ELECTRIC CAR INTEGRATION IN THE DANISH ENERGY SYSTEM

- A PLANNING AND INSTITUTIONAL APPROACH TO TECHNOLOGICAL CHANGE

Karina Hjeds Department of Planning Aalborg University August 6th 2020

Electric Car Integration in the Danish Energy System
- a planning and institutional approach to technological change
Master's Thesis
4^{th} - Master's Programme in Urban, Energy and Environmental
Planning with Specialisation in Sustainable Energy Planning and
Management
The Technical Faculty of IT and Design
Department of Planning
3^{rd} of February 2020 to 6^{th} of August 2020
30
Jakob Zinck Thellufsen
Karina Hjeds
110
2

By accepting the request from the fellow student who uploads the study group's project report in Digital Exam System, you confirm that all group members have participated in the project work, and thereby all members are collectively liable for the contents of the report. Furthermore, all group members confirm that the report does not include plagiarism.

Abstract

In this Master's thesis, it is investigated how different scenarios with variations in the electric car share can affect the Danish energy system and the transition it is currently going through to become 100% fossil free in the year 2050. The methods applied in the thesis include scenario planning together with the energy system analysis tool EnergyPLAN. The methodology is applied in the first part of the analysis, which is carried out through a technical approach. The second part of the analysis has its point of departure in the theoretical framework of the thesis. This analysis investigates how external conditions influence on technological change and large technical systems. An approximation model for large technical systems is applied together with technological change theory, resulting in an institutional analysis of qualitative matter. Lastly, the findings from the two analyses are combined and discussed in relation to each other. In relation to the thesis scenarios, it can be concluded that the future transport sector should consist of a minimum of 50% electric cars for the biomass consumption not to exceed the critical limit, and that an increase in electric cars not requires an increase in wind capacity, but that the costs will increase in step with the electric car share and hydrogen usage. The thesis also concludes, that external conditions can affect technological change in different directions. Additionally, it is possible to perform adjustments within these conditions to influence technological change and to promote the desired scenario for the future energy system.

I dette afsluttende speciale er det undersøgt, hvordan variationer i andelen af elbiler kan påvirke det danske energisystem, som på nuværende tidspunkt undergår en omstilling fra et energisystem baseret på fossile brændsler, til et energisystem baseret udelukkende på vedvarende energi. Det danske folketing har vedtaget et energipolitisk mål, som omhandler en total omstilling af energisystemet, så det i år 2050 er fri for fossile brændsler. Dette betyder derfor, at energiforbruget i den danske transportsektor, som står for en betydelig andel i forbruget af fossile brændsler, ligeledes skal omstilles til vedvarende energi. Til dette vil elektricitet blive prioriteret højt på grund af den høje effektivitet forbundet med elbiler, samt de lave priser på denne form for energi. På nuværende tidspunkt har udviklingen i elbiler i Danmark ikke været som ønsket, og det er derfor både relevant og aktuelt at opstille scenarier, der illustrerer, hvordan forskellige andele i elbiler kan påvirke det danske energisystem.

Med udgangspunkt i IDAs energivision er tre forskellige scenarier med tilhørende underscenarier udformet for at belyse den usikkerhed, der er forbundet med elbiler i Danmark. Scenarierne er udformet på baggrund af en metode for scenarieplanlægning, og den praktiske udførsel er foretaget i EnergyPLAN, som er et simuleringsprogram anvendt til udførsel af energisystemanalyse. I specialet er der ydermere anvendt en overordnet forståelse for begrebet 'smart energisystem', som er denne form for energisystem der ønskes opnået i år 2050. Den teoretiske ramme for specialet omhandler teknologisk forandring, og her er der anvendt en model for, hvordan store tekniske systemer kan tilgås. Derudover er teori omhandlende teknologisk forandring anvendt for at give en forståelse for, hvordan ydre påvirkninger kan resultere i denne forandring. Denne del af analysen har en institutionel tilgang, og de to forskellige analyser er til sidst forbundet og diskuteret i relation til hinanden.

Det første scenarie i analysen indeholder lineær vækst, hvilket betyder, at den vækst som har gjort sig gældende for elbiler indtil i dag, er videreført til år 2050, hvilket giver en mindre andel i elbiler. Til dette scenarie er der udformet tre underscenarier, hvor den resterende del af bilflåden er erstattet med enten fossile brændsler, biobrændsel eller en kombination af biobrændsel og brint. Scenariet indeholdende fossile brændsler er uønsket i det fremtidige energisystem, da målet er at eliminere denne energiform. I det andet scenarie består bilflåden af 50% elbiler, og her indeholder den resterende del af bilflåden enten biobrændsel eller en kombination af biobrændsel og brint fordelt på to underscenarier. I det sidste scenarie er der anvendt en andel i elbiler på 90% af bilflåden, og her er den sidste andel biler erstattet af enten biobrændsel eller brint, ligeledes fordelt på to underscenarier.

