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Abstract: 

 

The climate crisis has an impact on almost every sector in 

our life, including the transportation sector. A positive trend 

of electric vehicles could be registered. With the increase of 

electric vehicles, also the amount of lithium-ion batteries in-

creased. Studies showed that the batteries are not free from 

environmental pollution, which is why it is proposed to keep 

the batteries as long as possible in use. In the transportation 

sector, batteries are declared to be at end of life (EoL) when 

they reach 80 % remaining capacity. Even though those bat-

teries are no longer used in a vehicle, they could be used in 

a stationary application – as a so-called second life applica-

tion. To design a second life application, the state of health 

(SoH) of the battery, in other words, the remaining capacity 

needs to be known, among other parameters. Today, the 

SoH is estimated by the car manufacturer or calculated by 

the car mechanic. So far, there is no commercialised proce-

dure to estimate the SoH in a standardised way. Therefore, 

it is worthwhile to develop a procedure to estimate the re-

maining capacity of not only one, but multiple battery cells in 

a fast but nonetheless accurate way. This is where this mas-

ter thesis takes up. With an experimental study including 

aged lithium-titanate-oxide (LTO) battery cells, it was tested 

whether a well-known and validated SoH estimation method 

could also be applied on batteries that already reached 80 

% remaining capacity. This thesis also discusses the feasi-

bility of real application and the possibility of reducing the 

application time by reducing the measurement interval. 
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Summary 
The climate crisis has an impact on almost every sector in our life, including the transportation 

sector. A positive trend of electric vehicles could be registered. With the increase of electric 

vehicles, also the amount of lithium-ion batteries increased. Studies showed that the batteries 

are not free from environmental pollution, which is why it is proposed to keep the batteries as 

long as possible in use. In the trans-portation sector, batteries are declared to be at end of life 

(EoL) when they reach 80 % remaining capacity. Even though those batteries are no longer 

used in a vehicle, they could be used in a stationary application – as a so-called second life 

application. To design a second life application, the state of health (SoH) of the battery, in other 

words, the remaining capacity needs to be known, among other param-eters. Today, the SoH 

is estimated by the car manufacturer or calculated by the car mechanic. So far, there is no 

com-mercialised procedure to estimate the SoH in a standardised way. Therefore, it is worth-

while to develop a procedure to estimate the remaining capacity of not only one, but multiple 

battery cells in a fast but nonetheless accurate way. This is where this master thesis takes up. 

With an experimental study including aged lithium-titanate-oxide (LTO) battery cells, it was 

tested whether a well-known and validated SoH estimation method could also be applied on 

batteries that already reached 80 % remaining capacity. This thesis also discusses the feasi-

bility of real application and the possibility of reducing the application time by reducing the 

measure-ment interval.  

The results of the study have shown that an application on aged batteries is possible. 

However, as the charging behaviour changes after falling below 80 % remaining capacity, the 

application range changes. Depending on the training of the ICA curve, accurate results could 

be obtained with a deviation of less than 5 %. In particular, the feature “peak location” gave a 

promising result. Nonetheless, only a partial charging curve was applied. However, it is rec-

ommended, that further research should be conducted in order to define the ideal charging 

interval. Hence, the charging procedure could be reduced, which would save a lot of time. 
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Zusammenfassung 
Auf Grund der Klimakriese treten in fast allen Sektoren Veränderungen auf, unter anderem 

auch im Mobilitätssektor. Es konnte ein Positivtrend in den Absatzzahlen der Elektroautos ver-

merkt werden, was die Dekarbonisierung in diesem Sektor begünstigt. Mit diesem Anstieg 

wuchs auch die Nachfrage an Lithium-Ionen-Batterien. Studien haben jedoch gezeigt, dass 

diese Batterien nicht ohne negative Umwelteinwirkungen daherkommen, weshalb empfohlen 

wird diese so lange wie möglich im Umlauf zu behalten. Die Mobilitätssektor deklariert Batte-

rien ab 80 % Restkapazität als Batterien am Ender der Lebenszeit. Aber nur weil sie nicht 

mehr in der Mobilitätssektor eingesetzt werden können, bedeutet dies nicht, dass sie nicht in 

anderen Sektoren für einen zweiten Lebenszyklus eingesetzt werden können. Um einen sol-

chen zweiten Lebenszyklus anzustreben, muss unter anderem der Zustand der Batterie und 

vor allem die restlich zur Verfügung stehende Kapazität bekannt sein. Aktuell wird die Lebens-

dauer vom Autohersteller geschätzt oder vom Automechaniker evaluiert. Es existiert noch kein 

Prozess, der den Zustand der Batteriezelle auf einem kommerzialisierten Weg erschliessen 

würde. Deshalb ist es von Interesse einen Prozess zu entwickeln, mit welchem eine schnelle 

und auch genaue Restkapazitätsbestimmung von mehreren Zellen ermitteln kann. An diesem 

Punkt setzt die Studentin mit dieser Masterarbeit an. Es wurde mit einer experimentellen Stu-

die überprüft wie sich die bisher bekannten und validierten Methoden zur Ermittlung der Rest-

kapazität verhalten, wenn sie bei gealterten Batterien angewendet werden. Die Studie wurde 

mit gealterten Lithium-Titanat-Oxide (LTO) Batterie durchgeführt.  

Die Ergebnisse der Studie haben gezeigt, dass eine Anwendung an gealterten Batte-

rien durchaus möglich ist, diese sich aber von der herkömmlichen Anwendung unterscheidet. 

Der Grund dafür ist, dass sich das Ladeverhalten verändert nach unterschreiten dieser 80 % 

Restkapazität und somit auch die ICA-Kurve. Je nach Training des ICA-Models, können mit 

einer Abweichung von weniger als 5 % auch weit unter 80 % Restkapazität genaue Resultate 

erzielt werden. Insbesondere das ICA-Merkmal «peak location» weisst in dieser Studie eine 

genaue Abschätzung auf, auch mit einer partiellen Ladekurve. Es wird jedoch empfohlen, dass 

weitere Forschung bei der Bestimmung des Ladeintervalls angesetzt werden. Somit könnte 

die Messung der notwendigen Informationen zur Durchführung der ICA-Methode verkürzt wer-

den. 
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1 Introduction 

1.1 The role of the battery to mitigate climate change 

The energy sector is shifting towards renewable energies due to the climate crisis. A similar 

trend could also be seen in the transportation sector, which shifts towards electric mobility. In 

2018 the transportation sector represented 30 % of the global, final energy consumption, being 

the biggest of all energy consumption sectors at that time (IEA, 2019b). In 2018 the global 

stock of electric passenger cars was about 5 million and recorded an increase of 63 % com-

pared to 2017 (IEA, 2019a). Because of this increasing trend of electric vehicles (EV), batteries 

- especially lithium-ion batteries - face a positive trend, as shown in Figure 1. It can be seen 

that lithium-ion batteries (red) are not the market leader, but they register the highest market 

growth from 2015 to 18, as visualised with the steepness of the two arrows (Pillot, 2019). 

 

 

Figure 1 Market share of different battery types, where lithium-ions show the biggest market growth (Pillot, 2019). Lead Acid 
stands for Lead Acid batteries; NiCD stands for nickel-cadmium battery; NiMH stands for nickel-metal hybride battery; Li-ion 
stands for Lithium-ion batteries; others stands for all other batterie types as for example Flow batteries and NAS, which stands 
for Sodium-sulfur battery. The two arrows show the slope of the market growth. 

As the importance of batteries in the transportation sector is increasing, it makes sense to take 

a closer look at the batteries’ impact on the environment. According to Dai et al. (2019), the 

most severe environmental impacts over the whole life cycle are coming from the production 

of the active material of the positive electrode and the aluminium, as well as the energy use 

for the cell production. A long-term goal could be, to ensure that the cell factory produces with 
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more renewable energy. But this does not solve the problem for the already produced battery 

cell. For them it would make sense, to ensure that the whole lifecycle of the battery is closed. 

The complete recycling of the lithium-ion batteries would technically already be possible, but 

is not proceeded, as it is economically not profitable. Also, with the increasing request of lith-

ium-ion batteries, it is not expected to be in the near future. As lithium is richly distributed on 

earth, it is predicted that the mining of lithium is cheaper than recycling it from the batteries, as 

stated from Offenhalter D. (2019) and Wäger P. (2019). Therefore, expanding their life with a 

second purpose could be an appealing alternative, in order to reduce their environmental foot-

print (Stolz, 2019).  

In the transportation sector, the battery end of life (EoL) is mostly defined at 80 % re-

maining capacity (Nagpure et al., 2011), as then the vehicle manufacturer cannot ensure the 

promised driving range anymore. To expand the lifetime of the batteries, a new purpose must 

be found. Either where a smaller range is required, or in another sector, where weight and size 

do not play an important role. The lack of capacity could then be compensated with the amount 

of batteries. One suitable sector for that could be the energy sector, as this sector is stationary 

and does not rely as much on weight and size of the battery as the transportation sector.  

As mentioned before, there is an increase of renewable energies in the energy sector, 

due to the climate crisis. The production of renewable energy is weather dependent, which 

requires batteries to ensure that the produced energy can be used when needed. Because of 

that, these so-called second life batteries could contribute a part towards sustainable energy 

consumption (Sterner & Stadler, 2014, p. 619). 

In addition, these waste batteries are subject to a directive from the European Parlia-

ment, which introduces the extended producer responsibility (EPR). This means that the pro-

ducer or third parties, who act on their behalf, have to ensure that the waste batteries are being 

collected and disposed according to best available technology (BAT) in order to protect the 

health and the environment (DIRECTIVE 2006/66/EC, 2013). As the complete recycling of 

lithium-ion batteries is not state of the art yet, the question arises, what to do with those bat-

teries, when there is no environmentally friendly solution? The 2030+ roadmap, a large scale 

European research initiative, founded by the European Union, proposes to apply this second 

life approach whenever possible in order to keep the battery as long as possible on the market. 

That way, there might be an environmentally friendly recycling process, when those second 

life batteries have to be disposed (Edström & Perraud, 2019).  

1.2 Second life concept 

The second life concept from Montoya-Bedoya et al, (2020) proposes to use the batteries 

which are declared to be at end of life in the transportation sector, in a stationary application. 

Figure 2 visualizes this concept, where 1) represents the first life of the battery. Based on the 

warranty - given by the manufacturer - or the information from the workshop, the vehicle owner 
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decides, if he wants to replace the battery or not. As illustrated in 2), the old battery is going to 

be tested with a state of health (SoH) estimation method. For that, the battery is disassembled 

from the vehicle. The SoH value is an indication of the condition of the battery (Li et al., 2019). 

