A hybrid approach to structural modeling of
individualized HRTFs

Generating and combining pinna responses, head-and-torso filtering, and
interaural time difference data

Riccardo Miccini
Sound and Music Computing, 2021-02

Master’s Project

| A hybrid approach to structural
modeling of individualized
HRTFs

Generating and combining pinna responses, head-and-torso
filtering, and interaural time difference data

Riccardo Miccini
Sound and Music Computing, 2021-02

Master’s Project

Copyright © Aalborg University 2020

This document was authored in a Microsoft Visual Studio Code environment using the
Markdown markup language, and typeset by the author using the IXTEX typesetting system.
Most of the graphics shown herein are generated using matplotlib. The bibliography is
typeset using biblatex.

The template has been created by Jesper Kjeer Nielsen; Markdown was originally
developed by John Gruber and Aaron Swartz; IAIEX was originally developed by Leslie
Lamport, based on TgXcreated by Donald Knuth; conversion between the two languages
was provided by Pandoc, developed by John MacFarlane. The image in the front cover was
made using Python, CoGe V], and GIMP.

(

AALBORG UNIVERSITY
STUDENT REPORT

Title:
A hybrid approach to structural model-
ing of individualized HRTFs

Theme:
HRTF Individualization

Project Period:
Fall Semester 2020

Project Group:
N/A

Participant(s):
Riccardo Miccini

Supervisor(s):
Simone Spagnol

Copies: 1
Page Numbers: 72

Date of Completion:
January 31, 2021

Department of Architecture,
Design and Media Technology
Aalborg University

www.aau.dk

Abstract:

Providing users with a personalized
HRTF set is paramount for an immer-
sive VR experience, free from localiza-
tion errors and inside-the-head sound
perception. However, direct acoustic
measurement of the user’s HRTF re-
quires specialized apparatuses and is
often strenuous and expensive. We
present a hybrid approach to HRTF
modeling which requires only 3 anthro-
pometric measurements and an image
on the pinna contours. A prediction
algorithm based on variational autoen-
coders synthesizes a pinna response
from its contours, which is used to
filter a measured head-and-torso re-
sponse. The ITD is then manipulated
to match that of a HUTUBS dataset
subject minimizing the predicted local-
ization error. The performances are
evaluated using spectral distortion and
a perceptual localization model. While
the latter is inconclusive regarding the
efficacy of the structural model, the
former metric shows promising results
with encoding HRTF datasets.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

https://www.aau.dk

Acknowledgements

As I am typing these words, I am reminded that my time at Aalborg University is about to
be over: no more exams to postpone, no more deadlines I can extend. I would like to thank
everyone at AAU, my classmates, teachers, and all of the campus staff for offering the best
study environment I could possibly wish for and the tools to be my most successful self.

A very special mention goes to my supervisor Simone for his extraordinary dedication,
support, patience, and technical insight. Thanks for making these past two years some of the
most formative and prolific ones in my life. I wish you good luck with all your future endeavors,
and I hope to see you soon, perhaps at the next physical conference.

I would also like to thank my colleague Jonas, who believed in my project so much that
he ended up using my individualized HRTFs for his ass-kicking thesis, in what ended up
being a desperate race against time, sleep deprivation, Unity3D quirks on OSX, and lab access
restrictions.

Speaking of which. This past year has been crazy, for reasons we're all aware of. Therefore, I
would like to thank all the people who helped me stay sane, focused, and motivated throughout
it. I owe you one. Thank you Federico, Adriana, and Julia for the productive work sessions,
less productive sessions involving just the right amount of wine, spontaneous audiovisual jams
sessions, and overall for being the most amazing friends I could ask for. Thank you Chiara,
Connor, Irina, Jan, Rares, and all the other people I met at Colab320, for offering me a physical
space to escape to, the possibility of fostering my passion for music and geeky stuff, and for
being some of the most welcoming and supportive people I've met here. Oh, and thank you
Anne for putting up with me every day. How do you even do it? Please don't stop. I love you.

While I am stuck here in Denmark with the aforementioned people, my gratitude stretches
all across Europe. To my friends in Italy — Chiara, Davide, Riccardo, Emanuele, Camilla, Giulia,
Eugenio, Edoardo, and Fabio, as well as those scattered anywhere else — Claudio, Boris, Anita:
you guys had a hell of a year. Thanks for holding tight, keeping me digital company, and
providing ever-so-tangible relief during these months of uncertainty. I can’t wait to hug you
again.

As obvious as it may sound, none of this would have been possible without my family, who
taught me the principles and values to live a successful life and set a good example from day 0;
after so many years spent in education, I am still cherishing their lessons. Thanks to my parents
Maria Luisa and Gianfranco, my siblings Natascia, Daniele, and Marco, my grandmother, and
my little niece Matilde, whom I can’t wait to play and take silly selfies with.

Finally, I would like to dedicate this work to my grandfather Natale, who unfortunately is
not here to witness the fruits of his hard work and dedication to his family. I miss you every
day. There are so many things I wish I could ask you or tell you about. I hope you're still proud

of me.

1ii

Contents

Acknowledgements

Preface

1

Introduction
1.1 The head-related transfer function

1.2 HRTF Individualization

Related work

2.1 Conventional approaches

2.2 Deep learning approaches

Methods and tools

3.1 Deeplearning

32 Datasets
321 HRTFs
3.22 Earsimages

Encoding of pinna images

41 Proposed architecture
42 Results

Encoding of HRTF

51 Proposed architecture
52 Results

Prediction of encoded representations

6.1 Proposed architecture
62 Results

HRTF set creation

7.1 Proposed algorithm

iv

iii

vi

10

13
15
16
17
18

21
23
25

30
30
32

36
36
37

42

Contents

72 Results e

8 Discussion
9 Conclusions
Bibliography

A Commands

Al Pinna VAE
A1l Train e
A2 HRTFCVAE (Regular)
A21 Train
A.3 HRTF CVAE (interaural)
A31 Train
A4 DNN (Regular),
A4l Export
Ad42 Train
A5 DNN (Interaural)
Ab51 Export
Ab2 Train e
A.6 DNN (PCA) e e
A6l Train
A7 PRTF generation.

Attachments

B.1 src_python/: Source code for PRTF generation
B.2 src_matlab/: Source code for HRTF individualization
B.3 logs/: Traininglogs
B.4 report/:Reportcode.
B.5 notebooks/: Jupyter notebooks oL

45

49

53

56

64
64
64
65
65
65
65
65
65
65
66
66
67
67
67
68

Preface

This thesis was conceived as the final project of the Sound and Music Computing
Master’s program at Aalborg University, Copenhagen. The work presented herein
was conducted during my last term, between September 2020 and January 2021, and
was supervised by Simone Spagnol and Stefania Serafin. The report investigates
the design, development, and evaluation of an HRTF individualization method
based on deep learning algorithms.

In September 2019, prompted by my interest in machine learning, Simone took
me under his wing, allowing me to consolidate my professional and academic
background with peer-reviewed work and field research. Indeed, the foundation
of this research originates from a article presented at the 2020 IEEE Conference
on Virtual Reality and 3D User Interfaces by Simone and me in March 2020.
Furthermore, essential elements for this work were collected during my internship
at the University of Iceland in November and December 2019. Finally, the technical
framework and knowledge base acquired during the first and second semester
projects at AAU, delivered in December 2018 and June 2019 respectively, provided
me with the confidence to take on this ambitious challenge.

Thus, this project is the culmination of more than 2 years of effort. After
spending this time investigating deep learning technologies on diverse audio
applications such as timbre morphing, speech enhancement, and lastly spatial
audio, my curiosity is hardly quenched and new areas of interest arose. I look
forward to spending the upcoming years working on them.

Aalborg University, January 31, 2021

Drcits Musa

Riccardo Miccini

<rmiccil8@student.aau.dk>

vi

Chapter 1

Introduction

Virtual, augmented, and mixed reality (collectively known as XR) research have
made significant strides over the last decades, and acoustic virtual reality tech-
nologies have found applications in a wide array of fields such as navigation aids
for the visually impaired [74], entertainment systems, and tools for acoustic and
sound-quality measurements [8]. Binaural rendering technologies are therefore
employed, to provide the user with a believable and immersive 3D auditory scene.
This consists in processing a sound to simulate the effects of the user’s head, pinnae,
and torso, which vary depending on the location of the sound source. The effect
of the user’s anthropometry with respect to the direction of a sound is described
mathematically by the head-related transfer function (HRTF), and will be further
discussed in section 1.1. The word “binaural” implies the presence of two audio
channels, a left and a right one, which are processed differently and delivered to
the user’s respective ear canals using headphones.

For the user to be able to experience a vivid and immersive 3D virtual environ-
ment, the two audio channels must adequately replicate the physical phenomena
caused by the user’s anthropometry. Throughout their lineage, evolutionary pres-
sure caused humans’ anatomy and brain to develop several sophisticated mecha-
nisms allowing them to detect the position of sound sources and parse auditory
scenes [50]: these are collectively known as localization cues. These cues can be
divided into interaural — that is, based on the difference between the signal arriving
at each ear canal — and monaural, which are extracted independently for each ear.
Interaural cues are typically involved in the localization of sounds along the lateral
direction, and come in the form of interaural time difference (ITD) and interaural level
difference (ILD). The former is based on the difference between time-of-arrival of
a given input stimulus, which may fluctuate by as much as £1ms between the
ipsilateral and contralateral directions [65]. This cue is particularly sensitive to the
spectral makeup of the source signal since the cochlea is only sensitive to phase
difference of frequencies up to about 1.6 kHz and the distance between the pinnae

1.1. The head-related transfer function 2

is finite; furthermore, the lack of a distinct temporal envelope may also hinder
its effectiveness [7]. Conversely, for signals containing frequency components
higher than 400 Hz, the acoustic shadow cast by the head introduces detectable
differences in loudness. Monaural cues, also known as spectral cues, are described
in the following section, and research about their physical origins and modeling is
presented in chapter 2. Other types of localization cues are known to exist, such as
dynamic cues: in this case, the subtle variations in the other cues occurring when
the user moves their head are examined in order to resolve the precise location of a
sound source [7].

Binaural audio rendering technologies usually employ generic HRTFs that are
derived from standard head and torso simulators or averages of HRTFs from multi-
ple subjects. However, these generic HRTFs fail to accurately replicate the spectral
cues associated with the user’s own anthropometry, causing front-back confusion
and inside-the-head localization [81]. In order to provide the most immersive expe-
rience possible, individualized HRTFs must be acquired from the user, through a
strenuous and time-consuming process of acoustical measurement, which usually
requires a custom-built sound playback and recording apparatus. Fortunately, over
the past few decades, alternatives to measured HRTFs have been researched and
developed. This field of research is known as HRTF individualization.

The following sections provide an overview of the HRTF and its characteristics,
as well as an introduction to the field of HRTF individualization.

1.1 The head-related transfer function

As mentioned earlier, HRTFs mathematically encode the impact of a user’s mor-
phology on an incoming sound as a function of its spatial location. This is due to
the acoustic phenomena occurring on the interface between two different media
— in this case, the air and the human body — such as reflection, diffraction, and
diffusion, causing the human body to act as a filter. Most notably, the parts of
the human body interacting with the incoming wavefront and therefore known
to contribute to the HRTF are the shoulders, the torso, the head, and most promi-
nently the pinnae of the listener [1]. Along the median plane, the reflection of
soundwaves over the shoulders take the form of semicircular patterns originating
at 90°, behaving like a variable comb filter [19] (see Figure 1.1 or, most prominently,
Figure 7.1). The head plays a role in attenuating frequencies higher than ~1.5kHz
(i.e. having a wavelength shorter than the head width) for contralateral locations
along the horizontal plane [7].

The impact of the pinnae is most noticeable across the median plane, where it
provides salient vertical localization cues in the form of spectral peaks and notches
[24] — these can be seen in Figure 1.1. When isolated from the aforementioned
contributions, it takes the name of pinna-related transfer function (PRTF). A summary

1.1. The head-related transfer function 3

270 20
—~ 10
& 180 =
= T
o 0 o
g 3
© £
T 90} -10 2
e \ ©
g 2
8 205
> o =
2 -30

-90 -40

0 4 8 12 16 20

Frequency (kHz)

Figure 1.1: Median plane HRTF, with most prominent peaks and notches highlighted. Reproduced
from [32].

of the relevant literature on the spectral features introduced by the pinnae and their
relevance in spatial localization can be found in chapter 2.

An HRTF is usually encoded in the frequency domain as a minimum-phase
system, bereft of its ITD information, which must be accounted for separately.
The time-domain equivalent of the HRTF is the head-related impulse response
(HRIR). Other methods for encoding HRTF information include surface spherical
harmonics [21] and spherical wavelets [46].

Observing the HRIRs of a subject — such as those in Figure 1.2 — highlights
the temporal appearance of the aforementioned contributions: for instance, the
impact of the pinna is limited to the first 0.2ms from the onset [61, 68], while
shoulders and torso reflections appear as amplitude peaks delayed by 0.5ms to
1ms depending on the elevation angle. Across the horizontal plane, the onset delay
caused by the distance between the pinnae as well as the head shadowing effect
are also clearly visible.

The process of collecting HRTFs from a human subject usually involves playing
an acoustic stimulus from each of the loci of the desired spatial grid and recording
it from the entrance of the ear canal of each ear, using a pair of miniaturized
in-ear microphones. Ensuring a consistent spacing between grid points and an
adequate spatial resolution is an open challenge, and acoustic research labs around
the world came up with ad-hoc solutions meeting their requirements, such as
loudspeaker arrays or pivoting arms — e.g. the setup in Figure 1.3. These acoustical
measurements are usually carried out in an anechoic or semi-anechoic environment
to minimize the presence of wall reflection and reverberation in the recorded data.

The Dirac impulse is the most straightforward choice of audio stimulus, in that

1.1. The head-related transfer function 4

HUTUBS subject 002 (left channel)

Median plane Horizontal plane

= N N
o 3 &
S 3 S

S
S

Elevation [deg]
Azimuth [deg]

w
o S

|
@
S

Time [ms] Time [ms]

Figure 1.2: HRIR amplitudes plotted across the median and horizontal planes, showing shoulder
reflection patterns and different onset times respectively.

the recorded output already constitutes the HRIR. However, when investigating
acoustical systems where a high SNR is crucial, it is often desirable to perform
measurements using a sweep signal [60]. In this case, a sinusoidal excitation signal
is generated, with its instantaneous frequency increasing exponentially over time,
and lying within the range of interest for the measurements, typically 20 Hz to
20kHz. The HRIRs are thus recovered by convolving the resulting recorded sweep
response with the inverse response of the original excitation.

Figure 1.3: Example of measurement apparatus for HRTF set acquisition on human subjects. Picture
taken as part of the Sound of Vision research project!.

1.2. HRTF Individualization 5

1.2 HRTF Individualization

Most of the commonly used binaural audio rendering technologies rely on generic
or standardized HRTF sets. HRTF individualization is an active field of research
within the sound and music computing community, aiming at providing users
with a personalized HRTF set that reduces the localization error thus improving
the immersiveness of acoustic VR experiences. There exist several strategies for
individualizing HRTF. According to [26], these can be divided into the following
three macro-categories, which relate to the type of output obtained by the method
at hand:

e Selection: the most suited HRTF set is chosen from a large dataset;

e Adaptation: a generic or selected HRTF set is manipulated to better fit the
user;

e Synthesis: an HRTF set is generated from scratch, usually by means of
numerical simulation of structural modeling.

Since the objective is to individualize the HRTFs according to the characteristics
of a given user, these approaches must depend on user data, which can be classified
into:

e Anthropometrics: this type of data is collected directly from the user, relates
to their morphology, and can be expressed objectively. It includes anthro-
pometric measurements of the torso, head, and pinnae, photographs of the
subject, and 3D scans or point-clouds.

o Perceptual feedback: this includes indirect information provided by the user
during the evaluation of a given HRTF or HRTF set, such as preference
expressed using a Likert scale, or localization error. Methods based on
perceptual feedback may be less susceptible to measurement biases.

Over the years, an abundance of techniques has been developed, combining
one or more combinations of approaches and user data, and relying on tools
and methods borrowed from the fields of digital signal processing, statistics, ma-
chine learning, and numerical modeling. The most notable ones are presented in
chapter 2, with particular emphasis on those based on anthropometric data.

1h‘t:tps ://soundofvision.net/consortium-meeting-at-the-lodz-university-of-technolog
y-lodz-poland-september-22-25-2015/

https://soundofvision.net/consortium-meeting-at-the-lodz-university-of-technology-lodz-poland-september-22-25-2015/
https://soundofvision.net/consortium-meeting-at-the-lodz-university-of-technology-lodz-poland-september-22-25-2015/

1.2. HRTF Individualization 6

This project builds upon the work in [51]. Throughout the project, the author
investigates whether it is possible to synthesize individualized HRTF data using
features automatically extracted from images of the pinnae. The project offers the
following contributions:

o A deep-learning-based solution for synthesizing pinna responses from user
pictures;

e An hybrid approach for combining the aforementioned pinna responses, the
interaural time difference matched from a dataset, and the head-and-torso
response through a customized structural HRTF model;

e An evaluation of the performances of the pinna responses for vertical local-
ization, as well as a study of the impact of various hyperparameters and
extensions.

This first chapter provided an introduction to binaural audio rendering tech-
nologies and the field of HRTF individualization. The rest of this document is
structured as such: chapter 2 summarises the major contributions to the field found
in the relevant literature. In chapter 3, the general structure of the individualization
algorithm is presented, along with the relevant deep learning concepts, as well as
the datasets used in this project. The implementation and results of the different
sub-tasks involved in the project are elaborated in chapter 4, chapter 5, chapter 6,
and chapter 7. These results are further discussed in chapter 8, while chapter 9
summarises the main highlights, providing concluding notes and suggestion for
future improvements.

Chapter 2

Related work

The human’s ability to perceive sound in a 3D environment and estimate its spatial
origin has been a topic of scientific inquiry for more than a century. One of
the earliest contributions come from [62], who in 1907 proposed the existence of
perceptual cues for the localization of sound sources from lateral directions, namely
the aforementioned interaural time difference and interaural level difference. A first
attempt at measuring HRTFs of human subjects comes from the work of [80], where
the frequency response of the pinnae was collected across the horizontal plane over
intervals of 15°. Later, the work of [65] determined the numerical relation between
ITD, ILD, and azimuth angle of a sound source.