Resultaterne af analysen indikerer, at den fremtidige transportsektor som absolut minimum skal bestå af 50% elbiler for ikke at overskride den kritiske biomassegrænse. Derudover viser scenarierne, at en øgning i antallet af elbiler ikke er ensbetydende med at vindkapaciteten skal udbygges tilsvarende, men at omkostningerne stiger i takt med andelen af elbiler og brintforbruget. Derudover viser resultaterne, at teknologisk forandring skyldes ydre påvirkninger, og at det er muligt at justere disse betingelser, så de påvirker teknologien i den ønskede retning. Det kan konkluderes, at det især er politisk regulering, der kan have en effekt på udviklingen af elbiler, da det med disse initiativer er muligt at påvirke adfærden i samfundet. Ved hjælp af reguleringer er det derfor muligt at gøre elbiler mere attraktive og derved påvirke elbilsudviklingen i den ønskede retning. This Master's thesis is the culmination of the two years Master's programme in Sustainable Energy Planning and Management at Aalborg University. The thesis was completed during the global COVID-19 pandemic, forcing Aalborg University to deny students campus access due to a society lock-down. Even though this thesis was composed by a single student, did the university lock-down affect the work intensity during a period of time, because of the work spaces at Aalborg University being unavailable. Though, the supervision meetings were still possible to attend online, which makes the consequences of the COVID-19 pandemic less significant seen in relation to the preparation of this thesis.

Reading Guide

The reference method used in the thesis is the Harvard method denounced as [author, publication year]. A nomenclature is placed in the beginning, including abbreviations, units and chemical formulas mentioned in the thesis. The thesis includes seven different chapters, which should be read chronologically. The thesis is initiated with an introduction functioning as a problem analysis and followed by a chapter with a presentation of the research question. Chapter 3 and 4, respectively, deal with the theories and methods applied in the thesis. Naturally, this leads to the analysis, which is divided into two chapters; one with a technical approach and one with an institutional approach. Chapter 7 consists of a discussion of the analysis results, which leads to the conclusion of the thesis. Appendices are attached in the end of the thesis and are mentioned with letters in the order that they are applied throughout the thesis.

Thanks...

Lastly, a great 'thank you' is directed at Jakob Zinck Thellufsen for being helpful during a semester under unusual conditions, and for providing great supervision throughout the process of writing this thesis.

Nomenclature

Abbreviations

EC	Electric Car
EV	Electric Vehicle
BEV	Battery Electric Vehicle
PHEV	Plug-in Hybrid Electric Vehicle
CEEP	Critical Excess Electricity Production
ICE	Internal Combustion Engine
RE	Renewable Energy
RES	Renewable Energy System
SES	Smart Energy System
CHP	Combined Heat and Power
BTL	Biomass-to-liquid
IDA	The Danish Society of Engineers
DEA	The Danish Energy Agency
BAU	Business As Usual
MEUR	Million Euros

Units

GJ	Gigajoule
РJ	Petajoule
MJ	Megajoule
MW	Megawatt
MWh	Megawatt hour
TWh	Terawatt hour
Mpkm	Million passenger-kilometer
Mt	Megaton

Chemical formulas

CO_2	Carbon	dioxide
--------	--------	---------

 H_2O Dihydrogen monoxide

Contents

Chapte	er 1 In	ntroduction								1
1.1	Energy	/ & Transport Demand		•						2
1.2	Electri	c Cars in the Danish Energy System		•						4
1.3	Scenar	ios for the future Danish Energy System		•		•	•	•	•	5
Chapte	er 2 R	lesearch Question								7
2.1	Proble	m Definition \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots		•			•			7
2.2	\mathbf{Scope}			•			•			8
2.3	Thesis	Structure		•		•	•	•	•	9
Chapte	er 3 T	heoretical Framework								11
3.1	The Sr	nart Energy System Concept		•						11
3.2	Techno	blogy & Change \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots		•			•			12
	3.2.1	Approximation Models for Large Technical Systems		•		•	•	•		13
Chapte	er 4 N	Iethodology								17
4.1	Data ($Collection \dots \dots$		•			•			17
4.2	Planni	ng Approach, Risks & Alternatives		•						17
4.3	Energy	7 System Analysis		•						18
	4.3.1	What is EnergyPLAN?		•						19
	4.3.2	EnergyPLAN and the Transport Sector		•						20
4.4	Refere	nce Scenario		•						22
	4.4.1	Optimisation		•						23
	4.4.2	Scenario Input & Energy System Criteria		•		•	•	•	•	24
Chapte	er 5 S	cenario Preparation								25
5.1	Introd	$uction \ldots \ldots$		•	•					25
5.2	Scenar	io 1: Linear Growth		•	•					29
	5.2.1	Risk Assessment		•						30
	5.2.2	Alternatives Assessment		•						32
5.3	Scenar	io 2: 50% Electric Car Share $\ldots \ldots \ldots \ldots \ldots$		•						34
	5.3.1	Alternatives Assessment		•						35
5.4	Scenar	io 3: 90% Electric Car Share $\ldots \ldots \ldots \ldots \ldots$		•						38
	5.4.1	Alternatives Assessment		•						39
	5.4.2	Results		•		•	•		•	41
Chapte	er6 T	he Role of Technology								45
6.1	Techno	blogy Structure		•						45
	6.1.1	Electric Cars in Large Technical Systems		•						48
	6.1.2	Technological Change in Practice		•						50
	6.1.3	Summary		•						52

