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Preface

Preface

This masters thesis is written by Christian Hilligsøe Toft for the education of Math-
ematical Engineering at Aalborg university, spring 2020. The main theme of this
project is data analysis of Wi-Fi signals and what can be inferred from passively
monitoring Wi-Fi signals/a Wi-Fi connection.

Throughout this thesis when a term is introduced it will be written in italic, and
some of the terms will be abbreviated. If this is the case the abbreviation will be
written in parenthesis following the term e.i. Medium Access Control (MAC). Fur-
thermore, appendix A contains all abbreviated terms used, their abbreviation along
with a short description.

The citation follows the IEEE-style, with the bibliography ordered after their first ap-
pearance and citations written as [citation number, page number]. Multiple citations
without specific page numbers is shortened if possible with a dash, i.e. [5],[6],[7],[8]
becomes [5]-[8]. When referring to sections, figures and table the associated number
for the current chapter is used e.g. Section [number]. For equations only the equation
number is written in a parenthesis.

Aalborg University, September 17, 2020
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1 | Introduction

Data analysis can be a powerful tool. The increase in computational powers in the
previous decades have enabled analysis of large and larger data sets. Due to this
development, tools such as machine learning and especially neural networks have
been of interest. This increase in interest have enables analysis to be performed
in new ways, with new data, gaining valuable information from data or improving
quality of life for users. This rapid development also raises questions to the use and
availability of personal data, as well as the steps needed to ensure privacy.
This chapter will introduce the reasoning behind this project, as well as a literature
review for a better understanding of the problem at hand. Furthermore, the scope
of the project will be outlined by a problem statement. The chapter will conclude
with the delimitation for this projects.

1.1 Problem Analysis – Data leakage by use of Wi-Fi

Wireless devices is for many an everyday commodity. In Denmark it is estimated
that 83% of the population1 accesses the internet daily using mobile-/smartphones
[1].
Smart devices such as watches, tv and home operations, general Internet of things
(IoT)[2], is an increasing trend with the number of IoT devices forecasted to increase
[3], [4]. Wireless connections enables all of these different devices to access the in-
ternet. This leads to a large amount of wireless communication occurring at all times.

The technological advancement has let to wireless networks being ubiquitous. Re-
search have shown that multiple elements can be inferred by passively monitoring
Wi-Fi connection. Some mobile stations can perform a probe request in order to
automatically connect to known Wi-Fi connections, and to detect when a network
is available. By periodically broadcasting a probe message on all available channels,
a connection can be established between a station (STA) and an access point (AP).
[5]–[8]
Especially can probe request from mobile station be used for tracking the location
of these mobile stations. This can as an example be used for gaining information of
public transport by tracking the number of user and their movement, though it could
more nefariously be used for tracking a specific target giving enough information. [7],
[8]

1Between the age of 16-74, survey conducted for Danmarks Statistik 2017
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Chapter 1. Introduction

In this masters thesis it will be investigated what other information can be gained by
monitoring a Wi-Fi Connection. To answer this, meta data from a Wi-Fi connection
will be investigated and machine learning methods for data analysis will be utilised.

A Wi-Fi connection is restricted on the Physical layer (PHY), e.g. the frequen-
cies for which a transmission can occur and the physical transmission of the signal
from attenuation and interference. Furthermore, multiple stations might want to
transmit on the same wireless medium, further restricting wireless communication.
This restriction of wireless communication is handle by a Medium Access Control
layer. The Medium Access Control (MAC) will attempt to fairly distribute the ac-
cess to the shared wireless medium. In order to distinguish the different stations
transmitting and control the transmission environment MAC address are utilized,
uniquely distinguishing STAs and APs. [5, p. 246], [9]
On the MAC layer data are packed into frames2 each split into three basic com-
ponents. Per IEEE-802.11 these subsets are a MAC header comprising of control
information, a frame body of variable length containing the payload and a frame
check sequence, by a cyclic redundancy code validation. [5, p. 636].

The payload frame may be encrypted, as such no information is expected to be
gained by monitoring the frame body. Instead all the information is to be gained
from the un-encrypted MAC header, in addition to the information that can be
gained from receiving the radio transmissions. As the information from a STA is
broadcasted by radio waves, placing a receiver in close proximity to the AP will
enable the observation of communication, without interfering with the connection.
From the network point of view, nothing observable is going on in this type of setup
and the "intruder" can freely monitor the connection. As the AP is the gateway to
a distribution service, monitoring information to and from the AP, possible within
a close proximity, will give a full view of the Wi-Fi connections to the distribution
service, through that one access point. The PHY aspects and transmissions archi-
tecture will be further elaborated in chapter 3.

To ensure quality and user experience some application have requirements that needs
to be fulfilled. This is especially the case when applications are required to run in
real time, e.g. as with Voice over IP (VoIP) or other live streaming services. VoIP is
restricted, as delays and high latency reduce the user experience, with it inherently
being a two way communication.
The following is a theoretical example of how some of the unencrypted information
could possibly be used for application identification. Some simple information that
can be gained from the meta data is when a device receives and transmits informa-
tion. Another information that can be gained is how large a packet received is. By

2MAC frames
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1.1. Problem Analysis – Data leakage by use of Wi-Fi

using these two elements in conjunction, a very rough estimate of the required data
rate for all running applications on a STA can be estimated.

The idea is simple, different application will have different behaviours. If this be-
haviours is possible to exploit, then a register of application could be created and
used in order to identify the behaviour of users. Furthermore, if the only information
used to create this register is "publicly" available then anyone could monitor or be
monitored.

1.1.1 Problem statement

As explained in the problem analysis, the MAC header and other meta data such
as transmission and size, is readily available to anyone in close proximity to the
connection. This thesis will investigate what can be inferred by this meta data or
more concisely:

- Can applications be inferred by monitoring a wireless connection?

In order to answer the problem statement the following is addressed in this thesis.

- The content of a MAC header is investigation through the IEEE Wi-Fi 802.11
protocol.

- Data collection for access points at Aalborg university campus.

- Data analysis is performed – Taking the information from the MAC header
and meta data, un-supervised machine learning methods is investigated and
utilised.

These elements will then give an insight into the information gained from the meta
data.

1.1.2 Limitations on the inferred information

The following limitations restrict the outcome of this project.

All the information will be gained through Wi-Fi connection, as such any device
without Wi-Fi or with Wi-Fi disabled will not be recognized and aid in information
acquiring. The main goal of the project is to investigate what information can be
achieved by passively monitoring a Wi-Fi connection, without physical interference
and previous knowledge.

The monitoring will occur at access points at Aalborg University, as such the data
will represent a mixture of students and personal from the university. This will re-
strict the expected data but also the hours in which data can/will be observed, and
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Chapter 1. Introduction

under which conditions the data is required (personal vs professional use). A private
network is expected to yield greater information about a specific user though a less
specific network can be seen as a proof of concept and investigate what information
can be gained from a multitude of users. The number of smart devices is expected
to be reduced in such an environment, compared to a home network, as such this
analysis will lack any information that can be gained by such devices[10].

No information from the frame body will be taken into consideration, as it can
be expected to be encrypted and as such unavailable.

This thesis is finalised during the 2020 covid19 pandemic and consequently shut-
down of both university and library utilities in Denmark, limiting the possibilities
for data collection. Due to the covid19 pandemic a large part of the data, including
all the labelled data, was captured during lockdown severely limiting the different
devices and users. With the limited access to the university the only devices active,
during these captures, are devices for which their full behaviour is known and la-
belled. This contradicts with the original scope of the thesis to passively investigate
traffic in an office environment – even though the devices aren’t any different, besides
being less varied, the networks conditions are. Furthermore, the applications running
and the exact behaviour of the active application are for the labelled data, is not as
natural as would be expected for a real scenario. This is due to the fact that all the
activity for the labelled data, is manually controlled and labelled, as well as having
it be representative of the different expected scenarios for the captured data – The
reasoning behind the labelling is . As no other devices are active on the network,
regular conditions such as multiple active users, with their individual tendencies and
behaviour, isn’t a factor in this captured data.

In other words: Due to the covid19 pandemic some of the data is limited to only a
few devices in a controlled environment and can possibly lack the "scope/real life sce-
nario" which capturing in an uncontrolled office space would produce. Furthermore,
the capturing device is limited to a single device.

4



2 | Prileminary

In this chapter related works, and preliminary analysis is introduced.
If for a device, a specific interpacket/size cluster, that indicate a e.g. Skype call,
can be found, then it is possible to check if a similar cluster exists with the STA as
the source (Source address (SA)/Transmitter address (TA)). If a STA is only on the
receiving end of a live communication feed, it isn’t required to transmit the same
amount of information, as would be required for the two way communication. As
such VoIP applications enables a second possible clustering for interpacket arrival
time/size. This can enable a differentiation between a passively receiving source,
from a live feed vs an active participant. If something is live streamed (live event),
then up to a few minutes delay might be tolerable for the receiver which could pos-
sibly further distinguish the different application.
High audio quality and a low latency are two wanted properties when it comes to
VoIP, for this a certain amount of information needs to be transmitted within a cer-
tain time frame. If a there is a combination (cluster) of packet length and time that
correlates to e.g. Skype, then anyone can know if a STA are using Skype or not, just
by being in its proximity.

In both [11] and [12], classification of Skype activity is performed based upon the
information gained from packet length and the interarrival time, defined as the time
between to consecutive packets. This identification of Skype is from a network man-
agement point of view, as even with full access to network information can Skype be
hard to identify.

A lot of work have been put into identifying Skype, from a network management
point of view [11]–[21]. A common method for this identification, is the utilisation
of flows and flow analysis as in [11], [16]–[21]. Research have shown that both su-
pervised and unsupervised machine learning methods can be used to identify Skype
and other applications using features from the flow. In [21], Azab et. al describes a
flow as a collection of packets all sharing certain properties, such as the source and
destination IP, transport layer protocol and ports used. This information requires
access/decryption of the packets and are, as aforementioned, not publicly available.
Flow analysis is therefore not an option.

Even though [11] also use flow based analysis, Do et al. utilise machine learning
methods to classify traffic into Skype, VoIP and Others using a Decision Tree classi-
fication. In this paper the authors find that the features of the flow with the highest
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Chapter 2. Prileminary

effect of for classification is the packet length and the packet inter arrival time with
a 99% true positive rate. As both packet lengths and packet inter arrival time is
available, this thesis investigate whether classification can occur, without knowing if
packets belong to a certain flow.

Methods

Two different machine learning methods can be used to investigate if e.g. a Skype
conversation is active at a given point. Supervised and Unsupervised machine learn-
ing. Both method have a draw back, that in order to investigate performance, and
in the case of the supervised method use them, data points needs to be classified/la-
belled .

For unsupervised learning clustering methods like K-means and Gaussian Mixture
models can be utilised. [22, p. 425] These methods will try to exploit the be-
haviour/features of the data, in the case of k-means the distance between data points,
in order to make clusters of data points. The clusters would then correspond to (pos-
sibly unknown) properties of the data. If a cluster exist that specifically corresponds
to e.g. Skype, then new data points that also corresponds to Skype should fall within
the same cluster. The task would then be to identify the cluster that corresponds
to the specific elements. A down side of using unsupervised methods is that if your
looking for a specific "cluster" the method might not find it, instead finding other
prominent features of the data.

For supervised methods the machine is taught what features belong to what class
by labelled data points. The methods will then try to make a decision rule based on
the features/labels such that new unknown data points can be classified. Features
can also be handcrafted or self taught. If the features are hand crafted then a in-
vestigation of the data for the features or combination of features can be performed,
this could as an example be performed using a Decision Trees [22, p. 663]. In such
methods a combination of smaller decisions or models are used in concession for the
final classification. Another option is to have the machine learning method find the
features of interest by it self, based upon the labelled data. Neural networks is a
popular group of such methods, utilising repeated training on the data, along with
hyper parameters, to control and shape the network to achieve specific properties.

In both the supervised and unsupervised method, any new data point can be al-
located to the "classes". Depending on the methods, a decision boundary will be
created and the algorithm will decide which class any data point belongs to. For
some algorithms this is a binary decision, where for other methods a data point is
said to belong to a class with a certain probability.

6



2.1. Preliminary results and data

A problem can especially arise for labelling the data. Two possible methods is to be
considered.

Firstly label all the data within a time range as e.g. Skype or Other, this can
be achieved by logging when a Skype call is active on a computer and then cross
referencing this information with the collected data. The downside of using this
method is, if the STA in question is utilising the network for other application as
well as Skype, the other applications might obscure the Skype information. It should
be taken into consideration, that in real world scenarios ideal conditions often aren’t
meet. If the classification method can handle multiple applications at the same time
and still generalise well to new a data sets, it can then handle a broader spectrum of
scenarios.

The other methods could be to classify Skype packets/flows and other applications,
by using other classification methods with full access, as in [11], [16]–[21], and then
only use the features from these packets to construct the classifier. This is expected
to be similar results as in the first case if all the STAs are limited to one applications
at a time, but with a higher precision . A downside with using this methods is that
all the data needs to be captured twice, once with full access and once without.
Furthermore, a classifier per each of the data captures is also needed.

2.1 Preliminary results and data

Some information about STAs, such as their coming and going, can easily be gained
on a network. If the STA isn’t turned of probe request and general activity of the
STA will show up in the captured data. As previously mentioned the MAC addresses
of the devices is available in the MAC header (Receiver/transmitter – source/desti-
nation). A Wi-Fi sniffers can even give a signal strength indication, up two 3 axis
x,y,z strength. By using this information spatial information can be gained, in addi-
tion to knowing if the STA is present, somewhere in the vicinity of the sniffing device.

The MAC addresses are also a point of interest as they typically aren’t randomly
generated and assigned to a device. For ease of use, a need for control of the MAC
addresses arises. A MAC address is a combination of 6 pairs of hexadecimal numbers
and will typically be assigned by the device/hardware manufactures. It is as such not
only possible to see if a device enters or leave and gain a bit of spatial information
relative to the receiver/Wi-Fi sniffer, the MAC address give information about the
type of devices. [5, p. 636]

The MAC address can contain an organisationally unique identifier (OUI) [5, p.
169], which, as the name implies, uniquely identifies a organisation (Vendor/manu-
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Chapter 2. Prileminary

factures). These OUI can then be resolved and the organisation can be identified,
i.e. you can know if the STA is an Apple, Samsung or Cisco product etc. For some
devices it might not be as evident for which the OUI refers. This is especially the
case where components from different manufactures are used to create a single device,
e.g. the "same" device can have two different network cards as a possible hardware
specification and as such two different OUI.