Perceptual cues affecting the localization along the vertical direction are more
elusive than their horizontal counterparts, and have been researched since the
"70s. In particular, [29] established that spectral cues for vertical localization exist
between 4 and 16 kHz, and that only sounds occupying this frequency range can
be reliably localized along the median plane. These cues take the form of spectral
peaks and notches. In [67], six resonant modes of the pinna have been identified
(see Figure 2.1) which, according to [77], are thought to cause the most prominent
peaks in the HRTFE.

On the other hand, the exact origin of spectral notches is more difficult to trace.
Initially, they were thought to relate to reflections on the concha walls causing
the pinna to behave like a delay-and-add system in the time domain [4]. More
recently, they have been explained by the interaction between propagating waves
and the pressure anti-node forming in the upper pinna cavities [77]. While the
center frequency of peaks is relatively insensitive to changes in elevation of the
sound source [36], pinna notches, especially N1, are generally seen to increase
with the elevation angle, providing a salient elevation cue [29]; conversely, notches
exhibit little variation with changes in azimuth [47].

The specific contribution of the aforementioned spectral features to vertical
sound localization is still a topic of inquiry. In their work, [35] achieved localization

2.1. Conventional approaches 8
Mode 1

4.2kHz

Omni

11.8d8

Figure 2.1: Pinna resonant modes with their frequencies, source angle, and responce (left corners).
Reproduced from [67].

performances similar to the subjects” own HRTF for the front and rear portions of
the median plane by synthesizing a parametric HRTF composed of only the first
peak and the first two notches. A more recent experiment [33] further improved the
localization performances for a larger subset of elevations by introducing a second
peak.

The next sections will introduce the most relevant work on HRTF individualiza-
tion using conventional and deep learning approaches, respectively.

2.1 Conventional approaches

Over the past few decades, several models aimed at undersanding and predicting
the spectral features of the HRTF have been developed. Pioneering works such
as the double-delay-and-add time-domain model [79], physical flange-and-cavity
model [66], and the diffraction-reflection model [47] managed to mimic the char-
acteristic peak-notch patterns seen in HRTFs, although it is unclear how they can
be customized to fit a specific listener. Conversely, mathematical models based on
principal component analysis (PCA) have also been proposed [41, 54], where the HRTF
magnitude response can be approximated using a subset of principal components,
each relating to different aspects such as azimuth or elevation of the sound source
as well as anthropometry.

The individual contributions of head, torso, and pinna anatomy can be isolated
and investigated, in order to replicate the spectral effects of the underlying physical

2.1. Conventional approaches 9

azimuth Jelevation

Contour
Extraction

|

|

|

|

|

I 12141 2 g2

G, F, 2G, F

| Hl n Gn fn n Gn Fn

| res ’/

|

|

|

|

|

x)— H

head

Figure 2.2: Structural model for synthesizing individualized HRTFs using pinna contours. Repro-
duced from [71].

phenomena. A structural model is a system whereby such spectral effects are
independently modeled according to anthropometric data and combined to create
a personalized HRTF. Structural modeling of HRTFs finds its origin in [10], where
the physical sources of sound diffraction, delay, and reflection are simulated in
the time domain. In more recent times, frequency-domain structural models
of the pinna have also been proposed. A structural model of the pinna has
been proposed in [71] (see Figure 2.2), whose parameters are given by a simple
model that converts 2D reflection paths on three distinct pinna edges into notch
frequencies. Using the same reflection model together with a subset of standard
anthropometric parameters, a linear regression model to estimate N1 frequencies
from individual anthropometry was also introduced [72], as well as a marginally
improved one based on PCA [52]. Models to estimate spectral peaks from individual
anthropometric parameters have also been recently proposed [57, 58]. Similarly,
recent works employ multiple linear regression to predict the spectral features of
HRTFs from the subjects” anthropometric parameters, obtaining synthetic HRTFs
similar to the measured ones [34, 78].

The recent availability of large amounts of computing power paved the way
for the application of numerical techniques such as boundary element method (BEM)
[38] and the finite-difference time-domain (FDTD) [56]. These methods simulate the
propagation of acoustic waves around the subject’s pinnae, head, and torso, which
are provided in the form of 3D meshes. While it is possible to closely match the
spectral features of measured HRTFs, acquiring a sufficiently accurate 3D model of
the subject proves challenging and may require specialized tools such as MRI or
CT scans, as well as substantial human labor. Numerical simulation methods have
also been used to investigate the physical phenomena affecting the characteristic of
spectral peaks and notches [37, 77].

2.2. Deep learning approaches 10

This section presented works on HRTF individualization based on numerical,
structural, and machine learning methods with a focus on HRTF synthesis; refer to
[26] for a more comprehensive treatise of the topic.

2.2 Deep learning approaches

The widespread adoption of deep learning technologies — discussed in section 3.1
— has affected the field of HRTF individualization as well, and several methods
have been proposed. One of the first works is [48], where a stacked denoising
autoencoder is trained to encode and reconstruct HRTFs from multiple subjects.
The resulting latent representation is then manipulated using feedback from the
user to optimize their localization performances. While this novel solution proves
more effective than PCA-based encoding or simple averaging of multiple HRTF
sets, it was evaluated using a simulated agent.

The solution devised in [82] similarly relies on user feedback to adjust the latent
vector from which an HRTF is synthesized. However, their model features a richer
input data representation comprising neighboring HRTFs and both frequency and
time representations of the HRTF. Furthermore, the ANN architecture employed
here is more sophisticated than the dense one used above. It consists of a con-
ditional variational autoencoder featuring 3D convolutional layers and custom
adaptive residual blocks capable of decomposing the latent variables into individ-
ual contributions. A user study with 20 participants shows that the individualized
HRTFs score higher in terms of spatial accuracy. A block diagram of the solution is
shown in Figure 2.3.

1. Training (Optimize HRTF generator using given HRTF datasets)

"' Variational AutoEncoder (neural network) Reconstruction of given HRTFs
Direction (vector) HRTF encoder Latent — | gener:ator '

C
Output
Persor\ali‘zation
weights

given
2. Calibration (Optimize individualization weights using given user feedback)

)

—
o HRTF generator
iven
9 E"‘"‘ L _’! (decoder) }— a

= Fixed N\
uﬂ“"'—)} igh
User feedback ®

Output

The user listens
Figure 2.3: Overview of the HRTF individualization algorithm based on variational autoencoders,

using perceptual feedback from the user to tune the latent parameters. Reproduced from [82].

Several methods involving anthropometric data as input have also been pro-
posed. In particular, [16] uses a deep neural network (DNN) to predict the impulse

2.2. Deep learning approaches 11

response of a subject’s left pinna from measurements of the pinnae, head, and torso,
obtaining a lower spectral distortion with regards to the reference HRTF, compared
to the dataset average. Similarly, [13] trains 2500 DNNs to predict a given HRTF
from the user’s anthropometric data. Each DNN is trained on HRTFs associated
with a specific spatial orientation, and the training time is reduced by initializing
the weights of a DNN with those of the DNNS5s trained on adjacent orientations.
The work in [44] uses two separate neural networks: a densely-connected one pro-
cessing the anthropometric measurements of head and torso, and a convolutional
one taking an image of the user’s pinna as input. The outputs of these networks
are then fed into a DNN which is trained to predict a given HRTF. The results show
an improvement in localization accuracy when compared with the dataset average
or a DNN model using anthropometric measurements alone.

Estimated
HRTF
DNN
N Q e .Q
|
“i| Encoder S -0
e 0:5$Fal Anthrc;pometric
features

Autoencoder

Figure 2.4: Architecture of an HRTF individualization system based on deep learning models. The
thick lines show the data flow during training, while the dotted lines represent its use in evaluation.
Reproduced from [14].

Several recent studies focused on autoencoding HRTF data. Most notably, [14]
trains a dense autoencoder to reconstruct the magnitude response of an HRTF
from its latent representation and its azimuth coordinate. The encoder part of
the network projects each HRTF onto a latent space of reduced dimensionality. A
separate DNN is then trained to predict these latent vectors using anthropometric
data as input. The final system, composed of the aforementioned DNN and the
decoder part of the network and shown in Figure 2.4, has been evaluated using a
spectral distortion metric for HRTFs at selected azimuth angles, with no conclusive
results. Lastly, in a very recent paper [15], a convolutional denoising autoencoder
is trained on 2D frequency-elevation input features, derived from listener-specific
directional transfer functions. The resulting compressed representations were then
evaluated against PCA in terms of storage requirements and fidelity (measured

2.2. Deep learning approaches 12

as spectral distortion), proving better according to both criteria. Table 2.1 shows a
summary of the methods presented in this section.

Table 2.1: Summary of HRTF modeling or individualization works using deep learning.

Ref. Data Model architecture Input Notes

[48] CIPIC Stacked denoising AE HRTF User feedback
[82] CIPIC CVAE with ResNet 4D HRTF structure User feedback
[16] CIPIC DNN Anthropometrics Target as HRIRs
[13] CIPIC 2500 DNNs Anthropometrics

[44] CIPIC CNN, DNN — DNN Anthropometrics, edges

[14] CIPIC AE, DNN Anthropometrics Only azimuth

[15] ARI Conv. denoising AE 2D HRTF structure Only compression

Chapter 3

Methods and tools

The structural model presented in this project is based on a pipeline composed
of several deep learning models, as well as conventional DSP blocks. It has been
aptly defined as hybrid in that it combines synthesized, selected, and measured
components. An overview of the processing pipeline and its constituting elements
here can be seen in Figure 3.1. In particular, the architecture comprises:

e A deep learning sub-system made up of three distinct models, capable of
synthesizing PRTFs from an image of the pinna or analogous 2D features.

e A DSP sub-system implementing a structural model where an HRTF set
comprising only of shoulders and head reflection effects is filtered using
the pinna response described above, converted into impulse responses, and
processed to match the ITD of a fitting subject from an HRTF database.

Pinna-less Anthropometric
HRIRs Measurements
ITD selection
Pinna ! ! Median-plane | '
; features | PRTFs H 1 o
Pinna . H HRIRs . H Individualized
images | P re-processing individualization [| 'TD adlustment ===> "y g st

Figure 3.1: HRTF individualization pipeline, with its input, outputs, and constituting elements.
The first part of the solution comprises the following three building blocks:

o A variational autoencoder (VAE) whose encoder is used for deriving a compact
representation of input pinna 2D features — such as pictures, depth maps, or
extracted edges — called Zzear.

13

14

o A conditional variational autoencoder (CVAE) whose decoder is similarly used to
synthesize a pinna frequency response from a compact representation, called

Zhrtf-

o A deep neural network (DNN) capable of predicting the compressed represen-
tation zp¢ from zear.

Figure 3.2 provides an overview of the relationship between each component,
as used during training and evaluation (in green). The software architecture for the
deep learning sub-system was developed in Python using the PyTorch! open-source
deep-learning library. The library provides a wide range of optimized operations
on tensor data with optional GPU-based hardware acceleration, as well as an
automatic differentiation module used for computing the gradient during training
and a selection of state-of-the-art optimization algorithms.

The development of the necessary software framework was assisted by the
PyTorch Lightning2 open-source library, which provides a high-level interface for
the most common tasks involved with training and deploying a deep learning
model — including training, validation, testing, data generation, and metrics
logging and monitoring. The proper handling and propagation of configuration
data such as model hyperparameters and training and data processing arguments
was ensured by the widespread usage of JSON files, command-line arguments,
and flags parsed by the relevant scripts. Furthermore, the TensorBoard® interface
was used for monitoring the model performances during training, compare model
variations, and visualize their results such as generated data or prediction errors.

The models employed in the first step are trained separately on their respective
relevant datasets and then combined into a prediction script capable of generating
an individualized PRTF. The prediction script can be used independently from
the training and development code base, and only requires the pre-trained model
weights to work. The theoretical background of each of these deep learning
architectures is covered in chapter 4, chapter 5, and chapter 6.

A separate collection of scripts takes care of performing the last steps of the
pipeline and generate an individualized HRTF set in a format compatible with
most binaural rendering engines; this is described in chapter 7. The scripts are
implemented using MATLAB and combined into an evaluation script parametrized
according to the user anthropometry and the PRTFs generated by the deep learning
sub-system. Finally, the data analyses presented in the results sections of each of the
following chapters were performed in an interactive Python notebook environment
called JupyterLab* with the help of data processing and visualization tools from

Ihttps://pytorch.org/
Zhttps://www.pytorchlightning.ai/
Shttps://www.tensorflow.org/tensorboard/
“https://jupyter.org/

https://pytorch.org/
https://www.pytorchlightning.ai/
https://www.tensorflow.org/tensorboard/
https://jupyter.org/

3.1. Deep learning 15

Pinna images (photo, depth HRTF magnitude responses
map, or edge features) and spatial coordinates
"""""" . T S P PN
\ 2N
Encoder Encoder !
1 Cost H
' —> . '
p(2[z) ! 2prTr| function p(zz,c) '
u o :
Sampling ! | H Sampling E
2 : DNN - c ZHRTF !
e | Zears ZHRTF ! ! l l '
z | I I i T
Y Decoder : ! ! Decoder ! A2
Cost " B | H Cost
function p(z|z) N oo - : p(z|z,c) 1 function
Latent representations DNN 1 —
1 ‘ \ &
“PinnaimagesVAE HRTFs CVAE

Predicted PRTF magnitude
responses

Figure 3.2: Overview of the pinna response individualization sub-system. The dotted rectangles
represent each distinct deep learning model; the arrows and blocks highlighted in green are the ones
used during evaluation.

the SciPy® toolbox for science and engineering.
The following sections provide an introduction to deep learning and its core
concepts, and present the datasets used in this project.

3.1 Deep learning

Deep learning is a branch of machine learning interested in artificial neural networks
(ANN), i.e. algorithms consisting of several computational layers and nonlinear
operations. ANNs were originally inspired by biological systems, such as how
neurons in the brain receive impulses from their neighbors through their dendrites
and propagate them further through their axons. Nevertheless, they can also be
seen as systems capable of approximating any continuous function within a given
compact interval, as proven mathematically in 1989 [18]. An ANN is characterized
by its trainable parameters: their amount determines the complexity of a model.
An abundance of network topologies, architectures, and other heuristics has been
developed, some also inspired by biological processes. The word “deep” implies
the presence of a large number of successive layers.

The field of deep learning has remained dormant due to the computational
costs and complexity associated with training. However, over the past decade, the

Shttps://www.scipy.org/

https://www.scipy.org/

3.2. Datasets 16

development of several contributions led to its resurgence. These contributions
include pre-training techniques based on restricted Boltzmann machines (RBM)
capable of speeding up convergence [31], as well as the adoption of GPU hardware
for computing, which resulted in super-human performances at the 2012 ILSVRC
challenge [42]. Since then, deep learning has gradually superseded traditional
techniques in an ever-increasing number of fields such as computer vision, natural
language processing, recommendation systems, and so forth. In more recent years,
GPU-accelerated deep learning frameworks such as Tensorflow, Keras, and PyTorch
as well as the availability of large-scale datasets greatly increased the accessibility
of solutions based on deep learning.

For a deep learning model to become effective at performing a given task, it
must first be trained. This is done by iteratively updating its trainable parameters
to minimize a cost function, which usually is a metric of difference between
the network output and its expected target. First, the slope of the cost function
with regards to all the trainable parameters, also known as gradient, is computed
through the process of back-propagation. Since a neural network can be seen as a
large composite function, this consists of applying the chain rule for derivation
across all the layers of the network.

Subsequently, an optimization algorithm is used to adjust the trainable param-
eters. This is commonly done through a process of gradient descent, where the
trainable parameters are updated by subtracting a value proportional to the gra-
dient. Nevertheless, more complex optimization algorithms have been developed,
which offer adaptive learning rates for each parameter or account for momentum;
a more comprehensive treatise on optimization algorithm can be found in [64].

The process of training described above is performed over a subset of data,
called mini-batch. Compared to computing the gradient over the entire dataset,
this has the advantage of introducing noise that may help leap out of suboptimal
minima, although convergence might be slower. A trained model must be effective
at performing its task on unseen data that were not part of the training set. This
ability is called generalization, and is acquired when the neural network has
learned the variance in the data caused by its intrinsic patterns and structure. If
left training for too long, a model might begin learning the random fluctuations in
the data caused by noise — a process known as overfitting. This can be avoided by
occasionally computing the cost function on a small batch of unseen data, called
validation set, and interrupting the training as soon as the model performances on
the validation set appear to degrade.

3.2 Datasets

The availability of large amounts of data is paramount for fitting deep learning
models, and large scale datasets exist for several computer vision tasks. However,

3.2. Datasets 17

due to the complexity associated with collecting HRTF measurements on human
subjects, the number and size of such datasets are much more limited. Moreover,
combining multiple HRTF datasets proves challenging: the intrinsic differences
in acquisition setup, lab conditions, and post-processing may comprise a larger
source of variations than the differences between individual HRTFs [14]. Similarly,
user data such as anthropometric measurements and ear images or mesh data are
not regulated by any standard or convention and are thus equally heterogeneous.
The following subsections introduce some of the most popular datasets with are
relevant for the tasks at hand, motivate their usage or lack thereof, and present
the post-processing and data augmentation methods adopted in the training and
evaluation stages.

3.2.1 HRTFs

An HRTF set is a collection of impulse or magnitude responses belonging to a
given subject and recorded over a finite spatial grid of sound sources. An HRTF
dataset comprises multiple HRTF sets, usually one for each subject. HRTF sets from
different datasets may vary substantially from each other, for example in terms
of their spatial resolution, characteristics of sound emitters and receivers (model,
frequency response), recording environment, and so forth.

For this reason, the Spatially Oriented Format for Acoustics (SOFA) was devel-
oped, with a focus on interchangeability and extendability, allowing the storage of
spatially-oriented audio information (such as room impulse responses, headphone
impulse responses, loudspeaker directivity, etc) along with its metadata. Each of
these types of data is characterized by a different set of variables, attributes, and
tields; the naming scheme of the data fields and their dimensionality constitute a
SOFA convention, and are regulated by the AES standard AES69-2015°. In the case
of HRTF data, the convention is called SimpleFreeFieldHRIR, and it includes:

e Spatial coordinates of the receivers, expressed using the cartesian system;

e Tensor of HRIRs of size M x R x N, representing the number of spatial
positions from which the impulses were collected, the number of receiver
channels, and the number of samples on each response, respectively;

e Tensor containing the spatial coordinates for each of the positions, expressed
using a spherical system;

e Orientations of the various element involved, expressed as unit vectors point-
ing up and ahead;

e Metadata about the HRTF set, such as database name, version history, licens-
ing, and issuing author and organization;

bhttps://www.aes.org/publications/standards/search.cfm?docID=99

https://www.aes.org/publications/standards/search.cfm?docID=99

3.2. Datasets 18

e Metadata about the HRTF acquisition setup, such as description of the sound
source, receivers, room, as well as relevant external documentation.

