
A Model of the Shamisen based
on Finite Difference Schemes

Master’s Thesis

Titas Lasickas

Aalborg University
Architecture, Design and Media Technology

Copyright c© Aalborg University 2020

Architecture, Design and Media
Technology

Aalborg University
http://www.aau.dk

Title:
A Model of the Shamisen based on Fi-
nite Difference Schemes

Theme:
Master’s Thesis
Modelling Physical Systems

Project Period:
Fall Semester 2020

Participant(s):
Titas Lasickas

Supervisor(s):
Silvin Willemsen
Stefania Serafin

Copies: 1

Page Numbers: 56

Date of Completion:
December 18, 2020

Abstract:

Synthesising musical instruments and
using their digital versions in music
production and performance without
the need of owning and learning the
real instrument is a highly popular de-
mand by the musicians and produc-
ers alike. Currently, more and more
synthesizers are being developed, de-
creasing the need for going through
a tedious recording process to sample
an instrument. As more common and
simpler instruments have synthesizers
that mimic the real instrument quite
well, less known and more complex in-
struments are waiting in line for a syn-
thesizer that can replace the sample-
based instrument reproduction. This
work focuses on modelling Shamisen
using Finite Difference Schemes. The
performance of the model is evaluated
in perceptual quality and verity tests.
While the model does not synthesize
a realistic Shamisen sound, the results
of the work show the real potential
of digitizing the Shamisen using Finite
Difference Time Domain methods.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

1 Introduction 1
1.1 The Sound of the Shamisen . 1
1.2 Modeling Shamisen . 2
1.3 Different Physical Modeling Techniques 3

2 State of the Art 5
2.1 Shamisen plugins . 5
2.2 Similar Instrument Models . 6

2.2.1 Physical model of the Tanbur 6
2.2.2 Physical Model of the Banjo . 7
2.2.3 Physical model of the Tromba Marina 7

3 Development 9
3.1 Finite Difference Operators . 9
3.2 1-D Wave Equation . 10
3.3 Strings . 13
3.4 Bridge . 14
3.5 Membrane . 15
3.6 Coupling . 17
3.7 Implementation . 19

3.7.1 Strings . 20
3.7.2 Bridge . 21
3.7.3 Membrane . 21
3.7.4 Boundary Conditions . 22
3.7.5 Coupling . 24

3.8 Performance . 26
3.8.1 Excitation . 26
3.8.2 Fretting . 27
3.8.3 Output . 27

3.9 Parameter acquisition . 29
3.9.1 Strings . 29

v

vi Contents

3.9.2 Bridge . 29
3.9.3 Membrane . 30

4 Evaluation and Discussion 33
4.1 Quality test . 34

4.1.1 Setup . 34
4.1.2 Results . 35

4.2 Verity test . 35
4.2.1 Setup . 35
4.2.2 Results . 36

5 Future Work 37
5.1 The Real-Time Implementation . 37
5.2 Model Improvements . 37

5.2.1 Collisions Model . 37
5.2.2 Excitation model . 38
5.2.3 Fretting model . 38

6 Conclusion 39

Bibliography 41

7 Appendix 45

Chapter 1

Introduction

1.1 The Sound of the Shamisen

Shamisen is a Japanese three-stringed lute, which has originated in China. Shamisen
is a chordophone that has a sound-box covered with a membrane made from an
animal skin which lengthens the produced sound. The instrument is played using
a large plectrum called bachi while using the fingers of the other hand to fret the
stings producing different pitches1. The timbre of the Shamisen has a very distinct
buzzing which is associated with a low nut which lets vibrating string come in the
contact with the neck [1] and the specific playing technique that increases the per-
cussiveness of the instrument by hitting the body with bachi during the plucking
of the strings [2].

Figure 1.1: An image of a Shamisen manufactured by Komatsuya, designed to appeal to more people
and boost the popularity of the instrument [3].

1Live Shamisen performance: https://youtu.be/nerhpPdKImA

1

2 Chapter 1. Introduction

1.2 Modeling Shamisen

Physical modeling will be used to synthesise the sound of the Shamisen as it pro-
vides the flexibility of adjusting different parameters as opposed to using samples
when recreating shamisen sound digitally. Physical modeling synthesis refers to a
synthesis technique where the sound produced is computed using mathematical
equations which model the behavior of the sound source. The ultimate aim of the
Shamisen model is to synthesize sound that is indistinguishable from a real instru-
ment. Sound of which could be adjusted by the user with a logical connection to
the real instrument. Thus adjustments have to reflect the available adjustments of
a real Shamisen. Ideally, user could also adjust the parameters, which are not pos-
sible to adjust if they used a real instrument. The intended use of such model is a
plugin in a Digital Audio Workstation (DAW) environment to make the Shamisen
sound more available to the producers and musicians thus the model should work
in real-time.
Creating such model would require to model a couple of strings, bridge, mem-
brane and neck together while also having a bachi model for the excitation and
have it running in real-time. Figure 1.2 shows the main parts of the Shamisen and
a bachi. The requirements for this work are going to be reduced down to mod-
eling and coupling the strings, the bridge and the membrane to study a simpler
model with user adjustable parameters. When tuned correctly, such simpler model
should yield similar sound to the real instrument, although the model lacks the
buzzing and percussive elements of a real instrument.

Figure 1.2: Diagram of the Shamisen [4][5].The parts marked with numbers are as follows: 1. neo -
the silk knot for mounting the strings; 2. koma - the bridge; 3. kawa - the membrane; 4. bachi - the
plectrum for playing Shamisen; 5. hatomune - the neck of the instrument; 6. ito - the strings.

1.3. Different Physical Modeling Techniques 3

1.3 Different Physical Modeling Techniques

As one of the goals of this work require the logical parameter adjustment, where
user could intuitively adjust the sound by changing the parameters which they
would change in the real instrument such as increasing the tension on the strings
and changing the strings to a different gauge and/or material as well as selecting a
different bridge which could differ in size and/or material, the physical modelling
must be used to create such model.
One of the most efficient ways of modelling physical systems for sound produc-
tion is using digital waveguides (DWG) [6]. DWG discretizes wave equations us-
ing bi-directional delay lines, commuting losses and phase inversions at a single
point. Another physical modelling approach is to use Finite Difference Time Do-
main (FDTD) methods, which require developing a full mathematical description
of the modelled system. Developing such description uses differential equations
which are then discretized using finite difference methods, yielding Finite Differ-
ence Scheme (FDS). Considering these two approaches, the FDTD method provides
better spatial accuracy when the model includes frequency-dependent damping
and dispersion. Besides, the FDTD methods are more flexible as there are no as-
sumptions being made about the linearity of the travelling wave solution [7]. These
advantages come with a solution, which is more computationally expensive and
prone to numerical dispersion and inaccuracies than DWG approach [8]. Despite
that, real-time implementations of similar models have been achieved as it will
be shown in the next chapter, thus FDTD approach has been chosen to model
Shamisen.

Chapter 2

State of the Art

This section will describe the state of the art regarding digital synthesis of string
instruments. First, some of the earlier attempts to digitize Shamisen for music
production will be presented. After that the proposed physical models of similar
instruments will be shown.

2.1 Shamisen plugins

The only plugin that focuses on Shamisen that could be found is called ShamiKoto
[9] (see figure 2.1). The plugin authors do not specify if the plugin is sample based
or if it is synthesizing the sound algorithmically. The plugin has ADSR envelope
generator, pitch bend with direction controls, LFO for modulation with rate and
depth controls, reverb and low-pass, high-pass and cutoff filters. The lack of any
information regarding the technical aspects of the plugin limit the comparison to
just mentioning the existence of the plugin.

Figure 2.1: ShamiKoto interface [9]. The text box in the center is a drop down menu with different
presets.

5

6 Chapter 2. State of the Art

2.2 Similar Instrument Models

A physical model of the Shamisen could not be found, thus a similar instrument
models have to be looked at. This section will present and discuss models of the
Banjo, the Tanbur and the Tromba Marina.

(a)

(b) (c)

Figure 2.2: Images of the similar instruments. 2.2a is a picture of the Tanbur [10]; 2.2b is a picture of
the Banjo [11]; 2.2c is a picture of the Tromba Marina [7]

2.2.1 Physical model of the Tanbur

Tanbur is a seven stringed lute made entirely out of wood. The body of the in-
strument resembles a shell with a thin wooden resonating plate on the face of the
instrument (See figure 2.2a). The instrument is traditionally excited using tortoise
shell that has been cut to an asymmetrical V shape [12]. The authors of [tanbur]
developed two models for synthesising the Tanbur. One model was linear and the
other one was non-linear. The linear model consists of a delay line, a fractional
delay filter and a loop filter. The delay filter implements interpolation between
samples and together with a delay line determine the fundamental frequency of
the synthetic tone by adding to the loop delay. The loop filter is there to attenuate

2.2. Similar Instrument Models 7

the waveform of the tone from one frequency to the other smoothly and naturally.
The non-linear model has a more complex structure, featuring two delay lines with
fractional delay filter varying the delay. String terminations are modelled using re-
flection filters. As expected the linear model is fast and efficient, but it does not
model the more interesting features such as varying fundamental frequency. The
non-linear model is more computationally heavy, at the expense, modelling the
desired nonlinear features.

2.2.2 Physical Model of the Banjo

Some might refer to a Shamisen as a "Japanese Banjo"[13] as it features a similar
structural design of stringed instrument with a membrane stretched over the face
of the instrument’s body as it can be seen in the figure 2.2b. A real-time imple-
mentation of a physical model of the Banjo, proposed by Florian Pfeiffle and Rolf
Bader uses FDTD methods when modeling the instrument [14]. The model couples
a string, bridge, membrane and the air inside the body to create a full model of
the Banjo. The authors state that the model is producing indistinguishable sound,
compared to the sound from a real banjo, but comments are made that the model
needs a tremendous amount of computational power and there has not been done
any evaluation to confirm the statement about the sound reproduction. As the
focus of that work shifts to FPGA technology that makes running such models in
real-time possible the authors do not discuss the model of Banjo more in detail.

2.2.3 Physical model of the Tromba Marina

Tromba marina is a large bowed monochord instrument which dates back to the
medieval ages the image of it can be seen in the figure 2.2c. The interesting feature
of the instrument is that it has a rattling bridge which when a string is bowed
produces a trumpet-like sound by vibrating its loose end against the wooden face
of the instrument. In [7] a real-time model of a Tromba marina is modelled using
FDTD techniques. The authors couple string, bridge, body and collision models to
create the model of Tromba marina. Since the instrument has a single string, the
bridge is modelled as a mass-spring-damper. The body is simplified to a 2D stiff
plate. Similar model parts make this work very relevant when creating a Shamisen
model based on Finite Difference Schemes.

Chapter 3

Development

In this chapter, related theory of Finite Difference Schemes will be presented as
well as a test case that shows all the steps needed to obtain a working model,
followed by PDE models of separate parts of the Shamisen that have the most
influence to sound, along with the discretization, that has been performed and the
coupling of said models into one complete system. Subsequently, the techniques
for creating a model of the Shamisen will be presented. Finally, the more practical
implementation choices that were made will be illustrated as well as parameter
calculation and acquisition will be shown. Most of the theory and the equations
is based on the "Numerical Sound Synthesis", written by Stefan Bilbao[15] unless
specified otherwise.

3.1 Finite Difference Operators

To implement an FDS the first step is to define a sampling interval for the con-
tinuous variables of the system. It is equitable to sample time t = nk and space
x = lh in discrete series, where n = 0, 1, 2, ... and l ∈ Z. k is the time step and
h is the grid spacing. In the signal processing field it is common to define the
sampling frequency as fs = 1/k. These values are not independent, meaning, the
choice of one value will influence the other through a stability condition, which
will be described more in detail bellow. Once the grid has been defined, a function
u(x, t) can be approximated as a grid function un

l , where the l is the spatial term
and n is the temporal term, which both correspond to the values presented earlier.
It is important to mention that the solution of an PDE, approximated with finite
differences, is not a sampled version of the continuous function u(x, t), but rather
an approximation to it.
Finite Difference operators which can be applied to a series are shifts, thus it is
possible to define the shift operators as:

et+un
l = un+1

l et−un
l = un−1

l ex+un
l = un

l+1 ex−un
l = un

l−1 (3.1)

9

10 Chapter 3. Development

Using these shift operators, more complex operators can be derived. For instance
approximations of the first-order derivative operator. In the time domain, approx-
imation of the first-order derivative would look like this:

δt+ :=
1
k
(et+− 1) ≈ ∂

∂t
δt− :=

1
k
(1− et−) ≈

∂

∂t
δt· :=

1
2k

(et+− et−) ≈
∂

∂t
(3.2)

These are the forward, backward and center difference approximations respectively,
which, when applied to the series un

l would yield:

δt+un
l =

un+1
l − un

l
k

(3.3)

δt−un
l =

un
l − un−1

l
k

(3.4)

δt·un
l =

un+1
l − un−1

l
2k

(3.5)

These are three different approximations for the first time derivative. Forward and
backward difference approximations are first order accurate, while center differ-
ence is second order accurate as proven by expanding these operators in Taylor
series about t. Combining these we can attain second-order time difference opera-
tor:

δttun
l := δt+δt−un

l =
un+1

l − 2un
l + un−1

l
k2 (3.6)

Obtaining spacial derivatives follows the same rules, yielding:

δx+un
l =

un
l+1 − un

l

h
≈ ∂

∂x
u(x, t) (3.7)

δx−un
l =

un
l − un

l−1

h
≈ ∂

∂x
u(x, t) (3.8)

δx·un
l =

un
l+1 − un

l−1

2h
≈ ∂

∂x
u(x, t) (3.9)

δxxun
l := δx+δx−un

l =
un

l+1 − 2un
l + un

l−1

h2 (3.10)

See the figure 3.1 for visualisation of the stencils used for the above mentioned
operators.