But is knowing what devices are active a "problem"? Devices will more often than
not be tied to a specific person, with enough data if multiple devices belong to the
same person, their coming and going can be closer followed.
In conjunction knowing what the different devices are doing, the possibility to track
them gives insight into the behaviour of the users.

Captured Data examples

The captured data contains information that can be split into different categories,
MAC and Radio transmission. The MAC information is any information that is
directly read from the packet data, the MAC header, and the Radio transmission
information is any information related to the physical transmission.

Depending upon the specific type of transmission source and destination address
aren’t always present in a MAC header. Furthermore, the source and destination ad-
dress pair aren’t necessarily identical to the transmitter and receiver address pair1.
A combination of source and destination information is therefore used to gain the
full insight into the behaviour of the STAs

As the information is transmitted via a wireless medium a transmission can fail
or the packet can be malformed on arrival. If this is the case the information from
the packets isn’t reliable. This is even true when just monitoring a wireless network,
as information such as sender and receiver can be corrupted. The IEEE-802.11 pro-
tocol takes this into account by utilising a frame check sequence as the last part of
the transmission [5, p. 636]. If this sequence doesn’t corresponds to the received
packet, the information from the packet should be considered an outlier. It should
be noted that just because a Wi-Fi sniffer receives a malformed packet, the packet
could be successfully transmitted between the source and destination STAs.

As mentioned the classification of application can possibly be performed based upon
the length of the different packets and their arrival in time. Starting out by simply
plotting packets lengths as a function of time, gives insight into when a STA is more

1E.g. STA (a) communicating to STA (c) through AP (b) could yield a source address and
transmitter address of (a), but a destination and receiver address of (c) and (b) respectively.
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2.1. Preliminary results and data

or less active.

(a) (b)

(c) (d)

Figure 2.1: Packet length as a function of time for the same STA under different condition.

Figure 2.1 illustrates captured data examples for the same STA under different con-
ditions 2. For 2.1 the Wi-Fi sniffer, were placed in close proximity to the STA in
order to decrease the chance of transmissions errors. Furthermore, the Wi-Fi sniffer
were set to only monitor the Wi-Fi network which the STA were using, in order
to not jump between channels potentially missing information. After the data were
captured it was filtered to only include the information from the specific STA. For
figure 2.1, the information is further limited to only the cases for which the STA is
the destination (Destination Address (DA)/Receiver address (RA)) of a packet.

Subfigure 2.1a clearly have activity in the start and the end of the capture. Subfigure
2.1b doesn’t have the same activity as 2.1a, with only a minor change in behaviour
occurring after around [200] seconds.

2Note that the axis aren’t normalised and espcially 2.1a has significantly larger values compared
to the other subfigures
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Chapter 2. Prileminary

For subfigure 2.1c the activity corresponds similarly to that for 2.1b with a change in
behaviour after around [400] seconds. Subfigure 2.1d shows a more sporadic pattern,
for which it could be argued that no clear indication of a change or atleast multiple
changes are present.
As these captures were performed under a somewhat controlled environment, the ac-
tivity of the STA is known for each capture. Starting out by taking a look at the two
edge cases. For 2.1a the STA had a Skype conversation active in the begging and the
end of the capture, with regular internet use (Web searches, streaming services etc.)
through out the capture. For 2.1d the STA was left idle during the entire capture.

That leaves the two somewhat similar looking captures from 2.1b and 2.1c. In both
these cases the STA was idle in the start of the capture and then an application was
started. Though the two captures look somewhat similar, 2.1c is a live streaming
service and 2.1b is actually another Skype call. The applications where started a few
minutes after the capture, lining up with the visual change in behaviour. Comparing
2.1a and 2.1b a large difference can be observed. The reasoning behind this differ-
ence could possibly be found in the other activity the STA where performing, but a
comparison with a second STA for which the first where connected via a Skype call
reveals the same behaviour. There are some other differences between the two cap-
tures. With the major ones being that for 2.1a both sender and receiver is connected
to the same AP and the two captures where performed on for two different APs.

Instead of plotting the different packets arrival in time, packet lengths can instead
be plotted as a function of the inter arrival time of the packets. As this is still a two
dimensional plot visual inspection can be utilised to gain insight into the behaviour
of this domain.

10



2.1. Preliminary results and data

(a) (b)

(c) (d)

Figure 2.2: Packet length as a function of time since the last packet (Inter arrival time) for the
same STA under different condition.

From figure 2.2 clusters can be visually identified. In all of the different captures
from figure 2.2 multiple miner clusters can visually be seen. This is especially easy
for 2.2b and 2.2c and less so for 2.2a and 2.2d, though as this is a visual assessment
it is left to the reader to asses from it what they please3. For 2.2b and 2.2c the
number of clusters appear to greatly exceed the number the number of applications
active, which where either one or none depending on the given time. As such multiple
cluster or maybe a combination of clusters. indicate the same application and fewer
cluster could be looked for in the data. Another property that needs to be pointed
out is the proximity of the cluster to each other. If a distinctions between nearby
clusters are needed in order to correctly identify an application, then an increase in
unique clusters that should be identified is also needed.

3Note again the differences in axis as in the case with 2.1

11



Chapter 2. Prileminary

K-means

The clustering performed on the date example form figure 2.2 is performed by use of
K-means clustering. K-means clustering or K-means algorithm is a non-probabilistic
technique for finding clusters. The algorithm aim to partition the data set into K
clusters, for which distance for points within the cluster is small, compared to dis-
tances outside the cluster, i.e. points in close proximity are grouped together. The
algorithm can be seen as an optimisation problem. To perform this optimisation
the appropriate notation will firstly be introduced. The notation follows that of M.
Bishop in [22, p. 424].

Let {x1, . . . , xN} be a data set consisting ofN observation of a randomD-dimensional
euclidean variable x. For each cluster introduce a D-dimensional vector µk with
k = 0, . . . ,K − 1, each representing the centres of the K clusters. To distinguish
which of the clusters a data point xn is allocated a set of binary indicator variables,
rnk ∈ {0, 1}, is introduced. For rnk ∈ {0, 1}, k = 0, . . . ,K − 1 denote the different
possible clusters, such that if xn is allocated to cluster k then rnk = 1, and rnj = 0
for j ≠ k. The goal is then to find the set of cluster centres, {µk}, and cluster as-
signments, for each data point {rnk}, such that the sum of squares of the distances
for each data point, xn, to its associated cluster center is minimized. This can be
expressed in the objective function, J ,

J =
N−1
∑
n=0

K−1
∑
k=0

rnk∣∣xn −µk∣∣
2.

The optimisation can be performed through an iterative two step process in which,
per iteration, rnk and µk is optimised successively keeping one objective fixed while
minimising over the other. [22, p. 424 - 425]

The values for which rnk and µk is optimised can be found to be

rnk =

⎧⎪⎪
⎨
⎪⎪⎩

1 if k = arg minj ∣∣xn −µj ∣∣
2

0 otherwise

and

µk =
∑n rnkxn

∑n rnk
.

This corresponds to each data point being associated to the nearest cluster center,
in distance, and setting the cluster centres as the mean of values associated to the
cluster.

The only parameter that can be tuned when using this method is the number of

12



2.1. Preliminary results and data

clusters, K. An example of clustering on the 2.2c, is shown on figure 2.3. For this
the K-means algorithm is used with an arbitrary choice of K = 8. From subfigure 2.3,
it can be seen that a cluster, the orange color, correlate to the change in behaviour,
and it can as such be identified.

(a) (b)

Figure 2.3: Packet as a function of time (a) and inter arrival time (b), colorised after clusters
K = 8. Capture from 2.1c

Sadly this identified cluster wont necessarily uniquely identify the application used,
but rather the specific change in behaviour. A way to support this hypothesis would
be to use the same cluster centers on similar looking data, which is using another
application.

(a) (b)

Figure 2.4: Packet as a function of time (a) and inter arrival time (b), colorised after clusters
K = 8. Data displayed corresponds to 2.1b though cluster center are those found from 2.3

In figure 2.4, the cluster centers found from 2.3 is used to find clusters for this case.
Here the orange cluster doesn’t necessarily indicate the same change in behaviour,

13



Chapter 2. Prileminary

but notice how the different cluster indicate different packet lengths, also evident in
2.3. The found clusters are likely only classifying based upon the packet lengths,
with a need for more clusters to uniquely identify different application based upon
packet length/inter arrival time if possible.
By using the data as is, the large discrepancy between packet length and inter packet
arrival comes to fruition, indicated by mostly finding clusters from packet lengths.

Gaussian mixture model

Besides the use of the simple clustering by k-means, relying on the distance between
data points in order to perform the clustering, Guassian mixture model (GM) are
instead used as a method.

Instead of the distance between observations, GM assumes that the variables are
derived from different sources producing Gaussian distributed variables. The goal is
thus to estimate the parameters from the different Gaussian distributions. When the
distributions are established, the clustering is then performed by investigating the
probability of the different variables, xi, belonging to a specific distribution/cluster,
k.

It is possible to find the parameters, θ, and perform the clustering through the
iterative expectation-maximisation (EM) algorithm. Given some initial parameters,
in this thesis found through the k-means algorithm, find the variables that are ex-
pected to belong to the different clusters – The expectation step.

In order to calculate the probability of a variable belonging to a cluster, a K-
dimensional binary random variable, z is needed, with K being the total number
of clusters. The random variable is limited to only a single non-zero entrance, e.g.
the k’th element is equal to 1, with all other elements equal to 0, resulting in K

possible different states for such a variable, zk. By use of such a random variable the
conditional probability, z given data x, is

p(zk = 1∣x) =
p(zk = 1)p(x∣zk = 1)

∑
K
j=1 p(zj = 1)p(x∣zj = 1)

=
ρkN (xn∣µk, Σk)

∑
K
j=1 ρjN (xn∣µj , Σj)

,

using Bayes theorem, where ρk is the prior probability of a variable belong to a clus-
ter and µ/Σ the parameters of a multivariate Gaussian distribution. [22, ch. 9]

With every variable belonging to a clusters, the next step is to update the param-
eters, θ = {µ, Σ,ρ}, maximising the likelihood function, L(x∣θ) for all the different
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2.1. Preliminary results and data

clusters, K, through:

µk =
1
Nk

N

∑
n=1

p(zk = 1∣x)xn

Σk =
1
Nk

N

∑
n=1

p(zk = 1∣x)(xn −µk)(xn −µk)
T

ρk =
∑

N
n=1 p(zk = 1∣x)

N

The log likelihood function can then be evaluated,

ln p(x∣θ) =
N

∑
n=1

ln{
K

∑
k=1

ρkN (xn∣µk, Σk)}

and check it against convergence criterion – Then reiterate. [22, ch. 9]

In other words, the EM algorithm first assign variables to a normal distribution,
then updates the distribution such that they fit the variables better. With the up-
dated parameters, the process can then be reiterated, allowing the parameters to
gradually update. The update occurs since with new parameters, the variables can
fit better with a different, compared to the previous, distribution.

The advantage for utilising GM compared to k-means, is that variance for the vari-
ables are taken into consideration, allowing variables to be assigned a cluster though
the variable is closer to another clusters center. Though as with k-means, GM require
knowledge of the number of clusters/sources producing the data.

Since these, relative simple clustering algorithm are not the main focus of this thesis,
further elaboration is omitted. For further detail see [22, ch. 9].
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3 | Data collection and labelling

In this chapter the theory relevant to data collection and the prepossessing/data
management is introduced. This is done in order to give the necessary insight into
the restrictions the data collections have and the considerations that needs to be
taken, in order to perform the analysis/inference. The chapter includes relevant the-
ory of the physical layer (PHY) of the IEEE 802.11 protocol as well as practical
aspects of the data collection, in order to gain a better understanding of how and
why the captures are possible and what can be expected from them.

Before the monitoring is performed some setup is required. Passive monitoring of
a network with a focus on specific APs is used in this project. The Wi-Fi sniffers
are focused on specific APs by limiting their monitoring to channels utilised by the
APs. On one hand this is going to limit the possible STAs that can be observed, as
any STA not communication through the given channels is outright ignored, on the
other hand no information is missed due to channel searching.

The IEEE-802.11 standard introduces multiple wireless local area network (wlan)
architectures, with the basic service set (BSS) as a building block for them all. An
infrastructure BSS is a specific extension of a BSS with limited structuring and the
main interest for this project. It is possible for infrastructure BSSs to be connected
to another BSS/network. A distribution system (DS) is the IEEE-802.11 designated
term for the architectural component used to interconnect infrastructure BSSs. As
an AP is any entity with STA properties and distribution system access function,
an AP is needed for STAs to establish a connection to the DS. The infrastructure
BSS, with an AP connected to a DS, will have all STAs communicating with the AP,
which in turn will relay information to STAs from other STAs and the information
from the DS. As such communication on an infrastructure BSS is controlled with the
AP as an intermediate node. [9] [5, ch. 4.3]

The Wi-Fis from which the data is collected is from an infrastructure BSS of the
extension, Extended Service Set (ESS). An ESS consist of multiple infrastructure
BSS, where STA can fluently switch from BSS to BSS, by changing which AP they
are associated with.
Information transmitted via Wi-Fi uses two main frequency bands, 2.4 GHz and 5
GHz. These frequency bands are then in turn divided into radio channels. APs
are free to choose which channel to utilise, though any interference from nearby
AP, utilising the same or overlapping channels, can restrict the effectiveness of cer-
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Figure 3.1: Illustration of independent BSS (a), infrastructure BSS (b) and ESS (c) from [9]
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tain channels and as such limit possible channels. The available frequencies and
the bandwidth of the channels, restricts the number of channels and number of non-
overlapping channels – e.g. for 802.11b in the United States 11 channels are available,
with only three channels being non-overlapping [9]. APs will try limit communicate
on the same channels as other APs and will actively switch channels to avoid inter-
ference. [5, Ch. 19, p. 1747]

Multiple channels can be a potential problem for monitoring Wi-Fi Connections.
If the device used for the monitoring is restricted to only listening in on a single
channel, then transmissions on other channels will be missed. In order to diminish
this effect the Wi-Fi sniffer could spend a short amount of time on each channel,
capturing information on all available channels.
This channel sweep can be useful when monitoring for activity, but is drastically
limiting if a coherent capture is needed. As the discussed methods will be relying
on the interpacket arrival time, potentially missing multiple packet from an STA
could prevent the detection of the wanted application. To counteract this, a possible
solution could be to increase the time the Wi-Fi sniffer stays on each channel, based
upon knowledge from classification, at the cost of an increase in time between con-
secutively visiting the same channel. Unless channels are randomly selected, or some
other visiting scheme is used, the time between each revisit is linearly dependent on
the number of channels and the time used on each channel

A classifier needs to be created, in order to identify applications. As before men-
tioned classifiers can be supported by labelled data, if it isn’t out right required.
By having access to some/most of the STAs on the network a python script can be
utilised to record exact times for when e.g. Skype call is initiated, as the Skype
API isn’t available. The utilised python script monitors the Skype process and
sub-process for changes to their connectivity behaviour. If their aren’t any network
restrictions, Skype will establish connections between the users through an UDP
connection. Checking and logging when this connection is established can give the
time for a Skype call. The only found offset by using this methods is that Skype
periodically creates a few short UDP connections when idle. These UDP connection
would then show up as a very short Skype call and could possibly be classified as
outliers, though would still indicate that a Skype call is active.