Thanks to recent standardization efforts, the most prominent HRTF datasets
have already been converted and released in the SOFA format. The ones that have
been considered by this research were the CIPIC dataset [2], which is one of the
first publicly available datasets comprising human subjects and thus extensively
featured in the literature; the ARI dataset [49] also featuring human subjects;
the VIKING dataset [73, 75] collected using a standard KEMAR mannequin and
custom-molded pinnae from life-like statues; HUTUBS [9, 22], a relatively new
dataset which also features high-resolution 3D head models of its subjects, as well

as simulated responses. The characteristics of each dataset are summarized in
Table 3.1.

Table 3.1: Summary of HRTF datasets.

Dataset name Subjects Positions Additional data

CIPIC 45 1250 Anthropometric meas., pinna photos
ARI 200+ 1550 Anthropometric meas.

VIKING 21 1513 Anthropometric meas., 3D pinna scan
HUTUBS 96 440 Anthropometric meas., 3D head scan

Ultimately, the HUTUBS dataset was chosen due to its relatively large number
of subjects and the availability of rich anthropometric data such as head, torso,
and pinnae measurements and 3D models of the head. An example of the median
plane response from a HUTUBS subject is shown in Figure 3.3.

HUTUBS subject 002
Left channel Right channel
250
200

150

100

Elevation [deg]
Elevation [deg]

50

00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 175 20.0
Frequency [kHz] Frequency [kHz]

Figure 3.3: Example median plane HRTFs from a HUTUBS subject.

3.2.2 Ears images

The kind of user data employed in this project must fulfill the following two
requirements: on one hand, it must be available in a given HRTF dataset, so as

3.2. Datasets 19

to make it possible to train a deep learning model on pairs of input and desired
output. On the other hand, it must be easy to collect from the user, ideally through
inexpensive means.

Ear pictures can be trivially gathered from users, in a way that is nonintrusive
and fast. For these very reasons, ear recognition is an actively researched area
within the field of biometrics.

Figure 3.4: Images of the ears from an AMI subject. The first picture shows the left pinna (flipped);
the others show the right one facing left, zoomed in, down, straight, right, and up.

The ear image datasets used in this project can be divided into two categories:
publicly available collections of annotated pictures, commonly used for ear detec-
tion and recognition tasks, and images extracted from a 3D representation of a
subject for which HRTFs are available. The formers include the AMI Ear Database
[25] comprising high-quality images of the pinnae of 100 subjects, taken from 7
different yaw and pitch angle combinations and under consistent illumination,
position, and camera settings (see Figure 3.4); the AWE Dataset [20] featuring 10
pinnae images of varying quality and size for each of its 100 subjects, gathered
from the Internet, cropped around the ear, and annotated; the IITD Ear Dataset [43],
composed of 493 images from 125 subjects, taken under a variety of indoor lighting
conditions and angles. While there is no correspondence between the subjects of
these datasets and the HRTFs mentioned in the previous section, it was theorized
that extending the training set with them would improve the generalization abilities
of the autoencoder. Indeed, it is believed that by introducing some variability in
orientation, illumination, and camera setting, the network should be able to derive
a more robust internal representation.

In order to predict HRTFs from ear images, there must be a correspondence
between the two sources of data. Since no HRTF is available for any of the images in
the datasets mentioned above, pinna images of subjects with a known HRTF must be
obtained. These were generated from the 3D head meshes of 55 HUTUBS subjects
out of the 58 for which a model was available, discarding repeated measurements
and non-human subjects.

A script was developed to load the mesh, place it in a 3D scene together with
a camera pointing on either side of the head, align the entrance of the ear canal
with the cameras, and render it into either a depth map or a grayscale image. In

3.2. Datasets 20

Figure 3.5: Pinna depth (top row) and edge (bottom row) features from a HUTUBS subject, over a
range of yaw (azimuth) variations.

the latter case, the scene was illuminated using a directional lamp, simulating an
infinitely far point light source, located at the camera position and pointing towards
the head.

Due to the limited amount of available data, augmentations were introduced in
the form of slight variations in camera yaw and pitch, using the ear canal entrance
as the pivot point so as to keep it at the center of the image. Finally, a third dataset
consisting of ear shape outlines has been created by feeding the depth map dataset
into a Canny edge detection algorithm [12]. These two latter features are shown in
Figure 3.5.

Chapter 4

Encoding of pinna images

This first part of the research focused on deriving useful features from pinna
images, which can later be used as predictors for the HRTFs. Specifically, the
features correspond to the compressed encoding, also known as latent representation.
For this task, it was decided to employ a variant of autoencoders called variational
autoencoders (VAE) [40].

Regular autoencoders are a class of artificial neural networks that can learn a
compressed data representation in an unsupervised manner. They are composed of
an encoder network f() and a decoder network g() such that g(f(x)) = g(z) = %,
where z is the latent representation and £ is the reconstructed input. The layers
within the encoder and decoder are arranged so as to create a computational
bottleneck where the two are linked. When trained to minimize the mean squared
error between the true and predicted data, the autoencoder learns to encode and
decode its input through a lower-dimensional space.

VAESs, on the other hand, are significantly different in that they are probabilistic
models mapping an input sample to a probability distribution. Furthermore, the
latent space distribution is constrained into an isotropic multivariate Gaussian
with the help of a Kullback-Leibler divergence term in the loss function. These
properties prevent the input data points to be encoded in specific sparse areas of the
latent space and make VAEs particularly suitable as generative models; however, in
this case, only the encoder part is used. This encoder network approximates the
probability p(z|x) — that is, the distribution of the latent variable z given the input
data x. This distribution is parametrized by its mean value u and the logarithm of
its variance ¢ (for numerical stability), which are the two outputs of the encoder.
During training, a value of z ~ N (j, o) is sampled from the distribution and fed
into the decoder, which attempts to reconstruct the original input.

In practice, since this stochastic sampling process does not allow the gradient
to propagate through, the latent vector is computed as z = yu + eo where ¢ is a
random variable distributed according to a standard Gaussian: this is known as the

21

22

reparametrization trick. An example of a VAE architecture can be seen in Figure 4.1.

Latent state
distributions

Sample from
distributions

/
// '/ Variance

ENCODER DECODER
> >

Figure 4.1: Variational autoencoder architecture, with its inputs, outputs (both in red) and hidden
layers (in purple) highlightedl.

Like most other ANN architectures, autoencoders may employ several different
types of layers. One of the earliest and most common ones is called dense or
fully-connected layer. A network composed entirely of dense layers is known as a
multilayer perceptron (MLP). A dense layer is composed of computational nodes,
called neurons, which are connected to all of the nodes of the preceding layer. Each
node computes a weighted sum of its input, adds a bias, and applies a nonlinear
activation function.

Despite being extremely powerful, dense layers bear a large number of trainable
parameters and do not account for the spatial arrangement of its input. Convolu-
tional layers address these shortcomings by computing the dot product between the
input and a tensor of arbitrary shape and values, called kernel. In this way, the
weights of the layers, corresponding to the values of the kernels, are shared across
all of the input features. The reduction in the number of trainable parameters
provides a regularization effect that is known to improve generalization.

For computer vision tasks, 2D convolution is a popular choice; nevertheless,
other types of convolutional layers such as 1D or 3D are commonly used for time-
domain audio signals and video or point cloud data respectively. 2D-convolutional
layers take a 3D input, such as an image with 3 color channels or a single grayscale
one, apply a stack of convolutional kernels, and output a number of features
called filters or channels. The shape of the kernel, the number of channels, and the
behavior around the edges of the input are all hyperparameters of the convolutional
layer. ANNs employing convolutional layers are also called convolutional neural
networks (CNN), and typically include other types of layers such as nonlinear

Ihttps://www. jeremyjordan.me/variational-autoencoders/

https://www.jeremyjordan.me/variational-autoencoders/

4.1. Proposed architecture 23

activations, pooling layers for dimensionality reduction, or batch normalization for
improving convergence — see Figure 4.2 (left) for an example.

Very deep neural networks are susceptible to the gradual decrease in gradient
magnitude at each successive layer, which causes training to be increasingly slow
or halt entirely. This problem is known as vanishing gradient. Residual networks
(ResNet) [28] were developed to address this problem. ResNets are a class of very
deep CNNs composed of multiple consecutive blocks which, in turn, typically
contain one or more batch normalization, activation, and convolutional layers, also
arranged consecutively. Besides the main computational path described above,
each residual block implements a secondary path, known as skip connection, that
connects the first and last layers directly; these can be seen in Figure 4.2 (center).
In this way, the convolutional layers within a block need only learn the difference
— hence the name “residual” — between its input and output. This is known
to provide a richer gradient to later layers, which greatly benefits training; thus,
ResNets can be extremely deep. Neural networks employing residual blocks have
found widespread adoption in image classification, image recognition, and other
computer vision tasks.

Yet another configuration of convolutional layers is found in the work of [76],
where a block of convolutional layers, humorously called inception module, is
employed. Within one such module, several convolutional layers with differently
sized kernels are applied in parallel, and their respective output features are
concatenated or summed. The rationale behind this design choice is to let the
network discover the most relevant feature for the task at hand, which may be
expressed by kernels of different sizes at different points of the computational
graph. Deep inception networks feature a large number of layers: to limit their
computational complexity, each convolutional layer is preceded by another one of
kernel shape 1 x 1, which reduces the dimensionality of its input. This topology is
exemplified in Figure 4.2 (right).

4.1 Proposed architecture

Based on the architectures described above, three different VAE topologies have
been designed and implemented. These are:

e ConvVAE: a variational autoencoder composed of stacks of 3 x 3 2D convo-
lution, batch normalization, and activation layers. The encoder and decoder
networks follow a roughly symmetrical structure. The former ends with
two dense layers — one for the mean and one for the log-variance — which
feed on the flattened features from the convolutional stacks. Analogously,
the decoder begins with a dense layer, whose output is reshaped and fed
to the subsequent convolutional stacks. The number of stacks, channels on

4.1. Proposed architecture 24

3x3
3x3
00l
3x3
00l

3x3 3x3 1x1 1x1

Figure 4.2: Convolutional neural network topologies. From left to right: classical CNN, residual
layers, and inception modules.

each convolutional layer, and the size of the latent space are all configurable
parameters. The chosen activation function is Leaky ReLU.

e ResNetVAE: a VAE based on residual blocks, as implemented in the torchvision?

library. The encoder comprises a plain convolutional frontend, four successive
residual blocks, average pooling, and two fully-connected layers. The decoder
follows a similar structure but in reverse order. The makeup of each residual
block, the latent space size, and the arrangement of the first and last layers
are all hyperparameters. The activation function is employed here ReLll.

e InceptionVAE: a VAE based on inception modules. Each module is com-
posed of four convolutional stacks with kernels of shape 1 x 1,3 x 3,5 x 5,
and 7 x 7 respectively, preceded by a single 1 x 1 convolutional layer for
dimensionality reduction. Each stack is composed of 2D convolution, batch
normalization, and ReLU activation. Furthermore, two extra paths with
max-pooling layers of shape 3 x 3 and 5 x 5 are provided. The input of each
parallel path is padded to obtain equal output shapes, and their respective
outputs are summed together. The modules are arranged into four stages,
each comprising several modules and separated by downsampling or up-
sampling stacks for encoder and decoder, respectively. Finally, dense layers
with no activations are featured before and after the network bottleneck. The
configurable hyperparameters are the size of the latent space and the number

Zhttps://pytorch.org/docs/stable/torchvision

https://pytorch.org/docs/stable/torchvision

42. Results 25

of inception modules per stage.

Each of the three models was trained in a similar way, i.e. by fitting a small
batch of images, computing the output and the latent distribution parameters
of z, calculating the cost function, and updating the trainable weights using the
Adam optimizer [39]. The learning rate was initially set to 1 x 10~* and scheduled
to decrease every time there would be 30 epochs with no improvement with an
exponential decay factor of 0.5624, corresponding to a tenfold reduction after
four iterations. Each model was allowed to train for up to 1000 epochs; if an
improvement in the validation set was registered, the new model weights would
be stored. If no improvement were registered for more than 100 epochs, the train
would terminate.

The three datasets described in subsection 3.2.2, consisting of depth maps, ren-
derings, and edge features, were used. Each dataset was parametrically generated
with an image size of 256 x 256 pixels and variations in pitch and yaw from —15° to
15° with a step of 5°, for a total of 49 different orientations. This accounted for 5390
images of left and right pinnae, belonging to 55 HUTUBS subjects. Of these, 392
images belonging to 4 subjects were set aside for testing, while a randomly selected
subset corresponding to 10 % of the remaining ones was used for validation during
training. For the network trained on grayscale renderings, the AMI, AWE, and IITD
datasets were merged before this last step. Finally, to further extend the size of the
datasets, three types of noises were introduced: gaussian noise, salt and pepper
noise, and speckle noise, to be applied during training. The noise algorithms were
taken from the skimage® library. Since each noise type, as well as no noise, had a
25 % probability of being applied, the datasets were effectively augmented by a
factor of 4.

4.2 Results

Initially, to determine the best performing model, each of them was trained on
the dataset of pinna renderings derived from HUTUBS (see subsection 3.2.2). The
training was conducted on the Aalborg University’s machine learning workstation,
equipped with three Nvidia TITAN X Pascal graphics cards with 12 GB of memory
each, an Intel Xeon E5-2620 v3 hexa-core CPU, and 132 GB of RAM. Each model
was allowed to train for up to 1000 epochs, and the batch size was set to maximize
the available resources of a single GPU, i.e. a value of 64, 8, and 32 for the ConvVAE,
ResNetVAE, and InceptionVAE models respectively.

One variation of each model was used, parametrized by the values shown
in Table 4.1. With these hyperparameters, the models comprised approximately
5000000, 18000000, and 5000000 trainable weights respectively. The ResNetVAE

Shttps://scikit-image.org/

https://scikit-image.org/

42. Results 26

model, originally developed to work on RGB images, takes a 3-channel input,
which accounts for its considerably higher complexity. To ensure a fair comparison
between the networks, their latent spaces were fixed to 64 dimensions.

Table 4.1: Summary of the model hyperparameters. Cells are filled only when applicable.

Hyperparameter = ConvVAE ResNetVAE InceptionVAE

Decoder channels [256, 256, 128, 64, 32]
Encoder channels [32, 64, 128, 256, 256]

Input channels 1

Encoder lin. size 512

Encoder type resnetl8

First conv False

Repeats per block 1

KL coefficient 0.01 0.001 0.001
Latent size 64 64 64

To monitor performances, metrics such as overall loss, reconstruction loss term,
Kullback-Leibler divergence loss term, and current learning rate were collected at
every epoch during training for both the training and validation sets. Furthermore,
pictures containing pairs of original and reconstructed images were generated
for a single batch of validation data, every 10 epochs. These data could then be
visualized in realtime through TensorBoard.

The ConvVAE model trained for 266 epochs over one hour and a half before
halting its progress and reaching convergence, the ResNetVAE model trained for
413 epochs over approximately 31 hours, and the InceptionVAE model trained for
554 epochs over 14 hours. Due to differences in the scaling of the loss function
among the different models, it was not possible to compare their training history
graphs. Once each model was trained, they were evaluated on the basis of their
reconstruction performances. The test set, composed of pinna images from 4 unseen
subjects, was fed onto each network and the resulting reconstructed images were
visualized. A sample of it can be seen in Figure 4.3.

To objectively evaluate the performances of the models, the following three
image similarity metrics — available in the scikit-image library — were computed
on the test set: normalized root-mean-square deviation (NRMSD), peak signal-
to-noise ratio (PSNR), and structural similarity index (SSIM) [83]. These results
are shown in Table 4.2. Somewhat surprisingly, the metrics seem to concur that
the ConvVAE model achieves the best performances, despite a visual inspection
of the image in Figure 4.3 seems to contradict this verdict. Due to the lack of an
objectively identifiable best-performing model, it was decided to proceed with
InceptionVAE, which offers the most perceptually truthful reconstruction with the

4.2. Results 27

— N\ g /(;\\\ '\,‘ (S /‘\\\ //\\ ,*\' Y a

9 99 5NN 99 Hy 9
- r> 2 jﬂ/ { 2 & & { € &

~ » p 1 ~ “ \

o 1) /) P ' | N) 3 D
™ 3 3 D) Q))) x)

\! \) X \ 8
A N' B Qo Yy Y P ! ¥ B
< \ -~

% \ =\ 5\ \ %\ 3 1 3 \

$) {) &))) [‘>)))) >

Figure 4.3: Example of pinnae from test set subjects, reconstructed by the different VAEs. From top
to bottom: input data, ConvVAE, ResNetVAE, and InceptionVAE.

least amount of trainable parameters.

Table 4.2: Summary of the image similarity metrics for the three models.

NRMSD PSNR SSIM

ConvVAE 0.064 24.556 0.898
ResNetVAE 0.084 22159 0.891
InceptionVAE 0.073 23.359 0.897

After choosing the most suitable network architecture for encoding pinna im-
ages, the following step consisted in investigating the network’s behavior with
different 2D features — namely the pinna depth maps and edges. Thus, the
InceptionVAE model was trained on these two other datasets, using the same
hyperparameters mentioned above. Furthermore, a third training was performed,
based on a combined dataset comprising HUTUBS grayscale renderings and pic-
tures from the AMI, AWE, and IITD ears datasets. Analogously to the first step,
reconstructed images were generated from the training set and shown in Figure 4.4.
Furthermore, the image similarity metrics mentioned above were computed on
each training attempt and summarized in Table 4.3.

Table 4.3: Summary of the image similarity metrics for the 2D input features.