Chapte	er 7 Discussion	55
7.1	Scenario Possibility & Considerations	55
	7.1.1 Determining the Future Path	56
7.2	Incorporating ECs into the Danish Energy System	58
	7.2.1 Institutions and Technological Development	59
7.3	Thesis Approach	
Chapte	er 8 Conclusion	63
Bibliog	raphy	65
Appen	dix A Appendix	71
A.1	Vehicle Specifications	71
Appen	dix B Appendix	73
B.1	IDA vision - thesis version (updated values)	73
B.2	Scenario 1: Linear Growth (BAU)	76
B.3	Scenario 1: Linear Growth - Biomass alternative	79
B.4	Scenario 1: Linear Growth - Biomass and hydrogen alternative	82
B.5	Scenario 2: 50% - Biomass alternative	85
B.6	Scenario 2: 50% - Biomass and hydrogen alternative	88
B.7	Scenario 3: 90% - Biomass alternative	91
B.8	Scenario 3: 90% - Hydrogen alternative	94

Introduction

The Danish government has composed a goal with the aim to make Denmark independent of fossil fuels in the year 2050. The goal emerges from the fact that a new energy policy era has begun, which means that the so far accessible and cheap fossil fuels have to be replaced by other energy sources. An increase in the world's energy consumption has resulted in a pressure on the fossil fuel resources creating an energy race which the Danish government does not wish to be a part of. This is due to the fact, that the fuel prices rises and that the fossil fuel reserves often are located in countries that are political unstable, which makes the future of these energy sources uncertain. In an energy perspective, Denmark will obtain independence by eliminating fossil fuels. Political energy goals have therefore been composed with the purpose for Denmark to undergo a transition to renewable energy, which will also be the Danish contribution to reduce climate change [The Danish Government, 2011]. The Danish goal thereby also includes the transport sector, which is perceived a challenge in the green transition. The transport sector accounts for a large oil dependence and for that reason, renewable energy solutions and new technologies have to be integrated in the Danish energy system [Mathiesen et al., 2008].

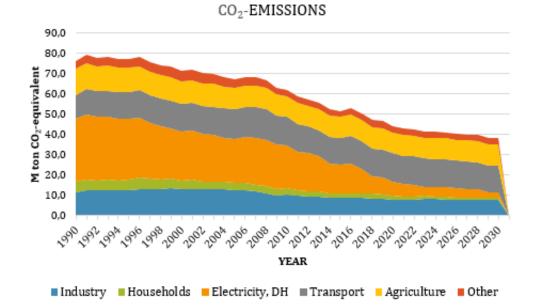
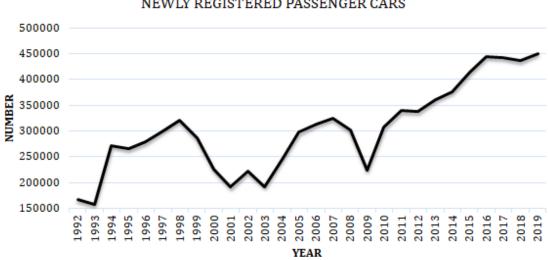
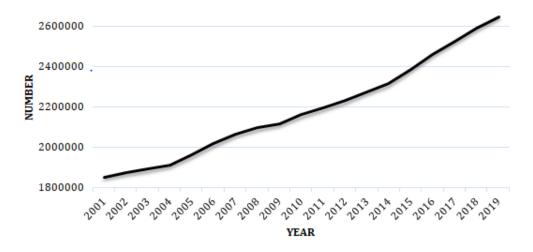



Figure 1.1: CO2-emissions distributed on sectors in Denmark [Energistyrelsen, 2019]

The transport sector is not only one of the sectors with the highest energy demand, but it is also the sector that currently, and in the future, emits the largest share of CO_2 [figure 1.1]. With electricity being an efficient and cheap energy resource, the majority of the transport sector is expected to be electrified [Mathiesen et al., 2015b]. This thesis investigates the consequences that occur, if the expected development within electric cars is not to be achieved. The effect on the energy system will be examined and alternative solutions that will ensure a fossil free society will be presented. Furthermore, is an analysis of technological change being conducted to achieve an understanding of how institutions can affect technological development.

