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List of Abbreviations

• θ: Primitive element of Fq

• (X,A): A design with set of points X and set of blocks A

• (G,+): An additive group

• (v,k,λ)-BIBD: A balanced incomplete block design with parameters v,k, and λ

• Fq: The finite field of order q

• Z/nZ: The integers modulo n

• BRC-Theorem: The Bruck-Ryser-Chowla theorem

• HAP: Home-Away-pattern

• In: The unit n×n matrix

• Jn: The n×n matrix with all entries 1

• PBD: Pairwise balanced design

• PGd(q): d-dimensional projective geometries of order q
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Preface

This is a master’s thesis written by a student of the Department of Mathematical Sciences at
Aalborg University. The thesis revolves around combinatorial design theory and is readable to
anyone of interest in the subject, however, some familiarity with basic abstract algebra, linear
algebra and number theory is recommended.

Definitions, theorems, or the likes, follows the same numbering throughout the thesis, while
examples, equations, figures and tables follows separate numbering. The first number indi-
cates the chapter while the second indicates the order of which they appear such that example
3.5, for instance, means the fifth example of the third chapter. Furthermore, throughout the
thesis the symbol � indicates the end of a proof, while / indicates the end of a remark.

Throughout the thesis there are references to various sources of literature, and these are col-
lected in a bibliography at the end of the thesis. References to this literature follows the
Vancouver-standard such that they are referenced using [#], where # is determined by the or-
der of which they appear in the bibliography. At the start of each chapter the main source of
literature for the chapter will be mentioned and if further materials are used aside from that, a
direct reference to the material will appear.

Finally, I want to thank my supervisor throughout the thesis, Oliver Wilhelm Gnilke, for help-
ing with the frame of the thesis, and for his supervision and constructive criticism throughout
the semester as well.

Aalborg University, January 7, 2021

Christian Serup Ravn Thorsen
<cthors15@student.aau.dk>
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Chapter 1

Introduction

A subject of mathematics which has seen rapid advances in the later years is design theory [1].
It originates from the context of mathematical puzzles and brain teasers from the eighteenth
and nineteenth century, however, as a mathematical subject it really began in the twentieth cen-
tury from the work of statisticians F. Yates and R. A. Fisher on design and analysis of statistical
experiments [1]. Combinatorial design theory revolves around the question on whether it is
possible to arrange elements from a finite set into subsets such that certain balance properties
are satisfied [1]. The term of balance originates with Fisher and Yates as well, and is beneficial
in many cases due to the fact that it achieves fairness since all comparisons between pairs of
elements then occur equally often [2].

Since the original works of Fisher and Yates applications in a wide variety of areas has been
found. This includes, but is not limited to, group testing, mathematical biology and chem-
istry, cryptography, and tournament scheduling. Many of such applications revolves around
existence and non-existence, that is, does a design of a given type exist and if so under which
conditions. Such conditions have been found in general, however, it still not possible to guar-
antee the existence of certain designs. Instead only an exclusion of the existence of ones that do
not meet certain conditions can be made [1].

The subject of this thesis is to use combinatorial design theory to schedule games of a season in a
sports league under certain constraints. When scheduling a season there are several constraints
to consider such that the tournament becomes as fair to all teams as possible. Such a constrain
could consider the geography of the participating teams, see for instance [3] for a detailed view
on this. The focus of this thesis, however, is to consider the home-away pattern in the schedules
such that as few teams as possible have multiple home or away matches in a row, while making
sure that different teams have these breaks when such breaks in the pattern are unavoidable.
Another constraint on the tournament schedule examined in this thesis is the carry-over effect.
This is to ensure that as few teams as possible is scheduled to meet the same teams in a certain
order after each other.
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Chapter 2

Balanced Incomplete Block Designs

2.1 Preliminary Definitions & Results

In this section, based on [1, pp. 2-5] unless otherwise specified, some of the basic definitions
and results in design theory will be presented. The first thing to be introduced is the formal
definition of a design.

Definition 2.1: Design

A design is a pair (X,A) such that:

1) X is a finite set of elements called points

2) A is a finite collection of nonempty subsets of X called blocks

When two blocks in a design are identical they are said to be repeated blocks, and if a design
contains no repeated blocks, it is said to be a simple design. Note that in case of multiplicity of
the elements of X it will be denoted using []. That is, for instance:

[3,7,4,3] , {3,7,4,3} = {3,7,4}

One of the most studied type of designs are the balanced incomplete block designs (BIBDs), and
as mentioned in the introduction the study of these began with the work of Fisher and Yates in
the 1930’s.

Definition 2.2: Balanced Incomplete Block Design (BIBD)

Let v,k and λ be positive integers such that 2 ≤ k < v. A (v,k,λ)-BIBD is a design (X,A)
such that:

1) |X | = v

2) Each block contains exactly k points

3) Every pair of distinct points is contained in exactly λ blocks

The term of balance originates from the third property in definition 2.2, that is, every pair of
points is compared equally many times. The block design is said to be incomplete since k < v.
Furthermore if λ > 1, the BIBD can contain repeated blocks. The notations of the variables for
the BIBD is summarized in the following table, inspired by [4, p. 885]:
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Variable Description
v (order) Number of elements in X
b (block number) Number of elements in A
r (replication number) Number of blocks containing a given point
k (block size) Number of points in a block
λ (index) Number of blocks to which every pair of distinct points belong

Example 2.1
Consider a BIBD given by X = {a,b,c,d} and with blocks A = {abc,abd,acd,bcd}. For this
design the order of X is 4, the block size is 3, while the index number is 2. Therefore, this is
a (4,3,2)-BIBD.

Example 2.2 (The Fano plane)
Consider the design (X,A) with:

X = {a,b,c,d,e, f ,g} and A = {abc,ade,af g,bf e,cf d,cge,bdg}

In this design the order of X is 7 and |A| = 7 as well. The block size k is 3 and the replication
number r is 3 as well. Finally, each pair of distinct points appear together in one block, so λ
is 1. Hence this is a (7,3,1)-BIBD. This is a special design known as the Fano plane and can
be seen as a diagrammatic representation in the following way, which shall be described in
further detail in section 3.2:

a

b

c

d

e

f

g

Notice that a (v,k,λ)-BIBD is sometimes referred to as a (v,b, r,k,λ)-BIBD, taking account for
all five parameters included in the BIBD. Although all five parameters may be mentioned when
their value need to be emphasized, this proves unnecessary due to the following propositions.
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Proposition 2.3:

For a (v,k,λ)-BIBD every point occurs in exactly

r =
λ(v − 1)
k − 1

Proof
Let (X,A) be a (v,k,λ)-BIBD and suppose that x ∈ X. Furthermore let rx denote the number of
blocks containing x and define:

I := {(y,B) | y ∈ X,y , x,B ∈ A, {x,y} ⊆ B}

Since |X | = v and x ∈ X there are v − 1 ways to choose y ∈ X such that y , x. For each such y
there are a total of λ blocks, B, such that {x,y} ⊆ B. Therefore |I | = λ(v − 1).

Furthermore there are rx ways to choose a block B such that x ∈ B. Since there are a total of k
points in B there are k − 1 ways to pick y ∈ B for x , y. That is, |I | = rx(k − 1). In conclusion:

λ(v − 1) = |I | = rx(k − 1)

�

Proposition 2.4:

The number of blocks in a (v,k,λ)-BIBD is exactly:

b =
vr
k

Proof
Let (X,A) be a (v,k,λ)-BIBD, let |A| = b and define

I := {(x,B) | x ∈ X,B ∈ A,x ∈ B}

Since |X | = v, it is possible to choose x ∈ X in v different ways. For each such x, there are r
blocks, B, such that x ∈ B. That is |I | = vr.

Furthermore, there are b ways to choose a block B ∈ A and since each of these blocks contain k
elements, there are k ways to choose a x ∈ B. Hence |I | = bk and therefore:

vr = |I | = bk

�

Notice that by the definition of b and r they must be integers, which allows the exclusion of
the existence of certain designs. For instance a (16,5,3)-BIBD cannot exist since the replication
number is not an integer:

r =
3(16− 1)

5− 1
=

45
4

= 11,25
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However, these conditions do not guarantee the existence of BIBDs, they can only exclude ones
that do not meet the criteria. One of the main goals in combinatorial design theory is to deter-
mine necessary and sufficient conditions on the existence of (v,k,λ)-BIBDs. This is very difficult
in general and for many parameter sets the answer remains unknown to this day. As an example
it is currently unknown if a (22,8,4)-BIBD exist.

2.2 Incidence Matrices

Often it can be convenient to represent a BIBD using an incidence matrix, which is what is de-
scribed in this section, based on [1, pp. 6-8].

Definition 2.5: Incidence Matrix

Let (X,A) be a design withX = {x1, . . . ,xv} andA = {B1, . . . ,Bb}. Then the incidence matrix
of (X,A) is the v × b binary matrix M, constructed using that:

mij =

1 if xi ∈ Bj
0 if xi < Bj

The incidence matrix of a (v,b, r,k,λ)-BIBD satisfies:

• Every column contains a 1 exactly k times

• Every row contains a 1 exactly r times

• Two distinct rows both contain a 1 in exactly λ columns

Example 2.3
Consider the (4,4,3,3,2)-BIBD from example 2.1 withX = {a,b,c,d} andA = {abc,abd,acd,bcd}.
The incidence matrix of this design is a 4× 4 matrix given by:

M =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


Proposition 2.6:

Let M be a binary v × b matrix and let 2 ≤ k < v. Then M is the incidence matrix of a
(v,b, r,k,λ)-BIBD if and only if both of the following equations are satisfied;

MMT = λJv + (r −λ)Iv (2.1)

uvM = kub (2.2)

where Jv is the v × v matrix where every entry is 1 and uv is the vector of dimension v
with every coordinate equal to 1.
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Proof
Let (X,A) be a (v,b, r,k,λ)-BIBD with X = {x1, . . . ,xv} and A = {B1, . . . ,Bb}, and let M denote the
incidence matrix for this design. The (i, j)th entry of MMT is given by:

b∑
h=1

mihmjh =

r if i = j
λ if i , j

(2.3)

In other words, every diagonal entry of MMT is equal to r while every other entry in MMT is
λ. That is:

MMT = λJv + (r −λ)Iv

Now consider uvM. The ith entry of this matrix vector product is equal to the total number of
entries in column i of M that has a 1 in it. Finally, since every column of M contains a 1 exactly
k times, it means that:

uvM = kub

Conversely, suppose that M is a binary v × b binary matrix such that equations (2.1) and (2.2)
are satisfied. Let (X,A) be the design corresponding to the incidence matrix M, then |X | = v
and |A| = b. Furthermore by equation (2.2) it follows that every block of A contains k points.
Finally by equation (2.1) every pair of points occur in exactly λ blocks and every point occurs
in r blocks. Therefore the matrix M is an incidence matrix of a (v,b, r,k,λ)-BIBD �

The constructions from equations (2.1) and (2.2) may be a bit abstract to realize in the general
case, so for clarity consider the following example showcasing these.

Example 2.4
Consider the (4,4,3,3,2)-BIBD from example 2.1. It is seen that MMT = λJv +(r −λ)Iv since:

MMT =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1



1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 =


3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

 = 2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = λJv + (r −λ)Iv

Finally, uvM = kub since:

uvM =
[
1 1 1 1

]
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 =
[
3 3 3 3

]
= 3

[
1 1 1 1

]
= 3ub

An incidence matrix that satisfies only equation (2.1) is equivalent to a certain type of design
called a pairwise balanced design (PBD).