NRMSE PSNR SSIM

Combined images 0.071 23.598 0.901
HUTUBS depth maps 0.019 37.163 0.988
HUTUBS edge features 0.958 19.905 0.9

It is possible to notice how extending the pinna image training set with real-
world photographs caused a decrease in reconstruction performances. Nevertheless,

42. Results 28

both the model trained on the depth maps and the one trained on edge features
show a satisfactory level of coherence. However, the similarity metrics once again
portray a different picture, as indicated by the fact that the edge features training
seems to score worst.

~ N € A N 2\ | &
)) k\ R\D 3)))\ W) 3)
Q) Q) S 9)) 5))
. 3 [\, o > <3 N)

Figure 4.4: Comparison of different 2D features reconstructed by InceptionVAE. Each column
corresponds to a test set pinna (frontal direction only). The pairs of rows show input and reconstructed
data on the combined dataset, depth maps, and extracted edges, respectively.

Another way of evaluating the performance of the models is by assessing
whether the latent dimensions extracted by the encoders correlate with the anthro-
pometrics measurements available in the dataset. This idea follows the assumption
that, since the latter are known to correlate with HRTF spectral features, by transi-
tive relation, for any latent representation to be a good predictor of said spectral
features, it must also correlate with the anthropometric measurements. The test set
data was fed into the encoder sub-network and the distribution mean output layer
was used for the value of z. During training, the z vector is subject to a sampling
process where a random variable ¢ ~ N(0,1) is parametrized according to the
mean and log-variance predicted by the encoder. However, during testing and
production, ¢ is set to 0, which is equivalent to discarding the ¢ output and only
using p as the latent vector.

In order to verify the presence of such correlation, each latent vector was paired
with the anthropometric data — included in the HUTUBS dataset — from its
corresponding pinna image, and the Pearson coefficient was computed for each
pair of feature, yielding a correlation matrix such as the one shown in Figure 4.5.

4.2. Results 29

From the figure, it is evident that while there exists some correlation between the
anthropometric data and z, the mapping is completely arbitrary, with some of the
latent dimensions expressing no significant correlation. Furthermore, the feature
that correlated the most with the latent dimensions was the viewpoint pitch angle
in the rendering (labeled as “el” in the figure), followed by the pinna height, the
fossa height, and the pinna rotation angle. Thus, a great portion of the latent space
was spent encoding the dataset augmentations.

ol W u H NN 'E =Em H 'E N | | N n
az-
pinna offset down - I 04
© pinna offset back - [|
5 cavum concha height - | [] |] | 02
° cymba concha height - n -
£ cavum concha width - [l . | | | |
¢ fossa height - | -0.0
£ pinna height - || | B | = | .
3 pinna width - [|| |
£ intertragal incisure width - | - 02
2 cavum concha depth - | :
cavum concha depth (back) -
crus of helix depth | 0.4
pinna rotation angle - [l | | [| [| | | [L] | W | n e
pinna fare ange £, L L R m N . wilm o . e e L
A NM T INON @O A NMTNON RN I NMTNONONOANMTNONDAOANMINOR DA ANMTNO™NDNO N M
SHNNILENR2RARNNINRRRRRA AN RARASTTIILSS2234RRIRRRR38683

Figure 4.5: Pearson correlation coefficient (color) between anthropometric data (y-axis) and latent
dimensions (x-axis), calculated on the VAE trained on pinna edges.

Finally, it was deemed relevant to inspect the topology of the latent space.
Different pairs of latent dimensions were used as the x and y coordinates of a
scatterplot, where each point corresponds to an input image. The points were then
colored according to the labels derived earlier, consisting of the anthropometric data
and the rendered dataset augmentations. Figure 4.6 exemplifies such visualization.
In this case, by observing Figure 4.5, two anthropometric measurements were
picked, and the latent dimensions correlating the most with them used as x and
y coordinates. Although not entirely linear, the distribution of points expressing
different characteristics is quite noticeable.

Pinna height Pinna rotation angle

Latent dimension #17
o
°

Latent dimension #63

Latent dimension #13 Latent dimension #2

Figure 4.6: Example of encoded data points, calculated on the VAE trained on pinna edges, arranged
across a pair of latent space dimensions, and colored according to a relevant feature (titles).

Chapter 5

Encoding of HRTF

Similar to what was done in the previous chapter, the second part of this project
consisted in autoencoding the HRTF magnitude responses. As mentioned earlier,
novel output data — in this case, a customized magnitude response — can be
synthesized by sampling the latent space of a trained VAE. HRTFs, however, depend
not only on the individual characteristics of the users expressed by their latent
parameters but also on the spatial coordinate of interest. Therefore, the distribution
p(x|z) approximated by the VAE decoder must be conditioned by said spatial
coordinates. This is achieved by using a variant of the VAE called conditional
variational autoencoder (CVAE) [69].

CVAEs are a class of generative models analogous to VAEs but trained in a
supervised fashion: the encoder learns a probability distribution p(z|x, c) where
c is a vector of data labels, while the decoder learns the distribution of the input
data based on the latent variables z and the labels c, i.e. p(x|z,¢).

When used with categorical labels, CVAEs can generate unseen yet coherent
data belonging to a given class c. This is similar to the deep learning architecture
presented in [82], where ¢ consisted of subject IDs and spatial coordinates, both
provided as one-hot encoded vectors. However, for this project, it was deemed
beneficial to use a continuous representation of the spatial orientations, which
allows for the synthesis of HRTFs at arbitrary spatial locations.

5.1 Proposed architecture

Since previous attempts at leveraging the spatial hierarchy of HRTF magnitudes
using 1D convolutional layers proved ineffective [51], a fully-connected architecture
was employed. Thus, the CVAE network implemented herein comprises a customiz-
able number of dense layers with ReLU activation. The final encoder layers, tasked
with predicting the mean and log-variance of z, employ dense layers without any
activation function; this is because clamping the data into an arbitrary range may

30

5.1. Proposed architecture 31

degrade the network convergence. The decoder network follows a roughly mirrors
the topology of the encoder, with its last layer also employing a linear activation
for analogous reasons.

The hyperparameters of the model are its input size (i.e. the number of real-
valued HRTF frequency bins), the number and size of the hidden layers in the
encoder and decoder, the dimensionality of the latent space, and the conditioning
labels constituting the vector c. To condition both the encoder and the decoder, ¢
is concatenated to the HRTF magnitude response and to the randomly sampled
latent vector, respectively.

The input used by the models is composed of pairs of HRTF magnitude re-
sponses and data labels. Since the SOFA specification (described in subsection 3.2.1)
requires HRTF to be stored as time-domain impulse responses, a pre-processing
pipeline proved necessary. Specifically, individual HRIRs are extracted from a
SOFA file, along with their respective spatial coordinates consisting of azimuth
and elevation angles. Subsequently, they are converted to the frequency domain
using an n-point discrete Fourier Transform optimized for real-valued signals. The
number of frequency bins ng is a customizable hyperparameter of the system,
and yields a complex-valued spectrum comprising | | + 1 real-valued frequency
bins. The resulting frequency response is then converted to a magnitude response,
expressed in logarithmic units, and clipped to a dynamic range of 120 dB.

An optional processing step was also implemented and applied before the loga-
rithmic conversion, allowing for the extraction of the spectral envelope, roughly
corresponding to the HRTF peaks. This feature was implemented by finding all the
peaks in the frequency-domain signal and applying a cubing interpolation between
them. Alternatively, the difference between the original response and the spectral
peaks could be extracted, approximately corresponding to the spectral notches. Un-
fortunately, however, HRTFs processed with this step proved particularly difficult
to train with, supposedly due to the smoothening effect of the spectral envelope,
which introduces noise in the extracted notches. Thus, the results gathered on these
featured are not included below.

During training, individual HRIRs were extracted from the HUTUBS dataset,
pre-processed using the aforementioned pipeline, and randomly bundled into
mini-batches. The test set comprised the same four subject kept aside during the
pinna images autoencoding, while the validation set used during training was
composed of a random 20 % subset of all other HRTFs.

Similarly to the pinna images autoencoding described in the previous chapter,
the Adam optimizer was used to update the trainable parameters of the model,
with learning rate scheduler and early stopping mechanism configured analogously,
and an initial learning rate of 1 x 10~°. In this case, the model was allowed to train
for up to 5000 epochs. The following section describes the results of experiments
performed with the aforementioned CVAE.

5.2. Results 32

5.2 Results

The model described in the previous section was trained on two variations of the
HUTUBS dataset: one containing HRTFs across the entire spatial grid and one
comprising only the median plane data. Indeed, it was hypothesized that training
with a larger dataset would improve the generalization capabilities of the model,
thus avoiding overfitting. This is, however, at odds with the fact that only a subset
of the latent space is going to be used in the final HRTF individualization pipeline,
which only requires a median plane response. Nevertheless, a model trained over
the entire spatial grid may be used to generate a complete PRTF response.

Table 5.1: Summary of the model hyperparameters.

Hyperparameter Dense CVAE

Decoder layer sizes [32, 64, 128, 256]
Encoder layer sizes [256, 128, 64, 32]
Labels “el”, “az”
Latent size 32

The CVAE trained on the full-grid dataset for 4626 epochs over the course of
42 hours; training on the median plane data took 4950 epochs over the course of
3 and a half hours. In both instances, the training set was divided into batches
of 256 samples each, and the network hyperparameters were assigned according
to Table 5.1. Each model comprised 222000 trainable parameters. Similar to
the previous chapter, the training was performed on dedicated hardware, and
metrics such as cost function and learning rate were collected and visualized in
realtime. Furthermore, a subset of the validation set comprising 24 randomly
chosen HRTF magnitude responses was fed into the network every 50 epochs, in
order to continuously monitor its reconstruction performances.

Several further training schemes were attempted, involving a lower number
of frequency bins and a conditioning vector ¢ composed of elevation data only.
However, the former parameter caused a considerable drop in performance. Simi-
larly, the latter setup made it impossible to distinguish data points belonging to
the frontal or posterior halves of the median plane. Therefore, these combinations
of parameters were discarded in favor of those in Table 5.1. The trained models
were evaluated according to the spectral distortion (SD), which is often used in the
relevant literature [13, 56, 71] and is calculated as:

1 N

SDgs(H, H) = N) (20 log,,
i=1

Hf(fi)\y
A

5.2. Results 33

Training on full grid Training on median plane

tl g it
LITTITIITITOETTT égé%é%é%%é%@@éé

-90.0 -80.0 -70.0 -60.0 -50.0 -40.0 -30.0 -20.0-10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 ~ -90.0 -80.0-70.0-60.0 -50.0 -40.0 -30.0-20.0-10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Elevation [deg] Elevation [deg]

Frontal median plane SD [dB]
,F N oW s o0 oo

Posterior median plane SD [dB]

[R P

Te
%%%é%%%é%@@%é%% éﬁgé@@@%@éé;é

-80.0 -60.0 -50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 80.0 -80.0 -60.0 -50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 80.0
Elevation [deg] Elevation [deg]

Figure 5.1: Box plot of the spectral distortion over a range of elevations, calculated for the two halves
of the median plane (rows) on the test set using models trained on the full spatial grid or the median
plane only (columns).

where H is the original HRTF magnitude response, H is the predicted one, N is
the number of frequency bins considered, and f; is a given frequency bin.

Since changes in overall energy level do not affect localization along the vertical
direction, any spurious offset between the magnitude responses of the two HRTFs
under examination must be removed. This is achieved by minimizing the SD
over a range of offsets applied on the predicted HRTEF, using a simple grid-search
algorithm. The SD values for the trainings — shown in Figure 5.1 — are based on
a frequency range of 500 Hz to 16 kHz and an offset range of —5dB to 5dB. The
figure is based on data from the median plane, which comprises 34 HRTFs per
pinna, for a total of 272 data points.

One of the main disadvantages of adopting a vertical-polar coordinate system
is the discontinuity in the coordinate values occurring at 90° (above the head)
and at —90°. Indeed, the CVAE network cannot use the elevation label alone to
determine which half of the median plane is the current HRTF belonging to, while
the azimuth label jumps abruptly from 0° to 180°. To verify whether a continuous
representation of the elevation coordinate would benefit the model performances,
another set of training was performed, on the same two datasets, but with HRTFs
labeled according to an interaural-polar coordinate system.

Again, the CVAE was trained on the complete HUTUBS dataset for 4300 epochs
over 39 hours and on the median plane data for 7084 epochs over 3 hours. The
results of this training are shown in Figure 5.2.

Table 5.2 shows the mean spectral distortion of all four trained models, which
represents the theoretical maximum performance achievable by the entire system.
Indeed, inevitable zy. prediction errors introduced by the neural network pre-
sented in the next chapter will cause the overall performance to fall below these
values, which assume a perfect prediction of the HRTF latent representations.

5.2. Results 34

Table 5.2: Summary of the model performances for each training strategy.

Model training SD [dB]
Full grid 1.91
Median 2.93
Full grid (interaural) 1.84
Median (interaural) 2.73

From the table, it is possible to notice that while there is a slight increase in
performance from vertical-polar to interaural-polar systems, the amount of training
data accounts for most of the difference in spectral distortion. Thus, both the
hypotheses mentioned above proved correct.

6
HES
ga
33
2
1

Training on full grid

=

i B EEE RN I
é%éé%%@%%éééé@éé%%é@éé;;@éé%E°

Elevation [deg]

Training on median plane

£ | !
é%é%éﬁé%éééé@@@é@%?%aé%%gé%éé%%%

9 80 -70 -60 -50 -40 -30 20 -10 O 10 20 30 40 50 60 70 80 90 100 120 130 140 150 160 170 180 190 200 210 220 230 240 260
Elevation [deg]

Figure 5.2: Box plot of the spectral distortion over a range of elevations, calculated for the median
plane (expressed in interaural-polar coordinates) on the test set using models trained on the full
spatial grid or on the median plane only.

Similarly to in section 4.2, the correlation between anthropometric parameters of
the pinnae and the latent dimensions was computed and visualized as a correlation
matrix in Figure 5.3. In this case, there s to be very little correlation between the
two. This may indicate that the task of predicting the latent representation of the
HRTFs from that of the 2D pinna features is not entirely feasible. Alternatively, it
may indicate that zy. is encoded in such a way that does not induce a monotonic
relationship with ze,, — i.e. it follows a different but hopefully predictable pattern.

Finally, Figure 5.4 shows a random selection of predicted HRTFs from an
unseen test subject, using both the best (full grid, interaural coordinates) and worst
(median, vertical coordinates) performing models. The figure shows how, in both
cases, synthesized spectral notches lack depth, although the full grid model can
quite faithfully trace the response contour.

35

Full spatial grid Median plane only
el -] el | u
azl W RN | | 0.4 az-
pinna offset down - ll g pinna offset down -
z pinna offset back - | pinna offset back - u |
3z cavum concha height - | L o2 cavum concha height -
o cymba concha height - cymba concha height -
= cavum concha width - cavum concha width -
@ fossa height - | | 00 fossa height - 1
g pinna height u - pinna height -
g pinna width - | | | pinna width -
£ intertragal incisure width - | — 02 intertragal incisure width - u
el cavum concha depth - - cavum concha depth -
< cavum concha depth (back) ~ | u cavum concha depth (back) - |
crus of helix depth - [P crus of helix depth -
pinna rotation angle - pinna rotation angle -
pinna flareangle -, MR 0 B pinna flare angle -
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0

Latent dimensions

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Latent dimensions

Figure 5.3: Pearson correlation coefficient (color) between anthropometric data (y-axis) and latent
dimensions (x-axis), calculated on the CVAE based on vertical-polar coordinates (subplots).

20 #004L, 80° #004L, 50° #004L, 20° #004L, -10° #004L, -40°
_oes T e e |, P
g S \V/‘,Vd‘ww N VY A YAV
o o \ ATt A i My
8 \ \ “, \ \
) \ 1
-60
20 #004L, -80° #004R, 70° #004R, 140° #004R, 170° #004R, 200°
et S | . ;
o . » /---\,_/ PN e - e ~ A N P
= 201 Wity \ e A ~ 3
& -40 ! “'VNWWM(‘*‘ A i { A
_60 1 1 { L 1
o 5 10 15 20 o 5 10 15 20 o 5 10 15 20 o 5 10 15 20 0 5 10 15 20

Frequency [kHz]

Figure 5.4: Example predicted HRTFs from an unseen subject. In solid green: input data; in dashed
blue: prediction from Full grid (interaural) model; in dashed light blue: prediction from Median model.

Chapter 6

Prediction of encoded representations

The previous two chapters were concerned with the conversion of pinna images
and HRTFs to and from an encoded representation, respectively. The current
chapter covers the translation of the encoded representation of the pinnae 2D
features ze,r into the HRTF encoded representation zy,s. This can be formulated
as a supervised learning task where z¢,r constitutes the input data and z,y is the
target. An artificial neural network has therefore been designed and implemented
to perform this task, in the form of a deep MLP.

The prediction of the HRTF latent representation is believed to be possible
because, to faithfully reconstruct its input, the pinna images VAE must encode
information pertaining to the individual morphology of the pinnae within its
latent dimensions. According to widely established existing literature [1, 29, 77],
the anthropometric parameters of the pinnae are known to affect their frequency
response, although their exact impact is an open topic of inquiry. While manually
extracted anthropometric data such as those available in the CIPIC and HUTUBS
datasets are arbitrarily chosen and prone to systematic measurement biases, in
this work it is hypothesized that automatically derived ones may offer additional
insight.

The following sections describe the network architecture and its training process,
as well as answer the research question posed above, using objective and perceptual
metrics.

6.1 Proposed architecture

As mentioned above, a multilayer perceptron architecture — generally called deep
neural network (DNN) — was implemented. In chapter 5, the spatial coordinates
of a given HRTF were used to condition the CVAE encoder and decoder, to be
able to sample points in the latent space belonging to the given spatial orientation.
However, this external conditioning is not sufficient to ensure the complete dis-

36

6.2. Results 37

entanglement between the latent representation of a given HRTF and its spatial
coordinates.

Indeed, a preliminary PCA analysis of the CVAE latent vectors during the
first few training epochs showed how the majority of the variance was explained
by the elevation and azimuth of a given HRTF. Although a decrease of their
impact was observed during subsequent training epoch, HRTFs belonging to the
same subject did not map exactly onto the same latent space point, proving that
their spatial coordinates still played a role in their latent encoding. To address
the aforementioned phenomenon, the azimuth and elevation labels ¢ must be
accounted for in the training set.

