrGetProcedureAddress API function is to retrieve “… the address of an 

exported function or variable from the specified dynamic-link library (DLL)” (Microsoft, 2018). So 

basically, it is a gateway to other functionality, and holds no real semantic value. But this does not 

mean that it cannot be an indicator of malicious programs at play. Because the frequency of this API 

call could be far less if we looked at benign software. But do to its overwhelming representation I 

fear that it clouds analysis, and it is added as an API function that will be filtered out during the 

analysis. 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

24 
 

7.4 Clustering 
The cluster analysis is done in a Python environment using scikit-learn (Pedregosa, et al., 2011) and 

all charts are done using MatPlotLib (Hunter, 2007). Scikit-learn provides high level functionality that 

provides easy clustering of the dataset. The full source code in appendices C-F. 

To best evaluate my analysis results three different feature representations will be tested, using 

both OPTICS and Hierarchical analysis. For each analysis method I will find the best values for the 

minimum samples’ parameter for OPTICS, and the number of clusters parameter for Hierarchical. 

Performing the clustering analysis requires many considerations for system design to deal with the 

large dataset, and the poor time complexity of some of the components. The Cuckoo sandbox is a 

heavy configurable out-of-the-box solution that delivers Cuckoo reports in json format. Everything 

done to the reports from there on is done in a Python script I have written. The script takes the 

Cuckoo reports as input, and produces the clusters found as output. To optimise the process several 

steps are done in parallel: 

Processing of Cuckoo reports is done in parallel; results are stored to a file so the reports only needs 

to be processed once. 

Distance matrices are created by calculating the distance between samples in parallel. Distance 

matrices are also stored in files, so that they only are calculated if new malware samples should be 

considered. The sorting of distance matrices by clusters is done using Quicksort, a fast and in-place 

sorting algorithm. 

Processing ~1280 malware samples take around 6 hours on my machine for the first run where 

reports are processed and distance matrices are created. But after my initial run, graphs can be 

crated in minutes. 

7.5 Summary 
The analysis design has been created using both familiarity of technologies, best fit for the problem, 

and performance in mind.  

Cuckoo Sandbox has been chosen to do the dynamic analysis because it can deliver the features 

chosen to analyse, and because of my own familiarity with it. Cuckoo is also known well throughout 

the malware analysis community providing many resources for help. 

Processing the data generated by Cuckoo, as well as the actual clustering analysis, and finally 

providing some results for the evaluation is all done in Python. Python has many libraries for 

machine learning which is needed for the cluster analysis. Furthermore, python has a mature build in 

library for multiprocessing which is needed for increasing the performance of the analysis. This is all 

important to provide an analysis method that can help reduce the workload of malware analysis. 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

25 
 

8 Analysis results 
The results presented in the following were found from following the analysis design described in 

section 7. During the data collection 1287 malware samples were successfully processed in the 

Cuckoo sandbox generating an equal number of Cuckoo reports. In total a far greater amount was 

processed but the analysis turned out faulty.  

Subsequently the reports were processed by extracting the API call sequences. Following that the 

call sequences were analysed in three different tracks for comparison. One track where the call 

sequences was trimmed to 200 API function calls (Track 1), one where the call sequences were also 

filtered (Track 2) (See Appendix B), and one where they also had repeating sequences collapsed 

(Track 3).  

After that, the distances between all malware samples are calculated using the Levenshtein Ratio 

formular. The distribution of distances is shown in the figure below: 

Track 1 Track 2 Track 3 

   
Figure 7 Frequency distribution for the three dataset tracks 

The distribution of distance frequencies shows that having both filtered and collapsed API call 

sequences results in a more diverse distribution. Effectively halfing the number of distances of 1.0. 

This means that more malware samples have a shorter distance with filtering and collapse than 

without. This supports the idea that more of the comparable malware behaviour has been brought 

forward.  

After all distances between the samples the results are put into a distance matrix, which is just a 2D 

arrays holding all distances between samples. The array is mirrored so that given a sample i and a 

sample j looking up into the array dm, dm[i][j] is the same as dm[j][i]. The clustering analysis can be 

done on this array and gives the following results for each of the three feature representations: 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

26 
 

 OPTICS Hierarchical 

T 
R 
A 
C 
K 
 
1 

 

 
 
 

 
T 
R 
A 
C 
K 
 
2 

 

 
 
 

 
T 
R 
A 
C 
K 
 
3 

 

 
 
 

 
Figure 8 Comparison of Silhouette scores for the OPTICS and Hierarchical methods 

The figure above shows different results for the two analysis methods, for each of the three tracks. 

The main influencial parametere for the OPTICS method is min_samples shown on the x-axis. For the 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

27 
 

hierarchical the most influencail pramtre is the number of cluster to find. The charts in figure 8 

shows the Silhouette scores found when trying diferent values for the parametres. 

In general the silhouette score is the same for all three tracks with the hierarchical method. However 

it is a bit lower with track three. The steepnes of the curve is also higher before flattening out on 

track one and two. Besides that difference the results are very similar for the hierarchical method. 

The optimal point seems to be ~100 clusters, since the returns for adding clusters diminished there 

after. But the precise number is hard to estimate. 

Using OPTICS the best Silhouette score is achieved using the smallest min_sample value of two. 

However that value gives a huge number of clusters, indicating that the result is over-fitted. Looking 

at the number of clusters it looks like there is an optimal value around a min_samples equals four or 

five. There the number of noisy samples are not to high, and the silhouette score is reasonable high 

with about 0.8 if noise is not included. The number of samples considered noise starts to stagnates 

at this point, as does the decline in the overall Silhouette score. Espicially when looking at track 2 

and 3. Track 1 behaves differently with a steady increase in noise.  

The curve for the number of clusters also has a sharp point wich could be considered as optimal 

using the elbow method. Considering the silhouette score of the clusters only, not considering the 

noise samples, a consistently high value over 0.8 is seen in all runs. This indicates that the fitness of 

the clusters are not improved by changing the min_samples value. In fact the reason the shilouette 

scores declines when increasing min_samples must be because more samples are considered to be 

noise. This indicates that minimum min_samples of two is the ideal in regards to the silhouette 

score. The following shows the distance_matrix visualised when trying different values for the 

n_samples parametre. 

Using a value of 4 for min_samples for the OPTICS algorithm, and 100 clusters for the Hierarchical 

algorithm the following two distance matricies can be created:  

Optimal OPTICS: N_samples=4 Optimal Hierarchical: N_clusters=100 

 
 

 

Figure 9 Comparison of distance matrices for OPTICS and hierarchical at estimated optimal values 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

28 
 

The analysis results using the different analysis algorithms especially shows in the difference int the 

density of the clusters found. Since OPTICS also finding noise, the clusters it does find are denser. 

Whereas as the hierarchical method does not find noise. 

For the displayed example in figure 9, the mean silhouette coefficient is ~0.5 with noise, and ~0.8 

without. This tells me that the clustering algorithm has performed good, providing highly cohesive 

clusters. A visual evaluation also looks like some good clusters have formed. The upper left corner 

contains all the samples considered to be noise by the OPTICS algorithm. That area looks a bit 

spotted which indicates that several of the samples have a low distance to each other but did not 

form a dense enough neighbourhood to be considered a cluster.  

The hierarchical method creates no noise. However, the clusters found looks less dense. This is 

confirmed by the lower Silhouette score of ~0.7. The visual evaluation of the clusters shows a 

different pattern in the ordering of clusters. The inter-cluster relationships look more scattered 

compared to the OPTICS method. This indicates that the OPTICS method is better at sorting 

neighbouring cluster in adjacency than the hierarchical. 

Comparing the results for the different tracks and clustering algorithms I find the OPTICS on the third 

track to perform the best. In general, the third track does not score higher Silhouette scores. But 

with thoughts on the domain the third track is the more sensible one. Comparing the clustering 

algorithms, I favour OPTICS due to the higher Silhouette scores for clusters, and the better 

placement of adjunct clusters. I do find the large amount of noise to be an issue with the algorithm. 

However, I suspect that the amount of noise will be reduced in percentage if a larger body of 

malware is analysed. 

