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Abstract:

Et system til audiovisuelle oplevel-
ser er udviklet med inspiration fra
den menneskelige neurofysiologiske
tilstand synestesi. Forskning tyder pa,
at synestesi kan veere resultatet af en
neural kortslutning mellem sensori-
ske systemer i hjernen, hvilket repli-
keres ved kortslutning af to kunsti-
ge sensoriske systemer. Det efterlig-
nes ved brug af kunstige neurale net-
veerk (ANN) til at replikere den men-
neskelige hjernes sensoriske systemer.
En autoencoder (AE) bruges til at
genkende strukturer i musik, mens
et kompositionsmensterproducerende
netveerk (CPPN) bruges til at genere-
re visuelle kompositioner. Den uvikle-
de AE finder menstre i musikken der
bruges til at skubbe til den uviklede
CPPN hvilket skaber bevaegelser i de
menstre den producerer. I et eksperi-
ment med 30 deltagere blev systemet
sammenlignet med et spektrogram og
en CPPN, der producerede bevaegelser
baseret pa Perlin-stgj. Resultaterne vi-
ser, at det udviklede system adskiller
sig selv i veerste tilfeelde og har poten-
tiale til at blive brugt som et genera-
tivt designveerktej til dynamisk lysde-
sign. Et lysdesign blev lavet ved hjeelp
af systemet til at vise nogle forskellige
kompositioner af lys og musik. Yder-
ligere udvikling er oplagt for at frige-
re systemets fulde potentiale ved hjeelp
af en cybernetisk tilgang til generativt
design.
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Preface 1

Abstract

A system for audiovisual experiences is developed with inspiration from the hu-
man neurophysiological condition of synesthesia. Research suggests that synes-
thesia may be the result of a neural short circuit between the sensory systems in
the brain, which is replicated by short circuiting two artificial sensory systems. It
is emulated by the use of artificial neural networks (ANN) to replicate the sensory
systems of the human brain. An autoencoder (AE) is used to recognise patterns in
music, while a compositional pattern producing network (CPPN) is used to gen-
erate visual compositions. The AE extracts features from music and used to push
the CPPN, which creates movements in the patterns it produces. In an experiment
with 30 participants, the system was compared against a spectrogram and a CPPN
producing movements based on Perlin noise. Results show that the developed sys-
tem differentiates itself even in worst case conditions, and has potential for use as
a generative design tool for dynamic lighting design. A lighting design was made
using the system to show some different compositions of light and music. Further
development is imperative to release the full potential of the system, by using a
cybernetic approach to generative design.






Chapter 1

Introduction

Audiovisual experiences are deeply rooted in human nature with 90-95% of human
perception processing coming from vision and hearing [54]. The fundamental un-
derstanding of human language is deeply rooted in the audiovisual perception as
demonstrated by the McGurk effect (can be seen on Youtube[7]) which reveal how
interconnected the senses are. The importance of this connection can be leveraged
to create audiovisual atmospheres through communicating the movement of sound
in light. Some research suggests that vision is dominantly responsible for spatial
perception while hearing is responsible for the perception of time. This project
describes an approach to developing a lighting design tool for the translation of
music to light inspired by the phenomenon of synesthesia.
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555555255 5565585GL5¢25¢E
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E 55555555 555555555
55555555 55555555565

Figure 1.1: Grapheme-colour synesthesia makes it much faster to recognise different numbers. Left:
a grid of numbers - 5 and 2. Right: example of grapheme-colour number associations.[41]

Synesthesia means "joint sensation", and is the opposite of anesthesia which
means 'no sensation”. Synesthesia which applies to 4% of the population is a
neurological condition in which information meant to stimulate one of your senses
stimulates several of your senses. Depending on which kind of synesthesia it is,

3



4 Chapter 1. Introduction

it can allow people who have synesthesia (synesthetes) to actually see colours in
music, or taste words, among other combinations. Grapheme-colour synesthetes
sees every letter and number with colours, allowing them to identify different
numbers efficiently as seen in fig.

In a neuroscientific perspective, synesthesia is the involuntary response of a
secondary sensory system due to a stimuli in a primary sensory system. This in-
voluntary response is believed (at least in some cases) to be caused by additional
neural pathways, connecting the sensory cortices in the brain. Some sensory sys-
tems are naturally very well connected like taste and smell.

On the topic of taste and smell, synesthesia was used as the inspiration for the
Walt Disney movie Ratatouille in 2008, when the animator Michel Gagné (who is
a synesthete) visualised synesthesia for the rat "Remy" who eats cheese and straw-
berry seen in fig. Each sensory stimulus is unique, but as Remy eats both at the
same time, the experience is new and amplified. Michael Gagné has created several
other works, combining shapes and colors to visualise his synesthetic experiences

with music seen in fig. [I.3|and fig.

Figure 1.2: Picture from the Pixar movie "Ratatouille” where the rat named Remy experiences synes-
thesia of tastes as he combines the flavors of cheese and strawberry.[40]

Modern technology advancements in usable interfaces for Machine Learning
(ML), enable the development of Artificial Neural Networks (ANN) that can be
used to emulate functions of the human brain. The technology is even inspired
by the structures of the brain which consists of interconnected neurons. This can
be seen in some of Ryuichi Kurokawas audiovisual works as he explores the tech-
nologies to - in his words - create artworks in two themes: the reuse of nature, and
creating synesthetic experiences[49]]. Images from his work "ad/ab Atom" can be

seen in fig.



Figure 1.3: Still image from the animation by Michel Gagné "Sensology"[43]]

Figure 1.4: Still image from the animation by Michel Gagné "Synesthesia"[48]]

Research points toward a hierarchical structure in the human brain with spe-
cialised neural networks that handle specific tasks, which then are combined in the
higher cognitive functions of the brain. This model can be emulated by creating
specialised ANNSs that perform specific tasks emulating the sensory systems. In
this project, the sensory modalities in focus are the auditory system and the vi-
sual system. Artificial neural networks as a cross modal synthesizer can create a
dynamic mapping from one sense to another, an artificial synesthesia.

Viewing an artificial neural network as a phenomenological entity that encodes
sensory experiences into qualizﬂ can offer an inherently subjective point of view
on synesthetic experiences. Inspired by synesthesia, this project seeks to explore

'Qualia are the individual subjective experiences of consciousness, singular: quale.
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Figure 1.5: Still frames from Ryuichi Kurokawas audiovisual piece "ad/ab Atom" which can be seen

on Youtube.

the opportunities of developing a dynamic lighting design system that integrates
the movement of sound to light.

Lou Michel refers to the focal accents hierarchy of vision as: people, movement,
brightness, high contrast, vivid color, strong patterns, meaning and combinations
of the former. Especially two of these are highlighted: meaning and movement.
Movement is the continuous perception through time. Meaning is the subjective
lens that we understand the world through[34]. In letting a neural network derive
meaning, it can be used through time to create meaning and movements in time.

What if software could enable the lighting designer to explore dynamic light-
ing designs through meaningful interactions and exploration? Exploring the be-
haviours of Artificial Synesthesia may show new perspectives for dynamic lighting
design.



Chapter 2

Background

21 Cybernetics

"Cybernetics is a young discipline which, like applied mathematics,
cuts across the entrenched departments of natural science; the sky,
the earth, the animals and the plants. Its interdisciplinary character
emerges when it considers economy not as an economist, biology not
as a biologist, engines not as an engineer. In each case its theme re-
mains the same, namely, how systems regulate themselves, reproduce
themselves, evolve and learn. Its high spot is the question of how they
organize themselves." - Gordon Pask (1961)[38]

Defined in 1948 by Norbert Wiener as "the scientific study of control and com-
munication in the animal and the machine"[61], cybernetics can be described as the
exploration of the structures, constraints and possibilities of regulatory systems. In
cybernetics a regulatory system has a cybernetic loop, meaning that it acts based
on the causal relationship of its actions. Cybernetics comes the Greek word ku-
bernétés which means "steersman'"[37] - we see the destination in the distance, so
we correct our course through the cybernetic loop. In this way cybernetics is about
steering to get to the goal, which is a fundamental property of intelligent systems.
Although an applicable concept to many things in our lives like thermostats and
automatically dimming screens, it is especially central to the modern discussions
on adaptation and learning in Al systems. In a broader sense, cybernetics concerns
itself with any system that has a goal or an objective. A system is defined as a set
of things working together as parts of a mechanism or an interconnecting network.
Cybernetics then is concerning itself with explaining anything that has a causal
relationship with any other thing.

"Once you see the world in a cybernetic way - through the cybernetic
lens, all things are cybernetic, because all systems becomes part of this

7



8 Chapter 2. Background

set of languages of: action, and sensing and comparing and under-
standing and taking a meta-view. This is fundamental to intelligence
because if I know what I want, and I act to achieve what I want - suc-
cessfully - then that is the best definition of intelligence that I know.
And of course we all want to be intelligent, it is part of what drives us
as humans, and because cybernetics is about physical, technological, bi-
ological and social systems - all - it is the most comprehensive language
to describe these things." - Paul Pangaro

2.2 Generative Art

"Much of the innovation today is not achieved within the precious bub-
ble of fine art, but by those who work in the industries of popular
culture—computer graphics, film, music videos, games, robotics and the
Internet" - Jon McCormack (2003)[16]

With its theoretical roots in cybernetics and general systems theory, the gener-
ative arts, along with computer arts and electronic arts, have been technologically
enabled especially in the last 20 years as Machine Learning and Al techniques
have gained massive mainstream traction. It was defined as "Cybernetic Vision"
in 1966/1967 by Roy Ascott who became an influential figure in the cybernetic
arts[11]]. Another theoretical seed from cybernetic theory is the methodologies be-
hind the digitised concepts of evolution and self-organization, which also takes
inspiration from cognitive science and artificial life. An example of a simulation of
life is Conway’s Game of Life created by mathematician John Horton Conway in
1970. An image of this can be seen in fig.
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Figure 2.1: A still image of the Game of Life simulation made by John Horton Conway.
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While generative art is often coupled with use of computers, Kenneth Martin
showed that it does not have to be so as seen in "Chance,Order,Change" seen in
fig. By choosing geometrical figures and defining some rules of proportion, he
would randomize the layout of the artwork[16]. The rules decide the boundaries
of randomness.

