
The Velvet Cloud
- Infinite Sustain and Reverberation using velvet noise -

Master Thesis

Carmen Muñoz Lázaro/SMC201032

Aalborg University
Electronics and IT

Copyright © Aalborg University 2020

Front page figure represents the first stage of the art work for the plugin which is finally
discarded.

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
The Velvet Cloud: Infinite Sustain and
Reverberation using velvet noise

Theme:
Digital Audio Reverb and Sustain plug-
ins

Project Period:
Fall Semester 2020

Project Group:
SMC201032

Participant(s):
Carmen Muñoz Lázaro

Supervisor(s):
Stefania Serafin
Silvin Willemsen

Copies: 1

Page Numbers: 113

Date of Completion:
December 18, 2020

Abstract:

In this project two digital audio effect
plugins (VSTs) are proposed to simu-
late an automatic infinity sustain and
reverb respectively. Sustain audio ef-
fect algorithm is based on convolution
with velvet noise. For reverberation,
a Modulated Velvet Feedback Delay
Network implementation will be used.
The use of velvet noise enhances rever-
beration with a quick built of early re-
flections in comparison with standard
Feedback Delay Networks. The Mod-
ulation approach produces interest-
ing deep/psychedelic sounds which
model unreal spaces. Both VSTs are
thought to work together allowing the
user to place them in her/his favourite
configuration (e.g. Sustain in series
with reverberation). A technical evalu-
ation (impulse response, White Gaus-
sian Noise response and T60 times) is
performed regarding the different pos-
sible combinations of plugins. Also,
a Two Alternative Forced Choice test
and a survey about the VST perfor-
mance are carried out for a more
subjective sound and plugin evalua-
tion. Results are that The Velvet Cloud
plugins are unique, achieve a deep,
psychedelic reverberation with micro-
variations thanks to modulation with a
background infinity sustain over musi-
cians can play melodies on top.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

Contents

Preface xi

1 Introduction 1
1.1 Inspiration . 1
1.2 Sustain approach . 1
1.3 Reverb approach . 2
1.4 Reverb and Sustain integration . 2
1.5 Project goals . 2

1.5.1 System requirements . 2

2 State of the Art 5
2.1 Algorithms for implementation of Infinite Sustain 5

2.1.1 Synthesis by modulation and pitch estimation 5
2.1.2 Additive and Granular Synthesis detecting a note onset . . . 5
2.1.3 Looping when detecting a note onset 6
2.1.4 Convolution with Velvet Noise 6

2.2 Algorithms for implementation of Reverberation 8
2.2.1 All-Pass filter and Comb filters 8
2.2.2 Convolution with Impulse Response 8
2.2.3 Ray-tracing technique . 9
2.2.4 Feedback Delay Networks . 9
2.2.5 WaveGuide Networks . 10
2.2.6 Other approaches . 11

2.3 VSTs for Sustain . 11
2.3.1 TIME FREEZER . 12
2.3.2 Peak Sustainer . 13
2.3.3 Eos 2 (INFINITE Mode) . 15
2.3.4 Valhalla Super Massive . 18
2.3.5 NeoVerb . 19
2.3.6 DreamScape . 21
2.3.7 Eos2 . 26

vii

viii Contents

2.3.8 SpatialVerb . 27
2.3.9 FoG Convolver . 31

2.4 Plugins Discussion . 34
2.4.1 Sustain Plugins . 34
2.4.2 Reverb Plugins . 36

3 Implementation Decisions 37
3.1 Sustain . 37
3.2 Reverb . 37

4 Sustain Implementation 39
4.1 Summary of the algorithm . 39
4.2 I. Need to update convolving snippet? 42
4.3 II. Velvet noise new sample . 44
4.4 III. Convolution . 47
4.5 IV. Need a new convolving snippet? 48
4.6 About design parameters and implementation decisions 49
4.7 Tunable parameters and GUI Implementation 50

5 Reverberation Implementation 53
5.1 Summary of the algorithm . 53
5.2 I. Generation of Velvet Noise . 54
5.3 Update Megabuffer with Input chunk 58
5.4 Input convolution with velvet noise 59
5.5 Modulated Delay Lines . 60
5.6 Feedback Coefficients . 61
5.7 Output convolution and output mix 61
5.8 Design parameters decisions . 62
5.9 Tunable parameters and GUI Implementation 64

6 Evaluation 65
6.1 Technical Evaluation . 65
6.2 Two-alternative forced choice audio test Evaluation 66
6.3 VST Evaluation . 67
6.4 Preliminary Evaluation of code efficiency 67

7 Results 71
7.1 Technical Evaluation Results . 71

7.1.1 Sustain Responses . 71
7.1.2 Reverberation Responses . 72
7.1.3 FDN4: No modulation, medium modulation, and high mod-

ulation . 73

Contents ix

7.1.4 FDN8: No modulation, medium modulation, and high mod-
ulation . 73

7.1.5 FDN16: No modulation, medium modulation, and high mod-
ulation . 73

7.1.6 Arrangement of Effects . 73
7.2 Two-alternative forced choice audio test Results 75
7.3 VST Evaluation Results . 77

7.3.1 Regarding installation . 77
7.3.2 Regarding GUI . 77
7.3.3 Respecting performance . 78
7.3.4 Pros and Cons . 78
7.3.5 Regarding enhancements/suggestions 78
7.3.6 Regarding Full Control version 78
7.3.7 About price . 79
7.3.8 Regarding preferred configuration 79
7.3.9 Extras . 79

8 Discussion 81
8.1 Technical Evaluation . 81

8.1.1 Regarding Sustain Effect . 81
8.1.2 Regarding Reverb Effects . 81
8.1.3 Regarding different Arrangements 82

8.2 Two alternative forced choice audio test 83
8.3 VST Evaluation . 84

9 Conclusion and Future Work 87

Bibliography 89

A FullControlFigures 95

B Technical Evaluation Graphs/Figures 99

C VST Evaluation Graphs/Figures 111

Preface

This Master thesis describes the implementation of a digital modulated reverber-
ation effect in conjunction with an automatic infinite sustain audio effect regard-
ing its use on guitar. Both applied and combined in different forms, leads to a
"dreamy" sound effect which tries to evoke, a flight over the clouds when the gui-
tarist is playing chords and notes. The project has been developed in collaboration
with Stefania Serafin and Silvin Willemsen at Aalborg University.

Virtual Sound Technology (VST) has fascinated me since I was 13 years old.
Since I bought my first basic bundle of guitar plus a clean amplifier, I was much
interested in getting those electric sounds out of my guitar. Since I had no money, I
had to come up with an idea of getting that sound effect on a cheap and universal
way; and like magic, there it is indeed when VSTs appeared in my life. With only
VSTs, I produced my own CD with entirely digital audio effects processing. I
was and am, so amazed by the capabilities this digital world gives us, universally,
without purchasing power distinction, anywhere, anytime, that I really had a goal
in mind; create my own VST and designing my own sounds.

This thesis is structured as follows:

Chapter 1 gives a brief introduction about how reverberation and sustain are
tackled in the thesis. Also, the inspiration and goals that were initially set will be
stated. Chapter 2 describes the state of the art of both audio effects implementation
approaches as well as the plugins that can be found in the market followed by a
light evaluation and discussion about them. After this review, in Chapter 3 com-
parisons and a discussion about the different implementation algorithm will be
carried out. At the end of this chapter, the most suitable approaches in accordance
with the Project Goals 1.5 are chosen to be used in this project. Chapter 4 and 5
describe the algorithms created based on the chosen implementation approaches
for sustain and reverberation respectively. Then, Chapter 6 presents three different
evaluations; a Technical Evaluation (based on Impulse Response (IR), White Gaus-
sian Noise (WGN) response and Reverberation times (T60 times) within different
frequency bands), a Two Alternative Forced Choice Evaluation, and a VST Eval-
uation of the plugin within a Digital Audio Workstation (DAW). Results of these

xi

xii Preface

evaluations can be found at the end of Chapter 7. Chapter 8 discusses the results
of the different evaluations. Lastly, Chapter 9 concludes the thesis and presents
possible future work to be done on the final plugins.

Finally, I would like to thank heart-fully Silvin Willemsen for supporting me,
specially during the hard times of real time implementation and supervising me
thoughtfully, with eternal patience and kindly during the course of this project.
Also, I would like to thank Stefania Serafin for her guidance and making very
useful suggestions for the fulfillment of this project.

Aalborg University, December 18, 2020

Chapter 1

Introduction

The Velvet Cloud (TVC henceforth) is a digital compound/complex sound effect
comprised of two distinct sound effects: Sustain and Reverberation. Independently,
both can be merged in different ways (parallel or series) and its particular param-
eters can be tweaked separately. The common particularity of both effects is the
usage of velvet noise for its DSPs achieving the high computational speed required
for a real time plugin application.

1.1 Inspiration

Since the young years of the author, she was interested in how VSTs are developed,
mainly, because they give the power (with little money) to produce a whole CD
using only DSP and instruments. Also, as being a guitarist, the author was really
interested in musical pieces of low complexity musically speaking while having
an incredible sound richness and complexity and how that fulfills the atmosphere
(listen to [62] for an example). Precisely, one of the sound effects that fills the
environment such as no other effect does, is reverberation. Enchanted by how far
this effect can be taken and amazed and inspired by the sound a DSP such as
Strimon Big Sky [52] can achieve, TVC has followed this wake in the form of a
digital VST plugin.

1.2 Sustain approach

Yet in the market, only a pair of sustain VST [22, 6] can be found. On the other
hand, digital and analog standalone guitar effects that can act also as a sustain can
be located [9, 51], although not many neither. In this project, sustain algorithms
from the state of the art were studied to implement finally an automatic infinity
sustain based on convolution with velvet noise to produce a VST.

1

2 Chapter 1. Introduction

1.3 Reverb approach

The field of artificial reverberation has been studied widely since the 60s [59].
Diverse algorithms for implementing digital reverb can be found in literature as
well as many digital reverb plugins can be located in the current market. Af-
ter analysing the different possible approaches, a Velvet Feedback Delay Network
(VFDN) [11] was implemented as a starting point. In conjunction, a new approach
(not found in scientific literature with respect to Feedback Delay Networks) was
added to the VFDN; the use of Modulation. Finally, a Modulated Velvet Feedback
Delay Network was implemented as a digital audio plugin to be used in any DAW.

1.4 Reverb and Sustain integration

In the early stages of this project, sustain and reverb effects were thought to be
combined as one standalone plugin. Nonetheless, having them separately allowed
the user to combine in her/his preferred configuration (e.g. signal flow follows first
sustain and after reverb) at first glance and study the user preferences towards both
plugins combination.

1.5 Project goals

The main goal of the project was to create a VST plugin effect which combines
sustain and reverberation audio effects in one plugin, to be used on an electric
guitar (this finally would be set up as 2 distinct plugins thought to be used to-
gether). Both effects, combined together as a system in distinct forms (parallel,
series), was thought to achieve an eternal reverberation and heavenly atmosphere.
The combination design of the effects is further explained in section 7.1.6.

1.5.1 System requirements

More in detail, TVC features are be comprised of:

Sustain

An infinite sustained sound was desired, preferably, without coloration or spec-
tral smearing. Moreover, the effect should be triggered automatically; when input
reaches a maximum (strumming a chord) a new chord/note onset must be sus-
tained. Besides, it should be fast enough computationally speaking to work in real
time without noticeable latency then having smooth transitions.

1.5. Project goals 3

Reverb

A long lasting ending tail was sought to create an "abstract" or "space" atmosphere,
which could not be feasible in a real physical place. Therefore, it was not of our
main interest the reverberations whose aim is to reproduce the acoustics of a spe-
cial room, plate or spring size with specific characteristics. Rather, the TVC goal
was to recreate an unreal space, out of the world, like a cloud full of ringing sus-
tained reverberation echoes.

GUI
To represent the possible settings of TVC, was desirable to have an attractive

GUI which increased the expectancy of the participants during its evaluation. This
GUI must be kept simple so anybody can (more or less) understand what to expect
if switching/pressing buttons without technical language.

Open Source code
Code was released to the public as a thank you for the "free" VSTs that once

were used by the author of this thesis.

Chapter 2

State of the Art

This chapter is divided into four sections. First, the state of the art (SOTA) 2
regarding algorithm implementations approaches both for sustain and reverb are
described. Afterwards, the SOTA regarding digital sustain and reverb commercial
plugins (VSTs) is described followed by a discussion.

2.1 Algorithms for implementation of Infinite Sustain

Not much research have been found regarding the sustain audio effect, as it is not
much exploited in the plugin market neither. The main approaches used are:

2.1.1 Synthesis by modulation and pitch estimation

In [33] the author implements an algorithm to synthesize a guitar chord and sus-
tains it by synthesis. It is based on the spectrum of the sample of the guitar played
which will be sustained. It uses a sinusoidal model and partial amplitude modu-
lation for the synthesis. This effect has no "automatic" mode as it is not triggered
automatically when some condition is met (e.g. input level has reached a thresh-
old). Instead, guitarist must press a pedal to sustain a chord. Consequently, the
algorithm will search for the onset of that chord. For the conclusion, it is stated the
latency makes this effect not very suitable for real time, having some glitches due
to operations that takes much time to compute, such as the interpolation operation
as stated by the author.

2.1.2 Additive and Granular Synthesis detecting a note onset

In the following work [37], some well-known digital effects are studied, including
a method for infinite sustain. An additive and granular synthesis method is used
when a note or chord is detected. Spectral composition analysis is used to detect

5

6 Chapter 2. State of the Art

the note at two points. The mix of the two synthesis techniques and the two
analysis times creates a sustained note with lots of timbrel variations. The mix
between the synthesis techniques is controlled by tuning the volume for each one.
See figure 2.1 for the effect parameters GUI.

Sadly, the proposed toolbox where the effect is hosted cannot be accessed to
evaluate how well it performs.

Figure 2.1: Options for Infinite sustain in [37].

2.1.3 Looping when detecting a note onset

In this method for obtaining an infinite sustain [36], onset detection is used to look
for new musical notes. Once they decay to a steady state, the note is looped until a
new onset comes. To loop the audio, pitch detection is performed to get the period
of the signal so that phases are aligned. Refer to figure 2.2 for the workflow of the
algorithm.

Although pitch detection algorithm performs well, it is often misidentifying the
note by few Hz which is audibly noticeable. In the worst case, the error might get
to an octave.

2.1.4 Convolution with Velvet Noise

In this new approach [8], sustain audio effect was achieved by Overlap-And-Add
method. To freeze the audio signal, an input grain was windowed and convolved
with velvet noise, which in essence is summing ramdomly time-shifted copies of
a snippet sample with random sign. See figure 2.3 for the algorithm concept of
sustain.

Results show a convincing preservation of the original spectrum through time.
Fortunately, there was an available audio example of the proposed method so it
could be evaluated by anyone ears [7] confirming the exposed results.

2.1. Algorithms for implementation of Infinite Sustain 7

Figure 2.2: Flowchart of [36].