I think the most interesting observations is the areas that intersects horizontally with one cluster and 

vertically with another. If these areas have a dark nuance, it means that the two clusters are like 

some degree. The darker the area the more similar the clusters. Those areas are interesting to 

analyse further to figure out what the similarity means. It could be that they do some similar evasion 

techniques or other malicious actions. To find this knowledge further analysis would be required.  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

29 
 

9 Discussion 
Repeating the analysis done in this report quickly becomes difficult with large datasets of malware. 

This is mostly due to the time complexity of the Levenshtein distance metric when calculating the 

distance matrix. This involves two operations that work in quadratic time: 𝑂(𝑛2). Calculating the full 

distance matrix and calculating the Levenshtein distance between samples. In part this is handled on 

the Levenshtein calculations by limiting the API sequence to 200, reducing the runtime but not the 

time complexity. For the distance matrix the computational time will grow quadratically with 

increasing malware samples. The impact of this can be reduced by performing the calculations in 

parallel as done in this project. However effective that may be, it does not change the time 

complexity of the issue. If the results are to be used as a classifier, then a more effective model 

should be built on top of the clusters found. 

Since the aim of the project is to find malware that behave similar, only malware samples were 

processed in the setup. This can be criticized for some reasons. Firstly, the result might show some 

clusters of malware that exhibit behaviour common for all software. The absence of benign software 

makes it impossible to decide if some behaviour is malicious or not. The assumption becomes that 

all behaviour shown is malicious. This is a flaw in the analysis design. But it could also be argued that 

since the aim is to find clusters within malware samples it is not necessary to include benign 

software. Even if some malware is clustered by some non-malicious behaviour, they are still 

clustered because they exhibit the same behaviour. But it does exclude the potential for building a 

malware detecting model in the future.  

The analysis could also benefit from several enhancements already pointed out in previous research. 

Running the samples once in an identical Cuckoo sandbox only yields one execution path. Exploring 

multiple execution paths would give deeper insight into the malware behaviour. It would also make 

the analysis more complex since the different execution paths should be contributed to the same 

malware sample. The analysis time would also be longer, which could be an issue due to the time 

complexity of the distance matric calculation.  

Cuckoo also offers support for distributing its installation which could drastically increase the 

number of samples that could processed at a time. Basically, Cuckoo provides a REST API that allows 

submission of malware for analysis to a remote node. This approach would make the analysis design 

a lot more scalable. It would mean that layer 2 of the current setup could run as a clone on multiple 

machines. It is necessary to setup a master machine to orchestrate the analysis. A distributed setup 

would look like the following: 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

30 
 

 

Figure 10 Distributed Cuckoo setup 

The distributed setup would greatly increase the throughput as the malware analysis could be 

partitioned and processed in parallel on different machines. However, it would require access to 

more hardware, than is within scope of this project. But the second layer of my setup could qualify 

as a node in the distributed setup, and thus it is possible to scale up in the future.  

Another drawback in the analysis design is the fact that the test environment is Windows only. This 

excludes malware targeting other platforms. To extend the analysis design to include additional 

platforms, multiple guest VM’s operating different platforms must be created. This increases the 

hardware requirements as the test machine must host multiple VM’s. Furthermore, the subsequent 

processing of the Cuckoo reports must also be changed. Testing malware for Android will obviously 

not create any Windows API function calls. So, the analysis must be able to examine the Android 

equivalent. 

Looking at Windows API function calls a lot of information about the malware behaviour is omitted 

in the current setup where only API call names are used. More information could be included if 

arguments passed to the API call was included in the analysis. But also including other features 

besides API function calls would give a more detailed view of the malware’s behaviour. It would 

make perfect sense to include events from the network traffic into the analysis. Creating sequences 

of data spanning multiple features can be done with Cuckoo reports since all the data generated has 

a timestamp. This would be an interesting topic for future research.  

  

Cuckoo 

Master 

Host OS w. Cuckoo 

Infrastructure 

Hypervisor 

VM 

1 

VM 

2 

VM 

3 
N

o

d

e 

1 

Host OS w. Cuckoo 

Infrastructure 

Hypervisor 

VM 

1 

VM 

2 

VM 

3 N

o

d

e 

2 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

31 
 

10 Conclusion 
This project demonstrates that clusters in a large set of malware can be detected using the 

Levenshtein distance as a distance metric. This distance metric takes the sequential properties of the 

entire data object into account. This shows the potential in analysing malwares execution data as 

sequential data rather than statistical data as is seen in much former research. 

Distinct clusters of malware was detected using both OPTICS and hierarchical clustering. Both 

clustering methods showed good results. The hierarchical method produced the best silhouette 

scores, but OPTICS came out on top during the visual analysis. The difference in results is caused by 

the hierarchical method looking at linkage, and the OPTICS looking at density. The OPTICS method 

also disregards noise which leads to smaller and more focused clusters but when calculating the 

means silhouette score the noise cluster negatively affected the score. 

The project also shows that inter-cluster patterns emerge when displaying the clusters in a distance 

matrix. This is seen as dark areas in the intersection between two, or more, clusters. The patterns 

indicates that something is shared between the two clusters, but the pattern was not strong enough 

to be considered as one. The patterns are most clear when using the OPTICS algorithm. The coupling 

between the clusters is a sign of something worth investigating to the malware analyst. 

The analysis of this project can be utilised when working with large malware sets to reduce the 

workload to the clusters and inter-cluster relationships found. 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

32 
 

11 Perspectivation 
Being able to compare how similar the behaviour of two objects is important because it allows for 

the analysis of large groups. In this project I have shown that such analysis can be performed on 

Malware and clusters of similar malwares can be formed. Furthermore, I have shown that inter-

clusters can be identified giving reason to investigate the relationship between two clusters. Figuring 

out what connects them, and what does not. The continuation of this research could be to extract 

the sub-sequences that define clusters, and inter-cluster relationships, and add some semantic 

understanding to the sequences. Adding human understandable text to these sub-sequences would 

aid greatly in the rapid analysis of malware samples.  

It would also be interesting to see if prediction of future API function calls could be created as a 

defensive mechanism. Essentially using something like Markov-chains to make predictions if an 

ongoing sequence of API function calls would possibly lead to something defined as malicious. If this 

could be detected while the malware is doing evasive behaviour, it could potentially stop the 

malware before any harm was done. I imagine that this would be even more effective if additional 

features besides API function calls where considered. Especially network traffic could have an impact 

here since a lot of malware does expect Internet connectivity and uses it for Command & Control 

communication and as a sign of being in a real environment instead of a sandboxed.  

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

33 
 

12 References 
(n.d.). Retrieved March 31, 2021, from Docker: https://www.docker.com/ 

Abu-Jamous, B., Fa, R., & Nandi, A. K. (2015). Integrative Clluster Analysis in Bioinformatics. John 

Wiley & Sons, Incorporated. 

Adderley, N., & Peterson, G. (2020). INTERACTIVE TEMPORAL DIGITALFORENSIC EVENT ANALYSIS. 

Advances in Digital Forensics XVI(589), 39-55. 

Afianian, A., Niksefat, S., Sadeghiyan, B., & Baptiste, D. (2020, januar 21). Malware Dynamic Analysis 

Evasion Techniques: A Survey. ACM computing surveys, pp. 1-28. 

Aggarwal, C. C. (2015). Mining Discrete Sequences. In C. C. Aggarwal, Data Mining (pp. 493-529). 

Springer International Publishing. 

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering Points To Identify 

the Clustering Structure. ACM Sigmod Record, 28(2), 49-60. 

AV-Test. (2021, February 5). Malware Statistics. Retrieved from av-test.org: https://www.av-

test.org/en/statistics/malware/ 

Calleja, A., Tapiador, J., & Caballero, J. (2016, September 7). A Look into 30 Years of Malware 

Development from a Software Metrics Perspective. International Symposium on Research in 

Attacks, Intrusions, and Defenses, pp. 325-345. 

Damodaran, A., Di Troia, F., Visaggio, C. A., Austin, T. H., & Stamp, M. (2017, December 29). A 

comparison of static, dynamic, and hybrid analysis for malware detection. Journal of 

Computer Virology and Hacking Techniques, pp. 1-12. 