Figure 2.2: "Chance,Order,Change" by Kenneth Martin (1978)[51]

Rules of randomness is essential in the definition of generative art as it seems
to give the systems a degree of autonomy [16]. The rules are in relation to the
conscious decisions of the artist, which becomes a self interpretation of ideas for-
mulated through limitations of randomness.

"If the cybernetic spirit constitutes the predominant attitude of the mod-
ern era, the computer is the supreme tool that its technology has pro-
duced. Used in conjunction with synthetic materials it can be expected
to open up paths of radical change and invention in art.... The inter-
action of man and computer in some creative endeavour, involving the
heightening of imaginative thought, is to be expected." - Roy Ascott

2.3 Generative Design

Generative design - in continuation of generative art - is the process of designing
through the use of a system that will find a variety of solutions within a defined



10 Chapter 2. Background

solution space. Just like generative art is about exploring randomness with con-
straints, generative design is about using constraints to have an algorithm explore
different solutions that fits within the boundaries of the constraints.

Figure 2.3: Example of a 3D structure as designed with the use of generative design.

The power of generative systems comes from its innate random nature, as it
seeks to explore every possible solution within the solution space. The system-
atisation of randomness is a way for designers to explore design possibilities as
randomness itself can show new, possibly even revolutionary ideas. The question
is - what are the constraints.

Figure 2.4: Acoustic 3D design for University of Iowa’s Voxman School of Music concert hall made
with generative design.
2.4 Computer Vision

Deep dream as made by Alexander Mordvintsev from Google, is the result of a
deep neural network that produces psychedelic images based on its knowledge on
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the contents of pictures. This means that any image fed into the deep dream net-
work, will be correlated with the knowledge of the network. Said in another way,
if the network was trained on images of cats, it will look for cat-like features (ears,
paws, eyes) in the image and merge those features into the image. An example of
this can be seen in fig. The Google deep dream network can also be used to do
style transfers between images, which can be seen in fig.[2.6/ A video of the journey
through the depth of the deep dream network can be seen on Youtube[24].

Figure 2.5: An image made by Google Deep Dream where the network has found animalistic features
in the night sky[22].
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Figure 2.6: An image made by Google Deep Dream where the network has combined the style of
one image with the content of another imagedeepdreamgenerator.

Another project by Mordvintsev shows the implementation of a Compositional
Pattern Producing Network along with a Convolutional Neural Network that pro-
duces "Light Paintings" of the images used for training. Examples can be seen in

fig. 27
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Figure 2.7: 9 pictures produced by Mordvintsev’s "Light Painting" CPPN.
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Chapter 3

Theory

3.1 Our Auditory and Visual Perception

Our perception of the world is the end of a long chain of neural events in the brain
that gives us an illusion of an instantaneous event. The experience that we see the
world as it is, when it is, is an illusion of the brain, guessing by it’s best ability to
make probabilistic inferences about the world.

Visual illusions helps illuminate some of these properties as they seek to chal-
lenge our perceptual limits. A quite famous illusion, the Ponzo illusion makes it
seem as though the two gray lines are of different sizes as seen in fig. Fig.
shows the "turning the tables" illusion that show two tables that are the same size,
although it is hard to believe. Lastly the Kaniza illusion shows one of the five
Gestalt principles known as closure as it looks as if there is a white triangle on top
of 3 circles and another outlined triangle seen in fig.

"..when functioning properly, our perceptual system is supposed to dis-
tort the world we see and hear"[28, p. 97]

3.1.1 Gestalt Principles

In continuation of the Kaniza illusion, which exemplified the gestalt law of closure,
it is one of the five laws of the Gestalt principles. According to the Gestalt Laws
of Organization, the mind arranges incoming groups of perceptual stimuli. Per-
ceptual information that abide by the laws of Gestalt is characterized by simplicity,
neatness, order, and consists of the least amount of features in it’s structural parts.
"Good Gestalt" is perceptual information that is easy to process because it abides
by the Gestalt laws. While Gestalt theory is most often correlated with visual per-
ception, it is also a part of auditory perception system as it pertains to the temporal
structures of stimuli as well as the spatial.

15



16 Chapter 3. Theory

Figure 3.1: Ponzo illusion[28]

e Law of Similarity - Elements that have similar characteristics is perceived as
a set.

e Law of Proximity - Elements that are close to each other are perceived as a
group.

e Law of Closure - Only segments of the whole is necessary for shape identifi-
cation.

e Law of Continuity - Elements that are arranged on a continuous line are
perceived to be more related than elements not on the line.

e Law of Figure/Ground - Elements are perceived as being either in the fore-
ground, or the background.

[34]

These principles makes the perception systems and grant us the ability to un-
derstand and synthesize perceptual information very quickly. It is a combination of
filtering information into features, and recognising them as structures that we can
recognise as an object, whether it is physical or not. A person who notices some-
thing almost no one else does is recognised as "perceptive", this person may have
an aptitude for noticing different features, and/or combining them differently.

"How does the brain figure out, from this disorganized mixture of
molecules beating against a membrane, what is out there in the world?
In particular, how does it do this with music? It does this through
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Figure 3.2: "Turning the tables" illusion[28]

il
<3
[

Figure 3.3: Kaniza illusion[28]

a process of feature extraction, followed by another process of feature
integration."[28]

3.1.2 In the Brain

"Musical activity involves nearly every region of the brain that we know
about, and nearly every neural subsystem. Different areas in the as-
pects of the music are handled by different neural regions—the brain
uses functional segregation for music processing, and employs a sys-
tem of feature detectors whose job it is to analyze specific aspects of the
musical signal, such as pitch, tempo, timbre, and so on."[28, p. 83]

The neural networks of the brain consists of 100 billion neurons that are inter-
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connected. That is the same amount of neurons as there are stars in the Milky Way
galaxy. Usually a neuron has between 1000 and 10000 connections meaning that
the connectivity of the brain has a potential of approximately 500 trillion unique
neural connections. In the context of artificial neural networks, these numbers are
astronomical and gives some perspective on the challenge of replicating human
phenomena. As the number of neurons grows, so does the computational require-
ments as the amount of connections to be calculated grows exponentially:

Connections =2(n* (n—1)/2)) (3.1)

For 2 neurons there are 2 combinations for how they can be connected

For 3 neurons there are 8 combinations

For 4 neurons there are 64 combinations
e For 5 neurons there are 1,024 combinations

e For 6 neurons there are 32,768 combinations[28]

The computational power of the neuron connections of the brain is - among
many other things - used for feature extraction from the perceptual information.
The sensory organs perform the initial filtering of information and decide where
to look for features[21]. It can be described as a perceptual window because it
is the lens through which we can detect the world. For vision, the retina filters
wavelengths of light into what we know as visible light (380-740 nm), and for
hearing, the cochlea filters waves of pressure into the audible frequency range
(20 Hz to 20 KHz)[28]. The filtered information is transferred to the brain which
can now extract features. When we talk about features, we are talking about any
representation of the data that is showing a type of structure. A feature can be of a
low abstraction level such as edges, circles etc. for vision, and volume, tone, timbre
etc. for audio. A higher level abstraction feature consists of a combination of the
lower level features that when combined can give the impression of a square or
the sound of a trombone. This hierarchy of feature levels builds on itself as lower
level features are combined to creature features of higher and higher abstraction,
the peak of which is the emotional response - the meaning. As the features grow
more and more complex, it involves more of the brain as all of the information
is synthesized. The process of computing the simpler features independently to
then later combine the features is called bottom-up processing[28, p. 101]. As the
sensory information has been integrated and the features recognised, the sensory
information seems to no longer be represented independently. At some point in
the hierarchical extraction of meaning, the senses merge. [26]

"The brain is a massively parallel device, with operations distributed
widely throughout. There is no single language center, nor is there a
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single music center. Rather, there are regions that perform component
operations, and other regions that coordinate the bringing together of
this information."[28} p. 85]

Top-down processing is what happens when our centers for higher-level pro-
cessing - mostly the frontal cortex - makes inferences about what is about to happen
next based on a number of factors. For instance in music:

e what has already come before in the piece of music we’re hearing;
o what we remember will come next if the music is familiar;

e what we expect will come next if the genre or style is familiar, based on
previous exposure to this style of music

e any other information that we have synthesized, including spontaneous re-
actions to sudden movements etc.

Top-down processing can take control of the bottom-up processes in such cases
and make us misperceive information as our experiences and reflexes can overrule
our perception system[28} p. 103]. As neuroscientist at University College of Lon-
don, Beau Lotto describes it: "Whenever we open our eyes, we never see what is
there. We only see what was useful for us to see in the past."[13]

In this way, the human perceptual system is a hierarchy of filtration that starts
by using the sensory organs to filter information from the world into the simplest
representation: photon wave frequencies in the eyes, and pressure wave frequen-
cies for the ear. The brain then makes calculated inferences about this information
by extracting the most important information by applying another filtering which
creates new features, and this process is repeated as the process ends in the old-
est parts of our brain. The concept of higher level functions of the brain being
connected to all of the senses also seems intuitive if we think about the metaphor-
ical synonyms we use to describe experiences in different sensory systems: bright,
deep, sharp, soft, vibrant, colorful, balanced. All of these terms can conjure up dif-
ferent contexts of emotional experiences, whether it be in light, taste, music, smell
or touch, or even combinations of these.

"At a deeper level, the emotions we experience in response to music in-
volve structures deep in the primitive, reptilian regions of the cerebellar
vermis, and the amygdala — the heart of emotional processing in the
cortex."[28, p. 85]
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3.2 Cross Modality

As we perceive the world around us with our senses, we may think that our per-
ception is a result of the combination of all the sensory systems which handle in-
formation independently. However, the senses are not independent as information
from two or more sensory modalities are integrated and synthesized. This means
that the experience of one type of sensory information can change as another sense
is stimulated[26].