Definition 2.7: Parwise Balanced Design (PBD)

Let λ ∈N+. A design (X,A) such that every pair of distinct points is contained in exactly
λ blocks is called a pairwise balanced design. Furthermore if every point x ∈ X occurs
in exactly r blocks in A for r ∈N+, then the PBD is said to be regular.
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Note that a PBD (X,A) can contain complete blocks, that is, blocks of size |X |, and if the PBD
consist only of complete blocks it is said to be a trivial PBD. However, if (X,A) contains no com-
plete blocks it is said to be a a proper PBD.

It turns out that proposition 2.6 does not hold for PBDs since equation (2.2) generally is not
satisfied for PBDs as seen in the following example.

Example 2.5
Consider the following 8× 18 matrix:

1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


This is the incidence matrix for the design (X,A) with

X = {a,b,c,d,e, f ,g,h} and A = {abcd,ef gh,ae,af ,ag,ah,be,bf ,bg,bh,ce,cf , cg,ch,de,df ,dg,dh}

For this design v = 8, b = 18, r = 5 and λ = 1. This is a regular PBD since every pair of
distinct points are contained in 1 block and every point occurs in 5 blocks. However, it is
not a BIBD which can be seen in two equivalent ways:

1) the incidence matrix: Every column does not contain the same number of 1s

2) A: Every block does not contain the same number of points

It can be verified that equation (2.1) is satisfied, however equation (2.2) is not since:

u8M =
[
4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

]
, ku18 for any k ∈N+

2.3 Fisher’s Inequality

With the use of propositions 2.3 and 2.4 some criteria to help exclude the existence of certain
(v,k,λ)-BIBDs have been made. In this section, based on [1, pp. 16-18], another necessary con-
dition for the existence of a (v,k,λ)-BIBD will be proven. Once more it must be clarified that
this does not give conditions on the existence of such designs, but only excludes the existence
on those that do not meet the criteria.

Theorem 2.8: Fisher’s Inequality

Any (v,b, r,k,λ)-BIBD satisfies that b ≥ v.
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Proof
Let (X,A) be a (v,b, r,k,λ)-BIBD with X = {x1, . . . ,xv} and A = {B1, . . . ,Bb}. Furthermore let M be
the incidence matrix for this BIBD and define sj to be the vector corresponding to the jth row
of MT and equivalently sj

T for M. Then s1, . . . ,sb are all vectors in R
v .

Define I :=
{
sj | 1 ≤ j ≤ b

}
, then the subspace of Rv spanned by these sj is given by:

S :=


b∑
j=1

cjsj | c1, . . . , cb ∈R


If it can be shown that S = R

v the proof will be concluded, since this would mean that the b
vectors in I spans the vector space R

v , and because R
v has dimension v and is spanned by a set

of b vectors, then b ≥ v as desired.

The vectors e1, . . . ,ev form a basis for Rv , that is, every vector in R
v can be expressed as a linear

combination of these vectors. It is now sufficient to show that ei ∈ S for 1 ≤ i ≤ v since this
means that every ei can be expressed as a linear combination of vectors in I . Observe that:

b∑
j=1

sj =
[
r . . . r

]
⇔

b∑
j=1

1
r
sj =

[
1 . . . 1

]
(2.4)

Fix an i where 1 ≤ i ≤ v, then:∑
{j |xi∈Bj }

sj = (r −λ)ei +
[
λ . . . λ

]
= (r −λ)ei +λ

[
1 . . . 1

]
(2.5)

It follows from proposition 2.3 that λ(v − 1) = r(k − 1) and by the definition of BIBD that v > k.
This indicates that r > λ and therefore r − λ > 0. Next combine equations (2.4) and (2.5) to
obtain: ∑

{j |xi∈Bj }
sj = (r −λ)ei +λ

[
1 . . . 1

]
= (r −λ)eTi +λ

b∑
j=1

1
r
sj

Finally solve for ei to obtain

ei =
∑
{j |xi∈Bj }

1
r −λ

sj −
b∑
j=1

λ
r(r −λ)

sj

which expresses ei as a linear combination of s1, . . . ,sb as desired. �

Remark 1. By proposition 2.4 Fisher’s inequality can be stated equivalently as r ≥ k. /

In the proof of Fisher’s inequality, it is never used that all blocks have the same size which
means that the theorem can be generalized to regular PBDs for which r > λ. Since a trivial PBD
indicates that the blocks have the same size, it means that a regular PBD satisfies that r > λ if
and only if it is a nontrivial PBD. That is:
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Theorem 2.9:

Any nontrivial regular PBD satisfies that b ≥ v

Here the PBD is assumed to be regular, which ensures that every point occurs in equally many
blocks. Actually, Fisher’s inequality holds for all nontrivial PBDs and not just regular ones,
however this is beyond the scope of this thesis and refer to [1, pp. 193-194] for a proof of this.
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Chapter 3

Finite Geometry

In this chapter the theory of a finite analogue to the Euclidean geometry will be presented.
These are known as projective and affine planes and help to determine further exclusion of cer-
tain designs. The only known projective planes to exist to this day are those of order of a prime
power. In order to introduce the finite geometry, the notion of symmetry must be presented
first, including the most important theorem on the two necessary conditions on the existence of
symmetric designs known together as the Bruck-Ryser-Chowla (BRC) theorem. Finally, resolv-
ability will be introduced for the purpose of the applications described in the next chapter as
well as briefly tying this term together with the finite geometry.

3.1 Symmetry

This section is based on [1, pp. 23-25], and serves as an introduction to the term symmetric
BIBDs. If the extreme case of Fisher’s inequality is satisfied, that is, b = v, then the design is
said to be symmetric. This terminology does not mean that the corresponding incidence matrix
is symmetric though. For instance, the Fano plane has b = v = 7, however, the corresponding
incidence matrix is not symmetric. Instead, the terminology is due to the symmetry between
the blocks and points in the design relying on the following proposition. Note that the proof of
this proposition follows the same notation as the proof of Fisher’s inequality.

Proposition 3.1:

Let (X,A) be a symmetric (v,k,λ)-BIBD and denote A = {B1, . . . ,Bv}. Furthermore let
1 ≤ i, j ≤ v and i , j. Then:

| Bi ∩Bj |= λ

Proof
Fix an h such that 1 ≤ h ≤ b. Apply equations (2.4) and (2.5) to obtain:∑

{i |xi∈Bh}

∑
{j |xi∈Bj }

sj
(2.5)
=

∑
{i|xi∈Bh}

(
(r −λ)ei +

[
λ . . . λ

])
= (r −λ)sh + k

[
λ . . . λ

]

= (r −λ)sh + kλ
[
1 . . . 1

] (2.4)
= (r −λ)sh +

b∑
j=1

λk
r
sj

However, it is possible to compute this sum in another way as well. By interchanging the order
of summation, it is readily seen, that this is the summation of sj for those i where xi ∈ Bh for all
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j with xi ∈ Bj . This corresponds to the summation of all sj for those i where xi ∈ Bh ∩ Bj with
j , h. That is:

∑
{i |xi∈Bh}

∑
{j |xi∈Bj }

sj =
∑

{j |xi∈Bj }

∑
{i |xi∈Bh}

sj =
b∑
j=1

∑
{i |xi∈Bj∩Bh}

sj =
b∑
j=1

| Bh ∩Bj | sj

Thus, combining these two ways of calculating the double sum results in:

(r −λ)sh +
b∑
j=1

λk
r
sj =

b∑
j=1

| Bh ∩Bj | sj (3.1)

Since the BIBD is symmetric by assumption, b = v, and by proposition 2.4 this implies that r = k
as well. Thus:

(r −λ)sh +
v∑
j=1

λsj =
v∑
j=1

| Bh ∩Bj | sj (3.2)

Recall from the proof of theorem 2.8 that;

I :=
{
sj | 1 ≤ j ≤ b

}
and S :=


b∑
j=1

cjsj | c1, . . . , cb ∈R


and that it was shown that Rv = S, that is, the b vectors of I spans the vector space R

v . Since
b = v by assumption the b vectors of the set I must be the minimal number of vectors to span
R
v . This means that I is a basis for Rv as well and thus the coefficients of any sj on the left and

right side of equation (3.2) must be equal. Therefore, for any h , j:

| Bh ∩Bj |= λ

Since h was arbitrarily fixed such that 1 ≤ h ≤ b and because 1 ≤ j ≤ b it follows that this holds
for any two different blocks in A. �

It may be a bit difficult to realize why the equation∑
{i|xi∈Bh}

(
(r −λ)ei +

[
λ . . . λ

])
= (r −λ)sh + k

[
λ . . . λ

]
is satisfied so for clarity consider the following example showcasing this.

Example 3.1
Consider the (4,4,3,3,2)-BIBD from example 2.1, where b = v = 4 so it is symmetric. As seen
in example 2.3 the incidence matrix of this design is a 4× 4 matrix given by:

M =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 =MT
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Fix h = 1 which results in B1 = {x1,x2,x3}. Then:

∑
{i|xi∈Bh}

(
(r −λ)ei +

[
λ . . . λ

])
=

3∑
i=1

(
(r −λ)ei +

[
λ . . . λ

])
=

[
(r −λ+λ) λ λ λ

]
+
[
λ (r −λ+λ) λ λ

]
+
[
λ λ (r −λ+λ) λ

]
=

[
r + 2λ r + 2λ r + 2λ 3λ

]
= (r −λ)

[
1 1 1 0

]
+ 3

[
λ λ λ λ

]
= (r −λ)sh + 3

[
λ λ λ λ

]
Similar can be made for h = 2,3,4.

With this proposition it is now possible to conclude the statement on why these BIBD are called
symmetric. Using proposition 2.4 with v = b it follows that r = k and thus:

• every block contains k points, and

• every point occurs in k blocks

Finally by proposition 3.1 it follows that:

• every pair of points occur in λ blocks, and

• every pair of blocks intersect in λ points

It is because of the symmetry between blocks and points in these statements that these types of
designs are called symmetric.

3.1.1 Residual & Derived BIBDs

Proposition 3.1 provides two methods to construct new BIBDs from existing ones. This is the
subject of this subsection based on [1, p. 25-26]. The two methods are known as residual and
derived designs and are defined as follows.

Definition 3.2: Derived & Residual BIBD

Let (X,A) be a symmetric (v,k,λ)-BIBD and let B0 ∈ A. Then the derived BIBD is given
by

Der(X,A,B0) := (B0, {B∩B0 | B ∈ A,B , B0})

and the residual BIBD is given by:

Res(X,A,B0) := (X\B0, {B\B0 | B ∈ A,B , B0})

In other words, a derived BIBD is constructed by deleting all those points that are not in a given
block B0 and then deleting the block B0, while a residual design is constructed by deleting all
points in B0 and as a result the block itself as well. The following propositions show that the
derived and the residual designs live up to their names and are in fact BIBDs under certain
conditions.
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Proposition 3.3:

Suppose that (X,A) is a symmetric (v,k,λ)-BIBD and let B0 ∈ A. If λ ≥ 2 then
Der(X,A,B0) is a (k,v − 1, k − 1,λ,λ− 1)-BIBD.

Proof
Since every block of the original design consisted of k points, and the derived design is con-
structed by removing all points except those in a given block, the number of points in the
derived design is k. Furthermore since (X,A) is symmetric, v = b, and one block is deleted to
obtain the derived design. Therefore, the number of blocks in the derived design is v − 1.

By proposition 3.1 any two blocks of the original design have λ points in common. Thus, after
removing all those points not in B0, the number of points in the remaining blocks is λ. More-
over, every distinct pair of points belong to λ blocks by proposition 3.1 and by removing one of
these blocks, B0, any pair of distinct points now belong to λ− 1 blocks.