Figure 2.3: Flowchart of [8].

8 Chapter 2. State of the Art

2.2 Algorithms for implementation of Reverberation

Compared to sustain, reverberation effect is a long studied field in the audio effects
world since the 60s. Regarding its digital implementations, we can find the main
following different models:

2.2.1 All-Pass filter and Comb filters

One of the earliest algorithms to tackle reverberation consist on using all-pass fil-
ters introduced by Schroeder and Logan [44], which ensures that the spectrum is
not modified in frequency but does a change in phase. Afterwards, Moorer en-
hanced this first reverberation stage researching example architectures with delay
line and filter parameter values[28]. Many improvements have been suggested
since to this primary idea, like a nested all-pass structure to get a higher echo den-
sity, combining parallel comb filters followed by all-pass filters, or using sparse FIR
filters to simulate early reflections [59]. Other techniques were preferred over this
initial form of reverb to add the reflections complexity that lacks this old method.
Although not really recent, some stills use it even for a real time implementation
[63].

2.2.2 Convolution with Impulse Response

One of the most straightforward ways to implement reverberation is to convolve
the audio signal with a specific impulse response. The impulse response can be
recorded or modelled for a desired reverberation behaviour, which can be rep-
resentative of a concrete physical space. The convolution operation is efficiently
performed in the frequency domain although, the fast convolution works on big
blocks of audio data which causes some undesirable latency for real time imple-
mentation [63]. Nevertheless, nowadays computers power is capable of running
without much artifacts long filters up to several seconds [26], like the SpatialVerb
reverb plugin does (refer to section 2.3.8). Hybrids solutions are developed for en-
hancing performance, for example, implementing the initial attack with a short FIR
filter and the tail reflections with other reverberation algorithm. We can find works
of reverberation modelling using this hybrid technique [55, 38] dating around the
millennia. Notwithstanding, more modern works are still base in this implemen-
tation:

In [57], the late part of a room was modelled by dividing an impulse response
into short segments and approximating each one as a velvet noise random se-
quence. The main drawback of this design is the computational efficiency com-
pared to feedback delay networks (see section 2.2.4) or other reverb algorithms
as discussed in the results of the paper. Although, velvet noise has been under
studied recently in other studies [14] for the same purpose, and recently, in [17],

2.2. Algorithms for implementation of Reverberation 9

achieving a enormous reduction of the computational cost compared to direct con-
volution. Lastly, this method have been found not only to be used for emulation of
rooms, but others like spring reverberators [31].

2.2.3 Ray-tracing technique

Also, we can find reverb effects whose impulse response was calculated as a result
of using a ray-tracing technique [60]. In the ray-tracing method, a fixed number
of rays is emitted in various directions with equal angles spherically from a given
source point. With each bouncing, these rays loose energy according to the ab-
sorption coefficient of the different surfaces (see figure 2.4 for a representation).
This technique is very useful for high-frequency sound propagation in complex
architectures [2].

Figure 2.4: From [2], tracing three rays emitted from a source point in 2D environment.

2.2.4 Feedback Delay Networks

Proposed in 1982 by Stautner and Puckette [48], Feedback Delay Networks (FDNs)
still one of most efficient reverb implementations. FDNs can be regarded as a series
of delay lines interconnected in a feedback loop linked by a feedback matrix [63].
Several enhancements of the primary algorithm have been proposed along, such
as using orthogonal matrix to control the quality of the reverb, increasing the FDN
order and therefore the number of delay lines [59], using a different reverberation
time for each frequency band [20], etc. Hereunder, we will consider some recent
variations of the FDNs algorithm:

In [35], the user can control the FDN in real-time by adjusting its reverberation
time in octave bands, the feedback matrix type and delay-line lengths showing
that choosing too wide or a too narrow length range was disadvantageous to the
synthesized sound quality. In the same line of study, [34] proposes having control
over an accurate graphic equalizer as the attenuation filter of the FDN to reproduce

10 Chapter 2. State of the Art

a reverb behaviour in a room. This option leads to more realistic artificial rever-
beration. To understand and analyze more accurate how FDN models artificial
reverberation, a modal decomposition was resolved in [42]. Refer to figure 2.5 for
a conceptual overview of modal decomposition.

Circulant and Elliptic FDN [40] have also been proposed, achieving more com-
putational efficiency and versatility. Versatility was achieved by introducing the
matrix eigenvalues which act on the distribution of frequency peaks, affecting color
and smoothness of the reverberation. Other works also studies Circulant FDN [39]
and the particular choices of the feedback coefficients to achieve a maximum echo
density while reducing the time computation. Some of the drawbacks that FDN
present is the initial slow build-up of echoes. This was tackled in [11] by convo-
lution with velvet-noise, which have random coefficients at the input and output
branches resulting in using half of the delay lines to obtain the echo density of a
conventional FDN and therefore, saving computation time.

In [57], a new approach using radiance transfer method facilitates the "manual"
setting of FDNs parameters from prerecorded impulses responses to emulate room
acoustics. The proposed solution links straightforward the FDN parameters to the
geometry settings.

Figure 2.5: Overview of modal decomposition and synthesis of a FDN [42].

2.2.5 WaveGuide Networks

WaveGuide Networks (WGNs) model reverberation from a physical modeling point
of view [59], following the scheme of interconnecting acoustic tubes. First intro-
duced by J.O Smith [1], they are comprised of a set of bi-directional delay lines

2.3. VSTs for Sustain 11

connected by "scattering junctions". The practical implementation splits each bidi-
rectional delay line into a pair of delay units, which makes it equivalent to a FDNs
[19]. One remarkable point of WGNs is its correspondence to FDNs, as it can be
used to obtain the FDN parameters based on the physics and geometry of a real
acoustic space [40].

2.2.6 Other approaches

Really simple reverberations methods have been implemented too (but not re-
cently). As an example, in [18], a really simple algorithm generates the rever-
berated samples by adding together several scaled and delayed input to produce
a corresponding reverberated output. The algorithm boils down to the scheme
shown in figure 2.6.

Results are unknown. Plane-wave synthesis method has been used in [47] to
modify the spectral energy decay curve. The parameters of this electro-acoustic
system controls the temporal properties of the reverberating sound field. Results
show that the number of plane waves for a diffuse sound field was inconclusive.
Other reverberation alternatives consider adaptive reverberation such as in [32],
which in essence models a FDN depending on the audio harmonic characteristics.
Also, in [61], it can be found algorithms for analog simulation of plate reverbera-
tion.

Figure 2.6: Diagram for [18] algorithm.

2.3 VSTs for Sustain

Apart from the purely digital plugins to obtain an infinite sustain, there can be also
found devices that achieve similar results by making a string vibrate continuously
using only analog means [54, 21, 30]. Also, guitar reverb effect pedals that count-in
with an infinite sustain have been developed both in analog [51] and digital [9]
processing (not remarkably cheap). There can be found some VSTs that resembles
partly the sustain effect like this Compressor Sustainer Pedal plugin [15] but it was
not an infinite sustain. Regarding VSTs purely dedicated to sustain there is not
much offer in the market:

12 Chapter 2. State of the Art

2.3.1 TIME FREEZER

TIME FREEZER (see figure 2.7) is a paid VST made by Marc Lingk in 2008 [22]. It
promises to freeze any kind of audio in real time by pre-reading an audio file. The
more outstanding tunable parameters for sustain of the plugin are:

• Max: Maximizes the output of the synthesized sound.

• Hold: to maintain the output ON.

• Denoiser: gives you the possibility of taking away the part of white noise of
your source.

• Morph Time: defines how fast the transitions between the settings are going;
from 1/100s to 10s.

• Frequency: if "resonance" is not set to zero, this will be the center of the band
pass filter; the range is from 20 to 20.000Hz.

• Wave position: this allows you to browse in the loaded wave.

• Wave zoom: this is the size of the analyze window; the range is from 500
samples to 1.5 seconds at 44.100Hz.

Figure 2.7: TIME FREEZER GUI.

Evaluation

As there was not a free version of the plugin, videos of the effect working can be
found [24] for reference. For a guitar player, it can be tedious to be continuously
selecting which position of the sound audio file you want to select for the sustain
while playing, as there is no automatic selection of the audio snippet that will

2.3. VSTs for Sustain 13

be "repeated" or synthesized to construct the sensation of infinite sustain. Also,
loading the audio file previously to select the "wave position" we wanted to sustain
did not seem a very good idea if wanting to implement a real-time sustain. The
sound by itself on a guitar, sounds complex but did not recall at all a guitar [23],
which is something the guitarist may want to hear too. A noteworthy thing to
mention, was the built-in possibility of band-passing the sound.

2.3.2 Peak Sustainer

Peak Sustainer (see figure 2.8) is a high speed peak sustainer. It is free and only
available for Windows. If the input surpasses the threshold value, the input filtered
by the high pass filter will be sustained through time. Its more remarkable controls
are:

• On/OFF button.

• Sustain: sustain threshold.

• Tone: input high-pass filter frequency.

Figure 2.8: Peak Sustain GUI with the used configuration.

Evaluation

From its impulse response and its WGN response we can see essentially that output
is not noticeably modified as we can see from figures 2.9 and 2.10. As consequence
of this, there is no measurable T60 (which will be 0 seconds).

For the sake of the evaluation, the effect has been also used over some guitar
chords and it seemed it was virtually maximizing the input (only at the beginning)
than rather sustaining it. It seemed not working for many notes (just acts on the
first one) in time as we can see from figure 2.11. Outcomes clearly did not perform
as a sustain effect is supposed to do.

14 Chapter 2. State of the Art

Figure 2.9: Peak Sustain spectrogram and amplitude evolution of WGN.

Figure 2.10: Peak Sustain spectrogram and amplitude evolution of an IR.

2.3. VSTs for Sustain 15

Figure 2.11: Peak Sustain spectrogram and amplitude evolution of some guitar chors.

Figure 2.12: Eos 2 GUI configuration (INFINITE button (orange) is ON).

2.3.3 Eos 2 (INFINITE Mode)

Developed by the AudioDamage, Eos 2 (see figure 2.31) [6] is the only analyzed
reverb VST that comes with an infinite sustain built in. It can act as a reverb and
a sustain. It has the main parameters others reverb effects have plus an special
"INFINITE" button to hold reverb eternally (sustain). When Eos 2 VST is in "INFI-
NITE" mode (see figure 2.12), it behaves as a sustain. This is what it is evaluated
this section. There are no "sustain" parameters rather than ON/OFF.

Evaluation

As we can see from the impulse response in figure 2.13, the plugin perpetuated
the sound without much coloration and without transients in amplitude behaving
nicely through time. If input was WGN, the plugin tended to repeat and loop
indefinitely the input and saturated the output homogeneously in all frequencies

16 Chapter 2. State of the Art

Figure 2.13: Eos 2 INFINITE MODE (sustain) impulse response.

as we can see from figure 2.14.
But when a real guitar played some chords and notes, an annoying behaviour

arose when this sustain mode was ON. The algorithm just "accumulated" new
incoming sounds making the output to be saturated, see figure 2.15.

This is not at all desirable for TVC, so a "trigger" or some sort of automatic
sustain was finally developed as stated in the project goals 1.5.

VST Plugins for Reverb

Reverberation audio effect is a well exploited effect in comparison with sustain
VSTs. There are plenty of different implementations whether paid and not paid in
the market. To evaluate the plugins, IR, WGN response and measurement of T60
times will be calculated of a sound wave. In some cases, an informal evaluation by
the author using as input a guitar playing a chord will be carried out too.

Calculation of T60 times

For calculation of T60 times, an impulse and white Gaussian noise have been set
as input to the evaluated plugins. Output is translated into dBs using equation 2.1

SPL = 20 · log(p/Po)[dB] (2.1)

Where p is the sound pressure level, and Po is the pressure reference level.
Afterwards, T60 is calculated as the time required for the sound to decay a level

of 60 dBs. As reverberation does not behave identical in the different frequency

2.3. VSTs for Sustain 17

Figure 2.14: Eos 2 INFINITE MODE (sustain) WGN response.

Figure 2.15: Eos 2 INFINITE MODE (sustain) saturating when a guitar is being played.

18 Chapter 2. State of the Art

Figure 2.16: Low pass filter response with frequency cutoff at 1000 Hz.

Figure 2.17: High pass filter response with frequency cutoff at 3000 Hz.

bands, T60 is also measured after filter the plugin output through a low pass filter
and a high pass filter of cutoff frequencies 1000Hz and 3000Hz respectively (see
figures 2.16, 2.17 for filter responses), over sounds containing a range of frequencies
of 0Hz - 22500Hz.

Here, some of the most outstanding will be highlighted:

2.3.4 Valhalla Super Massive

Developed by the acclaimed ValhallaDSP audio effects producer, Valhalla Super
Massive (see figure 2.18) [5] reverberation effect promises clouds of reverb and
swelling waves of feedback among others. In their web page [4] it is said about
a first stage of using Feedback Delay Networks and some algorithms that did not
want to be "tamed". So then came the decision to switch into "algorithms to move
outside the realm of reverberation", but no clear information of the used algorithms
is mentioned, being kind of hidden. Its most outstanding controls are:

2.3. VSTs for Sustain 19

• Mix: controls the balance of the input signal with the chorus.

• Width: Controls the width of the stereo image.

• Delay: sets the delay time in milliseconds.

• Wrap: adjust the delay length relative to the delay settings.

• Feedback: controls the amount of feedback around the delays.

• Density: Controls the density of echoes when feedback is turned up. 0

• Mod Rate: controls the rate of the delay modulation.

• Mod Depth: controls the depth of the delay modulation.

Figure 2.18: Configuration used for Valhalla Super Massive.

Evaluation

As promised, the VST with its reverb knobs turned to the maximum, achieved
a cloud of nearly eternal echoes (similar to an infinite sustain) and delays that
created a fulfilled atmosphere. It was a reverb that did not model a real room
or environment, but rather created abstract reverberations. From figures 2.19 and
2.20 we can see the spectrogram and amplitude evolution are maintained through
time without much artifacts (there are no T60 as they do not decay in time). By
informal listening, one can slightly hear a "buzzing" sound in frequencies although
not visible in the spectrograms. It could be related to the MOD (modulation)
parameter that can be controlled in its configuration, see figure 2.18.

2.3.5 NeoVerb

Developed by the famous audio effects producer iZotope, NeoVerb (see figure 2.21)
[16] reverb is AI powered and includes an intelligent Pre EQ section, which identify
regions that have muddy harmonics that might create unwanted artifacts in your

20 Chapter 2. State of the Art

Figure 2.19: Valhalla Super Massive impulse response.

Figure 2.20: Valhalla Super Massive white gaussian noise response.

2.3. VSTs for Sustain 21

final reverb output. Also it includes a Reverb EQ includes specialized masking-
reduction technology, and even a Reverb Assistant to select presets automatically.
Its is comprised of three sections (early reflections, play tail and hall tail). Both
"tail" engines apply the same parameters to different reverb algorithms. Unlike
the Early Reflections, these engines generate myriad echoes of varying time and
frequency as they bounce around in a space.Its most remarkable parameters are:

• Space: is a macro control that adjusts both the Time and Size parameters.