As the network where the data is recorded isn’t restricted in anyway, Skype will
follow its default behaviour, how this differs from a network where UDP connections
is restricted isn’t investigated in this project, and simply limits itself to the default
case. Having the python script run on startup on the STAs, while logging Skype
activity and the STAs MAC address, enables cross referencing afterwords to the col-
lected data, and hence labelling of it. The behaviour for the Skype is based upon
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empirical observations, as the ins and outs of Skype isn’t public information.

Using only passive labelling through UDP packets has its limitations. With Skype
allowing for both audio and video call, indistinguishable from each other by the
aforementioned simple labelling method, it is of interest to utilise another methods.
In this thesis any labelling of data is done so manually, in other words, the time and
change in application is manually investigated. The manually labelled data can, for
the Skype part, be cross-referenced with the UDP activity. With the Covid-19 pan-
demics shutdown of Aalborg University, during the data capturing for this thesis, the
manual labelling is an option as the number of active devices is reduced. This form
for time labelling has the added benefit, compared to the simple Skype monitoring,
that it keeps track of multiple different application and whether they are active in
the same time frame.

The time labelling is performed as follows: The exact time for the start of a an
application is noted and every received packets within the given time frame is now
belonging to this label. Multiple application within the same time frame will also be
investigated with (Streaming and Skype in conjunction etc), though "gaming" is left
out as a possible category for labelling.

If a specific network is of interest, listening in on the channels associated with the
BSS is useful. By placing a Wi-Fi monitor close to an AP and only listening in
on that specific AP, the amount of information correctly received would correspond
roughly to that of the AP. It could then give insight into how the specific AP is used,
and the behaviour of the associated STAs. As the devices and capturing of data is
limited for this project, due to covid19, instead of the more realistic scenario with a
Wi-Fi sniffer located near an AP it is kept in close proximity to the active devices.
When restricting to specific APs, where STAs have known behaviour and labelling,
then a classifiers can be constructed. If a classifier already is available, then a re-
striction to a specific AP isn’t as necessary allowing for channel sweeping. Channel
sweeping can be useful for a broader search for STAs using the specific application
or whom are actively transmitting.

In conclusion by monitoring an AP, any information, though possibly encrypted,
that is transmitted between STAs on that specific BSS or coming from the DS,
whom the AP is connected to can be monitored. APs can utilise multiple different
channels which needs to be considered when capturing the data.

The collected data is stored in a .PCAPNG data fill, a standard often used for network
monitoring applications such as Wireshark.
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All monitoring devices are set to monitor- and promiscuous mode. These two dif-
ferent modes relays information to the network (802.11) adapter, in the monitoring
devices, on how they should handle incoming communication.
Promiscuous mode will tell the network (802.11) adapter to ignore any MAC address
filters it has, which often will be enabled as standard. A MAC address filter will
limit the network (802.11) adapter to ignore/filter out all packets not intended for
the MAC address associated with the network interface [23]. For regular use, ignor-
ing the information, not intended for the receiver device, at the network interface is
useful, as the system aren’t required to deal with this unwanted information more
than necessary.

With monitor mode active the network adapter is told to capture and hand over
all packets on the selected channels, regardless of service set identifier (SSID) [23].
Even if only information from a single SSID is required, a combination of monitor
mode and promiscuous mode is be needed, in order to successfully capture all pack-
ets on a network. Due to monitor mode capturing of packets at the radio level, not
enforced by promiscuous mode, it isn’t enough with just one of these settings.

Not all network interfaces card/802.11 adapters in STAs allows for these changes
and as such special equipment for Wi-Fi monitoring can be useful. In this project
a standard PC that allows for these changes is used. The PC is an Asus A551LN
laptop, with a Intel Wireless 7260 network interface card running, Linux – Ubuntu
version 18.04. The data collected for this project consist of 26 unlabelled captures,
lasting anywhere from 10 min to multiple hours and 14 labelled captures of one hour
each.

The capturing was performed with a combination of Wireshark and Aircrack-ng.
Though Wireshark should be sufficient, it was found that Aircrack-ng had to be
used for this specific capturing setup. Aircrack-ng is utilised in order to set the net-
work interface card into monitor mode as well as directing the capturing to a specific
channel. [23]
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4 | Preprocessing and simple clus-
tering

As the preliminary analysis showed, using simple clustering on data consisting on
inter arrival time for packets and packets size, could result in the loss of the temporal
aspect with clusters mostly corresponding different packet sizes. The initial clustering
showed little diversity between clusters, in the initial case only showing packet size,
loosing much of the temporal information an increase in possible significant features
is of interest. In the following section the features of interest is expanded upon
including, reasoning for the interest in the features – as an extension to the previous
analysis.

4.1 Data of interest

Skype and other application will actively try and adapt their behaviour to accom-
modate for specific transmission environment, in order to achieve the best possible
quality given the circumstances.
If an AP is especially busy, or a transmitting STA is obscured/far away from the
AP, the throughput for which the STA can achieve is reduced. The specific modula-
tion, compared to the send packet size, can be changed in relation to the quality of
the connection. The transmitting of packets are as such not just a one thing catch
all, with aspects such as how different network chip manufacturers handle different
situation drastically changing how packets are transmitted. For the 802.11ac and
802.11n amendment a modulation and coding scheme (MCS) is utilised. The MCS
determines the number of spatial channels, coding, and modulation hence specifying
the conditions a transmission occurs, and the amount of information transmitted
compared the transmitted packet size. The IEEE-802.11 standard specify index val-
ues for the MCS from 0 to 76, concatenating useful network information into a single
values. [5, p. 2353]

The access to the two different frequency bands, 2.4 GHz and 5 GHz, is governed
by specific IEEE protocols amendment, with the older amendments of 802.11b and
802.11a and the newer 802.11g/n/ac amendments. The amendments directly specify
how the network adapters handle throughput and network conditions.
The more information that can be gained from the conditions of the network the
better, as these features influence how the applications behave, forming the founda-
tion for the decision making. By monitoring the airtime/total load on the network,
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i.e. every broadcast and not just limited to a specific STA, the conditions of the pos-
sible throughput could be further gleamed. With only one transmission at a time,
restricted by the MAC layer providing fair access to the wireless medium, gaining a
sense of the network load through packets in a time period, prior to the packet of
interest, is to be monitored.

Another indicator for the condition of the transmission environment, is the transfer
rate for packets, the higher the transfer rate the better a connections can be sus-
pected to be, between the STA and AP.

It isn’t of interest to know the exact second an application is started, but a rough
time period1 for which the activity occurs is sufficient. This further enables the pos-
sibility of averaging information and using this information in the decision making,
e.g. by accumulating information from a time periods and then the making the de-
cision based upon this information.
Even though a flow can’t be established information such as the average throughput
within a certain time period, T , can be used. Though without knowing the flow, an
average throughput for a time period could originate from a combination of applica-
tion and not just a single application.

A problem could occur for using the roughly estimated throughput, based upon
the packet size and interarrival time. The estimate is based upon a STA receiving
packets such that an application has the required information, for the time period,
until the STA next receives a packet. If multiple applications are active, then the
following packets aren’t necessarily meant for the same application, as the previous
received packet. When this is the case any estimate of the required information for
applications is overestimated. Even though such an overestimation can occur it can
give insight into the behaviour of a STA and active applications.

When having to calculate the average required throughput estimate, for a STA,
the edge cases and how the average is to be calculated needs to be considered. Run-
ning, trailing or centred moving average takes values on either side of the current
values. To circumvent edge cases problems the classifier can be allowed an initial-
ization period, essentially ignore packets at the start of capture in order to calculate
the necessary averages.
Calculating the average based upon the last X samples or on the last T seconds will
not correspond to each other, as the arrival of packets isn’t equidistant. If the time
period, for which the average is performed, is to narrow, then an over estimate of the
required throughput can occur, this will especially be the case when a STA seldom
receives packets. As the throughput, based upon packets size, since the last packet is

1e.g. could be within a few minutes
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4.1. Data of interest

Data Type Association Type
Packet size STA Integer

Packet inter arrival time STA Float
Average throughput estimate for a time period T STA Float

Transfer rate STA Float
Airtime (total load) AP Float

MCS STA Categorical
Type of Wi-Fi (amendment) AP Categorical
IEEE Wi-Fi amendment AP Categorical

Table 4.1: The different data types of interest and the device for which the data is associated.

already calculated this could be utilised instead of calculating the information anew.

An option for the classification model could be to force causality and not wait for fu-
ture packets before the decision making. For a network load assessment of a packet,
it makes sense to only take the previous packets (and possibly the following few
packets) into consideration, as these will be the conditions for which the STA is
attempting to transmit the packet. It should be noted that even though a network
have been busy previous to the transmission of a packet, the STA could still have
been allowed to transmit its packet without delay. If this is the case the previous
activity on the network wouldn’t influencing the current packets interarrival time or
MSC value. Even though two STAs are operating under the same network condi-
tions, both connected to the same network etc., their behaviour when running the
same application might be different if the STAs are vastly different. This difference
in behaviour could stem from elements such as software and hardware differences, i.e.
differences in versions for the operating system (OS), applications and a multitude
of manufacturers producing different network chips.

If an STA has a valid OUI, i.e. it is present and isn’t spoofed, the OUI is infor-
mation about the manufacture of the network chip, when resolved. Knowing the
network chip manufacturer gives insight into what conditions the STA is transmit-
ting under. A problematic aspect of using the OUI for application is that the same
manufactures can produce a multitude of hardware, as well as new and old hardware
from the same manufactures existing. Though the OUI can be telling about the
STA, a relation between OUI and OS aren’t likely as the OS is software limited and
can be changed by the user. As such the OUI isn’t deemed a data type of interest
for this project.

Table 4.1 contains a list of all the mentioned data and their associated device (STA
or AP) as well as a data type (Integer, float or categorical labels) for each.
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4.1.1 Data standardisation

In this thesis a regular normalisation/standardisation is performed by subtracting
the sample mean, µ̄(X), and dividing by the sample standard deviation, σ̄(X),

Standardise(X) =
X − µ̄(X)

σ̄(X)
.

The standardisation is performed in order to better compare the multitude of differ-
ent from 4.1. Furthermore, standardisation have also shown great results if the data
is to be used when training a neural network.

If the variables of X follows, or is expected to follow, a normal distribution the
standardisation will express the variables in a distance, number of standard devia-
tions, from the mean.

When standardisation is used, it will align the different data under the same premise,
subsequently mitigating potentially dominating data, allowing for a better compari-
son between them, e.g. a variable with a range form 0 to 300 outweighing a variable
with range from 0 to 1, as evident in the simple clustering from chapter 2. Figure
4.1 is an example the difference of standardisation makes for data similar to which
is shown in chapter 2.

(a) Original data before standardisation (b) Data after standardisation

Figure 4.1: Regular and standardised data

4.1.2 Time series and word clustering

When the data is captured packets are inherently received as a time series. The cap-
tured data will contain packets from all devices transmitting, under the conditions
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1 2 3 ⋯ i− 1 i i+ 1 ⋯ n− 2 n− 1 n

Nr. Time Size Source Destination
i 1.8016 167 aa:aa:aa:aa:aa bb:bb:bb:bb:bb

Nr. Time Size Association Transmission Direction
i 1.8016 167 bb:bb:bb:bb:bb Down

Figure 4.2: Example of a time series with a packet send from an AP to a unique STA implying
association with the STA and a downlink.

for which capture is limited, e.g. Network type/frequencies and channel/BSSID etc.
From a single captured file multiple time series can be constructed.

Under the assumption that the network is an infrastructure BSS network, every
communication is passed through the AP and as such an association to an STA can
be conducted as illustrated in figure 4.2. Furthermore, a direction of transmission
can also be decided depending on if the associated STA is the transmitter or receiver
a given packet. With an association STA, the original time series can be split up
into unique time series, only containing packets with association to specific STAs.
Figure 4.3 is an visualisation of this split up.

Applications such as Skype will typically, e.g. when a Skype call is active or inac-
tive, either be transmitting multiple packets within a time frame, or not transmitting
anything2. If sufficient time passes, without a STA transmitting/receiving packets,
it can be expected that the STA doesn’t have an active application running. These
gaps of silence can then be used to split up the created time series into shorter time
series, for where applications are active.