The motion-bounce illusion shows two disks that are equal in size following
two linear trajectories that intersect at a point. There are two perceptual options
of how to understand this information. First the two disks can be perceived to
continue their trajectory overlapping shortly. Second the disks can be perceived
to bounce into each other, changing the trajectory. The experiment can be seen
on website [12]. Without sound, only 20% of subjects thought the disks to be
bouncing off of each other. But with the introduction of an impact sound at the
moment of interaction between the disks, 60% of subjects perceived the disks to be
bouncing[26].

Another audio-visual illusion is the McGurk effect, demonstrated by Harry
McGurk and John MacDonald in "Hearing Lips and Seeing Voices" in 1976[33].
98% of adults think they are hearing the word "DA" when they hear the sound
"BA" and see the lip movements of "GA". McGurk and MacDonald also mention
that the auditory features are similar for "BA" and "DA", and the visual features
are similar for "GA" and "DA". Therefore it is assumed that the synthesis of similar
features from the modalities result in a "DA" experience. A form of fusion of
features. In another experiment in the theme of speech perception, subjects were
found to to have an improvement of speech perception between 40% and 80% when
they could also see the speaker’s face under noisy conditions[26].

The ventriloquist effect was found by presenting subjects to conflicting spatial
information in the visual and auditory modality. The subject was asked to point
to where the perceived stimulus originated, and after presenting the subject to
the visual and auditory stimulus independently, they were asked to point towards
the stimulus while being presented with conflicting auditory and visual informa-
tion. They found that the visual sense dominated the spatial perception as the
subjects found the location of the auditory stimulus to be much closer to the visual
stimulus, while their perception of the visual stimulus was hardly altered by the
presence of a conflicting auditory stimulus[26]. The fact that one sensory modality
is dominant over another in certain perception tasks, is believed to be the result
of one sensory modality being better suited for perceptual decoding of a stimulus.
The modality appropriateness hypothesis suggests vision as the origin of the con-
cept of space, and the auditory system as the timekeeper. This is supported by an
experiment where it was found that visual flicker fusion (the point where flicker
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Figure 3.4: Two shapes, with each its name - Bouba, and Kiki. The sharp inflections of the shape on
the left is alike the sharp inflections of the phonemic sound of Kiki, while the rounded contours of
the shape on the right is alike the rounded phonemic sound of Bouba.[39]

is no longer perceived) occurs between 50 Hz and 100 Hz, while auditory tonal
modulations could be detected at up to 400 Hz, suggesting that hearing is better at
distinguishing temporal information [26].

"..it has often been claimed, especially since Kant, that music is an art
of time, if not the art of time"[9]

The famous study of the "bouba" and "kiki" effect shows the intuitive cross
modal metaphoric understanding of "sharpness" and "softness" as seen in fig.
First developed by Wolfgang Kohler in 1929, the mapping of "Kiki" as the shape
on the left, and "Bouba" as the shape on the right is found in 95% of people across
cultures[39].

3.2.1 Synesthesia

Synesthesia which means "joined senses" is the term for the condition in which a
sensory stimulus, elicits an additional response in another. The origin stimulus is
also known as "the inducer", whilst the response to it is known as "the concurrent".
Synesthesia is often described in conjunction with a question: "What color is the
letter A?" or "What is the sound of orange?", and while these questions do engage
the immediate concept of synesthesia, it doesn’t fully grasp the phenomenological
consequences it entails, as it highlights the philosophical problem of describing
the connection between the physical world and the subjective world that we expe-
rience.

The opposite phenomenon to synesthesia is "anesthesia" which means "without
sensation" gives a comparative meaning to what synesthesia is. Wassily Kandin-
sky, the Russian painter which allegedly had synesthesia, created paintings which
he wanted people to understand as a multi sensory gestalt combining the senses
in a cross modal phenomenon. When you look at Kandinsky’s painting "Con-
trasts" fig. which sound would you feel matches better with it? A harmonic, or
disharmonic sound?
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Figure 3.5: "Contrasts" by Kandinsky [1]

People with synesthesia known as "synesthetes", historically excel in the gen-
eration of creative ideas, and are more likely to follow artistic pursuits [44, p. 621].
Although there have been some debate on the premises of classifying synesthetes,
and because the research of it has been reliant on subjective reporting, synesthesia
has been shown to be not only a real description of the synesthetes” phenomeno-
logical experience of the world, but also a neurophysiological condition. In other
words, synesthetes’ brains are wired differently than the statistically average non-
synesthete. It has been found that synesthetes excel in memory tasks related to
their synesthesia[44, p. 707], and there is a strong association between synesthesia
and vivid mental imagery[44, p. 730]. There are theories about manual induction
of synesthetic experiences with LSD, and reports of people reporting a feeling of
having synesthesia-like experiences after ingestion of LSD[31]. Although, there
are some discrepancies in this theory as the drug induced synesthesia is reliant
on serotonin, while "genuine" synesthesia is a neurological reaction[45]. Nonethe-
less, it is suggested that the subjective experiences of drug-induced and genuine
synesthesia may be similar and has some psychedelic traits.

Origins

Development of the brain consists mainly of two processes: first the generation
of new connections between neurons by producing new synapses, and second the
strengthening of stimulated connections and pruning of unused connections[44,
p. 46]. The formation and pruning of neural connections occurs in childhood until
between the age of 7 and 9. These neural connections in early childhood include
the connections between areas of the cerebral cortex that receives information from
the sensory systems like vision and hearing. Unlike in adults, for newborns it has
been found that sound amplifies the neural response to touch[44, p. 47]. In an-
other study it has been found that while adults” neural response to human speech
is only auditory, the neural responses of young infants are both activating the au-
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ditory and visual cortex. This neural connection diminishes over the first 3 years
of infancy suggesting a pruning of the multi sensory connection[44, p. 47]. In other
words, evidence shows that we have all had the potential for synesthesia through
a hyperconnectivity of the brain, but because of the neural pruning those neural
connections have been lost. Synesthetes appear to have a genetic disposition for a
less complete pruning stage of the neural development, leaving some neural con-
nections behind giving them multi sensory experiences through a single sensory
system.[44), p. 49]

"The recent research (..) lend cogent support to the hypothesis that all
individuals experience something like synesthesia as infants, with rem-
nants of these cross-modal associations still observable in adulthood, ei-
ther explicitly in synesthetes or implicitly in all other people."[44, p. 58]

Cognition Perception Divide

It is recognised in the field of synesthesia studies that there is a broad application
for the synesthesia term that covers everything from abnormalities in connections
of the sensory systems to the cognitive functionalities of metaphorical thinking
[44]. For the applications of this project, the system development and inspiration
is based on the crossing of sensory systems of the brains, as this is also the lowest
abstraction level of feature integration in the brain. We must start from the bottom
to build a bottom-up perception system.

3.3 Artificial Intelligence

Artificial Intelligence (Al), is the blanketing term for technology that allows a ma-
chine to emulate human behaviour. Machine Learning (ML) covers a subset of
technologies that allows machine to improve it’s behaviour over time as it gains
more and more experience.

3.3.1 Neural Networks

An Artificial Neural Network (ANN) is a data structure of artificial neurons with
connections between them. These connections are weighted meaning that a con-
nection between two neurons is a gradient between activated and deactivated. In a
typical ANN these neurons are organised into layers starting with an input layer,
hidden layers, and an output layer. An ANN can have many different configura-
tions with more hidden layers of varying sizes. A typical ANN is seen in fig.
with a 5-5-5 configuration with fully connected layers, meaning that every neuron
in every layer has a connection with every other neuron in the preceding and next
layer.
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Figure 3.6: Typical ANN configuration with 3 fully connected layers

ANNSs are inspired by the biological neural networks found in the brains of
animals. And some research shows that some types of ANNs known as Convolu-
tional Neural Networks (CNN) show some resemblance of gestalt principles in the
individual layers of the network[10], which means that the nature of an ANN re-
sembles the hierarchical structure of the human brain. The applications for ANNs
are plentiful and are well integrated into everyday life as the technology powers ev-
eryday appliances like autonomous driving, voice recognition and ad placements
for instance.

How does a neural network learn?

Learning in an ANN happens by changing the weights of the connections between
the neurons. But how does it make a decision on when and how to do so? It does
so by calculating the loss. Loss is the distance between the output of the network
in its current state, and the desired output. The calculation of this is called a cost
function. If we were to train a network to be able to tell if an image is an image of
a cat or a dog, we would train it on images labeled as "cat" or "dog" and present
it with a random image and ask it to tell us whether it thinks it is a cat or a dog.
Then it can evaluate via the cost function whether it correctly predicted if it is a cat
or a dog. This process is repeated for as many times as it takes until it has either
learned to categorize cats and dogs, or until the success rate is satisfying. Each
training cycle is known as an epoch.



3.3. Artificial Intelligence 25

Compare the guess to wanted result and
change weights of the network

Figure 3.7: Every epoch the ANN makes a new guess which is used to guide the next guess

The optimization function is the method of determining how to update the
weights of the network based on the results of the cost function. The activation
functions of the neurons decide how to scale the value of the neuron before it is
fed into the next weighted connection. The training data set and test data set is
what is used as the input for network during training The training dataset is used
as input to produce some output that can be compared against the test data set. In
the configuration of an ANN, the parameters which needs to be determined before
beginning the training are called hyperparameters.

The Neurons

Starting from the first layer in the network, this is where we place the input, this
could be a row of numbers that represent pixel values of an image. This data
is propagated through the network through what is known as feedforward. The
value of each input neuron is propagated through the weights of its connections to
the following layer. In every neuron of the following layer, the weighted values of
all the connected neurons are then summed together and put through an activation
function in the neuron.