The estimation method is one among other tools, which enables to decide if the battery can be 

used in a second application 3a) or if the battery must be disposed 3b). Before the battery 

could be reused in the second life, it must be reassembled to fit the new requirements of the 

second life, as represented in 4). The second use phase is illustrated in 5). Some example for 

second life applications could be to support the grid stability, emergency power supply, provide 

uninterruptable power supplies or off-grid systems (Fischhaber et al., 2016). There are already 

prototypes of second life applications installed, for example Sunbatt in Spain, which is a living 

lab to study the behaviour of second life electric vehicle (EV) batteries (Canals Casals et al., 

2018; SUNBATT, 2015) and Second Life Battery in Germany, which is a flexible energy stor-

age system and ensures the grid stability (Hustadt, 2018). Collecting and processing of the 

second life batteries, after the use in the second life, is represented in 6). The disposal of the 

battery is illustrated as the recycling of the raw materials in 7). One important role in this second 

life process is the SoH estimation, as accentuated in Figure 2. It helps to decide, whether a 

battery could be used for a second purpose or if it must be scrapped. However, it must be 

mentioned, that there are also other aspects which have to be considered, besides the SoH 

estimation. Nowadays, there are already accurate SoH estimation methods available. How-

ever, they need a lot of time to apply, which is why they would not be favourable for an eco-

nomically bearable second life product (Martinez-Laserna et al., 2018). More about the state 

of the art of SoH estimation methods, can be found in the next section. 

 

Figure 2 Overview of the second life concept (Montoya-Bedoya et al., 2020). The dashed box indicates the importance of the 
state of health estimation. 
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1.3 State of the art SoH estimation methods 

The battery SoH can be related to various battery performance parameters. Nevertheless, 

most of the proposed methods are focusing on only two parameters. Either the SoH is esti-

mated by analysing the internal resistance, which increases over time through irreversible, 

chemical processes. Alternatively, the SoH is related to capacity fading, which occurs through 

the loss of ions during long-term operation (Birkl et al., 2016). For more information about the 

degradation, see section 2.2. As the limiting factor in the transportation sector is the remaining 

capacity, the definition of SoH is focused on capacity fading. See equation (1), where Qi rep-

resents the current Capacity and Qnominal the nominal capacity. 

𝑆𝑜𝐻 =
Qi

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 (1) 

 

The simplest procedure of measuring the (remaining) capacity is to discharge and charge the 

battery completely and calculate the capacity by integrating either the charging or the discharg-

ing current. This method is called Coulomb counting method, as given in equation (2), where i 

is the current and dt is the time difference of the interval in seconds. 

𝑄 =
1

3600
∫ 𝑖 𝑑𝑡 , [𝐴ℎ] (2) 

 

This is a very accurate but time-consuming procedure, as it requires the full discharge and 

charge of the battery. Furthermore, it is not very practical to apply the method at module level, 

as the different capacity level of the cells in the module have to be balanced. This result in a 

long charging time. To achieve a trustworthy result, the method is usually applied only on cell 

level (Quinard et al., 2019). There is a wide spectrum of methods for the SoH estimation in 

general. Mainly they can be divided into experimental techniques and adaptive models (5) 

(Berecibar et al., 2014). Out of those two approaches, there are different methodologies, as 

indicated in Figure 3, where the adaptive models estimate the SoH based on either battery 

models (4) or on parameters which are sensitive to the SoH, as for example impedance or 

capacity. The experimental techniques rely on the cycling behaviour of the battery. This tech-

nique can be divided further into two categories. One is the estimation based on the battery 

impedance (1) – which is the combination of the resistance and the reactance of the battery - 

or on the battery capacity. In the capacity-based methods, there are two further differentiations, 

one is the current-based (2) and the voltage-based method (3). The before mentioned Cou-

lomb counting method belongs to the current-based method, as demonstrated in Figure 3. 

Battery models (4) are built based on the information of impedance and capacity (Berecibar et 

al., 2014).  
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In order to gather information about the different methods, a literature research was conducted. 

This research was focusing on the five different categories of the methods, which are shown 

in Figure 3: Impedance-based (1), current-based (2), voltage-based (3) methods, as well as 

battery (4) and adaptive (5) models. The difference of model and method is, that the method 

also defines how to gather the needed information, where the models only define the in- and 

output. The summary of the literature research presented in Table 1 was focussed on the 

information about the application time, the accuracy and the feasibility of either the method or 

the model. 

 

Figure 3 Visualization of the most common SOH estimation methods, based on (Berecibar et al., 2014; Pastor-Fernández et 
al., 2019; Tian et al., 2019; Venugopal & Vigneswaran, 2019; Xia et al., 2019). The orange dashed lines indicate an indirect 
connection between the impedance-based and capacity-based method and the battery models. As well as the indirect con-
nection between the battery models and the adaptive models. The different blue brightness indicates the level in the hierar-
chy. 
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Table 1 Advantages and Disadvantages of the five defined SoH estimation categories based on literature research. 

Categories of Meth-

ods 

Characteristics 

1) Impedance-based 

methods 
• Can take up to one hour (i.e. EIS) 

• Sometimes special equipment is needed (i.e. EIS) 

• Accurate method (≤ 5 %) 

• Historical data required to compare with 

• To implement it on the vehicle, further methods are needed 

(i.e. battery models) 

(Berecibar et al., 2014; Grandjean et al., 2018; Klotz & 

Schönleber, 2010) 

2) Current-based 

methods 
• Long measurement time for battery modules 

• Accurate method (≤ 5 %) for one cell 

• Not practical to apply on module level 

(Quinard et al., 2019) 

3) Voltage-based 

methods 
• Fast method, as the charge- or discharge interval can be re-

duced (partial charging/discharging) 

• Applicable on modules 

• Accurate method (≤  5 %) 

• Sensitive to the environment, i.e. temperature 

(Berecibar et al., 2014; Lee et al., 2019; Nemeth et al., 2020; Qu 

et al., 2019; Riviere et al., 2019)  

4) Battery model 
• Mostly applied in combination with other methods, i.e. adap-

tive models 

• Too complex for online parameter identification 

• Dependent on the resistance and the capacity of the cell 

• Accurate method (≤  5 %) 

(Wei et al., 2018; Xia et al., 2019) 

5) Adaptive models 
• Complex method to apply, which needs a lot of knowledge to 

maintain 

• Needs a lot of training data 

• Accurate method (≤ 5 %) 

(Huang et al., 2018; Zhao et al., 2019)  
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1.4 Problem formulation and objectives 

Based on the literature research summarised in Table 1, most of the presented methods are 

well developed and deliver an accurate result in a controlled environment. The average of the 

SoH estimation methods has a percentage error of 5 %. Nevertheless, this cannot be con-

firmed for practical applications (Dubarry & Liaw, 2009). However, according to Montoya-

Bedoya et al. (2020), there is a lack of literature for validation below 80 % remaining capacity. 

Therefore, it is proposed to test whether a specific SoH estimation method can be applied on 

already aged battery cells and keep the expected accuracy, or not. According to Martinez-

Laserna (2018) the SoH estimation method should be a fast, easy and accurate method which 

is also practical to use while operating the battery. Therefore, the incremental capacity analysis 

(ICA) estimation method was chosen to be tested (please find further explanation in chapter 

3.1). The ICA has multiple indicators to estimate the SoH, which is why it would be worthwhile 

to test which one of those delivers the most accurate outcome for battery cells with a SoH of 

less than 80 %. Based on this information, the following research questions were formulated: 

1. Can the ICA method still deliver an estimation with a percentage error below the 

average estimation error of 5 %, if only a partial charging or discharging is per-

formed? 

2. Is the ICA method applicable for batteries with a capacity below 80 %? 

3. Which SoH indicator of the ICA method deliver the most accurate outcome for 

batteries with a capacity below 80 %? 

1.4.1 Scope and limitations of the project 

In order to contribute a part towards commercialising the second life concept, this master thesis 

focus on the application of the SoH estimation method for batteries below 80 % SoH. By provid-

ing a method that allows the fast determination of the remaining capacity on battery pack level, 

it is expected that this could contribute a part to keep the battery longer in the lifecycle. There-

fore, as an output of this master thesis, it is expected to have a validated model, which can 

determine the remaining capacity on already aged battery cells. It shall be possible to estimate 

the battery capacity, without a full discharge and a subsequent charge of the battery. Further-

more, it will be decided which of the inspected indicators of this method deliver the most accu-

rate SoH estimation for cells below 80 % remaining capacity.  

Due to time limitations, the master thesis focuses only on one method, other methods were 

not investigated. The experimental study was conducted only on one cell chemistry, i.e. lithium-

titanate-oxide (LTO) battery cells and from one manufacturer, which means, that it is not ex-

pected, that the outcome can be transferred to other manufacturer or technologies. Tests will 

be conducted on each single cell and not on all of them together, in order to keep the tests as 
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simple as possible. There will be no chemical analysis, which means, that the degradation 

mechanism will not be studied in detail.  

1.5 Content of the Report 

The master thesis is structured in the following 4 chapters, with each include several sections: 

• Chapter 2 describes the basic know how of the lithium-ion batteries and presents a 

short overview of some different technologies, with their characters. It touches briefly 

the process of battery degradation, where the focus lies more in how the degradation 

is affected by external influences. 

• Chapter 3 describes the method of this master thesis, which includes how the ICA as 

the SoH estimation method was chosen, what was used in experimental study and 

what the content of it was. Also, the input, the function and the output of the ICA algo-

rithm is described in this chapter. Finally, it is described with which scenarios the mod-

els were built and how they were validated. 

• Chapter 4 presents and simultaneously discusses the output of this master thesis. This 

includes the output of the experimental study, which were basically measurements of 

voltage, current and time, as well as the capacity calculation. It presents the output of 

the ICA algorithm, which results in ICA curves. Then, the different models with their 

diagnostics are presented whereupon the validation of the model follows. In addition, 

the application of this ICA method is discussed in this chapter.  

• Chapter 5 answers all three research questions and presents an outlook for possible 

future work.  
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2 Basics about Batteries 

2.1 Lithium-ion Batteries 

Figure 4 visualizes the basic information about the working principle of a conventional lithium-

ion battery cell. The example shows a battery with lithium-manganese-oxide (LMO) as cathode 

material and graphite as anode material. The procedure presented is the discharge procedure, 

which means that the anode is the negative electrode and the cathode is the positive electrode. 

In the charging procedure, the nomenclature is the opposite way around. The anode is the 

term which is used to describe the electrode where the oxidation procedure is happening, 

which means, where the positive ions are provided. When the battery is fully charged, the 

lithium-ions are inserted in the graphite structure. Through electrochemical reactions, current 

is induced. As soon as the current flows, the active material provides ions, which deintercalate 

from the anode, move by diffusion through the electrolyte and intercalate into the cathode. On 

electrical level, the energy efficiency of this procedure is dependent on the internal resistance. 