These shorter time series can be of interest, as they possibly remove discontinu-
ity between packets in the same time series. The packets in the smaller time series
are expected to have more in common, than if a large delay occur between the pack-
ets. The reasoning for this, is that a longer pause can indicate inactivity for an STA.
Any packet transmitted before and after the inactivity, depending upon the length

2Possibly transmitting/receiving a single packets – e.g. fetching new info such as your current
Skype Status etc.
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1 2 3 ⋯ i− 1 i i+ 1 ⋯ n− 2 n− 1 nO:

2 ⋯ i ⋯ n− 2 n− 11st:

⋯ i+ 1 ⋯ n2nd:

1 3 ⋯ i− 1 ⋯3rd:

Figure 4.3: Example of splitting up a time series, O, into three distinct time series, (1st, 2nd and
3rd), depending upon packet association, with each color {Orange, Green and Red} indicating a
unique STA association.

of inactivity, would be uncorrelated. In this thesis the time series are split if a gap
larger than 200 ms occur, based upon arguments from [24].

If it isn’t wanted to do these short splits, the initial handshakes between STA and
AP can instead be used to split up the time series. Though splitting by the initial
handshakes would require that the handshakes are captured.

By working with the data as time series, instead of simple packets, the labelling
needs to be taken into consideration again. Instead of giving a simple categorical
label, such as an integer number, an array with length equal to the number of cat-
egories is used in stead, with each entrance corresponding to a categorical label. In
order to prevent a single differently labelled packet to equally influence an entire time
series, each entrance in the aforementioned array is equal to the percentile appear-
ance of packets with a given application/application-type in the transformed time
series. This association score, si, for the i’th application/application-type is simply
calculated by taking the number of packets received within the different labelled time
frames, #Pi, and dividing by the total number of packets, #PT , in the entire time
frame,

si =
#Pi

#PT
. (4.1)

As time frames can be overlapping, packets in the original time series can be assumed
belonging to multiple different application. In order to take this into consideration
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packets, just as the entire time series, are allowed to have more than one label. By
allowing multiple labels for a single packet, a problem would then occur when trying
to calculate the association score, as the total number of labels is greater than the
total number of packets, e.g. let si be an association score then ∑K

i=1 si > 1, with
K different classes. If the goal is to have an association scores si ∈ [0, 1], which
represent the percentile appearance of a label in a packet, such that the sum of all
these score equate to 1, the mismatch between the total number of labels and the
total number of packets is to be prevented. Furthermore, if the association score si

is calculated by using the sum of the total number of labels, #Pi,

si =
#Pi

∑
K
k=0 #Pk

, with K number of classes. (4.2)

Instead of the total number of packets, the associations score would slightly favour
any overlapping time frames/labels, as these packets are disproportionally repre-
sented compared to labelled without overlap.

Another idear, and what is used in this thesis, would then be to replicate the princi-
pal of the association score, having each label represent a percentile association with
active applications. In this case prior knowledge, such an expected number of pack-
ets transmitted in a time frame, of the different application/application-types could
be usefull. The use of such a prior would be to distribute the percentile association
with the applications, e.g. an application being twice as likely to be transmitting as
another in an overlapping time frame would create a split value of 2

3 and 1
3 for these

two labels. With no known prior a common solution/method is to use a uniform
distribution – assuming equal preference for transmitting for all applications. By use
of such a prior a given transmitted packet is labelled, with an even split, depending
upon the number of overlapping time frames.

Instead of calculating the association score, si, as in equation 4.1, the total num-
ber of packets with a specific label, #Pi is substituted with a sum of all labelled
values for the i’th class.

si =
∑L li
#PT

for li ∈ Li (4.3)

where Pi is the set of all received packets belonging to the i’th class and L the set of
all labels.

Compared to both 4.1 and 4.2 calculating the association score as in 4.3 – not only
produces values si ∈ [0, 1] with the sum of all association score equating to 1 – but
unlike 4.2 only ever take a packets into consideration once, and still allow for over-
lapping time frames. For labelling the single packet, a uniform prior is used, with
the sum being limited to that single packet witch would just result in the prior.
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Figure 4.4: Visual example of quantitative to qualitative convergence – All data points within the
same range, marked by vertical lines, are allocated to the same class

4.2 Data point considerations and limitation

The behaviour of the data can have consequences for clustering and the classification.
Especially should the collected data be representative for a large verity of possible,
conditions, as clusters will be skewed if it is misrepresentative.

Another problem for clustering using data with categorical labels is that e.g. the
measure for dissimilarity with k-means is the squared euclidean distance. For these
reason k-means clustering isn’t an appropriate methods if the data contains variables
representing categorical labels. [22, p. 427]

As such if simple clustering is to be used, then either the categorical labels should
be ignored, or a transformation is needed. An option could be to transform the
quantitative data points into qualitative data by breaking down the data into ranges
with each range corresponding to a class.
Figure 4.4 illustrates how, as an example, some form of temporal data could be
converted into qualitative data. Discretising the data is also a loss of information
and doesn’t change the fact that clustering with k-means still isn’t an option, but
could possibly enable other methods requiring a consistent data type. Instead of
discretising the continuous quantitative data, another option would be to transform
the data in such a way that the discrepancy between qualitative and quantitative
data is eliminated.

4.2.1 Factor analysis of Mixed Data.

Factor analysis of Mixed Data (FAMD) is a statistical analysis method that allows
for comparison between quantitative and qualitative data – a mixed data set.

The method has it root in a combination of principal components analysis (PCA) and
multiple correspondence analysis (MCA), methods that deals with quantitative and
qualitative data respectively. The goal of FAMD is to bring these two, relatively sim-
ilar methods together in a way that allows for a combination of the two types of data.

Though FAMD, MCA and PCA can be used in gaining statistical information about
the data, such as correlation coefficients, another property is dimensionality reduc-
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tion and transformation. It is possible to transform the data into a lower dimensional
subspace by use of FAMD, similarly to PCA, by only keeping the basis vectors, in
a transformation matrix, corresponding to the most information/variance between
data points. As with PCA, this information can be calculated based upon eigenval-
ues. By use of FAMD the issue of balancing out the qualitative and quantitative
variables is handled.

The process is a follows:

- Find the basis vector with the highest inertia – corresponds to eigenvector with
the largest eigenvalue.

- Find the vector with highest inertia which is orthogonal any other found basis
vector and iterate until the collection of vectors span the entirety of original
space – Eigenvectors sorted after eigenvalues.

- Keep the number of basis vector based upon their inertia.

The inertia indicate how well the data is represented through that basis vector. When
utilising less basis vectors, the data is transformed into a lower dimensional subspace.
The inertia allow for control of the quality for this dimensionality reduction. The
total kept inertia is given by the sum of the inertia for the different basis vector due
to each vector being independent, of any other vector, through their orthogonality.
As the basis vectors are constructed based upon maximising inertia, using the first
few vectors, possibly corresponding to a specific percentile of the total inertia 3, al-
lows for this control. [22, ch. 12]

The previous might as well be a description for dimensionality reduction through
PCA, but FAMD, compared to PCA, works by segregating the data into quantita-
tive and qualitative data, preprocessing these separately before bring the data back
together. After the data is preprocessed, the procedure can follow that of a regular
PCA – by finding eigenvalues and their corresponding eigenvectors. [22, ch. 12][25,
ch. 3]

For the continues qualitative data the preprocessing is the standardisation, described
in subsection 4.1.1, but a likewise procedure cant be performed on the categorical
data. If the categorical data is labelled with regard for some hierarchical order, some
methods for data processing can handle this type of data. If the methods can han-
dle this, the categorical data is seen as a quantitative variable. FAMD requires the
quantitative data to behave as for MCA (disjunct table with normalisation indicator),
rewriting the qualitative data as a binary indicators and expanding the number of di-
mensions, letting each dimensions corresponding to a qualitative category. [25, ch. 3]

3Total inertia – sum of the inertia for all basis vectors.
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Chapter 4. Preprocessing and simple clustering

In [25, ch. 3] it is argued that in order for the inertia, for the qualitative data,
to have the same inertia properties of MCA, the binary indicators should be divided
by the proportion of individuals whom posses each of the specific categories.
When this is the case and the data is setup for a regular PCA to be performed on
the data. [25, ch. 3]
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5 | Autoencoder and neural net-
works.

In this chapter the relevant theory for neural network, and how it will be used in this
thesis, is introduced. One of the common uses for neural network is classification,
where the neural network attempts to learn how to classify through labelled data.
This supervised learning focus on feature learning and extraction of the data, in
order to perform classification, with a specific combination of features equating to a
specific class. As labels are a limiting factor for this project a different approach to
neural networks will instead be investigated.

In chapter 4 FAMD was introduced as a way to handle categorical data and possibly
perform dimensionality reduction. Another method for handling this type of prob-
lems is Autoencoders. An autoencoder is a machine learning method that is trained
to find a representation of the data by extracting information from the data, produc-
ing a "code word". The "code word" can then be utilised to reproduce the original
data by use of a decoder, as such the code word contains the essential information
needed to reconstruct the original data. [26, ch. 14]

A problem with FAMD is that it doesn’t gleam the entire time series as a single
entity. It can only take information from the packets and decide what observed
value has the largest variance, compared to all other values, and doesn’t take statis-
tical properties between packets into consideration.

The goal of the transformations is to achieve a feature space, for which classification
can be performed. If this feature space allows for clustering methods to classify the
applications, the problem with labelling of data can be circumvented or atleast re-
duced.

The unsupervised clustering, as previously mentioned, doesn’t require labels to find
the different clusters only to associates the clusters, if possible, to the associated
applications. As the encoder can train on unlabelled data, any collected data can be
used for this training. Once the encoder is trained it can then be used to transform
a subset of the data, containing labels, on which clustering can be performed and
labels associated.

Depending on the quality of encoders, in conjunction with the possible dimension re-
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duction, loss of information might occurs in the procedure of encoding and decoding
the information.

5.1 Recurrent neural networks and Gated Recurrent Units

By looking at the captured data as time series some nice properties can be exploited.
Instead of having each packet be an individual value, a data point might, when seen
in the context of the entire time series, behave predictively. Any STA can of course
change behaviour from one time instance to the next, depending on the whim of the
user. Though unless only a single packet is transmitted for an application then some
association between packets is expected. Another advantages of using a recurrent
model is that it allows for calculations of properties, without having to specify it to
the network – i.e. calculating a rough throughput, with the problem it entails, can
be ignored letting the model itself find and calculate information.

Neural networks are self taught based upon the data and choice of hyper param-
eters and are expected to approximate some function f , such that f(x) for any data
x corresponds to the labelled true output y. Even though a manual approximation
or derivation of f might be cumbersome a neural network will try and approximate
it. [26, ch. 6]

A blind approach with neural networks, though possible, might not yield noteworthy
results, as such exploiting prior knowledge of the data and behaviour leads to a bet-
ter approximation of f . By repeatedly training the neural network on the data set,
it is expected to become better at identifying the features of the data, for which the
different labels corresponds. The function, f , is expected to find the right labels no
matter the data, . This is often one of the elements investigated by having dedicated
training and test data with no overlap between the two set.[26, ch. 6]

In order to successfully train a neural network, the required data needs to be repre-
sentative of the given scenario. If a scenario is wrongfully under or over represented
in a data set it can skew the classifier. This is often one of the advocates for more
data being better.

A Recurrent neural network (RNN), is a type of neural network that allows informa-
tion from previous calculations to linger and influence calculations later on. The in-
put for such a network is sequential data, such as a time series x = {x⟨0⟩,x⟨1⟩, . . . ,x⟨T ⟩}.
Figure 5.1, is a visualisation of a simple RNN with input x, output O and hidden
state H. The specific way the RNN stores and passes along information is depen-
dent upon the specific type of RNN, with e.g. some network types being bidirectional
passing information both forwards and backwards in time. [26, ch. 10]

34



5.1. Recurrent neural networks and Gated Recurrent Units

5.1.1 Gated recurrent unit

A gated recurrent unit (GRU) is a type of RNN network that use a gated architec-
ture in order to prevent gradient problems and manage information flow [27]. The
performance for a GRU is comparable to that of Long-short term memory (LSTM)
[28], though have the advantages of a simpler gating mechanism and the need for
fewer calculations.

Neural network "Historically" works by having neurons as active and inactive, with
the specific combination of activate and inactive neurons yielding the output of a
layer. This methodology has later subsided, especially with activation functions
such as the Rectified Linear unit and variation here of, outputting any positive real
value. Though the methodology has changed the naming have stuck around, as such
the activation for a GRUs hidden unit is given by the following set of equations

r⟨t⟩ = ϕs ([Wrx
⟨t⟩
+ br]+ [Urh

⟨t−1⟩
+ ur]) (5.1)

z⟨t⟩ = ϕs ([Wzx
⟨t⟩
+ bz]+ [Uzh

⟨t−1⟩
+ uz]) (5.2)

ĥ⟨t⟩ = ϕt ([Wĥx
⟨t⟩
+ bĥ]+ [Uĥ(r

⟨t⟩
⊙h⟨t−1⟩

)+ uĥ]) (5.3)

h⟨t⟩ = (1− z⟨t⟩)ĥ⟨t⟩ + z⟨t⟩h⟨t−1⟩ (5.4)

where ϕ is an activation function, either sigmoid ϕs or tanh, ϕt and (5.4) is the
activation. [29] Throughout the set of equations, {(5.1)(5.2)(5.3)(5.4)}, W∗ is the
learned weights associated to the input values and U∗ the learned weights associated
with the previous hidden state. b∗ and u∗ are the learned biases for the network.
1 Though the bias in these equations is represented with two different values, one
corresponding to the current input and one for the previous hidden state, the bias is
train and calculated as a single entity. Figure 5.2 depicts the flow of information of
a GRU cell.

Information flow for any hidden unit is regulated by the gated architecture of the
GRU. The activation value for a specific hidden unit for time step t, e.g. h⟨t⟩, is,
as per equation 5.4, a weighted combination of the activation value for the previous
time step, t− 1, and the new value ĥ. The exact weight of these values is regulated
by what is known as an update gate, z [29]. The update gate value is always between
0 and 1, as per the definition of the Sigmoid function,

ϕs(x) =
1

1+ e−x
,

and as such the weight of z and 1 − z can be seen as a choice of the old or the
new hidden state. Though the Sigmoid function predominantly output values close

1The ∗ is used as a substitute for the multiple appearances of weights and biases.
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Figure 5.1: Unfolded Recurrent neural network.
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Figure 5.2: Gated recurrent unit cell – expanded.
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5.2. Autoencoder

to 0 and 1, it maps any real value into the range {0, 1}, ϕs ∶ x ∈ R → {0, 1} imply-
ing that the activation value can be upto a 50/50 mix of the old and new hidden value.