The activation function of a neuron decides how activated the neuron will be
by the incoming values. For instance the activation function rectified linear unit
(ReLU) will multiply any value above 0 with 1 making it scale linearly with positive
values.
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Figure 3.8: The weighted values (w1, w2.., wn) of the connected neurons (x1, x2.., xn) are summed
along with a bias[8]
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Figure 3.9: Examples of different activation functions showing different scalings of neuron values
(18]

Autoencoder

As an ANN can have many configurations, we must choose one for the purpose
of this project, and in the scope of replicating a human sensory center, this will be
feature extraction. An autoencoder (AE) is an ANN configuration that seeks to do
just that by training it to compress a variety of data with minimal loss. As it tries
to perform compression without losing data, it will naturally find commonalities
within the data set as it allows it to do feature representations as efficiently as
possible. Practically, this means that within a dataset of numbers - let us say 64 -
it will find a way to represent that specific combination of all the 64 with a smaller
amount of numbers - let us say 9. Those 9 numbers will be a feature representation
of those 64 numbers as seen in fig.
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Figure 3.10: An autoencoder structure that compresses the 64 input values to 9 values in the middle,
and uses the 9 values to rebuild the 64 output values. The output is compared to the input, and that
teaches the AE to create efficient features for the dataset.

This process of feature extraction mimics the way our brain sorts through infor-
mation and performs feature recognition. A trained AE is built to filter data and
look for specific structures in a stream of data.

3.3.2 Genetic Algorithms

A genetic algorithm (GA) is an alternative way of searching for a solution by in-
stead of evaluating the cost function of one ANN, it can evaluate the fitness of a
variety of different ANNs and breed the best performing of them, thereby "train-
ing" the networks which has the best traits for the task. GA is a method of solution
space search through creating a population of genomes and breed the most success-
ful of them and add a random chance of mutation of their offspring. The method
draws inspiration from Darwin’s theory of natural evolution where "survival of the
tittest" decides who can successfully breed and create new offspring[32]. But what
does it mean to be fit for an algorithm? First we must lay the foundation define the
terminology for describing neuroevolutionary practices. Since the context of the
use GA in this project are ANNs, we will use this as a basis for specifying the ter-
minology. As GAs are inspired by biological evolution, the terminology to describe
the behaviour of algorithms are also borrowed from the bio-genetic vocabulary.

Terminology

Neuroevolution is the blanket term for methods that uses GA to evolve ANNSs.
The gene is the individual variable that together with all the other genes makes
up the genome. These genes in the context of ANNSs are the activation functions,
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weights, connections and all of the information that comprises an ANN architec-
ture. The genome is the sum of all the genes that together make up an ANN. The
genome can also be called the agent in the context of how the genome behaves in
an environment.

The population is a number of genomes in a generation that restricts the ge-
netic diversity. Optimally this would be infinitely big since it would yield the
maximal genetic diversity, but due to limitations in computing power, this has to
be restricted.

Genotype is the genetic encoding that describes a behaviour in a given envi-
ronment. In biology the genotype is DNA which decides eye-color. Phenotype is
the behaviour that the genotype elicits in the given environment. In biology, the
phenotype of DNA is for instance eye-color. It is the behaviour of the genotype
encoding.

There are also some genetic operators that needs defining, as they describe how
the genomes are evolved using GAs.

Crossover

The crossover is the recombination of the genes from parent genomes in the ex-
isting population. Breeding successful genomes and recombining their genetic
makeup has the potential to create better offspring. The genes can be recombined
using different methods. As seen in fig. single-point crossover slices a random
point in the parent genomes and combines the genes from each side of the slice
from each of the parents. Two-point crossover functions in the same manner as
single-point, with one additional gene slice. Uniform crossover chooses a parent
randomly for every gene to be combined in the child genome.

Mutation

The mutation operator is the random mutation of the genes in the genome that has
the role of preventing stagnation in the population, when the genomes becomes
too similar. Mutation diversifies the genetic population and makes the population
able to explore new behaviours. There are some different methods for mutation
operations as seen in fig. Bit inversion will invert a random value in the
genome, this could for instance be whether a neuron is connected to the next
neuron or not. Order change will change the position of two genes in the genome,
this could for instance be the position of two neurons in the network, each with
different activation functions. Value change adds a value to a random gene in the
genome, this could be the weight of the connection between two neurons. Lastly,
gene expression change randomly adds or removes genes from the genome, this
could be adding a new neuron to the network, or adding a new weight.
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Figure 3.11: Three different genetic crossover methods.

Fitness

A crucial operator for defining how successful a genome is, is the fitness function.
This can be compared to the cost function of the ANN as it seeks to evaluate
whether a genome is behaving well in a given environment. For example, if we
wanted to evolve a navigation algorithm for autonomous driving, a fitness function
could be the distance between a goal point and the behaviour of the algorithm. The
closer the algorithm comes to the goal, the higher the fitness. The fitness function
is used to evaluate every genome in the population every generation.

Generations

A generation is the evaluation cycle for every genome in the population. Before the
evolutional training commences, the population is populated by genomes. Then
their fitness is individually evaluated and ranked so the best percentage of the
population can breed and mutate as seen in fig. The middle genomes survives
as they can still learn to exert better behaviour through mutation. The worst are
removed to leave space for new genomes that may exhibit better behaviour.

NEAT

Neuroevolution of Augmented Topologies (NEAT) is an evolution of the above
genetic algorithm principles. While ANNSs typically have an architecture which
remains static throughout training (only the weights are changed), NEAT seeks
to implement GA methodologies to the development of an ANN in the search of
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Figure 3.12: The different kinds of genome mutation that can occur. [36]

the best architecture. This means that the potential of the search becomes much
larger in scale as it is not limited by the configuration of the ANN. The NEAT
algorithm will colonize the population with very simple genomes that has a variety
of topologies meaning that they have not only a variety of weights, but also a
variety of neurons with asymmetric connections and different activation functions.
These genomes gradually increase in complexity over generations which is known
as complexification. As seen in fig. the ANN has a typical symmetric topology
with distinct layers that are only connected to the neurons in the following layer.
An example of a NEAT topology can be seen below in fig.[3.14 where compared to a
traditional ANN, the neurons are not organised into layers, but rather an arbitrary
topology that can have any possible configuration with the predetermined input
and output neurons[36, p. 17]. The goal of NEAT is to minimize the complexity
of the genomes in the population, thereby limiting the search space and gradually
increasing it as genomes become more and more complex.

A genome can have a worse fitness than its competition, it may contain a
stronger base topology that may prove stronger with further evolution. To save
such genomes from the evolutionary pressure of fitness competition, NEAT at-
tempts to save such genomes by limiting the competition range in the population,
meaning that not all genomes compete against the entire population, but a smaller
bracket within it. This is called speciation, and makes sure that there is an al-
lowance for less fit genomes to evolve. The age of the genomes are tracked by as-
signing the genomes an innovation number that is also used for matching genomes
for breeding.
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Figure 3.14: Two neural network topologies. Top: a typical ANN topology with layers of neurons that
are all interconnected. Below: An example of a NEAT topology that can arise from the evolutionary
method that can create arbitrary networks with neurons that can be connected to any other neuron.

The question we ask when we define the solution we’re looking for in an ANN
which guides the system design is: "which ANN configuration is best fitted for
the task?". While the question we ask in designing the solution search for a NEAT
system is: "how do we limit the search space to find the best configuration possible
as fast as possible?”

HyperNEAT

The Fourier series explains how any signal can be decomposed into it’s constituent
part signals of different frequencies. This means that any signal can also be built
by combining multiple signals together, which is how the HyperNEAT algorithm
approaches a genetic encoding scheme.

“To form an image on your retina, the lens in your eye performs Fourier
transformations on the light that enters it,” he explains. This tool is
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truly ubiquitous in nature, as our eyes and ears have subconsciously
performed the Fourier transform to interpret sound and light waves for
millions of years." - Ronald Coifman, Professor of Mathematics, Yale
University[56]

In taking inspiration from the human brain, we must also do so with a structure
that imitates the brain. Neuroscientists have found that spatial structure is essential
to all tasks of the brain - from the perception of sensory information to cognitive
and abstract thinking[36, p. 23]. The structure of the brain allow us to respond to
patterns in signals by using designated neural structures activated by the patterns
of the inputs. These neural structures are reused specific patterns of neural infor-
mation which reduces the need for a much larger number of neural structures to
handle specific information. This is only possible due to the hierarchical nature of
neural information in the brain.[36] p. 23][47]

A problem with ANNSs in reproducing human phenomena is the need for large
scale ANNSs to fully grasp the information presented, creating a bottleneck in com-
puting power and memory. By instead describing information as a geometry with
regularities and symmetries (which is observable in the physical world), this infor-
mation can be heavily encoded.

As an evolution of NEAT, Hypercube-based NEAT (HyperNEAT) builds on
the methodology by creating a substrate, which in the case of an image, is a two-
dimensional grid setup as a coordinate system. This substrate can have any amount
of dimensions which is why it is called a hypercube. Just like in an ANN there is
an input substrate and an output substrate, and it can have a number of hidden
layers of substrates between them. Another ANN is then used to find the weight
between every point in the input substrate, and every other point in the output
substrate. This is where the coordinate system grid is used to define the position
of every pixel, in relation to all other pixels. The cartesiarﬂ distance between the
input coordinate (x1 and y1) and the output coordinate (x2 and y2) is used as
inputs (four in total) for the ANN to find the weight of the connection between the
pixels in cartesian space.

Since the ANN to find these weights have a configuration of neurons that can
have different activation functions, this ANN acts as a signal generator driven by
cartesian distance of pixels, which then produces compositions of patterns in the
output substrate. This is why this ANN is better known as a Compositional Pattern
Producing Network (CPPN).[36, p. 24]

HyperNEAT is then a GA used to find the best configuration for a CPPN that
produces the best weights for the substrate. It is a generative model for a sig-
nal generator that can describe the relationship between any two coordinates as a
function.

A Cartesian coordinate system is a geometry based on the axes in a coordinate system



3.3. Artificial Intelligence 33

w = CPPN(zy,y1,22,%2)

Figure 3.15: The positions of the pixels in the coordinate space, has a spatial relation. That relation-
ship is calculated the CPPN on basis of the coordinate positions[36]

Figure 3.16: The CPPN calculates the relationship between the origin pixel(X1, Y1) and all of the
destination pixels (X2, Y2), assigning all of them a weight.