Finally, the only parameter remaining is the replication number. If the derived design is a BIBD
then proposition 2.3 can be applied with the parameters of the derived design:

r =
(λ− 1)(k − 1)

λ− 1
= k − 1

Thus, all that remains to be shown is that the derived design is in fact a BIBD. For any (v,b, r,k,λ)-
BIBD 2 ≤ k < v by definition. For the derived design this becomes 2 ≤ λ < k by the arguments
above. Since the original BIBD was symmetric, r = k, and using proposition 2.3

r =
λ(v − 1)
k − 1

⇔ k(k − 1) = λ(v − 1) (3.3)

Naturally, the number of points in a block, k, cannot exceed the total number of points in X, v,
that is v > k. Therefore for equation (3.3) to hold, the condition λ < k must be satisfied as well.
Thus if the derived design has 2 ≤ λ then it is a (k,v − 1, k − 1,λ,λ− 1)-BIBD. �

Proposition 3.4:

Suppose that (X,A) is a symmetric (v,k,λ)-BIBD and let B0 ∈ A. If k ≥ λ + 2 then
Res(X,A,B0) is a (v − k,v − 1, k,k −λ,λ)-BIBD.

Proof
The design (X,A) consists of v points and since every block of the original design consists of
k points and all points in one of these blocks are deleted, the remaining points in the residual
design is v − k. Because (X,A) is symmetric, v = b, and since one block, B0 is deleted when all
of the points in the block are removed the number of blocks remaining are v − 1.

By proposition 3.1 any two blocks of the original design have λ points in common so by re-
moving those points from the total of k points in any of the original blocks, the residual design
contains k −λ points in each block.

Finally, since all points in B0 are removed, these points are removed from all other blocks as
well. Therefore, any point still appears in the same number of blocks as the original design and
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any pair of points appear together in the same number of blocks as the original design as well.
Thus the residual design has parameters (v − k,v − 1, k,k −λ,λ).

All that remains to be shown is that the design with these parameters is a BIBD. By definition
any (v,b, r,k,λ)-BIBD satisfies that 2 ≤ k < v, and for the parameters of the residual design this
results in 2 ≤ k − λ < v − k. To show that this hold, suppose that λ + 2 ≤ k. Furthermore let
v − k ≤ k −λ, which is equivalent to v ≤ 2k −λ. The symmetry of the BIBD and proposition 2.3
gives the condition that k(k − 1) = λ(v − 1). Since v ≤ 2k −λ by assumption this results in:

k(k − 1) = λ(v − 1) ≤ λ(2k −λ− 1)⇔ k2 − k ≤ 2kλ−λ2 −λ⇔ (k −λ)(k −λ− 1) ≤ 0

This condition is satisfied only when k = λ or k = λ+ 1 which contradicts the assumption that
k ≥ λ+2. Thus if k ≥ λ+2 in the residual design then k−λ < v−k and hence the residual design
is a BIBD. �

Example 3.2
Consider a symmetric (11,5,2)-BIBD with X = {0,1, . . . ,10} and

A =
{
{0,4,7,9,10}, {0,1,5,8,10}, {0,1,2,6,9}, {1,2,3,7,10}, {1,3,4,5,9}, {1,4,6,7,8},

{2,4,5,6,10}, {2,5,7,8,9}, {0,2,3,4,8}, {3,6,8,9,10}, {0,3,5,6,7}
}

The derived design obtained by removing all the points not in the first blocks and deleting
the first block becomes a (5,10,4,2,1)-BIBD with X = {0,4,7,9,10} and

A =
{
{0,10}, {0,9}, {7,10}, {4,9}, {4,7}, {4,10}, {7,9}, {0,4}, {9,10}, {0,7}

}
The residual design obtained by removing all points from the first block and then deleting
the first block becomes a (6,10,5,3,2)-BIBD with X = {1,2,3,5,6,8} and

A =
{
{1,5,8}, {1,2,6}, {1,2,3}, {1,3,5}, {1,6,8}, {2,5,6}, {2,5,8}, {2,3,8}, {3,6,8}, {3,5,6}

}

3.2 Affine & Projective Planes

In this section, based on [1, pp. 27-30] unless otherwise specified, the finite analogue to the
Euclidean geometry described in the beginning of the chapter will finally be introduced. The
first of these is called a projective plane and is defined as follows.

Definition 3.5: Projective Plane

An (n2 +n+ 1,n+ 1,1)-BIBD with n ≥ 2 is called a projective plane of order n.

Remark 2. A (3,2,1)-BIBD does exist, however, for technical reasons this is not seen as a projec-
tive plane of order 1. /
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Projective planes are symmetric which can be realized using proposition 2.3 to see that r = k

r =
λ(v − 1)
k − 1

=
1(n2 +n+ 1− 1)

n+ 1− 1
=
n2 +n
n

= n+ 1 = k

and from this it follows that b = v using proposition 2.4. Returning to the design presented in
example 2.2, the Fano plane, this is an example of a projective plane of order 2, and it is read-
ily seen that the properties mentioned above holds. A geometric interpretation of a projective
plane, inspired by [5, pp.59-60], can be described through the following definition:

Definition 3.6: Projective Plane (geometrically)

A projective plane consists of a set of points, a set of lines and an incidence relation that
determines which points are on which lines. This incidence relation satisfies that:

• Every two lines intersect in exactly one point

• Every two points have a unique line incident with both of them

• There are at least four points of which no three are on the same line

Notice that the third point excludes the existence of the projective plane of order 1. Further-
more, notice that since there are parallel lines in the Euclidean geometry, the second property
is not satisfied and hence the Euclidean geometry is not a projective plane.

Before the proof of the important existence theorem, proposition 3.9, a few lemmas will be nec-
essary for the proof. Lemma 3.7 is inspired by [6, p.125], while lemma 3.8 is an exercise from
the same book.

Lemma 3.7:

The number of elements in the vector space Fq
k is exactly qk .

Proof
Choose a basis, w1, . . . ,wk , of Fqk , which is possible since all finite dimensional vector spaces
have a basis [7, p. 41]. Then every v ∈ span(w1, . . . ,wk) can be expressed uniquely as

v = a1w1 + . . .+ akwk for ai ∈ Fq (3.4)

Since Fq has q elements, there are q choices for each ai . Furthermore, due to the uniqueness of
equation (3.4) it follows that different choices of ai results in different elements Fqk . Therefore,
it follows that Fqk contains exactly qk elements. �

Lemma 3.8:

The number of different r−dimensional subspaces of the vector space Fq
n is given by:

(qn − 1)(qn − q)(qn − q2) . . . (qn − qr−1)
(qr − 1)(qr − q)(qr − q2) . . . (qr − qr−1)

(3.5)
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Proof
Firstly, Fqn has qn elements by lemma 3.7. Next, all possible ordered bases for an r−dimensional
subspace must be counted. The first basis vector, b1, can be any non-zero vector and therefore
there are qn − 1 such choices. The second basis vector can be any vector that is not in the vector
space generated by b1, so b2 ∈ Fqn\ < b1 >, and there are qn − q such choices. A continuation
of this process, then gives that the i’th basis vector bi ∈ Fqn\ < b1, . . . ,bi−1 > which results in
qn − qi−1 choices. Thus it follows that the number of bases for the r−dimensional subspace is
given by:

(qn − 1)(qn − q)(qn − q2) . . . (qn − qr−1)

However, some of these bases span the same subspace. Therefore the number of different or-
dered bases of an r−dimensional subspace is counted. This is the same idea as above, and hence
the first basis vector has qr − 1 choices, the next one has qr − q choices, and so on. That is, the
number of bases that are basis for a given subspace is given by:

(qr − 1)(qr − q)(qr − q2) . . . (qr − qr−1)

Therefore the total number of different r−dimensional subspaces is given by equation (3.5). �

Proposition 3.9:

For every prime power q ≥ 2, there exists a symmetric (q2 + q+ 1,q+ 1,1)-BIBD.

Proof
Assume that q is a prime power. Furthermore let V1 consist of all the one-dimensional subspaces
of Fq3 and let V2 consist of all the two-dimensional subspaces of Fq3. For each B ∈ V2 define

AB := {C ∈ V1 | C ⊂ B} (3.6)

and
A := {AB | B ∈ V2}

The claim is now, that the design (V1,A) is a projective plane of order q. That is, the points of
the design are the one-dimensional subspaces of Fq

3 and the blocks are the two-dimensional
subspaces of Fq3. Finally, by equation (3.6) the design makes a point incident to a block only
if the one-dimensional subspace is contained in the two-dimensional subspace. Therefore, it
must be shown that the number of one-dimensional subspaces is given by |V1| = q2 + q + 1, and
that the block size is given by |AB| = q + 1. Finally it needs to be shown that any pair of distinct
one-dimensional subspaces belong to only one block.

Firstly, by lemma 3.8 the total amount of one-dimensional subspaces is given by:

|V1| =
q3 − 1
q − 1

=
(q − 1)(q2 + q+ 1)

q − 1
= q2 + q+ 1

Next it must be shown that the size of any block, AB, is equal to q + 1. By lemma 3.7, each
two-dimensional subspace B contains q2 vectors including the zero vector. Each of these q2 − 1
non-zero vectors together with the zero vector defines a one-dimensional subspace of B. Each
of these subspaces are counted once for each of the q − 1 non-zero vectors inside it. Therefore,
the number of one-dimensional subspaces contained in each block is given by:

|AB| =
q2 − 1
q − 1

=
(q+ 1)(q − 1)

q − 1
= q+ 1
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Finally, it needs to be shown that any pair of distinct one-dimensional subspaces belong to
only one block. Let C1 and C2 be two distinct one-dimensional subspaces of Fq3. Due to the
uniqueness of equation (3.4) there exist a unique two-dimensional subspace, B, containing both
C1 and C2, which results in the unique block AB. Because this two-dimensional subspace is
unique, C1 and C2 appear together only in this block AB. �

Remark 3. These projective planes of order q are usually denoted PG2(q) and are considered to
be two-dimensional projective geometries. Proposition 3.9 can be generalized to d-dimensional
projective geometry PGd(q) where the points and blocks corresponds to lines and hyperplanes,
however, this will not be described further in this thesis. /

Example 3.3 (The Fano Plane Revisited)
Consider the vector space F2

3. By proposition 3.9 this results in a symmetric (7,3,1)-BIBD.
Using the construction from the proof of proposition 3.9 results in the following one- and
two dimensional subspaces of F2

3, where the vectors (x1,x2,x3) are written x1x2x3 for the
sake of simplicity:

C1 = {000,101},C2 = {000,010},C3 = {000,111},C4 = {000,100},
C5 = {000,001},C6 = {000,011},C7 = {000,110}

B1 = {000,101,010,111},B2 = {000,101,100,001},B3 = {000,101,110,011},
B4 = {000,010,001,011},B5 = {000,111,100,011},B6 = {000,111,001,110},
B7 = {000,010,100,110}

But the definition of the blocks given in equation (3.6) this results in the following blocks:

AB1
= {C1,C2,C3},AB2

= {C1,C4,C5},AB3
= {C1,C6,C7},AB4

= {C2,C5,C6},
AB5

= {C3,C4,C6},AB6
= {C3,C5,C7},AB7

= {C2,C4,C7}

By putting C1 = a, C2 = b, . . . , C7 = g this is exactly the Fano plane as presented in example
2.2.

Definition 3.10: Affine Plane

Let n ≥ 2. A (n2,n2 +n,n+ 1,n,1)-BIBD is called an affine plane of order n.

By proposition 3.4 the residual design of a projective plane of order n is an affine plane of order
n. Therefore the following proposition is an immediate consequence of proposition 3.9.

Proposition 3.11:

For every prime power q ≥ 2 there exist a (q2,q,1)-BIBD.