The value, ĥ, contains the reset gate, r, given in (5.1). The reset gate enables
the network to drop the previous hidden state and only update the new hidden state
through the current input values, as per (5.3). As with the update gate, the reset
gate is a value passed through a Sigmoid function but unlike the update gate, the
reset gate is used through the Hadamard product2 between the reset gate and the
previous hidden state in (5.3). If both the update and reset gate is 0 or close to
it, then the new hidden state for time t, is only depending upon the input values
dropping any information from the previous state.[29]

5.2 Autoencoder

Autoencoders can consist of any type of neural network architecture the user wants.
If a neural network is used for classification, the data x and the labels Y is used to
train the neural network, but as the best representations of x is unknown this can’t
be used as a label for training the encoder. Instead the neural network is trained
in an unsupervised manner exploiting the properties of neural network architecture.
[26, ch. 14][29],[24]

The objective of the encoder is to map the input, x, to a code word, h, with a
compact representation. Compared to a regular neural network where the goal is to
find some function f(x) = Y for all inputs x and associated labels Y . Autoencoders
simply "search" for or "construct" a function E(x) = h, by also training the inverse
function D(h) = x̄, such that

D(E(x)) = x̄.

The idea is then to training a neural network to reconstruct x or in other words have
x̄ = x. The loss function used in training a neural network with that type of premise
can be a measure of dissimilarity between the input and the output.
Once the entire network is trained to reconstruct x, the encoder part of the neural
network architecture can then be used independently. As such for autoencoder it is
still of interest to find a function, E(x) = h where h is the compact representation,
but the entire setup can be trained in an unsupervised manner with x as both the
input and target. [26], [29]

2Element-wise/entry-wise multiplication between two matrices.
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Chapter 5. Autoencoder and neural networks.

5.2.1 Autoencoder model

The following section contains information about the used Autoencoder model ar-
chitecture, as well as the data and data management needed in order to utilise the
network. This includes input/output dimension and what exactly is going on beside
what a single GRU cell is.

A neural network architecture is defined by its hyperparameters, these are any pa-
rameters not directly optimised through the training of the network.
For a single GRU cell the only hyperparameter is the "depth" or hidden size of the
cell replacing the conventional notations of neurons in a network. This hidden size
specify the dimensions of the output for a GRU cell, and as such the the number
of weights that is to be trained. Multiple GRU cells can be used in conjunction by
stacking the cell on top of each other creating multiple layers in the RNN network.
This allows for the model to achieve greater complexity through a hierarchical fea-
ture representation. [28]
If the stacking of GRUs is utilised the input to the GRU cell in a later layer to a
specific time step, is the output value for the previous layer at the same time step.

As previous mentioned, the overall input to a GRU cell is a time series, with a
batch consisting of multiple time series. Each time series consisting of individual
data points, in this thesis corresponding transmitted packets. The recurrent nature
of the network allows the values for older time steps, to influence the output for the
current time step. Whence the entire time series have been run through the network,
for each of the time steps, a hidden state is calculated by the GRU cell. By this, two
elements of interest occurs. The first element of interest is the features extracted,
the hidden state, for each of the time steps. And the second element of interest is
the hidden state of the last time step n. The hidden state for the last time step has
had to take all information, from any of the previous time steps, into consideration,
where as the features/hidden state for each of the time steps is dependent on the
evolution of the time series. Both the last hidden value and the collection of values
is used when an autoencoder is constructed from GRU cells.

The autoencoder model consist of three independent models, encoder, center and
decoder model, with figure 5.3 depicting the architecture of a simple multilayered
autoencoder.

The encoder and decoder models are in architecture, two identical RNNs consist-
ing of stacked GRU cells following the flow of picture 5.2. The center model is a
Fully connected neural network network (FNN) – A linear combination inputs and
weights, Wx + b, passed through an activation function – with as many neurons as
the depths of the GRU cells. As an intermediate value, the center model acts as both
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Encoder

Center
Input Output

Code

Decoder

zX X̄

Figure 5.3: Theoretical three layers autoencoder architecture.

the output layer of the encoder, as well as the input layer for the decoder. For neural
networks the number of layers are conventionally only used to refer to the number
of hidden layers. With the autoencoder, in theory consisting of multiple models,
the number of hidden layers, for the overall model, is one greater than the sum of
the encoders and decoders hidden layer – Since the layer between the encoders isn’t
hidden in regular terminology [26, ch. 6]. In order to encompass the entire autoen-
coder in independent network components the center model is thus used. In figure
5.3 the center model (code word), h, is depicted as belonging to both the en- and
decoder.[24], [29]

As input the autoencoder takes in a variable length time series calculating hidden
values for each of the time steps in the time series. The last hidden state calculated
by the encoder have taken the entirety of the time series into consideration. This
hidden state is the end product of the encoder model and the value passed on to the
center model.

The decoder is expecting a time series as its input, just as the encoder, but is only
passed the hidden state from the encoder through the center model. This hidden
state or code word, is passed to the decoder model as its initial hidden state, h−1,
along with a start of sequence value, e.g. a null value. From the start of sequence
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value and the hidden state, the decoder can perform a calculation for a single time
step, x̄0. This value, the feature output for the decoder model, is the first output
value of the encoder-decoder model. In the optimal situation the first output of
the decoder should be identical to the first value of the input time series, x0. The
decoder output for its first time step, x̄0 , is then used as the input for the decoder
at the second time step, with the process iterating for the entire time series. [24], [29]

Multiple different sets of weights is trained per GRU cell. Compared to the con-
ventional FNN where a set of weight is trained for each layer with the dimensions of
the trained weights, W , fitting to the input value and the number of neurons in the
layer, a GRU cell have a set of weights for each of its gates and its new hidden value.
The dimensionality of each of these weights, w∗, is the same as that of a single FNN
layer.

Even if a single GRU cell requires more computation, compared to a single layer
FNN (of related dimensions), and further requires a larger number of weights, it has
the distinct advantages of handling variable length inputs, while producing a fixed
length codeword. With the codeword produced by the encoder being the last hidden
state of a GRU cell, the dimension of the code word is always M = L ×D, where L
is the number of layers and D the depth of the GRU, no matter the length of the
input time series.[24], [29]

By transforming any length time series to a fixed length one, any two time series will
become comparable. The end goal is thus to investigate if time series fixed length
representation contain the necessary information to determine the application, for
which the time series is associated. This is all under the assumption that the time
series are fully defined by the active application, in conjunction with transmissions
conditions of the network.

5.2.2 Teacher Forcing

Teacher forcing is a method for training sequence autoencoders. This methods can
be used to speed up both the training and the convergence of the autoencoder net-
work. Instead of using the predicted features from the previous time step as the
input feature to the decoder in the subsequent time step, the teacher forcing method
rely on a supervising teacher correcting the errors of the model before the output
value is used as the following input value.

Under normal circumstances the input values for the decoder when training an au-
toencoder or when purely using the decoder, are values for which most are calculated
by the decoder itself. Starting out with the a start of sequence character, in this thesis
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a null character, a sequence would be given as:

null, x̄0, x̄1, . . . , x̄n−2, x̄n−1

in such a sequence only the initial null value is given, with the rest calculated by the
decoder.[30] In practice teacher forcing is performed by substituting the calculated
values, x̄, with values from the original time series, x, such that the decoder input
series become:

null, x0, x1, . . . , xn−2, xn−1.

With the use of teacher forcing the training of the autoencoder is expected to con-
verge faster as the input for the decoder, is now a constant value for every epoch
and doesn’t change when weights are updated – reducing the number of necessary
training epochs. A constant input value allows for a more direct updating of the
weights, as the error isn’t calculated based upon "wrong inputs", with errors possibly
accumulating with the passage of time. In other words, the system doesn’t first have
to learn how to correctly encode the first value, and then the second etc. but the
weight can be updated for a correct input of an entire time series. [24], [30]

Further advantages for the training time can be achieved, by using known input
values for every time step. Besides possibly achieving a faster convergence for the
weights, it is possible to perform an increased number of calculation in parallel –
reducing the calculation time, per training epoch. Instead of having to wait for the
results of the previous time steps, the calculations for any given time step can be
completed – The calculation of x̄i can be done simultaneously with x̄i−1, since x̄i−1
isn’t used in the calculation of x̄i, when using teacher forcing.

Though teacher forcing can speed up the process of training a neural network, it
can be memory intensive depending on the implementation. The naive solution, is
to generate a time series from the first n − 1 values of the original data and the
prepend a null values at the start. This new time series, in conjunction with the
original data, can then be used with one-to-one values, as the new series corresponds
to the correct decoder input for any given data point, with the same index. If point-
ers to the original data isn’t utilised, and instead a copy of the old data is created,
the total amount of data is doublet compared training without teacher forcing.

Often, as in the case for this thesis, a GPU is used for training neural networks.
Though a GPU is good performing calculation, transferring data to and from the
GPU is a relative slow process. With limited computational storage, especially for
the easily accessed RAM memory duplicating the data bad memory management
can be a potential consideration. [31, ch. 1]
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6 | Training of autoencoder and
backpropagation through time

In this chapter the theoretical and practical aspects of training autoencoders and
GRU cells is introduced. This includes derivation for the backpropagation of the
error through time, for the first few time steps, and how this can be used in updat-
ing/training the autoencoder.

6.1 Backpropagation through time

Neural networks is an optimisation problem with the goal of minimising the objective
function, often some measure of difference between a target and the output of the
network. The optimisation is performed using a gradient based uptimisation algo-
rithm, in this thesis the adam algorithm [22]. Gradient based optimisation work by
calculating the gradient of the objective function, with respect to the current weights
of the network, ∂E

∂wji
. The following is the back propagation of the gradient for a

GRU cell for the first time steps.

For the autoencoder, the last GRU produces output values for the time series. As
previously mentioned this value can be compared to the input values and a measure
of dissimilarity can be calculated. If the error function is differentiable then the
gradient, with respect to the weights, W∗, can be calculated and back propagated
through the network.

An example for such an error function is the `2-norm, such that

Et =
1
2
(ht − yt)

2,

where ht is the hidden state from the GRU at time step t, with yt the corresponding
target.

The total error, E, for all the time step, is the summation of the errors for the
different time steps,

E =∑
t

Et.
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This type of error backpropagation, is sometimes referred to as backpropagation
through time, as the change of error is investigated for the different time steps.

There is a total of six different weights that needs to be taken into consideration
for a given hidden state, as per the set of equations, {(5.1)(5.2)(5.3)(5.4)}. As dif-
ferentiation is linear, an option would be to start with the first time step and iterate
through all value possible time steps. For a conceptual understanding of the Gradi-
ents behaviour, the gradient for the first few times steps is derived for one of the six
weights, in this case the weights of the update gate, z.

In order to derive the gradient for GRU cell it should be noted that the reset gate,
(5.1), update gate, (5.2), and the new suggested hidden state, (5.3), are composite
functions of weights, as such the chain rule is to be used. In order to distinguish
between the outer and inner functions for these equations a subscript is introduced,
such that:

z⟨t⟩ = ϕs ([Wzx+ bz]+ [Uzh
⟨t−1⟩

+ uz])

∂z⟨t⟩

Wz
= ϕ′ ([Wzx+ bz]+ [Uzh

⟨t−1⟩
+ uz]) (x⟨t⟩)

=
∂z
⟨t⟩
o

∂z
⟨t⟩
i

∂z
⟨t⟩
i

∂Wz
,

where o is the out function and i the inner function. The above equation only holds
for time steps given that previous hidden states h⟨t−1⟩ isn’t dependent on Wz.

For the first time step, t = 1, the initial hidden state h⟨0⟩, can be seen as a con-
stant within the scope of the specific GRU, even though it might not be in the
context of the entire neural network. With h⟨0⟩ a constant value, E1 only depends on
Wz through the update gates themself, and as such the partial derivatives through
the use of the chain rule is

∂E1
∂Wz

=
∂E1

∂h⟨1⟩
∂h⟨1⟩

∂z
⟨1⟩
o

∂z
⟨1⟩
o

∂z
⟨1⟩
i

∂z
⟨1⟩
i

∂Wz
, (6.1)

or with the equations inserted and derived and using the `2-norm for the error:

∂E1
∂Wz

= (h⟨1⟩ − y) (h⟨0⟩ − ĥ⟨1⟩) (ϕs(Wzx
⟨1⟩

+Uzh
⟨0⟩

+ bz)(1−ϕs(Wzx
⟨1⟩

+Uzh
⟨0⟩

+ bz))) (x⟨1⟩).

Like wise the above can be done for any of the other weights, e.g. Wr,

∂E1
∂Wr

=
∂E1

∂h⟨1⟩
∂h⟨1⟩

∂ĥ
⟨1⟩
o

∂ĥ
⟨1⟩
o

∂ĥ
⟨1⟩
i

∂ĥ
⟨1⟩
i

∂ro

∂ro

∂ri

∂ri

∂Wr
.
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The number of calculations that needs to be performed in order to calculate the
gradient for the second time step increases, due to the models recurrent nature. The
partial derivative of E2, with respect to Wz, is as with E1 only depending through
the current hidden value, h⟨2⟩,

∂E2
∂Wz

=
∂E2

∂h⟨2⟩
∂h⟨2⟩

∂Wz
,

though, where the first hidden state only dependent upon Wz through the update
gate for the second time step, it also depends on Wz through the previous hidden
state. The previous hidden state is used in calculating both the current reset and
update gate, as well as the new suggested hidden state, and is, in itself, also used in
the calculation of the new hidden state. The following is the partial derivative of the
second time steps hidden state with regards to Wz. In order to keep the information
comprehensible, and to explain the different steps, the derivative is split up for the
gates and hidden state through a line break.