3.2 1-D Wave Equation

The 1-D Wave Equation will be used as a test case for showing the necessary steps
for creating a physical model using the Finite Difference Schemes, mainly because
it is probably one of the most important, if not the most important PDE not only

3.2. 1-D Wave Equation 11

(a) (b) (c) (d)

(e)

(f)

(g)

(h)

Figure 3.1: Simple temporal or spatial difference operator stencils. All the points represent samples
in the grid. Points in space are mapped to the horizontal axis and points in time are mapped to
the vertical axis. The yellow points in the figures represent the samples which are used to calculate
the respective approximations: figures 3.1a, 3.1b, 3.1c and 3.1d for equations 3.4, 3.3, 3.5 and 3.6
respectively; while figures 3.1e, 3.1f, 3.1g and 3.1h for equations 3.8, 3.7, 3.9 and 3.10 respectively.

in musical acoustics but in physics as well. Even though, is mostly used as a test
case, variants of it act as building blocks that describe the approximated behaviour
such as strings, air movement in a closed acoustic tube and longitudinal motion of
a uniform bar. The 1-D wave equation is defined as:

utt = c2uxx (3.11)

Dependent variable u in a 1-D wave PDE model (eq. 3.11) is equal to u(x, t) where
x represents distance and t represents time. Subscripts t and x here refer to a
derivative in time or in space respectively. This equation is a second-order PDE,
where x is the distance variable and t is the variable for time. This equation is
defined over x ∈ D, where D = [0, L] and L is the length of our system. is a
subset of R and t ≥ 0. c in this equation is a constant, generally it is called wave
speed and its definition depends on what is being modelled. c =

√
T0/ρA for

modeling string, T0 is tension, ρ and A is material density and cross-sectional area
respectively.
Discretizing 1-D wave PDE (eq. 3.11) gives an equation 3.12

δttu = c2δxxu (3.12)

12 Chapter 3. Development

Now, using the rules, presented in section 3.1 we can create an expanded update
equation (eq. 3.13) using finite difference operators.

un+1
l =

c2k2

h2 (un
l+1 − 2un

l + un
l−1) + 2un

l − un−1
l (3.13)

l here is the spatial sample and n is the time sample. To make sure, that the update
equation does not go unstable, Courant-Friedrichs-Lewy (CFL) condition has to
satisfied. CFL condition for this simple 1-D wave equation:

λ ≤ 1 (3.14)

where
λ = ck/h (3.15)

c is selected for the desired frequency, k is calculated from the sampling frequency
fs = 44100Hz: k = 1/ fs. The variable which is free for the manipulation is the grid
spacing h (equation 3.16).

h ≥ hmin = ck (3.16)

Minimising the grid spacing gives the most accurate solution while still keeping the
equation stable1. Having solved for the grid spacing the total number of intervals
N can be calculated using:

N = floor(L/h) (3.17)

Since the 1-D wave equation has second-order differentiation in space it requires
a single boundary condition at the endpoints of the spatial domain. Typically
boundary is set to 0 at the endpoints of the domain.

u(0, t) = u(L, t) = 0 ,Dirichlet boundary condition (3.18)

This type of condition is called Dirichlet type. In a case for string, this condition
represents a stiff termination. Another widely used boundary condition is called
Neumann condition:

u(0, t)x = u(L, t)x = 0 ,Neumann boundary condition (3.19)

Such boundary condition can be interpreted as stiff in longitudinal direction, but
free to move in transverse direction. Both of these conditions are lossless, lossy
boundary conditions are out of the scope for this project.

1The stability conditions shown in this thesis have been arrived at using von Neumann stability
analysis. It was out of the scope of this project to perform the steps myself.

3.3. Strings 13

3.3 Strings

As in the case of the 1D wave equation, the dependent variable u in a damped stiff
string PDE model (eq. 3.20) is equal to u(x, t) where x represents distance and t
represents time. x ∈ DS where DS = [0, LS] with LS being the string length,

ρS ASutt = TSuxx − ES ISuxxxx − 2ρS ASσ0,Sut + 2ρS ASσ1,Sutxx (3.20)

In equation 3.20 ρS is the density and AS is the cross sectional area of the string,
TS is the tension applied to the string, ES and IS being the Young’s modulus and
Inertia (described by eq. 3.21 [7]) of the string respectively.

IS =
πrS

4

4
(3.21)

σ0,S and σ1,S are the damping coefficients for the string. Frequency-dependent
damping models more realistic strings, where higher frequencies will decay faster
than lower ones, creating a synthesized sound which has a wide range of frequen-
cies at the attack and in the end of the a decay that sound will only have a few
harmonics audible. σ0 gives a rise to the bulk frequency-independent loss while σ1

is the means of modeling frequency-dependent loss.
Fourth-order differentiation in space introduces dispersive behaviour, which means,
that the components that have short wavelength travel faster than long wavelength
components. cS is the wave speed that depends on the tension of the String and
κS is the stiffness parameter. cS and κS are described in equations 3.23 and 3.24
respectively.

utt = cS
2uxx − κS

2uxxxx − 2σ0,Sut + 2σ1,Sutxx (3.22)

cS =

√
TS

ρS AS
(3.23)

κS =

√
ES IS

ρS AS
(3.24)

The continuous damped stiff string PDE (eq. 3.22) in discrete time and space is
represented by the equation 3.25.

δttu = cS
2δxxu− κS

2δxxxxu− 2σ0,Sδtu + 2σ1,Sδtxxu (3.25)

For the σ0,S term, center difference operator is chosen due to it being second-order
accurate as mentioned in section 3.1, where as the forward and backward differ-
ence operators are first-order accurate. For the mixed spatial-temporal difference
operator, backward time difference operator is chosen since it keeps the scheme
explicit as it does not include future neighbouring samples in its solution. Same

14 Chapter 3. Development

is true with the discretization decisions for the Bridge and the Membrane. See the
figure 3.2 for the visualisation of mixed difference operator stencils.

(a) (b)

Figure 3.2: Mixed spatial-temporal difference operator stencils. All the points represent samples in
the grid. Points in space are mapped to the horizontal axis and points in time are mapped to the
vertical axis. The yellow points in the figures represent the samples which are used to calculate the
respective approximations: Figure 3.2a is the stencil for the mixed backward time difference operator
and figure 3.2b is the stencil for mixed center time difference operator.

The string grid spacing hS is calculated for the reasons given in the end of the
section 3.2 although the CFL condition for the stiff string is different from the one
presented in the aforementioned section:

λ2
S + 4µ2

S +
4σ1,Sk

h2
S
≤ 1 (3.26)

where µS = κSk/h2
S and λS = cSk/hS. Counting in the damping terms, the grid

spacing equation 3.27 for the damped stiff string is equal to:

hS ≥ hS,min =

√
cS

2k2 + 4σ1,Sk +
√
(cS

2k2 + 4σ1,Sk)2 + 16κS
2k2

2
(3.27)

Having solved for the grid spacing, the total number of intervals NS can be calcu-
lated by:

NS = floor(LS/hS) (3.28)

3.4 Bridge

The PDE for modelling the bridge is modelled as a linear damped bar, which has
the same PDE as the damped stiff string (eq. 3.20), but without the tension term.
Dependent variable v in a damped bar PDE model (eq. 3.29) is equal to v(x, t)
where x represents distance and t represents time. x ∈ DB where DB = [0, LB]

with LB being the bridge length.

ρB ABvtt = −EB IBvxxxx − 2ρB ABσ0,Bvt + 2ρB ABσ1,Bvtxx (3.29)

3.5. Membrane 15

In equation 3.29 just like in string equations in section 3.3, ρB is the density and AB

is the cross-sectional area of the linear bridge, EB and IB are Young’s modulus and
inertia of the bridge respectively. Cross-sectional area and inertia are described by
equations 3.30 and 3.31 where HB is the thickness and b is the width of a bridge.
σ0,B and σ1,B are the damping coefficients for the bridge.

AB = bHB (3.30)

IB =
1
12

bHB
3 (3.31)

κB is the stiffness parameter of a bridge.

vtt = −κB
2vxxxx − 2σ0,Bvt + 2σ1,Bvtxx (3.32)

κB =

√
EB IB

ρB AB
(3.33)

Using definitions of AB and IB we can simplify the definition of the stiffness param-
eter κB (eq. 3.33) from the one we used for the string in section 3.3 to equation 3.34.
Where knowing the cross-sectional area and the width of a bar is not necessary to
compute stiffness of the bar.

κB =

√
EBHB

2

12ρB
(3.34)

The continuous bridge PDE (eq. 3.32) in discrete time and space is represented by
the equation 3.35.

δttv = −κBδxxxxv− 2σ0,Bδt·v + 2σ1,Bδt−δxxv (3.35)

The grid spacing hB for the bridge model, is calculated similarly to the hS that
was used in the damped stiff string, excluding all the wave speed terms, which are
omitted:

hB ≥ hB,min =

√
4σ1,Bk +

√
4σ1,Bk2 + 16κB2k2

2
(3.36)

The grid spacing hB, determines the total number of intervals NB:

NB = floor(LB/hB) (3.37)

3.5 Membrane

Dependent variable w in a damped stiff membrane PDE model (eq. 3.38) is equal
to w(x, y, t) where (x, y) represents distance on a 2D surface and t represents time.
(x, y) ∈ DM where, DM = [0, Lx]× [0, Ly]. Arriving at the damped stiff membrane

16 Chapter 3. Development

PDE is a matter of combining a tension term from the 2D membrane model with a
stiffness term from the Kirchhoff thin plate model and adding the damping.

ρM HMwtt = TM∆w− DM∆∆w− 2ρM HMσ0,Swt + 2ρM HMσ1,S∆wt (3.38)

In equation 3.38 ρM is the density and HM is the thickness of the membrane, TM

is the tension applied to the membrane, DM is the membrane flexural rigidity. DM

term is the taken from the Kirchhoff thin plate and acts as a stiffness parameter,
which depends on Young’s modulus EM, thickness of the membrane and the Pois-
son’s ratio ν (eq. 3.39).

DM =
EM HM

3

12(1− ν2)
(3.39)

σ0,M and σ1,M are the damping coefficients for the membrane in equation 3.38 [16].
cM is the wave speed, which depends on the tension parameter and κM is the
stiffness parameter of a stiff membrane. cM and κM are described in equations 3.41
and 3.42 respectively.

wtt = cM
2∆w− κM

2∆∆w− 2σ0,Mwt + 2σ1,M∆wt (3.40)

cM =

√
TM

ρM HM
(3.41)

κM =

√
DM

ρM HM
(3.42)

The continuous damped stiff membrane PDE (eq. 3.40) in discrete time and space
is represented by the equation 3.43. See the figure 3.3 for some of the stencils used.

δttw = cMδ∆w− κMδ∆δ∆w− 2σ0,Sδt·w + 2σ1,Sδt−δ∆w (3.43)

3.6. Coupling 17

(a) (b)

Figure 3.3: 2-D spatial difference operator stencils for the current time index. All the points represent
samples in the grid. Points in x-axis are mapped to the horizontal axis and points in y-axis are
mapped to the vertical axis. The yellow points in the figures represent the samples which are used
to calculate the respective approximations: Figure 3.3a is the stencil for δ∆w and figure 3.3b is the
stencil for δ∆δ∆w.

The grid spacing hM is equal in both directions thus using von Neumann sta-
bility analysis it is determined by the equation 3.44.

hM ≥ hM,min =

√
cM2k2 + 4σ1,Mk +

√
(cM2k2 + 4σ1,Mk)2 + 16κM2k2 (3.44)

With the grid spacing hM, the total number of intervals NMx and NMy can be
calculated by:

NMx = floor(LMx/hM)

NMy = floor(LMy/hM)
(3.45)

3.6 Coupling

The entire system consists of 3 strings, a bridge and a membrane working together.
For coupling all the parts together, rigid connections are assumed at the localizer
points:

18 Chapter 3. Development

Localizer points
Strings xc,S1 xc,S2 xc,S3

Bridge xc,B1 xc,B2 xc,B3

xc,BL xc,BR

Membrane xc,ML, yc,ML xc,MR, yc,MR

Table 3.1: All the connection points in this system. Subscripts S1, S2 and S3 indicate that the
connection points are on different strings, B1, B2 and B3 are the corresponding connection points on
the bridge for these strings. BL and BR subscripts indicate connection points on the left side and the
right side of the bridge, in turn, ML and MR subscripts are the same points on the membrane.

Spreading operator J(xc) in the equations above is defined by:

J(xc) =

{
1
hd , l = lc = round(xc/h)

0, otherwise
(3.46)

Where d is a number of the dimensions on which xc is defined over a domain D.
In this case, d = 1 for the strings and the bridge and d = 2 for the membrane.
From a physical perspective, strings will exert some force Ft on the bridge to the
locations where strings touch the Top of the bridge, which will exert force Fb to
the membrane at the mounting points at the Bottom of the bridge. Adding or sub-
tracting respective forces multiplied by a spreading operator J(xc), which spreads
force at the location xc to or from models (equations 3.25, 3.35, 3.43) will give us
starting equations for calculating connection forces:

δttui = cSi
2δxxui − κSi

2δxxxxui − 2σ0,Siδt·ui + 2σ1,Siδt−δxxui − J(xc,Si)
Fti

ρSiASi
(3.47)

i in the subscript denotes which string the equation 3.47 is describing. Since
shamisen has 3 strings, i = [1, 2, 3].

