
SUMMARY

The Semantic Web community has over recent years seen an ever increasing amount of data published as Linked Open
Data (LOD) made available through services such as public SPARQL endpoints, dereferenceable URIs, or downloadable data
dumps. Today, published LOD datasets span a broad range of different topics, such as geography, life sciences, government
data, and general knowledge, and they usually contain several billions of triples. However, the availability of these datasets
relies on the data providers to maintain access to the datasets. Creating and maintaining such services requires considerable
resources and represents a huge burden on the part of the data providers. Without any kind of monetary incentive, this often
leads to downtime and the data simply being unavailable.

Multiple recent advances propose to decentralize either the query processing load or data storage in order to lift the
aforementioned burden off the data providers. For example, Peer-to-Peer (P2P) based interfaces attempt to remove the
central point of failure altogether by putting data on participating clients that also function as servers and allowing such
clients to communicate together. On the other hand, interfaces such as Triple Pattern Fragments (TPF) and derivatives like
bindings-restricted TPF (brTPF) propose to lower the overall load on the server by making the client process the queries
while the server only provides answers to individual triple patterns and, in the case of brTPF, bulks of bindings obtained
from previously evaluated triple patterns. This means that the bulk of the query processing effort, such as expensive joins
and SPARQL operators like UNION and FILTER, lies with the client rather than the server, lowering the load on the server.

In both cases, however, query processing relies on transferring individual triple patterns and resulting bindings over the
network. This results in significant network traffic, creating a large overhead on query time. Such approaches completely
ignore that evaluating small conjunctive subqueries on the server can be done with linear time complexity and can reduce
the network traffic significantly since fewer intermediate results have to be transferred. This work therefore proposes a novel
approach that reduces the network load and query time overhead significantly. We propose a novel RDF interface called Star
Pattern Fragments (SPF) which builds upon TPF to processes star-shaped subqueries (star patterns) rather than individual
triple patterns on the server while it still processes joins and SPARQL operators on the client. While this work focuses on
TPF-based approaches, SPF is orthogonal to P2P systems and could be applied to such systems to provide the same benefits
as highlighted in this paper for them as well.

We describe how SPF adapts the brTPF selector on the server to enable processing star patterns with bindings obtained
from previously evaluated star patterns. Furthermore, we discuss the implications of such an adaptation of the selector on
client-side query processing techniques. We propose an approach to process queries over an SPF server and implement both
the client and server as an extension of an existing implementation of TPF.

We conduct an extensive study on the effects of evaluating such conjunctive star-shaped subqueries on the server rather
than individual triple patterns. We therefore compare SPF to TPF, brTPF, and a SPARQL endpoint using several metrics such
as query throughput, number of bytes transferred between the server and client, and the CPU load on the server. To conduct
the study, we use a well-known benchmark suite to obtain three synthetic datasets containing 10 million, 100 million, and 1
billion triples as well as numerous queries. We split the query workload into several categories depending on the number of
star patterns in the query (from 1 star pattern up to 3 star patterns) and include a workload that consists of path queries (i.e.,
queries with no star patterns). We run each workload over several configurations of up to 128 clients concurrently issuing
queries to the server.

Our experiments clearly show that SPF is able to find an improved tradeoff for the distribution of the workload between the
server and client. SPF reduces the network usage significantly both in terms of transferred bytes and number of performed
server requests. In turn, SPF significantly increases performance. This is most apparent for the 1-star query workload where
SPF is up to an order of magnitude faster than state of the art interfaces. This is a result of the fact that such queries can
often be processed with a single server request. Moreover, even in the worst case where a query does not contain any star
patterns, SPF is still as good as brTPF. Lastly, our experiments show that SPF maintains a relatively low CPU load on the
server compared to brTPF and TPF. The experimental results thus show that SPF is able to increase performance under
load while keeping the server load comparatively low. This motivates further research into obtaining a perhaps even more
optimal balance between network and server load. Future research directions further include also processing object-based
star patterns on the server and adapting P2P systems to use the approach as well.
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ABSTRACT

The Semantic Web offers access to a vast Web of interlinked in-
formation accessible via SPARQL endpoints. Such endpoints offer
a well-defined interface to retrieve results for complex SPARQL
queries. The computational load for processing such queries, how-
ever, lies entirely with the server hosting the SPARQL endpoint,
which can easily become overloaded and in the worst case not only
become slow in responding but even crash rendering the data tem-
porarily unavailable. Recently proposed interfaces, such as Triple
Pattern Fragments, have therefore shifted the query processing load
from the server to the client. For queries involving triple patterns
with low selectivity, this can easily result in high network traffic
and slow execution times. In this paper, we therefore present a
novel interface, Star Pattern Fragments (SPF), which decomposes
SPARQL queries into star-shaped subqueries and combines a lower
network load with a higher query throughput and a comparatively
low server load. Our experimental results show that our approach
does not only significantly reduce network traffic but is also up to
an order of magnitude faster in comparison to the state of the art
interfaces under high query processing load.
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1 INTRODUCTION

Over the previous few years, there has been a rapid increase in
the amount of data published as Linked Open Data (LOD) made
available through services such as public SPARQL endpoints, deref-
erenceable URIs, or downloadable data dumps. Several knowledge
graphs have previously been published spanning multiple different
topics, such as general knowledge (e.g., DBpedia [11]), government
data (e.g., US Government LOD [17]), and geography (e.g., Linked-
GeoData [36]). Knowledge graphs today can contain several billions
of data triples. For instance, Wikidata [40] contains over 12 billion
triples and Bio2RDF [12] contains over 10 billion triples.

Access to such datasets, however, relies completely on the data
providers tomaintain aforementioned services like a public SPARQL
endpoint; however, this requires considerable resources on the part
of the data providers. As highlighted in previous studies [2, 38], this
often means that the provided services quickly become slow and
unresponsive under high load, and in the worst case can become
unavailable [5, 37].

Despite recent efforts to speed up SPARQL query processing
under high querying load [15, 26, 38], answering SPARQL queries is
still an expensive task. In fact, deciding whether a set of bindings is
an answer to a query has been shown to be at least NP-complete [30].

Still, Triple Pattern Fragments (TPF) [38] have provided interesting
insights into the problem and a novel way to approach it. TPF limits
the load on the server by sharing the computational load between
the server and the client.While the server evaluates individual triple
patterns, the client handles remaining query processing tasks. This
increases the availability of the server and ensures more efficient
query processing during periods with high load.

PREFIX dbo: <http :// dbpedia.org/ontology/>

PREFIX dbr: <http :// dbpedia.org/resource/>

select distinct * where {

?p1 dbo:country dbr:Germany. # tp1: 18,174 matches

?p1 dbo:award ?a . # tp2: 90,933 matches

?p1 dbo:birthDate ?bd1 . # tp3: 1,740,614 matches

?p2 dbo:country dbr:Norway . # tp4: 5,520 matches

?p2 dbo:award ?a . # tp5: 90,933 matches

?p2 dbo:birthDate ?bd2 # tp6: 1,740,614 matches

}

Listing 1: Find Germans and Norwegians that have won the

same award and their birth dates.

Nevertheless, there are cases where TPF is significantly less effi-
cient than SPARQL endpoints. Consider, for example, the SPARQL
query shown in Listing 1 over the DBpedia dataset [11]. Executing
this query using TPF requires transferring a huge number of inter-
mediate results. In addition, the TPF client sends a server request
for each binding obtained from the previously evaluated triple pat-
terns, which results in a high number of calls to the server and thus
creates a large overhead when processing the query, decreasing its
performance.

TPF-based derivatives, such as Bindings-Restricted Triple Pattern
Fragments (brTPF) [15], have different ways to address this issue.
For instance, brTPF uses block nested loop-like joins where a triple
pattern is evaluated once per a group of N bindings obtained from
the previously evaluated triple patterns (5 ≤ N ≤ 50 in [15]). While
this results in significantly fewer calls to the server, it still incurs
relatively high network traffic.

These approaches ignore the potential of evaluating larger con-
junctive subqueries. Such subqueries can (i) be computed relatively
efficiently on the server [30] and (ii) reduce the network traffic
since fewer intermediate results are transferred. Subqueries, such
as {tp1 . tp2 . tp3} and {tp4 . tp5 . tp6} in Listing 1, do not re-
quire full SPARQL expressiveness. While there could potentially be
several ways to decompose SPARQL queries, we focus on decom-
position into star-shaped subqueries.

In this paper, we investigate the effects of evaluating star-shaped
subqueries on the server, while still processing queries on the client,
in terms of the network usage, client load, and server load under
high query load.We propose a novel interface that is able to combine
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a lower network load with a comparatively low server load by
decomposing SPARQL queries into star-shaped subqueries, and in
doing so improve the overall query processing performance while
also ensuring high availability.

In summary, this paper makes the following contributions:
• A definition of Star Pattern Fragments (SPF), a novel RDF
interface that reduces network usage while maintaining a
low server load.

• A formalization and an implementation of an SPF server that
processes star-shaped subqueries.

• Client-side query processing strategies to efficiently com-
pute answers to SPARQL queries using an SPF server to
process star-shaped subqueries and process queries with any
SPARQL operator.

• A thorough evaluation of the SPF interface using three differ-
ent synthetic datasets with up to 1 billion triples and several
diverse stress testing query workloads from a well-known
benchmark suite [4].