This means, the higher the internal resistance, the less efficient it is. The battery is fully dis-

charged, as soon as the equilibrium in the battery is reached. (Chiasserini, & Rao, 2001; 

Meuser, 2011; Rahimzei et al., 2015; Reddy, 2011). 

 

Figure 4 Design and working principle of a commercial Lithium-ion battery (Reddy, 2011). LiMO2-Electrode is also called LMO-
electrode and means lithium-manganese-oxide-electrode, LixC is the graphite structure with inserted Lithium-ions. Li+ stands 
for the positive Lithium-ions and e- for the electrons. 
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In Table 2 some common lithium-ion technologies are listed. As it can be seen, these technol-

ogies have different nominal voltage values. This is because of their different elements, which 

each have different potentials. In this master thesis, the second listed technology is used for 

the experimental study. This technology differs from the others, as the negative electrode is 

lithium-titanate-oxide (LTO) instead of graphite. Based on literature, LTO shows an excellent 

charge-discharge performance and has therefore a longer cycle life, compared to graphite. For 

further information about this cell technology, as for example about the specific energy, see 

section 3.3.2. For more details about the other technologies, the reader is referred to Linden’s 

Handbook of Batteries (Meuser, 2011; Rahimzei et al., 2015; Reddy, 2011).  

Table 2 Overview of the most common lithium-ion technologies (BU-205: Types of Lithium-Ion, 2020; Meuser, 2011). LNMC 
stands for lithium-nickel-manganese-cobalt-oxide; LFP stands for lithium-iron-phosphate; LMO stands for lithium-manganese-
oxide; LCO stands for lithium-cobalt-oxide; LNCA stands for lithium-nickel-cobalt-aluminum-oxide; C stands for graphite. 

Positive 

electrode 

Negative 

electrode 
Nominal voltage [V] Specific Energy [Wh/kg] 

LNMC C 3.6 150-220 

LNMC LTO 2.4 50-80 

LFP C 3.3 90-120 

LMO C 3.7 100-150 

LCO C 3.6 150-200 

LNCA C 3.6 200-260 

 

2.2 Battery degradation 

As soon as the charging-/discharging processes are not reversable anymore, the degradation 

of the battery has started. This degradation leads to a gradual loss of performance and hap-

pens in all parts of the batteries. The degradation is influenced by the condition of the battery, 

the load cycle or from environmental conditions, also called stress factors. These strass factors 

have different influences when they occur at different time intervals. In this section, the long-

time effects are presented. Usually, the degradation is divided into two categories, calendar 

and cycle ageing. The calendar ageing describes the degradation of the cell over time and the 

cycle ageing the degradation of the cell over cycle numbers. In calendar aging, temperature 

and state of charge (SoC) have an impact, where in cycle aging additionally the depth of dis-

charge (DoD) and the current rate (C-rate) have an influence, as presented in Table 3. (Birkl 

et al., 2016; Sterner & Stadler, 2014).  
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Table 3 Stress factors for cell ageing (Sterner & Stadler, 2014). 

Category Stress factor 

Calendar Temperature, state of charge (SoC) 

Cycle Temperature, depth of discharge (DoD), state of charge (SoC), current rate 

(C-rate) 

 

In this master thesis the focus is not on the degradation of the battery cell, but on the estimation 

of the remaining capacity, which decreases with increasing degradation. Therefore, only the 

stress factors which are relevant for this work are going to be explained below. The first rele-

vant stress factor is the temperature, as this is used to influence the ageing in the experimental 

study, see section 3.3.3 for further information. Figure 5 presents the long-term impact of the 

temperature on the capacity on the example of an LCO/graphite cell. It is shown, that the cell 

aged with 23°C retains more capacity after the same amount of time, than the cell aged at 

43°C. This indicates, that if the battery is exposed to higher temperature, it ages faster. Depth 

of discharge (DoD) defines how much the battery is discharged and charged in one cycle. In 

Figure 6 the influence of this DoD on the capacity is introduced on the example of an 

LNMC/carbon cell. Six different cycles are shown, of which each has its own DoD, but all cycles 

have the same state of charge (SoC) at 50 %. There is a remarkable gap between 20 and 

50 % DoD, which results in the conclusion that the capacity fade is accelerated by a DoD of 

50 %. However, the study does not show the DoD of 30 and 40 %. 

For more information about the long-term impact on the capacity based on temperature and 

current rate the reader is referred to Linden’s Handbook of Batteries (Reddy, 2011, p. 869 + 

883). For more information about DoD and SoC the reader is referred to Eckert et al.’s paper 

about calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries (2013, 

p. 8 + 9). 
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Figure 5 Long term impact of temperature on capacity on the example of an LCO/graphite cell (Reddy, 2011, p. 869). 

 

 

Figure 6 Long term impact of depth of discharge (DoD) on capacity (Eckert et al., 2013, p. 8). The green box highlights the 
DoD of the cell CYC13 and the orange box the DoD of cell CYC8. 

 

  

CYC8 

CYC13 



Material and Method  ZHAW / MSc. ENR 18 

  Page 21 of 79 

3 Material and Method 

3.1 State of health (SoH) estimation method 

Based on the literature research in section 1.3 the voltage-based methods fulfilled the require-

ments for second life batteries the best, as they can reduce the estimation time by reducing 

the charging interval and are suitable for the application on modular level. The voltage-based 

methods classify two methods, the incremental capacity analysis (ICA) and the differential 

voltage analysis (DVA). Those two methods use the same information to estimate the SoH. 

The only difference is that the DVA derives the voltage by the capacity, see equation (3), and 

the ICA derives the capacity by the voltage, see equation (4). Finally, it was decided to choose 

the ICA method, as this is the more intuitive procedure and further studies confirm, that this 

method represents a promising method to estimate the SoH on the vehicle and also for batter-

ies with a remaining capacity below 80 % (Fly & Chen, 2020; Han, et al., 2014). Equation (4) 

defines the ICA mathematically, where dQ is the step difference between the charge and dV 

is the step difference of the voltage.  

 

𝐷𝑉𝐴 =
𝑑𝑉

𝑑𝑄
, [

𝑉

𝐴ℎ
] (3) 

𝐼𝐶𝐴 =
𝑑𝑄

𝑑𝑉
, [

𝐴ℎ

𝑉
] (4) 

 

Figure 7 visualizes the procedure of creating the ICA curve. Three information are needed, the 

voltage, the current and the time. The part where constant current (CC) applies is used to 

create the ICA curve. Only this part delivers the needed information to shape the characteristic 

ICA curve (Lin et al., 2020). For more information about the CC part, please see chapter 3.3. 

In order to create the ICA Curve, the CC current curve a) is integrated by the time, as described 

in equation (2). This leads to the capacity curve presented in c). The capacity curve c) is then 

plotted against the voltage curve b), which results in the curve d). Thereafter, this curve is 

derived by the voltage, as described in equation (4). The output represents the characteristic 

ICA curve, as presented in e). 

Figure 7 shows also the impact of a partial charging. If the charging would be reduced to a 

voltage interval between 2.2 and 2.4 V, the charging time could theoretically be reduction by 

20 minutes. However, this was not tested nor proved in this master thesis. 
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a) CC part of the charging current b) CC part of the chaging voltage 

  

c) Capacity increase while charging d) Capacity vs. voltage 

  

e) Capacity derived by the voltage, resulting in the ICA curve 

 

Figure 7 Demonstrative incremental capacity analysis (ICA) procedure with a LTO/LNMC cell, where a) shows the CC charg-
ing current, b) the CC charging voltage, c) the capacity increase, d) the capacity vs. voltage and e) the capacity derived by 
the voltage, resulting in the ICA curve. The orange lines indicate the voltage level in the range between 2.2 and 2.4 V. The 
blue arrow indicates the time to measure the whole charging curve in order to create the ICA curve. The green arrow indi-
cates the time needed for a partial charging. 

> 1 h 

~ 40 min. 
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3.1.1 Fundamentals 

The Incremental capacity curve was initially used to exhibit electrochemical interactions, which 

are taking place within the cell. It delivers indirect information about the degradation of the 

battery cell. This means, that without opening the cell, the electrochemical behaviour can be 

visualised. Each ICA curve has its own shape, depending on the electrochemical processes 

taking place withing the cell (Dubarry & Liaw, 2009; Lin et al., 2020). Figure 16 and Figure 17 

show, that the trend of the ICA curves from the cell used in this master thesis is mostly de-

creasing and in some cases also moving to the right with increased degradation (ageing). But 

this behaviour can also be influenced by parameters i.e. temperature or current rate (C-rate). 

In comparison to the long-term influences presented in section 2.2, these parameters are in-

fluencing the cell in short-term. Figure 8 demonstrates different ICA curves at different C-rates, 

although with the same SoH. It can be seen that the higher the charging current, the smaller 

the amplitude of the peak. Also, that there is a right shift of the ICA curves the higher the C-

rates is. This however can be explained due to the internal resistance of the battery. As the 

ohmic law states, that with constant resistance and increasing current, the voltage increases 

as well, see equation (5), where U stands for the voltage, R for the resistance and I for the 

current. Figure 9 shows the integration of Figure 8, but with other C-rates, in discharge proce-

dure and for another battery cell. It shows that with increasing C-rate the available discharge 

capacity is decreasing. The red arrow in Figure 9 shows the same short-term trend as the red 

arrow in Figure 8 with increasing current. (Fly & Chen, 2020; Reddy, 2011; Riviere et al., 2019). 

𝑈 = 𝑅 ∗ 𝐼 (5) 

 

 

 

Figure 8 Incremental capacity curve with same state of 
health (SoH) but different current rates (C-rate) (Riviere et 
al., 2019). Here at the example of a C/LFP cell. The red ar-
row indicates the change with increasing current rate. 

Figure 9 Short term impact of the current rate (C-rate) on 
the capacity (Reddy, 2011, p. 867). The red arrow indicates 
the increase of the capacity with increasing current rate 
(C-rate). 
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Furthermore, it is well known that the battery capacity depends on the temperature, due to the 

changes in the ionic conductivity of the electrolyte, which is confirmed by Figure 11. Thus, the 

ICA plot also changes depending on the temperature at which the current curve was extracted. 

As presented in Figure 10, the trend of the ICA curves moves to the left and in some cases the 

amplitude increases as well. The left shift can also be explained with equation (5). However, 

in this case, the current is constant, and the resistance is reducing with increasing temperature, 

as the conductivity of the electrolyte is increased. The two red arrows in Figure 10 and Figure 

11 show both the short term increase of the capacity with increasing temperature. 