The resulting model is therefore composed of an input layer taking the zear
vector plus a spatial coordinate vector, a number of hidden fully-connected layers
with leaky ReLU activation, and an optional dropout layer for regularization. The
number of hidden layers, their sizes, and the dropout rate are all hyperparameters
of the system. The size of the input and output layers are also user-defined and
correspond to the size of the latent spaces for pinna images and HRTFs, respectively.

To train this model, a pair of input data and target output is needed for each
HRTF of each subject. Both inputs and outputs are extracted from the pinna
images VAE and HRTFs CVAE, respectively, using the encoders of each model.
The resulting latent vectors are then stored along with labels comprising metadata
such as the subject ID, the pinna under consideration (left or right), and spatial
coordinates — this only applies to zy. This information was later used during
training to associate each target vector zy with its respective input zear and spatial
coordinates vector.

6.2 Results

For this model, several datasets were tested, differing in the content of the target
HRTF latent data and input features. The former included all the zy vectors
extracted from the CVAE trained across the entire spatial grid, those extracted from
the same model but filtered by median plane only, and median plane zy extracted
from the CVAE trained on the median plane only. The first training procedures
reflected the intuition mentioned in section 5.2 that using more data prevents the
model from overfitting, whereas the last two accounted for the need of using the
deep learning sub-system for generating median-plane PRTFs only, thus focusing
on that subset of data. Regarding the input features used as predictors, the choice
included the latent representations extracted from the pinna images, depth maps,
and contours, using the InceptionVAE model described in chapter 4.

The training was performed according to the same procedure and using the
same hyperparameters mentioned in the previous chapter except for the number
of epochs, set to 5000 for the training on the complete spatial grid and 10000 for

6.2. Results 38

the others, the learning rate set to 1 x 1073, and early stopping patience set to 30.
The model was parameterized according to Table 6.1. Furthermore, to better detect
potential overfitting, the validation set was constructed by randomly selecting
10 subjects from the training set and setting them aside. Each of the 18 initial
trainings took anywhere between 3 to 20 minutes, usually converging within 30 to
150 epochs.

Table 6.1: Summary of the model hyperparameters.

Hyperparameter DNN
Hidden layers [256, 256, 128, 64]

Zear Size 64
Zhrtf Size 32
Labels “el”, “az”
Dropout rate 04

After training all the different versions of the DNN, their average spectral
distortion was computed for HRTFs along the median plane. The specifications
of each training procedure along with its resulting SD is summarized in Table 6.2,
while Figure 6.1 compares the SD of predicted HRTFs for models trained on the
entire spatial grid, on the basis of the input features used as predictors. The SD
is computed by feeding the pinna 2D features into the VAE encoder, cascaded
with each respective DNN and VAE decoder, which are picked according to the
training strategies mentioned above — see the green data flow in Figure 3.2. Thus,
these values include the contribution of the other networks and reflect the overall
performances of the deep learning sub-system. Both the box plot and the table
show a clear degradation of the reconstruction performances for its theoretical
maximum, calculated in the previous chapter.

Table 6.2: Summary of the SD for the first 18 trainings, sorted by dataset (rows) and input features
(columns).

Depth maps Edges Images

Full grid 5.14 6.34 492
Full grid (m.p. only) 4.89 4.86 4.86
Median plane 471 4.77 4.74

Besides the training scheme mentioned earlier, two other alternative approaches
were tested. One involved using the latent representation of the HRTFs encoded
using an interaural-polar system for spatial coordinates instead of the conventional
vertical-polar one. As mentioned in the previous chapters, this system provides a

6.2.

B
S
0

15.0
125
10.0

Frontal median plane SD [dB]
v o~
o

25

Ss
a

Results

Prediction from edges

Prediction from depth maps

39

Prediction from images

Q00 O

SEesn8esioglleade

aéQE@%éé%%ﬁ@%é%%;éé

65%2@%%%%56?%$§%555

-90-80-70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 80 90

-90-80-70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 80 90

-90-80-70-60-50 -40-30-20-10 0 10 20 30 40 50 60 70 80 90

NesdbRtbitasiiy

BELEITEI S FERN

LA LLTIETS

80 -60 -50 -40 -30 20 -10 O 10 20 30 40 50 60 80
Elevation [deg)

80 -60 -50 -40 -30 20 -10 O 10 20 30 40 50 60 80
Elevation [deg]

-80 -60 -50 -40 -30 20 -10 O 10 20 30 40 50 60 80
Elevation [deg]

Figure 6.1: Box plot of the spectral distortion over a range of elevations, calculated for the median
plane (rows) on the test set using models trained on the full spatial grid using different predictors
(columns).

continuous monotonic change of elevation across the entire median plane, which
was thought to help the CVAE in modeling the relationship between the frontal and
posterior halves of the median plane. Models trained according to this strategy were
evaluated using their respective CVAE decoders. Figure 6.2 offers a comparison
between this and the previous training, showing that in most cases the model
performances dropped.

Full grid Full grid (m.p. only) Median plane

strategy
= regular

e interaural

7
6
5
g4
3
2
1
o

o ¢
& &

o
5
& & «

$ & R R
B & & e &

Figure 6.2: Comparison between regular training and interaural-polar coordinate system (colors), for
a range of input features (x-axis) and datasets (subplots).

The last approach consisted in predicting a subset of the principal components
of the HRTFs latent vectors instead of their raw values. PCA constructs orthogonal
— i.e. mutually uncorrelated — linear combinations of the input features that
successively explain as much variance as possible. The rationale behind this was
to simplify the regression task by reducing the number of prediction targets and
projecting the output data onto a more interpretable set of basis. In this case, the
PCA loading and score matrices were calculated on the training set alone, and the
number of principal components became a hyperparameter of the system. The
number of PCA components was set to 8, which according to a preliminary analysis,
could explain up to 95 % of the variance in zys. Since the HRTFs CVAE decoder

6.2. Results 40

performs arbitrary weighting and scaling of its input data, the latent vectors were
normalized before applying the PCA by subtracting their mean and dividing by
their variance.

Once the DNN was trained with all the combinations of input features and
datasets, it was possible to compare the efficacy of all the various strategies. These
are shown in Table 6.3 and in Figure 6.3. Both the figure and the table show similar
performances across the entire range of training schemes, with a slight advantage
for the regular procedure using vertical-polar coordinates. Furthermore, the SD
seems to be unaffected by the type of input feature used, while the best results are
generally achieved by training on the median plane dataset and using the CVAE
decoder trained on the median plane only. This final point proved unexpected
because, according to the SD values extracted in the previous chapter, this latter
model was the worst-performing one.

Full grid Full grid (m.p. only) Median plane

7
6
5
aa
3
2
1
o

s & s S @ &
S & « ta & «

Figure 6.3: Comparison between the three training strategies (colors), for a range of input features
(x-axis) and datasets (subplots).

Table 6.3: Summary of the performances of the various models, divided by training strategy (rows)
and input features (columns).

Strategy =~ Dataset Depth maps Edges Images
Full grid 5.14 6.34 4.92
Regular Full grid (m.p. only) 4.89 4.86 4.86
Median plane 4.71 4.77 4.74
Full grid 5.01 5.08 5.04
Interaural Full grid (m.p. only) 6.71 5.86 747
Median plane 5.00 5.01 497
Full grid 517 517 5.16
PCA Full grid (m.p. only) 5.06 4.98 5.02
Median plane 4.77 4.81 4.84

Finally, Figure 6.4 shows a random selection of predicted HRTFs from an unseen
test subject, synthesized with models from the first three rows of Table 6.3. The

6.2. Results 41

figure shows how the spectral notches are particularly shallow, although the general
contour of the response is synthesized faithfully.

#002L, 80° #002L, 50° #002L, 20° #002L, -10° #002L, -40°
pREx -,
| ann? ,/\ Lpaamag
Sonca
N N X v)
y S, Wﬂv\f‘ﬂp\/\
1)
)
§
4
L]
#002R, 70° #002R, 10° #002R, -20°
e ‘/‘\\‘
v Nt — S5EIT5a
SN R .
|
o 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Frequency [kHz]
—— True --- Medianplane === Full grid (m.p. only) Full grid

Figure 6.4: Example predicted HRTFs from an unseen subject, comparing the original HRTF magni-
tude response (solid green) with the predictions from DNN models — and their respective CVAE
decoders — trained on three dataset variations (dotted shades of blue), using the regular strategy.

Chapter 7

HRTF set creation

The final part of the solution consists in using the pinna response synthesized
through the previous steps to generate an entire HRTF set. While the system
described in the previous chapters is capable of generating pinna responses over a
spatial grid of different azimuths and elevations, HRTFs notches and other spectral
features are known to be relatively stable across the horizontal direction [47], so
only the responses along the median plane are extracted and used, limiting their
impact to monaural cues only. This is in line with the fact that pinna images
alone do not contain the necessary predictors for deriving binaural cues, which are
known to be related to the anthropometry of the head. For these reasons, spectral
features and binaural cues that are not caused by the pinnae must be accounted for
separately.

The structural model presented herein identifies and integrates two external
contributions: the effect of head, torso, and shoulders, and the interaural time
difference. The former is derived from one of the VIKING subjects consisting
of a KEMAR mannequin with its original pinnae removed and the slots filled
with a silicone baffle, resulting in the HRTFs of a pinna-less subject [73] as seen
in Figure 7.1. The spectral features introduced in this way are only a coarse
approximation of the effect of shoulders and torso. However, these are thought to
provide localization cues at frequencies below 3 kHz, which are only crucial when
localizing narrow-band sounds under that threshold [1]. Furthermore, an accurate
shoulder-reflections model must account for the relative angle between the torso
and the head, thus requiring inertial measurement units or other head-tracking
technology.

The ITD, on the other hand, is extracted from a HUTUBS subject and applied to
the HRIRs of the generated set. The relevant HUTUBS subject is chosen using the
HRTF selection algorithm presented in [70], where three anthropometric parameters
— corresponding to head width, head depth, and shoulder circumference — are
used as features of a linear regression model predicting a horizontal localization

42

7.1. Proposed algorithm 43

error metric. The metric is computed for all HUTUBS subjects, and the one
minimizing the error is selected. Since the spatial grid employed by the VIKING
dataset differs from the HUTUBS one, an interpolation algorithm to convert the
former to the latter was implemented accordingly. The choice of adopting the
spatial grid of the HUTUBS dataset was mostly arbitrary, although it simplifies the
comparison between its subjects and an individualized HRTFE.

Finally, it is important to remember that only the magnitude of the pinna re-
sponses are synthesized in the previous steps, meaning that any phase information
is missing. Thus, the pinna contribution is applied to the pinna-less HRIRs as a
minimum-phase IIR filter constructed to match the magnitude response as close as
possible, derived using the Yule-Walker method [23] of sufficiently large order.

A detailed explanation of the HRTF set creation algorithm can be found in the
sections below, along with a description of its performances.

Head-and-torso effects (pinna-less VIKING subject)
Right channel

10
0
-10
=20
=30
-40
-50
-60
0 5 10 15 20 0 5 10 15 20

Frequency [kHz] Frequency [kHz]

Left channel

200 200

150 150

100

Elevation [deg]
Elevation [deg]

50

0

Figure 7.1: Median plane response for the VIKING pinna-less subject Z, used to model head, shoulder,
and torso effects.

7.1 Proposed algorithm

The HRTF set generation algorithm has been implemented using MATLAB, and
comprises the following five building blocks:

e select_ITD.m: a function implementing the ITD-based selection algorithm
described earlier, taking head width, head depth, and shoulders circumference
as arguments, selecting the most viable HUTUBS subject, and returning a list
of left and right ears onset delays with their respective spatial coordinates.
The ITD estimation algorithm used to extract the delays is part of the Auditory
Modeling Toolbox!, implemented from [3].

e interpolateDelays.m: this function interpolates the onset delay times de-
rived above, so as to match the HUTUBS spatial grid. The vertical resolution

Ihttp://amtoolbox.sourceforge.net/

http://amtoolbox.sourceforge.net/

7.1. Proposed algorithm 44

Anthropometric data Pinna-less VIKING subject Predicted PRTF

Head width, head depth, Spatial Spatial Magnitude
; o HRIRs "
shoulder circumference coordinates coordinates | responses

select_ITD.m

Spatial Left/right ears
coordinates | onset delays

interpolateDelays.m

Interpolated
onset delays

[individualize_hrtf_nopinnae.m]
'”di:'igTSQZEd generateIndividualizedSOFA.m Individualized SOFA file

Figure 7.2: Block diagram of the HRTF set generation process. Green boxes represent input data,
blue boxes represent intermediate outputs, and the red box is the final output.

of the VIKING dataset is exactly twice that of HUTUBS, so a simple 1D linear
interpolation was employed. The function takes a list of HRTF onset delays
with their respective spatial coordinates and a list of new spatial coordinates,
and for each elevation angle, it extracts the old and new coordinates and uses
them as arguments for MATLAB's interplq function.

e individualize_hrtf_nopinnae.m: this is the function performing the actual
individualization steps. Its inputs are a set of frequency-domain pinna
magnitude responses, a set of time-domain impulse responses for torso, head,
and shoulders — both together with their respective spatial coordinates, and
a list of interpolated delays. For each unique elevation in the desired final
spatial grid (represented by the list of spatial coordinates for each pinna-
less HRIR) two IIR filters are constructed, one for the front half and one
for the rear half of the median plane, using MATLAB’s yulewalk function
with an order of 60. Subsequently, each left-right pair of HRIRs belonging
to the current elevation is processed using one of the filters, with the front
filter being used for azimuths between 90° and 270° and the rear one for
all other cases. Finally, the pre-existing onset delay is calculated using the
itdestimator mentioned in the first script, and the difference between it
and the selected delays in samples is used to zero-pad or crop the HRIRs.
Since the amplitude of the HRIRs is very close to 0 the at either end due
to windowing [75], a fast circular shifting algorithm is used, thus easily
preserving the original impulse length. This process is shown in Figure 7.3.

e generateIndividualizedSOFA.m: this function simply takes care of encoding

7.2. Results 45

the HRIRs generated above into a SOFA file which can be read by compatible
binaural rendering engines. The script fills all the mandatory metadata, and
places the receivers in the right location using the head width anthropometric
measurement.

e test_nopinnae.m: this script combines all of the previous steps and optionally
visualizes the resulting HRTF set.

For each HRIR elevation

Get matching PRTFs

Construct IIR filters

For each HRIR azimuth

Get matching HRIR

90 < azimuth < 270
no

yes
H Y N :
i1 [Applyfrontfiter] [Applyrearfiter] i
[N —— 7 ;

Estimate onset delays

Subtract HUTUBS delays
Apply delay adjustment

Figure 7.3: Flowchart of the HRTF individualization algorithm.

Thus, the inputs for this final part of the solution comprise the three anthro-
pometric parameters of head and shoulders, the median plane pinna response
generated using the deep learning models, and HRTFs of the pinna-less VIKING
subject. Figure 7.2 illustrates how each script is involved in the complete HRTF set
generation process, while Figure 7.3 presents the HRTF individualization algorithm.

7.2 Results

While the previous chapters assessed the performance of their respective building
blocks by means of spectral distortion, this section evaluates the resulting HRTFs
based on their localization performances.

Conducting an evaluation study on human subjects is perhaps the most faithful
way of determining the suitability of an individualized HRTF set. This requires
gathering the data shown in Figure 7.2, generating the HRTF set, and comparing the

7.2. Results 46

vertical localization error between a generic HRTF and the individualized one over a
range of spatial locations, similarly to [33] or [49]. Usually, such a test is performed
in a controlled environment, using a pair of headphones whose response is known
and can be accounted for, and with the help of personnel capable of assisting
in gathering the anthropometric data. However, with the current restrictions of
gatherings and restricted access to the university facilities, this proved unfeasible.
Indeed, the factors which could not be controlled — such as headphones type,
background noise level, and amount of user training with the task at hand — may
have severely degraded the validity of the findings. Thus, a psychoacoustic median
plane localization model was employed.

The localization model adopted here is described in [5] and comprises a spectral
auditory processing block and a spatial mapping one. In the first block, the
directional transfer function (DFT) is extracted from each of the subject’s HRTFs, by
subtracting direction-independent response (i.e. their average) of each ear. These are
clustered into a number of sagittal planes, and convolved with an input stimulus.
The output is then filtered using a 28-band gammatone filterbank approximating
the human cochlear filtering. The last step of the auditory processing involves
extracting the positive spectral gradients from each filter, similarly to how the
dorsal cochlear nucleus is thought to work [63].

In the second part of the localization model, a comparison between the target
representation and a template is used to derive a measure of distance, which is then
mapped to the probability of a given response using a nonlinear transfer function.
Subsequently, the weight of each ear is adjusted according to the sagittal plane
under investigation and fed into a sensory-motor mapping function simulating the
conversion between auditory perception and motor response. Finally, the resulting
values, which represent the response probability for a given spatial direction, are
scaled into a probability mass vector with its sum equal to one.

The probability mass vector computed using the localization model can then be
used to derive two psychoacoustic performance parameters: the quadrant error rate
(QE) and the polar root-mean-square error (PE). The former represents the fraction
of responses within £90° from the target angle, also called local responses, while
the latter corresponds to the RMSE of the local responses. These psychoacoustic
metrics, together with a visualization of the distribution of the predicted responses,
are the tools used to evaluate the generated HRTFs. An implementation of the
localization model and the aforementioned metrics is available in the Auditory
Modeling Toolbox?.

Due to their vast number, it was impractical to test every combination of deep
learning models, therefore the following evaluation is limited to the most relevant
cases. Specifically, models using ze.r vectors derived from the pinna depth maps

Zhttp://amtoolbox.sourceforge.net/

http://amtoolbox.sourceforge.net/

7.2. Results 47

were excluded since these would be the hardest 2D features to obtain. Furthermore,
only DNNSs trained according to the regular strategy — i.e. no PCA decomposition
or interaural-polar coordinates — were tested, as they almost consistently offer the
best performances in comparison. This yielded the combinations summarized in
Table 7.1.

Table 7.1: Model combinations used for the evaluation.

VAE input features DNN training strategy DNN and CVAE training set

Edges Regular Full spatial grid
Images Regular Full spatial grid
Edges Regular Median plane only
Images Regular Median plane only

The setups shown above were used to generate the PRTFs of each of the test set
subjects, which were then converted into HRTF sets using the algorithm described
in the previous section, and finally evaluated with the localization model. The
measurements of head width, depth, and shoulder circumference are also used
for the sake of completeness, although the binaural cues they introduce are not
relevant for vertical localization.