This paper is organized as follows. Section 2 discusses related work,
Section 3 introduces preliminary information used throughout the
paper, Section 4 formally defines Star Pattern Fragments, Section 5
describes query processing over SPF servers, Section 6 discusses
experimental results, and finally Section 7 concludes the paper.

2 RELATEDWORK

One of themost popular interfaces for querying RDF data is SPARQL
endpoints. However, several studies [5, 37] have previously high-
lighted the fact that such endpoints are often unavailable, meaning
that accessing data can sometimes be impossible. High availability
of RDF datasets has been achieved by decentralizing the storage of
data and distributing query processing tasks between clients and
servers [38]. Decentralization of the data storage has previously
been achieved by using Peer-to-Peer (P2P) architectures [2, 8, 21]
and federated query engines [27, 35]. In this section, we provide
a brief overview over related decentralized systems. We discuss
in detail decentralized approaches, how they attempt to solve the
availability problem, and their shortcomings in Appendix A.

P2P systems remove the central server altogether by placing a
limited local datastore on each node. The nodes thus act like both
clients and servers and communicate with each other to obtain
query answers. Structured P2P systems [8, 21, 22] apply a struc-
tured overlay over the network. For instance, UniStore [22] uses
Dynamic Hash Tables (DHTs) to impose on which nodes have to
store which data. Unstructured P2P systems, on the other hand,
do not apply such an overlay. For example, Piqnic [2] defines an
architecture where connections between nodes are random. How-
ever, even if P2P systems increase the availability of datasets, they
are vulnerable to churn (when nodes frequently leave and join
the network) [8, 21, 22] or can cause very high network traffic [3]
(when queries have large numbers of intermediate results). In any
case, Star Pattern Fragments (SPF) are orthogonal to P2P systems.
For example, [3] could be extended with SPF to achieve a similar
reduction of intermediate results as described in Section 6.

Federated query engines [27, 35] divide SPARQL query process-
ing over multiple SPARQL endpoints. Nevertheless, they sometimes
fail to generate optimal query plans that transfer the minimum

amount of data from the endpoints to the engine and therefore
increase the load on SPARQL endpoints. Query optimization tech-
niques for federated engines, such as [28], consider decomposing
SPARQL queries into star-shaped groups that can be evaluated by
a single SPARQL endpoint. Star-shaped query decomposition has
also been used in [39] to improve the query execution time. These
techniques are similar to the approach presented in this paper since
they also utilize star-shaped decomposition. However, these ap-
proaches execute star-shaped subqueries on SPARQL endpoints on
which much more complex queries can be executed concurrently.

Triple Pattern Fragments (TPF) [38] were proposed to improve
the server availability under heavy load. TPF servers only process
individual triple patterns and therefore have a lower processing
burden than SPARQL endpoints. TPF clients rely on either left-
deep join trees [38], a metadata based strategy [18], or adaptive
query processing techniques and star-shaped decomposition [1]
to determine the execution order of the triple patterns. While TPF
reduces the load on the server in general, it puts much more load on
the client and incurs more network traffic. Furthermore, Heling et
al. [16] found that the performance of TPF is heavily affected by vari-
ables such as the triple pattern type1 and the fragment cardinality.
Bindings-Restricted TPF (brTPF) [15] was proposed to reduce the
network traffic by coupling triple patterns and bindings obtained
from previously evaluated triple patterns. Despite improving the
availability of RDF data, all these approaches cause a large number
of calls to the server during query processing. On the other hand,
hybridSE [26] relies on both SPARQL endpoints and brTPF servers
to process queries more efficiently than the TPF-based interfaces.
SPARQL subqueries with a large number of intermediate results
are evaluated using SPARQL endpoints to overcome limitations of
TPF clients. However, since hybridSE may send complex subqueries
to the endpoint, and endpoints have downtime [5], this leaves the
approach vulnerable to downtime.

Other systems use more complex techniques to address some of
the issues posed by TPF. SaGe [25], for example, uses a preemptive
model that suspends queries after a fixed time quantum, so as to
not starve simpler queries from system resources, whereafter they
can be resumed upon client request. This, however, often leads to
a large amount of requests to the server, which is exactly what
we are addressing in this paper. Smart-KG [6], on the other hand,
ships star-shaped partitions to the client during query processing.
This decreases the amount of requests to the server, since partitions
already shipped to the client can be evaluated directly on the client.
However, this can in some cases lead to unnecessary data trans-
fer during query processing, since the entire partition is shipped
regardless of previously obtained object bindings.

In this paper, we instead propose an interface that provides a
novel distribution of query processing tasks where, differently from
the approaches discussed above, joins in star-shaped subqueries
are evaluated by the server. Such computations do not significantly
increase the query load because star-shaped subqueries can be an-
swered in linear complexity [30]. Our approach therefore achieves
a reduction on the data transfer and the execution time without
having a negative impact on the data availability.

1The type of a triple pattern is defined with respect to the position of variables in the
triple pattern.
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Figure 1: HTTP interfaces for RDF data (adapted from [15, 38]).

3 PRELIMINARIES

Star Pattern Fragments (SPF) build upon TPF [38] and brTPF [15]
to provide more efficient access to large knowledge graphs under
load. In this section, we present preliminaries for both large-scale
knowledge graphs and decentralized query processing techniques.

3.1 Resource Description Framework

The recommended format for storing semantic data is the Resource
Description Framework (RDF)2.

Definition 1 (RDF Triple). Given the infinite and disjoint sets𝑈
(set of all URIs), 𝐵 (set of all blank nodes), and 𝐿 (set of all literals), an
RDF triple is a triple of the form (𝑠, 𝑝, 𝑜) ∈ (𝑈 ∪𝐵) ×𝑈 × (𝑈 ∪𝐵∪𝐿),
where 𝑠 , 𝑝 , 𝑜 are called subject, predicate, and object.

A knowledge graph (RDF graph) G is a finite set of RDF triples.
Today, SPARQL3 is the standard language for querying RDF data.
A SPARQL query contains a set of triple patterns which, given the
additional infinite set𝑉 (disjoint with𝑈 , 𝐵 and 𝐿) of all variables, are
triples of the form (𝑠, 𝑝, 𝑜) ∈ (𝑈 ∪𝐵∪𝑉 ) × (𝑈 ∪𝑉 ) × (𝑈 ∪𝐵∪𝐿∪𝑉 ).

Definition 2 (Star Pattern). A star pattern is a set of n triple
patterns, {(𝑠1, 𝑝1, 𝑜1), . . . , (𝑠𝑛, 𝑝𝑛, 𝑜𝑛)} such that either the subjects
or objects of all these triple patterns are the same, i.e., 𝑠𝑖 = 𝑠 𝑗 for all
1 ≤ 𝑖, 𝑗 ≤ 𝑛 (subject-based star patterns) or 𝑜𝑖 = 𝑜 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛

(object-based star patterns).

Since subject-based stars are much more common in real
datasets [34] and considering both types of star patterns requires
complex adaptation of possible query optimization strategies that
are outside the scope of this paper, we will for the remainder of the
paper focus only on subject-based star patterns.

3.2 Linked Data Fragments

Linked Data Fragments (LDFs) [38] consider only blank-node-free
RDF triples. An LDF consists of the following three elements:

• Data: A subset of G’s triples
• Metadata: RDF triples that describe the data
• Controls: Links and forms to retrieve other LDFs of the
same or other knowledge graphs

Any knowledge graph made available on the Web, in any format,
can be described as an LDF.

Definition 3 (Selector Function [38]). Given T ∗ = 𝑈 ×𝑈 ×
(𝑈 ∪ 𝐿), the set of all blank-node-free RDF triples, a selector function
𝑠 is a function such that 𝑠 : 2T

∗ → 2T
∗
.

2https://www.w3.org/TR/rdf11-concepts/
3https://www.w3.org/TR/sparql11-query/

That is, a selector function takes as input a set of blank-node-free
RDF triples, and outputs a set of blank-node-free RDF triples. Note
that the output could in principle contain triples that are not in the
input, e.g., CONSTRUCT queries. However, in most cases, the output
corresponds to a subset of the input.

Definition 4 (Hypermedia Controls [38]). A hypermedia con-
trol is a function that maps from some set to𝑈 .

A URI is a zero-argument hypermedia control, i.e., a constant
function, and a form is a multi-argument hypermedia control. In
the case of LDF, the domain of a hypermedia control is a set of
selector functions, encoded as URLs.

Definition 5 (Linked Data Fragment [38]). Given a knowl-
edge graph G, a Linked Data Fragment (LDF) of G is a 5-tuple
𝑓 = ⟨𝑢, 𝑠, Γ, 𝑀,𝐶⟩, with

• a source URI 𝑢,
• a selector function 𝑠 ,
• the result of applying 𝑠 to G, 𝑠 (G) = Γ,
• a set of additional triples𝑀 that describes metadata, and
• a finite set of hypermedia controls 𝐶 .

An LDF server should divide each fragment 𝑓 = ⟨𝑢, 𝑠, Γ, 𝑀,𝐶⟩ into
reasonably sized LDF pages 𝜙 = ⟨𝑢 ′, 𝑢𝑓 , 𝑠𝑓 , Γ′, 𝑀 ′,𝐶 ′⟩ containing
(i) the URI 𝑢 ′ from which 𝜙 could be obtained and 𝑢 ′ ≠ 𝑢, (ii)
𝑢𝑓 = 𝑢, (iii) 𝑠𝑓 = 𝑠 (iv) Γ′ ⊆ Γ, (v) 𝑀 ′ ⊇ 𝑀 , and (vi) 𝐶 ′ ⊇ 𝐶 . 𝑀 ′

and 𝐶 ′ are supersets of𝑀 and 𝐶 , since they also contain additional
metadata and controls that are specific to the LDF page. Having
additional metadata and controls makes it possible for clients to
avoid downloading very large chunks of data accidentally [38].