Dogan, O., & Oztaysi, B. (2019, June 11). Genders prediction from indoor customer paths by 

Levenshtein-based fuzzy kNN. Expert Systems with Applications, 136, pp. 42-49. 

Guarnieri, C. (n.d.). About Cuckoo. Retrieved March 31, 2021, from Cuckoo Automated Malware 

Analysis: https://cuckoosandbox.org/about 

Hansen, S. S., & Larsen, T. M. (2015). Dynamic Malware Analysis: Detectionand Family Classification 

using MachineLearning. Aalborg: Aalborg University, Institute of Electronic Systems. 

Herzog, C. .́, Tong, V. .́, Wilke, P., Van Straaten, A., & Lanet, J.-L. (2009). Evasive Windows Malware: 

Impact on Antiviruses and Possible Countermeasures. 

Higuera, J. B., Aramburu, C. A., Higuera, J.-R. B., Urban, M. A., & Montalvo, J. A. (2020). Systematic 

Approach to Malware Analysis (SAMA). Applied Science, 1-31. 

Hungenberg, T., & Eckert, M. (2021, april 30). Welcome to the INetSim project homepage! . Retrieved 

from INetSim: Internet Services Simulation Suite: https://www.inetsim.org/ 

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science \& Engineering, 

9(3), pp. 90-95. doi:10.1109/MCSE.2007.55 

Kävrestad, J. (2020). Fundamentals of Digital Forensics (2. ed.). Skövde, Sweden: Springer. 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

34 
 

Kirat, D., & Vigna, G. (2015, October 12). MalGene: Automatic Extraction of Malware Analysis 

Evasion Signature. Proceedings of the 22nd ACM SIGSAC Conference on computer and 

communications security, pp. 769-780. 

Levenshtein, V. I. (1965, August). Binary Codes Capable of Correcting Deletions, Insertions and 

Reversals. Soviet Physics - Doklady Akademii Nauk SSSR, 163(4), pp. 845 - 848. 

Microsoft. (2018, May 12). GetProcAddress function (libloaderapi.h). Retrieved from Windows 

Developer Documentation: https://docs.microsoft.com/en-

us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress 

Mills, A., & Legg, P. (2020, October 12). Investigating Anti-Evasion Malware Triggers Using 

Automated Sandbox Reconfiguration Techniques. Journal of Cybersecurity and Privacy, pp. 

19-39. 

Muhovic, T. (2020). Behavioural Analysis of Malware Using Custom Sandbox Environments. Aalborg: 

Aalborg University. 

Okolica, J., & Peterson, G. (2010). A COMPILED MEMORY ANALYSIS TOOL. In K.-P. Chow, & S. Shenoi, 

Advances in Digital Forensics VI (pp. 195-206). Hong Kong: Springer. 

Ollmann, G. (2008, September). The evolution of commercial malware development kits and colour-

by-numbers custom malware. Computer Fraud & Security, pp. 4-7. 

Oprisa, C., Cabâu, G., & Pal, G. S. (2018). Multi-centroid Cluster Analysis in Malware Research. 

Advances in Intelligent Systems and Computing, 674, 94-103. 

Or-Meir, O., Nissim, N., Elovici, Y., & Rokach, L. (2019, September). Dynamic Malware Analysis in the 

Modern Era - A State of the Art Survey. ACM Computing Surveys. 52, 5, Article 88, pp. 1-48. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, É. 

(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research(12), 

pp. 2825-2830. 

Pirscoveanu, R. S., & Hansen, S. S. (2015). Analysis of Malware Behavior: Type Classification using 

Machine Learning. Aalborg: Aalborg Univeristy. 

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017, July). DBSCAN Revisited, Revisited: 

Why and How You Should (Still) Use DBSCAN. ACM Transactions on Database Systems, p. 21. 

Sihwail, R., Omar, K., & Ariffin, K. A. (2018, september 30). A Survey on Malware Analysis 

Techniques: Static, Dynamic, Hybrid and Memory Analysis. International Journal on 

Advanced Science Engineering Information Technology, pp. 1662-1671. 

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands-On Guide to Dissecting 

Malicious Software. No Starch Press . 

Spiegel, S. (2015). Time series distance measures. Berlin: Elektrotechnik und Informatik der 

Technischen Universitat. 

Széles, G. J., & Coleşa, A. (2019, January 30). Malware Clustering Based on Called API During 

Runtime. Information and Operational Technology Security Systems, pp. 110-121. 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

35 
 

VirusTotal. (2021, April 4). About us. Retrieved from VirusTotal: 

https://support.virustotal.com/hc/en-us/categories/360000160117-About-us 

Wireshark Foundation. (2021, april 30). About wireshark. Retrieved from Wireshark: 

https://www.wireshark.org/ 

Zhao, J., Papapetrou, P., Asker, L., & Boström, H. (2017, January). Learning from heterogeneous 

temporal data in electronic health records. Journal of Biomedical Informatics, pp. 105-119. 

 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

36 
 

13 Appendix A – All recorded API function calls 
__anomaly__ GetDiskFreeSpaceW LookupPrivilegeValue

W 
ReadProcessMemory 

__exception__ GetFileAttributesExW MessageBoxTimeoutA RegCloseKey 

accept GetFileAttributesW MessageBoxTimeout
W 

RegCreateKeyExA 

bind GetFileInformationByHandle Module32FirstW RegCreateKeyExW 

CertControlStore GetFileInformationByHandleEx Module32NextW RegDeleteKeyA 

CertOpenStore GetFileSize MoveFileWithProgres
sW 

RegDeleteKeyW 

CertOpenSystemStoreA GetFileSizeEx NetUserGetInfo RegDeleteValueA 

CertOpenSystemStoreW GetFileType NtAllocateVirtualMem
ory 

RegDeleteValueW 

CHyperlink_SetUrlComp
onent 

GetFileVersionInfoSizeW NtClose RegEnumKeyExA 

closesocket GetFileVersionInfoW NtCreateFile RegEnumKeyExW 

CoCreateInstance GetForegroundWindow NtCreateKey RegEnumKeyW 

CoCreateInstanceEx gethostbyname NtCreateMutant RegEnumValueA 

CoGetClassObject GetKeyboardState NtCreateSection RegEnumValueW 

CoInitializeEx GetKeyState NtCreateThreadEx RegisterHotKey 

CoInitializeSecurity GetNativeSystemInfo NtDelayExecution RegOpenKeyExA 

COleScript_Compile GetShortPathNameW NtDeleteFile RegOpenKeyExW 

connect getsockname NtDeleteKey RegQueryInfoKeyA 

ControlService GetSystemDirectoryA NtDeleteValueKey RegQueryInfoKeyW 

CopyFileA GetSystemDirectoryW NtDeviceIoControlFile RegQueryValueExA 

CopyFileW GetSystemInfo NtDuplicateObject RegQueryValueExW 

CoUninitialize GetSystemMetrics NtEnumerateKey RegSetValueExA 

CreateActCtxW GetSystemTimeAsFileTime NtEnumerateValueKe
y 

RegSetValueExW 

CreateDirectoryW GetSystemWindowsDirectoryA NtFreeVirtualMemory RemoveDirectoryA 

CreateJobObjectW GetSystemWindowsDirectoryW NtGetContextThread RtlAddVectoredContinueHandl
er 

CreateProcessInternalW GetTempPathW NtMapViewOfSection RtlAddVectoredExceptionHan
dler 

CreateRemoteThread GetTimeZoneInformation NtOpenDirectoryObje
ct 

RtlCreateUserThread 

CreateRemoteThreadEx GetUserNameA NtOpenFile RtlDecompressBuffer 

CreateServiceA GetUserNameExA NtOpenKey RtlRemoveVectoredException
Handler 

CreateThread GetUserNameExW NtOpenKeyEx SearchPathW 

CreateToolhelp32Snaps
hot 

GetUserNameW NtOpenMutant select 

CryptAcquireContextA GetVolumeNameForVolumeMoun
tPointW 

NtOpenProcess send 

CryptAcquireContextW GetVolumePathNamesForVolume
NameW 

NtOpenSection SendNotifyMessageW 

CryptCreateHash GetVolumePathNameW NtOpenThread sendto 

CryptDecodeObjectEx GlobalMemoryStatus NtProtectVirtualMem
ory 

SetEndOfFile 

CryptDecrypt GlobalMemoryStatusEx NtQueryAttributesFile SetErrorMode 

CryptEncrypt HttpOpenRequestA NtQueryDirectoryFile SetFileAttributesW 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