The performances of the individualized HRTF sets are compared against a
baseline generic HRTF set corresponding to the first HUTUBS subject, i.e. the
FABIAN head-and-torso simulator [45]. The template used by the localization
model corresponds to the measured HRTFs of the given test subject, the input
stimulus is an impulse, and the model is evaluated over a vertical grid of 10°.

Regular/Edges/Full grid Regular/Images/Full grid Regular/Edges/Median plane Regular/Images/Median plane
[}) [} [)

£ S T | -
45’Oé’oé’oé’oé

B | B [5 I

Baseline Individualized Baseline Individualized Baseline Individualized Baseline Individualized

Figure 7.4: Box plot of the psychoacoustic metrics (rows) computed using the localization model, for
each of the four chosen model combinations (columns).

An overview of the psychoacoustic metrics can be seen in Figure 7.4. According
to the plot, most of the models reduce the quadrant error rate by a small amount,
up to 5 %. However, the polar error seems to be increasing by up ~5° on average.
Most notably, the standard deviation of the metrics for the individualized HRTFs

7.2. Results 48

is significantly lower than the baseline’s, indicating a more consistent behavior
across the test set. Figure 7.5 exemplifies these results, showing how the predicted
responses are focused around the listener’s zenith, while front-back inversion still
occurs — although less prominently — for frontal sound sources. The following
chapter attempts to explain some of the patterns observed in the result sections.

Baseline Individualized

210

180

150

90

Response Angle (deg)
Response Angle (deg)
©
3

-30 0 30 60 90 120 150 180 210 -30 0 30 60 90 120 150 180 210
Target Angle (deg) Target Angle (deg)

Figure 7.5: Plot showing the probability distribution (color) of the predicted responses (y-axis) against
the target angle (x-axis).

Chapter 8

Discussion

The VAE models employed for extracting the compressed representation ze,r from
2D images seem to be capable of successfully reconstructing their input. However,
this is only true for trainings performed on homogenous datasets such as with
the HUTUBS renderings, depth maps, or edge features. Indeed, the visual fidelity
of InceptionVAE trained on the combined dataset of renderings and real-world
images was much lower than its counterparts (see Figure 4.4). Furthermore, the
reconstruction performances are in part dependent on the decoder sub-network,
which is not needed in the final pipeline.

As seen in section 4.2, the characteristic expressing the most correlation with
the latent dimensions was the camera pitch angle within the rendering scene,
which was part of the dataset augmentations applied to increase its size. Since this
characteristic is irrelevant to the task at hand, this strategy might not have been a
desirable one, although it is thought to have improved the generalization abilities
of the networks.

Due to the lack of matching anthropometric measurements, it is not possible to
derive a similar correlation matrix for the data points in the combined dataset of
HUTUBS grayscale renderings and real-world pinna images. Thus, it is impossible
to determine whether a given latent dimension equally affects the rendered and
real-world data. Should this not be the case, meaning that the real-world images
are encoded in a separate and non-overlapping subspace — or in other words, they
are described primarily by a different set of spatial dimensions — its pre-trained
weight would prove completely unusable when employed with a user pinna image
as part of the DL sub-system. This argument supports the adoption of simpler
edge features, which are more resilient to differences in lighting conditions, skin
tone, presence of hair, or other characteristics that the VAE model may encode but
that offer no predictive power.

While considering the CVAE whose decoder constitutes the last stage of the
deep learning sub-system, it is important to notice that the model is trained on

49

50

HRTF magnitude responses. Therefore, it is sensible to assume that, amongst
its compressed representations, there may be latent dimensions responsible for
imparting the effect of head, shoulders, and torso. However, the DNN input
consists only of spatial coordinates and ze,r vectors, which are not trustworthy
predictors of the head, shoulders, and torso impact. This is why the output of the
CVAE decoder has been referred to as PRTF despite originating from the HRTF
data. In order to discard the influence of head, shoulders, and torso and isolate
the pinna response, one could derive a pinna-less response such as the one in
Figure 7.1 and subtract it from the HRTFE. However, this only applies to datasets of
non-human subject, where the anatomy of the mannequin is maintained constant.

Unfortunately, as seen in section 4.2, there is no guarantee that any of these
latent factors are mutually orthogonal, and any given spectral cue constituting the
HRTFs may be embedded within multiple latent dimensions. As seen earlier, one
of the main challenges with using variational autoencoders is the interpretability
of their representation. Indeed, a given latent variable may account for several
observable or perceptual factors at once or provide no discernable contribution
to the encoding. A common technique known as B-VAE [30] addresses this issue
by introducing a scaling factor to the KL-divergence term of the loss function. By
increasing its weight, the VAE encoder is forced to closely match the prior latent
distribution p(z), thereby promoting a more disentangled internal representation.
This, however, comes with a trade-off in reconstruction performances. When
parameterizing the autoencoder models used in this project, the g hyperparameter
— shown as KL coefficient in Table 4.1 — was instead deliberately set to a small value
in order to promote a more faithful reconstruction. A recently developed extension
of B-VAE [11] suggests modulating the coefficient value during training, effectively
training the model like a conventional autoencoder and later increasing the impact
of the KL-divergence, in order to retain both reconstruction performances and
latent space disentanglement.

When observing the distribution of the SD over the range of elevations, a
clear pattern emerges, whereby HRTFs at low elevations present the largest errors.
This may be explained by the steep change in response for these HRTFs, clearly
noticeable in the input HUTUBS data shown in Figure 3.3 and known to be
caused by torso-induced damping [9]. Although the deep autoencoder used for
the experiment should be capable of modeling this nonlinear relationship, the
abrupt changes in response observed here may have degraded its reconstruction
performances.

Another interesting result from the CVAE training is the similar performances
— again measured in terms of spectral distortion — between models conditioned
with a ¢ vector expressed in vertical-polar coordinates against those expressed
in interaural-polar coordinates. According to the values in Table 5.2, the latter
offer a decrease in SD of only ~0.1dB. Despite representing the elevation using a

51

continuous value appears to be intuitively advantageous, the CVAE model may be
equally benefitting from the monotonic relationship between elevation angle and
notch frequency provided by the vertical-polar coordinate system.

Surprisingly, there seems to be little difference in performances between DNNs
trained using latent representations extracted from different 2D pinna features.
Two alternative hypotheses for this phenomenon are advanced: in the worst case,
the ze,r are not particularly useful for the task at hand and the DNN minimizes
its prediction error by assigning low weights and arbitrary biases to the feature
inputs, thereby coalescing all input data points in approximately the same output.
Alternatively, the features extracted by the pinna images VAE from each of the
datasets are so similar that they happen to have almost the same prediction power.
Feeding the DNN with random inputs and comparing the standard deviation
of the predicted outputs with the standard deviation of the zy targets shows a
slight decrease in prediction variance, which might validate the first hypothesis.
Unfortunately, understanding the behavior of the convolutional filters within a
CNN is particularly difficult, thus neither case can be proven.

When coupled with the other parts of the system, the trend in performances of
the CVAE models trained on the full spatial grid and those trained on the median
plane only seem to reverse. If proven correct, the first hypothesis mentioned in the
previous paragraph might also explain this phenomenon. Assuming that the latent
representation of the complete HRTF dataset is more spread out than its median
plane counterpart, it would be more difficult for the DNN to estimate its centroid
without sacrificing the reconstruction performances of one of its subsets.

Another noticeable aspect of the DNN training is its brief duration. Most
DNNSs reached convergence within 30 to 150 epochs, including those trained on
the full grid dataset comprising 36 080 training data points. A previous iteration
of the DNN training procedure, where the train and validation sets were split on
an individual data point basis (similarly to how described in section 5.1) instead
of on a subject basis, managed to train for much longer, i.e. up to 7000 epochs.
However, the models would soon start overfitting; this was not reflected in the
ill-constructed validation set, and training would go on indefinitely. The issue was
detected by independently monitoring the performances on the test set during
training, which revealed a steep increase in SD. In order to further ameliorate the
impact of overfitting, the dropout rate of the activations was increased to 40 %,
although no significant difference was observed. Furthermore, when splitting the
train and validation sets on a subject basis, random chance plays a more substantial
role in determining the performances on the test set. Indeed, if subjects with similar
characteristics as the ones in the test set are assigned to the validation set, the
model will not learn from them and the overall performances will be lower than
the opposite scenario. An obvious remedy for this issue consists in increasing the
size of the dataset.

52

When considering the combination of synthesized, measured, and selected
elements into an individualized HRTF set, a noticeable limitation consists in using
only 2D features from one of the pinnae when extracting the PRTF, which is then
used for both channels. Although vertical localization is thought to be a mostly
monaural process, it is also known that both ears contribute equally to localization
along the median plane [59]. Therefore, slight differences and asymmetries in
pinna anatomy that are not conveyed by the individualized responses may degrade
the localization performances.

Finally, a trend emerges when comparing listener angle responses generated
using the localization model against the target angles: the predicted angle seems
to cluster around subject’s zenith, as shown by the flat white area at the center of
Figure 7.5 (right plot). As indicated in Figure 3.3, spectral notches gradually softens
for elevations around 90°. Thus, it is thought that the shallow spectral features syn-
thesized by the deep learning sub-system are interpreted by the localization model
as belonging to elevations above the head, causing much of the local prediction
error.

Chapter 9

Conclusions

This project investigated the prediction of salient spectral localization cues occurring
across the median plane from images of the user’s pinnae using deep learning
models. These pinna responses were then used to filter a generic shoulder reflection
response measured acoustically over a spherical spatial grid. Subsequently, the ITD
of the resulting HRTF set was manipulated to match that of a HUTUBS dataset
subject with similar anthropometric parameters. Finally, the results were evaluated
using objective metrics and a perceptual localization model.

The implemented system fulfills the initial requirement of generating cus-
tomized HRTF sets from easily obtainable user data. However, the metrics con-
sidered in the evaluation are inconclusive regarding the efficacy of this structural
model, and more investigation is needed. Nevertheless, it is believed that a thor-
ough optimization of each of the building blocks of the pipeline may provide
substantial performance gains.

Inspecting each building block of the solution yielded the following findings:

e The variational autoencoder is capable of extracting latent parameters from
2D pinna features. However, it is unsure whether they are good predictors
of HRTF spectral characteristics, compared to conventional anthropometric
measurements such as those available in several HRTF datasets. More user
data would be needed, although training on larger and more heterogeneous
datasets seem to degrade performances;

e The conditional VAE can effectively encode an entire HRTF dataset and
behaves faithfully on unseen subjects, although the reconstructed notches are
not particularly prominent;

e The deep neural network used for mapping the two latent representations
is prone to overfitting due to the lack of training data where there is a
correspondence between 2D pinna features and HRTFs. Furthermore, it may
benefit from using additional predictors.

53

54

The HRTFs generated using the overall pipeline appear to vary smoothly across
the spatial dimensions and are free from audible artifacts. One of the variants of the
pipeline, based on pinna edge features, has been employed in a recent project by
another SMC student, which aimed at evaluating different HRTF profiles within a
gamified, interactive 3D environment. Within the environment, users were asked to
shoot targets they believed to be the source of a wideband, buzzing sound. Based
on the data collected in his project, the individualized HRTF improve the vertical
localization error by 1° and the horizontal error 2.5° compared to the generic HRTF
used as baseline in section 7.2, which proves promising despite the lackluster
results shown by the psychoacoustic metrics.

If considered independently from the rest of the solution, the CVAE may find
applications in compressing HRTFs or interpolating HRTF sets over a finer spatial
grid, similarly to [6]. Its relatively low number of trainable parameters makes it
suitable for embedded applications such as hearing aids or wireless earbuds. In
fact, the memory footprint of the trained weights and latent vectors is considerably
lower than the entire HUTUBS dataset, with the compression benefits compounding
as more subjects are included. Furthermore, it could constitute the foundation
of an alternative HRTF individualization approach, perhaps based on perceptual
feedback from the user as in [82].

Each of the pipeline sub-systems presented herein could benefit from additional
work. With regards to the pinna images VAE, given that faithful reconstruction is
not necessarily a proxy for interpretable latent space encoding, it may be useful
to choose a model architecture and set of input features based on the correlation
between the latent space vectors extracted from each user’s pinna image and its
anthropometric measurements.

Alternatively, such a correlation might be enforced by adequately conditioning
the loss function. Another way of promoting the emergence of useful predictors
may consist in training each of the models involved in the DL sub-system (shown
in Figure 3.2) at the same time, in such a way that the pinna VAE loss is dependent
on the prediction performances of the DNN. However, such an interconnected
system may prove particularly complex to implement and train.

A simpler version of the solution mentioned above may consist in simply
implementing an ANN comprising only the networks and sub-networks used
during evaluation, linked together and trained simultaneously so as to minimize
the mean squared error of the original and predicted HRTFs. However, it is not
known whether the dimensionality-reduction behavior of the autoencoders would
manifest.

The lack of large-scale HRTF datasets containing rich anthropometric data such
as head scans or pinna images is one of the main hindrances to the application of
deep learning techniques. Recent efforts have been made with regards to generating
arbitrarily sized synthetic PRTF sets [27], [17]. These are based on a dataset of

55

pinnae 3D scans, which are morphed using PCA and subsequently fed into an
FM-BEM numerical simulation software to extract their response. Large synthetic
datasets such as this one may improve the performances and generalization abilities
of both the CVAE and the DNN sub-systems by providing more data to learn from.

Furthermore, some of the model hyperparameters were have been maintained
constant across a range of trainings, in order to isolate the impact of other parame-
ters and simplify the comparison. However, it may be desirable to investigate the
impact of hyperparameters such as the number of latent dimensions of both ze,r
and zp. and the scaling coefficient applied to the KL divergence term.

Finally, the head-and-torso effect provided by the VIKING pinna-less subject
could be adapted to reflect the anatomical differences between users, by means of

frequency scaling parametrized according to a set of anthropometric measurements
[53, 55].

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

V. Ralph Algazi, Carlos Avendano, and Richard O. Duda. “Elevation Localiza-
tion and Head-Related Transfer Function Analysis at Low Frequencies”. In:
The Journal of the Acoustical Society of America 109.3 (Feb. 27, 2001), pp. 1110-
1122. por: 10.1121/1.1349185.

V.R. Algazi et al. “The CIPIC HRTF Database”. In: Proceedings of the 2001 IEEE
Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat.
No.01TH8575). New Platz, NY, USA: IEEE, 2001, pp. 99-102. por: 10.1109
/ASPAA.2001.969552.

Areti Andreopoulou and Brian F. G. Katz. “Identification of Perceptually
Relevant Methods of Inter-Aural Time Difference Estimation”. In: The Journal
of the Acoustical Society of America 142.2 (Aug. 1, 2017), pp. 588-598. por:
10.1121/1.4996457.

D. W. Batteau and Hugh Esmor Huxley. “The Role of the Pinna in Human
Localization”. In: Proceedings of the Royal Society of London. Series B. Biological
Sciences 168.1011 (Aug. 15, 1967), pp. 158-180. po1: 10.1098/rspb. 1967 .0058.

Robert Baumgartner, Piotr Majdak, and Bernhard Laback. “Modeling Sound-
Source Localization in Sagittal Planes for Human Listeners”. In: The Journal
of the Acoustical Society of America 136.2 (Aug. 2014), pp. 791-802. por1: 10.112
1/1.4887447.

Sunil Bharitkar et al. “Stacked Autoencoder Based HRTF Synthesis from
Sparse Data”. In: 2018 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC). Honolulu, HI, USA: IEEE, Nov.
2018, pp. 356-361. po1: 10.23919/APSIPA.2018.8659495.

Jens Blauert. Spatial Hearing: The Psychophysics of Human Sound Localization.
The MIT Press, 1996. por: 10.7551/mitpress/6391.001.0001.

Jens Blauert, ed. The Technology of Binaural Listening. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2013. por: 10.1007/978-3-642-37762-4.

56

https://doi.org/10.1121/1.1349185
https://doi.org/10.1109/ASPAA.2001.969552
https://doi.org/10.1109/ASPAA.2001.969552
https://doi.org/10.1121/1.4996457
https://doi.org/10.1098/rspb.1967.0058
https://doi.org/10.1121/1.4887447
https://doi.org/10.1121/1.4887447
https://doi.org/10.23919/APSIPA.2018.8659495
https://doi.org/10.7551/mitpress/6391.001.0001
https://doi.org/10.1007/978-3-642-37762-4

Bibliography 57

[9]

[15]

[16]

[17]

[18]

Fabian Brinkmann et al. “A Cross-Evaluated Database of Measured and
Simulated HRTFs Including 3D Head Meshes, Anthropometric Features, and
Headphone Impulse Responses”. In: Journal of the Audio Engineering Society
67.9 (Sept. 21, 2019), pp. 705-718. po1: 10.17743/ jaes.2019.0024.

C. P. Brown and R. O. Duda. “A Structural Model for Binaural Sound Syn-
thesis”. In: IEEE Transactions on Speech and Audio Processing 6.5 (Sept. 1998),
pp. 476-488. por: 10.1109/89.709673.

Christopher P. Burgess et al. Understanding Disentangling in β-VAE.
Apr. 10, 2018. arXiv: 1804.03599 [cs, stat]. URL: http://arxiv.org/abs/1
804 .03599.

J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence PAMI-8.6 (Nov. 1986), pp. 679-
698. por: 10.1109/TPAMI . 1986.4767851.

Tzu-Yu Chen, Po-Wen Hsiao, and Tai-Shih Chi. “Exploring Redundancy
of HRTFs for Fast Training DNN-Based HRTF Personalization”. In: 2018
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC). Honolulu, HI, USA: IEEE, Nov. 2018, pp. 1929-1933.
DOIL: 10.23919/APSIPA.2018.8659704.

Tzu-Yu Chen, Tzu-Hsuan Kuo, and Tai-Shih Chi. “Autoencoding HRTFS
for DNN Based HRTF Personalization Using Anthropometric Features”. In:
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Brighton, United Kingdom: IEEE, May 2019, pp. 271-275.
poI: 10.1109/ICASSP.2019.8683814.