δttv = κB
2δxxxxv− 2σ0,Bδt·v + 2σ1,Bδt−δxxv

+ J(xc,B1)
Ft1

ρB AB
+ J(xc,B2)

Ft2

ρB AB
+ J(xc,B3)

Ft3

ρB AB

− J(xc,BL)
FbL

ρB AB
− J(xc,BR)

FbR

ρB AB

(3.48)

Ft with a number 1, 2 or 3 denotes, which string is exerting the force on the bridge,
while Fb with letters L or R denote force exerted from either left or right side of the
bridge to the membrane.

δttw = cM
2δ∆w− κM

2δ∆δ∆w− 2σ0,Mδt·w + 2σ1,Mδt−δ∆w

+ J(xc,ML, yc,ML)
FbL

ρM HM
+ J(xc,MR, yc,MR)

FbR

ρM HM

(3.49)

3.7. Implementation 19

3.7 Implementation

After obtaining discrete equations for strings, bridge, membrane and the coupling
forces, update equations can be described. To reach final expanded update equa-
tions, operators presented in section 3.1 will be used alongside with operators, that
will be derived here, using the rules that were presented in the aforementioned sec-
tion.
In the equations bellow, u is used on the left side of the equality, in all these cases,
u = un

l . In other cases just the superscript could be missing, there the n is omitted
for brevity and the current time should be assumed.
Here, u is chosen as a general notation meaning that these rules also apply to other
models and should not be confused with dependent variable u that is used in String
model.
The fourth-order spatial derivative operator is obtained by applying the second-
order derivative operator twice:

δxxxxu = δxxδxxun
l =

1
h4 (u

n
l+2 − 4un

l+1 + 6un
l − 4un

l−1 + un
l−2) (3.50)

Mixed temporal-spatial derivative operator:

δt−δxxu =
un

l+1 − 2un
l + un

l−1 − un−1
l+1 + 2un−1

l − un−1
l−1

kh2 (3.51)

Finite difference operators in 2D are defined as:

δ∆�u = δxxu + δyyu =
un

l−1,m + un
l+1,m + un

l,m+1 + un
l,m−1 − 4un

l,m

h2 (3.52)

Notice the subscript � in equation 3.52, this indicates the shape of the stencil - the
spatial samples are taken 1 position from current strictly horizontally and vertically
(both sides).
δ∆�δ∆� operator, using previously mentioned stencil is equal to:

δ∆�δ∆�u = δxxxxu + 2δxxyyu + δyyyyu (3.53)

where
δxxyyu =

1
h4 (u

n
l±1&m±1 − 2un

l±1⊕m±1 + 4un
l,m) (3.54)

and
un

l±1⊗m±1 = un
l+1,m+1 + un

l+1,m−1 + un
l−1,m+1 + un

l−1,m−1

un
l±1⊕m±1 = un

l+1,m + un
l−1,m + un

l,m+1 + un
l,m−1

(3.55)

The mixed temporal-spatial derivative operator in 2D is determined by the
same logic as in 1D mixed derivative operator (eq. 3.51):

δt−δ∆u =
un

l±1⊕m±1 − 4un
l,m − un−1

l±1⊕m±1 + 4un−1
l,m

kh2 (3.56)

20 Chapter 3. Development

Lowering the computation time for the update equation, each dependent variable
has been assigned to a single constant multiplier, which is calculated before the
iterations start and dependent variable terms are calculated only once per iteration.

3.7.1 Strings

The dependent variable of the string is u, thus the next time step term un+1 has a
multiplier a, current time step terms un have multiplier b and the previous time
step un−1 terms have multiplier c. Expanding equation 3.25 yields the intermediate
update equation for strings 3.63 with:

au = kσ0,S + 1 (3.57)

bu =

(
(−2cS

2)

hS
2 − 6κS

2

hS
4 −

4σ1,S

khS
2

)
k2 + 2 (3.58)

bu±1 =

(
cS

2

hS
2 +

4κS
2

hS
4 +

2σ1,S

khS
2

)
k2 (3.59)

bu±2 =
−κS

2

hS
4 k2 (3.60)

cu =
4σ1,Sk2

khS
2 + σ0,Sk− 1 (3.61)

cu±1 =
−2σ1,Sk2

khS
2 (3.62)

bu±1, bu±2 and cu±1 has a ± sign which indicates that the multiplier is the same,
whether it is applied to the left spatial sample or the right. u in the subscript
of each multiplier assigns the multiplier to the string. Yielding the intermediate
update equation for strings:

auuI
l = buun

l + bu±1(un
l−1 + un

l+1) + bu±2(un
l−2 + un

l+2)

+ cuun−1
l + cu±1(un−1

l−1 + un−1
l+1) (3.63)

Note that the u on the left side of the equation has a superscript I (Intermediate),
this denotes un+1

l without the coupling force.

3.7. Implementation 21

3.7.2 Bridge

The dependent variable of the bridge is v, using the the same naming logic that
was used for the stings the multipliers for bridge update equation are defined.
Expanding equation 3.35 yields the intermediate update equation for the bridge
3.70 with:

av = hB
4(kσ1,B + 1) (3.64)

bv = 2hB
4 − 4hB

2kσ1,B − 6k2κB
2 (3.65)

bv±1 = 2hB
2kσ1,B + 4k2κB

2 (3.66)

bv±2 = −k2κB
2 (3.67)

cv = −hB
4 + 4hB

2kσ1,B + hB
4kσ0,B (3.68)

cv±1 = −2kσ1,B (3.69)

These help to define the intermediate update equation for the bridge:

avvI
l = bvvn

l + bv±1(vn
l−1 + vn

l+1) + bv±2(vn
l−2 + vn

l+2)

+ cvvn−1
l + cv±1(vn−1

l−1 + vn−1
l+1)

(3.70)

Note that the dependent variable v on the left side of the equation has a superscript
I, this denotes vn+1

l without the coupling force.

3.7.3 Membrane

The dependent variable of the membrane is w, using the the same naming logic
that was used for the stings and the bridge, the multipliers for membrane update
equation are defined, although in this case we have more w terms, thus, more
multipliers for which naming scheme will slightly differ. Expanding equation 3.43
yields the intermediate update equation for the membrane 3.78 with:

aw = kσ0,M + 1 (3.71)

bw =

(
(−2cM

2)

hM
2 − 20κM

2

hM
4 −

8σ1,M

khM
2

)
k2 + 2 (3.72)

bw⊕±1 =

(
cM

2

hM
2 +

8κM
2

hM
4 +

2σ1,M

khM
2

)
k2 (3.73)

22 Chapter 3. Development

bw⊗±1 =
−2κM

2

hM
4 k2 (3.74)

bw⊕±2 =
−κM

2

hM
4 k2 (3.75)

cw =
8σ1,Mk2

khM
2 + σ0,Mk− 1 (3.76)

cw⊕±1 =
−2σ1,Mk2

khM
2 (3.77)

Multipliers with a subscript ⊕ are multiplied with either one of the dimension not
at the current spatial sample, while ⊗ indicates that sample at both dimensions is
not at the current spatial sample. Otherwise the naming scheme is the same as it
was used in the string and the bridge update equations.

awwI
l,m = bwwn

l,m + bw⊕±1wn
l±1⊕m±1 + bw⊗±1wn

l±1⊗m±1

+ bw⊕±2wn
l±2⊕m±2 + cwwn−1

l,m + cw⊕±1wn−1
l±1⊕m±1

(3.78)

Note that the w on the left side of the equation has a superscript I, this de-
notes wn+1

l,m without the coupling forces. The notation of the wn
l±1⊕m±1, wn

l±1⊗m±1,
wn

l±2⊕m±2 and wn−1
l±1⊕m±1 was adapted from the equations 3.55 for compactness of

the update equation.

3.7.4 Boundary Conditions

Recalling equations 3.28 and 3.45 for the number of intervals NS and NMx, NMy,
string and membrane have their boundaries set as clamped:

u0 = 0 and uNS = 0

δx+u0 = 0 and δx−uNS = 0
(3.79)

w0,m = 0; wl,0 = 0; wNMx ,m = 0; wl,NMy = 0

δx+w0,m = 0; δy+wl,0 = 0; δx−wNMx ,m = 0; δy−wl,NMy = 0
(3.80)

The boundary conditions are met by setting first and last two samples from the
boundary to zero and when updating equations, these points are left at zero.
The bridge has a free boundary condition:

δxxv0 = 0 and δxxδx·v0 = 0

δxxvNB = 0 and δxxδx·vNB = 0
(3.81)

3.7. Implementation 23

While the first two spatial sample points at the boundaries are set to zero for
the string and the membrane models, having a free boundary in the bridge, these
points must be calculated separately:

avvn+1
0 = bvvn

0 + bv±1(vn
−1 + vn

1) + bv±2(vn
−2 + vn

2)

+ cvvn−1
0 + cv±1(vn−1

−1 + vn−1
1) (3.82)

avvn+1
1 = bvvn

1 + bv±1(vn
0 + vn

2) + bv±2(vn
−1 + vn

3)

+ cvvn−1
1 + cv±1(vn−1

0 + vn−1
2) (3.83)

avvn+1
NB−1 = bvvn

NB−1 + bv±1(vn
NB−2 + vn

NB
) + bv±2(vn

NB−3 + vn
NB+1)

+ cvvn−1
NB−1 + cv±1(vn−1

NB−2 + vn−1
NB

) (3.84)

avvn+1
NB

= bvvn
NB

+ bv±1(vn
NB−1 + vn

NB+1) + bv±2(vn
NB−2 + vn

NB+2)

+ cvvn−1
NB

+ cv±1(vn−1
NB−1 + vn−1

NB+1) (3.85)

Mind the points outside the boundaries v−1, v−2, vNB+1 and vNB+2, these sample
points are called virtual points as they are only used to calculate equation at the
boundaries and they do not belong in the model itself. These virtual points are
calculated using the equations below, which are derived from the equations 3.81.

vn
−1 = 2vn

0 − vn
1 (3.86)

vn
−2 = 2(vn

−1 − vn
1) + vn

2 (3.87)

vn
NB+1 = 2vn

NB
− vn

NB−1 (3.88)

vn
NB+2 = 2(vn

NB+1 − vn
NB
) + vn

NB−2 (3.89)

vn−1
−1 = 2vn−1

0 − vn−1
1 (3.90)

vn−1
NB+1 = 2vn−1

NB
− vn−1

NB−1 (3.91)

24 Chapter 3. Development

3.7.5 Coupling

The full system can be visualised by the figure 3.4. Figure shows all the coupling
points used.

Figure 3.4: Coupled system

The string equation at the connection points lc,Si can be found by taking an
inner product with J, which is described in section 3.6, and only considering the
connection points.

δttui,lc,Si = cSi
2δxxui,lc,Si − κSi

2δxxxxui,lc,Si − 2σ0,Siδt·ui,lc,Si + 2σ1,Siδt−δxxui,lc,Si −
Fti

hSiρSi ASi
(3.92)

The i in the subscript has the same meaning as it did in the section above. The
sampled strings would have a different number of intervals NS, depending on the
thickness and the tension of the individual strings (as shown by equation 3.27),
thus the connection point for each string is different, denoted by lc,Si.
The bridge model has the highest amount of coupling points, 3 of which are for
connecting the strings to the bridge:

δttvlc,Bi = −κB
2δxxxxvlc,Bi − 2σ0,Bδt·vlc,Bi + 2σ1,Bδt−δxxvlc,Bi +

Fti

hBρB AB
(3.93)

i in the subscript denotes the connection point to the corresponding string.
Two coupling points are for connecting the bridge to the membrane. These points

3.7. Implementation 25

are named lc,BL and lc,BR for left and right mounting points (figure 3.4).

δttvlc,BL = −κB
2δxxxxvlc,BL − 2σ0,Bδt·vlc,BL + 2σ1,Bδt−δxxvlc,BL −

FbL

hBρB AB

δttvlc,BR = −κB
2δxxxxvlc,BR − 2σ0,Bδt·vlc,BR + 2σ1,Bδt−δxxvlc,BR −

FbR

hBρB AB

(3.94)

It is important that the connection points of the bridge do not overlap as such
scenario would directly couple the string to the membrane instead of letting the
energy precipitate from the string through the bridge to the membrane.

Membrane is coupled with the bridge in two locations lc,ML, mc,ML and lc,MR, mc,MR

, each on the opposite sides of the bridge via forces FbL and FbR.

δttwlc,ML,mc,ML = cM
2δ∆wlc,ML,mc,ML − κM

2δ∆δ∆wlc,ML,mc,ML

− 2σ0,Mδt·wlc,ML,mc,ML + 2σ1,Mδt−δ∆wlc,ML,mc,ML +
FbL

hM
2ρM HM

δttwlc,MR,mc,MR = cM
2δ∆wlc,MR,mc,MR − κM

2δ∆δ∆wlc,MR,mc,MR

− 2σ0,Mδt·wlc,MR,mc,MR + 2σ1,Mδt−δ∆wlc,MR,mc,MR +
FbR

hM
2ρM HM

(3.95)

Since force only acts in these specific locations:

Discrete Connection points
Strings lc,S1 lc,S2 lc,S3

Bridge lc,B1 lc,B2 lc,B3

lc,BL lc,BR

Membrane lc,ML, mc,ML lc,MR, mc,MR

Table 3.2: All the connection points in this discrete system. Subscripts S1, S2 and S3 indicate that the
connection points are on different strings, B1, B2 and B3 are the corresponding connection points on
the bridge for these strings. BL and BR subscripts indicate connection points on the left side and the
right side of the bridge, in turn, ML and MR subscripts are the same points on the membrane.