37 
 

CryptExportKey HttpOpenRequestW NtQueryFullAttributes
File 

SetFileInformationByHandle 

CryptHashData HttpQueryInfoA NtQueryInformationFi
le 

SetFilePointer 

DeleteFileW HttpSendRequestA NtQueryKey SetFilePointerEx 

DeleteService HttpSendRequestW NtQueryMultipleValue
Key 

SetFileTime 

DeleteUrlCacheEntryA InternetCloseHandle NtQuerySystemInform
ation 

setsockopt 

DeleteUrlCacheEntryW InternetConnectA NtQueryValueKey SetUnhandledExceptionFilter 

DeviceIoControl InternetConnectW NtQueueApcThread SetWindowsHookExA 

DnsQuery_A InternetCrackUrlA NtReadFile SetWindowsHookExW 

DrawTextExA InternetCrackUrlW NtReadVirtualMemor
y 

ShellExecuteExW 

DrawTextExW InternetGetConnectedState NtResumeThread SHGetFolderPathW 

EnumWindows InternetOpenA NtSetContextThread SHGetSpecialFolderLocation 

FindFirstFileExW InternetOpenUrlA NtSetInformationFile shutdown 

FindResourceA InternetOpenUrlW NtSetValueKey SizeofResource 

FindResourceExA InternetOpenW NtSuspendThread socket 

FindResourceExW InternetQueryOptionA NtTerminateProcess StartServiceA 

FindResourceW InternetSetOptionA NtTerminateThread timeGetTime 

FindWindowA InternetSetStatusCallback NtUnmapViewOfSecti
on 

UnhookWindowsHookEx 

FindWindowExA ioctlsocket NtWriteFile URLDownloadToFileW 

FindWindowW IsDebuggerPresent NtWriteVirtualMemor
y 

UuidCreate 

GetAdaptersAddresses IWbemServices_ExecQuery ObtainUserAgentStrin
g 

WNetGetProviderNameW 

GetAdaptersInfo LdrGetDllHandle OleInitialize WriteProcessMemory 

getaddrinfo LdrGetProcedureAddress OpenSCManagerA WSARecv 

GetAddrInfoW LdrLoadDll OpenSCManagerW WSARecvFrom 

GetAsyncKeyState LdrUnloadDll OpenServiceA WSASend 

GetBestInterfaceEx listen OpenServiceW WSASendTo 

GetComputerNameA LoadResource OutputDebugStringA WSASocketA 

GetComputerNameW LoadStringA Process32FirstW WSASocketW 

GetCursorPos LoadStringW Process32NextW WSAStartup 

GetDiskFreeSpaceExW LookupAccountSidW ReadCabinetState 
 

 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

38 
 

14 Appendix B – Filtered list of API function calls 
accept InternetOpenA NtQueryMultipleValueKey RemoveDirectoryA 

__anomaly__ InternetOpenUrlA NtQueryValueKey RemoveDirectoryW 

bind InternetOpenUrlW NtReadFile RtlCreateUserThread 

closesocket InternetOpenW NtReadVirtualMemory select 

connect InternetReadFile NtResumeThread send 

ControlService InternetWriteFile NtSaveKey sendto 

CopyFileA ioctlsocket NtSaveKeyEx setsockopt 

CopyFileExW LdrGetDllHandle NtSetContextThread SetWindowsHookExA 

CopyFileW LdrLoadDll NtSetInformationFile SetWindowsHookExW 

CreateDirectoryExW listen NtSetValueKey ShellExecuteExW 

CreateDirectoryW LookupPrivilegeValueW NtSuspendThread shutdown 

CreateProcessInternalW MoveFileWithProgressW NtTerminateProcess socket 

CreateRemoteThread NtCreateFile NtTerminateThread StartService 

CreateServiceA NtCreateKey NtWriteFile StartServiceA 

CreateServiceW NtCreateMutant NtWriteVirtualMemory system 

CreateThread NtCreateNamedPipeFile OpenSCManagerA TransmitFile 

DeleteFileA NtCreateProcess OpenSCManagerW UnhookWindowsHookEx 

DeleteFileW NtCreateSection OpenServiceA URLDownloadToFileW 

DeleteService NtCreateThreadEx OpenServiceW VirtualProtectEx 

DeviceIoControl NtCreateUserProcess ReadProcessMemory WriteConsoleA 

DnsQueryA NtDelayExecution recv WriteConsoleW 

ExitProcess NtDeleteFile recvfrom WriteProcessMemory 

ExitThread NtDeleteKey RegCloseKey WSARecv 

ExitWindowsEx NtDeleteValueKey RegCreateKeyExA WSARecvFrom 

FindFirstFileExA NtDeviceIoControlFile RegCreateKeyExW WSASend 

FindFirstFileExW NtEnumerateKey RegDeleteKeyA WSASendTo 

FindWindowA NtEnumerateValueKey RegDeleteKeyW WSASocketA 

FindWindowExA NtFreeVirtualMemory RegDeleteValueA WSASocketW 

FindWindowExW NtGetContextThread RegDeleteValueW WSAStartup 

FindWindowW NtLoadKey RegEnumKeyExA ZwMapViewOfSection 

getaddrinfo NtMakeTemporaryObject RegEnumKeyExW  

GetAddrInfoW NtOpenDirectoryObject RegEnumKeyW  

GetCursorPos NtOpenFile RegEnumValueA 
 

gethostbyname NtOpenKey RegEnumValueW 
 

GetSystemMetrics NtOpenKeyEx RegOpenKeyExA 
 

HttpOpenRequestA NtOpenMutant RegOpenKeyExW 
 

HttpOpenRequestW NtOpenSection RegQueryInfoKeyA 
 

HttpSendRequestA NtOpenThread RegQueryInfoKeyW 
 

HttpSendRequestW NtProtectVirtualMemory RegQueryValueExA 
 

InternetCloseHandle NtQueryDirectoryFile RegQueryValueExW 
 

InternetConnectA NtQueryInformationFile RegSetValueExA 
 

InternetConnectW NtQueryKey RegSetValueExW 
 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

39 
 

15 Appendix C – Source code – Main.py 
 

# This is my main script 

import json 

import multiprocessing as mp 

import os 

import time 

 

import matplotlib.cm 

import matplotlib.pyplot 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn import metrics 

from sklearn.cluster import AgglomerativeClustering 

from sklearn.cluster import OPTICS 

 

import FeatureProcessing as fp 

import my_sorter as my_sort 

import process_cuckoo_reports as pcr 

 

 

def dist_metric(x, y): 

    print("X = " + str(int(x[0])) + " Y = " + str(int(y[0]))) 

    data_x = data[int(x[0])] 

    data_y = data[int(y[0])] 

    max_len = max(len(data_x), len(data_y)) 

    # I divide with MAX to get the Levenshtein ratio 

    return fp.levenshtein_distance_dp(data_x, data_y) / max_len 

 

 

def dist_metric_alt(x, y, dm): 

    print("X = " + str(x) + " Y = " + str(y)) 

    data_x = dm[x] 

    data_y = dm[y] 

    max_len = max(len(data_x), len(data_y)) 

    # I divide with MAX to get the Levenshtein ratio 

    return fp.levenshtein_distance_dp(data_x, data_y) / max_len 

 

 

def alt_dist_metric(i): 

    if i[0] == i[1]: 

        return 0.0 

    data_x = i[2] 

    data_y = i[3] 

    max_len = max(len(data_x), len(data_y)) 

    # I divide with MAX to get the Levenshtein ratio 

    dist = fp.levenshtein_distance_dp(data_x, data_y) / max_len 

    return [i[0], i[1], dist] 