Evolving a HyperNEAT configuration is different from training an ANN, be-
cause its job is not to find a structure in a dataset, but rather to learn how to
approximate the structure of a dataset by comparing the behaviour of its encoding.
In an ANN, the training dataset is used as input in the input layer, and then that
data is propagated through the network and evaluated at the end. For HyperNEAT
the input can be virtually anything within the frame of the substrate. The input
used for the CPPN has impact on how the CPPN learns to deal with combining
functions as all the pixels will be interrelated in the substrate. While the input
does not directly relate to the output function of the CPPN, it has philosophical
impact on how the CPPN will act in its use of the input to reach a good fitness.
The output of a HyperNEAT network is the input multiplied by the sum of all the
weights found by the CPPN, which can then be evaluated by comparing it with a
fitness function. As the model has been evolved, and the most successful genome
CPPN has been found, it can be used to create compositions. Since these compo-
sitions are the results of the CPPN that finds relationships between coordinates,
the output can be up- or down-scaled in resolution infinitely by changing the size
of the substrate. However, because we can consider the substrate an ANN where
every point in the origin has a calculated weighted connection (by the CPPN) to all
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Figure 3.17: 4 x 4 grid of example images produced by a CPPN

destination points, the amount of computations for the resolution is squared. This
does not need to be kept in memory which is essentially what allows the infinite
scaling. The CPPN acts as a kernel for filtering information - an intelligent kernel
that can scale infinitely with resolution and dimensions.

The CPPN is an encoding of a larger ANN substrate, that acts like an intelligent
filter kernel. Phenomenologically speaking, the resulting images of this system
is the equivalent of a "mind’s eye" of our artificial brain. Example images from
randomly initialised CPPNs can be seen in fig.
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Implementation

Python[60] has been used as the main language for developing the software based
on the neuroevolutionary approach inspired by synesthesia. Anaconda[2] was used
as the Python environment and package organiser with Jupyter[3] as the devel-
opment environment. Noteworthy libraries that made this project possible are:
Librosa[29], MultiNEAT][35[, Keras[52] and Tensorflow[4].

4.1 Imitating Human Hearing

Based on earlier work related to this project, an Autoencoder (AE) is used for fea-
ture extraction of music based on a Constant-Q Transformation (CQT)[57]. A CQT
is an alternative to the Fast Fourier Transform (FFT) that instead of only dividing
a signal into bands of frequency ranges, it also spaces those bands to closer mimic
human hearing. The human hearing perception ranges from approximately 20 Hz
to 20.000 Hz. That frequency range covers approximately 8 octaves since an octave
of a tone is double the frequency. An "A" is 440 Hz, which means that A in the next
octave is 880 Hz. As we perceive tonal information in relation to the original tone,
a 44 Hz difference is perceived as bigger for tones in a lower octave than a higher
octave as it makes up a bigger absolute difference (10% for 440 Hz and 5% for 880
Hz). This difference in relative frequency perception is why CQT is used to ensure
that especially low frequency content does not get "squashed" by the amount of
higher frequency content. This ensures that bass will be as impactful to the AE as
it is to humans.

A training data set is built using the 15 second samples in a variety of musical
textures that is used for the experiment videos, and consist of the following;:

e Amen break

e Andre Aguardo . Through the Night

35
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e Andy Stott - Execution

e Dauwd - Theory of Colours

e Duckmaw - Nicaraguan Dream
e Laurence Guy - Intro

e LEFTI - Diosa Del Amor

e Lorn - ARID

e Steve Gunn - Ancient Jules

¢ Noisia - Stonewalled - Hybris Remix

When the AE is trained with a complete set of CQT textures, it extracts features
as it will save only the most important information to reproduce the signal with
minimal loss. The features are an encoding of the information, and can be thought
of as an auditory perception, filtering unnecessary information. The configuration
of the AE is the same as used in previous work [57].
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Figure 4.1: Spectrogram of the Constant-Q transformed music input.

A spectrogram of the CQT textures is shown in fig. where it can be seen that
there are intervals of signatures that are the different music tracks that combine to
become the training dataset. As the feature extraction is used to build a 3 x 3 pixel
image to use later with the CPPN, the latent space is set to a size of 9. As the CQT
outputs 64 values, this means that the compression rate of the AE is 1:7.1. The
model is trained for 500 epochs yielding a model that can compress the 64 inputs
to 9 and recreate the 64 values with a loss of 0.0084. The output of the model can be
seen in fig. 4.2) which compared to the input textures in fig. 4.1| shows a similarity
of textures which means that the AE has learned to recreate the textures from the
compressed representation.
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Figure 4.2: Spectrogram of the decoded output of the autoencoder after training.

41.1 Feature Extraction

The extracted features (the latent vectors) can be seen in fig. These are the
values that we use as the driver for the artificial vision to "neurally short-circuit"
our artificial brain to imitate synesthesia. In phenomenological terms, this is the
meaning the AE has derived from the music.

Latent Vectors
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Figure 4.3: Spectrogram of the latent vectors found in the bottleneck layer of the autoencoder after
training

Interpolation

The latent vectors are interpolated as it will make the movements more organic
and calm. Interpolation is the creation of steps between two values. In this project
it is used to limit how fast the values can change. It is done by finding the differ-
ence between the new values and the values from the last frame and dividing that
by some number. In this project that number is set to 10 which means that every
frame of the value can maximally move 10% of the distance every frame. Previ-
ous research found that control of interpolation speed can drastically change the
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perceived expressiveness of musical mappings to light, and are very well suited as
a meaningful parameter to adjust the movements of lights in real-time. [57]. An
image of the interpolated latent space can be seen in fig. For the experiment,
the interpolation number is 10 which can be seen in the equation below.

InterpolatedValue = oldvalue + (newvalue — oldvalue) /10 (4.1)
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Figure 4.4: Spectrogram of the latent vectors with interpolation

4.1.2 Technical Performance Factors

The frame rate of the system has been optimised for 25 frames per second (FPS),
because it is enough to fool the human vision perception of continuous movement.
In service of development the FPS is limited because it creates optimisation prob-
lems for coupling the window size of the CQT and the sampling frequency of the
audio. It also allows faster development iterations because the system has to pro-
duce an image every frame which makes the total number of images explode when
making longer videos. Depending on the performance of the hardware computing
the images, an image of 2560 x 1440 (2K) can take upwards of 2 minutes per image,
which is why a lower frame rate also allows higher resolutions. For the purposes
of developing a prototype, the FPS is set at 25. Fully optimising the prototype
for higher frame rates are does not make sense as software migration away from
Python is seen as a better prospect - Python is not efficient at signal processing.
There are some limitations to adjusting sample rate and window size for the
CQT as we must obey some rules for sampling audio signals. Nyquist’s Theorem
states that to avoid aliasing, any signal analysis must be performed at double the
frequency of the max frequency of the signal. Typically this frequency is 44100 Hz
which is double the upper limit of human hearing of 22050 Hz. 44100 is therefore
the lowest allowed sampling rate for the audio signals. The window size of the
CQT defines the analysis window of the transformation. For the CQT functionality
in the Librosa library, this number is a multiplicative of 2, meaning that the options
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for window size are 512, 1024, 2048, 4096 etc. This number refers to the amount
of samples to analyze per frame. This is fully in relation to the sample rate, which
means that we can define a certain frame rate by increasing or decreasing the
sample rate and window size. While choosing smaller window sizes may yield
faster frame rates, it may also means that some low frequency information may
be lost in the transformation, because the wavelength of the low frequency signals
may be outside of the analysis window.

25FPS = 51200Hz /2048windowsize 4.2)

4.2 Imitating the Retina

The human eye is the first filtering of light in the human body. As light is entering
the eye through the pupil opening, through the lens and hits the retina, the light
enters through the ganglion cells and the bipolar cells and finally - the rod cells,
and the cone cells. The rods perceive luminance while the cones perceive colour
[34]. As mentioned earlier, the cones are shaped to allow a natural fourier trans-
formation of different wavelength of light [56]. The eyes’ segmentation of visual
information is best modeled by hue, saturation and value/brightness (HSB/HSV).

Ganglion Bipolar  / \
cells cells Rods
Cones

Figure 4.5: Illustration of the retina showing the placement of the rod and cone cells.[17]

As the retina consists of a segmentation between luminance in the function of
the rods, and chromaticity in the function of the cones, in relation to HSV, the rods
would function as a brightness channel, and the cones as a combination of the hue
channel and saturation channel.[59]
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Figure 4.6: Hue, Saturation and Value cylinder [5]

4.3 Evolving the Visual Cortex

After the initial visual signal has been split into HSV, it proceeds to the artificial
visual cortex that filters the signal in the search for features from which to derive
meaning. As there are three channels, a CPPN is evolved for each of the channels
emulating three filter kernels, filtering information in each it’s respective channel.

The NEAT algorithm that builds the CPPN works by creating a population of
a number of CPPNs and have each of them produce an image based on a white
image input in the substrate. Phenomenologically this is the equivalent of being
blinded by light as there is no filtering of visual information.

The output images are compared to one or more goal images by calculating the
differences between the pixel values with root mean square error (RMSE) seen in

fig.

_ 2
RMSE = \/ = (O”tp”tngo”l) 4.3)

RMSE calculates the distance between the output of the CPPN and the goal. The
closer RMSE is to 1, the more alike the images are (the distance is shorter). This
is the fitness condition for evaluating the fitness of the genomes in the population.
As they evolve they gain complexity, increasing the variety of images they can
produce broadening the solution space. This also means that evolution of each
generation becomes longer and longer as it takes more and more computations to
create more and more complex solutions.

One example of a simpler evolutionary goal is to make it something without
complicated shapes - for instance a picture of a sunset horizon as seen in Fig
The simple gradients of the sunset sky is easier for the CPPN to filter as it does not
require a complex combination of functions to describe the relationship between
pixels. The neuroevolutionary algorithm will evolve the genomes until they reach
a goal threshold, or until it has evolved for X number of generations.



4.4. Merging the Senses 41

Figure 4.7: Gradients of orange and pink merge in the sunset sky

Figure 4.8: Left: Image of the down-sampled image used to compare the genomes against in the
fitness function. Right: Image of the output after evolving all three channels of the image: hue,
saturation and value.