Wei Chen et al. “HRTF Representation with Convolutional Auto-Encoder”.
In: MultiMedia Modeling. Ed. by Yong Man Ro et al. Vol. 11961. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2020, pp. 605-
616. por: 10.1007/978-3-030-37731-1_49.

Chan Jun Chun et al. Deep Neural Network Based HRTF Personalization Using
Anthropometric Measurements. undefined. 2017. URL: /paper/Deep-Neural-Ne
twork-Based-HRTF-Personalization-Chun-Moon/6ala68113adc597baelld
b67418739be4f35dado.

Corentin Guezenoc and Renaud Seguier. “Dataset Augmentation and Dimen-
sionality Reduction of Pinna-Related Transfer Functions”. In: 148th Audio
Engineering Society Convention. Audio Engineering Society, 2020.

G. Cybenko. “Approximation by Superpositions of a Sigmoidal Function”.
In: Mathematics of Control, Signals and Systems 2.4 (Dec. 1, 1989), pp. 303-314.
DOI: 10.1007/BF02551274.

https://doi.org/10.17743/jaes.2019.0024
https://doi.org/10.1109/89.709673
https://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1804.03599
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.23919/APSIPA.2018.8659704
https://doi.org/10.1109/ICASSP.2019.8683814
https://doi.org/10.1007/978-3-030-37731-1_49
/paper/Deep-Neural-Network-Based-HRTF-Personalization-Chun-Moon/6a1a68113adc597bae11db67418739be4f35dad0
/paper/Deep-Neural-Network-Based-HRTF-Personalization-Chun-Moon/6a1a68113adc597bae11db67418739be4f35dad0
/paper/Deep-Neural-Network-Based-HRTF-Personalization-Chun-Moon/6a1a68113adc597bae11db67418739be4f35dad0
https://doi.org/10.1007/BF02551274

Bibliography 58

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Richard O. Duda, V. Ralph Algazi, and Dennis M. Thompson. “The Use of
Head-and-Torso Models for Improved Spatial Sound Synthesis”. In: Audio
Engineering Society, Oct. 1, 2002. URL: http://www.aes.org/e-1lib/browse
.cfm?elib=11294.

Ziga Emers$i¢, Vitomir Struc, and Peter Peer. Ear Recognition: More Than a
Survey. Feb. 1, 2019. arXiv: 1611.06203 [cs]. URL: http://arxiv.org/abs/1
611.06203.

Michael J. Evans, James A. S. Angus, and Anthony I. Tew. “Analyzing
Head-Related Transfer Function Measurements Using Surface Spherical Har-
monics”. In: The Journal of the Acoustical Society of America 104.4 (Oct. 1, 1998),
pp. 2400-2411. por: 10.1121/1.423749.

Brinkmann Fabian et al. “The HUTUBS Head-Related Transfer Function
(HRTF) Database”. In: (2019). In collab. with Technische Universitat Berlin
and Technische Universitat Berlin. por: 10.14279/depositonce-8487.

B. Friedlander and B. Porat. “The Modified Yule-Walker Method of ARMA
Spectral Estimation”. In: IEEE Transactions on Aerospace and Electronic Systems
AES-20.2 (Mar. 1984), pp. 158-173. por: 10.1109/TAES. 1984.310437.

Mark B. Gardner and Robert S. Gardner. “Problem of Localization in the
Median Plane: Effect of Pinnae Cavity Occlusion”. In: The Journal of the
Acoustical Society of America 53.2 (Feb. 1, 1973), pp. 400-408. por: 10.1121/1
.1913336.

Esther Gonzalez, Luis Alvarez, and Luis Mazorra. AMI Ear Database. URL:
http://ctim.ulpgc.es/research_works/ami_ear_database/#whole.

Corentin Guezenoc and Renaud Seguier. “HRTF Individualization: A Survey”.
In: Audio Engineering Society, Oct. 7, 2018. URL: http://www.aes.org/e-1i
b/browse.cfm?elib=19855.

Corentin Guezenoc and Renaud Séguier. “A Wide Dataset of Ear Shapes and
Pinna-Related Transfer Functions Generated by Random Ear Drawings”. In:
The Journal of the Acoustical Society of America 147.6 (June 2020), pp. 4087-4096.
DOI: 10.1121/10.0001461.

Kaiming He et al. Deep Residual Learning for Image Recognition. Dec. 10, 2015.
arXiv: 1512.03385 [cs]. URL: http://arxiv.org/abs/1512.03385.

Jack Hebrank and D. Wright. “Spectral Cues Used in the Localization of
Sound Sources on the Median Plane”. In: The Journal of the Acoustical Society
of America 56.6 (Dec. 1, 1974), pp. 1829-1834. por: 10.1121/1.1903520.

I. Higgins et al. “Beta-VAE: Learning Basic Visual Concepts with a Con-
strained Variational Framework”. In: ICLR. 2017.

http://www.aes.org/e-lib/browse.cfm?elib=11294
http://www.aes.org/e-lib/browse.cfm?elib=11294
https://arxiv.org/abs/1611.06203
http://arxiv.org/abs/1611.06203
http://arxiv.org/abs/1611.06203
https://doi.org/10.1121/1.423749
https://doi.org/10.14279/depositonce-8487
https://doi.org/10.1109/TAES.1984.310437
https://doi.org/10.1121/1.1913336
https://doi.org/10.1121/1.1913336
http://ctim.ulpgc.es/research_works/ami_ear_database/#whole
http://www.aes.org/e-lib/browse.cfm?elib=19855
http://www.aes.org/e-lib/browse.cfm?elib=19855
https://doi.org/10.1121/10.0001461
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1121/1.1903520

Bibliography 59

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

G. E. Hinton. “Reducing the Dimensionality of Data with Neural Networks”.
In: Science 313.5786 (July 28, 2006), pp. 504-507. po1: 10.1126/science.1127
647.

Kazuhiro lida. Head-Related Transfer Function and Acoustic Virtual Reality.
Singapore: Springer Singapore, 2019. por: 10.1007/978-981-13-9745-5.

Kazuhiro lida and Yohji Ishii. “Effects of Adding a Spectral Peak Generated by
the Second Pinna Resonance to a Parametric Model of Head-Related Transfer
Functions on Upper Median Plane Sound Localization”. In: Applied Acoustics
129 (Jan. 1, 2018), pp. 239-247. por: 10.1016/j.apacoust.2017.08.001.

Kazuhiro Iida, Hikaru Shimazaki, and Masato Oota. “Generation of the
Amplitude Spectra of the Individual Head-Related Transfer Functions in the
Upper Median Plane Based on the Anthropometry of the Listener’s Pinnae”.
In: Applied Acoustics 155 (Dec. 1, 2019), pp. 280-285. po1: 10.1016/j . apacous
t.2019.06.007.

Kazuhiro Iida et al. “Median Plane Localization Using a Parametric Model
of the Head-Related Transfer Function Based on Spectral Cues”. In: Applied
Acoustics. Head- Related Transfer Function and Its Applications 68.8 (Aug. 1,
2007), pp- 835-850. por: 10.1016/j.apacoust.2006.07.016.

Yuvi Kahana and Philip A. Nelson. “Boundary Element Simulations of the
Transfer Function of Human Heads and Baffled Pinnae Using Accurate
Geometric Models”. In: Journal of Sound and Vibration 300.3 (Mar. 6, 2007),
pp. 552-579. DOT: 10.1016/3 . jsv.2006.06.079.

Yuvi Kahana and Philip A. Nelson. “Numerical Modelling of the Spatial
Acoustic Response of the Human Pinna”. In: Journal of Sound and Vibration
292.1 (Apr. 25, 2006), pp. 148-178. por: 10.1016/j.jsv.2005.07.048.

Brian F. G. Katz. “Boundary Element Method Calculation of Individual Head-
Related Transfer Function. I. Rigid Model Calculation”. In: The Journal of
the Acoustical Society of America 110.5 (Oct. 29, 2001), pp. 2440-2448. por:
10.1121/1.1412440.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 29, 2017. arXiv: 1412.6980 [cs]. URL: http://arxiv.org/abs/1412.698
0.

Diederik P. Kingma and Max Welling. “An Introduction to Variational Au-
toencoders”. In: Foundations and Trends® in Machine Learning 12.4 (2019),
pp- 307-392. por: 10.1561/2200000056. arXiv: 1906.02691.

Doris J. Kistler and Frederic L. Wightman. “A Model of Head-related Transfer
Functions Based on Principal Components Analysis and Minimum-phase
Reconstruction”. In: The Journal of the Acoustical Society of America 91.3 (Mar.
1992), pp. 1637-1647. po1: 10.1121/1.402444.

https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1007/978-981-13-9745-5
https://doi.org/10.1016/j.apacoust.2017.08.001
https://doi.org/10.1016/j.apacoust.2019.06.007
https://doi.org/10.1016/j.apacoust.2019.06.007
https://doi.org/10.1016/j.apacoust.2006.07.016
https://doi.org/10.1016/j.jsv.2006.06.079
https://doi.org/10.1016/j.jsv.2005.07.048
https://doi.org/10.1121/1.1412440
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1561/2200000056
https://arxiv.org/abs/1906.02691
https://doi.org/10.1121/1.402444

Bibliography 60

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Communications of the
ACM 60.6 (May 24, 2017), pp. 84-90. por: 10.1145/3065386.

Ajay Kumar and Chenye Wu. “Automated Human Identification Using
Ear Imaging”. In: Pattern Recognition 45.3 (Mar. 1, 2012), pp. 956-968. por:
10.1016/j.patcog.2011.06.005.

Geon Lee and Hong Kim. “Personalized HRTF Modeling Based on Deep
Neural Network Using Anthropometric Measurements and Images of the
Ear”. In: Applied Sciences 8.11 (Nov. 7, 2018), p. 2180. por: 10.3390/app81121
80.

Alexander Lindau, Torben Hohn, and Stefan Weinzierl. “Binaural Resynthesis
for Comparative Studies of Acoustical Environments”. In: Audio Engineering
Society, May 1, 2007. URL: http://www.aes.org/e-1lib/browse.cfm?elib=1
4017.

H. Liu, Y. Fang, and Q. Huang. “Efficient Representation of Head-Related
Transfer Functions With Combination of Spherical Harmonics and Spherical
Wavelets”. In: [EEE Access 7 (2019), pp. 78214-78222. po1: 10.1109/ACCESS . 2
019.2921388.

Enrique A. Lopez-Poveda and Ray Meddis. “A Physical Model of Sound
Diffraction and Reflections in the Human Concha”. In: The Journal of the
Acoustical Society of America 100.5 (Nov. 1, 1996), pp. 3248-3259. por: 10.1121
/1.417208.

Yuancheng Luo, Dmitry N. Zotkin, and Ramani Duraiswami. “Virtual Au-
toencoder Based Recommendation System for Individualizing Head-Related
Transfer Functions”. In: 2013 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics. New Paltz, NY, USA: IEEE, Oct. 2013, pp. 1-4. por:
10.1109/WASPAA.2013.6701816.

Piotr Majdak, Matthew J. Goupell, and Bernhard Laback. “3-D Localization of
Virtual Sound Sources: Effects of Visual Environment, Pointing Method, and
Training”. In: Attention, Perception, & Psychophysics 72.2 (Feb. 2010), pp. 454-
469. por: 10.3758/APP.72.2.454.

Bruce Masterton, Henry Heffner, and Richard Ravizza. “The Evolution of
Human Hearing”. In: The Journal of the Acoustical Society of America 45.4 (Apr. 1,
1969), pp. 966-985. por: 10.1121/1.1911574.

R. Miccini and S. Spagnol. “HRTF Individualization Using Deep Learning”.
In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW). Mar. 2020, pp. 390-395. por: 10.1109/VRW50115.2020. 000
84.

https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.patcog.2011.06.005
https://doi.org/10.3390/app8112180
https://doi.org/10.3390/app8112180
http://www.aes.org/e-lib/browse.cfm?elib=14017
http://www.aes.org/e-lib/browse.cfm?elib=14017
https://doi.org/10.1109/ACCESS.2019.2921388
https://doi.org/10.1109/ACCESS.2019.2921388
https://doi.org/10.1121/1.417208
https://doi.org/10.1121/1.417208
https://doi.org/10.1109/WASPAA.2013.6701816
https://doi.org/10.3758/APP.72.2.454
https://doi.org/10.1121/1.1911574
https://doi.org/10.1109/VRW50115.2020.00084
https://doi.org/10.1109/VRW50115.2020.00084

Bibliography 61

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Riccardo Miccini and Simone Spagnol. “Estimation of Pinna Notch Frequency
from Anthropometry: An Improved Linear Model Based on Principal Com-
ponent Analysis and Feature Selection”. In: Combined Proceedings of the Nordic
Sound and Music Computing Conference 2019 and the Interactive Sonification
Workshop 2019. Stockholm, Nov. 20, 2019, p. 4.

John C. Middlebrooks. “Individual Differences in External-Ear Transfer Func-
tions Reduced by Scaling in Frequency”. In: The Journal of the Acoustical Society
of America 106.3 (Sept. 1999), pp. 1480-1492. por: 10.1121/1.427176.

John C. Middlebrooks and David M. Green. “Observations on a Principal
Components Analysis of Head-related Transfer Functions”. In: The Journal of
the Acoustical Society of America 92.1 (July 1, 1992), pp. 597-599. por: 10.1121
/1.404272.

John C. Middlebrooks, Ewan A. Macpherson, and Zekiye A. Onsan. “Psy-
chophysical Customization of Directional Transfer Functions for Virtual
Sound Localization”. In: The Journal of the Acoustical Society of America 108.6
(Dec. 2000), pp. 3088-3091. por1: 10.1121/1.1322026.

Parham Mokhtari et al. “Comparison of Simulated and Measured HRTFs:
FDTD Simulation Using MRI Head Data”. In: Audio Engineering Society,
Oct. 1, 2007. URL: https://www.aes.org/e-1lib/online/browse.cfm?elib=1
4298.

Parham Mokhtari et al. “Frequency and Amplitude Estimation of the First
Peak of Head-Related Transfer Functions from Individual Pinna Anthropom-
etry”. In: The Journal of the Acoustical Society of America 137.2 (Feb. 1, 2015),
pp. 690-701. DOT: 10.1121/1.4906160.

Parham Mokhtari et al. “Vertical Normal Modes of Human Ears: Individual
Variation and Frequency Estimation from Pinna Anthropometry”. In: The
Journal of the Acoustical Society of America 140.2 (Aug. 2016), pp. 814-831. por:
10.1121/1.4960481.

Masayuki Morimoto. “The Contribution of Two Ears to the Perception of
Vertical Angle in Sagittal Planes”. In: The Journal of the Acoustical Society of
America 109.4 (Apr. 2001), pp. 1596-1603. por: 10.1121/1.1352084.

Swen Miiller and Paulo Massarani. “Transfer-Function Measurement with
Sweeps”. In: J. Audio Eng. Soc 49.6 (2001), pp. 443-471. URL: http://www.aes
.org/e-1lib/browse.cfm?elib=10189.

Vikas C. Raykar, Ramani Duraiswami, and B. Yegnanarayana. “Extracting
the Frequencies of the Pinna Spectral Notches in Measured Head Related
Impulse Responses”. In: The Journal of the Acoustical Society of America 118.1
(June 28, 2005), pp. 364-374. por: 10.1121/1.1923368.

https://doi.org/10.1121/1.427176
https://doi.org/10.1121/1.404272
https://doi.org/10.1121/1.404272
https://doi.org/10.1121/1.1322026
https://www.aes.org/e-lib/online/browse.cfm?elib=14298
https://www.aes.org/e-lib/online/browse.cfm?elib=14298
https://doi.org/10.1121/1.4906160
https://doi.org/10.1121/1.4960481
https://doi.org/10.1121/1.1352084
http://www.aes.org/e-lib/browse.cfm?elib=10189
http://www.aes.org/e-lib/browse.cfm?elib=10189
https://doi.org/10.1121/1.1923368

Bibliography 62

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Lord Rayleigh. “On Our Perception of Sound Direction”. In: The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 13.74 (Feb.
1907), pp. 214-232. po1: 10.1080/14786440709463595.

L. A.]. Reiss. “Spectral Edge Sensitivity in Neural Circuits of the Dorsal
Cochlear Nucleus”. In: Journal of Neuroscience 25.14 (Apr. 6, 2005), pp. 3680-
3691. por: 10.1523/JNEUROSCI . 4963-04.2005.

Sebastian Ruder. “An Overview of Gradient Descent Optimization Algo-
rithms”. In: (Sept. 15, 2016). URL: https://arxiv.org/abs/1609.04747v2.

B. McA. Sayers. “Acoustic-Image Lateralization Judgments with Binaural
Tones”. In: The Journal of the Acoustical Society of America 36.5 (May 1, 1964),
pp- 923-926. por: 10.1121/1.1919121.

E. A. G. SHAW. “The Acoustics of the External Ear”. In: Acoustical Factors
Affecting Hearing Aid Performance (1980). URL: https://ci.nii.ac.jp/naid/1
0029359840/

Edgar AG Shaw. “Acoustical Features of the Human External Ear”. In: Binau-
ral and spatial hearing in real and virtual environments 25 (1997), p. 47.

Ki Hoon Shin and Youngjin Park. “Enhanced Vertical Perception through
Head-Related Impulse Response Customization Based on Pinna Response
Tuning in the Median Plane”. In: IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences E91.A.1 (2008), pp. 345-356. por:
10.1093/ietfec/e91-a.1.345.

Kihyuk Sohn, Xinchen Yan, and Honglak Lee. “Learning Structured Output
Representation Using Deep Conditional Generative Models”. In: Proceedings
of the 28th International Conference on Neural Information Processing Systems -
Volume 2. NIPS'15. Cambridge, MA, USA: MIT Press, Dec. 7, 2015, pp. 3483-
3491.

S. Spagnol. “HRTF Selection by Anthropometric Regression for Improving
Horizontal Localization Accuracy”. In: IEEE Signal Processing Letters 27 (2020),
pp- 590-594. por: 10.1109/LSP.2020.2983633.

S. Spagnol, M. Geronazzo, and F. Avanzini. “On the Relation Between Pinna
Reflection Patterns and Head-Related Transfer Function Features”. In: IEEE
Transactions on Audio, Speech, and Language Processing 21.3 (Mar. 2013), pp. 508—
519. por: 10.1109/TASL.2012.2227730.