Notice that since λ = 1 in a projective plane, no derived design of any projective plane can exist.
A formal proof of proposition 3.11 using a specific construction similar to that of the projective
planes can be found in [1, pp. 102-103]. However, this is beyond the scope of this thesis, and
instead only construct affine planes using the residual design of a projective plane.

Page 17 of 42



Master’s Thesis Christian Serup Ravn Thorsen

3.3 The Bruck-Ryser-Chowla Theorem

In this section further results on the existence of certain symmetric designs are presented. The
two main results, theorems 3.12 and 3.15, known together as the Bruch-Ryser-Chowla (BRC)
theorem are proven and will be related to projective planes as well. The BRC theorem was
proven in 1950 and since then no general necessary conditions for the existence of symmetric
BIBDs have been proven. Apart from those ruled out by the BRC theorem, the only result is
that a projective plane of order 10 does not exist, which was proven in 1989 using a computer.
This emphasizes the importance of the results presented in this section, which is based on [1,
pp. 30-38] unless otherwise specified.

Theorem 3.12: Bruck-Ryser-Chowla Theorem for v even

Suppose there exists a symmetric (v,k,λ)-BIBD, where v is even. Then k−λ is the square
of an integer.

Proof
Let v be even and let M denote the incidence matrix of a symmetric (v,k,λ)-BIBD. Then due to
the symmetry, r = k, and then it follows from proposition 2.6 that

MMT = λJv + (k −λ)Iv

and once more due to the symmetry of the design M and MT are v ×v matrices. For any square
matrix det

(
MMT

)
= det(M)det

(
MT

)
[7, p. 317]. Since det(M) = det

(
MT

)
it follows that:

det(M)2 = det
(
MMT

)
= det(λJv + (k −λ)Iv)

Because adding or subtracting rows and columns from each other does not change the value of
the determinant, these row operations can be performed to obtain an simpler way to calculate
the determinant. These operations are performed on the matrix λJv + (k −λ)Iv . Firstly subtract
the first row from every other row, and secondly add columns 2,3, . . . , v to the first column. This
results in the following:

k λ λ . . . λ
λ k λ . . . λ
λ λ k . . . λ
...
...
...
. . .

...
λ λ λ . . . k


∼



k λ λ . . . λ
λ− k k −λ 0 . . . 0
λ− k 0 k −λ . . . 0
...

...
...

. . .
...

λ− k 0 0 . . . k −λ


∼



k + (v − 1)λ λ λ . . . λ
0 k −λ 0 . . . 0
0 0 k −λ . . . 0
...

...
...

. . .
...

0 0 0 . . . k −λ


Since this is an upper triangular matrix the determinant is the product of the diagonal entries,
that is

det(M)2 = (k + (v − 1)λ)(k −λ)v−1 = k2(k −λ)v−1

where the final equality follows from proposition 2.3 and the symmetry of the design. Thus, by
taking the square root:

det(M) = k(k −λ)
v−1

2 (3.7)

The matrix M has integer entries and therefore the determinant is an integer, and furthermore
k is an integer as well. Therefore (k−λ)

v−1
2 must be a rational number for equation (3.7) to hold,
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but since v−1 is odd by assumption, this is only possible if (k−λ) is the square of an integer. �

Before stating the BRC-theorem for odd v, the following two lemmas are required for the proof.

Lemma 3.13:

For any integer n ≥ 0, there exist integers a0, a1, a2, a3 such that n = a0
2 + a1

2 + a2
2 + a3

2.

Lemma 3.14:

Suppose that

C =


a0 a1 a2 a3
−a1 a0 −a3 a2
−a2 a3 a0 −a1
−a3 −a2 a1 a0


and let n = a0

2 + a1
2 + a2

2 + a3
2. Then C−1 = 1

nC
T .

Lemma 3.13 is a well-known result from number theory, known as Lagrange’s four-square the-
orem, proven by Langrange in 1770. However, the proof of this lemma is beyond the scope
of this thesis and hence it is left out, but can be found in [8, pp. 280-282]. Lemma 3.14, on
the other hand, can be easily verified by checking that C 1

nC
T = I . With these results, the BRC-

theorem for odd v is ready to be proven.

Theorem 3.15: Bruck-Ryser-Chowla Theorem for v odd

Suppose there exists a symmetric (v,k,λ)-BIBD with v odd. Then there exist integers x,
y, and z, not all zero, such that:

x2 = (k −λ)y2 + (−1)(v−1)/2λz2 (3.8)

Proof
Suppose that v ≡ 1(mod 4) and let v = 4w + 1. Furthermore let M be the incidence matrix of a
symmetric (v,k,λ)-BIBD and let x1, . . . ,xv be unknown variables to be determined. For 1 ≤ i ≤ v
define:

Li :=
v∑
j=1

mjixj

Since all entries ofM are integers, each Li is a linear function of the xj with integral coefficients.
Next, it is beneficial to show that:

v∑
i=1

Li
2 = λ

 v∑
j=1

xj


2

+ (k −λ)
v∑
j=1

xj
2 (3.9)

To show this, firstly realize that if Li is squared then it is possible to introduce a second index h
such that:

Li
2 =

 v∑
j=1

mjixj


 v∑
h=1

mhixh

 =
v∑
j=1

v∑
h=1

mjimhixjxh
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Next by summing all these Li2, the following is obtained:

v∑
i=1

Li
2 =

v∑
i=1

v∑
j=1

v∑
h=1

mjimhixjxh =
v∑
j=1

v∑
h=1

 v∑
i=1

mjimhi

xjxh
Since the design is symmetric it follows from proposition 2.4 that r = k and using equation (2.2)
from the proof of proposition 2.6 with this fact it follows that:

v∑
h=1

mjimhi =

λ if j , h
k if j = h

Using this the following is obtained:

v∑
i=1

Li
2 =

∑
{j,h}

λxjxh +
v∑
j=1

kxj
2

=
∑
{j,h}

∑
{j=h}

λxjxh +
v∑
j=1

kxj
2 −

∑
{j=h}

λxjxh

=
v∑
j=1

v∑
h=1

λxjxh +
v∑
j=1

kxj
2 −

v∑
j=1

λxj
2

=
v∑
j=1

v∑
h=1

λxjxh +
v∑
j=1

(k −λ)xj
2

= λ
v∑
j=1

v∑
h=1

xjxh + (k −λ)
v∑
j=1

xj
2

= λ

 v∑
j=1

xj


2

+ (k −λ)
v∑
j=1

xj
2

Equation (3.9) is an identity in the variables x1, . . . ,xv in which all the coefficients are inte-
gers, that is, the equation holds no matter what values of x1, . . . ,xv are chosen. Therefore the
variables can be transformed into new variables y1, . . . , yv where each yi is a given integral
linear combination of the xj . By lemma 3.13 there exist integers a0, a1, a2 and a3 such that
a0

2 + a1
2 + a2

2 + a3
2 = k −λ. Let C be the matrix of lemma 3.14 and for 1 ≤ h ≤ w let[

y4h−3 y4h−2 y4h−1 y4h

]
=

[
x4h−3 x4h−2 x4h−1 x4h

]
C (3.10)

Finally let yv = xv and let

y0 =
v∑
i=1

xi
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Consider the following equations using equation (3.10) and lemma 3.14:

y4h−3
2 + y4h−2

2 + y4h−1
2 + y4h

2 =
[
y4h−3 y4h−2 y4h−1 y4h

] [
y4h−3 y4h−2 y4h−1 y4h

]T
=

[
x4h−3 x4h−2 x4h−1 x4h

]
C

([
x4h−3 x4h−2 x4h−1 x4h

]
C
)T

=
[
x4h−3 x4h−2 x4h−1 x4h

]
C

[
x4h−3 x4h−2 x4h−1 x4h

]T
CT

=
[
x4h−3 x4h−2 x4h−1 x4h

]
CCT

[
x4h−3 x4h−2 x4h−1 x4h

]T
=

[
x4h−3 x4h−2 x4h−1 x4h

]
(k −λ)I4

[
x4h−3 x4h−2 x4h−1 x4h

]T
= (k −λ)

[
x4h−3 x4h−2 x4h−1 x4h

] [
x4h−3 x4h−2 x4h−1 x4h

]T
= (k −λ)

(
x4h−3

2 + x4h−2
2 + x4h−1

2 + x4h
2
)

Since equation 3.10 holds for 1 ≤ h ≤ w, these calculations do as well, and since v = 4w+1 it has
been shown that

v−1∑
j=1

yj
2 = (k −λ)

v−1∑
j=1

xj
2 (3.11)

Therefore, it follows that:

v∑
i=1

Li
2 = λ

 v∑
j=1

xj


2

+ (k −λ)
v∑
j=1

xj
2

= λ

 v∑
j=1

xj


2

+ (k −λ)
v−1∑
j=1

xj
2 + (k −λ)xv

2

= λy0
2 +

v−1∑
j=1

yj
2 + (k −λ)yv

2

(3.12)

The Li were originally defined as integral linear combinations of the xj , however, by using
lemma 3.14 this can be rewritten such that each xj is expressed as a rational linear combination
of y1, . . . , yv as desired. This is due to the fact that using lemma 3.14 on equation (3.10) results
in the following: [

y4h−3 y4h−2 y4h−1 y4h

]
C−1 =

[
x4h−3 x4h−2 x4h−1 x4h

]
CC−1[

y4h−3 y4h−2 y4h−1 y4h

] 1
k −λ

C =
[
x4h−3 x4h−2 x4h−1 x4h

]
This results in the following expressions:

x4h−3 =
1

k −λ
(a0y4h−3 + a1y4h−2 + a2y4h−1 + a3y4h)

x4h−2 =
1

k −λ
(−a1y4h−3 + a0y4h−2 − a3y4h−1 + a2y4h)

x4h−1 =
1

k −λ
(−a2y4h−3 + a3y4h−2 + a0y4h−1 − a1y4h)

x4h =
1

k −λ
(−a3y4h−3 − a2y4h−2 + a1y4h−1 + a0y4h)
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Furthermore, yv was defined to be xv and therefore since a0, a1, a2, a3 are all integers each xj
has been represented as a rational linear combination of y1, . . . , yv . It follows from this that y0
can be expressed as such as well since y0 was originally defined as the sum of all xi .

Thus to sum up, the Li were given via equation (3.9) which are polynomials with variables
x1, . . . ,xv . These variables are then substituted with new variables while making sure that these
new expressions remain as polynomials. This substitution results in equation (3.12), giving a
new way to express these polynomials in terms of yi . Furthermore with the use of lemma 3.14,
as seen above, each xj can be replaced with a rational linear combination of y1, . . . , yv . Thus
the xj in the definition of Li can be replaced with this rational linear combination of y1, . . . , yv ,
resulting in an equation for polynomials of the variables y1, . . . , yv given by equation (3.12).

Next, it will be shown that it is possible to reconstruct equation (3.12) by expressing any of the
variables as a rational linear combination of the remaining variables. Let ci ∈ Q and suppose
that:

Li =
v∑
i=1

ciyi

If c1 , 1 then let L1 = y1, but if c1 = 1 then let L1 = −y1. For both these cases y1 can be expressed
as a rational linear combination of y2, . . . , yv in the following way.