 

 

def mp_calc_dist_matrix(idxs, dm): 

    calcs = [] 

    # Define all pairwise: 

    for i in range(0, len(idxs)): 

        for j in range(i + 1, len(idxs)): 

            if i < len(idxs) and j < len(idxs): 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

40 
 

                calcs.append([i, j, dm[i], dm[j]]) 

 

    # Submit to pools calculations to pools: 

    pool = mp.Pool() 

    res = pool.map(alt_dist_metric, calcs) 

    pool.close() 

    m_out = np.zeros((int(len(idxs)), int(len(idxs)))) 

    for r in res: 

        m_out[r[0]][r[1]] = r[2] 

        m_out[r[1]][r[0]] = r[2] 

    return m_out 

 

 

def swap(dist_mat, i, j): 

    for y in range(0, len(dist_mat)): 

        t = dist_mat[y][i] 

        dist_mat[y][i] = dist_mat[y][j] 

        dist_mat[y][j] = t 

 

    tmp = dist_mat[i].copy() 

    tmp2 = dist_mat[j].copy() 

    dist_mat[i] = tmp2 

    dist_mat[j] = tmp 

 

 

def order_dist_matrix(dist_matrix, labels): 

    for iter_num in range(len(labels) - 1, 0, -1): 

        for idx in range(iter_num): 

            if labels[idx] > labels[idx + 1]: 

                temp = labels[idx] 

                labels[idx] = labels[idx + 1] 

                labels[idx + 1] = temp 

                swap(dist_matrix, idx, idx + 1) 

 

 

def store_ordered_dist_matrix_as_png(dist_matrix, labels, title): 

    ticks = [] 

    for i in range(1, len(labels)): 

        if labels[i] != labels[i - 1]: 

            ticks.append(i - 0.5) 

    plt.clf() 

    fig, ax = plt.subplots(figsize=(20, 20), sharey=True) 

    # fig, ax = plt.subplots(sharey=True) 

    cmap = matplotlib.cm.get_cmap('CMRmap') 

    cax = ax.matshow(dist_matrix, interpolation='nearest', cmap=cmap) 

    # cax = ax.matshow(dist_matrix, interpolation='nearest') 

    ax.grid(False) 

    plt.suptitle('Clustered Distance Matrix') 

    plt.title(title) 

    plt.xticks(ticks, color="w") 

    plt.yticks(ticks, color="w") 

    fig.colorbar(cax, ticks=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, 1.0]) 

    plt.savefig("images/Dist_matrix_" + str(title) + ".png", 

bbox_inches='tight') 

    plt.close() 

 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

41 
 

 

def do_hierarchical_cluster_analysis_routine(api_call_description, 

dist_matrix): 

    print('DOING HIERARCHICAL AGGLOMERATIVE CLUSTERING:') 

    n = len(dist_matrix) 

    best_mean_silhouette = -1.0 

    best_nc = -1 

    best_labels = [] 

    ncs = [] 

    mss = [] 

    top = min(301, n) 

    for n_c in range(3, top - 1): 

        print('Trying with ' + str(n_c) + ' clusters:') 

        agg = AgglomerativeClustering(n_clusters=n_c, 

affinity='precomputed', linkage='average') 

        labels = agg.fit_predict(dist_matrix) 

        mean_silhouette = metrics.silhouette_score(dist_matrix, 

labels=labels, metric="precomputed") 

        print("For " + str(n_c) + " clusters the mean silhouette score 

is: " + str(mean_silhouette)) 

        ncs.append(n_c) 

        mss.append(mean_silhouette) 

        best_nc = n_c if mean_silhouette > best_mean_silhouette else 

best_nc 

        best_labels = labels if mean_silhouette > best_mean_silhouette 

else best_labels 

        best_mean_silhouette = mean_silhouette if mean_silhouette > 

best_mean_silhouette else best_mean_silhouette 

 

    # Display info about cluster to silhouette: 

    plt.clf() 

    plt.plot(ncs, mss) 

    plt.title('HIERARCHICAL - Cluster count to Silhouette score') 

    plt.xlabel('Number of clusters') 

    plt.ylabel('Silhouette score') 

    plt.yticks(np.arange(0, 1, 0.1)) 

    # plt.ylim([0.0, 1.0]) 

    plt.grid(True) 

    plt.savefig("images/EVAL_HIERARCHICAL_" + api_call_description + 

".png", bbox_inches='tight') 

    plt.close() 

    # Show info about best found nCluster and store dm to image: 

    print('Best # of clusters: ' + str(best_nc)) 

    print("The mean Silhouette score is: " + str(best_mean_silhouette)) 

    # sorted_dm = dist_matrix.copy() 

    # order_dist_matrix(sorted_dm, best_labels) 

    sorted_dm, sorted_labels = my_sort.optimal_sort(dist_matrix, 

best_labels) 

    store_ordered_dist_matrix_as_png(sorted_dm, sorted_labels, 

"HIERARCHICAL_analysis_n=" + str(n) + "_nCluster=" + str( 

        best_nc) + "_API_format" + api_call_description) 

    print("Sorted dist matrix saved as image.") 

 

 

def plot_optics_reachability(clust, X, title): 

    space = np.arange(len(X)) 

    reachability = clust.reachability_[clust.ordering_] 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

42 
 

    labels = clust.labels_[clust.ordering_] 

    plt.clf() 

    plt.figure(figsize=(20, 10)) 

 

    plt.plot(reachability) 

    plt.title('Reachability plot') 

    plt.xlabel('Samples') 

    plt.ylabel('Reachability (epsilon distance)') 

    plt.title('Reachability Plot') 

    plt.savefig("images/Reachability_plot_" + str(title) + ".png", 

bbox_inches='tight') 

    plt.close() 

 

 

def do_optics_cluster_analysis_routine(api_call_description, 

dist_matrix): 

    print('DOING OPTICS ANALYSIS:') 

    n = len(dist_matrix) 

    best_ms = -1 

    best_mean_silhouette = -1 

    best_labels = [] 

    list_min_samples = [] 

    list_mean_silhouettes = [] 

    list_mean_silhouettes_no_noise = [] 

    list_clusters = [] 

    list_noise_count = [] 

    for ms in range(2, 21): 

        try: 

            cluster_analyzer = OPTICS(metric="precomputed", 

min_samples=ms) 

            labels = cluster_analyzer.fit_predict(dist_matrix) 

            plot_optics_reachability(cluster_analyzer, dist_matrix, 

api_call_description + '_min_samples=' + str(ms)) 

            lbl_count = len(set(labels)) - (1 if -1 in labels else 0) 

            mean_s_coefficient = metrics.silhouette_score(dist_matrix, 

labels=labels, metric="precomputed") 

            print('For min_samples=' + str(ms) + ' found ' + 

str(lbl_count) + ' clusters, and mean_silhouette=' + str( 

                mean_s_coefficient)) 

 

            list_noise_count.append(np.count_nonzero(labels == -1)) 

            list_min_samples.append(ms) 

            list_mean_silhouettes.append(mean_s_coefficient) 

            best_ms = ms if mean_s_coefficient > best_mean_silhouette 

else best_ms 

            best_labels = labels.copy() if mean_s_coefficient > 

best_mean_silhouette else best_labels 

            list_clusters.append(len(set(labels)) - (1 if -1 in 

best_labels else 0)) 

            best_mean_silhouette = mean_s_coefficient if 

mean_s_coefficient > best_mean_silhouette else best_mean_silhouette 

 

            no_noise_dm, no_noise_labels = 

get_noise_free_dm_n_labels_copy(dist_matrix, labels) 

            no_noise_mean_s_coefficient = 

metrics.silhouette_score(no_noise_dm, labels=no_noise_labels, 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

43 
 

                                                                   

metric="precomputed") 

            print('For min_samples=' + str(ms) + ' found no_noise 

mean_silhouette=' + str(no_noise_mean_s_coefficient)) 

            

list_mean_silhouettes_no_noise.append(no_noise_mean_s_coefficient) 

        except Exception as e: 

            print("Could not do optics for min_samples=" + str(ms)) 

            print(e) 