We only need to update models with force at those specific points using equa-
tions 3.96 and 3.97 and equations 3.63, 3.70 and 3.78 at the connection points.

uI
i,lc,Si
− Fti

hSiρSi ASi(σ1,Si + 1)
= vI

lc,Bi
+

Fti

hiρB AB(σ1,B + 1)
(3.96)

vI
lc,BL
− FbL

hBρB AB(σ0,B + 1)
= wI

lc,ML,mc,ML
+

FbL

hM
2ρM HM(σ0,M + 1)

vI
lc,BR
− FbR

hBρB AB(σ0,B + 1)
= wI

lc,MR,mc,MR
+

FbR

hM
2ρM HM(σ0,M + 1)

(3.97)

Updating all the other spatial model points equations 3.63, 3.70, 3.78 are used. Do-
ing so decreases computational complexity of the system. Lossless coupling means

26 Chapter 3. Development

that the net of the forces at the same location is equal to zero. Since there are only
two forces acting at any given coupling location, forces are equal in magnitude, but
opposite in direction. Solving for forces in equations 3.96, 3.97, expanded update
equations for the forces are obtained in equation 3.98.

Fti =
1

cFtSi + cFtB

(uI
i,lc,Si
− vI

lc,Bi
)

FbL =
1

cFbB + cFbM

(wI
lc,MR,mc,MR

− vI
lc,BL

)

FbR =
1

cFbB + cFbM

(wI
lc,MR,mc,MR

− vI
lc,BR

)

(3.98)

The updated forces are used when calculating equations 3.92, 3.93, 3.94 and 3.95.
The multipliers cFtSi , cFtB , cFbB and cFbM are defined as:

cFtSi =
1

ρSi ASihSi(σ0,Si + 1)

cFtB =
1

ρB ABhB(σ0,B + 1)

cFbB =
−1

ρB ABhB(σ0,B + 1)

cFbM =
−1

ρM HMh2
M(σ0,M + 1)

(3.99)

3.8 Performance

In this section, a method of producing sound will be explained. Sound production
is made up by the excitation, fretting for playing different notes and the output
position and gain.

3.8.1 Excitation

System is excited by plucking one of the strings. Simplified plucking is modeled as
a hann window at the start of the simulation. Since Shamisen uses the sharp edge
of the plectrum to excite the stings [2], the width of the hann window was chosen
to be bNSi/10c. The position of the pluck can change the sound significantly. If the
pluck position is set to one of the node locations of a string mode, this mode will
be fully attenuated. Figure 3.5 is an example of a string vibrating at mode 4, where
string length is L and one of the node locations is at the point A. String at the node
locations has to be stationary for this mode to exist, exciting string at one of the
node locations would attenuate all the modes that have the node in that location,
to avoid that, pluck is placed at b(NSi5)/(6π)c. Irrational multiplier minimizes the

3.8. Performance 27

Figure 3.5: String vibration at 4th mode. Node location A = L/4

probability of plucking the string at the node location, at the same time, together
with other multipliers places the pluck somewhere on the first half of the string.

3.8.2 Fretting

To achieve different pitches without changing the tension of the strings a string
player pinches a string against the neck, thus restricting the spread of vibrations
further down the sting, essentially shortening the string length. The simplified
approach to achieve similar result would be to limit the length of the string that is
being updated. It only works, when all the strings start with initial displacement
at zero except the excitation area. Since the system is discrete, fretting positions
have to be tuned manually. Each string has a different fretting position due to the
stings having different sized grids as it can be shown in table 3.3.

Fretting stings at different locations will affect the string as seen in the figure
3.6.

Figure 3.6: Excited fretted first string at time sample n where x axis plots spatial samples lS1 and y
axis plots the string displacement in meters. Different numbers on the graph are denoting different
parts of the string divided by black perpendicular lines: 1 is the left boundary; 2 is the part between
the bridge connection and the left boundary; 3 is the active vibrating string; 4 is the part where
the string does not vibrate because the fretting has restricted transfer of vibrations; 5 is the right
boundary

3.8.3 Output

It is important to decide how the sound will be extracted from the parts of the
model. Output of the string is taken from a single point, position of which is set to
be b(2NSi)/(7π)c+ 4 which is the location near the bridge. It is important to keep
the output at a location described by an irrational number for the reason described

28 Chapter 3. Development

First String Second String Third String
Position Note Error Position Note Error Position Note Error

0 4C 0 0 4G 0 0 5C 0
4 4Db 0 3 4Ab –4 2 5Db –16
8 4D 0 6 4A 0 5 5D +6
13 4Eb 0 9 4Bb +4 7 5Eb +3
17 4E 0 12 4B +7 9 5E +10
21 4F 0 14 5C 0 11 5F +17
24 4Gb 0 16 5Db –16 12 5Gb –19
27 4G 0 19 5D +3 14 5G 0
30 4Ab 0 21 5Eb +5 16 5Ab +24
33 4A –8 23 5E +3 17 5A –6
36 4Bb 0 25 5F +10 18 5Bb –31
39 4B +10 26 5Gb +23 20 5B +12
41 5C 0 28 5G 0 21 6C 0
43 5Db –13 30 5Ab +22 22 6Db –16
45 5D –21 31 5A –8 23 6D –27
47 5Eb –20 32 5Bb –27 24 6Eb –43
49 5E –22 34 5B +10 25 6E –35
51 5F –18 35 6C –5 26 6F –29
53 5Gb 0 36 6Db –18 27 6Gb –23
55 5G +15 37 6D –29 28 6G +1
56 5Ab –11 38 6Eb –40 29 6Ab +24
58 5A +15 39 6E –39
59 5Bb 0 40 6F –34
60 5B –18 41 6Gb –23
61 6C –37 42 6G –2
63 6Db +27 43 6Ab +21
64 6D +20
65 6Eb +19

Table 3.3: Discrete fretting positions for each of the strings. Position columns show how many
additional points from the far end of the string are set to zero to produce a note from the Note column.
The Error columns show by how many cents the fretted string is off from the equal-tempered tuning
of A4 = 440Hz.

in the section 3.8.1, while also giving enough room for the fretting, in addition,
the output taken from the left side of the bridge will have a low amplitude as
the string vibrations are subdued there by the bridge. The output location for the
bridge is not very important as it has a minimal effect on the sound by itself, more
importantly it transfers energy from the string to the membrane, either way the
output position for the bridge is chosen to be b(2NB)/(π)c. The output of the

3.9. Parameter acquisition 29

membrane is the sum of all the grid points for the full sized grid. For smaller grid
sizes, membrane output must be multiplied to match the full sized grid output.
The multiplication factor mout is calculated using equation 3.100.

mout =
(NMx,F − 4) · (NMy,F − 4))
(NMx,C − 4) · (NMy,C − 4))

(3.100)

Where F in the subscript denotes the full sized grid size and C in the subscript
denotes the current grid size. The boundary conditions make the first two and the
last two grid points to be zero, thus 4 is subtracted from grid width and height to
obtain an accurate multiplication factor.

3.9 Parameter acquisition

This model is uses quite a few parameters that shape the sound. The table 3.4 has
all of the parameters listed with the values or the equations (if the parameter can
be described by the values of the other parameters).

3.9.1 Strings

Strings have a circular cross section and they can be made from a variety of dif-
ferent materials, the more traditional material is silk, while the material which is
becoming more common is nylon as the strings made from nylon take longer to
wear out. For this model, wearing out strings is not an issue thus silk strings are
chosen. The silk density of is not traditionally measured in kg/m3, instead denier
is used as it is a fiber. Having string density measured in denier does not translate
directly to the specific mass measured in kg/m3, thus separate calculations are
required. The silk moth silk (latin Bombyx mori) is coming out in stands which
have triangular cross sections with a known average thickness [17] [18]. Packing as
many triangles in a circular area and using denier to find mass, a rough approxi-
mation of the string specific mass can be calculated, the calculations of which are
beyond the scope of this project. Young’s modulus of Bombyx mori silk has been
measured and published [18]. Radii of the strings has been set while tuning the
instrument as the exact radii of the Shamisen strings could not be found. The main
parameter when tuning the strings is the tension, values for which were found
manually. Strings are connected to the bridge near the mounting knots which are
called Neo.

3.9.2 Bridge

The cross sectional area of the bridge (Koma) is a rectangle, with an assumed width
of around 2.69 mm as the regular Shamisen bridges are usually thin pieces made
from wood, ivory or plastic. Bridge used in this model is chosen to be made from

30 Chapter 3. Development

acrylic, which gives the Young’s modulus [19] and specific mass [20] for the bridge.
The thickness of the bridge is an average height of the Komas being sold [21]. The
bridge connects to the membrane at the ends, while the strings are equally spaced
in between the connection points to the membrane and themselves.

3.9.3 Membrane

The membrane of shamisen is traditionally made from dog or cat skin [22], al-
though from 2000s [23] replacing natural skin by nylon membrane became more
and more popular [24]. Due to the availability of the parameters, membrane has
been chosen to be made from nylon, giving Young’s modulus [19] and specific
mass [20]. Both, frequency independent and dependent damping parameters were
set manually. Grid aspect ratio was set to 1.3, following rough proportions of the
Shamisen body [25]. Poisson’s ratio has to be lower than 1

2 thus a ratio of 0.4 has
been chosen to satisfy this condition. The thickness of the membrane is set to
an average thickness of a single ply drum membrane [26] as the thickness of the
shamisen membrane could not be obtained. The tension on the membrane is man-
ually tuned. The bridge connects to the membrane at two points in a horizontal
axis.

3.9. Parameter acquisition 31

Notation Value Unit Parameter

AB b · HB m2 Cross sectional area of the bridge
AS1 π · r2

S1 m2 Cross sectional area of the first string
AS2 π · r2

S2 m2 Cross sectional area of the second string
AS3 π · r2

S3 m2 Cross sectional area of the third string
b 2.69333 · 10−3 m Width of the bridge

EB 3.2 · 109 Pa Young’s Modulus of the bridge
EM 3 · 109 Pa Young’s Modulus of the membrane
ES 9.9 · 109 Pa Young’s Modulus of the strings
HB 0.0075 m Thickness of the bridge
HM 0.0002 m Thickness of the membrane
IS1 (π · r4

S1)/4 kg ·m2 Moment of inertia of the first string
IS2 (π · r4

S2)/4 kg ·m2 Moment of inertia of the second string
IS3 (π · r4

S3)/4 kg ·m2 Moment of inertia of the third string
lc,S1 b(2NS1)(π7)c CP of the first string to the bridge
lc,S2 b(2NS2)(π7)c CP of the second string to the bridge
lc,S3 b(2NS3)(π7)c CP of the third string to the bridge

lc,B1

⌊
(NB

2 − 1)/2
⌋

CP of the bridge to the first string

lc,B2 bNB/2c CP of the bridge to the second string

lc,B3

⌈
NB
2 −1

2

⌉
+ lc,B2 CP of the bridge to the third string

lc,BL 1 CP of the left side of the bridge to the membrane
lc,BR NB CP of the right side of the bridge to the membrane

lc,ML, NMx − b3NMx/5c, CP of the membrane to the
mc,ML NMy −

⌊
NMy/4

⌋
left side of the bridge

lc,MR, NMx − b2NMx/5c, CP of the membrane to the
mc,MR NMy −

⌊
NMy/4

⌋
right side of the bridge

ν 0.4 Poisson’s ratio
r 1.3 Grid aspect ratio

rS1 4.15088 · 10−4 m Radius of the first string
rS2 2.83487 · 10−4 m Radius of the second string
rS3 2.10984 · 10−4 m Radius of the third string
ρB 1190 kg/m3 Specific mass of the bridge
ρM 1150 kg/m3 Specific mass of the membrane
ρS 1156.481 kg/m3 Specific mass of the strings

σ0,S 1.37803 Frequency independent damping of the string
σ0,B 1.343 Frequency independent damping of the bridge
σ0,M 1.37806 Frequency independent damping of the membrane
σ1,S 3.57021 · 10−3 Frequency dependent damping of the string
σ1,B 4.59 · 10−3 Frequency dependent damping of the bridge
σ1,M 9.60559 · 10−2 Frequency dependent damping of the membrane
TM 400 N/m Tension on the membrane
TS1 138.67 N Tension on the first string
TS2 145.53 N Tension on the second string
TS3 140.73 N Tension on the third string

Table 3.4: List of parameter values used when simulating Shamisen. CP in the Parameter column is
used to shorten the description, which stands for "Connection point".

Chapter 4

Evaluation and Discussion

In this chapter, two evaluation methods will be presented and employed to test
the Shamisen model developed in this work. The evaluation begins with a more
quantitative evaluation, where the quality of the sound is compared between the
models with different sized membranes. After that a realism evaluation is con-
ducted, where the sound of the biggest model is compared to the sound of a real
Shamisen. In the first one, comparing models with different sized membranes is
necessary since the membrane has the highest count of samples, which accounts
to a longer computational time. Finding a smaller grid size for the membrane
which still keeps a comparable sound quality to the full sized model is beneficial
when thinking about real-time implementation in the future. In the second part of
evaluation, subjects were asked to listen to a melody which was produced using a
sample of a real Shamisen and a melody which was produced using samples of the
Shamisen model developed in this work, then the open-ended question followed
asking for the comments about the sound characteristics of the Shamisen model.