∂h⟨2⟩

∂Wz
=
∂h⟨2⟩

∂h⟨1⟩
∂h⟨1⟩

∂z
⟨1⟩
o

∂z
⟨1⟩
o

∂z
⟨1⟩
i

∂z
⟨1⟩
i

∂Wz
(6.2)

+
∂h⟨2⟩

∂z
⟨2⟩
o

∂z
⟨2⟩
o

∂z
⟨2⟩
i

⎛

⎝

∂z
⟨2⟩
i

∂h⟨1⟩
∂h⟨1⟩

∂z
⟨1⟩
o

∂z
⟨1⟩
o

∂z
⟨1⟩
i

∂z
⟨1⟩
i

∂Wz
+ x⟨2⟩

⎞

⎠
(6.3)

+
∂h⟨2⟩

∂ĥ
⟨2⟩
o
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o

∂ĥ
⟨2⟩
i

⎛

⎝

∂ĥ
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i

∂h⟨1⟩
∂h⟨1⟩
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o
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i
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⎞

⎠
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+
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o
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∂ĥ
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∂z
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∂Wz

⎞

⎠
(6.5)

The first partial derivative that is taken into consideration is with respect to the first
hidden state, h1, in equation (6.2). This partial derivate is similarly to that of (6.1),
though with the addition of the partial derivative of the second hidden state, with
respect to the first.

For (6.3) the change of error through the current update gate, while changing Wz, is
derived. As with the first time step Wz is used in calculating the current value of the
update gate, but as with (6.1), h⟨1⟩ is also used when this calculation is performed,
as in:

z
⟨2⟩
i = (Wzx

⟨2⟩
+Uzh

⟨1⟩
+ bz)

The partial derivative of z⟨2⟩i , with respect to Wz, is as such the partial derivative of
h⟨1⟩, through further use of the chain rule, and the derivative of Wzx

⟨2⟩, for Wz, i.e.
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the last x⟨2⟩ in (6.3).

For equation (6.4) and (6.5), ĥ⟨2⟩ is the focus. Wz is used in this calculation through
the previous hidden value and the previous hidden value in the reset gate. These
two values is multiplied using the Hadamard product as described in chapter 5, and
as such the product rule is used creating the split into the two different functions,
with the differences inside the parenthesis.

This general notation used for the partial derivative, not only gives insight into the
chain of partial derivatives that is to be performed in order to calculate the gradient,
but also how computational tricks can be used to speed up the process. Note how a
lot of the computations from (6.1) is repeated through the partial derivative for the

second time step. When ∂h⟨1⟩

∂z
⟨1⟩
o

∂z
⟨1⟩
o

∂z
⟨1⟩
i

∂z
⟨1⟩
i

∂Wz
is calculated once, the value can then be

reused for later calculations.

Future time steps are all reliant on the previous hidden values, due to the recur-
rent nature of the model, and as such values from previous time steps are repeated
in the in future calculations. Calculations can be saved and hence the training can
be speed up compared to a direct calculation, by starting in a chronological order.
With the calculations being dependent on the length of a time series, and the finite
memory of computers, a limitations for calculating the exact gradient can occur if
a time series is of a certain length – with the length dependent on the computers
limitation. In order to, atleast, get an approximated gradient the calculation can be
initiated as normal but then be truncated / stopped before the computer runs out
of memory.

As previously mentioned exploiting and vanishing gradient can be a problem for
RNN networks. With the current value directly dependent on the previous time
step, e.g. as in (6.2), a chain of partial derivative, for later time steps, would all be
dependent upon every previous values. This will lead to

∂h⟨t⟩

∂W
=

∂h⟨t⟩

∂h⟨t−1⟩
∂h⟨t−1⟩

∂h⟨t−2⟩ . . .
∂h⟨2⟩

∂h⟨1⟩
∂h⟨1⟩

∂W
,

where W is the weight for which the error gradient needs calculation. If the gradient
for these value where all less than 1, and the only values used in the calculation (As
typical with a RNN network [27]), the problem of vanishing gradient arises, as

n

∏
i=0
gi → 0

with 0 < gi < 1 for any i and n→∞. With the finite precision of a computer, n only
have to reach a large enough size for the value to become zero. If this is the case the
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gradient is said to vanish and the information for how the weights should be updated
is lost.

6.2 Training and the gradient step

When the gradient is calculated the weights can be updated through the gradient
step,

Wnew =Wold −λ
∂E

∂W
,

where λ ∈ R+ is the, not necessarily fixed sized, learning rate and W ∈ R the weights
that needs updating. The learning rate is the step length of the gradient step and
should be chosen sufficiently small to not overstep the minimum. This is the basis, for
gradient optimisation algorithms widely used in neural network optimisation. The
error function have the largest rate of decrease by updating the weights along the
negative gradient the error function [22, p. 240]. Though overstepping the minimum
isn’t in itself a problem for the training, it can possibly lead to oscillation around a
minimum.

Under certain constrains for the objective functions1, a global minimum can be
reached using this type of methods, especially can the learning rate for the gradient
step be calculated. This isn’t expected to be the case for neural network, among other
due to its use of non-linear layers. The learning rate needs to be small enough in order
to reach the global/local minimum, but the training time for the model should also
be taken into consideration – A smaller learning rate leads to smaller updates to the
weights. With the weights being iteratively updated through the gradient decent an
increase in the amount of iterations required to reach the minimum is an increase in
time and amount of required computations. Though the training time doesn’t change
the usefulness of a model it can be a constrain if a problem is to be solved. [22, ch. 5]

When a model is constructed via a neural network it is entirely based upon the
data, for which the network have trained. To circumvent this the goal of the neural
network is generalisation, instead of reaching a null error. When the goal is gen-
eralisation to new unknown data the optimal solution for the given data set might
not correspond to the best solution overall. If an adequate loss is reached then the
optimisation can be seen as good enough for the task at hand. This is also the reason
why a local minima can be acceptable for training the neural network, compared to
a global minimum.

1i.e. convexity – It can be proven that if the functions is convex all local minima are global
minima
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When a neural network is repeatedly trained, possibly reaching a null error, the
generalisation might falter. When this is the case the neural network has been over-
fitted and will be evident from unstable validation data. [26, ch. 7].
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7 | Preliminary data processing
results

Throughout this thesis three different data processing methods, standardisation,
FAMD and autoencoding, have been introduced. This chapter introduces the pre-
liminary results for these methods, such as the possibility of data reduction through
inertia analysis with FAMD and the training results for the autoencoder.

7.1 FAMD – Inertia analysis

As mentioned FAMD allows for dimensionality reduction, through the analysis of
inertia, similarly to the more known method of PCA. Furthermore, FAMD will ini-
tially expand the dimensions of the categorical data, allowing a new dimension per
categorical label.
As FAMD allows for handling the categorical data, it allows for direct use of clus-
tering after the transformation. By keeping a large amount of the information from
the data and reducing dimensionality, clustering can be made easier.

By taking the data, portrayed as in chapter 2, and performing dimensionality re-
duction through FAMD, it allows for a direct comparison between this new and old
data. Firstly the inertia can be calculated as explained in chapter 4 and plotted in
order to investigate the possible reduction for the dimensions.
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Chapter 7. Preliminary data processing results

(a) Inertia for the data cumulative with 95%
visualised.

(b) Original data before FAMD displayed as
in chapter 2

Figure 7.1: Cumulative inertia and data reduced to 2 dimensions.

Figure 7.1a is the cumulative inertia plotted for the same data as what shown in
figure 7.1b, utilising the expanded data formate shown in 4.1, but visualised as from
chapter 2. Unlike the data already shown in chapter 2, this captured data has a more
sporadic activity through out its entirety. The expanded dimensions, for this data,
increase the dimensions to 25 in total, resulting in the same number of possible di-
mensions to keep and thus the same number of different inertia values. As is evident
from figure 7.1a, most of the inertia is in just a few dimensions. In fact 70% of the
total inertia comes from just a single dimensions, with the two largest corresponding
to 78% of the total inertia in combination.
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7.1. FAMD – Inertia analysis

Figure 7.2: Data transformed via FAMD down to 2 dimensions.

With +95% of the total inertia from just 6 components, and the later components
corresponding to 0.7% or less of the total inertia, reducing the dimensions to 6 is
an option. By keeping 6 components most of the information is kept while adding
further components, adds little to no additional information. Figure 7.2 is the same
data as in 7.1a and 7.1b, but with two kept components.
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(a) Inertia for the data cumulative with 95%
visualised.

(b) Data transformed via FAMD down to 2
dimensions.

Figure 7.3: Cumulative inertia and data reduced to 2 dimensions.

In order to make sure that every data point is handled identically, it isn’t an option
to just reduce every captured data, or new captured data, to the same dimensions.
Instead a basis vector is created through FAMD, by looking at every data point.
This is an option since every data point have a value, in and of itself, and isn’t forced
to be in the context of its entire time series.
Figure 7.3a is again the cumulative inertia plotted in descending order as previously
seen, with figure 7.1a. The behaviour for the entire dataset is similar to that of the
single capture from figure 7.1a. With the similar behaviour the same reasoning can
be used, reaching the same conclusion. A change in dimensionality to between 6 or
9 results to between 92% and 97% of the total inertia. With the added data creating
a more diverse dataset, the total number of possible components to keep is 29.

The found basis vectors can then be used for transforming the data and cluster-
ing can be performed.

As is apparent from figure 7.3b, some natural clusters occur in the data when it is
transformed into a 2D space, as such this is also utilised. As with the autoencoder,
the best representation might not be the best for application identification. With
just two components 70% of inertia is kept, indication that much of the information
is still available.

7.2 Model validation and Training results

This section introduces the training results of the autoencoders training and the re-
sults on the validation data for specific epochs. This section further elaborates on
the behaviour observed during the training and discuss probable cause and effect as
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well as explain the observed behaviour.

When an autoencoder is trained, the best possible error for a given set of hyper-
parameters is not necessarily 0. As mentioned with the presented GRU setup, time
series are reduced in size till a M = N ×L dimensional vector. In theory, if all time
series are of length less than m, the autoencoder can learn the indicator function,
with the encoded value being identical to the input. When the indicator value is
learned, the autoencoder will inherently just pass value through the different layers,
leading to no reduction in dimensionality, but also no features extracted.

Compared to FAMD, where the dimensionality reduction id based upon the cal-
culated inertia, the quality of the autoencoder isn’t that henceforth. The quality of
the encoding, from an autoencoder, is dependent upon the specific weights trained
or in another word the specific minimum reached.

7.2.1 Loss and validation-loss

Given a set of hyperparameters, the training the data the autoencoder is observed
to converge.
When training the neural network a few things is of interest. First of, its of interest
to see if the neural network with a given setup converges, observing a reduction for
the loss function as the neural network is exposed to more and more data. When this
is the case the neural networks is shown to be able to learn from the setup which, in
this thesis, corresponds with learning the encoding scheme.

(a) Autoencoder loss for 32 and 136 neurons (b) Autoencoder validaion loss 32 and 136
neurons

Figure 7.4: Loss and validation loss.
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Figure 7.4a shows the losses as a function of epochs for the autoencoders, with 2
layers as well as 32 and 136 neurons as the hyperparemeters. As can be seen from
figure 7.4a the autoencoder is able to learn an encoding scheme, reducing the loss as
the number of epochs increases. For the hyperparemeters, an increase in neurons is
as mentioned also a decrease in the dimensionality reduction. This corresponds well
with the results shown on figure 7.4a, with 136 neurons achieving a slightly better
loss at the cost of not reducing the data as much.

Having the neural network iteratively validated, gives insight into the networks be-
haviour for unknown data. Figure 7.4b is the corresponding validation loss from
figure 7.4a. The number of calculated validation losses is significantly fewer, than
for the regular loss, in order to save time doing training. When calculating the vali-
dation loss it isn’t an option to utilise teacher forcing as described in chapter 5 – as
this methods can only be used during training – resulting in an increased calculation
time. As the general behaviour can still be observed, the obvious choice is to simple
not calculate as many validation losses.

Though the validation losses isn’t tracked for every single epoch, it is still evident,
from figure 7.4b, that when epochs increases validation loss decreases. In other words,
the behaviour of the loss for the validation data is similar to what is observed for
the training data. That the validation data achieves better results as the number
of epochs increases indicate that, not only does the autoencoder learn the training
data, it generalises to the validation data as well.

(a) Autoencoder loss for 32 and 136 neurons
– scaled axis.

(b) Autoencoder validaion loss 32 and 136
neurons – scaled axis.

Figure 7.5: Loss and validation loss with scaled axis.

It is worth noting the large difference in loss values between the training and vali-
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dation data. Figure 7.5, is the same images from 7.4, but with axis scaled such that
the loss axis is identical. Though a difference between the loss for the training and
validation data is expected, the loss of the validation data for the last checked epochs
is around 12500, with the corresponding loss for the training data at around 3000.

A major difference between the two values is that when evaluating the validation
data, as previously mentioned, teacher forcing can’t be utilised. The reason why this
is worth noting, is that every consecutive value for the validation is from the previous
predicted value, compared to the previous correct value, as explained in chapter 5.
If the neural network isn’t great at decoding when an error occurs, then any error
might accumulate through the system.

Another thing to take into consideration is that a good autoencoder wont neces-
sarily correspond to a good application identification. To reiterate – the reason for
using an autoencoder is to let the encoding identify/extract information useful for
performing the identification, as the unencoded information doesn’t directly give this.
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8 | Results

In this chapter the results of the clustering achieved, with the different preprocessing
methods, is introduced with the goal of investigating how useful the found methods
are, along with clustering, to identify application through the Wi-Fi traffics meta
data.

In order to actually infer anything, a need for investigating how the clusters cor-
respond to the different label occur. Every method used in this project are unsuper-
vised learning – letting the data speak for itself. In order to evaluate the methods
and cluster, the rough labelling is used in conjunction with these different methods.

The clusters doesn’t inherently belong to a specific label and the described clus-
tering methods will always find exactly the number of clusters asked for. In order
to investigate the performance a confusion matrix is used – counting the number of
correctly classified variables.