Subsequently, in order to track the battery degradation and to predict the battery’s SoH, 

the capacity must always be measured at the same conditions (i.e., the temperature or current 

rate). Otherwise, the changes in the results could be misinterpreted as degradation, whereat 

they are actually transformations coming from changing the measurement conditions.  

 

 

 

Figure 10 ICA curve with the dependency of temperature 
(Riviere et al., 2019). Here at the example of a C/LFP cell. 
The red arrow indicates the change with increasing tem-
perature. 

Figure 11 Short term impact of the temperature on the ca-
pacity (Reddy, 2011, p. 868). The red arrow indicates the 
change with increasing temperature. 

 

3.1.2 Incremental capacity (IC) feature as a State of health (SoH) indicator 

In order to predict the SoH with the ICA curve, an indicator is used to predict the SoH. There 

are many different indicators in the ICA curve, but mainly the peak coordinates (amplitude and 

location) or the area below the peak are used (Fly & Chen, 2020; Lin et al., 2020). These 

indicators are called features and are introduced below. See Figure 12 in order to get an over-

view of how these features are extracted from the ICA curves in order to relate them with the 

remaining capacity of the cell.  
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Peak location (green arrow) 

Han, et al., (2014) observed that the ICA curve changes its position and shape while the battery 

ages. One feature of this behaviour is the location of the peak. In order to compare the peak 

location with the remaining capacity, the X-value of the peak value has to be determined. In 

the example in Figure 12 the X-value is the voltage.  

 

Peak amplitude (orange arrow) 

Same as with the peak location, also the peak amplitude is a feature of the cell age. For the 

peak amplitude, the Y-value must be determined, in order to compare it with the capacity. In 

the example in Figure 12, the maximum ICA value has to be determined. 

 

Area below the peak (blue area) 

Besides the peak location and the peak amplitude, the area below the peak can be calculated. 

A segmented peak curve is integrated by the voltage step difference, see equation (6), where 

u stands for the voltage, du for the voltage difference, u1 and u2 define the voltage interval, dQ 

the capacity difference, Q(u1) the capacity at u1 and Q(u2) the capacity at u2. This outcome 

represents the area below this peak curve. 

∫ 𝐼𝐶𝐴(𝑢)𝑑𝑢 =  ∫
𝑑𝑄(𝑢)

𝑑𝑢
𝑑𝑢 = 𝑄(𝑢2) − 𝑄(𝑢1)

𝑢2

𝑢1

𝑢2

𝑢1
, [𝐴ℎ] (6) 

 

 

Figure 12 A partial ICA curve on an example of an LTO/LNMC cell, where the voltage interval between 2.2 and 2.4 V is chosen. 
The area [Ah] is indicated in blue; the peak amplitude [Ah/V] is indicated with the orange arrow and the peak location [V] is 
indicated with the green arrow.  
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3.2 Procedure to test the chosen SoH estimation method 

Figure 13 visualizes the structure of how to test the chosen SoH estimation method. First, the 

experimental study (ES) was performed, which was needed to determine the SoH convention-

ally – in order to compare it with the result of the chose method. In addition, to extract the 

charging curve, which was used as an input for the ICA algorithm. See section 3.3 for more 

information about how this charging curve was extracted and how the cells were aged in order 

to extract more of those charging curves. By applying the ICA algorithm on all the extracted 

charging curves, the ICA feature values were extracted. Those feature values and the capacity 

calculated in the ES were used to create the models. This procedure is described in section 

3.4. The last step, the validation of the model, is presented in section 3.5, for which three 

different scenarios were chosen. 

 

Figure 13 Overview of the procedure in order to create a SoH estimation model. Green indicates an input, blue an output and 
grey stands for a process. The three different borders visualize in which chapter the processes are described in detail. 

Reference Performace Test 
(RPT)

Battery cells 
under test

Charging curve

Apply the ICA algorithm

Accuracy of the 
model

Validate the Model

Create a model

Experimental 
Study

SoH 
estimation 

method

Model 
validation

ICA feature value

Calculate remaining capacity
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3.3 Experimental Study 

3.3.1 Overview 

In order to answer the research questions, the proposed ICA method was tested with three 

battery cells; two cells which were previously aged and one fresh cell. In the beginning of the 

experimental study, a reference performance test (RPT) was performed to define the (remain-

ing) capacity of the battery cells. This procedure includes the complete discharge and charge 

of the battery, which allows to determine the capacity of the cell by the Coulomb counting 

method. After the first RPT, the battery was aged with a predefined load cycle, whereupon 

another RPT was performed. As indicated in Figure 14, this procedure was repeated four 

times. The number of iterations is due to the time frame of this master thesis. Figure 15 gives 

an idea of how and when the data was collected and labelled. The historical data of the previ-

ously aged cells were also available. In order to separate the historical from the experimental 

study, the historical data was labelled with an “H” and the experimental data was labelled with 

“ES”. The output from the first RPT was labelled “BOL”, which stands for beginning of life. After 

each RPT, the data was labelled with “Eo1stL”, “Eo2ndL” etc., which stands for end of first and 

end of second life, respectively. 

 

Figure 14 Experimental study - the procedure was repeated four times. 

 

 

Figure 15 Organisation of the data collection. Light grey indicates the labeling of the data and dark blue indicates the proce-
dure between two data sets. RPT stands for reference performance test; BoL stands for begin of life; EoL stands for end of life, 
where the number 1st, 2nd, 3d and 4th are added to it. 
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3.3.2 Battery cell under test 

The batteries in the transportation sector are assembled in packs, which is why it is meaningful 

to know the behaviour of the whole battery pack. But, since Lee et al. (2019) and Schalz et al. 

(2019) both state, that the characteristics of ICA on pack level are very similar to the ones at 

cell level, it was decided to keep the test as simple as possible and apply the method only on 

cell level. 

The purpose of this master thesis is to support the second life concept for batteries from the 

transportation sector. Therefore, lithium-titanate-oxide (LTO) battery cells were used for this 

experimental study. Because LTO battery cells have a long calendrical lifetime, a long cycle 

lifetime, and a high-power capability, they are used in transportation applications, especially 

for electric trains and busses (Han, et al., 2014; Nemeth et al., 2020). The basic information 

about the LTO battery cell can be found in Table 4. For more information, please find the 

datasheet in the Attachment B: Technical Data Sheets. 

Table 4 Nominal  information of LTO battery cells 

Negative electrode Lithium-Titanate-Oxide (LTO) 

Positive electrode Nickel-Manganese-Cobalt (NMC) 

Nominal Voltage 2.26 V 

Nominal Capacity 13.4 Ah 

Discharge cut off voltage at 20°C 1.5 V 

Charge cut off voltage at 20°C 2.8 V 

 

As a difference to batteries using a conventional negative electrode, i.e. graphite, LTO cells 

have a different voltage range, higher temperature range, longer lifetime, and higher rate ca-

pability. But, they have also a lower specific energy and a lower specific capacity. This is why 

they are more used in power specific applications, as for example in electric trains or busses 

(Nemeth et al., 2020).  

In this master thesis, three LTO battery cells were used to test the ICA method. Two of those 

cells were already aged before, whereupon the third one was not cycled before this study. The 

condition at BoL, as well as the historical aging procedure of the three LTO batteries is pre-

sented in Table 5. The historical data of the two aged cells is presented in Figure 16 and Figure 

17. The fresh one was used as a reference to differentiate between ageing behaviour and 

possible errors in the measurement equipment.  

As it can be seen in Table 5, the battery cells CYC8 and the fresh one have more than 13.4 Ah 

capacity, which is according to the datasheet the nominal capacity. As this would result in more 

than 100 % SoH, it was decided to compare the remaining capacity in Ampere hours instead 

of the SoH in percentage.  
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Table 5 Introduction of the battery cells under test. Cycle interval in State of charge (SoC), 2 C means that the throughput of 
the nominal capacity of 13.4 Ah is conducted twice as fast as nominal – in this case, in a half an hour. 

 CYC 8 CYC 13 Fresh cell 

Historical 

ageing pro-

cedure 

Temperature: 42.5 °C, 

Cycle interval: 45-55% SoC, 

2 C charging, 

2 C discharging 

Temperature: 42.5 °C, 

Cycle interval: 25-75% SoC, 

2 C charging, 

2 C discharging 

No cycle age-

ing 

Remaining 

capacity at 

BoL 

14 Ah 8 Ah 15 Ah 

 

CYC8_H CYC13_H 

  

Figure 16 ICA curves of the historical data from cell CYC8, 
conducted with 1 C. The red lines indicate the voltage inter-
val. The green arrow indicated the ageing direction. 

Figure 17 ICA curves of the cell historical data from cell 
CYC13, conducted with 1 C. The red lines indicate the voltage 
interval, the green arrow indicated the ageing direction, the 
orange arrow highlights an outlier. 

 

3.3.3 Experimental set-up 

As presented in Figure 18, the battery was placed in a thermal chamber for the ageing and the 

RPT, in order to control the cell temperature. The battery cell was connected to a battery test 

station, which defined the operation of the battery and recorded the main parameters such as 

voltage, current and temperature of the cell. The equipment used to perform the test and the 

ageing is presented in Table 6. More information about the equipment can be found in Attach-

ment B: Technical Data Sheets. 
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Figure 18 Battery cell in thermal chamber connected to the battery cycler, which demands the specified load cycle from the 
battery cell and measures the voltage, the current and the temperature. 

 

Table 6 Used equipment for the experimental study and its accuracy. 

Equipment name Function Accuracy 

BTS600 (Digatron) Battery test station 

± 0.1 % • Voltage sensor Voltage measurement 

• Current sensor Current measurement 

PT100 Temperature measurement ± 0.1°C 

Memmert Climatic chamber ± 0.1°C 

 

Preparation test  

The preparation test included five battery cycles, executed with 1 C. This was applied in order 

to remove any passivation to which the battery cell was exposed between manufacturing and 

the first use or the last use and the first test, when it was stored for a long time. The test was 

conducted to verify that the cell shows a stable capacity, and a stable thermal behaviour, as 

stated by D.-I. Stroe (2020). According to the ISO standard 12405-4:2018, the cell has passed 

the preparation test, if the capacity does not change by more than 3 % within two consecutive 

cycles (Electrically Propelled Road Vehicle - Test Specification for Lithium-Ion Traction Battery 

Packs and Systems - Part 4: Performance Testing, 2018).  
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Reference performance test (RPT) 

The RPT test was the main part of the experimental study. It was executed to extract the 

charging curves and to define the remaining capacity. In order to charge and discharge the 

cell completely, the constant current (CC) and the constant voltage (CV) procedure was ap-

plied, see Figure 19. At first, a CC was induced until the CV was reached. While the CV was 

applying, the current was slowly reduced. With the output of this CC-CV method, the remaining 

capacity of the battery cell was computed based on Coulomb counting method, as presented 

in equation (2).  

a) Voltage vs. Time 

 

b) Current vs. Time 

 

Figure 19 Constant current (CC) and constant voltage (CV) procedure on the example of a LTO/LNMC cell. The red lines 

highlight the shift from CC to CV. 