4 STAR PATTERN FRAGMENTS

In between SPARQL endpoints, which handle all the query process-
ing load on the server, and TPF, which processes only triple patterns
on the server and handles the rest of query processing load on the
client, there is a lot of potential for other interfaces that provide a
better way of sharing query processing load between server side
and client side. For instance, processing conjunctive subqueries
(e.g., star patterns) on the server can result in less network traffic
while it does not impose a high additional server load, which is
evident from our experiments in Section 6.

In this section, we formally define Star Pattern Fragments (SPF)
as an extension of brTPF [15] that exposes an HTTP interface for
processing star pattern queries in addition to processing individual
triple pattern queries. This increases the server load slightly; how-
ever, for queries with large intermediate results (such as Listing 1),
this is preferable to ensure fewer requests to the server, which
results in lower network traffic and faster query processing. The
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sp = { ( ? p2 , dbo : country , dbr : Norway ) ,
( ? p2 , dbo : award , ?a ) ,
( ? p2 , dbo : b i r thDate , ? bd2 ) }

𝜇 ( ? p2 )= dbr : J e n s _ B r a t l i e
𝜇 ( ? db2 )=1856−1−17
𝜇 ( ? a )= dbr : Orde r_o f_S t . _Olav

𝑠 (𝑠𝑝,∅) (G) = { ( dbr : J e n s _B r a t l i e , dbo : country , dbr : Norway ) ,

( dbr : J e n s _B r a t l i e , dbo : award , dbr : Orde r_o f_S t . _Olav ) ,
( dbr : J e n s _B r a t l i e , dbo : b i r thDate , 1856−1−17) }

(a) 𝑠𝑝 and 𝑠 (𝑠𝑝,∅) (G)

dbr:Germany

dbr:Gabriele Haefs 1953-8-27

dbr:Order of St. Olav

dbr:Jens Bratlie 1856-1-17

dbr:Norway

dbo
:cou

ntry

dbo:birthDate

dbo:award

dbo
:awa

rd

dbo:birthDate

dbo:country

1

(b) RDF Graph

Figure 2: Star Pattern, Star Pattern-Based Selector Function, and RDF Graph.

relative position of SPF between different RDF interfaces is shown
in Figure 1.

Logically, an SPF over a given knowledge graph G has the fol-
lowing properties:

• Data: All RDF stars in G that match a given star pattern
• Metadata: An estimate of the number of stars that match
the given star pattern

• Controls: A hypermedia form that allows the client to re-
trieve any SPF of the same knowledge graph

Let [[𝑠𝑝]]G be the answer to a star pattern 𝑠𝑝 over a knowledge
graph G. [[𝑠𝑝]]G is a set of solution mappings, i.e., partial mappings
𝜇 : 𝑉 ↦→ (𝑈 ∪𝐿). A set of blank-node-free RDF triples𝑇 is said to be
matching triples for a star pattern 𝑠𝑝 , denoted 𝑇 [𝑠𝑝], if there exists
a solution mapping 𝜇 in [[𝑠𝑝]]G such that 𝑇 = 𝜇 [𝑠𝑝] where 𝜇 [𝑠𝑝]
denotes the triples (or triple patterns) obtained by replacing the
variables in 𝑠𝑝 with values according to 𝜇. As mentioned earlier, we
do not consider star patterns that join on objects instead of subjects
since they are relatively rare [34]. It could, however, be interesting
to consider as perspective work.

Similar to how brTPF [15] couples bindings and triple patterns,
we couple bindings obtained from previously evaluated star patterns
with subsequent star patterns to decrease the network traffic.

Definition 6 (Star Pattern-Based Selector Function).
Given a star pattern 𝑠𝑝 and a finite sequence of solution mappings
Ω, the star pattern-based selector function for 𝑠𝑝 and Ω, 𝑠 (𝑠𝑝,Ω) , is
the selector function that, for every knowledge graph G, is defined as
follows:

𝑠 (𝑠𝑝,Ω) (G) =


{𝑡 ∈ 𝑇 | 𝑇 ⊆ G ∧𝑇 [𝑠𝑝] if Ω = ∅
{𝑡 ∈ 𝑇 | 𝑇 ⊆ G ∧𝑇 [𝑠𝑝] ∧

∃𝜇 ∈ [[𝑠𝑝]]G, 𝜇 ′ ∈ Ω :
𝜇 [𝑠𝑝] = 𝑇 ∧ 𝜇 ′ ⊆ 𝜇} otherwise.

The simplest star pattern consists of a single triple pattern. For
this reason, SPF is backwards compatible with both TPF [38] and
brTPF [15]. A star pattern request with a single triple pattern corre-
sponds to a single triple pattern request for TPF and brTPF. As such,
applying the star pattern-based selector function in this case would
be equivalent to applying either the triple pattern-based selector or
the bindings-restricted triple pattern-based selector.

Consider the star pattern 𝑠𝑝 and the knowledge graph G given
in Figure 2. The star pattern-based selector function 𝑠 (𝑠𝑝,∅) (G)
retrieves the three triples from G that include dbr:Jens_Bratlie as
subject, as shown in Figure 2a.

In order to formally define SPF, we adapt the general definition
of LDF given in [38]. An SPF is defined as follows:

Definition 7 (Star Pattern Fragment). Given a control c, a
c-specific LDF collection F is called a Star Pattern Fragment collection
if, for every possible star pattern 𝑠𝑝 and any finite sequence Ω of
distinct solution mappings, there exists one LDF ⟨𝑢, 𝑠, Γ, 𝑀,𝐶⟩ ∈ 𝐹 ,
called a Star Pattern Fragment, that has the following properties:

(1) 𝑠 is the star pattern-based selector function for 𝑠𝑝 and Ω.
(2) There exists a triple <u, void:triples, cnt> ∈ M with cnt repre-

senting an estimate of the cardinality of Γ, that is, cnt is an
integer that has the following two properties:

(a) If Γ = ∅, then cnt = 0.
(b) If Γ ≠ ∅, then cnt > 0 and 𝑎𝑏𝑠 ( |Γ | − 𝑐𝑛𝑡) ≤ 𝜖 for some

F-specific threshold 𝜖 .
(3) 𝑐 ∈ 𝐶 .

Notice that SPF, like TPF and brTPF, is hypermedia and there-
fore contains hypermedia controls (cf. Definition 7). An SPF can be
obtained by forming a request from a star pattern and including
already bound values (e.g. object values). Since we focus on assess-
ing the applicability of our approach in general, we will not include
a full hypermedia description of SPF in this paper; nevertheless,
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?p1 ?p2

?adbr:Germany?bd1 dbr:Norway ?bd2
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(c) 𝑆2

Figure 3: Star decomposition of 𝑄 (Listing 1) into 𝑆1 and 𝑆2.

such a description can be formalized similarly to the hypermedia
controls provided by TPF.

The definition of SPF, and its hypermedia controls, allows for
both subject-based and object-based star patterns to be evaluated
on the server. This allows the client to employ a complex decompo-
sition strategy that can utilize both types of star patterns. However,
in order to investigate the applicability of our model independently
of possibly complex query decomposition strategies that would be
necessary on the client if we consider both types of star patterns,
and since subject-based star patterns are much more common in
real query loads [34], for the rest of the paper we will focus on
subject-based star patterns only.

5 QUERY PROCESSING

The SPF interface processes queries using resources from both the
server and the client. The server provides fragments as answers to
requests whereas the client processes all other SPARQL operators.
Differently from RDF interfaces such as TPF and brTPF, SPF does
not define fragments based on triple patterns but rather based on
star patterns.

Query processing using SPF relies on a server and a client, each
managing different tasks. The general outline of how query pro-
cessing works for a given SPARQL query 𝑄 is as follows:

(1) For each BGP 𝐵 ∈ 𝑄 , decompose 𝐵 into star-shaped sub-
queries and determine the join order.

(2) Obtain intermediate results for each of 𝐵’s subqueries by
applying the star pattern-based selector on the server.

(3) Compute the final query result combining the intermediate
bindings of the subqueries, and process all the remaining
SPARQL operators in 𝑄 on the client side.

5.1 Client-Side Query Processing

To process a SPARQL query, an SPF client first decomposes the
query into star-shaped subqueries. This decomposition is necessary

to process more complex SPARQL queries than star-shaped queries
using an SPF server. In the rest of this section, we focus on Basic
Graph Pattern (BGP)4 queries. Nevertheless, our approach can be
used for full SPARQL specification including queries with one or
more BGPs combined using operators such as OPTIONAL and UNION
and queries with FILTER constraints.