If the problem is reduced to the binary case of either Skype activation (VoIP) or
no Skype activation (Non-VoIP) the problem is reduced to four different cases – with
two clusters created. If it is assumed that the two produced clusters, either belong to
the Skype or non-Skype group, it is possible to investigate which cluster a variable
belong too. If a wast majority of variables belong to one cluster, and not the other,
all with the same label, the assumption is then that this specific cluster correspond
to the given label.
By setting this up in a 2 × 2 matrix, with the rows and columns corresponding to
either labels or a cluster, ordered such that the sum/product of values in the main
diagonal is larger than the sum/product of the anti-diagonal, a confusion/matching
matrix is constructed, with the pairing in the diagonal equating to the label cluster
pairing. The reason for investigate the product or the sum between the values will
become evident shortly.

For this simplified binary case with either Skype or non-Skype grouping, the setup
corresponds to a True false question. The variables then fall into either a True posi-
tive/negative or a False positive/negative for whether a variable is classified correctly.
The four different entrances in the binary confusion matrix corresponds with one of
these true/false classification – Typically the first entrance in the matrix is made to
correspond with the true positive.
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From the true/false positives and negatives the performance for this type of clas-
sification can be evaluated. A possible metric is to simply calculate how good the
system is to correctly identify positives and negatives compared to the total number
classification,

ACC =
TP +TN

P +N
. (8.1)

For (8.1) TP and TN refer to True positive and negatives, where as P and N refers to
the total number of positive and negative predictions respectively, e.g. P = TP +FP

where FP is the number of false positives. If the sum of the main diagonal (TP +TN)
is greater than that of the anti-diagonal (FP +FN) then the accuracy is as a mini-
mum above 0.5.

The problem with using this type of accuracy would be, if the data is unbalanced
with one class dominating another. If so, a high accuracy can be achieved if a sys-
tem categorise everything identically even though it is unable to distinguish between
classes. Another metric that take this fault into consideration is the Youden’s J
statistic, a value often used in conjunction with receiver operations curve analysis.
Youden’s J statistic is given by:

J =
TP

TP +FN
+

TN

TN +FP
− 1 = TPTN −FNFP

(TP +FN)(FP +TN)
. (8.2)

[32]
Compared to (8.1), if everything is classified identically then J = 0, and the method
is useless. Furthermore, from equation (8.2) it is worth noting, that the product
between the true positive and negative is directly compared to the product between
the false positive and negative. This further differs Youden’s J statistic from the
accuracy calculation. The two methods can then be used depending on what is of
interest interested in – How many correct classification performed or should wrong-
fully classification be taken into consideration. By utilising Youden’s J statistic it is
possible to achieve a negative value, if the the combination if the product of the true
positive/negative is less than the product between the false positive/negative.

In Youden’s paper, [32], he states that J ∈ [0, 1], though as evident from (8.2) it
can take on negative values. It is worth noting that Youden’s J statistic originally
isn’t designed for this matching of values, instead only for cases with a specific posi-
tive/negative outcomes and fully labelled data.

A problem arises for evaluating in the non-binary case. When dealing with the
non-binary case, the need for calculating the number of correctly classified variables
arises. The matching between the different clusters and labels become cumbersome,
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as the number of possible combinations increases with factorial speed. Furthermore,
the notion of True/False positives/negatives doesn’t work for an increased number
labels, as such the use of Youden’s J statistic isn’t an option for the non-binary case.
When evaluating the non-binary case the accuracy from (8.1) is used in stead, in
conjunction with the confusion matrix.

By utilising multiple labels a direct comparison between the predicted labels, from
the clusters, and given labels, from the dataset, isn’t an option. The fact that the
labelling results in values si ∈ [0, 1] with ∑i si = 1 for every data point, time series
or packet, is then used. After clustering each data point have received a label, cor-
responding to a cluster. Instead of simply counting the number of different labelled
instances, corresponding to a cluster, the label vectors for each data point in a cluster
is added together. The cluster will each then have a vector associated to them, with
entrances in the vector corresponding to the different labels. The values in these
different vectors are then used instead of the counting the instances. By doing it this
way, the total number of classification still equal to the total number of data points,
even though multiple labels where allowed.

8.1 Clustering results

With some of the data being unlabelled, only the data with an associated label can
be used for the actual comparison and matching between clusters and labels. As
every data point should be taken into consideration, the clusters are created on the
basis of the entire dataset. The following few steps are performed for the different
methods in order to achieve the results.

• Transform all the data with the specific method – Autoencoder, FAMD and
Standardisation.

• Perform clustering on the transformed data.

• Utilise the transformed data with associated labels and see how they fit in
clusters.

• Using one of the described methods for analysis investigate how well the clusters
can be utilised for application identification.

The clustering is investigated against both a binary labelling, and the non-binary
labelling described in chapter 4, and GM is used for the clusters.

8.1.1 Results – Standardisation

Starting out with the binary labelling for the standardised data. The data corre-
sponds to a total of 141508 labelled packets. With the multiple labels, the clustering
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22814.5 49771.5
21223.5 47698.5

Table 8.1: Confusion matrix – standardised binary case.

18910.5 3719 1157.5 15693 20539
0 0 0 0 0

590 120 133 624 1035
11055 3199 1169.5 9461.5 15291
10156 2153 1279 9058.5 16154.5

Table 8.2: Confusion matrix – standardised 5 labels.

achieves an accuracy of 0.5017 or in other words 70995 correctly labelled packet
versus 70513 incorrectly for a total of:

70995
70995+ 70513

= 0.5017

The confusion matrix for this results in table 8.1. As this is the binary case Youden’s
J statistic can be calculated

J =
22814.5

22814.5+ 21223.5
+

47698.5
47698.5+ 49771.5

− 1 = 0.0074.

For the non-binary case, the case with 5 labels, the confusions matrix is given by
table 8.2.
This table is further normalised along the rows, then visualised by a heat map in
figure 8.1.
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Figure 8.1: Confusion matrix for standardised data – 5 labels.

As Youden’s J statistic can’t be calculated the accuracy has to suffice. With a total of
44659.5 corresponding to a correct label class combo, and 96848.5 with an incorrect
combination, the accuracy for this application identification using standardised data
is 0.3155

8.1.2 Results – FAMD

For the FAMD the results are calculated for the different cases, from chapter 7, being
a reduction to, 2, 6 and 9 dimensions. As with the standardised data, results are
also calculated for both the binary and non-binary labelling.

The accuracy results for the three different dimensionality reductions is shown in
table 8.3 with Youden’s J statistic for the binary case given in 8.4.
As for the standardised data, a normalised confusion matrix, visualised with a heat
map is also constructed for the FAMD data.
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Dimensionality reduction. Binary labelling Non-binary labelling
2 0.6879 0.3747
6 0.6887 0.3747
9 0.6878 0.3747

Table 8.3: Accuracy for FAMD transformed data – binary and non-binary labelling

Dimensionality reduction. J
2 -0.0011
6 -0.3112
9 -0.2185

Table 8.4: Youden J statistic for FAMD transformed data.

(a) Confusion matrix – 2 dimensions – 2 la-
bels and clusters.

(b) Confusion matrix – 2 dimensions – 5 la-
bels and clusters.

(c) Confusion matrix – 6 dimensions – 2 la-
bels and clusters.

(d) Confusion matrix – 6 dimensions – 5 la-
bels and clusters.

(e) Confusion matrix – 9 dimensions – 2 la-
bels and clusters.

(f) Confusion matrix – 9 dimensions – 5 labels
and clusters.

Figure 8.2: Confusion matrix heat map for FAMD transformed data.
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(a) All the labelled data transformed via
FAMD with 2 kept components.

(b) Confusion matrix with 2 labels and clus-
ters – clusters made from labelled data.

Figure 8.3: Every labelled data transformed by FAMD and the confusion matrix produced by
clustering exactly this data.

Figure 8.2 is the collection of every confusion matrix produced by the FAMD data,
even the 2× 2 from the binary case.

With FAMD being able to transform the data point into a 2 dimensional space,
a visual aspect of the behaviour can be gained. Figure 8.3a is the FAMD representa-
tion of all labelled packets transformed for visual inspection. Furthermore, clustering
created only on the basis of this data subset is created resulting in an accuracy of
0.6719, with as 8.3b the resulting confusion matrix.

8.1.3 Autoencoder results

The results in this section for the autoencoder correspond to 9 individual models.
The different models is assigned a number, 0 through 8, for which they will be re-
ferred in this section. Table 8.5 contains the model specification, that makes the
given models unique compare to each other – that is the model number, number
of neurons and how many epochs it has been trained. As with the results for the
FAMD the results for the autoencoder is both given in a tables, table 8.6 and 8.7,
and visualised through its confusion matrix. Figure 8.4 is the visualised confusion
matrix for models 6, 7 and 8 1.

For the autoencoder, the best accuracy is achieved from model nr. 0, for the bi-
nary case, and model nr. 5, for the non-binary case. The of the accuracies is greater
than 0.67

1Appendix C contains the confusion matrices for the other 6 models.
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(a) Confusion matrix – model 6 – 2 labels
and clusters.

(b) Confusion matrix – model 6 – 5 labels
and clusters.

(c) Confusion matrix – model 7 – 2 labels and
clusters.

(d) Confusion matrix – model 7 – 5 labels
and clusters.

(e) Confusion matrix – model 8 – 2 labels and
clusters.

(f) Confusion matrix – model 8 – 5 labels and
clusters.

Figure 8.4: Confusion matrix heat map for Autoencoder transformed data.

Results for 8 different models:

64



8.1. Clustering results

Model nr. Neurons Epochs
0 128 100
1 128 20
2 136 100
3 140 100
4 140 120
5 140 150
6 32 100
7 64 100
8 64 20

Table 8.5: Model hyperparameters and training epochs

Model nr. Binary labelling Non-binary labelling
0 0.6707 0.3483
1 0.6653 0.3231
2 0.5837 0.3135
3 0.5376 0.3248
4 0.6003 0.3186
5 0.6676 0.3650
6 0.6051 0.3356
7 0.5818 0.3628
8 0.5659 0.2986

Table 8.6: Accuracy for autoencoded data – binary and non-binary labelling

Model nr. J
0 -0.0804
1 0.0401
2 0.0039
3 -0.0146
4 -0.0234
5 0.0448
6 -0.0257
7 -0.0164
8 -0.0108

Table 8.7: Youden’s J statistic for autoencoded data.
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9 | Discussion

This chapter contains the discussion of the results from chapter 8, as well as general
discussion of the project, its limitations and the problems that have occurred along
with general observations.

9.1 Discussion – results

As quite evident from the results shown in chapter 8, non of the methods yields re-
sults that can be used for inferring application activity. The best accuracy achieved
is for the binary FAMD with a reduction to, 6 dimensions. But as this is binary case,
Youden’s J statistic indicate a bad performance with a value close to 0. The high
performance is also originating from the methods classifying everything identically,
resulting in the accuracy being identical to the largest percentile of labels instead of
giving information about applications. In the ideal situation the confusion matrices
produced and visualised in chapter 8, would have the largest concentration of labels
along the main diagonal. Instead the results indicate that non of the methods are
better than random guessing.

By using any of these methods, along with the captured data and choice of pre-
processing/transformation, it isn’t possible to correctly identify any applications.
An interesting observation is that a lot of the methods classify all the labelled data
identically, or as especially evident for the standardised and FAMD transformed data,
in a subset of total possible clusters.

Since some clusters aren’t used at all, the labelled data can be seen as not being
representative for the entirety of the captured data. A reason for this might be that
only two different devices has labelled captured data, with the entire dataset possibly
containing captures from devices passing by – especially for data capture prior to
the covid19 pandemic.
With only access to two different devices when capturing the labelled data, their be-
haviour might be sufficiently different creating this scenario. With the problem being
less severe for the encoder models, it might be an indication that viewing the entirety
of a capture, as a single entity, can give relevant information of the different appli-
cations. Though from the results achieved for the autoencoder, something is needed
in addition for the setup used in this thesis. The performance of the clustering after
using the autoencoder indicate that the different autoencoder behave similarly. Es-
pecially from table 8.6, it is quite evident that the different trained encoders, though
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having different parameters and trained for different epochs, all produce results simi-
lar to that achieved by random guessing – similar to both FAMD and standardisation.
But unlike FAMD, the encoded data behave atypical when inspecting the confusion
matrices, as unlike the other method the results for the encoded data is often dis-
tributed in different clusters, e.g. compared to the aggregation of FAMD transformed
data.

Ordering a confusion matrix after size is an optimisation exercise in itself, as taking
the row column combination with the largest value then eliminating that row and
column might not give the best results in the end – and situations where this is the
case can easily be constructed. But more importantly it directly decide the calcu-
lated accuracy. With the clustering resulting in multiple different labels associated to
the same cluster, deciding upon a cluster/label combination isn’t as straight forward.
The ideal situation would be that the labelled data fall into a unique cluster for each
of the labels. Even when increasing the number of cluster the data is still observed
to fall within the same clusters.

Transforming the data into 2-dimensions via FAMD, allows for a simple visual com-
parison. By first transforming the data, and then only plotting the labelled data, as
in figure 8.3a the behaviour of the data can be investigated. With the labelled data
falling into two unique clusters, and being unable to recognise/distinguish the data
for clusters created by the entire data set, clusters are instead constructed from the
labelled data only. As the accuracy for even this scenario, the 0.6719, isn’t much
better than random guessing and with the setup still predominately classifying the
data identically, this all indicate that the labelled data fail to convey the sought
information.

9.2 General Discussion

Results comparison between the encoded and the non-encoded methods is a tricky
one, since a possible error in the labelling has a larger impact for the non-encoder
methods. A major problem for this thesis has been the capture of the Wi-Fi data –
especially with the covid19 pandemic.

With the shutdown due to covid19 resulting in limited access to the university, the
data was captured with regularly available equipment without the use of equipment
specific for Wi-Fi monitoring. The captured data might behave differently if such
equipment was used, but this can only be speculated. Especially since the available
information for the behaviour of a specific network interface cards can be sporadic
at best, equipment for the specific use of Wi-Fi monitoring might not have this lim-
itation.
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Another option under ideal circumstances would be to capture the data using mul-
tiple different devices. The reason for this would be to validate the captured data,
making sure that the capturing is performed correctly, with the network interface
card behaving probably for both monitor and promiscuous mode. During capturing
this wasn’t an option since a device can’t both capture data and function regularly.
Monitor and promiscuous mode will essentially remove the device from the network,
with it now tasked with capture everything and do nothing about the received in-
formation. Furthermore, having two devices capturing will allow to cross reference
the captured packets for any error/discrepancy. This could possibly prevent packet
from being labelled wrongly due to a faulty STA association or incorrect information
from the packet in general. Since some of the used information originating from
calculation performed by the computer (e.g. the transfer rate) and not the MAC
header directly, incorrect information is a possibility.