• c1 , 1⇒ y1 = L1: y1−c1y1 = c2y2 + . . .+cvyv ⇔ (1−c1)y1 = c2y2 + . . .+cvyv and finally, divide
by (1− c1) on both sides

• c1 = 1⇒ y1 = −L1: −2y1 = c2y2 + . . .+ cvyv and finally, divide by -2 on both sides

Furthermore it follows that L1
2 = y1

2 and therefore by canceling out L1
2 and y1

2 in equation
(3.12) it results in the following equation:

v∑
i=2

Li
2 = λy0

2 +
v−1∑
j=2

yj
2 + (k −λ)yv

2 (3.13)

This process can be continued in the same way, eliminating the variables y2, . . . , yv−1 one at a
time while ensuring that each yj is still a rational linear combination of yj+1, . . . , yv such that
Lj

2 = yj2. This results in the following equation

Lv
2 = λy0

2 + (k −λ)yv
2 (3.14)

where Lv and y0 are rational multiples of the variable yv . Now suppose that Lv = syv and
y0 = t · yv , where s, t ∈Q, and let yv = 1. Then equation (3.14) results in:

(syv)2 = λt · yv2 + (k −λ)yv
2⇔ s2 = λt2 + k −λ (3.15)

Next let s =
s1
s2

and t =
t1
t2

with s1, s2, t1, t2 ∈Z and s2, t2 , 0. Then equation (3.15) becomes:

(
s1
s2

)2

= λ
((
t1
t2

)2)
+ k −λ⇔ (s1t2)2 = λ(s2t1)2 + (k −λ)(s2t2)2

Finally, let x = s1t2, y = s2t2 and z = s2t1. Then an integral solution to equation (3.8) in which at
least one of x,y,z is nonzero has been constructed since s2, t2 , 0. Furthermore note that since
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v ≡ 1 (mod 4) it follows that (−1)(v−1)/2 = 1.

The theorem remains to be shown for v ≡ 3 (mod 4), to which the process of the proof is similar
to the previous case, but with a few modifications. Let v = 4w − 1 and introduce a new variable
xv+1. Furthermore add (k−λ)xv+1

2 to both sides of equation (3.9) which results in the following
equation:

v∑
i=1

Li
2 + (k −λ)xv+1

2 = λ

 v∑
j=1

xj


2

+ (k −λ)
v+1∑
j=1

xj
2 (3.16)

For 1 ≤ h ≤ w, let [
y4h−3 y4h−2 y4h−1 y4h

]
=

[
x4h−3 x4h−2 x4h−1 x4h

]
C

and finally let y0 =
∑v
i=1 xi . Then using the same calculations as for v ≡ 1 (mod 4) and due to

the fact that v = 4w − 1 it follows that
v+1∑
j=1

yj
2 = (k −λ)

v+1∑
j=1

xj
2

and finally, it follows that

v∑
i=1

Li
2 + (k −λ)xv+1

2 = λy0
2 +

v+1∑
j=1

yj
2 (3.17)

Next, proceed as in the case of v ≡ 1 (mod 4), letting L1 = ±y1, . . . ,Lv = ±yv which results in the
following:

(k −λ)xv+1
2 = λy0

2 + yv+1
2 (3.18)

Similar to before, assume that yv+1 = sxv+1 and y0 = t · xv+1 and let xv+1 = 1. Then equation
(3.18) can be rewritten as follows:

(k −λ) = λt2 + s2⇔ s2 = k −λ−λt2 (3.19)

Next let s =
s1
s2

and t =
t1
t2

with s1, s2, t1, t2 ∈Z and s2, t2 , 0. Substitute this in equation (3.19) to

obtain:
(s1t2)2 = (k −λ)(s2t2)2 −λ(s2t1)2

Finally, let x = s1t2, y = s2t2 and z = s2t1. Then an integral solution to equation (3.8) in which at
least one of x,y,z is nonzero has been constructed since s2, t2 , 0. Furthermore note that since
v ≡ 3 (mod 4) it follows that (−1)(v−1)/2 = −1. �

Theorem 3.15 is less straightforward to apply than theorem 3.12 since it involves the existence
of integers x,y and z such that the equation (3.8) is satisfied. Therefore, consider the following
example.

Example 3.4
The purpose of this example is to show that a symmetric (43,7,1)-BIBD does not exist. The-
orem 3.15 states that if this BIBD exists, then there exist integers x,y and z not all zero such
that:

x2 = 6y2 + (−1)21z2⇔ x2 + z2 = 6y2 (3.20)
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Assume that (x,y,z) are all integers and is a solution to equation (3.20). Reducing this mod-
ulo 3 results in

x2 + z2 ≡ 0 (mod 3) (3.21)

Since x2 ≡ 0 or 1 (mod 3) for any integer x and similarly for z2 the only way for equation
(3.21) to be satisfied is if both x2 ≡ 0 (mod 3) and z2 ≡ 0 (mod 3). Using this rewrite equation
(3.20) with x = 3x1 and z = 3z1 with x1, z1 ∈Z:

(3x1)2 + (3z1)2 = 6y2⇔ 3x1
2 + 3z1

2 = 2y2

The left-hand side of this equation is divisible by 3 and hence y ≡ 0 (mod 3). Therefore,
similarly to x and z rewrite y = 3y1 for y1 ∈Z:

3x1
2 + 3z1

2 = 2(3y1)2⇔ x1
2 + z1

2 = 6y1
2

Therefore if (x,y,z) are all integers and a solution to equation (3.20) then ( x3 ,
y
3 ,
z
3 ) is also a

solution to equation (3.20) where ( x3 ,
y
3 ,
z
3 ) are all integers. This process can then be repeated

indefinitely resulting in a sequence of solutions ( 1
3 )
i
(x,y,z). These cannot all be integers

unless (x,y,z) = (0,0,0). Therefore according to theorem 3.15 a (43,7,1)-BIBD does not exist.

As this example shows, using theorem 3.15 directly can be tedious and hence it is useful to do
a bit of work on it, using other results from number theory to create results that are a bit easier
to apply. First consider a projective plane of order n, that is, λ = 1. In this case equation (3.8)
becomes:

x2 = (k −λ)y2 + (−1)(v−1)/2λz2 = ny2 + (−1)(n2+n)/2z2 (3.22)

Suppose that n ≡ 0 (mod 4) or n ≡ 3 (mod 4). Then equation (3.8) results in x2 = ny2 + z2 which
has non-trivial solutions x = z and y = 0. Thus projective planes of order n that satisfies this,
always exist according to theorem 3.15.

Next, suppose that n ≡ 1 (mod 4) or n ≡ 2 (mod 4) for which n2+n
2 is odd, so equation (3.22)

reduces to:
x2 + z2 = ny2 (3.23)

It is now of interest to see when equation 3.23 has integral solutions (x,y,z), which is the case if
and only if

x2 + z2 = n (3.24)

has integral solutions (x,z) since this is equivalent to equation (3.23) with y = 1. The following
result shows when equation (3.24) has an integral solution. The proof of this result is beyond
the scope of this thesis and is therefore omitted here, however, it can be found in [9, pp. 142-
145].

Proposition 3.16:

A positive integer n can be expressed as the sum of two integral squares if and only if
the prime decomposition contain no term pk , where p is a prime, p ≡ 3 (mod 4) and k is
odd.

Using this proposition along with the discussion above, this results in the following corollary
relating theorem 3.15 to projective planes of order n.
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Corollary 3.17:

Suppose that n ≡ 1 (mod 4) or n ≡ 2 (mod 4). If n cannot be expressed as the sum of two
integral squares, then a projective plane of order n does not exist.

Notice once more that this corollary describes the exclusion of certain projective planes, and
not the existence. Therefore even if n ≡ 1 (mod 4) or n ≡ 2 (mod 4) and n can be expressed
as the sum of two integral squares, then it does not mean that the projective plane of order n
exists.

Example 3.5
Let n = 33 = 3 · 11 ≡ 1 (mod 4). Here both 3 and 11 are congruent to 3 modulo 4 and since
both exponents are odd, the projective plane of order 33 does not exist.

Next, let n = 2250 = 2 · 32 · 53 ≡ 2 (mod 4). Here only 3 ≡ 3 (mod 4) and since the exponent
is even, the existence of a projective plane of order 2250 cannot be excluded, and indeed
2250 = 152 + 452.

For a final application, consider n = 10 = 2·5 ≡ 2 (mod 4). Here none of these is congruent to
3 modulo 4 and hence it is conceivable that a projective plane of order 10 exists, and indeed
10 = 12 + 32. However, as described in the introduction of this section this is not the case, as
proven using a computer in 1989.

Similarly, it is possible to derive an easier to apply corollary of theorem 3.15 with arbitrary
λ, however, this is beyond the scope of this thesis and instead refer to [1, pp.37-38] for an
explanation on this along with an example on how to apply it. Furthermore [1] describes how
to derive corollary 3.17 from this general case.

3.4 Resolvability

This section is based on [2, pp- 11-12], unless otherwise specified, and serves as a brief intro-
duction to resolvability, which is the theoretical approach used in one of the ways to schedule
a tournament, described in the next chapter. Furthermore, resolvability relates to the finite ge-
ometry in a special way, and since the finite geometry is the theme of this chapter, this relation
will be proven later in this section as well.

Definition 3.18: Resolvable BIBD [1, p. 101]

Let (X,A) be a (v,k,λ)-BIBD. A parallel class in (X,A) is a subset of disjoint blocks from
A whose union is X. A partition of A into several parallel classes is called a resolution,
and (X,A) is said to be resolvable if A has a resolution.

Example 3.6
Consider the Fano plane from example 2.2, that is:

X = {a,b,c,d,e, f ,g} and A = {abc,ade,af g,bf e,cf d,cge,bdg}
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Next, take the residual design of this by removing all points from the first block and deleting
this block. This results in a (4,6,3,2,1)-BIBD with

X = {d,e, f ,g} and A = {de,f g, f e, f d,ge,dg}

These can be grouped into three groups consisting of two disjoint blocks each in the follow-
ing way:

{de,f g}, {f e,gd} and {f d,ge}

Thus these are three parallel classes and the (4,2,1)-BIBD is resolvable.

One of the first examples of resolvable designs emerged in relation to Kirkman’s schoolgirl
problem presented in 1850. It states:

”Fifteen young ladies in a school walk out three abreast for seven days in succession; it is
required to arrange them daily so that no two shall walk abreast twice.”

Kirkman then asked if a resolvable (15,3,1) design existed. He was able to produce a solution,
see [2, pp. 148-149], and later it has been proven that the corresponding problem for 6n + 3
schoolgirls always has a solution, however, this is not proven here, but instead refer to [2, pp.
155] for this. Instead, a simple approach will be given in the following example.

Example 3.7 (Kirkman’s Schoolgirl Problem)
Label the 15 girls A,B1, . . . ,B7,C1, . . . ,C7 respectively. Firstly, construct day 1 such that all
girls are in blocks of three and such that these blocks are disjoint and contain all girls.
Next, construct the following day such that A is unchanged, while Bi and Ci are permutated
cyclically. This results in the following solution:

• Day 1: AB1C1, B2B4C3, B3B7C5, B5B6C2 and C4C6C7

• Day 2: AB2C2, B3B5C4, B4B1C6, B6B7C3 and C5C7C1

• Day 3: AB3C3, B4B6C5, B5B2C7, B7B1C4 and C6C1C2

• Day 4: AB4C4, B5B7C6, B6B3C1, B1B2C5 and C7C2C3

• Day 5: AB5C5, B6B1C7, B7B4C2, B2B3C6 and C1C3C4

• Day 6: AB6C6, B7B2C1, B1B5C3, B3B4C7 and C2C4C5

• Day 7: AB7C7, B1B3C2, B2B6C4, B4B5C1 and C3C5C6

Resolvable designs have great use in experimental designs in general as well. Another example
of the applications of resolvable designs is in the creation of tournament schedules of for ex-
ample a football league. Suppose that a league consists of 2n teams who play each other once.
These fixtures are arranged over 2n− 1 days so that all teams only play a single game each day.
Then a tournament like this is a resolvable (2n,2,1) design where the i’th parallel class consists
of the pairs of teams playing each other on match day i.