Definition 8 (Subject-Based Star Decomposition). Given
a BGP query 𝑄 = {𝑡𝑝1, . . . , 𝑡𝑝𝑛}, the star decomposition of 𝑄 is
S(𝑄) = {𝑆1, . . . , 𝑆𝑚} such that (i) 𝑚 ≤ 𝑛, (ii) all 𝑆 𝑗 ∈ S(𝑄) are
subject-based star patterns (Definition 2), (iii) for all 1 ≤ 𝑖 ≤ 𝑛, there
exists exactly one 𝑗 such that 1 ≤ 𝑗 ≤ 𝑚 and 𝑡𝑝𝑖 ∈ 𝑆 𝑗 , and (iv) for all
1 ≤ 𝑗 ≤ 𝑚 and 𝑡𝑝𝑖 ∈ 𝑆 𝑗 , 𝑡𝑝𝑖 ∈ 𝑄 .

Using Definition 8, a BGP query can be partitioned into a set
of star patterns where each corresponds to a specific variable on
subject position. All triple patterns are then part of a specific star
pattern with a shared subject. This definition ensures that the query
is decomposed into non-overlapping star patterns. However, for
some queries, e.g., queries shaped as a chain, this definition can
result in many star patterns with only a single triple pattern. Query
processing is identical to brTPF in this case, since it requires evalu-
ating one triple pattern at a time.

An example of using Definition 8 to partition the BGP query
𝑄 Listing 1) can be seen in Figure 3. The star decomposition of 𝑄
results in one star pattern per variable on subject position. In this
example, variables ?p1 and ?p2 are both positioned as the subject
of at least one triple pattern, and so the resulting star patterns are
rooted in these variables. Figures 3b and 3c show the output star
patterns 𝑆1 and 𝑆2, respectively.

When processing a BGP 𝐵, the SPF client performs the following
steps:

(1) Obtain the star decomposition (Definition 8) of 𝑄 , i.e.,
{𝑆1, . . . , 𝑆𝑛 }.

4A BGP is a set of triple patterns, https://www.w3.org/TR/rdf-sparql-query/
#BasicGraphPatterns
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(2) Determine the join order of 𝑆1, . . . , 𝑆𝑛 . More selective star
patterns (star patterns with lower cardinality) are evaluated
first. To determine the join order of 𝑆1, . . . , 𝑆𝑛 , we send an
SPF request for each 𝑆𝑖 to retrieve its first page of results. The
first page of a star pattern fragment contains the estimated
cardinality of it (as described in Definition 7), and we use
the estimated cardinality to determine the order.

(3) Send requests to the SPF server for each 𝑆1, . . . , 𝑆𝑛 with the
solution mappings obtained from the already processed star
patterns.

An example of processing a SPARQL query over an SPF server
is shown in Appendix C.

5.2 Server-Side Query Processing

An SPF server is able to answer any syntactically valid star pattern.
Upon receiving a request for a star pattern, the SPF server matches
the star pattern to the knowledge graph using the star pattern-
based selector function. An SPF request includes a star pattern 𝑠𝑝 , a
finite sequence of distinct solution bindings Ω, and a page number
𝑝 . The server processes such a request for over a knowledge graph
G using the following two steps:

(1) Find the set of triples 𝑠 (𝑠𝑝,Ω) (G) (Definition 6).
(2) Return an LDF page 𝜙 that corresponds to the requested

page 𝑝 such that 𝜙.Γ′ consists of sets of matching triples
𝜇 [𝑠𝑝] where ∀𝑡 ∈ 𝜇 : 𝑡 ∈ 𝑠 (𝑠𝑝,Ω) (G)

These results are then processed by the client, which joins them
with results to other star patterns in the query, thereby computing
the query answer.

An SPF server supports both the TPF and brTPF selectors in
addition to the SPF selector. The server chooses which method to
invoke based on the received request. For instance, the SPF method
is invoked only if the request contains an SPF selector. In practice,
the TPF and brTPF selectors would only be rarely used with an SPF
client. However, having all three methods available in the server
has two advantages. First, it makes the server compatible with both
the TPF and brTPF clients. Second and more importantly, in the
worst case where all star patterns have exactly one triple pattern,
SPF still performs as good as brTPF as evident from our experiments
in Section 6.

5.3 Implementation Details

We implemented the SPF server using Java 8 and the SPF client
using Node.js5.

Server. The SPF server is implemented as an extension of the
Java implementation of the TPF server6. Our server implementation
uses HDT [13] as backend. HDT is originally proposed to process a
single triple pattern over a knowledge graph efficiently. However,
we extended this implementation to also be able to process the
star pattern requests over the HDT backend. The SPF server uses
Characteristic Sets [29] to provide cardinality estimations.

Client.We extended the TPF Node.js client7 to accommodate not
only SPF requests but also brTPF requests. Thus, and in line with

5Implementation is available on our GitHub https://github.com/Chraebe/
StarPatternFragments.
6https://github.com/LinkedDataFragments/Server.java
7https://github.com/LinkedDataFragments/Client.js

TPF [38] and brTPF [15], the SPF client uses a pipeline of iterators
that represent a left-deep join tree. However, TPF and brTPF define
the join operations on triple patterns, whereas SPF defines join
operations on star patterns. The star patterns within a query are
ordered based on the cardinality estimations for the star patterns
provided by the server.

6 EXPERIMENTAL EVALUATION

In order to investigate whether SPF, which processes SPARQL
queries using star decomposition, increases query throughput
by combining a lower network load with a comparatively low
server load, we ran experiments where we compared SPF, TPF [38],
brTPF [15], and a SPARQL endpoint.

6.1 Experimental Setup

Dataset and Queries:We used the WatDiv benchmark [4] to gen-
erate three datasets with 10 million, 100 million, and 1 billion triples
respectively. This allows us to also test the scalability of SPF. The
characteristics of the three datasets can be seen in Table 1.

Table 1: Characteristics of used datasets

Dataset #triples #subjects #predicates #objects

watdiv10M 10,916,457 521,585 86 1,005,832
watdiv100M 108,997,714 5,212,385 86 9,753,266
watdiv1000M 1,092,155,948 52,120,385 86 92,220,397

To study the impact of the number of star-shaped subqueries,
and to stress-test our approach, we used the WatDiv query genera-
tor to obtain query loads with 0-3 star patterns8. Query loads only
include queries with at least one answer and the queries with zero
star patterns consist of chained triple patterns with object-subject
joins (path patterns). In total, we generated 25,600 distinct SPARQL
queries, i.e., 200 queries for each client divided into four distinct
and evenly sized groups: 50 queries consisting of one star pat-
tern (1-star), 50 queries consisting of two star patterns (2-stars),
50 queries consisting of three star patterns (3-stars), and finally
50 queries consisting of a path pattern (paths). Figure 4 shows
the following characteristics for each query load over watdiv100M
(presented in [4]): Triple pattern count (#TP, Figure 4a), join vertex
count (#JV, Figure 4b), join vertex degree (deg, Figure 4c), i.e., the
number of triple patterns incident on a join vertex, result cardinal-
ity (#Results, Figure 4d), and triple pattern selectivity (selG (𝑡𝑝)),
i.e., the ratio of cardinality of a triple pattern to the size of the
knowledge graph, mean (Figure 4e) and standard deviation (Fig-
ure 4f). We furthermore add the union query load that contains
the combined queries from 1_star, 2_stars, 3_stars and paths.
All query loads (except 1_star) include queries with subject-object
joins. Queries contain 0-2 triple patterns with bound objects.

Experimental Setup: To assess how the interfaces perform under
different loads, we ran experiments over eight configurations with
2𝑖 clients concurrently issuing queries to the server in each con-
figuration (0 ≤ i ≤ 7), i.e., up to 128 clients. In the configuration
with 2𝑖 clients, a total of 200 × 2𝑖 queries are executed and at most

8We considered star patterns with two or more triple patterns with subject-subject
joins
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(a) Triple pattern count (#TP) (b) Join vertex count (#JV)

(c) Join vertex degree (deg) (d) Result cardinality (#Results)

(e) TP selectivity (selG (𝑡𝑝)) mean (f) TP selectivity (selG (𝑡𝑝)) stddev

Figure 4: Characteristics of all query loads (WatDiv query loads over watdiv100M).

2𝑖 queries are executed concurrently as each client executes one
query at a time. Each query load was run separately to assess the
impact of it on the performance of the interfaces.

Hardware Setup: To run the clients, a virtual machine (VM) run-
ning all 128 clients concurrently was used. The VM had 128 vCPU
cores with a clock speed of 2.5GHz, 64KB L1 cache, 512KB L2 cache,
8192KB L3 cache, and 2TB main memory. Each client was limited
to use just one vCPU core and 15GB RAM. The LDF server and
the SPARQL endpoint were run, at all times, on a server with 32
vCPU cores, with a clock speed of 3GHz, 64KB L1, 4096KB L2, and
16384KB L3 cache, and a main memory of 128GB.

Evaluation Metrics: We used the following evaluation metrics in
our experimental study.

• Number of Requests to the Server (NRS): The number of re-
quests the client issues to the server while processing a
query.

• Throughput: The number of queries processed per minute.
• Query Execution Time (QET): The amount of time (in mil-
liseconds) elapsed since a query is issued until its processing
is finished.

• Query Response Time (QRT): The amount of time (in millisec-
onds) elapsed since a query is issued until the first result is
computed.

• Number of Transferred Bytes (NTB): The amount of data trans-
ferred (in bytes) between the client and the server while
processing a query (both from and to the server).

• CPU Load (CPU): The average CPU load on the server (in
percentage).