• Diffusion: how many reflections will arrive.

• Angle: strength of the initial reflections.

Figure 2.21: NeoVerb GUI configuration.

Evaluation

NeoVerb simply did what promised, kept a truly brilliant balance between the
dry signal and the output reverb even if the user did not have much knowledge
of reverb parameters. Having selected the preset which plays the longest decay
tail (times set to maximum), the frequencies did not get just accumulated, but
balanced in the whole dynamic range, producing a really pleasing reverb. It can be
seen how big the T60 times are (see figure 2.24). Notice a higher decay for the high
frequencies in figures 2.22 and 2.23, which gave a smoother decay sensation in the
high range, such as real room would perform. Notice in figures 2.22, 2.23 and 2.24
the snippet of silence around second 14; this is due to the fact that the plugin was
a DEMO version.

2.3.6 DreamScape

Developed by Minimal System Instrument. Unlike most of algorithmic reverbs,
DreamScape (see figure 2.25) [13] does not separate its reverb into plate, hall, and

22 Chapter 2. State of the Art

Figure 2.22: NeoVerb impulse response. Notice the silence around second 14 due to the demo version
of the VST.

Figure 2.23: NeoVerb white Gaussian noise response. Notice the silence around second 14 due to
the demo version of the VST.

2.3. VSTs for Sustain 23

Figure 2.24: NeoVerb T60s graphs. Notice the silence around second 14 due to the demo version of
the VST.

room algorithms. Rather, it presents intuitive parameters to model your own per-
sonal reverb and design room reverbs, synth pad and delay effects, experimental
reverb, filter effects among others.

Figure 2.25: DreamScape GUI configuration.

Evaluation

The plugin Impulse Response (IR) was very long and in some points it showed a
periodic behaviour distributed as we can see from figure 2.26, easily noticing the

24 Chapter 2. State of the Art

"repetitions" of the impulse through time, which was not certainly pleasing to the
ear. Although, not so important, as it tended to get diffused in time.

Figure 2.26: DreamScape impulse response.

In figure 2.27 with a less reverberating configuration we can notice this period-
icity.

Figure 2.27: DreamScape impulse response with a less reverberating configuration.

From the WGN response, see figure 2.28, there was an equal decay in frequen-
cies, modelling spaces which were not real. Actually, from the plugin T60s times
(see figure 2.29) we can see incredibly high values.

From a more subjective point of view, some guitar chords and notes were
played using the plugin effect (see figure 2.30). Output was embellished, but not as
brightly reverberated as other VSTs accomplish. The use of convolution by impulse

2.3. VSTs for Sustain 25

Figure 2.28: DreamScape WGN response.

Figure 2.29: DreamScape T60 times. Notice top graph (in orange) to not have a T60 concrete value
as output never reaches that difference.

26 Chapter 2. State of the Art

responses might be an issue.

Figure 2.30: DreamSpace spectrogram and amplitude evolution.

2.3.7 Eos2

The reverberation effect from the plugin is what was evaluated in this section with
the configuration that can been seen on figure 2.31 (notice INFINITE mode is OFF).
Refer to section 2.3.3 for a description of the plugin.

Evaluation

Its minimalist GUI did not need many more tricky parameters to achieve a conven-
tional well-sounding reverb even when forcing the parameters to the maximum to
achieve the greatest sounding "tail" as we can observe in the T60 graphs from fig-
ure 2.32. From the impulse response figure ?? and the white Gaussian noise figure

Figure 2.31: Eos 2 GUI configuration (INFINITE mode OFF).

2.3. VSTs for Sustain 27

Figure 2.32: Eos 2 T60 times. INFINITE mode OFF

??, we can see that most frequencies decayed more or less equally in the different
frequency band without much coloration. Remarkably, from the spectrograms of
?? and ??, it can be stated that high frequencies tended to slightly decay sooner.

2.3.8 SpatialVerb

Developed by Daniel Werner, SpatialVerb (see figure 2.35) is a free plugin [60]
which uses ray-tracing to generate the early impulse response. The late impulse re-
sponse is governed by a Circulant Feedback Delay Network (CFDN) which presents
low amount of ringing in the reverberation. There is no manual that explain how

Figure 2.33: Eos 2 T60 times. INFINITE mode OFF

28 Chapter 2. State of the Art

Figure 2.34: Eos 2 T60 times. INFINITE mode OFF

parameters are defined, but the main ones that can be found are:

• Size of the room.

• Location of two virtual source speakers.

• Two destination microphones.

• Feedback (of the FDN).

• Cutoff (of the FDN).

• WallAbsortion.

• Gain (of the FDN).

Evaluation

From the plugin impulse response, see figure 2.38, we can observe that there were
not noticeable transients in the spectrogram performing a smooth decaying tail.
High frequencies decayed soon, as we can see also from the WGN response in
figure 2.37.

Spatialverb t60 times were within the range of 9-11 seconds, a lesser time com-
pared to other plugins.

From a more subjective evaluation, playing some guitar chords and notes made
sound get a little saturated when reverb parameters were set to the maximum,

2.3. VSTs for Sustain 29

Figure 2.35: Spatial Verb GUI configuration.

Figure 2.36: Spatial Verb impulse response.

30 Chapter 2. State of the Art

Figure 2.37: Spatial Verb WGN response.

Figure 2.38: Spatial Verb T60 times.

2.3. VSTs for Sustain 31

even with gain equals 0 (see figures 2.39, 2.40). It was not a really pleasant sound
or reverb effect in essence.

Figure 2.39: Spatial Verb soundwave amplitude evolution for one chord.

2.3.9 FoG Convolver

Developed by AudioThing, FoG Convolver (see figure 2.41) [3] is a convolution
plugin that applies the sonic character of an impulse response to another sound in
real time. Its main parameters are:

• Dry: The amount of dry signal.

• Wet: The amount of wet signal.

• Pre Delay: Applies a delay in ms before the convolution.

• Gain: Increases or attenuates the volume of the Impulse Response.

• Pitch: Changes the speed/pitch of the Impulse Response. Also known as
Size for generic convolution reverbs.

Evaluation

FoG Convolver is a nice VST if the goal was to model rooms rather than achieving
a outer space reverb. It got saturated when reverb controls were set to maximum

32 Chapter 2. State of the Art

Figure 2.40: Spatial Verb soundwave amplitude evolution of chords and notes.

Figure 2.41: FoG Convolver GUI.

2.3. VSTs for Sustain 33

Figure 2.42: FoG Convolver impulse response.

Figure 2.43: FoG Convolver WGN response.

34 Chapter 2. State of the Art

(refer to figures 2.45, 2.46). Its impulse response decayed very quick in time as we
can see from figure 2.42. Same issue can be noticds from its WGN response 2.43.

As so, it presented short T60 times (refer to figure 2.44), far from NeoVerb or
Valhalla VSTs T60 times.

Figure 2.44: FoG Convolver T60 times.

We can also verify this short reverb subjectively by playing a guitar chord using
the plugin (see figure 2.45).

2.4 Plugins Discussion

2.4.1 Sustain Plugins

With respect to sustain, little can be said rather than that Eos2 as said beforehand,
"accumulative" infinite sustain saturated the incoming audio. TIME FREEZER was
simply not really a real-time sustain in the sense of pre-loading an audio file before
sounds comes out. PeakSustainer did not behave as the expected sustain effect. To
conclude, little can be said about sustain VSTs rather than accumulating in a buffer
incoming audio endlessly and playing it in a loop, will not work out nicely, as
saturation may appear such as it does in Eos2. All in all, from the found sustain
plugins, only one performs as so, although its behaviour as a little disturbing as it
added more input audio to sustain on top of what was already being sustaining
over and over leading to saturation.

2.4. Plugins Discussion 35

Figure 2.45: FoG Convolver soundwave amplitude evolution.

Figure 2.46: FoG Convolver soundwave of chords and notes amplitude evolution.

36 Chapter 2. State of the Art

2.4.2 Reverb Plugins

Considering all the above and in respect to reverb, Valhalla Super Massive (VSM)
was the most accurate VST to reproduce a long nearly-non-decaying reverb tail
without coloration, which was part of this thesis goal. In comparison, NeoVerb
had also a really long T60 while taking care of the harmonic evolution of the tail,
attenuating higher frequencies first as a real room would do. Other VSTs simply
did not perform as well in prolonging the reverb. Probably, the use of convolution
may had some role in this issue. In conclusion, from what related before, the
undisclosed algorithm used by VSM may not be only only a basic FDN, but an
extra different way to face reverb (an hybrid, for example). This will be taken into
account when deciding the approach for reverb implementation.

Chapter 3

Implementation Decisions

Based on this thesis Project Goals 1.5 our final election would be biased towards
a reverb which fulfills the whole frequency spectrum while time evolves (does not
lose a concrete frequency band over time), creating a rich atmosphere during a
great period of time (subjectively rather than objectively). In respect to sustain, the
election was based on a trustworthy method (that sustains the correct audio snip-
pet) while at the same time maintained low coloration and had high computational
efficiency. The decisions also mind the algorithms complexity, which must be suit-
able for a real time implementation (TVC must implement both effects, sustain and
reverb, so complexity was added).

3.1 Sustain

Not many sustain algorithms have been developed as said beforehand, but among
of those aforementioned, Convolution by Velvet Noise [8] was chosen as the start-
ing point as being the most suitable due to its high speed, low computational
complexity and convincing results 3.1. It is worthy to mention that this initial al-
gorithm was versioned to achieve an automatic sustain as part of this project goals
and part of it was rethought lessening the number of operations per cycle. Oth-
ers were discarded as presented more computational time (pitch detection) to be
executed, wrongly detected onsets and therefore, wrong notes to be sustained or
noticeably audio latency which is not desirable for TVC.

3.2 Reverb

From audible and objective measurements (T60, amplitude evolution over time)
from reverb VSTs, it had been decided that the technique of convolution by im-
pulse response was not going to be applied. This is due to the short T60 times it

37

38 Chapter 3. Implementation Decisions

Figure 3.1: From [8], extrapolation of a guitar chord: spectrogram of the original excerpt (a), spec-
trogram of the extrapolated audio (b) and waveform (c).

presented and the high computation time required (due to the many operations
it requires), causing sometimes audible artifacts. Adaptive reverbs [32], reverbs to
model concrete physical spaces [57] or concrete frequency bands [35, 34, 42], nov-
elty methods [47] and methods comparable to FDN (digital waveguide networks)
[40] are discarded as they are not directed towards our target reverb. This leaves
us among some of different FDN versions [40, 39, 11] that have been found. FDN
by adding velvet noise [11] filters is a variation technique which creates a high
echo density and especially reduces computation time (which was also promised
in other papers [39]), and moreover, it solves the initial slow build-up of echoes.
Besides, this study comes with available audible samples of the work [10], point
that was missing in other papers [39, 40, 32] to verify how good sounds the reverb
to the ear.

Therefore, final decision was to use as a starting point a FDN approach with
Velvet Noise [11] for reverberation, not without mentioning that a new state-of-
the-art advance was finally implemented on top of it (Modulated delay networks).
The decision of choosing FDN was also supported by how well Valhalla Super
Massive VSTs performed in the reverberation modelling and its probable usage of
FDNs too. Additionally, the election was also backed by the large recent works on
reverberation that have been based on FDNs and its variants.

Chapter 4

Sustain Implementation

Oriented by the work of D’Angelo [8] mentioned in section 2.1.4, the following
implementation develops his main idea redesigning some parts of the algorithm
and implementing an automatic version of the sustain.

The real-time plugin was developed using the Audio System Toolbox in the
MATLAB environment and full code can be found in the author’s Github respos-
itory [25]. When developing real time audio plugins in MATLAB, audio is proc-
cessed in "chunks". The input is then processed in separated chunks of a standard
size of 1024 samples, such as DAWs treat the incoming audio input (see figure 4.1).
Reverb implementation described in chapter 5 was developed using this software

Figure 4.1: Input buffer size options for Ableton Live.

too.

4.1 Summary of the algorithm

For a complete picture of the signal flow of the algorithm, mind figure 4.2.
As aforementioned, audio data comes in "chunks" of 1024 samples. Then, the

procedure is the following:

The incoming input audio chunk will be used to fill up a convolving snippet

39

40 Chapter 4. Sustain Implementation

buffer (it is the audio snippet to be sustained through time). After, this buffer is
filled up and full, a set of positions of this buffer will be summed and multiplied
by the correspondent signs (i.e, convolution with velvet noise). The positions and
sign values are given by the generated velvet noise. The result is then multiplied
by a gain (WET) and summed to the DRY signal. This constitutes the output of the
system.

At some point when guitarist may strum the guitar, reaching a level higher
than a threshold, a new snippet of audio will be selected and sustained through
time.

A condition to be held before taking this new snippet of audio to sustain is that
all values of an input chunk must have had a lower value than another threshold
called SustainThresholdReady, as we are now ready to take another audio snippet to
be sustained.

Figure 4.2: Overview of sustain algorithm signal flow. Red blocks refer to the UML processes in
figure 4.3.

For a UML style of the algorithm, mind figure 4.3.
The real time implementation is divided in four sections which refers to the

processes numbers I-IV in figures 4.3 and 4.2 and will be further explained here-
under:

4.1. Summary of the algorithm 41

Figure 4.3: Overview of sustain algorithm UML. Roman numbers refer to sections 4.2, 4.3, 4.4 and
4.5.

42 Chapter 4. Sustain Implementation

4.2 I. Need to update convolving snippet?

First, the code starts by looking if IsSnippetBufferFull. There are two circumstances
why this variable/toggle may be set to "false" (then, a new convolving snippet must
be taken). One is that the plugin is been first initialized, so any incoming input
will be used for filling the convolving snippet buffer and therefore be used as the
sustained audio. The other is a double condition which will be further developed
in the last section of sustain implementation 4.5.

Then, if IsSnippetBufferFull is false, the input audio chunk is used to fill up
the inSnippetBuffer (of 30ms length). As the input chunks are smaller than the in-
SnippetBuffer (1024 samples as a standard), several times this filling up should be
carried out.