 

    # Display info about cluster to min_samples: 

    plt.clf() 

    fig, axes = plt.subplots() 

 

    axes.spines['left'].set_color('green') 

    axes.set_ylim([0.0, 1.0]) 

    axes.xaxis.set_ticks(np.arange(0, 21, 1)) 

    axes.yaxis.set_ticks(np.arange(0, 1, 0.1)) 

    axes.grid(True) 

 

    fig.subplots_adjust(right=0.75) 

    twin_axes = axes.twinx() 

    twin_axes.spines['right'].set_color('red') 

    twin_axes.set_ylim([100, 600]) 

 

    second_twin = axes.twinx() 

    second_twin.spines['right'].set_position(('axes', 1.2)) 

    second_twin.spines['right'].set_color('blue') 

    second_twin.set_ylim([0, 250]) 

 

    p1, = axes.plot(list_min_samples, list_mean_silhouettes, 

color='green', label='Silhouette score') 

    p2, = axes.plot(list_min_samples, list_mean_silhouettes_no_noise, 

color='green', dashes=[6, 2], label="Silhouette without noise") 

    axes.set_xlabel("Min samples") 

    axes.set_ylabel("Silhouette score") 

 

    p3, = twin_axes.plot(list_min_samples, list_noise_count, 

color='red', label='Noise') 

    twin_axes.set_ylabel("Noise samples") 

 

    p4, = second_twin.plot(list_min_samples, list_clusters, 

color='blue', label='Clusters') 

    second_twin.set_ylabel('Cluster count') 

 

    axes.legend(handles=[p1, p2, p3, p4], bbox_to_anchor=(0.5, 1.1), 

loc='lower center') 

    plt.title('OPTICS - Min_samples size to Silhouette score') 

    plt.savefig("images/EVAL_OPTICS_" + api_call_description + ".png", 

bbox_inches='tight') 

    plt.close() 

    print('') 

    print('***** OPTICS Analysis done *****') 

    print('Best min_sample=' + str(best_ms)) 

    print('Finds ' + str(len(set(best_labels)) - (1 if -1 in 

best_labels else 0)) + ' clusters') 

    # print('Samples counted as noise: ' + str(best_labels.count(-1))) 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

44 
 

    print('Samples counted as noise: ' + 

str(np.count_nonzero(best_labels == -1))) 

    print('Mean silhouette: ' + str(best_mean_silhouette)) 

    # sorted_dm = dist_matrix.copy() 

    # my_sort.tim_sort(best_labels, sorted_dm) 

    # order_dist_matrix(sorted_dm, best_labels) 

    sorted_dm, sorted_lbls = my_sort.optimal_sort(dist_matrix, 

best_labels) 

 

    noise_count = np.count_nonzero(best_labels == -1) 

    print("Samples considered noise: " + str(noise_count)) 

    store_ordered_dist_matrix_as_png(sorted_dm, sorted_lbls, 

"OPTICS_analysis_n=" + str(n) + "_min_samples=" + str( 

        best_ms) + "_API_format=" + api_call_description) 

    print("Sorted dist matrix saved as image.") 

 

 

def get_noise_free_dm_n_labels_copy(dist_matrix, labels): 

    no_noise_dm = np.delete(dist_matrix, np.where(labels == -1), 

axis=0) 

    no_noise_dm = np.delete(no_noise_dm, np.where(labels == -1), 

axis=1) 

    no_noise_labels = np.delete(labels, np.where(labels == -1)) 

    return no_noise_dm, no_noise_labels 

 

 

def do_final_optics(dm, min_sampels): 

    print('') 

    print('***** DOING FINAL OPTICS *****') 

    cluster_analyzer = OPTICS(metric="precomputed", 

min_samples=min_sampels) 

    labels = cluster_analyzer.fit_predict(dm) 

    lbl_count = len(set(labels)) - (1 if -1 in labels else 0) 

    mean_s_coefficient = metrics.silhouette_score(dm, labels=labels, 

metric="precomputed") 

    print('For min_samples=' + str(min_sampels) + ' found ' + 

str(lbl_count) + ' clusters, and mean_silhouette=' + str( 

        mean_s_coefficient)) 

 

    # orderd_dm = dm.copy() 

    # order_dist_matrix(orderd_dm, labels) 

 

    sorted_dm, sorted_labels = my_sort.optimal_sort(dm, labels) 

 

    title = 'FINAL_OPTICS_min_samples=' + str(min_sampels) 

    title += '_n_clusters=' + str(lbl_count) 

    title += '_n_samples=' + str(len(labels)) 

    store_ordered_dist_matrix_as_png(sorted_dm, sorted_labels, title) 

    print('........... DONE!') 

 

 

def do_final_hierarchical(dm, n_clusters): 

    print('') 

    print('***** DOING FINAL Hierarchical *****') 

    agg = AgglomerativeClustering(n_clusters=n_clusters, 

affinity='precomputed', linkage='average') 

    labels = agg.fit_predict(dm) 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

45 
 

    mean_silhouette = metrics.silhouette_score(dm, labels=labels, 

metric="precomputed") 

    print("For " + str(n_clusters) + " clusters the mean silhouette 

score is: " + str(mean_silhouette)) 

 

    sorted_dm, sorted_labels = my_sort.optimal_sort(dm, labels) 

 

    title = 'FINAL_HIERARCHICAL' 

    title += '_n_clusters=' + str(n_clusters) 

    title += '_n_samples=' + str(len(labels)) 

    store_ordered_dist_matrix_as_png(sorted_dm, sorted_labels, title) 

    print('........... DONE!') 

 

 

def find_optimal_values(): 

    global j 

    labels = ['FILTERED=FALSE_COLLAPSED=FALSE', 

'FILTERED=TRUE_COLLAPSED=FALSE', 'FILTERED=TRUE_COLLAPSED=TRUE'] 

    for dm_id in range(0, 3): 

        dist_list = [] 

        for i in range(0, len(m[dm_id])): 

            for j in range(i, len(m[dm_id])): 

                if not i == j: 

                    dist_list.append(m[dm_id][i][j]) 

        print("Calculating frequency of distances in distance matrix:") 

        print("Dist counts: " + str(len(dist_list))) 

        plt.clf() 

        plt.hist(dist_list, bins=50) 

        plt.gca().set(title='Frequency of Distances', 

ylabel='Frequency', xlabel='Levenshtein ratio distance') 

        plt.title('Frequency of distances with: ' + labels[dm_id]) 

        plt.ylim([0, 350000]) 

        plt.grid(True) 

        plt.savefig("images/Dist_frequencies_" + labels[dm_id] + 

".png") 

        plt.close() 

        print(".......... DONE") 

        print('') 

 

        do_optics_cluster_analysis_routine(labels[dm_id] + '_API_SEQ', 

m[dm_id]) 

        do_hierarchical_cluster_analysis_routine(labels[dm_id] + 

'_API_SEQ', m[dm_id]) 

 

 

if __name__ == '__main__': 

    start = time.time() 

    cpus = 12 

    mp.freeze_support() 

    stored_dist_matrix = "data/dist_matrix.json" 

    global glob_data 

    data = [] 

    global toShare 

    print("###GO GO GO###") 

    m = [] 

 

    if os.path.isfile(stored_dist_matrix): 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

46 
 

        print("Loading stored distance matrix") 

        f = open(stored_dist_matrix, "r") 

        j = f.read() 

        f.close() 

        data = json.loads(j) 

        m = np.array(data) 

        print(".......... DONE") 

        print('') 

    else: 

        workdir = "C:\\Users\\stegg\\OneDrive\\Documents\\Master 

Projekt\\Data\\mal_reports\\" 

        d = pcr.mp_get_all_files_api_sequences(workdir) 

        # print("Samples: " + str(len(data))) 

        print("Creating a new distance matrices") 

        for dms in d: 

            X = np.arange(len(dms)).reshape(-1, 1) 

            currX = -1 

            start = time.time() 

            m = mp_calc_dist_matrix(X, dms) 

            end = time.time() 

            print("Time take: " + str(end - start)) 

            print(".......... DONE") 

            print('') 

            data.append(m) 