It is important to mention that during the sampling of the model for the test,
the bridge by accident had its thickness set to be 10 times as large, which reduced
the number of spatial samples from 78 to 22. After an informal listening test it
was determined that this mistake did not produce any audible difference, thus it
was decided to keep and discuss the results of the survey as if the mistake was not
made due to the time constraints restricting running the test again with corrected
samples.

33

34 Chapter 4. Evaluation and Discussion

4.1 Quality test

4.1.1 Setup

The largest membrane had an average computation time of 58.6 seconds in MAT-
LAB on Lenovo IdealPad 5 with AMD Ryzen 7 4700U 2-4.1GHz processor which
meant it would not work in a real-time implementation. The table 4.1 has the
average computation times for models with different membrane grid sizes. The

grid size average computation time
123×73 58.6 seconds
61×46 15.2 seconds
30×23 8.7 seconds
15×11 8.1 seconds
10×7 7.2 seconds

7×5 7.4 seconds

Table 4.1: Computation time comparison on different membrane grid sizes.

average computation times for different grid sizes flattens out at around 7.5. That
can be explained by the fact that the lowest grid size has only 7 × 5 sized grid
which gives total of 35 points in a grid, also the second smallest grid has 10× 7
sized grid totaling with 70 points in a grid which when compared to the string grid
sizes of 91× 1, 62× 1 and 47× 1 is quite close in size thus the speed of comput-
ing the model does not depend on the membrane size more than the other parts
of the model. The increase of the computation time for the lowest grid may hap-
pen due to the inner optimisation algorithms changing when presented with less
demanding calculations. To determine the grid size suitable for the real-time im-
plementation the output of the models with a different sized membrane grid have
to be compared, thus a perceptual quality test was performed using MUSHRA
methodology [27]. For testing, 4 musical phrases were used, two of which were
popular Japanese pentatonic scales - Yo and Akebono and the other two were short
excerpts from Japanese folk instrumental music - "Kayo Kami" and "Shashari"[28].
The audio files were created using MIDI notation and a sampler, where each note
was mapped into the individual MIDI key1. Six audio files per musical phrase were
given for the rating, additionally one audio file was given as a reference. The six
rated audio files were created using different sized grid for the membrane in the
Shamisen model. In between the rated files a reference was also included which
is referred to as a hidden reference and instructions were given to rate the audio
files which do not have any audible difference from the reference with a 100. The
model with a membrane which has the most samples was used as a reference. The

1The audio files are available at https://github.com/titas2001/FDS_Shamisen_audio

4.2. Verity test 35

order of all the rated audio files was randomised between the musical phrases.

4.1.2 Results

The survey had 19 participants, 8 of which miss-understood the rating system
and their quantitative ratings were dismissed. Understanding of the rating system
was checked with the hidden reference: if the person consistently rated hidden
reference at values bellow 90, this meant that the instructions were not understood
properly. Table 4.2 has the average quality scores of different membrane grid sizes
as well as how many times on average through 4 musical phrases the audio file
was indistinguishable from the reference.

grid size Average quality score People who heard it as the reference
123×73 94.59 57.2%
61×46 93.27 40.9%
30×23 93.00 45.5%
15×11 59.16 0%
10×7 66.36 0%
7×5 56.93 0%

Table 4.2: Quantitative results of the questionnaire. Average quality score is the mean value of all
the accepted ratings. The value in third column is calculated by counting how many ratings of a 100
each grid size had over all 4 musical phrases and then it was divided by 4 and converted to the %.

The table 4.2 shows that the quality of the sound drops significantly with the
grid size 15× 11 and bellow. The largest grid had the highest average and the most
people rated it being the same as the reference, although it was the hidden refer-
ence and ideally, it would have all the participants recognise it as one. The second
largest grid size had the highest average score, but it also had less people rating
it as indistinguishable from the reference than the 30× 23 grid had. Matching the
results from the quality test with the table 4.1 we can determine that using a mem-
brane with a grid of 30× 23 would be the best option, as it has a computation time
almost 7 times faster than the full sized grid while also having a comparable audio
quality.

4.2 Verity test

4.2.1 Setup

Realism evaluation is conducted right after the MUSHRA test. During this eval-
uation, participants are given two audio files with an excerpt from "Shigin-Cho"
by Nanagon Zeku[28]. As before, when creating melodies midi files were used
with a sampler, but this time one of the audio files was a using a sample of a

36 Chapter 4. Evaluation and Discussion

real Shamisen playing C4 while the other audio file was playing the melody us-
ing sampled Shamisen model from this work. Participants responded by writing
open-ended answers on how they felt about the modeled Shamisen sound.

4.2.2 Results

The main consensus was that the modeled sound lacked the distinctive percussive
attack of the instrument, which is created by following the plectrum motion after it
had excited the string until it hits the edge of the instrument [2] and that it did not
buzz as the real Shamisen does, which is related to the short nut allowing stings
to vibrate against the neck of the instrument[1]. These comments were expected
as the percussive attack of the bachi and the string rattling were not modeled.
Other detail that many participants pointed out was that the model has too long
of a decay time and the membrane resonates at a lower frequency than in the real
Shamisen. Both of these miss-matches could possibly be rectified by tuning the
parameters of the system, if the tuning still could not match the decay and the
pitch of the real instrument, modeling the buzzing of the strings and the collision
of the bachi might prove to be necessary. In addition, participants noticed that the
model produces strong high harmonics, where in a real shamisen these are more
subdued. Solving this problem might not be so straightforward as the other ones
but the tuning the parameters and adding the percussive bachi hit model might
just solve it. Overall the comments about the sound leave more work on tuning
and modeling to be desired.

Chapter 5

Future Work

5.1 The Real-Time Implementation

The state of the current model is not ideal, but it would still be beneficial to imple-
ment the model in a real-time application in a form of a plugin. The quality test
in section 4.1 reveals the optimal sized grid for the membrane, which performance
could be tested in the plugin. At the same time the real-time suitability of the
current grid sizes of the strings and the bridge would be tested. Moreover the user
interface (UI) could be designed and passed through the testing phases.
The first iteration of the plugin could be designed using MATLAB Audio Plugin
libraries [29] as it would not require converting the code from the MATLAB code
to some other programming language, although some alterations are needed when
creating the plugin using MATLAB.
The further steps in creating a more developed audio plugin would require rewrit-
ing the code to C++ and using a framework specifically designed for creating audio
plugins such as JUCE [30]. Moving to using a dedicated framework would add ad-
ditional control to the design elements of the plugin and a plugin written in C++
could potentially further improve the computational speed of the plugin.

5.2 Model Improvements

In this section future improvements regarding the modeling aspect of the work
will be discussed. The improvements are presented in the order of how much the
addition of the model could potentially improve the sound verity.

5.2.1 Collisions Model

As discussed in section 4.2 the sound produced by the model lacks the rattling
that the real shamisen is distinguished by. Creating the rattling requires a complex

37

38 Chapter 5. Future Work

collisions modelling. The collisions could be modeled as described in [31], but
instead of rattling the bridge as it is done by paper authors, the strings would be
rattling.

5.2.2 Excitation model

Coming back to the section 3.8.1 the excitation is a simple hann window at the first
time step. To create a more realistic excitation model the pluck can be modeled by
increasing the amplitude of the hann window over time and releasing the string at
the highest point. Achieving that is a matter of creating an excitation which follows
sinusoidal curve from 0 to 1 and as it reaches 1, the amplitude of hann window
would go to zero [32]. Changing the speed and the amplitude of the pluck would
add another layer of control - the volume of the instrument. In a case, where the
rattling of the string does not produce a convincing timbre of the instrument, the
bachi could be modeled as a stiff plate [33] with 3 free boundaries where a mallet
like hit on the edge of it could simulate the bachi hitting the edge of the instrument
adding to the percussive attack sound.

5.2.3 Fretting model

In order to further develop the accuracy of the Shamisen model a simplified solu-
tion of fretting described in section 3.8.2 must be replaced by a String/Fretboard
interaction model proposed in [34]. The authors of the paper describe a method
of fretting either fretted or fretless instrument strings using FDS. The proposed
method involves modeling a rigid barrier bellow the strings which would simulate
the fretboard acting as a collision model similar to the ones modeling the striking
action. Another part of the fretting model would be the model of a fretting finger,
which would press the string down on the fretboard. The finger is modeled as an
another collision model but this time the model would include the damping effects
and a mass. While the fretboard is modeled as an immovable object, the finger has
to move in order to press down on the strings. Incorporating this model would
attend to one of the concerns pointed out in the section 4.2 - the longer sustain of
the model when compared to the real instrument.

Chapter 6

Conclusion

A properly working Shamisen model had been implemented in MATLAB using
FDS. The models of the strings, the bridge and the membrane had been coupled
and are behaving as expected. The goal of implementing a real-time Shamisen plu-
gin was not reached due to the time constraints although the section 5.1 discusses
methods of reaching the set-out goal. The evaluation had provided valuable data
for the development of the real-time plugin. Also, it pointed out that the model
timbre does not yet match the real Shamisen, thus the simplified model of the
Shamisen proved to be non-sufficient. Improvements discussed in the section 5.2
when implemented could possibly synthesise a more realistic Shamisen sound and
become a viable alternative for the currently used recorded samples.

39

Bibliography

[1] Brussels Musical Instruments Museum. Shamisen. http : / / www . mim . be /
shamisen. (Accessed on 12/16/2020).

[2] By Ono. How to play a shamisen/Way to play a shamisen is explained here in
the picture and moving image. https://www.shamisen.info/ehikikatasan/
kotonosoho.html. 2009.

[3] Dale Roll. Beautiful shamisen featuring original illustration by Final Fantasy de-
signer now on sale | SoraNews24 -Japan News-. https://soranews24.com/
2018/11/29/beautiful-shamisen-featuring-original-illustration-by-
final-fantasy-designer-now-on-sale/. (Accessed on 12/16/2020). Nov.
2018.

[4] Azyri. Shamisen_diagram.jpg (49643512). https://upload.wikimedia.org/
wikipedia/commons/7/76/Shamisen_diagram.jpg. Aug. 2018.

[5] Le Loi. Shamisen diagram. https://en.wikipedia.org/wiki/Shamisen#
/media/File:Shamisen_diagram.svg. Oct. 2018.

[6] Julius O. Smith. “Physical Modeling Using Digital Waveguides”. In: Computer
Music Journal. Vol. 16. 1992, p. 74.

[7] Silvin Willemsen, Stefania Serafin, Stefan Bilbao, and Michele Ducceschi.
“Real-Time Implementation of a Physical Model of the Tromba Marina”. In:
Proceedings of the 17th Sound and Music Computing Conference. June 2020.

[8] Cumhur Erkut and Matti Karjalainen. “Finite difference method vs. digital
waveguide method in string instrument modeling and synthesis”. In: Pro-
ceedings of the International Symposium on Musical Acoustics (ISMA-02), Mexico
City, 2002. Sept. 2002.

[9] ShamiKoto Virtual Koto and Shamisen VST VST3 Audio Unit Plugin. Traditional
Japanese Musical Instruments. https://syntheway.com/ShamiKoto.htm. (Ac-
cessed on 12/16/2020).

[10] Tanbur. http://www.turkosfer.com/tanbur/. (Accessed on 12/17/2020).

41

http://www.mim.be/shamisen
http://www.mim.be/shamisen
https://www.shamisen.info/ehikikatasan/kotonosoho.html
https://www.shamisen.info/ehikikatasan/kotonosoho.html
https://soranews24.com/2018/11/29/beautiful-shamisen-featuring-original-illustration-by-final-fantasy-designer-now-on-sale/
https://soranews24.com/2018/11/29/beautiful-shamisen-featuring-original-illustration-by-final-fantasy-designer-now-on-sale/
https://soranews24.com/2018/11/29/beautiful-shamisen-featuring-original-illustration-by-final-fantasy-designer-now-on-sale/
https://upload.wikimedia.org/wikipedia/commons/7/76/Shamisen_diagram.jpg
https://upload.wikimedia.org/wikipedia/commons/7/76/Shamisen_diagram.jpg
https://en.wikipedia.org/wiki/Shamisen#/media/File:Shamisen_diagram.svg
https://en.wikipedia.org/wiki/Shamisen#/media/File:Shamisen_diagram.svg
https://syntheway.com/ShamiKoto.htm
http://www.turkosfer.com/tanbur/

42 Bibliography

[11] Banjo 17 fret - Metal Rim Trad instrument. https://www.freyaguitars.ie/
product/4- string- banjo- 17- fret- koda- with- gigbag/. (Accessed on
12/17/2020).

[12] Tambur. https://www.ktb.gov.tr/EN-98665/tambur.html. (Accessed on
12/17/2020).

[13] A. C. Yu. Shamisen (a three-stringed Japanese banjo) - Japanese Wiki Corpus.
https://japanese- wiki- corpus.github.io/culture/Shamisen%20(a%
20three-stringed%20Japanese%20banjo).html. (Accessed on 12/14/2020).

[14] Florian Pfeiffle and Rolf Bader. Real-Time Physical Modelling of a complete
Banjo geometry using FPGA hardware technology. http://systmuwi.de/Pdf/
Papers/Bader%20papers/Physical%20Modeling/PhysicalModeling_Banjo/
Pfeifle,Bader_04FPGA_Format.pdf. (Accessed on 12/14/2020).

[15] Stefan Bilbao. Numerical Sound Synthesis. John Wiley & Sons, Ltd, 2009. isbn:
9780470749012. doi: 10.1002/9780470749012. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470749012. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470749012.