1 % If buffer is NOT full (ie: initialization or gain > threshold)

2 if p.IsSnippetBufferFull == false % you want to "convolve" with this

incomming snippet

3
4 % We put the chunk in the buffer

5 p.inSnippetBuffer = putVectorInBufferV4(in_mono, p.inSnippetBuffer,

p.BufferLength, p.SamplesAlreadyInBuffer + 1);

6
7 % Update how full is buffer

8 p.SamplesAlreadyInBuffer = p.SamplesAlreadyInBuffer + length(in_mono

);

9
10 % If buffer is completed with the chunks,

11 if p.SamplesAlreadyInBuffer > p.BufferLength

12
13 % It is full,

14 p.IsSnippetBufferFull = true;

15 disp("bufferfull");

16
17 % windowize it,

18 p.inSnippetBuffer = p.inSnippetBuffer .* p.WindowsStatic;

19
20 % Lowpass filter it

21 p.inSnippetBuffer = filter(p.b, p.a, p.inSnippetBuffer);

22
23 % Duplicate, actually, we will use the copy for convolution

24 p.CopyOf_inSnippetBuffer = p.inSnippetBuffer .* p.

playbackVoiceGain; % InSnippetBuff will be as high as

4.2. I. Need to update convolving snippet? 43

playbackVoiceGain max

25
26 % and reinit

27 p.SamplesAlreadyInBuffer = 0;

28 end

29 end

Precisely, when SamplesAlreadyInBuffer is bigger than BufferLength, the state of
IsSnippetBufferFull is set to true, as it is indeed full. Afterwards, a Welch parabolic
window (has an exceptionally low computational cost [8]) is applied to the buffer
followed by a low pass filter (Butterworth order 3 with a cutoff frequency of
5000Hz) and a multiplication by playbackVoiceGain. Finally, a copy of this buffer
is made which will be the actual convolving snippet with which we will work fur-
ther on.

1 % If buffer is completed with the chunks,

2 if p.SamplesAlreadyInBuffer > p.BufferLength

3
4 % It is full,

5 p.IsSnippetBufferFull = true;

6 disp("bufferfull");

7
8 % windowize it,

9 p.inSnippetBuffer = p.inSnippetBuffer .* p.

WindowsStatic;

10
11 % Lowpass filter it

12 p.inSnippetBuffer = filter(p.b, p.a, p.

inSnippetBuffer);

13
14 % Duplicate, actually, we will use the copy for

convolution

15 p.CopyOf_inSnippetBuffer = p.inSnippetBuffer .* p.

playbackVoiceGain; % InSnippetBuff will be as

high as playbackVoiceGain max

16
17 % and reinit

18 p.SamplesAlreadyInBuffer = 0;

19 end

20 end

21

44 Chapter 4. Sustain Implementation

22 end

Refer to figure 4.4 for an example of a snippetBuffer filled.

Figure 4.4: The full insnippetBuffer.

4.3 II. Velvet noise new sample

Secondly, a new sample of velvet noise is generated. Velvet noise is a type of noise
constituted by -1’s, 0’s and 1’s. It is a sparse noise sequence which uses as few
non-zero values as possible [58]. In a velvet noise sequence (VNS), the sign and
position of each impulse (1 or -1) are randomized, but they still remain within a
given interval. The pulse density is the average impulses per second, is defined as:

Nd = Fs/Td (4.1)

Where Nd is the impulse density, Fs is the sampling frequency and Td is the average
distance of impulses. See figure 4.5 for a velvet noise example. A sample of velvet
noise is easily calculated with the following code:

1 function [VnoiseSample] = getVnoiseSample(Fs, Nd)

2 % Generates one sample of Velvet noiseat density Nd per second (Fs)

3
4 VnoiseSample = 0;

5
6 if rand < Nd/Fs

7 VnoiseSample = round(rand) * 2 − 1;

8 end

4.3. II. Velvet noise new sample 45

Figure 4.5: 1000 samples of Velvet Noise

9
10 end

Afterwards obtaining a velvet noise sample, if it is an impulse, three variables
must be updated:

• The number of TotalImpulses (contains how many impulses are in the VNS)
has increased, then add 1.

• signsArray (contains the impulses) must update its first position value (which
corresponds to the present, now) to the value of the velvet noise impulse sign.

• positionsArray (contains the location of the impulses) must add the position
of this impulse at this present time (which is now, which corresponds to 1).

1 % Velvet noise for this time

2 p.Vn = getVnoiseSample(p.Fs, p.Nd);

3
4 if p.Vn ~= 0 % then it is an impulse, update buffers

5
6 % Update total impulses

7 p.TotalImpulses = p.TotalImpulses + 1;

8
9 % Put the Vn at this present position

10 p.signsArray = [p.Vn ; p.signsArray(1 : end−1)];

46 Chapter 4. Sustain Implementation

11 p.positionsArray = [1; p.positionsArray(1 : end−1)];

% Now is 1

12
13 end

As time has passed by one sample, positionsArray advances one, which is equiv-
alent to summing "1" to all the positions in the array.

1 % We avance one, one delay for the postision of impulses

2 p.positionsArray = p.positionsArray + 1;

If the last value of positionsArray is bigger than our WindowsLength, then we
assign its signsArray and positionsArray to 0 (so it does not grow eternally) and we
reduce the number of TotalImpulses by one, as this impulse has "fallen out" from
out window (refer to figure 4.6).

Figure 4.6: Depiction of how an impulse "falls out" from the window.

1 if p.positionsArray(p.TotalImpulses) > p.WindowsLength

2 % If an impulse position has reached the end

3 p.signsArray(p.TotalImpulses) = 0; % set its sign to

zero

4 p.positionsArray(p.TotalImpulses) = 0; % set its

position to zero

4.4. III. Convolution 47

5
6 % Update total impulses

7 p.TotalImpulses = p.TotalImpulses − 1;

8
9 end

4.4 III. Convolution

To make the illusion of the audio been sustained, we convolve inSnippet by the
generated velvet noise created in the previous section 4.3, which in essence is sum-
ming concrete samples of this snippet continuously through time. As convolution
is an operator which needs many underlying operations, the same outcome can
be achieved by accessing these locations of this snippet determined by the velvet
noise, multiply them by the impulse signs, and finally and summing them all. This
summation is the output sample, which is called playbackVoice, as it is a play-back
of our inSnippet.

48 Chapter 4. Sustain Implementation

1 % Multiply the impulses by the COPY of the Input snippet

2 p.playbackVoice = sum(p.CopyOf_inSnippetBuffer(p.

positionsArray(1:p.TotalImpulses)) .* p.signsArray(1:p.

TotalImpulses));

3
4 out_mono(n,1) = p.playbackVoice(1, 1);

Subsequently, a simple dry/wet knob is implemented to model how much of the
output signal belongs to the effect and how much from the original source. Finally,
this is basically the output.

1 % Mix Sustain & Input

2 out = p.sustainKnobGain .* out_mono + (1 − p.sustainKnobGain)

.* in_mono;

4.5 IV. Need a new convolving snippet?

At some point in time, the guitarist may want to strum the guitar and hear that
chord sustained while she/he plays some improvised notes. Therefore, the code
must analyze when is the suitable moment to perform a "reload" of the inSnippet-
Buffer and sustain a new audio snippet. The condition to be satisfied for being
allowed to take a new convolving snippet is that all values of the input audio
chunk were below SustainThresholdReady in the past. If this condition is met, the
toggle ReadyToTakeSnippet is set to true, as we are ready to take a new snippet to
be sustained. Thereupon, we will in fact take a new snippet to be sustained when
any sample of the input audio chunk has surpassed the threshold SustainThreshold.
Consequently, IsSnippetBufferFull will be set to "false" and in the next algorithm
main loop iteration, this will be handled by the algorithm discussed in section 4.2.
These dynamic thresholds are required and need to be set by the user as instru-
ments do not have same output level, and not every guitar player plays the same
"loudness" or wants to trigger sustain at same levels.

1 %% Check conditions for getting a new convolving snippet

2
3 if any((in_mono) > p.SustainThreshold) && p.ReadyToTakeSnippet ==

true

4
5 p.IsSnippetBufferFull = false;

6 disp("Take new snippet");

4.6. About design parameters and implementation decisions 49

7 p.ReadyToTakeSnippet = false;

8
9 elseif any((in_mono) < p.SustainThresholdReady) == true

10
11 % We are ready to take a new snippet

12 p.ReadyToTakeSnippet = true;

13 p.FirstRise = 0;

14 disp("ReadyToTakeSnippet");

15
16 end

4.6 About design parameters and implementation decisions

There are some parameters decisions specified previously without further expla-
nation not to overcrowd the commentary of the code implementation. Thereupon,
some clarifications follow:

Buffer size

The inSnippetBuffer is 30ms long. This is a little smaller value than the recom-
mended value in [8]. Although, several values have been used for the length of
this snippet, resulting in 30ms as a good value to work with low computational
demand and nice sound.

Low pass filtering usage

If a guitar is once strummed, if the first audio cues are the ones to be sustained,
it will be resulting in a striking sound, as the sustained audio is filled with lost of
different frequencies of nearly the whole spectrum of a high amplitude (early be-
ginning of a guitar strum). Rather than that, we would like not to sustain the first
cue of the strum, but rather, the "tail" or where the sounds tends to fade off, as it is
a more pleasant sound to hear through the time, with less amplitude and mainly
low frequency content. Then, first idea could be "waiting" for that tail to happen,
and then take it as the convolving audio snippet. There is a clear problem in doing
that; while you wait for that "tail" to happen, another sound is being sustained and
the guitarist wants to know where the sustain will be triggered, as she/he actually
cannot predict when this tail will happen with high precision. And precision is a
must when playing with an instrument; then this is not feasible at all. Then, the

50 Chapter 4. Sustain Implementation

audio characteristic of a sound fading off could be studied and tried to be repro-
duced without the waiting time. When a guitar is strummed, the first frequencies
to decay in amplitude quickly are in a medium-high range. Then, one can think
about a low-pass filter followed by some sort of amplitude control to simulate this
behaviour. This simple extra adds sustain a more natural sounding and warmness
without much further computation or complexity. This operation is carried out in
the second code snippet showed in section 4.2, in line 12 .

Multiplication with playbackVoiceGain

As the reader may have seen from sustain implementation in III.Convolution sec-
tion 4.4, "summing" randomly samples of an audio snippet may lead to saturation,
as output can become really loud (due to summing many high volume samples).
In [8], this is tackled using two VU envelope followers, which involves more oper-
ations and therefore less computation speed. Another way to face this problem, is
just simply multiplying the taken sustained snippet once by some gain rather than
being analyzing every time which is the incoming volume level so as to leverage
the volume level of the sustained snippet. This approach solves the problem real
quick without much more needed operations.

The procedure of storing velvet noise

From found math expressions of velvet noise definitions [11], one can regard im-
plementing it such it is proposed. However, when running a real-time audio plugin
in MATLAB, one cannot code a varying-size vector containing the impulses and
positions of the VNS (the number of total impulses are within a range, but not the
same number of impulses may be in a VNS and other even with the same impulse
density). As the number of impulses may vary within a VNS and other with same
characteristics due to their random nature, the position and sign array will vary
its size depending on the iteration. That is the reason why the implementation of
velvet noise 4.3 is coded as such using non-variable size vectors filled with zeros.

4.7 Tunable parameters and GUI Implementation

As stated in the Project Goals 1.5, TVC is requested to have an attractive GUI, so it
is beautiful and not really complex. Therefore, the selected turnable parameters in
the GUI are:

• SustainThreshold: when input signal SURPASSES this limit, input will be
sustained.

4.7. Tunable parameters and GUI Implementation 51

• SustainReady: when input signal is BELOW this limit, ready to sustain
again.

• Cloud Volume: gain for the sustained audio snippet.

• Velvet Touch: the number of impulses per second a sustained grain will have.

The standard GUI that MATLAB show for this plugin can be seen on figure 4.7:

Figure 4.7: MATLAB default GUI for the Sustain effect

As figure 4.7 is not really an attractive user interface, a more colourful still
minimalist GUI was designed with a "manual" within itself (see figure 4.8):

Figure 4.8: First version of sustain effect GUI

In despite of the implemented modifications of figure 4.8, still GUI did not look
professional enough and parameters were preferred to be intuitive rather than
using technical notation. Then, metaphors with clouds are used for naming the
knobs and faders. Consequently, a redesigned GUI (see figure 4.9) was decided as
final version of the GUI.

52 Chapter 4. Sustain Implementation

Figure 4.9: Final version of sustain effect GUI

Chapter 5

Reverberation Implementation

Oriented by the work in [11] of Velvet Noise Delay Networks, the following im-
plementation developed its main idea adding the concept of "Modulated FDN"
(MFDN) to achieve a different reverberation sound. MFDN is a new concept in
FDN of which there is not much specific reference about it. Actually, no specific
scientific mention to MFDN have been found in reference to reverb. Although, it
could be found some references about a "wanted time variation" to break undesir-
able repetitions in late reverberation [46] to resemble "propagation path delays to
vary over time". Also, in [53] a series of paid videos could be found where a basic
FDN was using a fractional delay for modulating the delay lines (all at the same
time). Likewise, [5] had a knob to control a general modulation of the delay, al-
beit not each delay line specifically. Still, in technical literature or scientific papers
the concept of MFDN cannot be found yet as a studied reverb field. In MFDN,
each delay line is modulated with some specific rate and amplitude, expanding
the modulation possibilities. A similarity regarding the time variance of FDN, can
be found on [43], where the feedback matrix are time-varying, although delay lines
are untouched.

The real-time plugin was developed using the Audio System Toolbox in the
MATLAB environment and full code can be found in the author’s Github repos-
itory [25]. For the sake of brevity, FDN order 4 code implementation is referred
henceforward.

5.1 Summary of the algorithm

For a complete work flow of the algorithm, mind figure 5.1.
A standard FDN consists of a set of delay lines interconnected through a feed-

back matrix A forming a loop (that is why it is called "feedback" delay network)
[20]. The feedback matrix (also called "scattering" matrix) defines the recirculating
gains for each delay line. If this matrix is orthogonal, a lossless prototype is ob-

53

54 Chapter 5. Reverberation Implementation

tained, and the output of one delay is redistributed among to the input of all delay
lines.

The output y(n) of the MFDN, for an input x(n), is as follows:

y(n) =
N

∑
i=1

ci(z)si(n) (5.1)

si(n + mi + ampi · ratei(n)) =
N

∑
j=1

Aijgjsj(n) + bix(n) (5.2)

where bi and ci are the input and output coefficients, respectively, Aij is the
feedback matrix element, gi is the attenuation gain, and si are the output states of
each delay line. Notice that delay lines delays are being modulated by ampi and
ratei(n).

The transfer function of the FDN where b and c input and output gains vectors
are replaced by bi(z) and ci(z) sparse VNS filters is:

H(z) =
Y(z)
X(z)

= c(z)T(Dm(z)−1 − A)−1b(z) (5.3)

where b and c are vectors containing the input and output gains, Dm(z) =
diag(G1(z)zm1, G2(z)zm2, ..., GN(z)zmN and A is the feedback matrix.

For an overview of the algorithm in an UML style, refer to figure 5.2.

H(z) =
Y(z)
X(z)

= c(z)T(Dm(z)−1 − A)−1b(z) (5.4)

5.2 I. Generation of Velvet Noise

Velvet Noise Sequences (VNS) (as many as the FDN order) are generated only
once, when the plugin is initialized. Unlike the Sustain Implementation described
in Chapter 4, these VNS are set up as vectors rather than being generated on
a sample by sample basis. Furthermore, there is another distinction; the VNS
have the option to be exponentially decaying. The advantage of using decaying
VNS instead of standard VN is that it can be optimized to have a practically flat
magnitude response and prevent the smearing of transients [11]. This is at the cost
of having some late impulses which may not contribute to the echo density, as they
may become inaudible. See figure 5.3 for an example of decaying velvet noise.