 

        print("Saving distance matrix to file:") 

        m_list = [] 

        for meh in data: 

            m_list.append(meh.tolist()) 

        m_as_json = json.dumps(m_list) 

        f = open("data/dist_matrix.json", "w") 

        f.write(m_as_json) 

        f.close() 

        print(".......... DONE") 

        print('') 

        m = np.array(m_list) 

 

    # m has the distance matrices: 

    find_optimal_values() 

 

    #do_final_hierarchical(m[2], 100) 

    #do_final_hierarchical(m[2], 250) 

 

    #do_final_optics(m[2], 2) 

    #do_final_optics(m[2], 4) 

    #do_final_optics(m[2], 5) 

    #do_final_optics(m[2], 7) 

 

    # 

malware_stats.do_api_analysis("C:\\Users\\stegg\\OneDrive\\Documents\\M

aster Projekt\\Data\\mal_reports\\") 

 

    end = time.time() 

    print('Time taken: ' + str(end - start) + " sec.") 

    print('') 

    print("********* ALL DONE **********") 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

47 
 

16 Appendix D – Source code – FeatureProcessing.py 
 

import difflib as diff 

import os 

import json 

import numpy as np 

import sklearn.metrics.pairwise as pw 

from joblib import Parallel, delayed 

from sklearn.utils import gen_even_slices 

import multiprocessing as mp 

 

 

def levenshtein_distance_dp(token1, token2): 

 

    if token1 == token2: 

        return 0 

 

    if len(token1) == 0: 

        return len(token2) 

 

    if len(token2) == 0: 

        return len(token1) 

 

    distances = np.zeros((len(token1) + 1, len(token2) + 1)) 

 

    for t1 in range(len(token1) + 1): 

        distances[t1][0] = t1 

 

    for t2 in range(len(token2) + 1): 

        distances[0][t2] = t2 

 

    for t1 in range(1, len(token1) + 1): 

        for t2 in range(1, len(token2) + 1): 

            if token1[t1 - 1] == token2[t2 - 1]: 

                distances[t1][t2] = distances[t1 - 1][t2 - 1] 

            else: 

                a = distances[t1][t2 - 1] 

                b = distances[t1 - 1][t2] 

                c = distances[t1 - 1][t2 - 1] 

 

                if a <= b and a <= c: 

                    distances[t1][t2] = a + 1 

                elif b <= a and b <= c: 

                    distances[t1][t2] = b + 1 

                else: 

                    distances[t1][t2] = c + 1 

 

    # print_distances(distances, len(token1), len(token2)) 

    return distances[len(token1)][len(token2)] 

 

 

def print_distances(distances, token1Length, token2Length): 

    for t1 in range(token1Length + 1): 

        for t2 in range(token2Length + 1): 

            print(int(distances[t1][t2]), end=" ") 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

48 
 

        print() 

 

 

def hamming_distance(sequence_a, sequence_b, length): 

    dist_counter = int(0) 

    if (len(sequence_a) < length) or (len(sequence_b) < length): 

        dist_counter = length - min(len(sequence_a), len(sequence_b)) 

    top = length - dist_counter 

    i = 0 

    while i < top: 

        if sequence_a[i] != sequence_b[i]: 

            dist_counter += 1 

        i += 1 

    return int(dist_counter) 

 

 

# Gets the API call sequence performed by the malware process matching 

the filename of the given Cuckoo result 

def get_api_call_sequence(file): 

    try: 

        with open(str(file), 'r') as myFile: 

            data = myFile.read() 

            obj = json.loads(data) 

            if 'behavior' in obj: 

                behavior = obj['behavior'] 

                if 'processes' in behavior: 

                    processes = behavior['processes'] 

                    # Find the right process 

                    process = get_process(file, processes) 

                    if process != -1: 

                        calls = process['calls'] 

                        api_calls = [] 

                        for i in calls: 

                            api_calls.append(str(i['api'])) 

                        return api_calls 

    except: 

        return [] 

    finally: 

        myFile.close() 

 

 

def lcs(X, Y): 

    # find the length of the strings 

    m = len(X) 

    n = len(Y) 

 

    # declaring the array for storing the dp values 

    L = [[None] * (n + 1) for i in range(m + 1)] 

 

    """Following steps build L[m + 1][n + 1] in bottom up fashion 

    Note: L[i][j] contains length of LCS of X[0..i-1] 

    and Y[0..j-1]""" 

    for i in range(m + 1): 

        for j in range(n + 1): 

            if i == 0 or j == 0: 

                L[i][j] = 0 

            elif X[i - 1] == Y[j - 1]: 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

49 
 

                L[i][j] = L[i - 1][j - 1] + 1 

            else: 

                L[i][j] = max(L[i - 1][j], L[i][j - 1]) 

 

    # L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1] 

    return L[m][n] 

 

 

# Creates a dist matrix 

def my_pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, 

data=[], **kwds): 

    # Check matrices first (this is usually done by the metric). 

    X, Y = pw.check_pairwise_arrays(X, Y) 

    n_x, n_y = X.shape[0], Y.shape[0] 

    # Calculate distance for each element in X and Y. 

    # FIXME: can use n_jobs here too 

    D = np.zeros((n_x, n_y), dtype='float') 

    cpus = mp.cpu_count() 

    print("CPUS: " + str(cpus)) 

    pool = mp.Pool(12) 

 

    for i in range(n_x): 

        start = 0 

        if X is Y: 

            start = i 

        for j in range(start, n_y): 

            results = pool.apply_async(my_tmp, args=(X, Y, i, j, kwds, 

metric, data)) 

 

 

    pool.close() 

    pool.join() 

    for r in results.get(): 

        D[r[1], r[2]] = r[0] 

        D[r[2], r[1]] = r[0] 

    return D 

 

 

def my_tmp(X, Y, i, j, kwds, metric, data): 

    dist = metric(X[i], Y[j], data, **kwds) 

    return dist, i, j 

 

 

# Gets the process from a Cuckoo json result that matches the given 

file name 

def get_process(file, processes): 

    filename = get_filename(file) 

    for i in processes: 

        if str(i['process_path']).find(filename) != -1: 

            return i 

    return -1 

 

 

# Gets the name portion from a file path 

def get_filename(file): 

    return os.path.basename(file).split('.')[0] 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

50 
 

17 Appendix E – Source code – my_sorter.py 
 

import numpy as np 

 

 

def optimal_sort(dm, labels): 

    idx = np.argsort(labels) 

    sorted_dm = np.zeros((len(dm), len(dm))) 

    for col in range(0, len(idx)): 

        for row in range(col, len(idx)): 

            old_col = idx[col] 

            olr_row = idx[row] 

            dist = dm[old_col, olr_row] 

            sorted_dm[col][row] = dist 

            sorted_dm[row][col] = dist 

    sorted_labels = np.sort(labels) 

    return sorted_dm, sorted_labels 

  