[16] Silvin Willemsen, Anca-Simona Horvath, and Mauro Nascimben. “DigiDrum:
A Haptic-based Virtual Reality Musical Instrument and a Case Study”. En-
glish. In: Proceedings of the 17th Sound and Music Computing Conference. Ed. by
Simone Spagnol and Andrea Valle. 2020, pp. 292–299.

[17] Menachem Lewin. “Handbook of Fiber Chemistry”. English. In: Marcel Dekker,
1998, 438–441. isbn: 0-8247-9471-0.

[18] Frank Ko, Sueo Kawabata, Mari Inoue, Masako Niwa, Stephen Fossey, and
John Song. “Engineering Properties of Spider Silk Fibers”. In: MRS Proceed-
ings. Vol. 702. Jan. 2001. doi: 10.1557/PROC-702-U1.4.1.

[19] Young’s Modulus - Tensile and Yield Strength for common Materials. https://
www.engineeringtoolbox.com/young-modulus-d_417.html. 2003.

[20] Density of Selected Solids. https://www.engineeringtoolbox.com/density-
solids-d_1265.html. 2009.

[21] Tsugaru Shamisen Koma (Bridge) — Bachido Store. https : / / bachido . com /
store/. (Accessed on 12/12/2020).

[22] Tugaru Jamisen. http://www.shamisen-katoh.com/e/AXIS.htm. Jan. 2001.

[23] Dave Hueston. Shamisen faces crisis as cat skins fall from favor. https://www.
japantimes.co.jp/culture/2016/12/29/music/shamisen-faces-crisis-
cat-skins-fall-favor/.

[24] Miki Minoru and Philip Flavin. Composing for Japanese Instruments. University
of Rochester Press, 2008.

https://www.freyaguitars.ie/product/4-string-banjo-17-fret-koda-with-gigbag/
https://www.freyaguitars.ie/product/4-string-banjo-17-fret-koda-with-gigbag/
https://www.ktb.gov.tr/EN-98665/tambur.html
https://japanese-wiki-corpus.github.io/culture/Shamisen%20(a%20three-stringed%20Japanese%20banjo).html
https://japanese-wiki-corpus.github.io/culture/Shamisen%20(a%20three-stringed%20Japanese%20banjo).html
http://systmuwi.de/Pdf/Papers/Bader%20papers/Physical%20Modeling/PhysicalModeling_Banjo/Pfeifle,Bader_04FPGA_Format.pdf
http://systmuwi.de/Pdf/Papers/Bader%20papers/Physical%20Modeling/PhysicalModeling_Banjo/Pfeifle,Bader_04FPGA_Format.pdf
http://systmuwi.de/Pdf/Papers/Bader%20papers/Physical%20Modeling/PhysicalModeling_Banjo/Pfeifle,Bader_04FPGA_Format.pdf
https://doi.org/10.1002/9780470749012
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470749012
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470749012
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470749012
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470749012
https://doi.org/10.1557/PROC-702-U1.4.1
https://www.engineeringtoolbox.com/young-modulus-d_417.html
https://www.engineeringtoolbox.com/young-modulus-d_417.html
https://www.engineeringtoolbox.com/density-solids-d_1265.html
https://www.engineeringtoolbox.com/density-solids-d_1265.html
https://bachido.com/store/
https://bachido.com/store/
http://www.shamisen-katoh.com/e/AXIS.htm
https://www.japantimes.co.jp/culture/2016/12/29/music/shamisen-faces-crisis-cat-skins-fall-favor/
https://www.japantimes.co.jp/culture/2016/12/29/music/shamisen-faces-crisis-cat-skins-fall-favor/
https://www.japantimes.co.jp/culture/2016/12/29/music/shamisen-faces-crisis-cat-skins-fall-favor/

Bibliography 43

[25] Viktorija Reuta. Vector Illustration Traditional Japanese Sting Instrument Shamisen.
Royalty Free Cliparts, Vectors, And Stock Illustration. Image 85576071. https:
//www.123rf.com/photo_85576071_stock-vector-vector-illustration-
traditional-japanese-sting-instrument-shamisen-.html. (Accessed on
12/12/2020).

[26] What You Need to Know About...Drumheads. https://www.moderndrummer.
com/2011/10/what-you-need-to-know-about-drumheads/. Dec. 2010.

[27] RECOMMENDATION ITU-R BS.1534-1 - Method for the subjective assessment of
intermediate quality level of coding systems. https://www.itu.int/dms_pubrec/
itu-r/rec/bs/R-REC-BS.1534-1-200301-S!!PDF-E.pdf. 2001-2003.

[28] Tom Potter. Daisyfield.com Archive of Japanese Traditional Music. http://www.
daisyfield.com/music/htm/-genres/japan.htm. (Accessed on 12/13/2020).

[29] Audio Plugin Creation and Hosting - MATLAB & Simulink. https : / / www .
mathworks.com/help/audio/audio-plugin-creation-and-hosting.html.
(Accessed on 12/17/2020).

[30] JUCE. https://juce.com/. (Accessed on 12/17/2020).

[31] Michele Ducceschi and Stefan Bilbao. “Non-iterative solvers for nonlinear
problems: the case of collisions”. In: Proceedings of the 22nd Conference of Dig-
ital Audio Effects (DAFx-19). Sept. 2019.

[32] Silvin Willemsen, Stefania Serafin, Stefan Bilbao, and Nikolaj Andersson.
“Real-Time Control of Large-Scale Modular Physical Models Using the Sensel
Morph”. In: Proceedings of the 16th Sound and Music Computing Conference. July
2019.

[33] Stefan Bilbao. “Linear plate vibration”. In: Numerical Sound Synthesis. John
Wiley & Sons, Ltd, 2009. Chap. 12, pp. 330–359. isbn: 9780470749012. doi:
10.1002/9780470749012.ch12. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/9780470749012.ch12. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470749012.ch12.

[34] Stefan Bilbao and Alberto Torin. “Numerical Modeling and Sound Synthesis
for Articulated String/Fretboard Interactions”. In: Journal of the Audio Engi-
neering Society. Vol. 63. June 2015. doi: 10.17743/jaes.2015.0023.

https://www.123rf.com/photo_85576071_stock-vector-vector-illustration-traditional-japanese-sting-instrument-shamisen-.html
https://www.123rf.com/photo_85576071_stock-vector-vector-illustration-traditional-japanese-sting-instrument-shamisen-.html
https://www.123rf.com/photo_85576071_stock-vector-vector-illustration-traditional-japanese-sting-instrument-shamisen-.html
https://www.moderndrummer.com/2011/10/what-you-need-to-know-about-drumheads/
https://www.moderndrummer.com/2011/10/what-you-need-to-know-about-drumheads/
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-1-200301-S!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-1-200301-S!!PDF-E.pdf
http://www.daisyfield.com/music/htm/-genres/japan.htm
http://www.daisyfield.com/music/htm/-genres/japan.htm
https://www.mathworks.com/help/audio/audio-plugin-creation-and-hosting.html
https://www.mathworks.com/help/audio/audio-plugin-creation-and-hosting.html
https://juce.com/
https://doi.org/10.1002/9780470749012.ch12
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470749012.ch12
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470749012.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470749012.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470749012.ch12
https://doi.org/10.17743/jaes.2015.0023

Chapter 7

Appendix

Yo scale Akebono scale "Kayo Kami" "Shashari"
grid size X 100 > 90 X 100 > 90 X 100 > 90 X 100 > 90
123×73 97.64 7 10 96.18 7 9 93.27 5 8 91.27 6 8

61×46 95.36 5 10 93.00 3 9 96.18 5 11 88.55 5 7
30×23 90.18 4 8 97.00 7 11 91.45 4 7 93.36 5 10
15×11 55.00 0 1 59.64 0 1 59.27 0 2 62.73 0 1
10×7 63.64 0 2 55.55 0 1 69.91 1 2 76.36 2 3
7×5 52.45 0 0 53.36 0 0 58.82 0 1 63.09 0 0

Table 7.1: Quantitative results of the questionnaire. Columns marked with X are the mean values of
the quality ratings; Columns with a 100 show how many people rated the sound to be indistinguish-
able from the reference; Columns with > 90 show how many people rated the audio file with a score
above 90, which might be useful, when considering cases, where the slider accidentally slipped off
the 100 value.

The unaltered open-ended responses about the modeled sound when com-
pared to the real instrument sound are listed bellow. Some responses uses "the
first" and "the second" when talking about the audio files, which refer to the
melody created from a real instrument sample and the melody created from the
modeled sound respectively.

• Seems like the specific "buzzing" of the original instrument is not well pro-
duced on the virtual one.

• Virtual Shamisen seems to sound overwhelming, more strong and more bass,
which I do not prefer. Real Shamisen sounds more light, more airy and
therefore I prefer it more.

• Virtual Shamisen sounds a lot more synthetic and high pitched compared to
real. Also real has a lot more depth vs virtual sounds flat.

45

46 Chapter 7. Appendix

• I feel the virtual sound is too "smooth", in the sense of less dirty, less ran-
dom, more "perfect" (like a synth), and that is not how the sampled shamisen
sounds. Also, noise decays before in the Samples Shamisen.... I’m missing
the "hit" sound in the virtual. (I know there is, but needs more force).

• It is super hard to compare these 2 last files, since the first audio was made
fully naturally, most likely with the live instrument, while the second audio
was made within computer. However the melody seems to be fully the same.
Just the instrument is totally different.

• The virtual Shamisen sounds as it is played on different musical instruments
than the original one. The sounds are longer and last more in the virtual one.

• It seems that first audio has a purer sound

• Apart from the melody the audios are quite different. The real Shamisen has
quite vibrant sounds, melody sounds bit more organic than the second audio.
The second audio has a sound somewhat similar to the sound of a guitar, but
it is clear that the sound is generated by a computer.

• The real shamisen has a more "wooden" sound and thus more real sound.
Also, there is much less high-frequency content than in the simulated one.

• The first one is much more better than the second one. More realistic sounds
and in the second one there is more electronic sounds.

• The virtual Shamisen sounds more like a keyboard, less echo and more base.

• i really like how you can hear the resonance of a body in the virtual Shamisen.
It makes the sound way more realistic even that the real Shamisen samples
do not have that sound. Overall I think it’s a great physical model.

• Virtualaus instrumento tembras atrodo aukštesnis, garsas labiau aidi, yra
skardesnis. Fone girdisi žemo tembro beat’as, kurio nėra originaliame įraše.

• Virtual Shamisen has a low almost kick like sounds for each note (maybe
increase attack slightly?) Virtual Shamisen sounds much more bright than
the real one. I think this would benefit from more egg, who doesn’t love egg?

• The vibrating membrane seems in a lower tune with respect to the real one.
The attack sound appears to be lost in the virtual instrument.

• They sound different, you can clearly identify that its the same melody but it
sounds like the second one needs a bit more of practice.

• oh no, I couldn’t hear this last piece I don’t know what happened. But super
cool project, sounds great congrats :))) Ramon

47

• Sound 2 was clearer compared go sound 1.

Listing 7.1: The MATLAB code used to model and sample the Shamisen

1 clear all;
2 close all;
3 clc
4

5 scale = 7;
6 shamisenString = 0;
7 fs = 44100; % sampling freq
8 k = 1/fs; % time step
9 TS1 = 14.15*9.8; % applied string tension https ://

mk0larsenstringsti68.kinstacdn.com/wp -content/uploads /2018/12/
Larsen -String -Tension -Charts -18. pdf

10 TS2 = 14.85*9.8; % applied string tension
11 TS3 = 14.36*9.8; % applied string tension
12 TP = 400; % applied plate tension
13 rhoS = 1156.48151991993;% material density of the string
14 % "Handbook of Fiber Chemistry", Menachem

Lewin , Editor , 2nd ed.,1998, Marcel Dekker ,
pp. 438 441 , ISBN 0 -8247 -9471 -0

15 % "ENGINEERING PROPERTIES OF SPIDER SILK"
http ://web.mit.edu/course /3/3.064/ www/
slides/Ko_spider_silk.pdf

16 rhoP = 1150; % nylon https ://www.engineeringtoolbox.com/
engineering -materials -properties -d_1225.html

17 HP = 0.0002; % plate thickness
18 EP = 3e+9; % nylon https ://www.engineeringtoolbox.com/

engineering -materials -properties -d_1225.html
19 nu = 0.4; % P o i s s o n s ratio nu < 0.5
20 r = 1.3; % grid aspect ratio
21 Lx = r*0.4; % length of plate in x direction
22 Ly = (1/r)*0.4; % length of plate in y direction
23 LS = 1; % lenght of the string
24 LB = 1; % lenght of the bridge
25 durration = 3; % synthesised sound lenght in seconds
26 dur = fs*durration; % synthesised sound lenght in samples
27 rhoB = 1190; % material density
28 AreaS1 = 0.00000054129; % string cross sectional area
29 AreaS2 = 2.52473376e-7; % string cross sectional area
30 AreaS3 = 1.398451e-7; % string cross sectional area
31 AreaB = 2.02e-4; % bridge cross sectional area
32 EB = 3.2e+9; % Young ’s modulus acrylic https ://www.

engineeringtoolbox.com/young -modulus -d_417.html
33 HB = 0.0075; % thickness
34 rS1 = sqrt(AreaS1/pi); % string1 radius
35 rS2 = sqrt(AreaS2/pi); % string2 radius
36 rS3 = sqrt(AreaS3/pi); % string2 radius
37 ES = 9.9e+9; % Young modulus "ENGINEERING PROPERTIES OF