Refer to equations 5.5, 5.6, 5.7 for the signs, positions of the impulses and
decaying impulses of a decaying VNS calculation respectively:

s(m) = 2 · round(r1[m])− 1 (5.5)

5.2. I. Generation of Velvet Noise 55

Figure 5.1: MFDN overview of order 4.

56 Chapter 5. Reverberation Implementation

Figure 5.2: Velvet Noise Modulated Feedback Delay Network (VNMFDN) UML.

Figure 5.3: Decaying Velvet Noise with Fs = 44100, α(decayConstant) = 0.01, Nd = 1000.

5.2. I. Generation of Velvet Noise 57

k(m) = round[mTd + r2[m](Td − 1)] (5.6)

se(m) = e−(αm) · s(m) · r3(m) (5.7)

Where r1 is a sequence of random numbers uniformly distributed in the range
from 0 to 1, r2 is also a random noise sequence with same characteristics, r3 is
a vector of random numbers uniformly distributed in the range from 0.5 to 2 (as
range used in [11]) and Td is the average distance of impulses.

The following code is used for the generation of VNS (notice k to be the array-
Positions and se the signArray of decaying impulses):

1
2 function [vn, se, k, NumberOfImpulses] = V3vNoiseGeneratorPAPERvelvet(

Ls,Fs, Nd, DecayConstant)

3
4 vn = zeros(Ls, 1); % <PREALLOC>

5
6 % Grid size

7 Td = Fs / Nd; %Nd: The pulse density, or the average number of nonzero

impulses per secon

8
9 % How many impulses in this VN?

10 NumberOfImpulses = floor(Ls / Fs * Nd);

11 m = (1:NumberOfImpulses)';

12
13 % Positions at where impulses are located?

14 k = floor(m * Td + rand(NumberOfImpulses, 1) * (Td − 1));

15
16 % make sure our locations are less than NoiseSamples size

17 k = k(k < length(vn));

18
19 % Sign (−1,1) for each impulse

20 sign = 2 * round(rand(NumberOfImpulses,1)) − 1;

21
22 % Assing the sign to those positions

23 vn(k) = sign(1:length(k));

24
25 %% Computation of Se

26 % r3(m) is a random gain between 0.5 and 2.0

27 r3 = rand(NumberOfImpulses,1) * 1.5 + 0.5;

58 Chapter 5. Reverberation Implementation

28
29 se = exp(−DecayConstant .* m) .* sign .* r3;

30
31 % Make sure we are not taking more

32 se = se(1:length(k));

33
34 end

Thereupon, the loop of the real time implementation starts (II. block of figure
5.2). It is divided into five sections which will be further explained hereunder.

5.3 Update Megabuffer with Input chunk

As FDN is a reverberation effect, we need a buffer which "keeps track" of the past to
use it as a playback (the actual reverberation). This is called in TVC the megaBuffer.
megaBuffer will be filled up with the incoming input audio chunks using function
putVectorInBufferV4 after initializing the input and output vectors:

1 % Fill megaBuffer putVectorInBufferV2(in,buffer,

bufferLength, n)

2 p.megaBuffer = putVectorInBufferV4(in_mono, p.megaBuffer, p

.MegaBufferSize, length(in_mono) + p.InputLengthHolder);

% Write locations

1 function [buffer] = putVectorInBufferV4(in,buffer, BufferLength, n)

2 %putVectorInBuffer Puts a whole vector into a buffer from position N to

3 %N+length(in)

4
5 % BUFF = [0 0 0 0 0]';

6 % N = 3;

7 % IN = PAST <[1 2]'>PRESENT

8 % PUTIN = [1 2 0 0 0];

9
10 indexC = mod(n−1,BufferLength)+1;
11 indexL = indexC+length(in)−1; % Last position

12
13 if indexL < BufferLength

14
15 buffer(indexC: indexL, 1) = in;

16
17 else

5.4. Input convolution with velvet noise 59

18
19 buffer(indexC: BufferLength, 1) = in(1:BufferLength−indexC+1);
20 buffer(1: abs(indexL − BufferLength), 1) = in((BufferLength−

indexC+2): end);

21
22 end

23
24 end

5.4 Input convolution with velvet noise

A convolution will be performed for each delay line by accessing the megaBuffer at
k positions (each one corresponds to each VNS, and there are as many VNS as the
FDN order). This is achieved by multiplying the sample values at these positions
with their correspondent decay impulses and finally summing them all (per each
delay line). Afterwards, the feedback coefficients are summed, which will consti-
tute the input to the delay lines.

1 % OutB

2 % outB1

3 p.outB1 = sum(p.megaBuffer(kCalculatorV3(p.InputLengthHolder

+ n, p.k1', p.kLengthINPUT, p.MegaBufferSize)).* p.se1);

4 % outB2

5 p.outB2 = sum(p.megaBuffer(kCalculatorV3(p.InputLengthHolder

+ n, p.k2', p.kLengthINPUT, p.MegaBufferSize)).* p.se2);

6 % outB3

7 p.outB3 = sum(p.megaBuffer(kCalculatorV3(p.InputLengthHolder

+ n, p.k3', p.kLengthINPUT, p.MegaBufferSize)).* p.se3);

8 % outB4

9 p.outB4 = sum(p.megaBuffer(kCalculatorV3(p.InputLengthHolder

+ n, p.k4', p.kLengthINPUT, p.MegaBufferSize)).* p.se4);

10
11 % inDL: Sum outB1 with fb (feedback coeffs) for each delay line

12
13 % Combine input with feedback for respective delay

lines

14 inDL1 = p.outB1 + p.fb1; inDL2 = p.outB2 + p.fb2; inDL3 = p

.outB3 + p.fb3; inDL4 = p.outB4 + p.fb4;

60 Chapter 5. Reverberation Implementation

As we are using buffers, we need a function that translates any position (po-
sitions greater than the buffer) to some positions that we actually can relate of
our buffers (e.g. if bufferSize is 100 and we want to access position 125, the ac-
tual acccessed position would be 25). This is what is performed in kCalculatorV3
function:

1 function [k] = kCalculatorV3(n, k, lengthK, lengthBuffer)

2
3
4 aux = n−k ;

5
6 if any(aux <= 0)

7
8 pos = (aux <= 0);

9 pos = sum(pos);

10 pos = (lengthK − pos + 1) : lengthK ;

11 aux(pos) = aux(pos) + lengthBuffer;

12
13 end

14
15
16 if any(aux > lengthBuffer)

17
18 pos = (aux > lengthBuffer);

19 pos = 1:sum(pos);

20 aux(pos) = aux(pos) − lengthBuffer;

21
22 end

23
24
25 k = aux;

26
27 end

5.5 Modulated Delay Lines

Each delay line has its own buffer so the past can be accessed in order to perform
the modulation operation. The delay (accessed past position) is determined by the
d value of that delay line plus the amplitude (amp) multiplied by the (rate). The
maximum delay is given by summing the amplitude (amp) to the delay value (d).
If the result of the summation is bigger that the buffer, (suppose we want to access

5.6. Feedback Coefficients 61

past position 1000, but our buffer is 750), then, modulation will be accessing po-
sition 250 of our buffer. This modulated delays works similar like a flanger effect
would do.

1 % outDL: Parallel output delay lines

2 [outDL1, p.buffer1] = modDelay(inDL1,p.buffer1, p.Fs, n + p

.idx_process * length(in_mono) , p.d1, p.amp1, p.rate1);

3 [outDL2, p.buffer2] = modDelay(inDL2,p.buffer2,p.Fs, n + p.

idx_process * length(in_mono) , p.d2,p.amp2,p.rate2);

4 [outDL3, p.buffer3] = modDelay(inDL3,p.buffer3,p.Fs, n + p.

idx_process * length(in_mono) , p.d3,p.amp3,p.rate3);

5 [outDL4, p.buffer4] = modDelay(inDL4,p.buffer4,p.Fs, n + p.

idx_process * length(in_mono) , p.d4,p.amp4,p.rate4);

5.6 Feedback Coefficients

The output of each delay line is multiplied by the feedback matrix coefficients (a11,
a12 ... a44). Thereupon, the outputs of the feedback matrix are multiplied by each
line gain to constitute the updated feedback coefficients (fb) which will be used in
the next iteration. They will be used in next main loop iteration (see code of section
5.4).

1 % fb: Calculate feedback coefficients entering the matrix (

including crossover)

2 p.fb1 = p.g1*(p.a11*outDL1 + p.a21*outDL2 + p.a31*outDL3 +

p.a41*outDL4);

3 p.fb2 = p.g2*(p.a12*outDL1 + p.a22*outDL2 + p.a32*outDL3 +

p.a42*outDL4);

4 p.fb3 = p.g3*(p.a13*outDL1 + p.a23*outDL2 + p.a33*outDL3 +

p.a43*outDL4);

5 p.fb4 = p.g4*(p.a14*outDL1 + p.a24*outDL2 + p.a34*outDL3 +

p.a44*outDL4);

5.7 Output convolution and output mix

Same procedure as in section 5.4 is followed: convolution with velvet noise (a dif-
ferent velvet noise from the one calculated for input coefficients). Subsequently,
a simple dry/wet knob is implemented to model how much of the output signal

62 Chapter 5. Reverberation Implementation

belongs to the effect and how much from the original source.

1 % OutC

2 % outC1

3 p.outC1 = sum(p.copy1_of_megaBuffer(kCalculatorV3(p.

InputLengthHolder + n, p.k5', p.kLengthOUTPUT, p.

copy_of_megaBuffer_Size)).* p.se5);

4 % outC2

5 p.outC2 = sum(p.copy2_of_megaBuffer(kCalculatorV3(p.

InputLengthHolder + n, p.k6', p.kLengthOUTPUT, p.

copy_of_megaBuffer_Size)).* p.se6);

6 % outC3

7 p.outC3 = sum(p.copy3_of_megaBuffer(kCalculatorV3(p.

InputLengthHolder + n, p.k7', p.kLengthOUTPUT, p.

copy_of_megaBuffer_Size)).* p.se7);

8 % outC4

9 p.outC4 = sum(p.copy4_of_megaBuffer(kCalculatorV3(p.

InputLengthHolder + n, p.k8', p.kLengthOUTPUT, p.

copy_of_megaBuffer_Size)).* p.se8);

10
11 % Combine parallel paths

12 out_mono(n,1) = p.OutputGain * 1/4 *(p.outC1 + p.outC2 + p.

outC3 + p.outC4); % Mono, I know

13
14 % Wet/dry: Mix reverb & Input

15 out_mono = p.Wet .* out_mono + (1 − p.Wet) .* in_mono;

16
17 out = [out_mono out_mono]; % Here you are your stereo

5.8 Design parameters decisions

There are some parameters decisions specified previously without further expla-
nation not to overcrowd the commentary of the code implementation. Thereupon,
some clarifications follow:

5.8. Design parameters decisions 63

Choice of delay lines

d values are chosen randomly among prime numbers keeping a minimum distance
of 400 samples and are uniformly distributed. This is intended to avoid clustering
of echoes. Although there is not much consensus about the delay line values [41],
their values, as suggested by Schroeder and in [45, p. 111], are chosen to be be
mutually prime.

Choice of feedback matrix

The most common matrices used for FDN are unilossless. Inside this category, we
can find different matrix types: Hadamard [19], Householder [19], identity ma-
trices [27] and orthogonal. Hadamard is finally chosen as it turns out to prolong
more the reverberation in MFDN in comparison with Householder. Identity matrix
was rejected to use as it reduces the missing the complexity other matrices achieve
in comparison to its simplicity (converts the FDN to a parallel set of comb filters).

Amplitudes and rates values for modulation

At some amplitude and rates values, the MFDN behaves as a flanger or chorus,
which is not the expected comportment of a reverb effect. Then, using informal
hearing, the highest values (just before turning the MFDN into a flanger) of ampli-
tude and rates were selected. These highest values conform the "Extreme" mode
for the reverb plugin. The slightest modification of amplitudes and rates in which
an user can experiment a clear difference in the quality of sound forms the "Light"
mode for modulation (see figure 4.9 noticing "Cloud Brightness" drop-down list).

Convolutions with velvet noise

As stated in the introductory paragraph of this chapter 5, a convolution with velvet
noise is performed in the input and in the output of the FDN. this increases echo
density in the beginning of the impulse response with low computational cost,
with better results (faster echo density growth) than doubling the number of used
delay lines [11].

Using a decaying velvet noise

Standard velvet noise cause frequency coloration in comparison of using a decay-
ing velvet noise sequence which have a more flat spectrum [11]. Also, output is

64 Chapter 5. Reverberation Implementation

more pleasant confirmed by an informal listening by the author.

5.9 Tunable parameters and GUI Implementation

As stated in the Project Goals 1.5, TVC is requested to have an attractive GUI, so it
is beautiful and not really complex. Therefore, the selected tunable parameters in
the GUI (see figure 5.4) are:

• Cloud Height: toggles between high feedback gains values (heaven) and
standard values (sky).

• Cloud Brightness: selects a modulation preset. There are five different op-
tions of modulation (light, medium, high, ultrahigh and extreme).

• Cloud Density: standard dry/wet knob.

• Output Gain: to amplify output.

Figure 5.4: GUI of reverb effect

Full control GUI
The aforementioned GUI in figure 5.4 presents some limitations when most of

the FDN parameters can be actually be under user control in real time. So, not
this to limit the options to the user who wants it all, a "Full Control" version of the
reverb VST for thee different orders was created (see figures A.1,A.2 in Appendix
A for orders 8 and 16) having the following parameters:

• FeedbackGain: feedback gain of the line.

• Delay: samples delayed in line.

• Modulation Speed: how fast is modulation in line.

• Modulation Range: range of samples modulation per line.

Chapter 6

Evaluation

This chapter describes three different types of evaluations to assess the results of
the plugin. First of all, individual evaluations (impulse response (IR), White Gaus-
sian Noise (WGN) response and T60 measurement, with white Gaussian noise)
were carried out over sustain effect and reverberation effect. For the reverbera-
tion effect, also different levels of modulation (low, medium and high) were set
to see how affects the sound. Subsequently, different combinations of sustain and
reverb were be arranged to measure the system response to impulse and WGN.
Based on these combinations, the best plugin arrangement was chosen to make the
second test where people actually evaluate how they perceive the plugin using a
two-alternative forced choice test. Lastly, a third evaluation was made to evaluate
how experienced users of VSTs like the plugin.

6.1 Technical Evaluation

For the technical evaluation, the following experiments were carried out:

• Sustain Responses: impulse response and WGN response.

• Reverberation Responses:

FDN4: No modulation, medium and high modulation. For each one,
IR, WGN response (in amplitude and spectrogram both) and T60 times per
each).

FDN8: same as FDN4.

FDN16: same as FDN4.

• Arrangement of Effects:

Series: Sustain + Reverberation: WGN response (in amplitude and spec-
trogram).