Example 3.8
Consider a league schedule for six teams A, . . . ,F as follows:

• Day 1: A vs B C vs D E vs F
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• Day 2: A vs C B vs E D vs F

• Day 3: A vs D C vs E B vs F

• Day 4: A vs E B vs D C vs F

• Day 5: A vs F B vs C D vs E

This corresponds to a resolvable (6,2,1) design on {A,B,C,D,E,F} with blocks
{AB}, {CD}, . . . , {DE}

This is a subject that will be discussed in further detail in chapter 4, where more detailed
schedules will be presented.

3.4.1 Resolvability & Affine Planes

Interpreting resolvable designs geometrically, the blocks can be thought of as lines and each
group of disjoint blocks as a collection of parallel lines. Recall that in the projective geometry,
every pair of lines intersect, however, the examples above instead reflect the existence of par-
allel lines. It turns out that all affine planes have such parallel classes and therefore they are
sometimes known as Euclidean planes. That is, all affine planes are resolvable. To prove this a
few lemmas will be necessary. First off, a result similar to a Euclidean property will be proven.
This Euclidean property is that, given a point P not on a line l, a unique line through P parallel
to l exists. The following results are based on [1, pp. 104-106].

Lemma 3.19:

Suppose that (X,A) is an affine plane of order n. Let B ∈ A, x ∈ X and x < B. Then there
exists exactly one block A ∈ A such that x ∈ A and B∩A = ∅.

Proof
Since (X,A) is an affine plane of order n, it is by definition 3.10 a (n2,n2 + n,n + 1,n,1)-BIBD.
Thus λ = 1, which implies that for every point y ∈ B, there exist a unique block By such that
{x,y} ⊂ By . Furthermore, B∩By = {y} using the fact that λ = 1 once again.

Next, since the replication number n+1, there are exactly n+1 blocks containing the point x. But
since |B| = n, it means that exactly n of the n+ 1 blocks containing the point x intersect with B.
Therefore, there exist one more block containing x, denoted A, which satisfies that B∩A = ∅ �

Let (X,A) be an affine plane of order n. To prove that this design is always resolvable, a binary
relation ∼ on the set of blocks A is used. It is then proven that this binary relation is also an
equivalence relation and finally that each equivalence class of ∼ is a parallel class in (X,A). The
binary relation ∼ is defined as follows for A,B ∈ A.

A ∼ B if A = B or A∩B = ∅ (3.25)

Lemma 3.20:

Let (X,A) be an affine plane of order n. Then the relation ∼, as defined in equation
(3.25), is an equivalence relation.
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Proof
It needs to be shown that ∼ is reflective, symmetric, and transitive. By definition, the relation is
reflective, since A ∼ A for every A ∈ A. Furthermore, it is symmetric by definition, since A ∼ B
if and only if B ∼ A.

For transitivity suppose that A ∼ B and B ∼ C for A,B,C ∈ A. It must now be shown that A ∼ C.
There are four cases to consider.

1) A = B and B = C. Then A = C and therefore A ∼ C.

2) A = B and B∩C = ∅. Then A∩C = ∅ and hence A ∼ C

3) A∩B = ∅ and B = C. Then A∩C = ∅ and so A ∼ C

4) A∩B = ∅ and B∩C = ∅. If A = C then A ∼ C as seen from 1), so instead let A , C. In this
case it will be proven that A∩C = ∅. If this does not hold, then since λ = 1 there would
exist a unique point x ∈ A∩C. But then A and C are two blocks containing the point x and
disjoint to B, which contradicts lemma 3.19. Thus, in conclusion A∩C = ∅ which means
that A ∼ C

�

Lemma 3.21:

Suppose that (X,A) be an affine plane of order n. Then each equivalence class of ∼ is a
parallel class in (X,A).

Proof
Let π be an equivalence class of ∼ and let B ∈ π. Then:

π := {A ∈ A : A ∼ B}

By the definition of ∼ any two distinct blocks of π are disjoint. Let x ∈ X. If x ∈ B then B is a
unique block in π such that x ∈ B. On the other hand if x < B then by lemma 3.19 there exists
exactly one block A such that x ∈ A and A∩B = ∅, which means that A ∈ π.

Thus if x ∈ B then it is contained in the equivalence class π, and if x < B, then there exists an
x ∈ A such that A ∈ π. Therefore π partitions X and any two distinct blocks of π are disjoint.
Therefore π is a parallel class in (X,A). �

With this lemma, the main result of this subsection is ready to be proven.

Proposition 3.22:

Any affine plane is resolvable.

Proof
By lemma 3.21, each equivalence class of ∼ is a parallel class as well. Furthermore, by lemma
3.19 every block of the BIBD is contained in exactly one equivalence class of ∼. Therefore, the
equivalence classes of ∼ form a resolution of the affine plane and hence the design is resolvable.

�
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Chapter 4

Tournament scheduling

In this chapter some of the theoretical frame presented in the previous chapters will be applied
in order to present ways to construct league schedules that consist of 2n teams. Two such
constructions will be presented in sections 4.3 and 4.4 respectively. However, before this a brief
introduction to the circle method will be presented along with theoretical background as to why
this construction works.

4.1 Difference Methods

As seen in both examples 3.7 and 3.8, these designs had a cyclic structure, starting in one
place and simply using addition with modular arithmetic’s in order to achieve the following
match-ups. However, this has to be constructed with caution since one cannot simply start
with anything for this method to work. For instance, consider a schedule of 6 teams and start
with matches 0 vs 2, 5 vs 1 and 3 vs 4. Then adding 1 (mod 6) results in matches 1 vs 3, 0 vs 2
and 4 vs 5, and thus a repeated match occurs. In this section, based on [2, pp. 39-41 & 43-45],
unless otherwise specified, the construction of such cyclic designs will be presented. First the
concept difference set will be formally defined, inspired by [1, p. 41].

Definition 4.1: Difference set

Suppose that (G,+) is a finite abelian group of order v with identity element 0. Let k and
λ be positive integers such that 2 ≤ k < v. A (v,k,λ)-difference set in (G,+) is a subset
D ⊆ G that satisfies:

1) |D | = k with elements D = {d1, . . . ,dk}

2) Every d ∈ G\{0} can be expressed on the form d = di − dj in exactly λ ways.

Example 4.1
Consider once again the Fano plane, which is a (7,3,1)-BIBD. Therefore to construct this us-
ing a cyclic difference set, a set of 3 elements, D = {d1,d2,d3} of Z/7Z, is necessary. Further-
more each non-zero element d ∈ (Z/7Z) must be able to be expressed in the form d = di − dj
in exactly one way. Since

4-3 (mod 7)=1, 6-4 (mod 7)=2, 6-3 (mod 7)=3,
3-6 (mod 7)=4, 4-6 (mod 7)=5 and 3-4 (mod 7)=6
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the set {3,4,6} is a cyclic (7,3,1)-difference set and gives a simple method of constructing the
Fano plane. Simply start with block {3,4,6} and add 1 to each point in this block and reduce
modulo 7, resulting in {4,5,0}. Do the same for each point in this new block, and doing so
seven times in total, the block returns to the starting block {3,4,6}.

Note that in the example above, the starting block {5,6,1} could have been chosen as a starting
block as well, and the example would have been analogue. However, given a starting block D
these other potential starting blocks are instead known as translates.

Definition 4.2: Translate

If D = {d1, . . . ,dk} is a cyclic (v,k,λ)-difference set, then the set D + g = {d1 + g, . . . ,dk + g}
for g ∈ G, is called a translate of D.

The collection of all v of these translates is called the development of D and is denoted dev(D)
[1, p. 42]. Each translate of a (v,k,λ)-difference set is also a difference set, since

(d1 + g)− (dj + g) = d⇔ di − dj = d

As seen in example 4.1, difference sets gave a simple way to construct the blocks of the Fano
plane given a starting block D. This can be generalized to any symmetric (v,k,λ)-BIBD, as fol-
lows.

Proposition 4.3:

IfD = {d1, . . . ,dk} is a cyclic (v,k,λ)-difference set, then the translatesD,D+1, . . . ,D+(v−1)
are the blocks of a symmetric (v,k,λ)-BIBD, that is, (G,Dev(D)) is a symmetric (v,k,λ)-
BIBD.

Proof
By definition, the translates all contain k points. Next it needs to be shown that if a,b ∈ G then
a and b occur together in exactly λ translates. It can be seen that a = di + (a − di) for all i, and
therefore by definition 4.2, the point a occurs in translates D + (a − di). Analogously, the point
b occurs in the translates D + (b − dj ). Therefore a,b occur together in a translate only when
a− di = b − dj for some i, j ∈ [1, k]. However,

a− di = b − dj ⇔ a− b = di − dj

and by definition 4.1 there are exactly λ pairs i, j for which this holds. Therefore a,b occur
together in exactly λ translates.

Finally, the group G consist of v elements, and there are a total of v translates, so if these
translates are the blocks, then v = b and (G,Dev(D)) is symmetric. �

Remark 4. Since every (v,k,λ)-difference set results in a symmetric (v,k,λ)-BIBD, these param-
eters must satisfy the BRC-theorem. /

Thus, using proposition 4.3 it is known that the designs obtained from difference set in groups
of order v are always symmetric. However, it is also possible to transfer this method to con-
structing non-symmetric designs.
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Definition 4.4: Difference system

Let D1, . . . ,Dt be sets of size k in an additive abelian group G of order v such that the
differences arising from the Di results in each non-zero element of G exactly λ times.
Then D1, . . . ,Dt are said to form a (v,k,λ)-difference system in G.

Example 4.2
The sets {1,3,4} and {1,2,5} form a (9,3,1)-difference system in Z/9Z, since

2-1 (mod 9)=1, 3-1 (mod 9)=2, 4-1 (mod 9)=3, 5-1 (mod 9)=4,
1-2 (mod 9)=5, 1-3 (mod 9)=6, 1-4 (mod 9)=7, 1-5 (mod 9)=8

Equivalent to how proposition 4.3 showed that the difference sets construct a symmetric BIBD,
the following proposition shows that the difference systems generate a BIBD, however, not sym-
metric.

Proposition 4.5:

Let D1, . . . ,Dt form a (v,k,λ)-difference system in the additive abelian group G =
{g0, . . . , gv−1}. Then the sets Di + gj for 1 ≤ i ≤ t and 0 ≤ j ≤ v − 1, are the blocks of a
(v,vt,kt,k,λ)-BIBD

Proof
The points in the design are the elements of G, and this is a group of order v. By definition 4.1,
the sets Di + g are all of order k and since there are t of the Di and v of the gi to choose from,
there are a total of t · v blocks. Furthermore, by proposition 2.4 it follows that:

tv =
vr
k
⇔ r = tk

Thus, all that remain to be shown is balance. Let Di = {di1, . . . ,dik} for 1 ≤ i ≤ t such that
Di + gj = {di1 + gj , . . . ,dik + gj } and let a,b ∈ G. Rewrite a such that a = dih + (a−dih which implies
that a occurs in the translate Di + (a− dih), 1 ≤ h ≤ k, and equivalently b occurs in the translate
Di+(b−dil), 1 ≤ l ≤ k. Therefore the elements a and b occur together in a translateDi+gj exactly
when gj = a− dih = b − dil for h, l ∈ [1, k]. However,

a− dih = b − dil ⇔ a− b = dih − dil

that is, dih − dil ∈ Di , and by definition 4.4 there are exactly λ choices of i,h, l for which this
holds. Therefore it follows that the elements a,b ∈ G occur together in exactly λ translates. �

Note that if t = 1, that is, if the difference system is instead a difference set, the design is
symmetric. Hence this proposition gives a very useful tool to construct designs. Furthermore,
if the difference sets are allowed to be of different orders, while still maintaining the balance
property, this method can construct PBDs as well, however, this will not be expanded further
in this thesis.
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4.2 Round Robin Tournaments

In this section, based on [2, pp. 13 & 47], unless otherwise specified, round robin tournaments
will be described. In a round robin tournament every team play each other once. If the tour-
nament consist of 2n teams, there are a total of n(2n− 1) matches that take place during 2n− 1
rounds, where each team plays one match each round. This describes a resolvable (2n,2,1)-
BIBD which exists for each positive integer n due to the following theorem.