 

Current rate (C-rate) for RPT 

The charging procedure in the RPT could be performed with different current rates (C-rates), 

which results in different lengths of the test procedure. 1 C has a throughput of the nominal 

capacity within an hour and 2 C one of a half an hour. In this experimental study 1 C was 

chosen to be applied due to historical reasons, as 1 C was used for the previous RPTs of the 

two already aged batteries. As Han, et al. (2014) states that a C-rate which is close to the use-

CC-Part CV-Part 

CC-Part CV-Part 
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cycle should be selected, an additional C-rate was applied, in order to compare the output with 

the 1 C curves. An analysis showed that 1.6 C occurs frequently within the used load cycle, 

see equation (7), where 13.4 Ah is the nominal capacity and 21.35 A is the maximum current 

of the load cycle, see the green line in Figure 20 a). For further application of the ICA algorithm, 

although only the 1 C was used. 

𝐶 − 𝑟𝑎𝑡𝑒 =
21.35 𝐴

13.4 𝐴ℎ
= 1.6 ℎ−1 (7) 

 

Ageing of the battery cells 

After the RPT test, the cells were aged by a specific cycling profile, in a period of 14 days. The 

presented ageing profile in Figure 20 is a demanding cycle which is used for mass transport 

vehicles. This profile was received from a confidential industry partner. As the three used cells 

have a typical cell technology for the transportation sector, it was decided to age them further 

with a demanding cycle from the transportation sector. In Figure 20 a), the current profile is 

shown. After 4000 seconds, a constant current is used to charge the battery completely. In 

Figure 20 b), the state of charge (SoC) status of the battery is shown. In order to achieve the 

current change in Figure 20 a), the state of charge (SoC) profile in b) is followed, which is 

determined by using equation (8). Where SoC(t) is the SoC at time t, SoC(t-1) is the initial SoC, 

I the current in ampere, Cbat the battery capacity in Ampere hours and dt the time difference in 

hours. The ageing procedure was applied with the same equipment as the RPT. However, in 

order to age the cells faster, the ageing was proceeded at 50°C instead of 25 °C, see chapter 

2.2 for further explanation. 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1) + ∫
𝐼

𝐶𝑏𝑎𝑡
𝑑𝑡

𝑡

0

 (8) 

a) Current development of the battery 

used in a mass transport vehicle 

b) SoC of the battery used in a mass 

transport vehicle 

  

Figure 20 Track profile used to age the batteries in the experimental study.  

Discharging 
Discharging 

Charging 
Charging 
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3.4 State of health (SoH) estimation algorithm 

3.4.1 Overview 

After fulfilling all RPTs, only the charging curve was used for further procedure. The charging 

curves were used as an input of the ICA algorithm, where they were derived into ICA curves. 

This procedure is described in chapter 3.1. In this master thesis, the ICA algorithm is on 

MATLAB. After creating the ICA curves, they were reduced to a specified charging range, see 

section 3.4.2. The ICA feature values were extracted within this range. The feature values and 

the remaining capacity were set in relation with each other based on a regression analysis. 

Out of the regression analysis the model was defined. The whole procedure is visualised in 

Figure 21. 

 

Figure 21 Flowchart of the ICA method. Green indicates an input, blue an output and grey stand for a process. The three dif-
ferent borders visualize in which chapter the processes are described in detail. 
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3.4.2 Incremental capacity (IC) algorithm in MATLAB 

After having the input data created with the RPT, the IC algorithm was applied. Table 7 pre-

sents the starting condition of the algorithm. This information is relevant for the shape of the 

ICA curve and was not changed for the whole study. In Figure 22 the procedure of the IC 

algorithm is presented. The different colours indicate different stages of the algorithm, which 

are going to be explained below. The algorithm is based on MATLAB and was amplified during 

this master thesis.  

Table 7 Pre-definitions in the ICA algorithm. 

Lower voltage limit 1.5 V 

Higher voltage limit 2.8 V 

Constant current for 1 C 13 A 

Constant current for 1.6 C 20.8 A 

Sample time for ICA calculations 50 s 

Voltage step for ICA calculations 0.025 V 

Capacity step for ICA calculations 1 Ah 

 

 

Figure 22 Flowchart describing the ICA algorithm. Dark blue shows the different steps which had to be considered while up-
loading the data and to prepare before creating the ICA curve. Dark green describes how the feature values were extracted. 
Yellow represents the model building procedure. 
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Explanation of the blue part of the flowchart in Figure 22 

The charging curves from the RPTs were used as an input of the ICA algorithm. The RPT 

delivered a lot of different information, of which only the time, the current and the voltage in-

formation of the CC charging curve was used. Based on this information, the capacity and the 

voltage step difference were defined, out of which the ICA curve could be created by deriving 

the step difference of the capacity by the voltage step difference. Based on moving average, 

the ICA curve was smoothed. As an output the ICA curves were created. 

 

Explanation of the green part of the flowchart in Figure 22 

To define the peak range, the historical data was analysed. CYC8 and CYC13 were already 

aged before they were used in the experimental study. The historical data from those cells 

were also available and are presented in Figure 16 and Figure 17. Cell CYC13 was with 8 Ah 

more aged as cell CYC8 with 14 Ah. It also shows a more unstable behaviour than CYC8, as 

indicated with the green arrows in Figure 16 and Figure 17. The peak range from 2.2 to 2.3 V 

was chosen based on the peak distribution of the historical data. This range was plotted in 

Figure 16, where every peak could be covered with the voltage interval. Also in Figure 17 the 

range was plotted, but shows at least one outlier within this specified range, as indicated with 

the orange arrow in Figure 17. This interval was then compared with the data from the experi-

mental study, where it appeared that with the chosen interval, not every peak of the CYC13 

ICA curve could be covered. Therefore, the interval was expanded to 2.4 V (see the green line 

in Table 12). Figure 23 presents an example of this interval for the cell CYC13. After selecting 

the interval, the three feature values “location”, “peak amplitude” and “area” were extracted of 

all ICA curves from the historical data and on all the ICA curves from the experimental study. 

These values where then used to define the models. 

 

Figure 23 ICA curves in a selected range to extract the feature values on the example of cell CYC13. 
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Explanation of the yellow part of the flowchart in Figure 22 

For each feature, one model was created. Three different scenarios were defined to train and 

validate the models, as summarizes in Table 8. The scenarios were defined based on the 

information presented in Figure 24. Scenario 1 uses the historical data from CYC8H (blue cir-

cles) and CYC13H (red circles) to train the model. To validate scenario 1 uses the cell CYC8ES 

(red stars) and cell CYC 13ES (blue stars). Scenario 2 uses the same strategy, although the 

opposite way around. The five samples of each cell from the ES were used to train the model 

and seven out of 30 samples were chosen randomly to validate the model. As the training 

samples only had ten data points and the other two scenarios had also either ten or even five 

samples to validate the model, seven values were considered to be comparable. Scenario 3 

uses another strategy, i.e. use the data available above 80 % SoH to train the model and the 

remaining data (below 80 % SoH) to validate it. In each scenario, the remaining capacity was 

related to the three different features, extracted from the ICA curves. This was done with a 

regression analysis, based on which the model was defined. As an example, the three models 

based on scenario 1 are presented in Table 9, where for each ICA feature of each RPT a data 

point is displayed. The models of the other scenarios can be found in the Attachment C: Models 

according to the three scenarios. 

Table 8 Definition of the scenarios, where H stands for the historical data and ES for the data established in the experimental 
study. 

Scenario: 1 2 3 

Training CYC8H&CYC13H CYC8ES&CYC13ES SoH > 80 % 

Validation CYC8ES&CYC13ES CYC8H&CYC13H SoH < 80 % 

 

 

Figure 24 State of health at each RPT, divided into the two battery cells CYC8 & CYC13 and also into historical data (H)  and 
the data created in the experimental study (ES). The red line shows the 80 % SoH. 

> 80 % 

< 80 % 
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Table 9 The data of the three different features plotted against the capacity in order to create a linear regression model. 

Feature 
Scenario 1 

Peak locaion 

 

Peak height 

 

Area 
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3.4.3 Model diagnostic 

As soon as the model was defined, it had to be diagnosed, in order to define its stability. The 

model diagnostic was divided into five steps, of which each step represents another diagnostic 

method, see Table 10. Step one shows the adjusted data for the feature “peak location” and 

the model (red line), similar to the one in Table 9. However, it shows additional a confidence 

interval of 95 % (dotted line). Adjusted data means that the data was calculated based on the 

model. This plot indicates how representative the model will be. In the example presented in 

Table 10 it is expected that this model will have difficulties delivering an accurate output for 

ICA curves with the peak location in higher voltage ranges. Step two visualizes where the 

discrepancy of the residuals lies in regard to the peak location. However, with the value of one 

or less, the model is still expected to be accurate. Step three presents the probability of those 

residuals, where an accurate model would require that the data points would follow the diago-

nal line. If the data points drift apart from this line, it is expected, that the model in this area is 

not accurate enough. Step four shows the residuals plotted against the fitted values. An accu-

rate model would show no trend in the plot. In this example, a small cluster can be seen. 

However, this trend is not valid for all the data points. The last step analyses the model by 

numbers. It shows the values of the model intercept (b0) and the steepness (b1) of the linear 

model, see equation (9). In order to test the model, there is a hypothesis for each of those 

parts (b0 & b1), which are tested by the t-test. The whole model (f(Y)) is tested by the F-ratio, 

which represents the t2. Other important values of the model are the R2, which should be as 

close as possible to one, in order to show a linear trend and the p-value, which should be as 

small as possible, in order to prove that the outcome is no coincidence. All in all, the model 

diagnostic is an assessment considering all information to make a statement about the stability 

of the model.  