Software configuration: We used Virtuoso Open-Source version
7.2.5 to run the SPARQL endpoint, configured to use up to 32 threads
at a time (one per vCPU core on the server) with the following
variables set9:

• NumberOfBuffers = 9735000
• MaxDirtyBuffers = 7301250
• ResultSetMaxRows = 2097150
• MaxQueryCostEstimationTime = 60000

We chose Virtuoso as the SPARQL endpoint since it is the endpoint
that performs the best under high query loads in terms of through-
put and CPU usage [38]. The LDF page size was set to 100, and the
maximum number of elements in Ω was set to 30 for both brTPF
and SPF. The timeout was set to 600 seconds (10 minutes).

9NumberOfBuffers and MaxDirtyBuffers uses the recommended configuration from
http://vos.openlinksw.com/owiki/wiki/VOS/VirtRDFPerformanceTuning given the
server resources. ResultSetMaxRows was set to the maximum amount of rows Virtu-
oso allows in a 64-bit system, and MaxQueryCostEstimationTime was set to a large
number to avoid rejection of requests by the server.
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(a) Throughput for watdiv10M (log) (b) No. timeouts for watdiv10M

(c) Throughput for watdiv100M (log) (d) No. timeouts for watdiv100M

(e) Throughput for watdiv1000M (log) (f) No. timeouts for watdiv1000M

Figure 5: Throughput (#queries/m), CPU load and no. timeouts for union over the different WatDiv datasets.

6.2 Experimental Results

Our objective is to asses whether or not SPF can execute SPARQL
queries that contain star patterns more efficiently by greatly reduc-
ing the network traffic, but without incurring too much additional
load on the server. Furthermore, we want to investigate if SPF is,
in the case of path queries, still as good in terms of performance
as brTPF. In this section, we will show the most important results,
while Appendix C contains the remaining experimental results.

The SPARQL endpoint became unresponsive (i.e. all queries
timed out) for certain configurations due to high server load. We
therefore leave out the values for the configurations where it be-
came unresponsive. Unless otherwise specified, we present results
for watdiv10M and 64 clients since this was the configuration with
the largest number of concurrent clients for which all approaches
completed.

Performance under Load

The main contribution of SPF is improved query processing perfor-
mance, even under high querying load. This is due to an expected
decrease in network traffic, since SPF should send fewer requests to
the server, and the server should return fewer intermediate results,
reducing the overhead from the network traffic. While the server
load is expected to increase slightly, the reduction in network traf-
fic is expected to improve performance for queries that include
star-shaped subqueries.

Figure 5 shows the throughput and number of timeouts of
the four approaches for different numbers of concurrent clients
for union over each WatDiv dataset (watdiv10M, watdiv100M,
watdiv1000M). The throughput and number of timeouts for the
different query loads over each dataset are shown in Appendix C.1.
Although the throughput (Figure 5a, 5c, and 5e) of all the interfaces
deteriorates as the number of concurrent clients increases, SPF
maintains 4-7 times higher throughput compared to brTPF for the

8
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Figure 6: CPU load for the union query load and each configuration over watdiv10M.

WatDiv datasets in the most challenging case with 128 clients. Even
if the SPF server computes the star patterns, Figure 6 shows that
SPF only incurs 1.08 times as much CPU load as brTPF for the same
configuration. Moreover, due to more efficient query processing,
SPF has significantly fewer timeouts than all other approaches (Fig-
ure 5b, 5d, and 5f). Even for the largest dataset size, SPF experiences
almost 3 times less timeouts than brTPF. This shows, that SPF is
not only able to process queries faster, but is also able to process
queries that brTPF and TPF can not process within the timeout. The
endpoint is the best performing interface for only few concurrent
clients. However, its performance deteriorates much faster when
the number of concurrent clients increases. Furthermore, according
to our experiments, the endpoint is not able to process queries
over large datasets when a large number of clients issue queries
concurrently. SPF, TPF and brTPF are able to handle the increased
load more efficiently than the endpoint (Figures 5a and 5c). This
is in line with the experiments shown in [38], and shows that SPF
seems to be a suitable alternative to handling large query loads.

Figure 6 shows the server CPU load of each approach for the
union query load and all the configurations over watdiv10M. The
CPU load for all datasets are shown in Appendix C.2 and show the
same tendencies as Figure 6. Clearly, the endpoint has the highest
CPU load throughout our experiments. SPF has a slightly higher
CPU load than brTPF and TPF; however, since SPF maintains a
higher throughput in our experiments (Figure 5), this is not signifi-
cant enough to affect availability.

Overall, our experiments seem to confirm our hypothesis that
SPF increases query throughput while maintaining relatively low
server load even in the presence of high querying load. The perfor-
mance results, and the fact that the SPF server was able to success-
fully process queries issued by 128 clients concurrently, show that
SPF is able to maintain high availability of the server while also
increasing the query processing performance significantly.

Network Traffic

As previously highlighted, we want to assess whether sending
more selective requests, i.e. subqueries that may be composed of
more than one triple pattern, has an impact on the network traffic.

Especially for queries with large star patterns, we expect that utiliz-
ing such subqueries results in fewer server requests and less data
transfer (i.e., intermediate results) between the server and client.
Figure 7 shows the network usage in the configuration with 64 con-
current clients. We include the results for all other configurations
in Appendix C.3.

Figures 7a, 7c, and 7e show the number of requests to the server
(NRS) for the experiments with 64 clients over each dataset for all
approaches. Clearly, SPF sends significantly fewer requests to the
server than both brTPF and TPF. This is due to the fact that in order
to process a triple pattern, TPF sends one request for each interme-
diate binding while brTPF sends one request per 30 intermediate
bindings (since |Ω | = 30). SPF, however, sends considerably fewer
requests since the intermediate results for the triple patterns within
a star pattern are processed by the server. The lower network usage
is most significant for the 1-star query load, since SPF only sends
one request per 100 results (cf. the page size of 100) and avoids
intermediate results altogether. As the queries include more star
patterns, SPF sends more requests, although at all times fewer than
brTPF and TPF. SPF sends the same amount of requests to the server
as brTPF for the paths query load as SPF’s query processing is the
same as brTPF when no stars are included in the query.

Similarly, since the SPF server processes larger parts of the
queries, fewer of the intermediate results are sent back to the clients,
resulting in a lower number of transferred bytes (NTB) (Figures 7b,
7d, and 7f). Similar to NRS, NTB is significantly lower for SPF in
comparison to both TPF and brTPF throughout all query loads ex-
cept paths, where the results are similar for SPF and brTPF. This
shows that compared to TPF and brTPF, SPF signicantly reduces
the network traffic. Naturally, the endpoint has the lowest NTB and
NRS since only one request per query is sent to the server and only
the final results are transferred back to the client.

Scalability and Applicability

Figure 5 shows that SPF is able to maintain a higher throughput
than the state of the art interfaces, even as the dataset size increases.
In fact, even for the largest dataset (watdiv1000M), SPF has 4 times
higher throughput than brTPF for 128 concurrent clients. Even if
the gain in throughput decreases slightly as the size of the dataset
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(a) NRS for watdiv10M (y-axis in log scale) (b) NTB for watdiv10M (y-axis in log scale)

(c) NRS for watdiv100M (y-axis in log scale) (d) NTB for watdiv100M (y-axis in log scale)

(e) NRS for watdiv1000M (y-axis in log scale) (f) NTB for watdiv1000M (y-axis in log scale)

Figure 7: Network traffic for 64 clients for all approaches over each query load for watdiv10M, watdiv100M, and watdiv1000M.

increases, SPF still experiences almost 3 times less timeouts than
brTPF for the largest dataset; this number is similar for watdiv100M,
and SPF does not experience any timeouts for watdiv10M. This is
due to the increased sizes of intermediate results (Figure 7) that
TPF and brTPF have to deal with and the further limited amount of
intermediate results of the server-side star join that reduces network
traffic and only SPF can benefit from. In fact, for watdiv1000M,
SPF still has significantly less server requests (Figure 7e) and data
transfer (Figure 7f) compared to brTPF and TPF.

Our experiments suggest that SPF is able to achieve high avail-
ability of large datasets under high querying load while being able
to process queries faster than state of the art LDF interfaces. While
the gain in performance that SPF provides decreases slightly for
the largest dataset, SPF is still significantly faster and has fewer
timeouts compared to both brTPF and TPF. This shows that SPF is
able to process more queries under high query load, and that SPF
is able to scale to large datasets and still provide the benefits of
improved performance and lowered network usage.

Impact of the Query Load

Figure 8 shows the performance for each query load in the configu-
ration with 64 concurrent clients. We include results for all other
configurations in Appendix C.4. Figures 8a, 8c, and 8e show query
execution time (QET) for all five query loads in the configuration
with 64 concurrent clients over the different datasets. For queries
with star patterns, it is clear that SPF has better performance than
both TPF and brTPF. The difference between SPF and other inter-
faces is quite significant for the 1-star query load. This is expected
since fewer requests are made for these queries. In fact, as pre-
viously described, some queries in the 1-star query load can be
answered with just a single call to the server. As shown in Figure 8,
SPF outperforms other interfaces more significantly for the 1-star
and 2-stars query loads. These two query loads have larger star
patterns than the other query loads (Figure 4c) and therefore TPF
and brTPF have to make significantly more requests to the server
for these queries, whereas SPF still only makes one request to the
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(a) QET for watdiv10M (y-axis in log scale) (b) QRT for watdiv10M (y-axis in log scale)

(c) QET for watdiv100M (y-axis in log scale) (d) QRT for watdiv100M (y-axis in log scale)

(e) QET for watdiv1000M (y-axis in log scale) (f) QRT for watdiv1000M (y-axis in log scale)

Figure 8: Query execution time (in ms) and query response time (in ms) of each query load and the configuration with 64

clients over watdiv10M, watdiv100M, and watdiv1000M.

server per 100 bindings to each star pattern (cf. the page size was
set to 100).