65

66 Chapter 6. Evaluation

Series: Reverberation + Sustain: WGN response (in amplitude and spec-
trogram).

Parallel: Reverberation // Sustain: WGN response (in amplitude and
spectrogram).

6.2 Two-alternative forced choice audio test Evaluation

For the comparison audio test and considering the coronavirus pandemic, an on-
line evaluation was preferred. For that purpose, PsyToolkit [50, 49] has been used
for the online TVC. With this survey platform [50, 49] one can upload audio files
in a fixed audio quality, which is an important feature in tests such as this. For the
test method, Two-Alternative Forced Choice (2AFC) [12] was chosen and used for
measuring the subjective experience of a person of how pleasant or how she/he
likes/prefers a sound in comparison with another. After some personal and mu-
sical questions [29], 2 different sound snippets (of different configurations, FDN4
No modulation and FDN8 high modulation for example) were presented (regard
figure 6.1). Afterwards choosing the most pleasant, the participant is asked to mo-
tivate her/his decision or choice in few words (this is for each pair of audios). A

Figure 6.1: Screenshot of the Comparison audio test.

total of 36 pairs of audio snippet were to be compared by participant as it can be
noticed from figure 6.2. To motivate participation, the Sustain plugin was offered

Figure 6.2: Matrix of possible sounds combinations (pairs) to listen to.

free after completing the test.

6.3. VST Evaluation 67

6.3 VST Evaluation

For the participants who have had previous experience with VSTs, the following
test about the plugin appearance and performance was made. As stated in the
Project Goals 1.5, an attractive GUI is desirable for the project. Therefore, there
were some questions regarding this issue too.

The following questions among others were asked to participants using the
VSTs in their preferred DAW:

Regarding appearance:

• What did you think The Velvet Cloud UI/design when you first saw it?

• Anything in design that can be improved?

Regarding preferred performance:

• Make a screenshot of your favourite plugin configuration

• What is your least favorite part about The Velvet Cloud?

• If you could add any feature(s) what would it/they be?

Further information:

• If you could add a question to this questionnaire, what should it be? What
would your answer be to that question?

• Any additional comments?

The European Survey web service [56] was used to gather information for easi-
ness (uploading screenshots from participants) and to make the questionnaire more
attractive, see figure C.2 in Appendix B for a reference.

6.4 Preliminary Evaluation of code efficiency

As the reader may have noticed, the reverb implementation 5 code could be written
in distinct ways so as to speed up the DSP, such as hard-coding functions, invok-
ing loops rather than calling a function several times in multiples lines, or fitting
variables into a matrix. Those techniques are very common ones to be used in
general programming or coding for saving computational time. However, it turns
out completely the opposite in this specific case.

68 Chapter 6. Evaluation

Figure 6.3: Screenshot of MATLAB Profiler tool.

Using MATLAB Profiler tool (refer to figure 6.3) and checking out which were
the code lines that were consuming the most time, one finds out that these ap-
proaches were even counterproductive, increasing CPU time.

If we clicked on a specific function, it could be observed how much time a code
line took to be processed, as we can regard in figure 6.4.

Notice that in figure 6.4, inside the red square (the line code that actually lasted
the most time to be computed) was an access to a position of a vector. This may
be a reason why MATLAB ran slower the code if we for example, merged several
variables into a matrix, and we accessed specific positions of the matrix rather than
each variable separately in this specific case.

Some changes (thought to save time) in code that were carried out were:

• Variables (ie: k1, k2, k3 ..., and se1...) were merged into a matrix of vectors: (
k(:,1), k(:,2)....se(:,1), ...).

• FOR loops are created for computing OutB OutC.

• modDelay was invoked within a loop.

• fb1,fb2 ...fbn and g1, g2, ...gn were transformed into vectors (e.g. fb(1), fb(2)
... fb(N)).

• copy1ofmegaBuffer and the others buffers were merged into a huge matrix.

Surprisingly, none of them reduced the computation time. Maybe, using an-
other audio processing tool like JUCE, which is based on C++ programming lan-
guage (a lower level language) and much better suitable for real time applications
could led to a computing speed improvement.

6.4. Preliminary Evaluation of code efficiency 69

Figure 6.4: Screenshot of MATLAB Profiler within modDelay function. In a red square, the line that
takes the most time to compute is highlighted.

Chapter 7

Results

This chapter presents the results of the three different evaluations carried out in
chapter 6.

7.1 Technical Evaluation Results

7.1.1 Sustain Responses

Here, the sustain audio effect will be exposed.

Impulse response

When setting an impulse as input to the sustain effect, it let it pass without really
sustaining it as we can see from figure 7.1; silence is coming as an output.

Figure 7.1: Sustain impulse response

71

72 Chapter 7. Results

White Gaussian Noise response

When WGN is used as an input, noise was low-passed and amplitude is decreased
as we can see from figure 7.2.

Figure 7.2: WGN sustain response

7.1.2 Reverberation Responses

Based on the different FDN chosen orders (4, 8 and 16) the reverb audio response
will be analyzed. The distinguishable characteristic of this reverb implementation
was the possibility of being modulated. Thereupon, the three different orders will
be analyzed without modulation, and with a type of modulation. As modulation
possibilities are infinite, some amplitude and rate values were chosen to define
a "medium" modulation and "high" modulation. These configurations also corre-
sponded to the effects used for the two-alternative forced choice test (2AFC) as
discussed in section 6.2. In the Individual VST Evaluation in section 6.3, partici-
pants found five types of modulation (light, medium, high, ultra-high and extreme)
for the reverb configuration (extreme modulation is near to convert the reverb ef-
fect into a chorus). For the sake of avoiding an overcrowded evaluation filled with
all modulations graphs, only no modulation, medium and high were decided to
be analyzed. Gains of the delay lines of the FDNs were tuned to have the highest
possible value before the system lose its stability.

All responses are gathered in Appendix B.

7.1. Technical Evaluation Results 73

7.1.3 FDN4: No modulation, medium modulation, and high modulation

The FDN order 4 presented this IR (see figure B.1), this WGN response (refer to
figure B.2), and these T60 times (see figure B.3).

7.1.4 FDN8: No modulation, medium modulation, and high modulation

The FDN order 8 presented this IR (see figure B.4), this WGN response (refer to
figure B.5), and these T60 times (see figure B.6).

7.1.5 FDN16: No modulation, medium modulation, and high modula-
tion

The FDN order 16 presented this IR (see figure B.8), this WGN response (refer to
figure B.9), and these T60 times (see figure B.10).

7.1.6 Arrangement of Effects

TVC, as said beforehand, is a digital audio effect comprised of sustain and reverber-
ation effects working together. One can come up with the different arrangements
of these two effects:

• Series: Sustain + Reverberation

• Series: Reverberation + Sustain

• Parallel: Reverberation // Sustain

These arrangements were also evaluated thereupon all with an FDN8 with high
modulation configuration.

Series: Sustain + Reverberation

Configuring the effects in series, sustain followed by reverb showed this response
(see figure 7.3).

Series: Reverberation + Sustain

Configuring the effects in series, reverb followed by sustain, the system showed
this response (see figure 7.4).

Parallel: Reverberation // Sustain

In this configuration, reverb is in parallel with sustain, presenting the latter re-
sponse showed in figure 7.5).

74 Chapter 7. Results

Figure 7.3: Sustain+Reverb WGN response.

Figure 7.4: Reverb+Sustain WGN response.

7.2. Two-alternative forced choice audio test Results 75

Figure 7.5: Reverb//Sustain WGN response.

7.2 Two-alternative forced choice audio test Results

In total, 20 people (7 females and 13 males) participated in the survey. Participants
were recruited using social media (Facebook) and personal acquaintances of the
author. This test was carried out using only a web browser, no system requirements
were needed. Participants were only allowed to participate in only one test from
the two presented in this project (not to bias results). Ages of participants were
ranging from 23 to 42 years old, with a mean of 24.9524 year old, showing the
following results (see figure 7.6. For each cell, the leftest numbers indicate how
many people preferred the row sound, versus the rightest number which indicates
how many people preferred the column sound. 7 participants played at least on

Figure 7.6: Results of the 2AFC audio test.

musical instrument. Their musical experience ranged from 2 years til 5 or more
years, with a mean of 4 years musical practice. Filtering the test including only
people with music expertise shows these results (see figure 7.7).

From results of figure 7.6, people preferences were not really inclined by any
sound type in general. These maybe ambiguous results are further discussed in

76 Chapter 7. Results

8.2.

Figure 7.7: Results of the 2AFC audio test (only people with musical experience). When all but one
agree on a decision, cell is highlighted.

For results reading easiness, "sub-matrices" of 7.7 will be represented in figures
7.8, 7.9 and 7.10.

Figure 7.8: Participants preferred sound: FDN4 VS FDN8.

From figure 7.8 it can be observed that there was not an absolute preference for
a FDN order or modulation (31 people have liked more order 8 in comparison of 30
of order 4), however it can be emphasized that when it comes to high modulation,
a preference for a no modulated or less modulated sound is desired. Participants
comments found this "high" modulation it less defined and a bit annoying. When
"high" modulation was selected, a lower order is preferred.

Figure 7.9: Participants preferred sound: FDN16 VS FDN4

From figure 7.9 it can be observed that FDN order 4 with no modulation is
preferred over any FDN order 16 possibility. Comments were that order 16 sound
is too wide, too reverberating and bad-defined. In this case, the preference over
another modulation over "high" modulation was not so clear defined.

From figure 7.10 it can be observed that FDN16 was preferred over FDN8 with
no modulation (excluding "high" order 16 modulation). Although, FDN8 "high"
modulation was preferred over FDN16 with no modulation. Although when "high"
modulation comes to FDN16, FDN8 with no modulation was preferred. There was
not a clear preference between FDN8 with "medium" modulation and FDN16 with
no modulation, however, if both were with not modulation,FDN16 is liked more.

7.3. VST Evaluation Results 77

Figure 7.10: Participants preferred sound: FDN16 VS FDN8.

7.3 VST Evaluation Results

In total, 15 people (1 females and 14 males) participated in the survey. Participants
were recruited using social media (Facebook) and personal acquaintances of the
author with some already known music and DAW expertise. All participants in
this test required to have some experience working with DAWs and VSTs. 12
participants used MacOS and 3 Windows. 10 participants used Ableton Live, 2 for
Reason, 1 for Reaper, 1 for VCV Rack, and 1 Logic Pro X and as their test DAW.
Participants have been using DAW ranging from 1 year till 20, with a mean of
9.6333 years. Answers were received and studied using the EUSurvey platform
(refer to figure C.1 in Appendix B).

7.3.1 Regarding installation

Nearly any participants did not have much trouble with installation: "Fairly easy.
Drag, drop and open is as simple as it gets.". 2 Mac users ended up using the
Audio Unit version of the plugin if VST did not work. 2 Windows users were hav-
ing problem with DAW recognizing the VST, which was solved trying it in another
different DAW (Reaper). Some users needed a 32 bits windows version, which was
not available and could not perform the survey

7.3.2 Regarding GUI

Most participants agreed that "It looks nice. Limited options of control makes it
look relatively easy to go to. ", "It is cute and unique", "I liked the simple design
and the reduced amount of controls, I really liked the fact that it looks like a real
physical pedal.". Some more picky, complained about parameters not having tech-
nical names, in contrast, they " slowly realized what each knob was doing while
playing around" or " It’s not obvious what some parameters are actually doing at
first sight, but it made me also interested in trying the plugin." Suggestions about
improving the GUI were about "reorder the knobs to reflect the signal path (e.g.
dry/wet should be last)", "Decide to use either sliders or knobs", "would be cool
with some "special" knobs", "It would be nice to have both effect integrated within
the same GUI".

78 Chapter 7. Results

7.3.3 Respecting performance

Participants stated mostly a positive feedback, with statements such as "didn’t
ever "explode" or go into unstable states despite trying really hard. My ears are
safe!!", "How easy it was to get a pretty deep reverb effect and a sustaining dron-
ing sound. While playing on a clean electric guitar, I definitely got some Brian
Eno-type sounds.", "Reverberation to seem so psychedelic (in a good way).", "The
FDN sounds super nice!", " Maybe the resolution of the slider was too small for
sounds low in volume. ", "It was nice to first experience the plugin with a really
wet and reverberated default setting.", "you can play a chord in order to let it play
to infinity and then play melodies over it".

7.3.4 Pros and Cons

As bad performance, participants stated that "convert my input signal to mono",
"had some clicking ", "Mistakes can happen easily while recording with such an
effect, so it would be a bit annoying in this case. ", "threshold ready was a dif-
ficult parameter to understand". As in contrast, other users declared: "sustain is
very smooth and has nice micro-variations when you just let it ring", "The FDN. It
sounds really nice!! ", "modulation behavior adds a nice touch ", "more interesting
results compared to usual reverbs", "design", ""extreme" preset of the reverb", "The
option to dry/wet mix the signal with the sustained signal is nice! Sustain Thresh-
old is useful, and heaven/sky switch is a quick and easy switch between a more or
less "wet".

7.3.5 Regarding enhancements/suggestions

Participants affirmed some features they would like to find in a plugin like this,
such as "ability to modulate the tail of the sustain, and a built-in side-chain", "vi-
sual feedback for setting the threshold of the sustain", "Automation/kill switch
over when the sustainer sustains.", "Blushing cheeks animation on the cloud, the
cloud could be animated depending on the parameters or analysis of the plugin
output", "some visual cues on the sustain plug", "A reset / panic button. ", "re-
versed reverb" option", "possibility to choose the waveforms of the modulation in
FDN reverb".

7.3.6 Regarding Full Control version

"Everything clear regarding the parameters and the control of parameters was very
intuitive.", "I found it difficult to get good reverb results, but on the other hand I

7.3. VST Evaluation Results 79

liked the weird sounds that it can produce.", "It’s definitely crazy, but in a fun way.
I made my MIDI track sound sort of hellish.", "too big GUI size".

7.3.7 About price

People thought (as mean) TVC is worth price of 40 dollars.

7.3.8 Regarding preferred configuration

8 people sent his/her preferred configuration with the results figure 7.11 shows. Of

Figure 7.11: Participants preferred configuration of TVC.

this 8 people, only 5 sent a screenshot where the signal flow could be noticed and
verify if the arrangement of the system they chose was Reverb + Sustain, vice-versa
or parallel.

7.3.9 Extras

Although not asked in the survey, some participants like TVC so much that sent
the author music files using the effect. These can be found in the GitHub of the
project [25].

Chapter 8

Discussion

8.1 Technical Evaluation

As we can observe from section 7.1, there were many things to consider from the
several obtained graphs which will be considered separately:

8.1.1 Regarding Sustain Effect

The outputted silence when using an impulse (refer to figure 7.1), made sense as
sustain algorithm (when firstly initialized) takes whatever audio input comes as
the audio snippet to be sustained. From sustain implementation in chapter 4, we
can see that in order to create the illusion of the audio being sustained, of an audio
snippet, some samples (determined by velvet noise) of it are summed each loop. If
audio snippet is nearly fully comprised of 0s’, and just an extremely few number
of joint samples are 1’s and afterwards is low-passed, then the expected output is
composed also by 0’s, and therefore, silence.