It is worth noting that the labelling is hard labelled – that is if a packet, rele-
vant to a label, is received before or after the labelling cut-off, it will be missed.
When a packet labelling is missed in this way it will result in a miss labelled packet
influencing the overall indicated performance. This is especially problematic for the
non-autoencoder methods, as the cluster for those methods are performed for every
individual packet, but with autoencoder performed on the entire time series, a few
miss labelled packets might not influence the overall labelling, for the entire time
series.

It could be argued that manual labelling of packets through time frames increases
the risk of error occurring during this part. Though it can be an error prone process,
labelling packets other than through time frames would require full access to the net-
work. If labelling should be performed without full access to a network, it might be
of interest to investigate adding a slack parameter for the time frames. Even though
a user might start or stop application at a specific time, creating a time frame, the
packages transmitted on a Wi-Fi might arrive outside this time frame, due to pack-
age aggregation and transmissions delay. Though the best way of identifying how
such a slack parameter should behave, would be from full access.

The best way to achieve labelling of the different packets would be with full ac-
cess to the network, in conjunction with creating an application classifier, possibly
through flow analysis. By capturing the data twice, once only capturing the pub-
lic available meta data, and once capturing everything with full access, the public
available information can then be labelled by the results of the full access classifier.
The second option would be to create dummy data with full control of every single
packet sent – knowing the labels but loosing the real data element which the thesis
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is based upon.
Having a ground-truth label for every captured packet would also allow for the util-
isation of supervised machine learning methods for classification.

Another element that can be taken into consideration, is whether adding additional
variables is just added noise, with fewer variables per packet possibly increasing ac-
curacy. But with both the autoencoder and FAMD reducing the dimensions, the
methods should handle redundant information, extracting the features of interest.

An autoencoder could have been used in order to reduce the dimensions of the
packets, like FAMD. But since FAMD use statistical optimisation/likelihood optimi-
sation – closed form and not a representation or estimate – a better result is expected
compared to what could be achieved through a neural network.

It might be to much to ask of the data, to have it fall within such specific grouping
but the premise of this thesis is exactly that: Does a cluster occur for a specific
application/application type.

Even if it true that any time series behaviour is fully defined by both the network
conditions and the active applications – the basis for this thesis – a problem might
arises if its not uniquely defined. If different applications or even application type
behave to similar on the meta level, they might be indistinguishable from each other.
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10 | Conclusion

The idea behind the project was, that with different application possibly having
unique properties when transmitting, the applications could be identified from pub-
lic available information. It would then be expected that this meta data would create
unique clusters for each specific group, when utilising transmissions relevant meta
information – like the information presented in chapter 4.

Through captured meta data, whether these clusters exist was investigated. Three
different preprocessing methods, simple standardisation, transformation through FAMD
and encoding through a trained GRU-autoencoder, was utilised on captured meta
data. The goal of using the preprocessing methods was to capture the essence of
each transmission, when used in conjunction with clustering.

FAMD transformation and the GRU-autoencoder allow the data to be used as ei-
ther individual packets or as a coherent time series. With labelled data the clusters
produced was evaluated through their accuracy for correctly classifying application
types.

The results indicate the achieved clusters, through the transformed data, doesn’t
contain the necessary information needed, in order to correctly identify the different
application. It can’t be ruled out, that is possible to achieve application identifica-
tion, in general or through the investigated methods, even though it wasn’t the case
for this thesis.

If applications are to be identified through the meta data, the method used in this
thesis might be applicable, in combination with data captured and labelled through
a different setup. But for this specific case it can only be concluded that it wasn’t
possible – with results no better than random guessing.
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11 | Future studies

In this section option for future studies within the scope of this thesis, besides inves-
tigating elements from the discussion, is hypothesised.

Autoencoders are often used in Natural language processing, e.g. with a goal of
translating between languages. A problem for Natural language processing could be
the translation of text between two different languages. The reason this can be a
problem that the same word, can have multiple meanings, such as the word "bank".
In order to handle this, the method used is required to capture the essence of the
sentence, similar to how the autoencoder in this project was expected to capture the
essence of a time series.

In 2017, Vaswani et. al. published a paper called: "Attention is all you need."
[33]. In this paper Vaswani et. al. compares an Attention neural network – corre-
sponding to the center of an autoencoder – with that of autoencoders constructed
through RNN and Convolutional neural networks, concluding that Attention neural
network outperform regular autoencoder. If future research into the subject of this
thesis is to be conducted, an option might be to investigate how Attention neural
network or other Natural language processing methods handle the problem.
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A | Abbreviations and notation

The notation and naming used in this thesis follows that of the IEEE 802.11-2016
protocol, [5]. For ease of reading the definitions used from IEEE 802.11-2016 protocol
[5], is here reiterated

• Access point (AP): An entity that contains one station (STA) and provides
acces to the distribution services, via the wireless medium (WM) for associated
STAs [5, p. 128].

• Basic service set (BSS): Basic architecture component for an IEEE 802.11 wire-
less network [5, p. 184-185].

• Destination Address (DA): Medium access control (MAC) address for which
the information transmitted is intended.

• Distribution system (DS): A system used to interconnect a set of basic service
sets and integrated local area networks to create and extended service set [5,
p. 132, p. 186].

• Extended service set (ESS): The extended service set is a union of the infras-
tructure basic service sets (BSS) with the same service set ID (SSID) connected
by a Distribution system (DS) [5, p. 186].

• Frame: A unit of data exchanged between peer protocol entities [5, p. 133].

• Internet of Things (IoT): Broad term for multiple devices communication through
the internet – without require human interaction.

• Medium access control (MAC): Protocol for controlling access to the medium
of communication.

• Medium access control (MAC) address: Unique identification address for each
station

• Medium access control (MAC) frame: The unit of data exchanged between
MAC entities [5, p. 135].

• Modulation and coding scheme (MCS): The specific modulation and coding
scheme used – used for 802.11ac and 802.11n amendment. [5, p. 2353]

• Physical layer (PHY): The Physical layer of a transmissions
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• Physical layer frame: The unit of data exchange between physical entities [5,
p. 138].

• Receiver Address (RA): Medium access control (MAC) address belonging to
the intended receiver of the transmission (Physical).

• Source Address (SA): Medium access control (MAC) address for which the
information originates.

• Service Set Identifier (SSID): Identifier (name) for a service set.

• Station (STA): A logical entity that is a singly addressable instance of a medium
access control (MAC) and physical layer interface to the wireless medium (WM)
[5, p. 141].
Per the 2007 iteration of the standard: Any device that contains an IEEE
802.11-conformant medium access control (MAC) and physical layer (PHY)
interface to the wireless medium (WM).

• Transmitter Address (TA): Medium access control (MAC) address belonging
to the transmitting device (Physical).

• Operating system (OS): System software for managing software, hardware and
resources.

• Wireless medium (WM): Wireless Transmission Medium for which the trans-
mission occurs.

• Voice over IO (VoIP): Voice communication over Internet Protocol.

The following abbreviation represent different methods:

• Expectation Maximisation (EM): An optimisation algorithm that can be used
when finding clusters through a GM.

• Factor Analysis of mixed data (FAMD): Factor analysis method for mixed data.

• Fully connected neural network (FNN): Neural network with fully connected
properties.

• Gaussian Mixture Model (GM): A clustering methods through a mixture of
Gaussian distributions.

• Gated Recurrent Unit (GRU): Specific RNN with gated structure.

• Multiple correspondence analysis (MCA): Data analysis technique for categor-
ical/qualitative data.
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• Principal components analysis (PCA): Data analysis method utilising the prin-
cipal components – for quantitative data.

• Recurrent Neural network (RNN): Neural network with recurrent connection
properties.
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B | Backpropagation through time
– First time step.

This appendix contains all the equations and calculations for the Backpropagation
through time for all the different weights, for the first time step. Every equation
can be derived by repeated use of the chain rule as the first time step is assumed
independent on the initial hidden state.
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= (h⟨1⟩ − y⟨1⟩) (1− z⟨1⟩) (1− tanh2
(Wĥx
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⊙h⟨0⟩)+ bĥ)) (x⟨1⟩)

The chance of error through Uz:

∂E1
∂Uz

=
∂E1

∂h⟨1⟩
∂h⟨1⟩

∂z
⟨1⟩
o

∂z
⟨1⟩
o

∂z
⟨1⟩
i

∂z
⟨1⟩
i

∂Uz
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= (h⟨1⟩ − y⟨1⟩) (1− z⟨1⟩) (1− tanh2
(Wĥx
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+Uĥ(r

⟨1⟩
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(Wĥx

⟨1⟩
+Uĥ(r
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These equations in combination with the equations in chapter 6, is the error back-
propagation through time for the first time step of a GRU cell.
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Error backpropagation second time step

The following is the full equation of (5.1), (5.2), (5.3) and (5.4) with the partial
derivatives inserted.
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(Wĥx

⟨2⟩
+Uĥ(r

⟨2⟩
⊙h⟨1⟩)+ bĥ)) (r⟨2⟩) (Uz)

(h⟨0⟩ − ĥ⟨1⟩) (ϕs(Wzx
⟨1⟩

+Uzh
⟨0⟩

+ bz)(1−ϕs(Wzx
⟨1⟩

+Uzh
⟨0⟩

+ bz))) (x⟨1⟩)

+ (h⟨2⟩ − y⟨2⟩) (1− z⟨2⟩) (Uzhz
⟨1⟩

)

(ϕs(Wzx
⟨2⟩

+Uzh
⟨1⟩

+ bz)(1−ϕs(Wzx
⟨2⟩

+Uzh
⟨1⟩

+ bz))) (Ur) (h
⟨0⟩

− ĥ⟨1⟩)

(ϕs(Wzx
⟨1⟩

+Uzh
⟨0⟩

+ bz)(1−ϕs(Wzx
⟨1⟩

+Uzh
⟨0⟩

+ bz))) (x⟨1⟩)

These equation can be quite messy when written out without gaining further inside
in the dependencies and the behaviour of the error, as such this is ill-advised com-
pared to the short hand notation.

As mentioned in chapter 6, the same procedure as performed for Wz can be done
for the other weights at the second time step. This can further be iterated for any
future time steps but the amount of equations will increase as seen from the first to
the second time step.
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C | Visualised confusion matrix
– models 0 through 5

This appendix contains the visualised confusions matrices for the models 0 - 6, not
shown in chapter 8.

(a) Confusion matrix – model 0 – 2 labels
and clusters.

(b) Confusion matrix – model 0 – 5 labels
and clusters.

(c) Confusion matrix – model 1 – 2 labels and
clusters.

(d) Confusion matrix – model 1 – 5 labels
and clusters.

Figure C.1: Confusion matrix heat map for Autoencoder transformed data.
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Appendix C. Visualised confusion matrix – models 0 through 5

(a) Confusion matrix – model 2 – 2 labels
and clusters.

(b) Confusion matrix – model 2 – 5 labels
and clusters.

(c) Confusion matrix – model 3 – 2 labels and
clusters.

(d) Confusion matrix – model 3 – 5 labels
and clusters.

Figure C.2: Confusion matrix heat map for Autoencoder transformed data.
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(a) Confusion matrix – model 4 – 2 labels
and clusters.

(b) Confusion matrix – model 4 – 5 labels
and clusters.

(c) Confusion matrix – model 5 – 2 labels and
clusters.

(d) Confusion matrix – model 5 – 5 labels
and clusters.

Figure C.3: Confusion matrix heat map for Autoencoder transformed data.
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Appendix C. Visualised confusion matrix – models 0 through 5
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D | Code Overview

The code produced for this project is available on GitHub @ https://github.com/
Hilligsoe/MattekP10-2020-AAU-enclosure. This appendix is meant to give an
overview of the different scripts and modules, as well as how to use them to gain the
different results achieved in chapter 8. As mentioned the scripts are implemented in
Python (Python 3.6) and are dependent on os, numpy, sklearn, tqdm, pytorch,
itertools, pathlib, pandas, pickle, prince, scipy and matplotlib libraries.
Furthermore, the github link also contain 2 pickled data files, a subset of the total
captured data with a labelled and a non-labelled capture, that can be used as a
dummy for testing the scripts.

The scripts can roughly be divided in 5 different categories, initial analysis, pre-
processing, labels, autoencoder and results.

The initial processing script, the script used in creating the results from chapter
2, is interpacket.py. This script takes the original data and visualise the packet
lengths as a function of time and inter arrival time.

The preprocessing scripts are:

• preprocessing-dataloading.py: Script that loads in the data and performs
preprocessing such as ordering and removing errors as well as a conversion
between data types.

• word-grouping-dict.py: Script that splits and sorts the original captured
data in the shorter time series described in chapter 4

• normalisation.py: A module containing a simple standardisation function
that takes categorical data into consideration.

The label scripts, are simple scripts containing a dictionary with the information
needed in order to load in and label packets, with either binary or multi class labels.
These scripts are:

• label_dict.py

• bin_label_dict.py

Furthermore, the script skype_monitoring.py, is a passive logging script for Skype,
utilising change in UDP connections – Tested for Ubuntu 16.04 but should work for
windows – Note the script starts a background thread for the logging.
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Appendix D. Code Overview

In order to train the autoencoder 2 scripts are needed.

• pytorch_modules.py: Module containing the costume pytorch functions and
classes used for the training.

• training.py: script that trains the autoencoder using the classes and functions
from pytorch_modules.py

Finally are the results from chapter 8 from the follow 3 scripts.

• labelled_encoding.py: Script that use a saved pytorch model, created by
training training.py, in order to encode data and perform clustering.

• FAMD.py: scipts that transform the data through FAMD before performing
clustering.

• interpacket_standardisation.py: Script that performs clustering on data
behaving as from interpacket.py, but with standardisation.

The scripts are setup to running with little to no interaction. If a change is sought,
for e.g. a variables such as the binary vs non-binary labelling, it can be done directly
in the script.
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