For queries with no star patterns, we only expected to show that
SPF does not have a worse performance than brTPF. This is in line
with our experimental results, as SPF has similar performance as
brTPF for the paths query load. Figure 8a shows that SPF is quite
comparable to the endpoint in performance; however, Figure 5
illustrates that the endpoint does not scale as well as SPF when the
size of the dataset or number of concurrent clients increases.

Response time

Figures 8b, 8d, and 8f show response times (QRT) for all query loads
for the configuration with 64 concurrent clients over each dataset.
These experimental results show that all approaches have response
times quite similar to execution times. They all receive their first
result only slightly earlier than obtaining the full result. For TPF,
brTPF, and SPF this is most likely due to the fact that most of the

query is already processed upon receiving the first result. For the
endpoint, QRT and QET are the same since it processes the entire
query on the server before returning the result.

Like QET, the improvement in QRT ismore significant for queries
with fewer star patterns since fewer calls to the server are needed.
Moreover, SPF and brTPF have quite similar QRT for the paths
query load, as expected. Last, Figure 8b shows that SPF is compara-
ble to the endpoint in terms of response time for a small dataset,
although SPF scales better (Figure 5).

6.3 Summary

Overall, our experimental evaluation shows that SPF achieves a
novel, and in most cases better, tradeoff between performance and
server load than TPF, brTPF and a SPARQL endpoint. SPF does
this by significantly reducing the network traffic without incurring
too much extra load on the server. Our experiments show that
SPF is able to increase the query throughput by up to an order of
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magnitude compared to brTPF. Even for the largest dataset, SPF
is able to achieve 4 times higher throughput than brTPF and 3
times less timeouts under high query load. For queries without
star patterns, SPF still performs as good as brTPF, both in terms of
the execution time and the network traffic. While SPF has slightly
higher CPU load on the server (1.08 times higher than brTPF), it is
still significantly more efficient than TPF and brTPF in the presence
of high load. This confirms that SPF is able to combine a lower
network load with a higher query throughput and a comparatively
low server load.

7 CONCLUSIONS

In this paper, we presented Star Pattern Fragments (SPF), a new
RDF interface that exploits a different trade-off for distribution of
the workload between the server and client. The SPF client pro-
cesses queries by processing SPARQL operators and decomposing
each BGP into star-shaped subqueries and sends these subqueries,
along with intermediate bindings, to the server. This is similar to
other state of the art approaches that process only individual triple
patterns on the server. We implemented an SPF server that is able
to answer HTTP requests containing star patterns as well as an
SPF client that is able to answer SPARQL queries. Our experimental
results show that SPF reduces the network traffic, both in terms of
the number of requests to the server and the amount of transferred
data between the client and server, while it increases the query
throughput with up to an order of magnitude compared to brTPF.
Our evaluation also demonstrates that SPF increases the overall
performance while only incurring 1.08 times more CPU load on the
server than brTPF and 1.18 times more than TPF when 128 clients
issue queries concurrently.

Future Work

SPF provides new insight into the distribution of the query pro-
cessing workload between the client and the server. As part of the
future research directions for SPF, it could be interesting to inves-
tigate the tradeoffs between the benefits of including support for
object-based star patterns and the cost of the more complex query
decomposition strategies on the client (and the overhead of such
strategies) that supporting object-based star patterns would entail.
Furthermore, decomposing queries by first ensuring the optimal
join order on the triple pattern level could increase performance
for an SPF client. Therefore, such a decomposition strategy that
takes into account the join order of the triple patterns is part of
our future work. Moreover, our future work includes assessing the
impact of adding an SPF-specific cache to the server. Lastly, it could
be interesting to integrate SPF into P2P systems, such as [3, 26], in
order to provide a better distribution of the query processing tasks
between nodes to speed up query processing for such a system.
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A EXTENDED RELATEDWORK

Recent studies [2, 23, 24, 31, 38] have proposed decentralization to
improve the availability of such datasets. In this section, we dis-
cuss different decentralized approaches, how they attempt to solve
the availability problem, and their shortcomings. Specifically, we
discuss Linked Data Fragments (LDF) interfaces [38], Peer-to-Peer
(P2P) systems, federated query engines, and other decentralized
systems.

A.1 Linked Data Fragments

LDF interfaces [38] lift the burden on the data providers by shifting
some of the bulk of the query processing burden from the server to
the clients such that the server only has to process small subqueries.
By doing so, LDF interfaces are generally able to remain efficient
during high query load.

Triple Pattern Fragments (TPF) [38], for instance, only process
individual triple patterns on the server while expensive joins and
SPARQL operators like UNION and FILTER are processed by the
clients. TPF servers therefore have a lower processing burden than
SPARQL endpoints, making them more reliable under load. Since
a TPF server only processes individual triple patterns, the clients
can use various approaches to process the queries. Verborgh et
al. [38] proposed a greedy algorithm based on a pipeline of iterators
(i.e., left-linear join order) in which the order of the triple patterns
are determined based on their estimated cardinality. While TPF
reduces the load on the server in general, it puts much more load
on the client and incurs more network traffic. To improve query
processing performance over TPF servers, Acosta et al. [1] proposed
to use an adaptive query processing approach that routes each

intermediate triple through the query operators in a variety of
orders to simulate different execution plans. On the other hand,
Herwegen et al. [18] attempted to predict the optimal join order
based on a combination of all the metadata made available by the
server and the intermediate results.

While both approaches for optimizing query processing over
TPF clients described above were able to significantly reduce the
number of requests made to the server, they still incur in relatively
high network usage. Furthermore, Heling et al. [16] found that the
performance of TPF is affected by variables such as the triple pattern
type10 and the cardinality. Bindings-Restricted TPF (brTPF) [15] was
proposed to reduce the network traffic by coupling triple patterns
and bindings obtained from previously evaluated triple patterns.
Despite improving the availability of RDF data, all these approaches
cause a large number of calls to the server. On the other hand,
hybridSE [26] relies on both SPARQL endpoints and brTPF servers
to process queries more efficiently than the TPF-based interfaces.
SPARQL subqueries with a large number of intermediate results
are evaluated using SPARQL endpoints to overcome limitations of
TPF clients. However, since hybridSE may send complex subqueries
to the endpoint, and endpoints have downtime [5], this leaves the
approach vulnerable to downtime.

All approaches mentioned above attempt to increase the server
availability while providing efficient access to knowledge graphs.
Star Pattern Fragments (SPF), as proposed in this paper, significantly
improves performance for LDF interfaces by processing larger con-
junctive subqueries on the server thus incurring significantly less
network traffic while keeping the server load comparatively low.

A.2 Peer-to-Peer Systems

P2P systems [2, 8, 21, 22] attempt to increase the availability of
knowledge graphs by removing the central server altogether. In-
stead, each node acts like both a client and server and contains
a limited local datastore. Replication of datasets across multiple
participating nodes can ensure that the data will remain available
even if the original node fails. P2P systems can be divided into two
separate types: structured and unstructured P2P networks.

Structured P2P systems [8, 21, 22] apply a specific structured
overlay over the entire network. For instance, UniStore [22] and
Atlas [21] use Dynamic Hash Tables (DHTs) to impose on which
nodes to store which data. This can benefit query processing perfor-
mance since nodes only have to perform aDHT lookup to determine
which node carries the relevant information. Moreover, determin-
ing which nodes to replicate new data on requires only a lookup
into the hash table. RDFPeers [8] instead imposes a ring structure
to the network, i.e., nodes are connected in a ring based on their
hash values. Triple patterns are then placed in the ring based on
their hash value. This structure has the advantages that the num-
ber of routing hops for insertions and processing most queries is
logarithmic to the number of nodes within the network. However,
structured P2P systems usually require some level of global knowl-
edge over the network. In situations where nodes frequently leave
or join the network (high churn), obtaining such global knowledge

10The type of a triple pattern is defined with respect to the position of variables in the
triple pattern.
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can be impossible. Moreover, the overlay has to recalculated and
data redistributed each time a node leaves or joins the network.

Unstructured P2P systems therefore impose no such overlay.
Piqnic [2], for instance, defines an architecture where connections
between nodes are random. This makes the network more robust
under churn; however, it has to rely on flooding to process queries.
That is, a node sends a request to each of its immediate neighbors
which forward the request to their immediate neighbors, and so
on. This creates an excessive amount of requests at query process-
ing time. Though, decentralized indexes [3, 10] have removed the
need for flooding, such networks still incur somewhat high net-
work usage. Routing indexes [10] allow nodes to determine which
of their neighbors, or combination of neighbors, can provide the
most complete result to a query. However, this still results in at
least one chain of requests being formed per request, limiting the
effect of the index. PPBF indexes [3] instead estimate exactly on
which nodes relevant data to a subquery is located at. This is done
by summarizing the constituents of data fragments using Bloom
Filters [7] and using Bloom Filter intersections [20] to filter out
nodes with non relevant data.