Also, regarding the WGN response, this behaviour (low pass and amplitude
descent) was the expected one from the implementation described in chapter 4.
Noise was sustained smoothly over time.

8.1.2 Regarding Reverb Effects

The following figures referred in this section 8.1.2 are to be found in Appendix C.

FDN4
As reader can notice from figure B.3, not great T60 times were achieved by

this order. The use of modulation tends to disperse the energy of the sound wave
making the amplitude of the reverberated tail smaller (see figures B.1 and B.2).

81

82 Chapter 8. Discussion

Also, T60 times were relative attenuated when higher modulated. Probably, due
to energy being dispersed quicker than in medium modulation. From the hearing
experience of the noise, little more can be said. However, modulation caused some
more pleasant sensations in the hearing as will be showed in the 2AFC test section
6.2.

FDN8
As we can see from figure B.6, T60 times have increased and modulation again

tended to disseminate the energy of the reverberation in the low frequencies. Some
harmonic appeared in the reverberation tail as we can see from figures B.4 and B.5
when no modulation was used. Similarly to the behaviour of FDN4, the use of
modulation contributed to the scattering of the frequencies energy and the highest
it was, the faster this decay was.

As a side note, as commented previously, the FDNs were tuned to have the
highest possible value before the system losses its stability. If these gains were a
higher value, the following behaviour would arise; disturbing harmonics will ap-
pear in the spectrograms continuously in time. An interesting result, was that, if
modulation was used, this disturbing harmonics disappeared (gets randomized)
and higher T60 times could be achieved as we can see form figure B.7.

FDN16
From figure B.10 we can see that T60 have increased, but not significantly. The

harmonic behaviour was even more diffused in this higher order as we can see
from figures B.8 and B.9. The scattering of the frequencies in the reverberation tail
was more evenly distributed and not only present mostly in low frequencies as
FDN4 or FDN8 showed in figures B.2 and B.5. Also, the "turquoise columns" in the
spectra of B.5 (and the ones that also appear vaguely in B.2 at the early moment
where WGN stops) were not visible anymore.

A low frequency tail appeared in the spectrogram B.9 in contrast to the other
FDN orders. This is possibly thought to be happening due to the chosen output
gains, which were not far from causing instability in the system.

8.1.3 Regarding different Arrangements

Reverb plus Sustain response in figure 7.4 was pretty similar to Sustain plus Reverb
in figure 7.3 although not equal, as none of them constitute a linear time invariant
system. Although, from subjective listening, Sustain plus Reverb in figure 7.1.6
was slightly more pleasant to the ear when evaluating a guitar jamming rather
than noise.

As for Reverb in parallel with Sustain, as we can see from figure 7.5 and the

8.2. Two alternative forced choice audio test 83

reader can notice, the sudden "stop" of the noise is not desirable nor pleasant at
all. This was due to the channel where only sustain was ON; when the noise is
stopped, the sustained noise was kept, but there was not a "smooth" transition
due to the fact that the audio effect chain in that track was not ended by a reverb,
compressor, or any other audio effect of dynamic volume control.

Taking all into consideration, best selected sounding arrangement was: Series:
Sustain + Reverberation 7.1.6. This was the reasoning for choosing this configura-
tion for the two-alternative forced choice audio test in evaluation in section 6.2 to
analyze its subjective performance.

8.2 Two alternative forced choice audio test

The question asked in this test after listening to 2 audio files was: "Which sound do
you prefer/like the most?", as we can confirm also from figure 6.1.

From comments received from participants in the survey, their preferences were
explained. There were comments of type: "I prefer this because is brighter, reverberat-
ing and wider", versus comments of type: "The other sound is really bad-defined and too
blurry", see figure 8.1 as an example of this participant preferences.

Figure 8.1: Participants liking a defined sound and participants prefering a more dirty/reverberated
sound (in bold).

From this, the following conclusion could be extracted:
Some participants preferred/liked more a clear, well-defined sound, in contrast

with participants preferring a wider, more dirty and reverberated sound.
As there were not a clear statement about which criteria to follow and an open/-

more subjective question was made, results were maybe biased and not confirming
clearly which sound sounds with more reverb, but rather which was more pleas-
ant. It was a subjective test, and people may have different opinions in their ratings
of how a sound should sound to be a better sound.

Moreover, audio quality files in .mp3 format (due to some platform issues .wav
were not used) may have made difficult participants evaluation apart from some
of them using really cheap no-brand earphones. This may have led to some in-
conclusive results from the 6.2 test for general people, as we can see from figure
7.6.

When selecting only people with music experience, results became clearer as we

84 Chapter 8. Discussion

can see from figure 7.7. Maybe music people criteria is more unified in comparison
with general people.

Hence, from the results we can conclude that FDN4 was preferred over any type
of FDN16; participants declared that FDN16 was"too" wide, while FDN4 was more
well-defined. It was also remarkable that FDN8 "medium" modulation was clearly
preferred over FDN16 "medium" modulation. FDN order 16 was creating a "too"
wide reverb which participants were not finding too pleasant. Although, FDN16
with any modulation type was preferred over FDN order 8 without modulation,
which could lead to concluding that modulation makes reverb more pleasant. Con-
versely, this did not hold comparing FDN16 to FDN4, however, participant reason-
ing changed; FDN16 seemed to be a "too crowded" reverb and more definition was
desired even for a reverb, and therefore, the preference for choosing FDN4. This
participants statement was supported as when "high" modulation came to FDN16,
FDN8 even with no modulation was preferred.

This suggest that FDN16 could be substituted by a lower order and people will
still find it pleasant and not much different.

If we compare FDN4 versus FDN8, in general, a modulated sound was pre-
ferred over no modulation at all, which could indicate that modulation adds a
more "pleasant" sound to reverberation. This did not clearly holds when compar-
ing with FDN16, but as mentioned beforehand, FDN16 was less liked in general
compared to other orders due to its "too much" reverberation.

8.3 VST Evaluation

From the extracted results of the survey (refer to Appendix C.1), several points
could be noticed:

• Installation was mostly easy to perform

• GUI looked nice, simple, suggestive and unique, although not really techni-
cal.

• Easy to get a deep/psychedelic reverb and sustain droning

• Brian Eno-type sounds, usable in ambient music

• Some controls could be prettified. An unified version and stereo version was
desirable

• Modulation added a nice touch, more interesting than usual reverb

• It was crazy, and it was fun

8.3. VST Evaluation 85

Also, from results showed by figure 7.11, it can be agreed that modulation is
preferred over no modulation and chosen by everyone, which confirms the com-
ments participants stated about modulation. "Heaven" and "Sky" modes were
equally preferred and low values of SustainThreshold were chosen. Little higher
values (but close to SustainThreshold value) of ThresholdReady were elected, which
may mean this parameter was not much clear enough by its only name, or people
liked it to be near SustainThreshold, which can may also make sense depending
on instrument you are using. No data of the instrument participants were testing
TVC on was recorded, which might be a good parameter to take into account in
the future.

The outcomes of this questionnaire did really much match with what stated
in the Project Goals section 1.5: An attractive, simple GUI, achieving a deep-
/psychedelic and really wet reverb, which recreates an unreal spaces and over
which you can play melodies thanks to the infinity automatic sustain.

Aside from the good results from this evaluation, several enhancements and
suggestions were acknowledged by participants such as making "stereo" the effect,
putting sustain killer or trigger by pressing a button, and possibilities of reversing
the reverb or modifying the wave-forms of the modulation.

In reference to the GUI, some missing characteristics were found to be quite
relevant. Such as placing some visual cues when sustain is actually sustaining,
prettifying controls, integrating both effects in just one GUI, using only knobs or
sliders and augmenting the definition of the background, will help to enhance the
visual richness of the plugin and make it even more attractive.

Chapter 9

Conclusion and Future Work

In this master thesis, a real-time plugin of sustain and reverberation was presented.
After reviewing the state of the art in sustain and reverb audio effects and inves-
tigating the different plugins the market offer for sustain and reverb effect, a tech-
nique (as a starting point) was developed for each effect: Convolution with velvet
noise for sustain and Velvet Feedback Delay Networks for reverberation (that is
why both effects as one system is called "The Velvet Cloud"). As for reverberation,
a new modality not present in state of the art was proposed in this project: Mod-
ulated Feedback Delay Networks. The aforementioned has been implemented as
two different VSTs which were found to have a deep, psychedelic and more inter-
esting sound than usual reverb with an unique and suggestive GUI. A technical
evaluation was performed over the VST possibilities as well as a Two Alternative
Forced Choice test to evaluate how its configuration affects sound subjectively. All
in all, project goals presented in section 1.5 can be regarded as completed.

A more profound analysis of how modulation configured the output of the sys-
tem and how it influences people rating reverberated sound is left for future work.
Additionally, further possibilities of modulation are to be explored, such as how
different modulation wave-forms affect reverb in a technical and a subjective way.
Also, many suggestions by participants were to be implemented although not fea-
sible due to lack of time, such as making an all-in-one VST, stereo output, solving
the "crackling" when changing VST parameters, a button to trigger sustain, and
visual animations of the GUI. Besides, although working properly, searching new
methods for saving computational speed in different ways could be an enhance-
ment to the plugin which may allow it to be feasible for a purchase and a release
to the market. An implementation of the VST in JUCE could be a step towards it.

87

Bibliography

[1] “A new approach to digital reverberation using closed waveguide networks”.
In: Proc. Int. Computer Music Conf, Vancouver, 1985. 1985, pp. 47–53.

[2] Adil Alpkocak and Malik Kemal Sis. “Computing impulse response of room
acoustics using the ray-tracing method in time domain”. In: Archives of Acous-
tics 35.4 (2010), pp. 505–519.

[3] AudioThing. Fog Convolver - Convolution Reverb VST/AU/AAX Plugin - Au-
dioThing. https://www.audiothing.net/effects/fog-convolver/. 2020.
(accessed: December 2020).

[4] Sean Costello. The Philosophy of ValhallaSupermassive - Valhalla DSP. https://
valhalladsp.com/2020/05/06/the-philosophy-of-valhallasupermassive/.
2020. (accessed: December 2020).

[5] Sean Costello. Valhalla Super Massive - Valhalla DSP. https://valhalladsp.
com / shop / reverb / valhalla - supermassive/. 2020. (accessed: December
2020).

[6] Audio Damage. AD034 Eos 2. https://www.audiodamage.com/products/
ad034-eos-2. (accessed: December 2020).

[7] Stefano D’Angelo. Atlante pedal samples. https://soundcloud.com/user-
884388289-540474067/sets/atlante-pedal-samples. 2020. (accessed: De-
cember 2020).

[8] Stefano D’Angelo and Leonardo Gabrielli. “Efficient signal extrapolation by
granulation and convolution with velvet noise”. In: Proc. 21st Int. Conf. Digital
Audio Effects (DAFx-18), Aveiro, Portugal. 2018, pp. 107–112.

[9] Electro-Harmonix. EHX.com | Oceans 12 - Dual Stereo Reverb | Electro-Harmonix.
https://www.ehx.com/products/oceans-12. (accessed: December 2020).

[10] Jon Fagerström, Benoit Alary, Sebastian J. Schlecht, and Vesa Välimäki. Multi
Track Audio Player. http://research.spa.aalto.fi/publications/papers/
dafx20-vfdn/. 2020. (accessed: December 2020).

89

https://www.audiothing.net/effects/fog-convolver/
https://valhalladsp.com/2020/05/06/the-philosophy-of-valhallasupermassive/
https://valhalladsp.com/2020/05/06/the-philosophy-of-valhallasupermassive/
https://valhalladsp.com/shop/reverb/valhalla-supermassive/
https://valhalladsp.com/shop/reverb/valhalla-supermassive/
https://www.audiodamage.com/products/ad034-eos-2
https://www.audiodamage.com/products/ad034-eos-2
https://soundcloud.com/user-884388289-540474067/sets/atlante-pedal-samples
https://soundcloud.com/user-884388289-540474067/sets/atlante-pedal-samples
https://www.ehx.com/products/oceans-12
http://research.spa.aalto.fi/publications/papers/dafx20-vfdn/
http://research.spa.aalto.fi/publications/papers/dafx20-vfdn/

90 Bibliography

[11] Jon Fagerström, Benoit Alary, Sebastian J. Schlecht, and Vesa Välimäki. “Velvet-
Noise Feedback Delay Network”. In: International Conference on Digital Audio
Effects. 2020.

[12] Christopher D Green. “Introduction to Elemente der Psychophysik Gustav
Theodor Fechner”. In: Classics in Psychology, 1855-1914: Historical Essays. 1860.

[13] Minimal System Group. Dreamscape, Dreamscape plugin, buy Dreamscape, down-
load Dreamscape. https://www.pluginboutique.com/products/589-Dreamscape.
(accessed: December 2020).

[14] Bo Holm-Rasmussena, Heidi-Maria Lehtonenb, and Vesa Välimäkib. “A new
reverberator based on variable sparsity convolution”. In: Proc. of the 16th Int.
Conference on Digital Audio Effects (DAFx-13). Vol. 5. 6. 2013, pp. 7–8.

[15] HooRNet. HoRNet HCS1, vintage guitar compressor sustainer pedal plugin. https:
//www.hornetplugins.com/plugins/hornet-hcs1/. 2019. (accessed: Decem-
ber 2020).

[16] iZotope. Neoverb Features. https://www.izotope.com/en/products/neoverb/
features.html. 2020. (accessed: December 2020).

[17] Hanna Järveläinen and Matti Karjalainen. “Reverberation modeling using
velvet noise”. In: Audio Engineering Society Conference: 30th International Con-
ference: Intelligent Audio Environments. Audio Engineering Society. 2007.

[18] Ronald H Jones Jr and Bruce D Jobse. Real-time digital audio reverberation sys-
tem. US Patent 5,530,762. 1996.

[19] Jean-Marc Jot. “Efficient models for reverberation and distance rendering in
computer music and virtual audio reality”. In: ICMC. 1997.

[20] Jean-Marc Jot and Antoine Chaigne. “Digital delay networks for designing
artificial reverberators”. In: Audio Engineering Society Convention 90. Audio
Engineering Society. 1991.

[21] JOYOaudio. JGE-01 Infinite sustain JOYO. https://www.joyoaudio.com/
product/196.html. (accessed: December 2020).

[22] Marc Lingk. TimeFreezer - Audio and Music Instruments. http://www.timefreezer.
net/. (accessed: December 2020).

[23] Marc Lingk. TimeFreezer - Audio Plugin - VST AU | TimeFreezer. https://
timefreezer.bandcamp.com/releases. 2019. (accessed: December 2020).

[24] Marc Lingk. TimeFreezer Instrument - wwwtime f reezer. https://www.youtube.
com/watch?v=lAZqNe-lhq8. 2009. (accessed: December 2020).