Simone Spagnol and Federico Avanzini. “Frequency Estimation of the First
Pinna Notch in Head-Related Transfer Functions with a Linear Anthropomet-
ric Model”. In: (2015), p. 6.

Simone Spagnol, Riccardo Miccini, and Runar Unnthorsson. The Viking HRTF
Dataset V2. Oct. 30, 2020. por: 10.5281/zenodo.4160401.

https://doi.org/10.1080/14786440709463595
https://doi.org/10.1523/JNEUROSCI.4963-04.2005
https://arxiv.org/abs/1609.04747v2
https://doi.org/10.1121/1.1919121
https://ci.nii.ac.jp/naid/10029359840/
https://ci.nii.ac.jp/naid/10029359840/
https://doi.org/10.1093/ietfec/e91-a.1.345
https://doi.org/10.1109/LSP.2020.2983633
https://doi.org/10.1109/TASL.2012.2227730
https://doi.org/10.5281/zenodo.4160401

Bibliography 63

[74]

[75]
[76]

[77]

[79]

[80]

[81]

[82]

[83]

Simone Spagnol et al. Current Use and Future Perspectives of Spatial Audio
Technologies in Electronic Travel Aids. Wireless Communications and Mobile
Computing. Mar. 21, 2018. por: 10.1155/2018/3918284.

Simone Spagnol et al. “The Viking Hrtf Dataset”. In: (2019), p. 6.

C. Szegedy et al. “Going Deeper with Convolutions”. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). June 2015, pp. 1-9. por:
10.1109/CVPR.2015.7298594.

Hironori Takemoto et al. “Mechanism for Generating Peaks and Notches
of Head-Related Transfer Functions in the Median Plane”. In: The Journal
of the Acoustical Society of America 132.6 (Dec. 1, 2012), pp. 3832-3841. por:
10.1121/1.4765083.

Lei Wang, Xiangyang Zeng, and Xiyue Ma. “Advancement of Individualized
Head-Related Transfer Functions (HRTFs) in Perceiving the Spatialization
Cues: Case Study for an Integrated HRTF Individualization Method”. In:
Applied Sciences 9.9 (May 7, 2019), p. 1867. por: 10.3390/app9091867.

Anthony J. Watkins. “Psychoacoustical Aspects of Synthesized Vertical Locale
Cues”. In: The Journal of the Acoustical Society of America 63.4 (Apr. 1, 1978),
pp. 1152-1165. por: 10.1121/1.381823.

Francis M. Wiener and Douglas A. Ross. “The Pressure Distribution in the
Auditory Canal in a Progressive Sound Field”. In: The Journal of the Acoustical
Society of America 18.2 (Oct. 1, 1946), pp. 401-408. por: 10.1121/1.1916378.

Frederic L. Wightman and Doris J. Kistler. “Headphone Simulation of Free-
field Listening. I: Stimulus Synthesis”. In: The Journal of the Acoustical Society
of America 85.2 (Feb. 1, 1989), pp. 858-867. por: 10.1121/1.397557.

Kazuhiko Yamamoto and Takeo Igarashi. “Fully Perceptual-Based 3D Spatial
Sound Individualization with an Adaptive Variational Autoencoder”. In:
ACM Transactions on Graphics 36.6 (Nov. 20, 2017), pp. 1-13. por: 10.1145/31
30800.3130838.

Zhou Wang et al. “Image Quality Assessment: From Error Visibility to Struc-
tural Similarity”. In: IEEE Transactions on Image Processing 13.4 (Apr. 2004),
pp- 600-612. por: 10.1109/TIP.2003.819861.

https://doi.org/10.1155/2018/3918284
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1121/1.4765083
https://doi.org/10.3390/app9091867
https://doi.org/10.1121/1.381823
https://doi.org/10.1121/1.1916378
https://doi.org/10.1121/1.397557
https://doi.org/10.1145/3130800.3130838
https://doi.org/10.1145/3130800.3130838
https://doi.org/10.1109/TIP.2003.819861

(0]

Appendix A

Commands

The following is a list of commands used during the training of the various models
discussed herein. The list is not meant to be comprehensive, but it is provided to
illustrate the usage of the training scripts implemented as part of the project.

A.1 Pinna VAE
A1.1 Train

models

python train_ears.py vae_conv ./configs/data/ears/hutubs256. json
--model_cfg ./configs/models/vae_conv/big.json --batch_size 128
--max_epoch 1000

python train_ears.py vae_resnet ./configs/data/ears/hutubs256_3. json
--model_cfg ./configs/models/vae_resnet/18.json --batch_size 64
--max_epoch 1000

python train_ears.py vae_incept ./configs/data/ears/hutubs256. json
--model_cfg ./configs/models/vae_incept/small.json --batch_size
32 --max_epoch 1000

2d features

python train_ears.py vae_incept ./configs/data/ears/combined256. json
--model_cfg ./configs/models/vae_incept/small.json --batch_size
32 --max_epoch 1000

python train_ears.py vae_incept
./configs/data/ears/hutubs_depth256.json --model_cfg
./configs/models/vae_incept/small. json --batch_size 32
--max_epoch 1000

python train_ears.py vae_incept
./configs/data/ears/hutubs_edges256.json --model_cfg
./configs/models/vae_incept/small. json --batch_size 32
--max_epoch 1000

64

A.2. HRTF CVAE (Regular)

A.2 HRTF CVAE (Regular)
A2.1 Train

python train_hrtf.py cvae_dense configs/data/hrtf/hutubs_full. json
--model_cfg_path configs/models/cvae_dense/medium_full. json
--batch_size 256 --max_epochs 10000 --nfft 512

python train_hrtf.py cvae_dense configs/data/hrtf/hutubs_median. json
--model_cfg_path configs/models/cvae_dense/medium_full. json
--batch_size 256 --max_epochs 100000 --nfft 512

A.3 HRTF CVAE (interaural)
A.3.1 Train

python train_hrtf.py cvae_dense
configs/data/hrtf/hutubs_full_interaural. json --model_cfg_path
configs/models/cvae_dense/medium_full.json --batch_size 256
--max_epochs 10000 --nfft 512

python train_hrtf.py cvae_dense
configs/data/hrtf/hutubs_median_interaural.json --model_cfg_path
configs/models/cvae_dense/medium_full.json --batch_size 256
--max_epochs 100000 --nfft 512

A4 DNN (Regular)
A.4.1 Export

z_ears

python export_z_ears.py vae_incept
logs/VAE_incept_combined/version_0O/checkpoints/epoch=478. ckpt
--data_cfg_path configs/data/ears/hutubs256. json

python export_z_ears.py vae_incept
logs/VAE_incept_hutubs_depth/version_1/checkpoints/epoch=221.ckpt
--data_cfg_path configs/data/ears/hutubs_depth256. json

python export_z_ears.py vae_incept
logs/VAE_incept_hutubs_edges/version_0/checkpoints/epoch=155. ckpt
--data_cfg_path configs/data/ears/hutubs_edges256. json

z_hrtf

python export_z_hrtf.py
logs/CVAE_dense_hutubs_None/version_2/checkpoints/epoch=4626. ckpt
--data_cfg_path configs/data/hrtf/hutubs_full.json --nfft 512

python export_z_hrtf.py
logs/CVAE_dense_hutubs_None/version_4/checkpoints/epoch=4950. ckpt
--data_cfg_path configs/data/hrtf/hutubs_median.json --nfft 512

A.4.2 Train

10

11

12

1

2

A.5. DNN (Interaural) 66

fullgrid

python train_latent.py dnn
configs/data/z/regular/hutubs_edge_fullgrid. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2. json --max_epochs
5000 --training_name edge_fullgrid

python train_latent.py dnn
configs/data/z/regular/hutubs_depth_fullgrid.json --batch_size
256 --model_cfg_path configs/models/dnn/medium2.json --max_epochs
5000 --training_name depth_fullgrid

python train_latent.py dnn
configs/data/z/regular/hutubs_image_fullgrid.json --batch_size
256 --model_cfg_path configs/models/dnn/medium2.json --max_epochs
5000 --training_name image_fullgrid

fgmedian

python train_latent.py dnn
configs/data/z/regular/hutubs_edge_fgmedian.json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name edge_fgmedian

python train_latent.py dnn
configs/data/z/regular/hutubs_depth_fgmedian.json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do.json
--max_epochs 10000 --training_name depth_fgmedian

python train_latent.py dnn
configs/data/z/regular/hutubs_image_fgmedian. json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 10000 --training_name image_fgmedian

median

python train_latent.py dnn
configs/data/z/regular/hutubs_edge_median.json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name edge_median

python train_latent.py dnn
configs/data/z/regular/hutubs_depth_median. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name depth_median

python train_latent.py dnn

configs/data/z/regular/hutubs_image_median. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name image_median

A.5 DNN (Interaural)
A.5.1 Export

python export_z_hrtf.py
logs/CVAE_dense_hutubs_None/version_5/checkpoints/epoch=4300. ckpt
--data_cfg_path configs/data/hrtf/hutubs_full_interaural. json
--nfft 512 --output_path
/data/riccardo_datasets/hrtfi/latent/hrtf_interaural_fullgrid
python export_z_hrtf.py

10

11

12

A.6. DNN (PCA) 67

logs/CVAE_dense_hutubs_None/version_10/checkpoints/epoch=7084. ckpt
--data_cfg_path configs/data/hrtf/hutubs_median_interaural. json
--nfft 512 --output_path
/data/riccardo_datasets/hrtfi/latent/hrtf_interaural_median

A.5.2 Train

fullgrid

python train_latent.py dnn
configs/data/z/interaural/hutubs_edge_fullgrid.json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 5000 --training_name edge_fullgrid_interaural

python train_latent.py dnn
configs/data/z/interaural/hutubs_depth_fullgrid. json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 5000 --training_name depth_fullgrid_interaural

python train_latent.py dnn
configs/data/z/interaural/hutubs_image_fullgrid.json --batch_size
2566 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 5000 --training_name image_fullgrid_interaural

fgmedian

python train_latent.py dnn
configs/data/z/interaural/hutubs_edge_fgmedian.json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do.json
--max_epochs 10000 --training_name edge_fgmedian_interaural

python train_latent.py dnn
configs/data/z/interaural/hutubs_depth_fgmedian. json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 10000 --training_name depth_fgmedian_interaural

python train_latent.py dnn
configs/data/z/interaural/hutubs_image_fgmedian. json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 10000 --training_name image_fgmedian_interaural

median

python train_latent.py dnn
configs/data/z/interaural/hutubs_edge_median. json --batch_size
2566 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 10000 --training_name edge_median_interaural

python train_latent.py dnn
configs/data/z/interaural/hutubs_depth_median.json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do.json
--max_epochs 10000 --training_name depth_median_interaural

python train_latent.py dnn
configs/data/z/interaural/hutubs_image_median.json --batch_size
256 --model_cfg_path configs/models/dnn/medium2_do. json
--max_epochs 10000 --training_name image_median_interaural

A.6 DNN (PCA)

A.6.1 Train

A.7. PRTF generation 68

1 # fullgrid

2 python train_latent.py dnn
configs/data/z/pca/hutubs_edge_fullgrid. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
5000 --training_name edge_fullgrid_pca

3 python train_latent.py dnn
configs/data/z/pca/hutubs_depth_fullgrid. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
5000 --training_name depth_fullgrid_pca

4 python train_latent.py dnn
configs/data/z/pca/hutubs_image_fullgrid.json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
5000 --training_name image_fullgrid_pca

5 # fgmedian

6 python train_latent.py dnn
configs/data/z/pca/hutubs_edge_fgmedian. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name edge_fgmedian_pca

7 python train_latent.py dnn
configs/data/z/pca/hutubs_depth_fgmedian. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name depth_fgmedian_pca

8 python train_latent.py dnn
configs/data/z/pca/hutubs_image_fgmedian.json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name image_fgmedian_pca

9 # median

10 python train_latent.py dnn configs/data/z/pca/hutubs_edge_median. json
--batch_size 256 --model_cfg_path
configs/models/dnn/medium2_do. json --max_epochs 10000
--training_name edge_median_pca

11 python train_latent.py dnn
configs/data/z/pca/hutubs_depth_median. json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name depth_median_pca

12 python train_latent.py dnn
configs/data/z/pca/hutubs_image_median.json --batch_size 256
--model_cfg_path configs/models/dnn/medium2_do.json --max_epochs
10000 --training_name image_median_pca

A.7 PRTF generation

1 # regular_edges_fullgrid

2 python ear_to_prtf.py configs/eval/regular/edges_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp2_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_edges_fullgrid/2.mat

3 python ear_to_prtf.py configs/eval/regular/edges_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp3_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path

A.7. PRTF generation 69

/data/riccardo_datasets/hrtfi/prtfs/regular_edges_fullgrid/3.mat

python ear_to_prtf.py configs/eval/regular/edges_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp4_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_edges_fullgrid/4.mat

python ear_to_prtf.py configs/eval/regular/edges_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp5_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_edges_fullgrid/5.mat

regular_image_fullgrid

python ear_to_prtf.py configs/eval/regular/image_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp2_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_image_fullgrid/2.mat

python ear_to_prtf.py configs/eval/regular/image_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp3_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_image_fullgrid/3.mat

python ear_to_prtf.py configs/eval/regular/image_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp4_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_image_fullgrid/4.mat

python ear_to_prtf.py configs/eval/regular/image_fullgrid. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp5_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_image_fullgrid/5.mat

regular_edges_median

python ear_to_prtf.py configs/eval/regular/edges_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp2_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_edges_median/2.mat

python ear_to_prtf.py configs/eval/regular/edges_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp3_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_edges_median/3.mat

python ear_to_prtf.py configs/eval/regular/edges_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp4_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_edges_median/4.mat

python ear_to_prtf.py configs/eval/regular/edges_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp5_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_edges_median/5.mat

regular_image_median

python ear_to_prtf.py configs/eval/regular/image_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp2_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_image_median/2.mat

python ear_to_prtf.py configs/eval/regular/image_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp3_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path

A.7. PRTF generation 70

/data/riccardo_datasets/hrtfi/prtfs/regular_image_median/3.mat

19 python ear_to_prtf.py configs/eval/regular/image_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp4_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_image_median/4.mat

20 python ear_to_prtf.py configs/eval/regular/image_median. json
/data/riccardo_datasets/hrtfi/hutubs_edges/left/0_0_0_0/pp5_3DheadMesh.png
--nfft 512 --device cuda:2 --output_path
/data/riccardo_datasets/hrtfi/prtfs/regular_image_median/5.mat

a o W N -

Appendix B

Attachments

This section describes the content of the attachments accompanying this document.

B.1 src_python/: Source code for PRTF generation

This directory contains all the necessary source code and configuration files for
reproducing the findings presented here, as well as for generating individualized
PRTFs. Due to their prohibitive size, the pre-trained weights were not included.
See Appendix A for example usages.

The code depends on a multitude of external libraries and packages. The
recommended way of installing and managing these dependencies is through
condal. A virtual environment can be instantiated and populated with the necessary
libraries by running:
conda create --name rml8_thesis
conda activate rml8_thesis
conda install pytorch torchvision torchaudio -c¢ pytorch
conda install pytorch-lightning -c conda-forge
conda install pip seaborn tabulate debugpy matplotlib librosa pandas

scikit -image scikit-learn tensorboard python-dotenv jupyterlab

tqdm scipy
pip install python-sofa pytorch-lightning-bolts

B.2 src_matlab/: Source code for HRTF individualization

This directory contains all the necessary MATLAB script for generating individu-
alized HRTFs in SOFA format from the output of the deep learning sub-system.
Furthermore, the source code for the evaluation conducted using the psychoacous-
tic vertical localization model is provided. The requirements for these scripts are

Ihttps://docs.conda.io/en/latest/miniconda.html

71

https://docs.conda.io/en/latest/miniconda.html

B.3. logs/: Training logs 72

the SOFA APIs and the Auditory Modeling Toolbox mentioned in chapter 7. For
more information, consult the test_nopinnae.m script.

B.3 1logs/: Training logs

This directory contains logfiles storing training-time metrics and data such as loss
function values, learning rate, model hyperparameters, reconstructed samples, and
so forth. The data can be accessed on the browser using TensorBoard, by running
the following command:

tensorboard --logdir=path/to/logs

B.4 report/: Report code

This directory contains the source code used to generate this document, as well as
high-resolution versions of all the figures shown here. The compilation pipeline
depends on Pandoc? and on a IfTgXdistribution. To compile, simply issue a make
command.

B.5 notebooks/: Jupyter notebooks

This directory contains some of the Jupyter notebooks used during the early stages
of prototyping, data analysis, and for generating most of the figures in this report.
The notebooks can be accessed and visualized using Jupyter. Alternatively, they
can be dragged into an online visualizer®.

Zhttps://pandoc.org/MANUAL . html
Shttps://kokes.github.io/nbviewer.js/viewer.html

https://pandoc.org/MANUAL.html
https://kokes.github.io/nbviewer.js/viewer.html

	Front page
	Front page
	English title page
	Contents
	Acknowledgements
	Preface
	1 Introduction
	1.1 The head-related transfer function
	1.2 HRTF Individualization

	2 Related work
	2.1 Conventional approaches
	2.2 Deep learning approaches

	3 Methods and tools
	3.1 Deep learning
	3.2 Datasets
	3.2.1 HRTFs
	3.2.2 Ears images

	4 Encoding of pinna images
	4.1 Proposed architecture
	4.2 Results

	5 Encoding of HRTF
	5.1 Proposed architecture
	5.2 Results

	6 Prediction of encoded representations
	6.1 Proposed architecture
	6.2 Results

	7 HRTF set creation
	7.1 Proposed algorithm
	7.2 Results

	8 Discussion
	9 Conclusions
	Bibliography
	A Commands
	A.1 Pinna VAE
	A.1.1 Train

	A.2 HRTF CVAE (Regular)
	A.2.1 Train

	A.3 HRTF CVAE (interaural)
	A.3.1 Train

	A.4 DNN (Regular)
	A.4.1 Export
	A.4.2 Train

	A.5 DNN (Interaural)
	A.5.1 Export
	A.5.2 Train

	A.6 DNN (PCA)
	A.6.1 Train

	A.7 PRTF generation

	B Attachments
	B.1 src_python/: Source code for PRTF generation
	B.2 src_matlab/: Source code for HRTF individualization
	B.3 logs/: Training logs
	B.4 report/: Report code
	B.5 notebooks/: Jupyter notebooks