For the neuroevolutionary approach in this project, the images are down-sampled
to a manageable size for testing. An example is shown on the left in Fig 4.8 where
the input image is down-sampled, split into HSV, and used as an evolutionary ob-
jective for the CPPN seen on the left in fig. [£.9] fig. and fig. The evolved
CPPN is then able to produce the images seen on the right in fig. fig.
and fig. from an all white input. The fitness value for hue: 0.9573, saturation:
0.9795 and value: 0.9901. As these images are the results of three CPPNs - one for
hue, saturation and value, the images can be merged back to a fully colored image,
and can be seen on the right in fig.

4.4 Merging the Senses

As we seek to merge the senses to let the AEs subjective experience of music stimu-
late the artificial visual sense, the latent space of the music must be integrated into
the visual perception. Because of the evolutionary topology of the CPPN, it does
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Figure 4.9: Left: Image of the input hue channel in gray scale. Right: Image of the output hue
channel made by the CPPN in gray scale.

=r

Figure 4.10: Left: Image of the input saturation channel in gray scale. Right: Image of the output
saturation channel made by the CPPN in gray scale.

Figure 4.11: Left: Image of the input value channel in gray scale. Right: Image of the output value
channel made by the CPPN in gray scale.
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Figure 4.12: A model of the directional flow of information in the artificial synesthesia

not allow an integration of a static layer in the topology of the CPPN. We must
therefore take a step backwards in the process to the input substrate. As the latent
space is extracted from music, it is used to create a 3 x 3 pixel image consisting
of 9 squares that each represent the latent vector values. These images are then
used one by one to push the input substrate of the CPPN by resizing it to the same
resolution and multiplying it with the image from the last image produced by the
CPPN. This is a push to the feedback loop between output and input of the CPPN.

As the CPPN propagates the information from the input substrate, the squares
disappear in the output as they have been filtered into the compositional poten-
tial of the CPPN. This manipulates the compositional range of the CPPN through
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Figure 4.13: An image of the latent space vectors are used as input in the HyperNEAT substrate
which creates a "sound driven composition” based on the evolved CPPN.
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time synchronized with music, effectively using a subjective sound perception to
stimulate the visual sense to create an artificial synesthesia.

4.5 Testing the Technology

The initial testing of evolving a CPPN is time consuming and computationally very
heavy, especially for larger images. What it doesn’t require in memory storage,
it requires in computations. For an image of 100 x 100 pixels, since the CPPN
describes the connection between two pixel points in an image, it has to run the
CPPN 100.000.000 times to calculate all of the connections:

CPPN Activations = (X * Y)? (4.4)

In the example of a 2k image (2560 x 1440), this number would explode to
13.589.544.960.000 connections. It can be imagined how this procedure could be
time consuming when remembering that every generation of evolution in the
NEAT algorithm has a population of genomes that each should produce an output
that can be evaluated for fitness. While this is the inherent advantage as it allows
very simplistic hardware to evolve very sophisticated solutions, it is also the lim-
itation to how sophisticated we can allow the CPPN to be evolved in a shorter
time span of a few months. Realistically the CPPN can be evolved to reproduce
gradients and simple shapes in low resolutions of 25 x 25 pixels. After the CPPN
has been evolved, it can be used to generate high resolution images. However, the
MultiNEAT library in use for evolving the CPPN has a built-in function to cre-
ate images that utilizes the CPPN in a manner that saves all of the connections in
memory, meaning that it is unable to produce images of higher resolution higher
than 100 x 100 pixels with 16 GB of RAM. This limits the potential of the CPPN
encoding, and is contradictory to the entire point of developing a CPPN. This is
an internal issue in the library that has not been sought to be solved as it would
require an amount of software development and contact with the author of the
code.

To show the the CPPN method, we can manually craft a CPPN structure that
does not have any training, but is able to produce high resolution images that
shows the compositional potential of a CPPN.

4.6 Manual CPPN Construction

An implementation of a CPPN using the Keras library is borrowed from Dennis
Kerzig[62] and edited to fit our needs. As the ANN models built using Keras
consists of layers instead of singular neurons seen in fig. we lose some of
the flexibility in arbitrary connection patterns that NEAT is able to. But what it
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allows us to do is to make very big architectures and integrate the musical features
directly into the CPPN, thereby using the sound to manipulate the compositions
directly as seen in fig. In this latent space layer, each neuron will be multiplied
by one of the latent space values. This can show some of the potential of the CPPN
encoding without relying on months of neuroevolutionary processes.
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Figure 4.14: Model of a CPPN in a Keras implementation with an amount of hidden layers with an
amount of neurons in each. This is predetermined by the user, while the activation functions for
each layer is randomly drawn between ReLU, Sigmoid and Tanh.

As the CPPN model is built, we set a few variables to decide the architecture:
the amount of hidden layers, the amount of neurons in the layers and the variance
in the weight initialization. Every time the model is built, it will be unique as
all the weights in the CPPN are randomly drawn which when combined with the
random activation functions of each layer, yields a completely unique expression
of the CPPN.
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Figure 4.15: Model of a CPPN in a Keras implementation with the latent space from the audio AE
implemented in the second layer.
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Test

An online survey was used as the basis for conducting an experiment with videos
produced by the artificial synesthesia. The developed system was compared against
two baseline visualisations to gather information on two points.

1. Do the movements of the compositions made by the system represent the
music? This is evaluated by comparing scores with a video of the developed sys-
tem, with visuals driven by Perlin noise, instead of music. This is to ensure that the
system differentiates itself from the tendency in humans to see a connectedness,
and meaningfulness in unrelated things. This is known as apophenia.

2. Does the visualisation aesthetics have potential to generate enhancing au-
diovisual experiences? This is evaluated by comparing scores with a video of a
spectrogram driven by the music. The system should be able to differentiate itself
from a generic visualisation style in a variety of compositions.

5.1 Preparations

5.1.1 Cross Modal Interaction

To evaluate the cross modal experience of synesthesia, the Likert scale definition
was inspired by the classification of cross modal interactions made by Biocca &
Choi, 2001 [15]. Their work on taxonomy of cross modal interactions inspired the
assigning of the ends of the Likert scale to a "degree of integrated cross modality".
The higher the score is, the more coherent the experience seems as the audio and
visual experiences merge and enhance the effect of each other. A lower score means
a perception of more separation between the perceived modalities, in other words,
they do not feel connected or coherent.
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Figure 5.1: An example of the perlin noise used as input for the CPPN.

5.1.2 Perlin Noise

As a comparative measure to verify the musical connection between visuals, an
identical CPPN was used to create the same visuals, but based on Perlin noise as
input instead of musical features.

Perlin noise is an award winning algorithm developed in the 1980’s by Ken
Perlin. While it is random since it is in nature a noise algorithm, it is found many
places in nature and has been utilized proficiently for natural looking computer
generated graphics. The simplest implementation of Perlin noise is a noise gener-
ator that creates random values based on the number(s) that has come just before
it. This means that there is a time component involved that directs the noise to
be random in relation to the value before it. This gives the animations a pleasant
movement, as it has randomness in waves of directions, rather than jagged "unnat-
ural" movement. The image in fig. 5.1/ shows an example of the input values used
as input for the CPPN to generate the movements in the image composition. An
example frame of the implementation of Perlin noise with the CPPN can be seen

in fig.

5.1.3 Spectrogram

To evaluate the visual connection between different types of music, a spectrogram
is used as a visualiser for the music as seen in fig. The spectrogram is a typical
visual representation of the frequency bands present in the music found by doing
an FFT which is the most common feature form of sound. It is used as a baseline
for this experiment for something to measure the "merging of audio and visual"
against.

5.2 Experiment Setup

To evaluate whether our artificial synesthesia can produce cross modal experiences,
the potential must be tested which is why the Keras implementation of the CPPN
is used.

5.2.1 Participants

The only prerequisites for participating in the experiment is to have normally func-
tioning vision and hearing. The Google Form was shared online directed at uni-
versity students and adults. The total number of participants was 30.
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Figure 5.2: A still image from what the participants saw in the experiment. Left, the artificial
synesthesia where the music is driving the CPPN. Middle: The CPPN being driven by perlin noise.
Right: an FFT based spectrogram driven by music.

5.2.2 Online Survey

To test the cross modal potential of the system, it is compared to other visual-
isations in an experiment with 30 participants. 15 second videos are produced
with the Keras implementation of the CPPN which is stimulated by the audio
features from the artificial auditory sense. It is compared to videos of the same
CPPN model, but uses perlin noise as input instead of audio features. The third
comparative video is of a traditional audio visualisation scheme of an FFT based
spectrogram. The videos presents a new type of CPPN visualisation every round
to test if our artificial synesthesia system shows immediate connection to the music
across a variety of different compositions.

The experiment was executed in 10 rounds and every round 3 videos are pre-
sented to the participant. The same music was used for all videos in each round. 1
video was of the artificial synesthesia developed in this project, 1 video of a CPPN
visualisation based on perlin noise and lastly 1 video of an FFT spectrogram. The
videos were randomised throughout the experiment. The participants were intro-
duced to the Likert scale (seen in fig. with this explanation:

e In this experiment, you will evaluate the merging of audio and visual in an
audiovisual experience. This will be evaluated on a scale from 1 to 9.

o In the lowest end of the scale (1), the auditory experience and the visual ex-
perience are perceived separately as they don’t seem to have any interaction
or is even blocking the experience of each other. This is called substitution.

e In the middle of the scale (5), the auditory experience and the visual experi-
ence are perceived as unified as they both represent each other. This is called

mapping.

o In the highest end of the scale (9), the auditory experience and the visual
experience are perceived as not only unified, but also enhancing as one or
both of the experiences enhance the experience of the other or both. This is
called enhancement.
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To what degree is the auditory and visual experience merged? ©

Substitution Enhancement

Figure 5.3: The Likert scale question from the questionnaire, which had the participants evaluate
how they experience the sensory modalities of each video.