[25] Carmen Muñoz Lázaro. TheVelvetCloud: Sustain Reverb for reaching the velvet
clouds. https://github.com/chachipirulin/TheVelvetCloud. 2020. (ac-
cessed: December 2020).

https://www.pluginboutique.com/products/589-Dreamscape
https://www.hornetplugins.com/plugins/hornet-hcs1/
https://www.hornetplugins.com/plugins/hornet-hcs1/
https://www.izotope.com/en/products/neoverb/features.html
https://www.izotope.com/en/products/neoverb/features.html
https://www.joyoaudio.com/product/196.html
https://www.joyoaudio.com/product/196.html
http://www.timefreezer.net/
http://www.timefreezer.net/
https://timefreezer.bandcamp.com/releases
https://timefreezer.bandcamp.com/releases
https://www.youtube.com/watch?v=lAZqNe-lhq8
https://www.youtube.com/watch?v=lAZqNe-lhq8
https://github.com/chachipirulin/TheVelvetCloud

Bibliography 91

[26] David S McGrath. “Huron-a digital audio convolution workstation”. In: Au-
dio Engineering Society Convention 5r. Audio Engineering Society. 1995.

[27] Fritz Menzer and Christof Faller. “Unitary matrix design for diffuse jot re-
verberators”. In: Audio Engineering Society Convention 128. Audio Engineering
Society. 2010.

[28] James A Moorer. “About this reverberation business”. In: Computer music
journal (1979), pp. 13–28.

[29] Daniel Müllensiefen, Bruno Gingras, Lauren Stewart, and Jason Jií Musil.
“Goldsmiths Musical Sophistication Index (Gold-MSI) v1. 0: Technical Re-
port and Documentation Revision 0.3”. In: London: Goldsmiths, University of
London. (2013).

[30] Koka Nikoladze. Koka’s Rotary Magnetic Bow on Vimeo. https://vimeo.com/
160780036. 2016. (accessed: December 2020).

[31] Jyri Pakarinen, Vesa Välimäki, Federico Fontana, Victor Lazzarini, and Jonathan
S Abel. “Recent advances in real-time musical effects, synthesis, and virtual
analog models”. In: EURASIP Journal on Advances in Signal Processing 2011
(2011), pp. 1–15.

[32] João Paulo Caetano Pereira, Gilberto Bernardes, and Rui Penha. “Musikverb:
A harmonically adaptive audio reverberation”. In: Proc. of the 21st Int. Con-
ference on Digital Audio Effects (DAFx-18), Aveiro, Portugal. 2018.

[33] Joan Prat Rigol and Mihailo Kolundzija. “Virtual sustain pedalling for guitar
by sinusoidal modeling”. In: Universitat Politècnica de Catalunya, 2012.

[34] Karolina Prawda, Vesa Välimäki, and Sebastian J Schlecht. “Improved rever-
beration time control for Feedback Delay Networks”. In: Proc. 22th Int. Conf.
Digital Audio Effects (DAFx-19). 2019.

[35] Karolina Prawda, Silvin Willemsen, Stefania Serafin, and Vesa Välimäki. “Flex-
ible Real-Time Reverberation Synthesis with Accurate Parameter Control”.
In: 23rd International Conference on Digital Audio Effects. 2020.

[36] Mark Rau and Orchisama Das. “An “Infinite” Sustain Effect Designed for
Live Guitar Performance”. In: Audio Engineering Society Convention 143. Au-
dio Engineering Society. 2017.

[37] Loïc Reboursière, Christian Frisson, Otso Lähdeoja, John A Mills, Cécile
Picard-Limpens, and Todor Todoroff. “Multimodal Guitar: A Toolbox For
Augmented Guitar Performances.” In: NIME. 2010, pp. 415–418.

[38] Andrew Reilly and David McGrath. “Convolution processing for realistic re-
verberation”. In: Audio Engineering Society Convention 98. Audio Engineering
Society. 1995.

https://vimeo.com/160780036
https://vimeo.com/160780036

92 Bibliography

[39] Davide Rocchesso. “Maximally diffusive yet efficient feedback delay net-
works for artificial reverberation”. In: IEEE Signal Processing Letters 4.9 (1997),
pp. 252–255.

[40] Davide Rocchesso and Julius O Smith. “Circulant and elliptic feedback de-
lay networks for artificial reverberation”. In: IEEE Transactions on Speech and
Audio Processing 5.1 (1997), pp. 51–63.

[41] Sebastian J Schlecht and Emanuël AP Habets. “Feedback delay networks:
Echo density and mixing time”. In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 25.2 (2016), pp. 374–383.

[42] Sebastian J Schlecht and Emanuël AP Habets. “Modal decomposition of feed-
back delay networks”. In: IEEE Transactions on Signal Processing 67.20 (2019),
pp. 5340–5351.

[43] Sebastian J Schlecht and Emanuël AP Habets. “Time-varying feedback ma-
trices in feedback delay networks and their application in artificial reverbera-
tion”. In: The Journal of the Acoustical Society of America 138.3 (2015), pp. 1389–
1398.

[44] Manfred R Schroeder and Benjamin F Logan. “"Colorless" artificial reverber-
ation”. In: IRE Transactions on Audio 6 (1961), pp. 209–214.

[45] Julius Orion Smith. Physical audio signal processing: For virtual musical instru-
ments and audio effects. W3K publishing, 2010.

[46] Julius Orion Smith. “Time Varying Reverberators”. In: Physical Audio Signal
Processing. online book, 2010 edition. http://ccrma.stanford.edu/˜jos/-
pasp/, pp. 47–53. (accessed: December 2020).

[47] Jan-Jakob Sonke and Diemer de Vries. “Generation of diffuse reverberation
by plane wave synthesis”. In: Audio Engineering Society Convention 102. Audio
Engineering Society. 1997.

[48] John Stautner and Miller Puckette. “Designing multi-channel reverberators”.
In: Computer Music Journal 6.1 (1982), pp. 52–65.

[49] Gijsbert Stoet. “PsyToolkit: A novel web-based method for running online
questionnaires and reaction-time experiments”. In: Teaching of Psychology 44.1
(2017), pp. 24–31.

[50] Gijsbert Stoet. “PsyToolkit: A software package for programming psycho-
logical experiments using Linux”. In: Behavior research methods 42.4 (2010),
pp. 1096–1104.

[51] Strymon. BigSky - Multidimensional Reverberator - Reverb Pedal - Strymon. https:
//www.strymon.net/product/bigsky/. 2020. (accessed: December 2020).

[52] Strymon. Strymon BigSky - Cloud Reverb machine audio demo - YouTube. https:
//www.youtube.com/watch?v=wvH8Or_rkFY. (accessed: December 2020).

https://ccrma.stanford.edu/~jos/pasp/Time_Varying_Reverberators.html
https://www.strymon.net/product/bigsky/
https://www.strymon.net/product/bigsky/
https://www.youtube.com/watch?v=wvH8Or_rkFY
https://www.youtube.com/watch?v=wvH8Or_rkFY

Bibliography 93

[53] Eric Tarr. Hack Audio is creating tutorial videos on computer programming and
audio engineering | Patreon. https://www.patreon.com/hackaudio?fbclid=
IwAR0Lp-XZlMDWbrSwnQhR-EExootMMaUN3kGsczljcNjVpK7Otg00cJmKHMg. 2020.
(accessed: December 2020).

[54] The Amazing EBow :: Home. https://ebow.com/. 2020. (accessed: December
2020).

[55] Anders Torger and Angelo Farina. “Real-time partitioned convolution for
Ambiophonics surround sound”. In: Proceedings of the 2001 IEEE Workshop on
the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575).
IEEE. 2001, pp. 195–198.

[56] European Union. EUSurvey - Welcome. https://ec.europa.eu/eusurvey/.
2020.

[57] Vesa Välimäki, Bo Holm-Rasmussen, Benoit Alary, and Heidi-Maria Lehto-
nen. “Late reverberation synthesis using filtered velvet noise”. In: Applied
Sciences 7.5 (2017), p. 483.

[58] Vesa Välimäki, Heidi-Maria Lehtonen, and Marko Takanen. “A perceptual
study on velvet noise and its variants at different pulse densities”. In: IEEE
transactions on audio, speech, and language processing 21.7 (2013), pp. 1481–1488.

[59] Vesa Valimaki, Julian D Parker, Lauri Savioja, Julius O Smith, and Jonathan S
Abel. “Fifty years of artificial reverberation”. In: IEEE Transactions on Audio,
Speech, and Language Processing 20.5 (2012), pp. 1421–1448.

[60] Daniel Werner. ExperimentalScene > Software > ES SpatialVerb 5.7.2. https:
//www.experimentalscene.com/software/spatialverb/. 2020. (accessed:
December 2020).

[61] Silvin Willemsen, Stefania Serafin, and Jesper R Jensen. “Virtual analog sim-
ulation and extensions of plate reverberation”. In: 14th Sound and Music Com-
puting Conference. 2017.

[62] The XX. The XX Intro HQ - YouTube. https://www.youtube.com/watch?v=
lFGnsdV-sR4. 2017. (accessed: December 2020).

[63] Udo Zölzer. DAFX: digital audio effects. John Wiley & Sons, 2011.

https://www.patreon.com/hackaudio?fbclid=IwAR0Lp-XZlMDWbrSwnQhR-EExootMMaUN3kGsczljcNjVpK7Otg00cJmKHMg
https://www.patreon.com/hackaudio?fbclid=IwAR0Lp-XZlMDWbrSwnQhR-EExootMMaUN3kGsczljcNjVpK7Otg00cJmKHMg
https://ebow.com/
https://ec.europa.eu/eusurvey/
https://www.experimentalscene.com/software/spatialverb/
https://www.experimentalscene.com/software/spatialverb/
https://www.youtube.com/watch?v=lFGnsdV-sR4
https://www.youtube.com/watch?v=lFGnsdV-sR4

Appendix A

FullControlFigures

95

96 Appendix A. FullControlFigures

Figure A.1: GUI of reverb order 8 of Full Control version.

97

Figure A.2: GUI of reverb order 16 of Full Control version.

Appendix B

Technical Evaluation Graphs/Figures

99

100 Appendix B. Technical Evaluation Graphs/Figures

Figure B.1: FDN4 Impulse Response, for High modulation, Medium modulation and NO modula-
tion.

101

Figure B.2: FDN4 WGN response, for High modulation, Medium modulation and NO modulation.

102 Appendix B. Technical Evaluation Graphs/Figures

Figure B.3: FDN4 T60 times for High modulation, Medium modulation and NO modulation.

103

Figure B.4: FDN8 Impulse Response, for High modulation, Medium modulation and NO modula-
tion.

104 Appendix B. Technical Evaluation Graphs/Figures

Figure B.5: FDN8 WGN response, for High modulation, Medium modulation and NO modulation.

105

Figure B.6: FDN8 T60 times for High modulation, Medium modulation and NO modulation.

106 Appendix B. Technical Evaluation Graphs/Figures

Figure B.7: FDN8with maximun feedback gains WGN response, with NO modulation and High
modulation.

107

Figure B.8: FDN16 Impulse Response, for High modulation, Medium modulation and NO modula-
tion.

108 Appendix B. Technical Evaluation Graphs/Figures

Figure B.9: FDN16 WGN response, for High modulation, Medium modulation and NO modulation.

109

75

Figure B.10: FDN16 T60 times for High modulation, Medium modulation and NO modulation..

Appendix C

VST Evaluation Graphs/Figures

111

112 Appendix C. VST Evaluation Graphs/Figures

Figure C.1: EU Survey answers (not all answers).

113

Figure C.2: Screenshot of the EUSurvey.

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Inspiration
	1.2 Sustain approach
	1.3 Reverb approach
	1.4 Reverb and Sustain integration
	1.5 Project goals
	1.5.1 System requirements

	2 State of the Art
	2.1 Algorithms for implementation of Infinite Sustain
	2.1.1 Synthesis by modulation and pitch estimation
	2.1.2 Additive and Granular Synthesis detecting a note onset
	2.1.3 Looping when detecting a note onset
	2.1.4 Convolution with Velvet Noise

	2.2 Algorithms for implementation of Reverberation
	2.2.1 All-Pass filter and Comb filters
	2.2.2 Convolution with Impulse Response
	2.2.3 Ray-tracing technique
	2.2.4 Feedback Delay Networks
	2.2.5 WaveGuide Networks
	2.2.6 Other approaches

	2.3 VSTs for Sustain
	2.3.1 TIME FREEZER
	2.3.2 Peak Sustainer
	2.3.3 Eos 2 (INFINITE Mode)
	2.3.4 Valhalla Super Massive
	2.3.5 NeoVerb
	2.3.6 DreamScape
	2.3.7 Eos2
	2.3.8 SpatialVerb
	2.3.9 FoG Convolver

	2.4 Plugins Discussion
	2.4.1 Sustain Plugins
	2.4.2 Reverb Plugins

	3 Implementation Decisions
	3.1 Sustain
	3.2 Reverb

	4 Sustain Implementation
	4.1 Summary of the algorithm
	4.2 I. Need to update convolving snippet?
	4.3 II. Velvet noise new sample
	4.4 III. Convolution
	4.5 IV. Need a new convolving snippet?
	4.6 About design parameters and implementation decisions
	4.7 Tunable parameters and GUI Implementation

	5 Reverberation Implementation
	5.1 Summary of the algorithm
	5.2 I. Generation of Velvet Noise
	5.3 Update Megabuffer with Input chunk
	5.4 Input convolution with velvet noise
	5.5 Modulated Delay Lines
	5.6 Feedback Coefficients
	5.7 Output convolution and output mix
	5.8 Design parameters decisions
	5.9 Tunable parameters and GUI Implementation

	6 Evaluation
	6.1 Technical Evaluation
	6.2 Two-alternative forced choice audio test Evaluation
	6.3 VST Evaluation
	6.4 Preliminary Evaluation of code efficiency

	7 Results
	7.1 Technical Evaluation Results
	7.1.1 Sustain Responses
	7.1.2 Reverberation Responses
	7.1.3 FDN4: No modulation, medium modulation, and high modulation
	7.1.4 FDN8: No modulation, medium modulation, and high modulation
	7.1.5 FDN16: No modulation, medium modulation, and high modulation
	7.1.6 Arrangement of Effects

	7.2 Two-alternative forced choice audio test Results
	7.3 VST Evaluation Results
	7.3.1 Regarding installation
	7.3.2 Regarding GUI
	7.3.3 Respecting performance
	7.3.4 Pros and Cons
	7.3.5 Regarding enhancements/suggestions
	7.3.6 Regarding Full Control version
	7.3.7 About price
	7.3.8 Regarding preferred configuration
	7.3.9 Extras

	8 Discussion
	8.1 Technical Evaluation
	8.1.1 Regarding Sustain Effect
	8.1.2 Regarding Reverb Effects
	8.1.3 Regarding different Arrangements

	8.2 Two alternative forced choice audio test
	8.3 VST Evaluation

	9 Conclusion and Future Work
	Bibliography
	A FullControlFigures
	B Technical Evaluation Graphs/Figures
	C VST Evaluation Graphs/Figures