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

51 
 

18 Appendix F – Source code – process_cuckoo_reports.py 
 

import os 

import json 

import FeatureProcessing as fp 

import malware_stats as ms 

import multiprocessing as mp 

 

storedData = "data/apilist.json" 

samples_to_process = 0 

api_sequences_desired_length = 200 

 

good_apis = ['NtOpenSection', 'NtLoadKey', 'FindFirstFileExW', 

'NtDeleteValueKey', 'ExitThread', 'closesocket', 

             'WSARecv', 'recv', 'socket', 'getaddrinfo', 

'NtProtectVirtualMemory', 'RtlCreateUserThread', 'connect', 

             'setsockopt', 'HttpSendRequestA', 'NtResumeThread', 

'RegDeleteValueW', 'NtCreateSection', 

             'NtMakeTemporaryObject', 'NtGetContextThread', 

'StartService', 'RegEnumKeyExA', 'RegSetValueExW', 

             'SetWindowsHookExA', 'NtReadVirtualMemory', 

'WriteConsoleA', 'FindWindowExW', 'send', 

             'WSASendTo', 'NtDelayExecution', 'NtOpenThread', 

'InternetOpenA', 

             'ShellExecuteExW', 'CreateProcessInternalW', 

'VirtualProtectEx', 'FindWindowExA', 'RegSetValueExA', 

             'SetWindowsHookExW', 'RegOpenKeyExA', 'NtSaveKeyEx', 

'StartServiceA', 'ZwMapViewOfSection', 

             'NtEnumerateKey', 'HttpSendRequestW', 'GetCursorPos', 

'NtOpenDirectoryObject', 'LookupPrivilegeValueW', 

             '__anomaly__', 'LdrLoadDll', 'InternetOpenW', 

'RegEnumValueW', 'NtCreateUserProcess', 'ExitWindowsEx', 

             'NtCreateFile', 'URLDownloadToFileW', 'NtQueryValueKey', 

'TransmitFile', 'WriteConsoleW', 'RegDeleteKeyA', 

             'RegEnumKeyExW', 'RegCloseKey', 'HttpOpenRequestA', 

'NtCreateProcess', 'NtSetInformationFile', 'accept', 

             'recvfrom', 'NtCreateKey', 'FindWindowW', 'sendto', 

'MoveFileWithProgressW', 'ControlService', 

             'NtSuspendThread', 'ioctlsocket', 'RegDeleteKeyW', 

'NtQueryInformationFile', 'WSAStartup', 'FindWindowA', 

             'RegCreateKeyExW', 'NtTerminateThread', 

'HttpOpenRequestW', 'DeviceIoControl', 'NtTerminateProcess', 

             'NtFreeVirtualMemory', 'WSASocketA', 'RegOpenKeyExW', 

'InternetConnectW', 'CopyFileW', 'shutdown', 

             'UnhookWindowsHookEx', 'OpenServiceA', 'DeleteService', 

'RegEnumKeyW', 'WriteProcessMemory', 'select', 

             'InternetConnectA', 'WSARecvFrom', 'NtQueryKey', 

'NtSaveKey', 'NtSetContextThread', 'CreateRemoteThread', 

             'RegDeleteValueA', 'RegQueryValueExA', 'GetSystemMetrics', 

'CopyFileExW', 'RemoveDirectoryW', 

             'NtCreateThreadEx', 'NtOpenMutant', 'OpenServiceW', 

'CreateServiceA', 'NtOpenFile', 'NtSetValueKey', 

             'RegQueryInfoKeyA', 'RegQueryInfoKeyW', 'ExitProcess', 

'InternetCloseHandle', 'NtQueryDirectoryFile', 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

52 
 

             'WSASocketW', 'system', 'NtDeleteKey', 'RegCreateKeyExA', 

'DeleteFileA', 'gethostbyname', 

             'RemoveDirectoryA', 'ReadProcessMemory', 'CopyFileA', 

'RegQueryValueExW', 'CreateDirectoryW', 

             'NtCreateMutant', 'WSASend', 'DeleteFileW', 

'GetAddrInfoW', 'NtDeviceIoControlFile', 'NtDeleteFile', 

             'InternetOpenUrlA', 'NtReadFile', 'CreateServiceW', 

'bind', 'RegEnumValueA', 'listen', 'NtOpenKey', 

             'NtWriteFile', 'NtQueryMultipleValueKey', 

'OpenSCManagerW', 'LdrGetDllHandle', 'DnsQueryA', 

             'InternetOpenUrlW', 'NtWriteVirtualMemory', 

'InternetWriteFile', 'NtOpenKeyEx', 'NtEnumerateValueKey', 

             'InternetReadFile', 'OpenSCManagerA', 

'CreateDirectoryExW', 'FindFirstFileExA', 'CreateThread', 

             'NtCreateNamedPipeFile'] 

 

 

def mp_get_all_files_api_sequences(workdir): 

    data = [] 

    if os.path.isfile(storedData): 

        print("Loading stored API sequence call list") 

        f = open(storedData, "r") 

        j = f.read() 

        data = json.loads(j) 

        f.close() 

        print(".......... DONE") 

        print('') 

    else: 

        lenghty = samples_to_process if samples_to_process > 0 else 

"ALL" 

        print("Creating new API sequence call list of length: " + 

str(lenghty)) 

        files = os.listdir(workdir) 

        if samples_to_process > 0: 

            print('Processing ' + str(samples_to_process) + ' files 

from: ' + str(workdir)) 

            files = files[:samples_to_process] 

        else: 

            print('Processing ALL files from: ' + str(workdir)) 

        file_list = [workdir + f for f in files] 

 

        tmp_a = [] 

        tmp_b = [] 

        tmp_c = [] 

 

        pool = mp.Pool() 

        result = pool.map(read_api_sequence_from_file, file_list) 

        for r in result: 

            if not (r is None) and len(r) > 0: 

                if r[0] is not None and r[1] is not None and r[2] is 

not None and len(r[0]) > 0 and len(r[1]) > 0 and len(r[2]) > 0: 

                    tmp_a.append(r[0]) 

                    tmp_b.append(r[1]) 

                    tmp_c.append(r[2]) 

                else: 

                    print('Discarded api seq: ' + str(r)) 

        pool.close() 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

53 
 

 

        data.append(tmp_a) 

        data.append(tmp_b) 

        data.append(tmp_c) 

 

        jsonfile = json.dumps(data) 

        f = open(storedData, "w") 

        f.write(jsonfile) 

        f.close() 

        print(".......... DONE") 

        print('') 

    return data 

 

 

def read_api_sequence_from_file(file): 

    a = [] 

    b = [] 

    c = [] 

    if os.path.isfile(file): 

        sequence_calls = fp.get_api_call_sequence(file) 

        if sequence_calls is not None: 

            a = sequence_calls[:api_sequences_desired_length].copy() 

            filter_bad_apis(sequence_calls) 

            b = sequence_calls[:api_sequences_desired_length].copy() 

            collapse_duplicates(sequence_calls) 

            c = sequence_calls[:api_sequences_desired_length].copy() 

            return [a, b, c] 

 

 

def collapse_duplicates(sequence_calls): 

    sequence_calls.reverse() 

    for ng in range(5, 0, -1): 

        try: 

            i = 0 

            while i < len(sequence_calls) - ng * 2: 

                a = sequence_calls[i:i + ng] 

                b = sequence_calls[i + 1 + ng:i + 1 + ng * 2] 

                if a == b: 

                    del_list = range(i - 1 + ng, i - 1, -1) 

                    i_to_del = i - 1 + ng 

                    for j in del_list: 

                        del sequence_calls[i_to_del] 

                else: 

                    i = i + 1 

        except: 

            print('aui') 

    sequence_calls.reverse() 

 

 

def get_all_files_api_sequences(workdir): 

    data = [] 

    if os.path.isfile(storedData): 

        f = open(storedData, "r") 

        j = f.read() 

        data = json.loads(j) 

        f.close() 

    else: 



Peter Grinderslev Stegger 
30-04-21 

Malware Cluster Analysis 

 

54 
 

        files = os.listdir(workdir) 

        for file in files: 

            if len(data) >= samples_to_process: 

                break 

            if os.path.isfile(workdir + file): 

                sequence_calls = fp.get_api_call_sequence(workdir + 

file) 

                if sequence_calls is not None: 

                    filter_bad_apis(sequence_calls) 

                    # TODO Collapse repeated sequences 

                    if 0 < len(sequence_calls): 

                        

data.append(sequence_calls[:api_sequences_desired_length]) 

        jsonfile = json.dumps(data) 

        f = open(storedData, "w") 

        f.write(jsonfile) 

        f.close() 

    return data 

 

 

def filter_bad_apis(sequence_calls): 

    for sq in sequence_calls: 

        if sq not in good_apis: 

            while sq in sequence_calls: 

                sequence_calls.remove(sq) 

 

 

def pcr_test(): 

    print("Start collecting data:") 

    test = get_all_files_api_sequences( 

        "C:\\Users\\stegg\\OneDrive\\Documents\\Master 

Projekt\\Data\\mal_reports\\") 

 

    print("Count: " + str(len(test))) 

    freq_report = ms.get_freq_report(test) 

    print("Unique api calls after filter: " + str(len(freq_report))) 

 