Theorem 4.6:

For each positive integer n, there exists a resolvable (2n,2,1)-BIBD. That is, there exists
a fixture list for a league of 2n teams with games scheduled for 2n− 1 days.

Proof
Label the teams∞,1,2, . . . ,2n− 1. On match-day i let the fixtures be given by

∞ vs i, i − 1 vs i + 1, i − 2 vs i + 2, . . . , i − (n− 1) vs i + (n− 1)

where each of these integers are reduced modulo 2n−1 to be within the interval [1,2n−1]. Then
team h will play against team k on day i when h ≡ i − j (mod 2n − 1) and k ≡ i + j (mod 2n − 1)
for some j ∈ [1,n− 1]. However, since the congruence relation is compatible with both addition
and subtraction [10, p.242], it follows that:

h+ k ≡ i − j + i + j = 2i (mod 2n− 1), and

k − h ≡ i + j − (i − j) = 2j (mod 2n− 1)
(4.1)

Thus, h ≡ i− j and k ≡ i+ j if and only if equation (4.1) is satisfied, but because 2n−1 is odd, the
solutions of i and j in equation (4.1) are unique. Therefore, a design consisting of 2n teams has
been constructed in such a way that two teams meet each other exactly once, that is, a resolvable
(2n,2,1)-BIBD. �

This construction of match-day i results in a simple way to construct the entire fixture list. The
first round is given by the matches:

∞ vs 1, 2 vs 2n− 1, 3 vs 2n− 2, . . . , n vs n+ 1

The following matches are then found simply by adding 1 to each number except ∞ and then
reducing modulo 2n − 1 and continuing this process until a schedule of 2n − 1 matches are
found. This works because the pairs {2,2n−1}, {3,2n−2}, . . . , {n,n+ 1} form a difference system
in Z/(2n−1)Z with differences, organized by the odd and even numbers respectively as follows

• (2n− 1)− 2 = 2n− 3, (2n− 2)− 3 = 2n− 5, . . . , n+ 1−n = 1

• n−(n+1) = −1 ≡ 2n−2 (mod 2n−1),. . . , 3−(2n−2) = 5−2n ≡ 4 (mod 2n−1) and 2−(2n−1) =
3− 2n ≡ 2 (mod 2n− 1)

where it has been used that:

If a ≡ b (mod 2n− 1) and c ≡ d (mod 2n− 1) then a− c ≡ b − d (mod 2n− 1)

Therefore the differences gives every non-zero element of Z/(2n− 1)Z exactly once.
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Example 4.3 (Tournament for n = 5)
Using the construction described in this section to construct a schedule for 10 teams the
following is obtained:

1) ∞ vs 1, 9 vs 2, 8 vs 3, 7 vs 4, 6 vs 5

2) ∞ vs 2, 1 vs 3, 9 vs 4, 8 vs 5, 7 vs 6

3) ∞ vs 3, 2 vs 4, 1 vs 5, 9 vs 6, 8 vs 7

4) ∞ vs 4, 3 vs 5, 2 vs 6, 1 vs 7, 9 vs 8

5) ∞ vs 5, 4 vs 6, 3 vs 7, 2 vs 8, 1 vs 9

6) ∞ vs 6, 5 vs 7, 4 vs 8, 3 vs 9, 2 vs 1

7) ∞ vs 7, 6 vs 8, 5 vs 9, 4 vs 1, 3 vs 2

8) ∞ vs 8, 7 vs 9, 6 vs 1, 5 vs 2, 4 vs 3

9) ∞ vs 9, 8 vs 1, 7 vs 2, 6 vs 3, 5 vs 4

Note that arranging games into rounds using the circle method as described in this section is
used equivalently in graph theory by creating a one-factorization of the complete graph of 2n
vertices. This is the method used by D. de Werra in [11] as well as [12] to study the home-away
pattern of a schedule of 2n teams for instance, which is the theme of the next section. However,
this thesis is restricted to the circle method since it revolves around design theory, so the graph
theoretic approach will not be discussed any further in this thesis.

4.3 Venues

The schedules described in the previous section are useful when they are played on neutral
ground, for example a group stage of a world cup taking place in a single country. In this sec-
tion, based on [2, pp. 161-163], unless otherwise specified, the circle method will be applied.
It will focus on how to use it such that a league is scheduled in a way where each team plays
alternately at home and away as much as possible. The notation is defined such that a match
a vs b means that team a plays at home (H) while team b plays away (A).

With this information, the schedule of example 4.3 can be organized in a table containing a
venue sequence for each team as follows. The table is called a home-away-pattern (HAP), inspired
by [11].
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R1 R2 R3 R4 R5 R6 R7 R8 R9
∞ H H H H H H H H H
1 A H H H H A A A A
2 A A H H H H A A A
3 A A A H H H H A A
4 A A A A H H H H A
5 A A A A A H H H H
6 H A A A A A H H H
7 H H A A A A A H H
8 H H H A A A A A H
9 H H H H A A A A A

Figure 4.1: A HAP for the schedule of example 4.3, where breaks in the
schedule are indicated by the red color, and Ri means match-day i.

A repetition of H or A in consecutive positions is called a break and as indicated by the red
letters of the table above, there are a lot of them by using the circle method, exemplified in
the most obvious manner by team ∞ who gets to play all matches at home. Therefore, the
circle method needs to be altered slightly so that this is considered, while still maintaining the
match-ups given by the circle method. It is constructed such that on match-day 1 the matches
are given by the following, organized depending on whether n is even or odd, respectively:

∞ vs 1, 2n− 1 vs 2, 3 vs 2n− 2, 2n− 3 vs 4, . . . , n+ 1 vs n, if n is even, and

∞ vs 1, 2n− 1 vs 2, 3 vs 2n− 2, 2n− 3 vs 4, . . . , n vs n+ 1, if n is odd
(4.2)

The following match-days are then found by switching ∞ between home and away, while the
remaining matches are found by adding 1 and reducing modulo 2n−1, just as it was the case in
the circle method.

Example 4.4
Apply the altered version of the circle method on a league with 10 teams, then the following
is obtained:

1) ∞ vs 1, 9 vs 2, 3 vs 8, 7 vs 4, 5 vs 6

2) 2 vs∞, 1 vs 3, 4 vs 9, 8 vs 5, 6 vs 7

3) ∞ vs 3, 2 vs 4, 5 vs 1, 9 vs 6, 7 vs 8

4) 4 vs∞, 3 vs 5, 6 vs 2, 1 vs 7, 8 vs 9

5) ∞ vs 5, 4 vs 6, 7 vs 3, 2 vs 8, 9 vs 1

6) 6 vs∞, 5 vs 7, 8 vs 4, 3 vs 9, 1 vs 2

7) ∞ vs 7, 6 vs 8, 9 vs 5, 4 vs 1, 2 vs 3

8) 8 vs∞, 7 vs 9, 1 vs 6, 5 vs 2, 3 vs 4

9) ∞ vs 9, 8 vs 1, 2 vs 7, 6 vs 3, 4 vs 5
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This fixture list then results in the following HAP, where the red color indicates a break.

R1 R2 R3 R4 R5 R6 R7 R8 R9
∞ H A H A H A H A H
1 A H A H A H A H A
2 A H H A H A H A H
3 H A A H A H A H A
4 A H A H H A H A H
5 H A H A A H A H A
6 A H A H A H H A H
7 H A H A H A A H A
8 A H A H A H A H H
9 H A H A H A H A A

Figure 4.2: A HAP for the schedule above, where breaks in the schedule
are indicated by the red color, and Ri means match-day i.

Notice that in this example,∞ and 1 have no breaks, while every other team has one. This is in
fact the best possible scenario and holds in general since there are exactly two teams that can
have a perfectly alternating HAP, and since every team has to meet once, no team can have the
same HAP. Therefore, the minimum number of breaks in a schedule of 2n teams, that meet each
other once, is given by 2n−2. Furthermore, notice that teams∞ and 1 have complementary venue
sequences, that is, one team plays at home when the other is away. The same goes for teams 2
and 3, 4 and 5, 6 and 7, 8 and 9. This is a useful property when there are two teams sharing
the same venue for instance, thereby avoiding any conflicts regarding who gets to use the venue.

Additionally, if a schedule for an odd number of teams is required, simply remove all the games
involving team∞. Then all teams will still meet each other once, however, on match-day i, team
i will not play, but it can be seen from example 4.4 that doing this will result in a perfectly al-
ternating HAP. It is also possible to instead minimize the number of days with breaks, instead
of the number of breaks, as described by D. de Werra in [11]. However, returning to the case of
2n teams, suppose now that each team are to meet twice during a season. The simplest way to
construct this schedule is to make the second half of the tournament the exact same match-ups
but with venues interchanged. However, some slight alterations have to be made such that no
teams have consecutive breaks.

Theorem 4.7:

A league schedule can be constructed for 2n teams, with 4n− 2 rounds and where each
team meets twice, such that:

1) the second half of the schedule is exactly the same as the first half but with venues
interchanged,

2) there are 6n− 6 breaks in total, and

3) no team has consecutive breaks

Page 35 of 42



Master’s Thesis Christian Serup Ravn Thorsen

Proof
Let the first half of the schedule be constructed using the altered circle method and let the sec-
ond half of of the season be exactly the same as the first half but with the venues interchanged.
Assume that team i has xi breaks in the first half. Then if xi is odd, team i will have a break
between halves, since there are an odd number of match-days in each half.

Next, assume that there are a total of s teams for which xi is odd, then there are 2n − s teams
for which xi is even, and thus the total number of breaks is given by 2

∑
xi + s. However, as

previously described, using the altered circle method results in exactly two perfectly alternating
venue sequences, while the remaining 2n− 2 teams will have xi odd, so s = 2n− 2. But the two
perfectly alternating teams will naturally have xi = 0, and therefore

∑
xi = 2n−2, and hence the

total number of breaks using the circle method is given by:

2
∑

xi + s = 2(2n− 2) + (2n− 2) = 6n− 6

Finally, it needs to be shown that no team has any consecutive venue breaks. There are no
consecutive breaks in the first half using the altered circle method, and the only teams who
might have a consecutive break are teams 2n − 2 and 2n − 1 since they have a break on match-
day 2n− 1 according to the altered circle method. Furthermore, according to the altered circle
method from equation (4.2), team ∞ plays at home vs odd teams and away vs even teams.
Moreover, using equations (4.2) once more, it follows that the second fixture is not altered, and
hence the following fixtures for teams 2n − 2 and 2n − 1 are obtained using the altered circle
method when fixtures of the second half are reversed:

• Day 2n− 2: 2n− 2 vs ∞, 2n− 3 vs 2n− 1, . . .

• Day 2n− 1: ∞ vs 2n− 1, 2n− 2 vs 1, . . .

• Day 2n: 1 vs ∞, 2 vs 2n− 1, 2n− 2 vs 3

This gives team 2n − 2 three home games and team 2n − 1 three away games in a row. Thus,
the circle method needs to be slightly altered once more. The issue can be fixed quite simply
by interchanging the venues of the fixtures 2n− 2 vs∞ and∞ vs 2n− 1. As it follows from the
fixtures above, this gives no consecutive venue breaks for any teams. However, it needs to be
shown that making this alteration does not change the minimum of 6n−6 breaks proven above.