The participants were urged to use a PC/Laptop and headphones for partici-
pation as it grants better fidelity. Unfortunately Google Forms do not support full
screen of videos, and therefore the participants were guided to view the videos in
full screen by pushing a YouTube link which allows them to view it in full screen.
Beneath every video, there is an open comment box for any comment the partici-
pant may have. At the end of the experiment, the participants were asked whether
or not they viewed the videos in full screen and if they used headphones, along
with an optional open comment box.
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Results

In the experiment survey with 30 participants, the results of the 3 types of videos
were the following:

e The artificial synesthesia got a mean grade of 5,3 with a standard deviation
of 2,1

e The Perlin noise based visualisation got a mean grade of 3,8 and a standard
deviation of 1,9

e The spectrogram visualisation got a mean grade of 4,3 and a standard devia-
tion of 1,9
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MEAN GRADE WITH STANDARD
DEVIATION ERROR

Artifical Synesthesia Periin Moise Spectrogram

Figure 6.1: Graph of the mean grades with standard deviation error bars. The standard deviations
are similar while the mean grades shows the Perlin noise as the least "merged" visualisation, and the
Artificial Synesthesia as the most "merged" visualisation.

6.1 Wilcoxon

The Wilcoxon Signed Rank Test was run twice as the goal was to compare the arti-
ficial synesthesia to both the Perlin noise based visualisation and the spectrogram
visualisation.

6.1.1 Comparing Artificial Synesthesia with Perlin noise

e Null hypothesis: artificial synesthesia is not perceived as more enhancing
than the Perlin noise based visualisation.

The results of the Wilcoxon Signed Rank Test yielded a sum of 10. The critical
value for alpha 0,005 with 30 participants is 98, which is why we can firmly reject
the null hypothesis. The artificial synesthesia is perceived as more enhancing than
the visualisations made by Perlin noise.

6.1.2 Comparing Artificial Synesthesia with Spectrogram

e Null hypothesis: artificial synesthesia is not perceived as more enhancing
than the spectrogram.

The results of the Wilcoxon Signed Rank Test yielded a sum of 73. The critical
value for 30 participants at alpha 0,005 is 98, which is why we can reject the null
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hypothesis. The artificial synesthesia is perceived as more enhancing than the
visualisations made by the spectrogram.






Chapter 7

Analysis

As the Wilcoxon tests rejects both of the null hypotheses, we can say that the ar-
tificial synesthesia performs a better cross modal integration of sound and light
than the perlin noise based visualisations and the spectrogram. It was speculated
that the grades of the three visualisations would align themselves after perlin noise
being in the lowest end of the scale (substitution), the spectrogram in the middle
of the scale (mapping), and the artificial synesthesia in the highest end of the scale
(enhancement). The alignment seen in fig. shows the confirmation of these
speculations, and confirms that the combination of the non-linear musical map-
ping from the AE, combined with the movement of the compositional images can
empower the cross modal experience. As the image composition was randomised
between every round, there was no correlation between the music being played
and the aesthetic of the visualisation. In spite of that fact, the artificial synes-
thesia is still able to communicate a musical merging with the visuals within 15
seconds. The compositional layout would change every round, and therefore it
would present the participant to a new version of the merging of music and visual.
These findings gives reason to believe that the artificial synesthesia has potential
to enable designers to explore dynamic designs that is contextualised with music.
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Discussion

8.1 The Experiment

In the design of the survey experiment, there were some discussion about some
variable parameters for testing the potential of the system.

8.1.1 Choice of Videos

The length of the video samples were discussed as rendering longer videos would
take much more time, which meant that it would inadvertently mean a reduc-
tion in image resolution. The length of the videos meant that the participants
would have enough time to intuitively understand the music in the visuals, but
not enough time to "figure out" the complexities of behaviour powering them. This
is a worst case for the system because there are structures of the visualisations
of the musical features that stretch over much longer than 15 seconds. Because
of the way the musical features are extracted, the individual features has a rela-
tionship to the complexity of the entire training data set, meaning that it derives
features in relation to the structure that it fits within. This will show a variance in
visualisation movements during a longer stretch of visualisation. Additionally the
musical feature extraction is non-linear, which makes for a more complex mapping
that is interrelated to the context of what the AE has learned. In other words, an
increase in bass will not necessarily yield an increase of one of the latent space
values. The representation of the bass will be put into a context of the AEs musical
understanding.

There is a practical element to choosing a shorter sample as it allows a multi-
tude of visualisation to be tested for quantitative evidence of visualisation power
of the system, across a multitude of pairings of musical and visual textures. If the
videos would be too long, it would risk the participants getting impatient with the
survey and giving disingenuous answers. Further experimentation of the system
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should be more directed at producing aesthetically coherent textures with longer
musical samples.

8.1.2 Defining the Scale

The Likert scale used to evaluate the cross modal experience of the videos was de-
fined by a polar opposition between "Substitution” and "Enhancement". Although
the scale was thoroughly defined in the survey, it is speculated that people’s expe-
rience with likert scales could draw them towards grading based on their personal
preferences of the visuals rather than what was defined in the survey. One par-
ticipant even admitted to this in the comments, which would suggest that another
type of evaluation would be safer in the future. However, the occurrence of the
alignment of the mean grades suggests that the majority of participants showed a
good grasp of the concepts presented when defining the likert scale.

8.1.3 The Aesthetics

The videos made for the experiment were not aesthetically paired with music,
which surely carries great potential for enhancing the experience. The potential
disparity between musical and visual aesthetics has likely caused some of the va-
riety of the grades which increased the standard deviation. As discussed earlier,
the scale was not meant to be a way for the participant to grade their preferences,
however, a successful matching of visual and musical style will be perceived as a
more enhancing experience, and it is ultimately a subjective matter of taste. This
shows that the worst case scenario for the system was employed which solidifies
the potential of the system.

8.1.4 Iterations of Design

The results from the experiment shows that the system is a viable foundation for
continuing development on Al based lighting design. It can be considered an end-
user test as a feedback loop in the Design Thinking methodology.

8.2 Taking Control of Al

As a generative algorithm, the sky is the limit for the HyperNEAT algorithm in
terms of possibilities of compositions, and different combinations of configura-
tions yielding wildly different results. One of the challenges with these systems
is figuring out how to gain meaningful control over the system. Control in this
context meaning that the outcome can be expected based on some manipulation
to the system. Because the systems almost take on their own behaviour and act
in unexpected ways in development, some control is needed. The randomization
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of the Keras implementation of the CPPN would often yield black images, or im-
ages with red being a very dominant color. Black images happens when all of
the channel values goes to 0 which means that the randomised network gradient
is cause all the neurons to die. The probability of this happening is greater with
deeper CPPNs as there is a higher probability of hitting an "unlucky" combination
of activation functions and weights that will descend the neurons into a vanishing
gradient meaning that the neurons will descend towards a value of zero. Red be-
ing a dominant color also makes a lot of sense in this case as red occupies both
0 and 1 in the Hue channel. This means that red will be a dominant color if any
exploding gradient or vanishing gradient tendencies happen. The Keras imple-
mentation of the CPPN can not be trained with back propagation and gradient
descent, because the results that it needs to calculate the gradient descent is the
result of the behaviour that it exerts - not the values it produces. This means that a
GA implementation is needed to train/evolve it as it is a much better suited search
heuristic for controlling the CPPNs behaviour. And while it is possible to integrate
the Keras CPPN into a GA heuristic, it is still limited in its configuration options
which makes it less suited for neuroevolution.

GA methodologies” challenge is how to narrow the solution space to something
that is within a realistic time frame. Humans’ brains have evolved from single cell
organisms spanning 3.5 billion years. While we are only trying to replicate simple
versions of singular modules of the human brain, the HyperNEAT approach to
make CPPNs is very time consuming because of the rather frugal mutation and
breeding scheme. The NEAT implementation of CPPN has great potential but re-
quires significantly better evolution heuristics, to explore the solution space more
efficiently. The fitness function used may also not be the best for the purpose as
it may be much more interesting to look for structural similarities in the images
instead of comparing pixel values. There are multiple other image distance com-
parison functions that should be tested for more efficacious neuroevolution of the
CPPN (Hamming, Hausdorff). While comparing pixel values may yield techni-
cally more similar images, a lot of subtleties may be lost in the last few percentages
of dissimilarity. Said in another way, it may be better to compare images with
a perception-based comparison function that looks for structures in an image, in-
stead of comparing pixel values. Basing it on gestalt theory would maybe empower
the subtleties in the images that have a bigger impact (than pixel values) on human
perception.

Another option is to implement novelty search as the search heuristic for "good
behaviour". Instead of evaluating a genome’s success by a fitness function, its
success can be evaluated by how different its behaviour is compared to the popu-
lation. Recent research shows that evaluating success by setting a goal and using
it to "breed good behaviour", is not as efficient as simply breeding for novel be-
haviour in the population and keep track of the behaviour that comes closest to
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the goal. Novelty search is not only practically interesting, but also potentially
massively revolutionizing how we think about gaining knowledge and innovation.
As the traditional way of evaluating genome success is by measuring its fitness
(its objective), novelty search will instead measure novel behaviour as to allow a
much more aggressive exploration. Just as human innovation doesn’t come from
knowing the destination, so too doesn’t a genome in a GA population[27]. A very
interesting presentation on this topic by Kenneth Stanley can be seen at [25].

Future implementations of this research would include novelty search and
graphic processing unit (GPU) integration. There is a library available for integrat-
ing CPPN in GLSLE[63] which would allow real-time rendering of high resolution
substrates. The structure of HyperNEAT and CPPN lends itself very well to GPU
operations, and as GPU markets have been saturated with GPUs for ML purposes,
the software architectures for this kind of use is widespread. Google Colab offers
free GPU acceleration for ML projects[6]. GPU integration and software migration
to GLSL would be a powerful addition as the type of processing done when apply-
ing the CPPN to a substrate is perfect for parallel processing and multithreading.
This means that with a trained/evolved HyperNEAT model, it can be visualised
in real-time - potentially at very high resolutions. As GPU technology continues to
progress, this can scale with new GPU technologies and performance.

Because the HyperNEAT algorithm is inhabiting a hyperspace that can be of
any dimensional layout. This also means that it can do more than map pixels in
images. It can also map voxels in 3D space for instance, meaning that the CPPN
can be evolved to describe functional relationships of lighting in a space. In other
words, the system can potentially be evolved to learn characteristics of 3D lighting
design.