SPIDER SILK" http ://web.mit.edu/course /3/3.064/ www/slides/

48 Chapter 7. Appendix

Ko_spider_silk.pdf
38

39

40 gammaS1 = sqrt(TS1/(rhoS*AreaS1*LS^2)); % String tension
41 gammaS2 = sqrt(TS2/(rhoS*AreaS2*LS^2)); % String tension
42 gammaS3 = sqrt(TS3/(rhoS*AreaS3*LS^2)); % String tension
43 gammaP = sqrt(TP/(rhoP*HP*Lx*Ly));
44

45

46

47 IS1 = (pi*rS1^4)/4; % string1 inertia
48 IS2 = (pi*rS2^4)/4; % string1 inertia
49 IS3 = (pi*rS3^4)/4; % string1 inertia
50 kappaB=sqrt((EB*HB^2) /(12* rhoB*LB^4)); % eq. 7.70 pg. 210
51

52 %
53 kappaS1=sqrt((ES*IS1)/(rhoS*AreaS1*LS^4));
54 kappaS2=sqrt((ES*IS2)/(rhoS*AreaS2*LS^4));
55 kappaS3=sqrt((ES*IS3)/(rhoS*AreaS3*LS^4));
56 D = EP*HP^3 / (12 * (1 - nu^2)); % plate flexural rigidity pg.331
57 kappaPsq = D / (rhoP * HP * Lx^2 * Ly^2); % pg.332 eq.12.3 kappa^2
58

59

60 sigmaS0 = 1.378027748373650;
61 sigmaS1 = 3.570213734102943e-03;
62 sigmaP0 = 1.378062296963499*2;
63 sigmaP1 = 0.096055930949692*2;
64 sigmaB0 = 1.343;
65 sigmaB1 = 0.00459;
66

67 hB = sqrt ((4* sigmaB1*k+sqrt ((4* sigmaB1*k)^2+16* kappaB ^2*k^2))/2); %
same method as for the string in pg. 176 but without gamma term

68 hS1 = sqrt((gammaS1 ^2 * k^2 + 4* sigmaS1*k + sqrt((gammaS1 ^2 * k^2 + 4*
sigmaS1*k)^2 + 16*(kappaS1 ^2)*k^2))/2); % set grid spacing for
String eq.7.24 -25 pg.176

69 hS2 = sqrt((gammaS2 ^2 * k^2 + 4* sigmaS1*k + sqrt((gammaS2 ^2 * k^2 + 4*
sigmaS1*k)^2 + 16*(kappaS2 ^2)*k^2))/2); % set grid spacing for
String eq.7.24 -25 pg.176

70 hS3 = sqrt((gammaS3 ^2 * k^2 + 4* sigmaS1*k + sqrt((gammaS3 ^2 * k^2 + 4*
sigmaS1*k)^2 + 16*(kappaS3 ^2)*k^2))/2); % set grid spacing for
String eq.7.24 -25 pg.176

71 hP = sqrt((gammaP ^2 * k^2 + 4* sigmaP1*k + sqrt((gammaP ^2 * k^2 + 4*
sigmaP1*k)^2 + 16* kappaPsq*k^2))); % set grid spacing for Plate
tromba marina paper eq. 20

72

73

74

75 NS1 = floor (1/hS1); % string spatial subdivisions
76 NS2 = floor (1/hS2); % string spatial subdivisions
77 NS3 = floor (1/hS3); % string spatial subdivisions
78 NB = floor (1/hB); % bar spatial subdivisions

49

79 Nx = floor(sqrt(r)/hP); % number of x-subdivisions of spatial
domain

80 Ny = floor (1/(sqrt(r)*hP)); % number of y-subdivisions of spatial
domain

81

82 if Nx > scale
83 Nx = scale;
84 end
85

86

87 hP = sqrt(r)/min(Nx, Ny); % reset grid spacing for Plate
88 hS1 = 1/NS1; % reset grid spacing for String1
89 hS2 = 1/NS2; % reset grid spacing for String2
90 hS3 = 1/NS3; % reset grid spacing for String3
91 hB = 1/NB; % reset grid spacing for Bar
92 Ny = floor (1/(sqrt(r)*hP)); % number of y-subdivisions of spatial

domain
93

94

95

96 %% Connection points
97 lBc1 = floor((NB/2 - 1)/2); % bar connection to the 1st string
98 lBc2 = floor(NB/2); % bar connection to the 2nd string
99 lBc3 = ceil((NB/2 - 1)/2)+lBc2; % bar connection to the 3rd

string
100 lBcl = 1; % bar left side connection to the plate
101 lBcr = NB; % bar right side connection to the plate
102

103 lS1c = floor ((2* NS1)/(pi*7)); % 1st string connection to the bar
104 lS2c = floor ((2* NS2)/(pi*7)); % 2nd string connection to the bar
105 lS3c = floor ((2* NS3)/(pi*7)); % 3rd string connection to the bar
106

107 lPcl = Nx - floor (3*Nx/5); % Plate connection to the bar on the left
side x coordinate

108 lPcr = Nx - floor (2*Nx/5); % Plate connection to the bar on the right
side x coordinate

109 mPcl = Ny - floor(Ny/4); % Plate connection to the bar on the left
side y coordinate

110 mPcr = Ny - floor(Ny/4); % Plate connection to the bar on the right
side y coordinate

111

112 %% Multipliers
113

114 % Strings
115 uS1lMult = (((-2* gammaS1 ^2)/hS1^2 - 6* kappaS1 ^2/ hS1^4 - 4* sigmaS1 /(k*

hS1 ^2))*k^2 + 2)/(k*sigmaS0 + 1);
116 uS1l1Mult = (gammaS1 ^2/hS1^2 + 4* kappaS1 ^2/ hS1^4 + 2* sigmaS1 /(k*hS1^2)

)*k^2/(k*sigmaS0 + 1);
117 uS1l2Mult = ((-1*k^2* kappaS1 ^2)/(hS1^4))/(k*sigmaS0 + 1);
118 uS1PrevlMult = ((4* sigmaS1*k^2)/(k*hS1 ^2) + k*sigmaS0 - 1)/(k*sigmaS0

+ 1);

50 Chapter 7. Appendix

119 uS1Prevl1Mult = ((-2* sigmaS1*k^2)/(k*hS1^2))/(k*sigmaS0 + 1);
120

121 uS2lMult = (((-2* gammaS2 ^2)/hS2^2 - 6* kappaS2 ^2/ hS2^4 - 4* sigmaS1 /(k*
hS2 ^2))*k^2 + 2)/(k*sigmaS0 + 1);

122 uS2l1Mult = (gammaS2 ^2/ hS2^2 + 4* kappaS2 ^2/ hS2^4 + 2* sigmaS1 /(k*hS2^2)
)*k^2/(k*sigmaS0 + 1);

123 uS2l2Mult = ((-1*k^2* kappaS2 ^2)/(hS2^4))/(k*sigmaS0 + 1);
124 uS2PrevlMult = ((4* sigmaS1*k^2)/(k*hS2 ^2) + k*sigmaS0 - 1)/(k*sigmaS0

+ 1);
125 uS2Prevl1Mult = ((-2* sigmaS1*k^2)/(k*hS2^2))/(k*sigmaS0 + 1);
126

127 uS3lMult = (((-2* gammaS3 ^2)/hS3^2 - 6* kappaS3 ^2/ hS3^4 - 4* sigmaS1 /(k*
hS3 ^2))*k^2 + 2)/(k*sigmaS0 + 1);

128 uS3l1Mult = (gammaS3 ^2/ hS3^2 + 4* kappaS3 ^2/ hS3^4 + 2* sigmaS1 /(k*hS3^2)
)*k^2/(k*sigmaS0 + 1);

129 uS3l2Mult = ((-1*k^2* kappaS3 ^2)/(hS3^4))/(k*sigmaS0 + 1);
130 uS3PrevlMult = ((4* sigmaS1*k^2)/(k*hS3 ^2) + k*sigmaS0 - 1)/(k*sigmaS0

+ 1);
131 uS3Prevl1Mult = ((-2* sigmaS1*k^2)/(k*hS3^2))/(k*sigmaS0 + 1);
132

133 % Bar
134 uBlMult = (2*hB^4 - 4*hB^2*k*sigmaB1 - 6*k^2* kappaB ^2)/(hB^4*(k*

sigmaB0 + 1));
135 uBl1Mult = (2*hB^2*k*sigmaB1 + 4*k^2* kappaB ^2)/(hB^4*(k*sigmaB0 + 1));
136 uBl2Mult = (-1*k^2* kappaB ^2)/(hB^4*(k*sigmaB0 + 1));
137 uBPrevlMult = (hB^4*k*sigmaB0 - hB^4 + 4*hB^2*k*sigmaB1)/(hB^4*(k*

sigmaB0 + 1));
138 uBPrevl1Mult = (-2* sigmaB1*k)/(hB^2*(k*sigmaB0 + 1));
139

140 % Plate
141 uPlMult = ((-20* kappaPsq/hP^4 - 4* gammaP ^2/hP^2 - 8* sigmaP1 /(k*hP^2))*

k^2 + 2)/(k*sigmaP0 + 1);
142 uPl1Mult = (8* kappaPsq/hP^4 + gammaP ^2/hP^2 + 2* sigmaP1 /(k*hP^2))*k

^2/(k*sigmaP0 + 1);
143 uPl1dMult = (-2* kappaPsq*k^2)/(hP^4)/(k*sigmaP0 + 1);
144 uPl2Mult = (-1* kappaPsq*k^2)/(hP^4)/(k*sigmaP0 + 1);
145 uPPrevlMult = ((8* sigmaP1*k^2)/(k*hP^2) + k*sigmaP0 - 1)/(k*sigmaP0 +

1);
146 uPPrevl1Mult = ((-2* sigmaP1*k^2)/(k*hP^2))/(k*sigmaP0 + 1);
147

148 % Forces
149 Fs1bMult = 1/(1/(rhoB*AreaB*hB * (sigmaB0 + 1)) + 1/(rhoS*AreaS1*hS1 *

(sigmaS0 + 1)));
150 Fs2bMult = 1/(1/(rhoB*AreaB*hB * (sigmaB0 + 1)) + 1/(rhoS*AreaS2*hS2 *

(sigmaS0 + 1)));
151 Fs3bMult = 1/(1/(rhoB*AreaB*hB * (sigmaB0 + 1)) + 1/(rhoS*AreaS3*hS3 *

(sigmaS0 + 1)));
152 FbpMult = 1/(-1/(rhoB*AreaB*hB * (sigmaB0 + 1)) - 1/(rhoP*HP*hP^2 * (

sigmaP0 + 1)));
153 if shamisenString == 1
154 frettingpos =

51

[0,4,8,13,17,21,24,27,30,33,36,39,41,43,45,47,49,51,53,55,56,58,59,60,61,63,64,65];
%1st string

155 noteName = ["C4","Db4","D4","Eb4","E4","F4","Gb4","G4","Ab4","A4
","Bb4","B4","C5","Db5","D5"...

156 ,"Eb5","E5","F5","Gb5","G5","Ab5","A5","Bb5","B5","C6","Db6","D6
","Eb6"]; %1st string

157 end
158 if shamisenString == 2
159 frettingpos =

[0,3,6,9,12,14,16,19,21,23,25,26,28,30,31,32,34,35,36,37,38,39,40,41,42,43];
%2nd string

160 noteName = ["G4","Ab4","A4","Bb4","B4","C5","Db5","D5","Eb5","E5
","F5","Gb5","G5","Ab5","A5"... %2nd string

161 ,"Bb5","B5","C6","Db6","D6","Eb6","E6","F6","Gb6","G6","Ab6 "];
162 end
163 if shamisenString == 3
164 frettingpos =

[0,2,5,7,9,11,12,14,16,17,18,20,21,22,23,24,25,26,27,28,29];
%3rd string

165 noteName = ["C5","Db5","D5","Eb5","E5","F5","Gb5","G5","Ab5","A5
","Bb5","B5","C6","Db6","D6"... %3rd string

166 ,"Eb6","E6","F6","Gb6","G6","Ab6"];
167 end
168 if shamisenString == 0
169 frettingpos = [0];
170 noteName = ["C4"];
171 shamisenString =1;
172 end
173

174 for i=1: length(frettingpos)
175 %% Intialise states of the system
176

177 % Strings
178 noteName(i)
179 frettingpos(i)
180 uS1Next = zeros(NS1 ,1);
181 uS1 = zeros(NS1 ,1);
182 if shamisenString == 1
183 width = round(NS1 /10);
184 excitationRange = 1:width;
185 uS1(excitationRange + floor ((NS1*5)/(pi*6))) = hann(width);
186 lS1 = 3+(0):NS1 -2-(frettingpos(i));
187 lS2 = 3+(0):NS2 -2-(0);
188 lS3 = 3+(0):NS3 -2-(0);
189 end
190 uS1Prev = uS1;
191 uS2Next = zeros(NS2 ,1);
192 uS2 = zeros(NS2 ,1);
193 if shamisenString == 2
194 width = round(NS2 /10);
195 excitationRange = 1:width;

52 Chapter 7. Appendix

196 uS2(excitationRange + floor ((NS2*5)/(pi*6))) = hann(width);
197 lS1 = 3+(0):NS1 -2-(0);
198 lS2 = 3+(0):NS2 -2-(frettingpos(i));
199 lS3 = 3+(0):NS3 -2-(0);
200 end
201 uS2Prev = uS2;
202 uS3Next = zeros(NS3 ,1);
203 uS3 = zeros(NS3 ,1);
204 if shamisenString == 3
205 width = round(NS3 /10);
206 excitationRange = 1: width;
207 uS3(excitationRange + floor ((NS3*5)/(pi*6))) = hann(width);
208 lS1 = 3+(0):NS1 -2-(0);
209 lS2 = 3+(0):NS2 -2-(0);
210 lS3 = 3+(0):NS3 -2-(frettingpos(i));
211 end
212 uS3Prev = uS3;
213