 

Y =  b0 + b1 ∗ X  (9) 
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Table 10 Model diagnostic for Scenario 1 – Peak location 

Step 1. Confidence interval Step 3. Normal probability of residuals 

  

Step 2. Residuals distributed on feature value Step 4. Residuals vs. fitted values 

  
 

Step 5. Statistical data 
 

Location Estimate Standard error t-value p-value 

Intercept 156.7 11.45 13.69 1.54e-20 

Steepness -64.33 5.16 -12.48 1.11e-18 

 
 

Number of observations 65 

Error degrees of freedom 63 

Root Mean Squared Error 0.54 

R-squares 0.71 

Adjusted R-Squared 0.71 

F-statistic vs. constant model 156 

p-value 1.11e-18 

 

  

No data 

points 

No resi-

duals 
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3.5 Model validation 

After defining the model, it must be tested in order to prove its applicability. This procedure is 

also called validation. Figure 25 visualises this procedure. As presented in Table 8, the training 

data and the validation data differ for each scenario. The feature values from both data sets 

were extracted, whereupon the model was built with the training values. Based on this model, 

the capacity was estimated with the feature values from the validation data. The outcome from 

this model was set in reference to the remaining capacity, calculated based on Coulomb count-

ing. Out of this reference, the estimation error was calculated. The estimation error was calcu-

lated based on equation (10), where model capacity stands for the capacity estimated with the 

model and the CC Capacity stands for the capacity calculated with the Coulomb counting 

method. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =  
∣ 𝐶𝑐 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −  𝑚𝑜𝑑𝑒𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∣

𝐶𝑐 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
∗ 100 (10) 

 

 

Figure 25 Flowchart of the model validation. Green indicates an input, blue an output and grey stand for a process. The 
three different borders visualize in which chapter the processes are described in detail. 
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4 Results and Discussion 

4.1 Applying the incremental capacity (IC) algorithm on the output of the 

reference performance tests (RPT) 

As the preparation test, mentioned in section 3.3.3, did not show any inconveniences, the 

experimental study (ES) was continued as planned. Table 11 summarizes the measured ca-

pacity and the SoH obtained after the five RPTs from the ES. It can be seen, that the SoH (see 

equation (1)) of the cell CYC8 is not falling below 100 %. Neither does the SoH of the fresh 

cell, it rather shows an increase of the capacity. At beginning of life (BoL) of the cell CYC13, 

the capacity is 8.6 Ah, which corresponds to a SoH of 64 %. After the first round of ageing with 

the profile presented in Figure 20, the SoH drops to 38 % and recovers then suddenly at 52 %. 

According to Chiasserini et. al, (2001) this recovery effect could be explained by a compensa-

tion of the active material, by a diffusion process within the battery. This means, that the ions 

which were deposited in a passive layer could be reused (Eddahech et al., 2013). Figure 26 

visualises the capacity development over the five RPTs. 

Table 11 Capacity value in [Ah] and the SoH in [%] after each reference performance test (RPT) of the aged battery cells. 

Cells 
BoL Eo1stL Eo2ndL Eo3dL Eo4thL 

CYC8 Capacity [Ah] 14.40 14.42 14.32 14.22 14.01 

SoH [%] > 100 > 100 > 100 > 100 > 100 

CYC13 Capacity [Ah] 8.60 5.06 6.99 6.92 6.2 

SoH [%] 64 38 52 52 48 

fresh Capacity [Ah] 14.67 14.79 14.8 14.84 14.9 

SoH [%] > 100 > 100 > 100 > 100 > 100 

 

 

Figure 26 Capacity development of the battery cell CYC8, CYC13 and the fresh cell. 

Nominal Capacity 

= 100 % SoH 
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The cell CYC13 seems different to the other batteries, as the capacity development does not 

follow the same trend. In Figure 24 a noticeable decrease after reaching 90 % SoH can be 

observed. A similar behaviour was found in Figure 6. The information about the historical age-

ing procedure listed in Table 5 show that the cell CYC13 was aged from 25-75 % SoC and the 

cell CYC8 which was aged from 45-55 % SoC. This is in corresponds with the conclusion made 

by Eckert et al. (2013). Both cells show a similar behaviour in regard to their DoD, as presented 

in Figure 6. However, the cell CYC13 with a DoD of 50 % shows already a fast degradation 

after reaching 90 % SoH, where the corresponding curve in Figure 6 shows a fast degradation 

after reaching 80 %. This could either have something to do with the different cell technology 

or with the environmental conditions, as the cell in Figure 6 was cycled at 35°C and the cell 

CYC13 at 42.5°C. 

Table 12 presents the ICA plots of the RPT’s of this experimental study. It can be seen 

that there is a difference in the cells above 80 % remaining capacity (CYC8 and fresh) and the 

one below (CYC13). The ICA curves move faster further away from each other below 80 % 

SoH. For the 1 C curve of the CYC13, the development has a completely different trend as the 

others, this is highlighted with the red circle. Also, between the 1 C and 1.6 C curves is a 

difference noticeable, where it seems, that the amplitude of the ICA curves for 1.6 C are smaller 

than the one for 1C and also the location of the peak moves more to the right. This confirms 

the behaviour shown in Figure 8, where the change of the ICA curve, dependent on the C-rate 

is presented. The one cell not following the same trend is the CYC13 with the 1 C PRT-proce-

dure. Similar findings could be found in Liu et al.’s (2019) paper about the analysis of cyclic 

ageing performance of commercial LTO cells, although this experiment was proceed with dif-

ferent positive electrode. Their conclusion is that this behaviour is caused by the capacity in-

crease of the cell. Which would also be aligned with the findings described before. According 

to Liu et al.’s (2019), the reason for the capacity increase is that the degradation changed from 

losing active material from the positive electrode to an additional degradation of the negative 

electrode. Which would be a different clarification for the capacity regeneration. However, the 

battery cells in the mentioned literature were not aged as far as the CYC13 in this experimental 

study and were also tested with a different current rate. This would lead to the assumption, 

that the observed behaviour can either occur despites of the cell age or current rate. To draw 

a conclusion about this behaviour, further investigations are needed, which are out of the scope 

of this master thesis. Furthermore, it was expected that the same trend could also be seen for 

1.6 C, which it does not, see the green circle in Table 12. A behaviour like this was not found 

in literature. 
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Table 12 ICA curves of the output from the reference performance tests (RPT) in the experimental study. The red lines indicate 
the previous mentioned ideal voltage interval. The green lines indicate the adapted voltage range for the cell CYC13. 
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Fresh 

cell 

  

 

  



Results and Discussion  ZHAW / MSc. ENR 18 

  Page 44 of 79 

4.2 Model based on the incremental capacity (IC) algorithm 

4.2.1 Model and model diagnostic 

In order to create the models, only the part of the ICA curves between 2.2 and 2.4 V was used, 

as presented in Figure 23 on the example of the historical data from cell CYC13. According to 

Table 8 three scenarios were defined, in which for each ICA feature (“location”, “peak ampli-

tude” and “area”) a model was created. In Table 13 to Table 15, the models, together with the 

corresponding R2 and the p-value, are presented. In Attachment C: Models according to the 

three scenarios, those models are visualised as a figure. The R2 and the p-value are extracted 

from the model diagnostic, which can be found in Attachment D: Model diagnostic. The model 

diagnostic supported the validity of the models, based on which the model validation in section 

4.2.2 is presented. Table 10 shows the model diagnostic of the feature “location” of the sce-

nario 1.It can be seen that the model provides a reliable model in a lower voltage range, but 

not for a range with higher voltage values. As it is most likely that the voltage range will in-

crease, when the battery cell ages, it is not expected, that this model can provide an accurate 

output for battery cells below 80 % capacity. The diagnostic of the model based on the feature 

“peak amplitude” (see Attachment D: Model diagnostic) shows a similar outcome, although 

with more samples at lower amplitudes, which would be favourable for cells below 80 % re-

maining capacity. The model based on the feature “area” (see Attachment D: Model diagnostic) 

shows a not so promising model diagnostic. It has a much smaller R2 value, which means that 

it is not linear in comparison to the other two models. Based on this finding, in scenario 1 the 

model with the feature “peak amplitude” is considered to be the most accurate model for cells 

above 80 % remaining capacity. All of the models in scenario 2 show a high R2, an acceptable 

p-value and also good diagnostic plots in the attachment. However, it must be taken into ac-

count that only five samples were available to train the model. Nevertheless, all three models 

are considered to be accurate according to the model diagnostic. Scenario 3 shows no prom-

ising R2 values, compared to the other models. Therefore, none of those models are expected 

to be accurate. 

Table 13 ICA models based on the different ICA features from scenario 1 

Models 
Based on scenario 1 R2 p-value 

Location  Q = -64.33 * U + 156.7 0.71 1.11e-18 

Peak amplitude Q = 0.10 * ICA + 7.59 0.71 6.67e-19 

Area Q = 0.00004 * A + 10.24 0.53 5.08e-12 

Table 14 ICA models based on the different ICA features from scenario 2 

Models 
Based on scenario 2 R2 p-value 

Location  Q = -49 * U + 123 0.96 7.84e-07 
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Peak amplitude Q = 0.22 * ICA + 1.03 0.92 9.77e-06 

Area Q = 0.00009 * A + 6.06 0.98 4.94e-08 

Table 15 ICA models based on the different ICA features from scenario 3 

Models 
Based on scenario 3 R2 p-value 

Location  Q = -52.7 * U + 131 0.52 4.05e-12 

Peak amplitude Q = 0.085 * ICA + 8.8 0.59 1.17e-14 

Area Q = 0.00003 * A + 11.29 0.38 2.16e-08 

 

4.2.2 Validation of the model 

The models were validated based on equation (10). The outcome of all models can be found 

in Attachment E: Model validation. In Table 16 the average value of the models with the best 

model diagnostic are presented. In scenario 1 the model is more accurate for cell CYC8 then 

for cell CYC13. It is assumed, that this is because the model was trained with the historical 

data, which are mostly above 80 % SoH, as presented in Figure 24. The models in scenario 2 

have a much more equal outcome for both cells. Here the models were trained with the data 

from the experimental study and were validated with the historical data.  

One research question asked for an estimation error below 5 %. This could be achieved 

for all cases of the cell CYC8, but not for the cell CYC13. However, in scenario 2, the model 

based on the feature “location” could also achieve a value below 5% for cell CYC13. Therefore, 

it is assumed, that the feature “location” correlates the best with the remaining capacity, at any 

SoH level. Based on the validation with the fresh cell, an accurate outcome is also expected 

for newer cells. 

Table 16 Average estimation error between the estimated capacity and the calculated remaining capacity. 

Scenario 
Model Validation data Estimation error 

1 Peak amplitude CYC8_ES 5% 

1 Peak amplitude CYC13_ES 57% 

2 Location CYC8_H 3% 

2 Location CYC13_H 4% 

2 Peak amplitude CYC8_H 5% 

2 Peak amplitude CYC13_H 9% 

2 Area CYC8_H 5% 

2 Area CYC13_H 8% 

2 Location Fresh cell_ES 2.3% 
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4.2.3 Applicability of the method 

The ICA method refers to how to measure the voltage, the current and the time, which are 

needed to derive the ICA plot and then to apply the ICA algorithm. In order to provide a fast 

and accurate method, the goal would be to measure those values only on a certain voltage 

range, as illustrated in Figure 7. In this master thesis the voltage range was chosen to be from 

2.2 to 2.4 V. It is expected that this already could save up to 20 minutes of the charging pro-

cedure. An advantage of limiting the voltage in comparison to other parameter is, that it can 

be measured directly, so it is a fast way to determine the voltage range. However, as the 

voltage range is dependent on the cell age, this voltage range must be defined for the appli-

cation in the second life. Then, based on the information gathered in Table 12, it can be said 

that the cells below 80 % need a wider range than the cells above. Even though the method 

was only tested in a certain voltage interval, one model with a high accuracy could be provided 

for cells below and above 80 % remaining capacity. In the example presented in Figure 20, the 

most frequent C-rate during the normal load cycle is 1.6 C, which is indicated with the green 

line. The tests with 1.6 C show that the voltage interval must be chosen even bigger than the 

one for 1 C. Based on this outcome, it is assumed that there would be an optimal charging 

length which considers not only the voltage range, also the ideal C-rate.  