The AE used in this project has been used to extract features from music. The
feature extraction part of the system is open-ended meaning that any data could
be analysed for feature extraction in this system. One could imagine using day-
light features to generate dynamic lighting scenes evolved by pictures of sunset
skies. The core of the system is the pairing of time and space. The system is a
merging of a temporospatial nature as it uses features in time as a driver of spatial
compositions.

8.2.1 Morphology of Compositional Movements

In the extraction of features in the artificial auditory sense that we have built, there
is a level of abstraction that has been indirectly chosen as we chose to use a 64-9-64
AE to compress auditory features. The size of the latent space was chosen to be 9
because it would fit neatly into a 3 x 3 grid, which was important as the latent space
vectors were saved as images used by the CPPN. However, there is a discussion to

LGLSL is a shader language based on WebGL used for graphical work.
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be had about the feature complexity of the choice of latent space size. Supposedly,
lowering the latent space size would increase the loss of the AE meaning that it
would try to find features that are easier for it to generalize with over the entire
dataset. What happens if the latent space size is 1? In other words, if the AE could
pick just one feature to describe the dataset, what would it be?
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Figure 8.1: By varying the latent space size, the compositional morphology will change as the impact
of every neuron in the latent space will be greater with less neurons. The bigger the latent space is,
each neuron will have less impact, but will produce more complex animations.

The complexity of the feature extraction is also propagated through to the
CPPN as the integration of the auditory latent space pushes the compositional
combinations. There may be some interesting interactions between the complex-
ity of the feature combinations and the compositional integration of them which
may change the dynamics severely changing the expressive behaviour of music
and light. Along with the interpolation type and speed of the latent space, this is
subject to testing for interesting interaction design.

Another factor of the system is the neuron types used in the artificial auditory
sense. As we are dealing with time series, a continuity sensory information has
relations to what has come just before it. However, the neuron configurations
used in this project does not take temporal continuity into consideration which is
also discussed in previous work [57]. This may drastically change the connection
between movements in music and movements in light. Additionally, the depth of
the feature extracting AE is believed to have a significant impact on the abstraction
of the features.
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8.3 Interaction Parameters

If this system is to be made into a design tool, there are some considerations specif-
ically around how many and which interaction parameters to give the user. Ul-
timately it would hinge on a focused analysis of the end user, and the specific
purpose of the software. However, there are some inferences that we can make in
that regard. From the previous research using the AE to produce musically driven
visuals [57], we found that controlling the interpolation speed of the musical fea-
tures from the AE has tremendous impact on the perceived expressiveness of the
visualisations. This is most likely the case in this integration as well because it
represents the velocity at which we present temporal information visually to the
audience. The velocity at which the visuals change has a great impact on the per-
ceived "tone" and should be matched by the user. It is comparable to using perlin
noise instead of random noise.

Depending on the scope of further development of artificial synesthesia, there
are some parameters that look very interesting in terms of generating empowering,
meaningful interactions. As was just mentioned above, the amount of features
extracted from the music change greatly in abstraction as there are more or less
features, and the animation complexity that it yields in the CPPN will change
drastically. Integration of a functionality for dynamically changing the latent space
size of the AE and the latent space integration layer in the CPPN would be an
interesting contender for shaping meaningful interactions with the system.

8.4 Cybernetic Design

Cybernetic theory has great potential for framing the future work of this project. A
stronger methodology for describing systems, and systems communication can al-
leviate some decision making processes in re-framing the perspective of why things
are designed a certain way. Cybernetic design and interaction design should also
be integrated in future works specifically for aiding in the definitions of objectives
and how to control the feedback systems of an adaptive technology like neuroevo-
lution.

8.5 The Future

There are many possible improvements to the system, which may include layering
of this system with other intelligent signal processing systems. The integration of
a cybernetic point of view on the further development would be highly valuable
in the scope of making design decisions for making a meaningful lighting design
tool for dynamic lighting design.
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8.5.1 Reference Projects for Development

Some interesting architectures has been developed for CPPN implementation in a
visual encoding scheme. The image reconstructive abilities of the CPPN has been
improved by Tesfaldet et. al. 2019 by letting the CPPN output Fourier coefficients
instead of RGB, which yielded higher reconstructive fidelity[53].

As mentioned earlier in the discussion, the data structure and processing in the
CPPN is very well suited for graphical processing as shown by Snelgrove et. al.
2018 by integrating a CPPN structure in OpenGL. This allows the use of GPU to
power the pixel calculations in GLSL which can be done in real time at very big
resolutions, depending on the complexity of the CPPN [46]. 0






Chapter 9

Design with Artificial Synesthesia

To show a practical implementation of the dynamic compositions made by the
developed system, a virtual architectural environment was designed in Unreal En-
gine[55].

9.1 The Virtual Design

The compositions produced by the artificial synesthesia can be used in delineations
of vertical and horizontal lighting (Sendergaard et. al., 2015) that makes lighting
volumes to create lighting atmospheres[58]. Mapping the compositions to archi-
tectural spaces to control the movements of light in luminaires can communicate
dynamic temporal structures[50].

The pixel experiment, as seen in fig. is the foundation for a virtual im-
plementations using a dynamic lighting system. In combination with the system
developed in this project, it can create interesting movements in the perception of
imagery through pixel mapping to virtual pixels in space.

Inspiration was also found in the work on harmonic visualisation by Jeong &
Kim, 2019 where the luminaires are suspended from the ceiling and are lowered
and raised to form waves according to the arousal of the music seen in fig. [9.2]23].

32 point lights in diffuse white glass spheres are suspended from the ceiling
in a perlin noise wave formation in a 4 x 8 grid. The perlin noise wave formation
changes the perceived luminaire size and formation as the observer moves around
the space. The colors of the luminaires are controlled by reading images produced
by the artificial synesthesia. The images are split into its HSV components and sent
to Unreal Engine with OS(ﬂ The HSV values are received in Unreal and mapped
to the luminaires depending on their spatial position. Examples can be seen in

fig.

10Open Sound Control is a standardised protocol for sending messages between software
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Figure 9.1: Comparison images from the pixel experiment as made by Sendergaard et. al. 2015. The
grid of images compare different layouts of pixel placements, with different pixel sizes. [50]

< >

Low arousal High arousal

Figure 9.2: The artwork installation by Jeong & Kim changes the luminaire heights to form waves of
arousal.[23]
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A central theme to all of the implemented theory of light and sound is waves. A
wave is relational to its surroundings, and signifies the natural dynamic structures
of the universe. It is the basis of all of the perceptional stimuli that we process,
and is fundamental to the way we perceive the world. Just like Perlin noise, while
random and chaotic in nature, the relational nature of things makes structure out
of chaos. It is natural.
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Figure 9.3: Images from the virtual installation made in Unreal Engine showing the wave formations
of light representing the features of the music.



Chapter 10

Conclusion

A system has been built by replicating the neurophysiological phenomenon synes-
thesia. The system consists of artificial neural networks that functions as artificial
sensory perceptions (vision and hearing), which are then neurally short circuited
to create artificial music-vision synesthesia. It is a one-way short circuit where a
stimulus to the auditory sense creates a response in the visual sense. An evaluation
of the system shows that it can communicate musical features through movement
of the compositions that it produces, and invites further development.

The developed system is a tool for generative dynamic lighting design that al-
lows exploration of compositions driven on intelligent music recognition. It is a
merging of auditory and visual gestalt that creates movements in time and space.
It is an augmentation of lighting design, that explores lighting structures in time.
Tapio Rosenius, in his talk about light for ambient communication[30] talks about
the focal hierarchy as described by Lou Michel: people, movement, brightness,
high contrast, vivid color, strong patterns, meaning and combinations of the for-
mer. From here Tapio emphasizes movement and meaning as strong communicators
in lighting design as movement is part of nature, and with a meaning, it can move
people as well as light. As Lou Michel also notes, the combinations of the focal
accents is something that demands our visual attention. These concepts can be
generated through the artificial synesthesia in the merging of meanings and move-
ments of light and sound. The system is built on an Al structure that finds patterns
in time to create movements in light. Movements through time can be found in all
of nature - the colors of the horizon, the blooming of flowers, the swells of the
tides, any of which can be used with the system. It is a generative design platform.

The project shows a cybernetic approach to synesthesia that has the spirit of co-
creation between designer and Al in mind. The machine’s ability to look for new
solutions empowers the designer to explore, and create dynamic designs. There
are many interesting parameters to limit the solution space for the Al - it could be
limited to a colour palette, contrast threshold, brightness threshold among many
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others. Anything that can narrow the solution space for the evolutionary Al to give
coherent meaningful answers.

Synesthesia is an enormously complex topic because its boundaries are ill-
defined. Or rather, it is difficult to define its boundaries because it is based on
statistic anomaly of subjective experiences. In some sense, we are all synesthetes
- we are all born with synesthetic abilities. Intuitively, we can understand synes-
thetic feelings if we think about smell and taste - two very interconnected sensory
pathways. Synesthesia is fascinating because it is the unusual pairings of sensory
reactions that really shows us the differences between subjective experiences. It
is a classic philosophical wondering - how can I be sure that what I understand
about the color red, is the same as you? Or rather, how do I know that it does not
look green to you, but because you have learned to recognise it as red, you have
assigned the same metaphorical meaning to it. That synesthesia exists highlights
how our brain makes sense of the world, and has inspired a lot of research into
cross modal integration of information in neuroscience.

What is really in common between all of the concepts throughout this project is
language - communication of the metaphors we use to describe ideas and concepts
that has universal meaning. The meanings are what sits in the middle of all our
sensory experiences, what gives our sensory information context. Humans have
evolved to understand contexts and meanings, because it is how we interact with
the world and each other. Meaning is how our brain decides what is important
and what is not. In taking inspiration from synesthesia, the system developed is
seeking to enable the exploration of meanings in time and space.

The true potential of the system is realised by defining boundaries for it. With
stronger cybernetic contexts to define the solution space for the evolutionary Al,
the potential of the system can be explored.
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