214

215 % Plate
216 uPNext = zeros(Nx ,Ny);
217 uP = zeros(Nx ,Ny);
218 uPPrev = zeros(Nx ,Ny);
219 % Bar
220 uBNext = zeros(NB ,1);
221 uB = zeros(NB ,1);
222 uBPrev = zeros(NB ,1);
223

224 % Output
225 outPosB = floor (2*NB/pi);
226 outPosS1 =floor ((2* NS1)/(pi*7))+4;
227 outPosS2 =floor ((2* NS2)/(pi*7))+4;
228 outPosS3 =floor ((2* NS3)/(pi*7))+4;
229 out = zeros(dur ,1);
230 %% Intialise l for update equations
231 lP = 3:Nx -2;
232 mP = 3:Ny -2;
233

234 lB = 3:NB -2;
235

236 %%
237 tic
238 for n = 1:dur
239 % Calculate virtual grid points
240 uB0 = 2*uB(1)-uB(2); % uB(0)
241 uBm1 = 2*(uB0 -uB(2))+uB(3); % uB(-1)
242 uBPrev0 = 2* uBPrev (1)-uBPrev (2); % uBPrev (0)
243 uBNp1 = 2*uB(NB) - uB(NB -1); % uB(N+1)
244 uBNp2 = 2*(uBNp1 - uB(NB -1)) + uB(NB -2);% uB(N+2)
245 uBPrevNp1 = 2* uBPrev(NB) - uBPrev(NB -1);% uBPrev(N+1)
246

53

247

248

249 %
____UPDATE_EQUATIONS__

250

251 %% Update equation for the Strings
252 uS1Next(lS1) = uS1(lS1)*uS1lMult + (uS1(lS1 -1) + uS1(lS1 +1))*

uS1l1Mult + (uS1(lS1 -2) + uS1(lS1+2))*uS1l2Mult + ...
253 uS1Prev(lS1)*uS1PrevlMult + (uS1Prev(lS1 -1)+ uS1Prev(lS1 +1))*

uS1Prevl1Mult;
254 uS2Next(lS2) = uS2(lS2)*uS2lMult + (uS2(lS2 -1) + uS2(lS2 +1))*

uS2l1Mult + (uS2(lS2 -2) + uS2(lS2+2))*uS2l2Mult + ...
255 uS2Prev(lS2)*uS2PrevlMult + (uS2Prev(lS2 -1)+ uS2Prev(lS2 +1))*

uS2Prevl1Mult;
256 uS3Next(lS3) = uS3(lS3)*uS3lMult + (uS3(lS3 -1) + uS3(lS3 +1))*

uS3l1Mult + (uS3(lS3 -2) + uS3(lS3+2))*uS3l2Mult + ...
257 uS3Prev(lS3)*uS3PrevlMult + (uS3Prev(lS3 -1)+ uS3Prev(lS3 +1))*

uS3Prevl1Mult;
258

259 %% Update equation of the Bar (bridge)
260 uBNext(lB) = uB(lB)*uBlMult + (uB(lB -1) + uB(lB+1))*uBl1Mult + (uB

(lB -2) + uB(lB+2))*uBl2Mult + ...
261 uBPrev(lB)*uBPrevlMult + (uBPrev(lB -1)+ uBPrev(lB+1))*

uBPrevl1Mult;
262 % solve for uBNext at points 1, 2, N-1, N
263 uBNext (2) = uB(2)*uBlMult + (uB(2-1) + uB (2+1))*uBl1Mult + (uB0 +

uB(2+2))*uBl2Mult + ...
264 uBPrev (2)*uBPrevlMult + (uBPrev (2-1) + uBPrev (2+1))*

uBPrevl1Mult;
265 uBNext (1) = uB(1)*uBlMult + (uB0 + uB(1+1))*uBl1Mult + (uBm1 + uB

(1+2))*uBl2Mult + ...
266 uBPrev (1)*uBPrevlMult + (uBPrev0+ uBPrev (1+1))*uBPrevl1Mult;
267 uBNext(NB -1) = uB(NB -1)*uBlMult + (uB(NB -1-1) + uB(NB -1+1))*

uBl1Mult + (uB(NB -1-2) + uBNp1)*uBl2Mult + ...
268 uBPrev(NB -1)*uBPrevlMult + (uBPrev(NB -1-1) + uBPrev(NB -1+1))*

uBPrevl1Mult;
269 uBNext(NB) = uB(NB)*uBlMult + (uB(NB -1) + uBNp1)*uBl1Mult + (uB(NB

-2) + uBNp2)*uBl2Mult + ...
270 uBPrev(NB)*uBPrevlMult + (uBPrev(NB -1) + uBPrevNp1)*

uBPrevl1Mult;
271

272

273 %% Update equation of the Plate
274 uPNext(lP,mP) = uP(lP,mP)*uPlMult + (uP(lP -1,mP) + uP(lP+1,mP) +

uP(lP,mP+1) + uP(lP,mP -1))*uPl1Mult + ...
275 (uP(lP -1,mP -1) + uP(lP+1,mP -1) + uP(lP -1,mP+1) + uP(lP+1,mP+1)

)*uPl1dMult + ...
276 (uP(lP -2,mP) + uP(lP+2,mP) + uP(lP ,mP -2) + uP(lP,mP+2))*

uPl2Mult + ...
277 uPPrev(lP,mP)*uPPrevlMult + (uPPrev(lP+1,mP) + uPPrev(lP -1,mP)

54 Chapter 7. Appendix

+ ...
278 uPPrev(lP,mP+1) + uPPrev(lP,mP -1))*uPPrevl1Mult;
279

280 %% Calculate the forces
281 % Force from the Strings to the bridge
282 Fs1b = Fs1bMult * (-uBNext(lBc1) + uS1Next(lS1c));
283

284 Fs2b = Fs2bMult * (-uBNext(lBc2) + uS2Next(lS2c));
285

286 Fs3b = Fs3bMult * (-uBNext(lBc3) + uS3Next(lS3c));
287

288 % Force from bridge ’ left and right mounting points to the plate
289 Fbpl = FbpMult*(-uBNext(lBcl) + uPNext(lPcl , mPcl));
290

291 Fbpr = FbpMult*(-uBNext(lBcr) + uPNext(lPcr , mPcr));
292

293

294 %% Update equations at localizer points
295 % Update Strings equation at the localizer point with Fsm (Force

loss to the bridge)
296 uS1Next(lS1c) = uS1Next(lS1c) - Fs1b/(rhoS * AreaS1 *hS1 * (

sigmaS0 + 1));
297 uS2Next(lS2c) = uS2Next(lS2c) - Fs2b/(rhoS * AreaS2 *hS2 * (

sigmaS0 + 1));
298 uS3Next(lS3c) = uS3Next(lS3c) - Fs3b/(rhoS * AreaS3 *hS3 * (

sigmaS0 + 1));
299

300

301 % Update Bar function at the localizer point with Fs1b (Force gain
from the string 1)

302 uBNext(lBc1) = uBNext(lBc1) + Fs1b/(rhoB * AreaB *hB * (sigmaB0 +
1));

303 % Update Bar function at the localizer point with Fs2b (Force gain
from the string 2)

304 uBNext(lBc2) = uBNext(lBc2) + Fs2b/(rhoB * AreaB *hB * (sigmaB0 +
1));

305 % Update Bar function at the localizer point with Fs3b (Force gain
from the string 3)

306 uBNext(lBc3) = uBNext(lBc3) + Fs3b/(rhoB * AreaB *hB * (sigmaB0 +
1));

307 % Update Bar function at the localizer point lBl with Fbp (Force
gain from the string 1)

308 uBNext(lBcl) = uBNext(lBcl) - Fbpl/(rhoB * AreaB *hB * (sigmaB0 +
1));

309 % Update Bar function at the localizer point lBr with Fbp (Force
gain from the string 1)

310 uBNext(lBcr) = uBNext(lBcr) - Fbpr/(rhoB * AreaB *hB * (sigmaB0 +
1));

311

312

313 % Update Plate function at the localizer points with Fbp (Force

55

gain from the bridge)
314 uPNext(lPcl ,mPcl) = uPNext(lPcl ,mPcl) + Fbpl/(rhoP*HP*hP^2*(

sigmaP0 + 1));
315 uPNext(lPcr ,mPcr) = uPNext(lPcr ,mPcr) + Fbpr/(rhoP*HP*hP^2*(

sigmaP0 + 1));
316 %% plot
317 % variable = uPNext;
318 % subplot (9,1,1);
319 % plot(uS1Next);
320 % subplot (9,1,2);
321 % plot(uS2Next);
322 % subplot (9,1,3);
323 % plot(uS3Next);
324 % subplot (6,1,3);
325 % plot(uBNext);
326 % subplot (3,1,3);
327 % mesh(variable);
328 % % imagesc(variable);
329 % drawnow;
330 %
331 %% Output
332 % outP(n) = uPNext(outPosP (1),outPosP (2)); %

plate
333 outP(n) = sum(uPNext , ’all’);
334 outB(n) = uBNext(outPosB); %

bridge
335 outS(n) = uS1Next(outPosS1) + uS2Next(outPosS2) +uS3Next(outPosS2)

; % string
336

337 %% Update the state variables
338 uS1Prev = uS1;
339 uS1 = uS1Next;
340 % uS2Prev = uS2;
341 % uS2 = uS2Next;
342 % uS3Prev = uS3;
343 % uS3 = uS3Next;
344 uPPrev = uP;
345 uP = uPNext;
346 uBPrev = uB;
347 uB = uBNext;
348 % if n == floor(dur/3)
349 % uexS2 = zeros(NS2 ,1);
350 % uexS2 ((1: floor(NS2 /10)) + floor(NS2 /5)) = hann(floor(NS2 /10)

);
351 % uS2 ((1: floor(NS2 /10)) + floor(NS2/5)) = uS2 ((1: floor(NS2 /10)

) + floor(NS2/5)) + uexS2 ((1: floor(NS2 /10)) + floor(NS2/5));
352 % % uP(ceil(Nx/2-Nx/8):floor(Nx/2+Nx/8),ceil(Ny/2-Ny/8):floor(

Ny/2+Ny/8)) = ...
353 % % uP(ceil(Nx/2-Nx/8):floor(Nx/2+Nx/8),ceil(Ny/2-Ny/8):

floor(Ny/2+Ny/8)) + ... here plate is excited by velocity
354 % % k*vP0*hamming_3d(length(ceil(Nx/2-Nx/8):floor(Nx/2+Nx

56 Chapter 7. Appendix

/8)),length(ceil(Ny/2-Ny/8):floor(Ny/2+Ny/8)) ,1);
355 % end
356 % if n == floor(dur *2/3)
357 % uexS3 = zeros(NS3 ,1);
358 % uexS3 ((1: floor(NS3 /10)) + floor(NS3/5)) = hann(floor(NS3 /10)

);
359 % uS3 ((1: floor(NS3 /10)) + floor(NS3/5)) = uS3 ((1: floor(NS3 /10)

) + floor(NS3/5)) + uexS3 ((1: floor(NS3 /10)) + floor(NS3/5));
360 % end
361 uS2Prev = uS2;
362 uS2 = uS2Next;
363 uS3Prev = uS3;
364 uS3 = uS3Next;
365

366 end
367 toc
368 out = (2737* outP)+outB+outS;
369 write(shamisenString ,out ,Nx ,Ny ,noteName(i),i);
370 end
371

372 plot(out);

Listing 7.2: The function used write samples of the Shamisen

1 function write(shamisenString , out ,Nx,Ny,note ,i)
2 M = max(abs(out));
3 outN = out/M;
4 filename = strcat ("C:\ University\SMC\SMC10\multiString\

MultiStringFDS_withRealTimeImplementation\audio\samples\",string(i)
,"#"," string",string(shamisenString),note ,"_Grid",string(Nx),"x",
string(Ny) ,".wav");

5 audiowrite(filename , outN , 44100);
6 end

	Front page
	English title page
	Contents
	1 Introduction
	1.1 The Sound of the Shamisen
	1.2 Modeling Shamisen
	1.3 Different Physical Modeling Techniques

	2 State of the Art
	2.1 Shamisen plugins
	2.2 Similar Instrument Models
	2.2.1 Physical model of the Tanbur
	2.2.2 Physical Model of the Banjo
	2.2.3 Physical model of the Tromba Marina

	3 Development
	3.1 Finite Difference Operators
	3.2 1-D Wave Equation
	3.3 Strings
	3.4 Bridge
	3.5 Membrane
	3.6 Coupling
	3.7 Implementation
	3.7.1 Strings
	3.7.2 Bridge
	3.7.3 Membrane
	3.7.4 Boundary Conditions
	3.7.5 Coupling

	3.8 Performance
	3.8.1 Excitation
	3.8.2 Fretting
	3.8.3 Output

	3.9 Parameter acquisition
	3.9.1 Strings
	3.9.2 Bridge
	3.9.3 Membrane

	4 Evaluation and Discussion
	4.1 Quality test
	4.1.1 Setup
	4.1.2 Results

	4.2 Verity test
	4.2.1 Setup
	4.2.2 Results

	5 Future Work
	5.1 The Real-Time Implementation
	5.2 Model Improvements
	5.2.1 Collisions Model
	5.2.2 Excitation model
	5.2.3 Fretting model

	6 Conclusion
	Bibliography
	7 Appendix