There are different ways to apply this method. However, in order to keep the battery as 

long as possible in the life cycle, it would make sense to apply it while the battery is still in the 

vehicle.An important requirement for the ICA method is, that the conditions are the same for 

every time the method is applied. This means, that the battery would have the same environ-

mental conditions (i.e. temperature) and the same C-rate is used to charge the battery. To 

ensure a stable environment, it would make sense to apply the method in a workshop or in a 

garage and not while driving. 
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5 Conclusion 

5.1 Findings 

1. Can the ICA method still deliver an estimation with a percentage error below the 

average estimation error of 5 %, if only a partial charging or discharging is per-

formed? 

Based on the information gathered in chapter 4, it can be said, that it is possible to estimate 

the SoH accurately with only a partial charging procedure, also below 5 %. However, the 

voltage interval must be defined in such a way that the identification of the ICA peak can 

be obtained. In Table 12 the interval is presented. Based on the historical data, the red 

lines would have been wide enough, although considering the data from the experimental 

study, it had to be expanded to the green line. This leads to the assumption that the interval 

increases with increasing battery degradation. This method was only tested on the charg-

ing curve and not on the discharging curve. 

2. Is the ICA method applicable for batteries with a capacity below 80 %? 

Here as well a positive outcome was found. The ICA method is also applicable on batteries 

below 80 % remaining capacity, although the estimation error is depending on the training 

of the model. In this master thesis, training of the model with the experimental study gave 

the most accurate output for the older cells. This leads to the assumption, that a model 

only based on new RPTs could still deliver an accurate outcome to estimate the SoH. 

However, it must also be considered that the voltage interval increases with decreasing 

SoH. 

3. Which SoH indicator of the ICA method deliver the most accurate outcome for 

batteries with a capacity below 80 %? 

The validation of the model based on the feature “location” from scenario 2 is the only 

model which shows an estimation error of below 5 % for all battery cells used in this study. 

Therefore, the model in equation (11) is expected to be the most accurate for the cells 

below 80 % remaining capacity, where Q stands for the capacity and U for the peak loca-

tion in volt. 

𝑄 =  −49 ∗  𝑈 +  123 (11) 
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5.2 Future work 

As the cell CYC13 did show some unexpected outcome, it is on one hand proposed to perform 

a post-mortem analysis, in order to be sure, where this behaviour is coming from. On the other 

hand, it is proposed to validate the model in equation (11) with another, independent LTO-cell, 

with the same nominal capacity but a remaining capacity of around 70 %. Given that the focus 

in this master thesis lies on battery cells below 80 % remaining capacity. Furthermore, the 

fresh battery cell did already deliver a good outcome.  

 Additionally, it shall be tested, if similar outcomes can be achieved, if this method is 

applied in a workshop and not under laboratory conditions. It shall also be verified, if there is 

a difference, if only the specified voltage interval is charged and measured, as in this study the 

interval was applied manually, after the measurement. The goal should be, that this method 

can be applied in every workshop or garage. 

Another issue of this master thesis which needs further attention is the voltage interval, 

on which the method should be applied. This interval is dependent on the cell age and the 

current rate (C-rate), which is used to extract the current curve. It is proposed to find the ideal 

voltage interval for this cell technology and then to repeat the test with the new interval. For 

that however, one or more cells must be aged to the point where it would be ready for disposal. 

That way, it is known how wide the voltage interval could reach. However, studies have no 

common opinion about the very end of a battery. One study concludes that an Eo2ndL would 

be expected at around 60 % remaining capacity (Canals Casals et al., 2018), another one at 

40 % remaining capacity (Montoya-Bedoya et al., 2020). 
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Attachment B: Technical Data Sheets 

In this attachment the technical data sheets are presented. 

• MTCT 50-06-8(4) ME (multiple cell tester; 4x50A/0-6V, pre.f.8) 

 

• PT100 Sensor 
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• Climatic Chamber 

 

• LTO battery cell 
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Attachment C: Models according to the three scenarios 

This attachment summarizes all models based on a linear regression between the ICA feature 

values and the capacity. The used training data is according to the three scenarios described 

in section 3.4.2. 

Table 17 Models according to the three scenario 1. 
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Table 18 Models according to the three scenario 2. 
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Table 19 Models according to the three scenario 3. 
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Attachment D: Model diagnostic 

This attachment summarizes the model diagnostic based on the models presented in Attach-

ment C: Models according to the three scenarios. The diagnostic procedure is explained in 

section 3.4.3, based on the example of Table 20. 

Table 20 Model diagnostic for Scenario 1 – Peak location 

  

  
 

Location Estimate Standard error t-value p-value 

Intercept 156.7 11.45 13.69 1.54e-20 

Steepness -64.33 5.16 -12.48 1.11e-18 

 

Number of observations 65 

Error degrees of freedom 63 

Root Mean Squared Error 0.54 

R-squares 0.71 

Adjusted R-Squared 0.71 

F-statistic vs. constant model 156 

p-value 1.11e-18 
 

No data 

points 

No resi-

duals 



Attachments  ZHAW / MSc. ENR 18 

  Page 65 of 79 

Similar to the analysis in Table 20, this model is expected to have difficulties delivering accu-

rate output at lower amplitudes, although it has more data pints than the feature “location”. 

Unfortunately, the number of residuals is increasing at higher amplitudes. It is expected that 

this is the reason for trend, which seems to be even bigger than the one from Table 20. How-

ever, the statistical data seems to be as good as for the feature “location”. 

Table 21 Model diagnostic for Scenario 1 – Peak amplitude 

  

  
 

Amplitude Estimate Standard error t-value p-value 

Intercept 7.59 0.49 15.17 1.03e-22 

Steepness 0.10 0.008 12.62 6.67e-19 

 

Number of observations 65 

Error degrees of freedom 63 

Root Mean Squared Error 0.53 

R-squares 0.72 

Adjusted R-Squared 0.71 

F-statistic vs. constant model 159 

p-value 6.67e-19 
 

 

Viewer re-

siduals 

Viewer 

data 

points 
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Also, here no surprises. The model has viewer data points when the area decreases. Here it 

is not the number of residuals which bothers, it is the discrepancy which reaches up to two. 

Besides the trend which the model shows, the statistical data are not promising at all. 

Table 22 Model diagnostic for Scenario 1 – Area 

  

  
 

Area Estimate Standard error t-value p-value 

Intercept 10.24 0.43 23.65 4.85e-33 

Steepness 0.00004 4.78 8.48 5.07e-12 

 

Number of observations 65 

Error degrees of freedom 63 

Root Mean Squared Error 0.68 

R-squares 0.53 

Adjusted R-Squared 0.53 

F-statistic vs. constant model 72 

p-value 5.08e-12 
 

  

Viewer 

data 

points 
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In scenario 2 is conspicuous that there are much less data points then for scenario 1. Never-

theless, they seem to be well distributed, so that no trend is occurring. There are only a few 

residuals which seem to reach the value of two. The statistical data seems to be very promis-

ing. 

Table 23 Model diagnostic for Scenario 2 – Peak location 

  

  
 

Location Estimate Standard error t-value p-value 

Intercept 123.07 8.23 14.95 3.95e-07 

Steepness -49.02 3.58 -13.68 7.84e-07 

 

Number of observations 10 

Error degrees of freedom 8 

Root Mean Squared Error 0.87 

R-squares 0.96 

Adjusted R-Squared 0.95 

F-statistic vs. constant model 187 

p-value 7.84e-07 
 

  

No Trend 

Relatively big detachment, compared to 

the previous scenario 
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Similar as in Table 23, the residuals seem to be well distributed, so that no trend is occurring. 

However, for this model, there seem to be residuals with a higher discrepancy, although this 

has not a huge impact on the statistical data, which seem to be still very promising. 

Table 24 Model diagnostic for Scenario 2 – Peak amplitude 

  

  
 

Amplitude Estimate Standard error t-value p-value 

Intercept 1.03 1.04 0.99 0.35 

Steepness 0.22 0.02 9.81 9.77e-06 

 

Number of observations 10 

Error degrees of freedom 8 

Root Mean Squared Error 1.19 

R-squares 0.92 

Adjusted R-Squared 0.91 

F-statistic vs. constant model 96.3 

p-value 9.77e-06 
 

  

No Trend 



Attachments  ZHAW / MSc. ENR 18 

  Page 69 of 79 

This diagnostic does not differ much from the other two in scenario 2. 

Table 25 Model diagnostic for Scenario 2 – Area 

  

  
 

Area Estimate Standard error t-value p-value 

Intercept 6.06 0.3 20.14 3.86e-08 

Steepness 8.91e-05 4.56e-06 19.52 4.94e-08 

 

Number of observations 10 

Error degrees of freedom 8 

Root Mean Squared Error 0.62 

R-squares 0.98 

Adjusted R-Squared 0.98 

F-statistic vs. constant model 381 

p-value 4.94e-08 
 

  

No Trend 
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At first sight, these diagnostic plots seem to be very promising. However, the statistical data 

does not support this first impression. The residuals seem to be well distributed, although ac-

cording to the statistical data, a linear trend cannot be proven with this data set. 

Table 26 Model diagnostic for Scenario 3 – Peak location 

  

  
 

Location Estimate Standard error t-value p-value 

Intercept 130.92 13.83 9.47 6.49e-14 

Steepness -52.68 6.23 -8.46 4.05e-12 

 

Number of observations 68 

Error degrees of freedom 66 

Root Mean Squared Error 0.51 

R-squares 0.52 

Adjusted R-Squared 0.51 

F-statistic vs. constant model 71.5 

p-value 4.05e-12 
 

  

No Trend 
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The plots show a similar trend as in Table 26, although here the linearity is a but more signifi-

cant. 