As seen from the fixtures above, the break for team 2n−1 is removed and it receives a perfectly
alternating venue sequence. Furthermore, team∞ will now have a break between halves using
this construction instead of team 2n − 1. Meanwhile team 2n − 2 no longer has a break on day
2n − 1, but instead on day 2n − 2 since they have an away game on day 2n − 3 as well. Finally,
the break between halves for team 2n−2 remains unchanged. All of these fixtures for teams∞,
2n−1 and 2n−2 are summarized below, and hence the minimum of 6n−6 breaks remain using
this modification of the altered circle method.

• Day 2n− 3: 2n− 3 vs ∞, 2n− 4 vs 2n− 2, 2n− 1 vs 2n− 5

• Day 2n− 2: ∞ vs 2n− 2, 2n− 3 vs 2n− 1, . . .

• Day 2n− 1: 2n− 1 vs ∞, 2n− 2 vs 1, . . .

• Day 2n: 1 vs ∞, 2 vs 2n− 1, 2n− 2 vs 3

�
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4.4 Carry-over Effects

In the previous section, a tournament consisting of 2n teams was constructed such that there
was a minimum number of breaks in the venue sequence. However, this method has one dis-
advantage which will be presented in this section, based on [2, pp. 164-165], unless otherwise
specified.

Consider example 4.4 from the previous section, where a schedule has been constructed using
the altered circle method. Here, the teams 2,3,4,5,6,7, and 9 all meet team 1 immediately after
team 8. Thus, if team 8 were a weak team, then team 1 could potentially complain that their
opponent could be high with confidence, boosted by playing the weaker team 8. On the other
hand, if team 6 is a strong physical team, then team 1 would be at an advantage since their oppo-
nents could potentially be suffering physically from their previous encounter. These examples
apply to teams 1,3,4,5,6, and 8 as well since they all play team 9 immediately after team 7.
Therefore teams 3,4,5, and 6 all have these advantages/disadvantages from previous matches,
and thus these teams have justifiable complaints if it is a disadvantage, while the remaining
teams have so if it is an advantage. The opponents of each team in order are summarized below,
where the aforementioned consecutive opponents are marked by red.

R1 R2 R3 R4 R5 R6 R7 R8 R9
∞ 1 2 3 4 5 6 7 8 9
1 ∞ 3 5 7 9 2 4 6 8
2 9 ∞ 4 6 8 1 3 5 7
3 8 1 ∞ 5 7 9 2 4 6
4 7 9 2 ∞ 6 8 1 3 5
5 6 8 1 3 ∞ 7 9 2 4
6 5 7 9 2 4 ∞ 8 1 3
7 4 6 8 1 3 5 ∞ 9 2
8 3 5 7 9 2 4 6 ∞ 2
9 2 4 6 8 1 3 5 7 ∞

Hence it is optimal to find a way to balance out these so-called carry-over effects. A construc-
tion of such a schedule is possible for 2n teams if n is a power of 2, but before this can be proven
the following definition is required.

Definition 4.8: Primitive Element [2, p.32]

A non-zero element θ ∈ Fq is called a primitive element if θ,θ2,θ3, . . . ,θq−1 = 1 are ex-
actly all the non-zero elements of Fq.
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Example 4.5
Consider F23 with polynomial f (x) = x3 + x+ 1. Then F23 consists of 7 elements:

x2 + x+ 1, x2 + x, x2 + 1, x2, x+ 1, x, 1

The element x is a primitive element in F23 since:

• x1 = x

• x2 = x2

• x3 = x+ 1

• x4 = x · x3 = x(x+ 1) = x2 + x

• x5 = x2 · x3 = x2(x+ 1) = x3 + x2 = x2 + x+ 1

• x6 = x3 · x3 = (x+ 1)(x+ 1) = x2 + 1

• x7 = x · x6 = x · (x2 + 1) = x3 + x = x+ 1 + x = 1

With this, it is possible to present a balanced construction of a schedule for 2n teams, however,
it only works when n is a power of 2.

Theorem 4.9:

If n is a power of 2, a cyclic league schedule for 2n teams can be constructed in a way
where the following holds:

There are no choices of x, y, z and w such that teams x and y

both play team z immediately after playing team w
(4.3)

Proof
Let 2n = 2r = q and let θ be a primitive element of Fq. For 1 ≤ j ≤ q − 1, define match-day j to
consist of the matches

θi vs (θi +θj ) (4.4)

Suppose that condition (4.3) does not hold. Then for j and J :

x = w+θj−1, x = z+θj , y = w+θJ−1, y = z+θJ (4.5)

Since the calculations are made in F2r , the coefficients are calculated modulo 2, and therefore
-1=1. Hence it follows that:

θi +θj = θk⇔ θi = θk −θj = θk +θj

Using this fact in construction (4.4) with θi = x and θk = z it follows that x+θj = z⇔ x = z+θj ,
and therefore by writing x = z + θj it means that team x plays team z on match-day θj , and
similarly for the remaining elements of equation (4.5). However, if the conditions of equation
(4.5) holds, then;

y − x = w+θJ−1 − (w+θj−1) = z+θJ − (z+θj )⇔ θJ−1 −θj−1 = θJ −θj
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Therefore:

θJ−1 −θj−1 = θJ −θj ⇔ θJ −θJ−1 = θj −θj−1⇔ θJ−1(θ − 1) = θj−1(θ − 1)⇔ θJ−1 = θj−1

However, then it follows from construction (4.5) that x = y, and therefore condition (4.3) is sat-
isfied.

Finally, if θk plays θl on round j, then θk = θl+θj by construction (4.5) and so θk+1 = θl+1+θj+1,
that is, team θk+1 plays θl+1 on round j + 1. Therefore, by replacing θi and 0 by i and ∞, re-
spectively, a cyclic schedule is obtained. �

Example 4.6 (Balanced schedule for n=4)
Take the primitive element of F8 that satisfies θ3 = θ + 1. Then by using example 4.5 the
following elements are given by:

θ4 = θ2 +θ, θ5 = θ2 +θ + 1, θ6 = θ2 + 1, θ7 = 1

The first round of matches are constructed by (4.4) to be on the form θi vs (θi +θ), that is

0 vs θ, θ2 vs θ4, θ3 vs θ7, θ5 vs θ6

This results from using example 4.5 once more to see that θ2 + θ = θ4, θ3 + θ = θ + 1 + θ =
1 = θ7, and θ5 +θ = θ2 +θ + 1 +θ = θ2 + 1 = θ6. Therefore, the following cyclic schedule is
obtained:

1) ∞ vs 1, 2 vs 4, 3 vs 7, 5 vs 6

2) ∞ vs 2, 3 vs 5, 4 vs 1, 6 vs 7

3) ∞ vs 3, 4 vs 6, 5 vs 2, 7 vs 1

4) ∞ vs 4, 5 vs 7, 6 vs 3, 1 vs 2

5) ∞ vs 5, 6 vs 1, 7 vs 4, 2 vs 3

6) ∞ vs 6, 7 vs 2, 1 vs 5, 3 vs 4

7) ∞ vs 7, 1 vs 3, 2 vs 6, 4 vs 5

Listing each team’s opponents in order clarifies that condition (4.3) is satisfied:

R1 R2 R3 R4 R5 R6 R7
∞ 1 2 3 4 5 6 7
1 ∞ 4 7 2 6 5 3
2 4 ∞ 5 1 3 7 6
3 7 5 ∞ 6 2 4 1
4 2 1 6 ∞ 7 3 5
5 6 3 2 7 ∞ 1 4
6 5 7 4 3 1 ∞ 2
7 3 6 1 5 4 2 ∞
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Therefore, a balanced schedule for 8 teams has been found since there are no repeated se-
quences of numbers. This construction does not take into account whether a team plays at
home or away, unlike how it was the case in section 4.3. However, it happens to be possible
to construct a HAP with 8 breaks, using only the match-ups from this balanced construction
as follows:

1) ∞ vs 1, 4 vs 2, 7 vs 3, 5 vs 6

2) 2 vs∞, 3 vs 5, 1 vs 4, 6 vs 7

3) ∞ vs 3, 4 vs 6, 5 vs 2, 7 vs 1

4) 4 vs∞, 5 vs 7, 3 vs 6, 1 vs 2

5) ∞ vs 5, 6 vs 1, 7 vs 4, 2 vs 3

6) 6 vs∞, 7 vs 2, 5 vs 1, 3 vs 4

7) ∞ vs 7, 1 vs 3, 2 vs 6, 4 vs 5

This results in the following HAP, where the breaks are indicated with red.

R1 R2 R3 R4 R5 R6 R7
∞ H A H A H A H
1 A H A H A A H
2 A H A A H A H
3 A H A H A H A
4 H A H H A A H
5 H A H H A H A
6 A H A A H H A
7 H A H A H H A

Note that this is not a general construction of a HAP, but only works for this specific exam-
ple. For example, a schedule of 4 teams would result in the minimum of 2 breaks. However, it
does have some advantages to discuss. With a total of 8 breaks, this is not the minimum of 6
breaks presented in section 4.3, which in this instance goes against teams 4 and 6, who could
then complain that they have two breaks while teams∞ and 3 have none. However, unlike the
altered circle method there are no carry-over effects.

Additionally, according to [11], a schedule of 2n teams has a minimum of
⌈
log2(n)

⌉
days with

breaks, and with at most 2
⌊

1
2n

⌋⌈
log2(n)

⌉
breaks. Since n = 4 in the example above, this schedule

is constructed exactly like this. Furthermore, in this schedule teams∞ and 3 have complemen-
tary venue sequences and so does teams 4 and 6, 1 and 7, and 2 and 5, and therefore maintains
the advantages from this as described in section 4.3. Finally, should a second half be necessary,
it will not produce the minimum of 18 breaks, described by theorem 4.7, but instead a total of
20 breaks, where teams 1,2,5, and 7 have breaks between halves, however, the advantage of no
carry-ovver effects remain.
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Chapter 5

Conclusion

In this thesis various results on combinatorial design theory has been presented, most impor-
tantly the Bryck-Ryser-Chowla-theorem, which excludes the existence of designs with parame-
ters that does not satisfy certain properties. Furthermore, the theorem was related to projective
planes of order n, giving an easier to apply corollary of the Bryck-Ryser-Chowla theorem.

Resolvable designs were presented in order to describe a resolvable (2n,2,1) balanced incom-
plete block design with the i′th parallel class consisting of the pairs of teams playing each other
on match-day i. A construction was presented where the first round is given by the matches

∞ vs 1, 2 vs 2n− 1, 3 vs 2n− 2, . . . , n vs n+ 1

and the following matches are found by adding 1 and reducing modulo 2n−1 to each team until
a schedule of 2n − 1 match-days are found. This works because the pairs {2,2n − 1}, {3,2n − 2},
. . . , {n,n+ 1} form a difference system in Z/(2n− 1)Z. This schedule is then altered to consider
whether a team plays at home or away such that a minimum of 2n − 2 venue breaks are in the
schedule. This schedule is then expanded such that all teams meet twice, where the second half
is the same as the first, but with venues interchanged and with a total of 6n− 6 breaks, none of
which are consecutive.

This schedule, however, has one flaw called the carry-over effect, since the construction has
repeated sequences of numbers, which means that certain teams meet the same teams in the
same order. A new construction is therefore introduced for a schedule of 2n teams where n is a
power of 2 and where match-day j consists of the matches

θi vs (θi +θj )

for 1 ≤ j ≤ q − 1 = 2n − 1 and where θ is the primitive element of F2n. However, although this
is a balanced schedule in terms of the carry-over effect, it no longer has the minimum of 2n− 2
breaks if the venue is considered.
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