In any case, the query processing effort in P2P systems is usu-
ally distributed across participating nodes and otherwise follows
quite similar to processing queries over LDF servers; queries are
processed locally and subqueries are sent to other nodes in the
network for evaluation rather than a centralized server. However,
differently from traditional SPF servers, the set of nodes over which
to evaluate subqueries in P2P systems are not fixed. Still, extending
nodes in a P2P network with Star Pattern Fragments (SPF) could
result in a similar reduction of intermediate results as described in
Section 6.

A.3 Federated Query Engines

Federated query engines [9, 14, 19, 27, 32, 35] divide SPARQL query
processing over multiple SPARQL endpoints. This decreases the
overall load on each endpoint significantly. While they ideally only
send subqueries to endpoints containing relevant data, thus lower-
ing the overall server load, finding the optimal query execution plan
that limits the size of the intermediate results is a difficult problem
to solve. They therefore sometimes fail to generate optimal query
plans that transfer the minimum amount of data from the endpoints
to the engine and therefore increase the load on SPARQL endpoints.

Several federated systems propose different ways to determine
a query execution plan. Several approaches [9, 14] use metadata
from the federated datasources to provide cost estimations and
cardinality estimations of each triple pattern over relevant sources
in order to optimize the query execution plan. HiBISCuS [32] pro-
poses to use graph summaries and to determine relevant sources
for each part of the query. Montoya et al. [28] instead consider
decomposing SPARQL queries into star-shaped groups that can
be evaluated by a single SPARQL endpoint. This is similar to the
approach presented in this paper since it also utilizes star-shaped
decomposition; however, [28] uses star decomposition to process
queries over federations of SPARQL endpoints which are subject to
failure. Other optimization techniques for federated query engines
attempt to estimate the selectivity of joins in queries to produce
better execution plans [27, 33].

However, federated query engines typically rely on a fixed set
of SPARQL endpoints. As previously mentioned, such endpoints
suffer from unavailability [5, 37], and the engines can therefore
not guarantee higher availability of knowledge graphs. In any case,
the query processing and optimization techniques discussed above
could be applied over federations of SPF server to utilize the benefits
of SPF highlighted in this paper.

A.4 Other Decentralized Systems

Other systems use more complex techniques to address some of the
issues posed by TPF. SaGe [25] uses a preemptive model that sus-
pends queries after a fixed time quantum, so as to not starve simpler
queries from system resources, whereafter they can be resumed
upon client request. This, however, often leads to a large amount
of requests to the server, which is exactly what we are addressing
in this paper. Smart-KG [6], on the other hand, ships star-shaped
partitions to the client during query processing. This decreases the
amount of requests to the server, since partitions already shipped
to the client can be evaluated directly on the client. However, this
can in some cases lead to unnecessary data transfer during query
processing, since the entire partition is shipped regardless of object
bindings obtained from previously evaluated triple patterns.

A.5 Summary

Previous studies have proposed different solutions to alleviate the
burden from the data providers. LDF interfaces [15, 26, 38], for
instance, improve the availability of knowledge graphs by shifting
a large part of the query processing effort from the server to the
client. P2P systems [2, 8, 21, 22], on the other hand, attempt to
remove the central server altogether by making nodes act like both
clients and servers, and allowing nodes to communicate with each
other. Several other systems either split up the query processing
across multiple endpoints [27, 35], ship star-shaped partitions [6]
to the client, or suspend queries from being executed after a fixed
time [25]. In most of these systems, however, query processing
tends to follow a similar approach; queries are executed locally on
the clients and small subqueries are processed remotely.

In this paper, we propose an interface that builds on this no-
tion and provides a novel distribution of query processing tasks
where, differently from the approaches discussed in this section,
joins in star-shaped subqueries are evaluated by the server. Such
computations do not significantly increase the query load because
star-shaped subqueries can be answered in linear complexity [30].
Our approach therefore achieves a reduction on the data transfer
and the execution time without having a negative impact on the
data availability. While SPF is as an LDF interface, other systems
could be extended with our approach to provide similar benefits as
well.

B QUERY PROCESSING EXAMPLE

In this section, we will provide an example of processing a SPARQL
query over an SPF server and client. This section shows how the
client applies the procedure outlined in Section 5.1, and provides
the intuition of how queries are processed with SPF. In this example,
|Ω | = 30 and the page size is 100.
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Consider the query𝑄 from Listing 1 processed over DBpedia [11].
Processing 𝑄 with SPF is done by following the approach outlined
in Section 5.1. The first step is to obtain the star decomposition of
𝑄 . Figure 3 shows the star decomposition of 𝑄 into stars 𝑆1 and 𝑆2.

The second step is to determine the join order, i.e., which of
the two star patterns should be processed first. To do this, SPF
relies on the cardinality estimations from the server. The client
therefore sends a request for the first page of each star pattern. The
cardinalities are as follows.

• 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑆1) = 13
• 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑆2) = 71

Since 𝑆1 has the lowest cardinality and is thus the more selective
star pattern, it is evaluated first. However, the first page for 𝑆1 has
already been retrieved, and since the 13 intermediate results are
fewer than the page size of 100, there is no need to call the server
once more. Instead, the 13 bindings are bulked together as Ω𝑆1 and
appended to the request for 𝑆2. The client then forwards the request
containing 𝑆2 and Ω𝑆1 to the server.

Upon receiving the request for 𝑆2 and Ω𝑆1 , the server contin-
uously replaces variables in 𝑆2 with values according to Ω𝑆1 and
appends results of the corresponding 13 star patterns to the output.
This happens 13 times since there are 13 bindings in Ω𝑆1 . The server
thus responds with the 8 bindings that are the result of joining 𝑆1
and 𝑆2. These 8 bindings are the output result of 𝑄 .

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we show additional experimental results includ-
ing a brief discussion on the findings. Specifically, we show the
throughput and number of timeouts for each individual query load
over each dataset. Moreover, we show the CPU load on the server
for each datasets. Last, we show the network traffic as well as the
performance for all configurations except for 64 clients since they
are shown in Figures 7 and 8.

C.1 Performance over the Query Loads

Figure 9 shows the throughput over each dataset for 1-star (Fig-
ures 9a-9c), 2-stars (Figures 9d-9f), 3-stars (Figures 9g-9i), and
paths (Figures 9j-9l). Figure 10 shows the number of timeouts over
each dataset for 1-star (Figures 10a-10c), 2-stars (Figures 10d-
10f), 3-stars (Figures 10g-10i), and paths (Figures 10j-10l).

It is clear from the experimental results in this section that SPF
has higher throughput for all query loads with star patterns under
high query load and for large-scale datasets. As pointed out in
Section 6, this is more significant for the 1-star and 2-stars query
loads. This is due to a comparatively lower number of intermediate
results that SPF has to process. Moreover, for the 1-star query
load, SPF does not process any intermediate results since it only
receives the final results. Furthermore, SPF is as good as brTPF in
terms of throughput for the paths query load that does not contain
any star patterns. This shows that SPF performs at least as well as
brTPF, and if the queries contain star patterns it performs better.

In terms of timeouts, it is clear that SPF is able to finish more
queries compared to TPF, brTPF, and the endpoint; especially for
watdiv10M where SPF did not experience a single timeout in any

query load. SPF has significantly fewer timeouts than TPF, brTPF,
and the endpoint for all query loads, datasets, and configurations.
The only exception to this is for the paths query load, where SPF
had as many timeouts as brTPF.

C.2 CPU Load

Figure 11 shows the CPU load over watdiv10M (Figure 11a),
watdiv100M (Figure 11b), and watdiv1000M (Figure 11c) for the
union query load. While SPF has a higher CPU load on the server
compared to TPF and brTPF throughout the experiments, it is not
enough to significantly affect performance during high load. In fact,
as pointed out in Section C.1, SPF maintains a higher through-
put even when 128 clients concurrently query the server. For
watdiv100M, SPF maintains a CPU load on the server that is almost
identical to that of brTPF (Figure 11b). These results are consistent
with the ones described in Section 6 and show that SPF is able to
achieve a better distribution of the load on the server and client
than state of the art LDF interfaces.

C.3 Network Traffic

Figures 12-15 show the number of requests to the server (NRS) and
the number of transferred bytes (NTB) for all numbers of clients
over all datasets. These results are consistent with the results shown
in Section 6 and show that SPF sends significantly less requests and
transfers significantly less data than both brTPF and TPF. This is
most significant for 1-star since SPF only has to send one request
per 100 results (cf. the page size of 100) and avoids intermediate
results altogether. As the number of star patterns in the query in-
creases, the difference in NRS and NTB between SPF and brTPF
becomes less significant. The only exception to this is for paths
where SPF still performs as good as brTPF. These results are consis-
tent across all configurations.

C.4 Execution and Response Time

Figures 16-19 show the query execution time (QET) and query
response time (QRT) for all numbers of clients over all datasets.
These results show that SPF significantly increases performance
compared to brTPF and TPF. This is more significant for 1-star
and 2-star and is due to each individual star being a larger part of
the query, thus lowering the amount of intermediate results SPF
has to process. In the worst case where queries do not contain any
star patterns, i.e., paths, SPF still performs as good as brTPF. The
results shown in this section are consistent across all configurations
and with the results presented in Section 6.