Table 27 Model diagnostic for Scenario 3 – Peak amplitude 

  

  
 

Amplitude Estimate Standard error t-value p-value 

Intercept 8.84 0.52 16.91 1.10e-25 

Steepness 0.08 0.0086 9.89 1.18e-14 

 

Number of observations 68 

Error degrees of freedom 66 

Root Mean Squared Error 0.47 

R-squares 0.59 

Adjusted R-Squared 0.59 

F-statistic vs. constant model 97.8 

p-value 1.17e-14 
 

  

No Trend 
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This model diagnostic shows whether good plots, nor good statistical data.  

Table 28 Model diagnostic for Scenario 3 – Area 

  

  
 

Area Estimate Standard error t-value p-value 

Intercept 11.29 0.43 26.43 7.99e-37 

Steepness 2.96e-05 4.66e-06 6.36 2.16e-08 

 

Number of observations 68 

Error degrees of freedom 66 

Root Mean Squared Error 0.58 

R-squares 0.38 

Adjusted R-Squared 0.37 

F-statistic vs. constant model 40.5 

p-value 21.16e-08 
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Attachment E: Model validation 

This attachment summarizes the interims results and also the average value of the model 

validation, ordered by the three scenarios. The validation is described in chapter 3.5. The av-

erage values of the most promising models, based on the diagnostic, are presented in section 

4.2.2. 

Validation with cell CYC8_ES in scenario 1 

Table 29 Model output and estimation error of the feature "location". 

RPT 
Location (V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL 2.23 13.36 14.4 7% 

Eo1stL 2.22 13.69 14.42 5% 

Eo2ndL 2.22 13.78 14.32 3% 

Eo3dL 2.22 13.96 14.22 2% 

Eo4thL 2.22 13.75 14.11 3% 

Average 4% 

Table 30 Model output and estimation error of the feature "peak". 

RPT 
Peak (Ah/V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL 61.38 13.73 14.4 5% 

Eo1stL 61.38 13.72 14.42 5% 

Eo2ndL 60.37 13.63 14.32 5% 

Eo3dL 59.65 13.55 14.22 5% 

Eo4thL 59.08 13.49 14.11 4% 

Average 5% 

Table 31 Model output and estimation error of the feature "area". 

RPT 
Area (Ah) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL 99128 14.21 14.4 1% 

Eo1stL 93999 14 14.42 3% 

Eo2ndL 91650 13.91 14.32 3% 

Eo3dL 89856 13.83 14.22 3% 

Eo4thL 88845 13.79 14.11 2% 

Average 2% 
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Validation with cell CYC13_ES in scenario 1 

Table 32 Model output and estimation error of the feature "location". 

RPT 
Location (V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL 2.3 8.62 8.6 0% 

Eo1stL 2.38 3.45 5.06 32% 

Eo2ndL 2.37 4.17 6.99 40% 

Eo3dL 2.38 3.05 6.92 56% 

Eo4thL 2.39 2.31 6.2 62% 

Average 38% 

Table 33 Model output and estimation error of the feature "peak". 

RPT 
Peak (Ah/V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL 25.42 10.13 8.6 18% 

Eo1stL 15.6 9.15 5.06 81% 

Eo2ndL 33.65 10.95 6.99 56% 

Eo3dL 36.83 11.27 6.92 63% 

Eo4thL 26.87 10.27 6.2 66% 

Average 57% 

Table 34 Model output and estimation error of the feature "area". 

RPT 
Area (Ah) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL 16295 10.89 8.6 27% 

Eo1stL 2759 10.35 5.06 104% 

Eo2ndL 10484 10.66 6.99 52% 

Eo3dL 8095 10.56 6.92 53% 

Eo4thL 145.9 10.25 6.2 65% 

Average 60% 
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Validation with cell CYC8_H in scenario 2 

Table 35 Model output and estimation error of the feature "location". 

RPT 
Location (V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

6 2.23 13.95 13.73 2% 

10 2.22 14.01 13.75 2% 

13 2.23 13.87 13.76 1% 

15 2.24 13.46 13.28 1% 

17 2.23 13.93 13.20 6% 

22 2.21 14.54 14.59 0% 

25 2.22 14.01 12.90 9% 

Average 3% 

Table 36 Model output and estimation error of the feature "peak". 

RPT 
Peak (Ah/V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

6 62.11 14.69 13.73 7% 

10 60.66 14.38 13.75 5% 

13 60.66 14.38 13.76 5% 

15 56.62 13.50 13.28 2% 

17 55.32 13.19 13.20 0% 

22 71.92 16.85 14.59 15% 

25 56.76 13.52 12.90 5% 

Average 5% 

Table 37 Model output and estimation error of the feature "area". 

RPT 
Area (Ah) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

6 96530 14.66 13.73 7% 

10 93928 14.43 13.75 5% 

13 92816 14.33 13.76 4% 

15 84454 13.58 13.28 2% 

17 82228 13.39 13.20 1% 

22 114889 16.29 14.59 12% 

25 82738 13.43 12.90 4% 

Average 5% 
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Validation with cell CYC13_H in scenario 2 

Table 38 Model output and estimation error of the feature "location". 

RPT 
Location (V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

1 2.22 14.32 14.20 1% 

2 2.21 14.95 14.86 1% 

3 2.21 14.83 14.28 4% 

5 2.22 14.45 14.47 0% 

7 2.22 14.32 14.80 3% 

16 2.22 14.35 14.82 3% 

31 2.23 13.53 11.95 13% 

Average 4% 

Table 39 Model output and estimation error of the feature "peak". 

RPT 
Peak (Ah/V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

1 71.50 16.76 14.20 18% 

2 62.83 14.85 14.86 0% 

3 70.49 16.54 14.28 16% 

5 69.04 16.22 14.47 12% 

7 66.30 15.62 14.80 6% 

16 64.42 15.20 14.82 3% 

31 44.34 10.79 11.95 9% 

Average 9% 

Table 40 Model output and estimation error of the feature "area". 

RPT 
Area (Ah) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

1 124425 17.15 14.20 0.21 

2 92888 14.34 14.86 0.04 

3 110238 15.88 14.28 0.11 

5 113017 16.13 14.47 0.11 

7 105833 15.49 14.80 0.05 

16 101210 15.08 14.82 0.02 

31 60947 11.49 11.95 0.04 

Average 8% 
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Validation with data > 80 % SoH in scenario 3 

Table 41 Model output and estimation error of the feature "location". 

RPT 
Location (V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL_ES 2.30 9.65 8.60 12% 

Eo1stL_ES 2.38 5.42 5.06 7% 

Eo2ndL_ES 2.37 6.01 6.99 14% 

Eo3dL_ES 2.39 5.09 6.92 26% 

Eo4thL_ES 2.39 4.48 6.20 27% 

32_CYC13 2.24 12.92 11.42 13% 

33_CYC13 2.26 11.71 10.43 12% 

Average 16% 

Table 42 Model output and estimation error of the feature "peak". 

RPT 
Peak (Ah/V) Estimated 

capacity 

Calculated 

capacity 

Estimation error 

BoL_ES 25.40 10.87 8.60 26% 

Eo1stL_ES 15.60 10.08 5.06 99% 

Eo2ndL_ES 33.66 11.53 6.99 65% 

Eo3dL_ES 36.83 11.78 6.92 70% 

Eo4thL_ES 26.86 10.99 6.20 77% 

32_CYC13 41.89 12.19 11.42 7% 

33_CYC13 38.27 11.90 10.43 14% 

Average 51% 

Table 43 Model output and estimation error of the feature "area". 

RPT 
Area (Ah) Estimated capacity Calculated capacity Estimation error 

BoL_ES 16295 11.77 8.60 37% 

Eo1stL_ES 2760 11.37 5.06 125% 

Eo2ndL_ES 10484 11.60 6.99 66% 

Eo3dL_ES 8095 11.53 6.92 67% 

Eo4thL_ES 146 11.29 6.20 82% 

32_CYC13 53780 12.88 11.42 13% 

33_CYC13 43129 12.56 10.43 20% 

Average 59% 
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Attachment F: Overview historical data 

Table 44 Historical data of the two cells CYC8 and CYC13. The green marking indicates the randomly chosen validation values. 

Number CYC8 CYC13 

1 RPT0_odd_ANCyc8_TS002142 RPT0_odd_ANCyc13_TS002273 

2 RPT1_even_ANCyc8_TS002355 RPT1_even_ANCyc13_TS002394 

3 RPT2_odd_ANCyc8_TS002514 RPT2_odd_ANCyc13_TS002546 

4 RPT3_even_ANCyc8_TS002582 RPT3_even_ANCyc13_TS002653 

5 RPT4_odd_ANCyc8_TS002725 RPT4_odd_ANCyc13_TS002770 

6 RPT5_even_ANCyc8_TS002827 RPT5_even_ANCyc13_TS002888 

7 RPT6_odd_ANCyc8_TS002950 RPT6_odd_ANCyc13_TS003087 

8 RPT7_even_ANCyc8_TS003063 RPT11_even_ANCyc13 

9 RPT8_odd_ANCyc8_TS003278 RPT13_even_ANCyc13 

10 RPT9_even_ANCyc8_TS003352 RPT15_even_ANCyc13 

11 RPT10_odd_ANCyc8_TS003428 RPT16_odd_ANCyc13 

12 RPT11_even_ANCyc8_TS003547 RPT18_even_ANCyc13 

13 RPT12_odd_ANCyc8 RPT20_odd_ANCyc13 

14 RPT13_even_ANCyc8 RPT22_even_ANCyc13 

15 RPT14_odd_ANCyc8 RPT24_odd_ANCyc13 

16 RPT15_even_ANCyc8 RPT26_even_ANCyc13 

17 RPT16_odd_ANCyc8 RPT28_odd_ANCyc13 

18 RPT17_even_ANCyc8 RPT32_odd_ANCyc13 

19 RPT18_odd_ANCyc8 RPT42_even_ANCyc13 

20 RPT19_even_ANCyc8 RPT46_even_ANCyc13 

21 RPT20_odd_ANCyc8 RPT48_odd_ANCyc13 

22 RPT22_even_ANCyc8 RPT50_even_ANCyc13 

23 RPT24_odd_ANCyc8 RPT52_odd_ANCyc13 

24 RPT26_even_ANCyc8 RPT56_odd_ANCyc13 

25 RPT28_odd_ANCyc8 RPT58_even_ANCyc13 

26 RPT30_even_ANCyc8 RPT60_odd_ANCyc13 

27 RPT32_odd_ANCyc8 RPT62_even_ANCyc13 

28 RPT34_even_ANCyc8 RPT64_odd_ANCyc13 

29 RPT36_odd_ANCyc8 RPT66_even_ANCyc13 

30 RPT38_even_ANCyc8 RPT70_odd_ANCyc13 

31 RPT40_odd_ANCyc8 RPT72_even_ANCyc13 

32 RPT42_even_ANCyc8 RPT76_even_ANCyc13 

33  RPT78_odd_ANCyc13 
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Attachment G: Poster 

 