C.5 Summary

Overall, the additional experiments presented in this section are
consistent with the ones presented in Section 6. The results show
that SPF is able to increase query throughput by up to an order of
magnitude compared to brTPF. Even though the load on the server
is slightly higher for SPF than for brTPF and TPF, SPF significantly
improves the query execution time and query response time for
queries with star patterns. This indicates that SPF is a suitable
alternative to accessing large-scale knowledge graphs under high
query processing load.
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(a) Throughput for 1-star over watdiv10M (log) (b) Throughput for 1-star over watdiv100M (log)

(c) Throughput for 1-star over watdiv1000M (log) (d) Throughput for 2-stars over watdiv10M (log)

(e) Throughput for 2-stars over watdiv100M (log) (f) Throughput for 2-stars over watdiv1000M (log)

(g) Throughput for 3-stars over watdiv10M (log) (h) Throughput for 3-stars over watdiv100M (log)

(i) Throughput for 3-stars over watdiv1000M (log) (j) Throughput for paths over watdiv10M (log)

(k) Throughput for paths over watdiv100M (log) (l) Throughput for paths over watdiv1000M (log)

Figure 9: Throughput (#queries/m) for each query load over the different WatDiv datasets.
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Star Pattern Fragments: Accessing Knowledge Graphs through Star Patterns

(a) No. timeouts for 1-star over watdiv10M (b) No. timeouts for 1-star over watdiv100M

(c) No. timeouts for 1-star over watdiv1000M (d) No. timeouts for 2-stars over watdiv10M

(e) No. timeouts for 2-stars over watdiv100M (f) No. timeouts for 2-stars over watdiv1000M

(g) No. timeouts for 3-stars over watdiv10M (h) No. timeouts for 3-stars over watdiv100M

(i) No. timeouts for 3-stars over watdiv1000M (j) No. timeouts for paths over watdiv10M

(k) No. timeouts for paths over watdiv100M (l) No. timeouts for paths over watdiv1000M

Figure 10: Number of timeouts for each query load over the different WatDiv datasets.
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(a) CPU load for watdiv10M (b) CPU load for watdiv100M

(c) CPU load for watdiv1000M

Figure 11: CPU load for union over the different WatDiv datasets.

(a) NRS for 1 client over watdiv10M (y-axis in log scale) (b) NTB for 1 client over watdiv10M (y-axis in log scale)

(c) NRS for 1 client over watdiv100M (y-axis in log scale) (d) NTB for 1 client over watdiv100M (y-axis in log scale)

(e) NRS for 1 client over watdiv1000M (y-axis in log scale) (f) NTB for 1 client over watdiv1000M (y-axis in log scale)

Figure 12: Network traffic for 1 client for all approaches over each query load for watdiv10M, watdiv100M, and watdiv1000M.
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(a) NRS for 2 client over watdiv10M (y-axis in log scale) (b) NTB for 2 client over watdiv10M (y-axis in log scale)

(c) NRS for 2 client over watdiv100M (y-axis in log scale) (d) NTB for 2 client over watdiv100M (y-axis in log scale)

(e) NRS for 2 client over watdiv1000M (y-axis in log scale) (f) NTB for 2 client over watdiv1000M (y-axis in log scale)

(g) NRS for 4 client over watdiv10M (y-axis in log scale) (h) NTB for 4 client over watdiv10M (y-axis in log scale)

(i) NRS for 4 client over watdiv100M (y-axis in log scale) (j) NTB for 4 client over watdiv100M (y-axis in log scale)

(k) NRS for 4 client over watdiv1000M (y-axis in log scale) (l) NTB for 4 client over watdiv1000M (y-axis in log scale)

Figure 13: Network traffic for 2 and 4 clients for all approaches over each query load for watdiv10M, watdiv100M, and
watdiv1000M.
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(a) NRS for 8 client over watdiv10M (y-axis in log scale) (b) NTB for 8 client over watdiv10M (y-axis in log scale)

(c) NRS for 8 client over watdiv100M (y-axis in log scale) (d) NTB for 8 client over watdiv100M (y-axis in log scale)

(e) NRS for 8 client over watdiv1000M (y-axis in log scale) (f) NTB for 8 client over watdiv1000M (y-axis in log scale)

(g) NRS for 16 client over watdiv10M (y-axis in log scale) (h) NTB for 16 client over watdiv10M (y-axis in log scale)

(i) NRS for 16 client over watdiv100M (y-axis in log scale) (j) NTB for 16 client over watdiv100M (y-axis in log scale)

(k) NRS for 16 client over watdiv1000M (y-axis in log scale) (l) NTB for 16 client over watdiv1000M (y-axis in log scale)

Figure 14: Network traffic for 8 and 16 clients for all approaches over each query load for watdiv10M, watdiv100M, and
watdiv1000M.
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Star Pattern Fragments: Accessing Knowledge Graphs through Star Patterns

(a) NRS for 32 client over watdiv10M (y-axis in log scale) (b) NTB for 32 client over watdiv10M (y-axis in log scale)

(c) NRS for 32 client over watdiv100M (y-axis in log scale) (d) NTB for 32 client over watdiv100M (y-axis in log scale)

(e) NRS for 32 client over watdiv1000M (y-axis in log scale) (f) NTB for 32 client over watdiv1000M (y-axis in log scale)

(g) NRS for 128 client over watdiv10M (y-axis in log scale) (h) NTB for 128 client over watdiv10M (y-axis in log scale)

(i) NRS for 128 client over watdiv100M (y-axis in log scale) (j) NTB for 128 client over watdiv100M (y-axis in log scale)

(k) NRS for 128 client over watdiv1000M (y-axis in log scale) (l) NTB for 128 client over watdiv1000M (y-axis in log scale)

Figure 15: Network traffic for 32 and 128 clients for all approaches over each query load for watdiv10M, watdiv100M, and
watdiv1000M.
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(a) QET for 1 client over watdiv10M (y-axis in log scale) (b) QRT for 1 client over watdiv10M (y-axis in log scale)

(c) QET for 1 client over watdiv100M (y-axis in log scale) (d) QRT for 1 client over watdiv100M (y-axis in log scale)

(e) QET for 1 client over watdiv1000M (y-axis in log scale) (f) QRT for 1 client over watdiv1000M (y-axis in log scale)

(g) QET for 2 clients over watdiv10M (y-axis in log scale) (h) QRT for 2 clients over watdiv10M (y-axis in log scale)

(i) QET for 2 clients over watdiv100M (y-axis in log scale) (j) QRT for 2 clients over watdiv100M (y-axis in log scale)

(k) QET for 2 clients over watdiv1000M (y-axis in log scale) (l) QRT for 2 clients over watdiv1000M (y-axis in log scale)

Figure 16: Query execution time (QET) and query response time (QRT) for 1 and 2 clients for all approaches over each query

load for watdiv10M, watdiv100M, and watdiv1000M.
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(a) QET for 4 clients over watdiv10M (y-axis in log scale) (b) QRT for 4 clients over watdiv10M (y-axis in log scale)

(c) QET for 4 clients over watdiv100M (y-axis in log scale) (d) QRT for 4 clients over watdiv100M (y-axis in log scale)

(e) QET for 4 clients over watdiv1000M (y-axis in log scale) (f) QRT for 4 clients over watdiv1000M (y-axis in log scale)

(g) QET for 8 clients over watdiv10M (y-axis in log scale) (h) QRT for 8 clients over watdiv10M (y-axis in log scale)

(i) QET for 8 clients over watdiv100M (y-axis in log scale) (j) QRT for 8 clients over watdiv100M (y-axis in log scale)

(k) QET for 8 clients over watdiv1000M (y-axis in log scale) (l) QRT for 8 clients over watdiv1000M (y-axis in log scale)

Figure 17: Query execution time (QET) and query response time (QRT) for 4 and 8 clients for all approaches over each query

load for watdiv10M, watdiv100M, and watdiv1000M.
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(a) QET for 16 clients over watdiv10M (y-axis in log scale) (b) QRT for 16 clients over watdiv10M (y-axis in log scale)

(c) QET for 16 clients over watdiv100M (y-axis in log scale) (d) QRT for 16 clients over watdiv100M (y-axis in log scale)

(e) QET for 16 clients over watdiv1000M (y-axis in log scale) (f) QRT for 16 clients over watdiv1000M (y-axis in log scale)

(g) QET for 32 clients over watdiv10M (y-axis in log scale) (h) QRT for 32 clients over watdiv10M (y-axis in log scale)

(i) QET for 32 clients over watdiv100M (y-axis in log scale) (j) QRT for 32 clients over watdiv100M (y-axis in log scale)

(k) QET for 32 clients over watdiv1000M (y-axis in log scale) (l) QRT for 32 clients over watdiv1000M (y-axis in log scale)

Figure 18: Query execution time (QET) and query response time (QRT) for 16 and 32 clients for all approaches over each query

load for watdiv10M, watdiv100M, and watdiv1000M.
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(a) QET for 128 clients over watdiv10M (y-axis in log scale) (b) QRT for 128 clients over watdiv10M (y-axis in log scale)

(c) QET for 128 clients over watdiv100M (y-axis in log scale) (d) QRT for 128 clients over watdiv100M (y-axis in log scale)

(e) QET for 128 clients over watdiv1000M (y-axis in log scale) (f) QRT for 128 clients over watdiv1000M (y-axis in log scale)

Figure 19: Query execution time (QET) and query response time (QRT) for 128 clients for all approaches over each query load

for watdiv10M, watdiv100M, and watdiv1000M.
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