Energy & Transport Demand 1.1


The current expectations for the global transport demand is that significant growth will be experienced in the years to come, which is due to many factors such as population and economic growth [International Transport Forum, 2019]. This is the case for Denmark as well, where recent projections show that the energy consumption for road transport will increase by approximately 0.1% annually towards 2030. In the same year, vans and passenger cars will constitute of 47% of the total energy consumption in the transport sector. Though, improved car technology efficiencies result in the energy consumption not increasing further [Energistyrelsen, 2019], even though the number in newly registered cars is growing [figure 1.2] due to private vehicles being the preferred travel mode on a world wide basis [International Transport Forum, 2019].

NEWLY REGISTERED PASSENGER CARS

Figure 1.2: The distribution of newly registered passenger cars in Denmark from 1992-2019 [Danmarks Statistik, 2020a]

Figure 1.2 shows the purchasing number of new cars. The graph illustrates the development within newly registered passenger cars, which especially has been increasing over the past decade. This increase has thereby also resulted in a larger car fleet in Denmark, where more than 2.6 million passenger cars are to find on the Danish roads [figure 1.3].

DEVELOPMENT IN PASSENGER CARS

Figure 1.3: Number of passenger cars in Denmark from 2001-2019 [Danmarks Statistik, 2020b]

The increasing energy consumption used for transportation, together with an increase in the number of passenger cars, is making it more challenging to convert this sector to renewable energy. To convert the transport sector to renewable energy, there is no obvious solution, but studies show that electricity should have high priority in the equation, as this energy form is the cheapest and most efficient solution [Connolly et al., 2014b]. Other alternatives of renewable energy that can be used in the transport sector includes biomass, hydrogen, gas and electrofuels [Simonsen, 2016]. Though, challenges occur in the use of some energy sources. Biomass is a limited source [Lund, 2014b], because of the utilization of land in order to grow the plants for biomass. For this energy source, discussions about sustainability and emissions follow because of biomass only being considered CO₂-neutral if new plants are being planted to take up the emitted CO_2 . Though, biomass is also a manageable source, meaning that it is not fluctuating and it is easy to store. This also means, that the biomass characteristics are similar to fossil fuels, which makes it the obvious alternative [Dansk Energi, n.d]. For cars that run on gas, the efficiency is lower than for ECs, which gives this technology a lower priority. Besides that, hydrogen is being converted from H_2O by an electrolysis process, which makes it a necessity to produce electricity for this process to happen. Storage of hydrogen can also be considered as storage of fluctuating energy, making the energy system more flexible¹. But, transportation of hydrogen is also an expensive and complicated procedure, and safety issues are linked to the handling of the source [Energistyrelsen and Energinet, 2018]. These arguments are contributing to give electricity first priority in the transport sector, but it might also be necessary to include several different technologies as they can weigh up each other's weaknesses [Klimarådet, 2018].

¹Flexibility in an energy system describes the system's ability to handle uncertainty and variability on both the demand and production side. It also includes that the system's reliability maintain a satisfactory level and with reasonable costs [Ma et al., 2013].

1.2 Electric Cars in the Danish Energy System

Several studies point at ECs being an important part of the solution in the process of making the transport sector fossil free. But today, ECs cannot be considered a zeroemission technology, both in relation to the fuel that is used and in a life cycle perspective, which is because of the emissions related to the production of the car. Currently, the resources used for production can derive from fossil fuels instead of renewable energy, which is also the case for the production of the electricity used as EC fuel. Though, this is expected to change in the future, where renewable energy replaces fossil fuels making both the production process and the technology zero-emitters.

Car	Diesel	Gas	Electric
Driving costs $(euro/km)$	$0,\!193$	$0,\!188$	$0,\!145$
Energy consumption (MJd/km)	$1,\!91$	$1,\!98$	0,53
Energy consumption (km/l gas-equiv)	17,2	$16,\! 6$	62,2
Propellant cost total $(euro/GJd)$	$22,\!12$	$23,\!08$	22,89
${\rm Fuel \ cost \ (euro/km)}$	$0,\!04$	$0,\!05$	0,01
Vehicle efficiency	20,7%	19,5%	$78{,}6\%$

Table 1.1: Comparison of technology characteristics [Energistyrelsen, 2016]

Today, ECs are in competition with fossil fuel driven cars, and it is thereby uncertain if people find ECs attractive with other alternatives available. ECs come with some advantages in comparison to fossil fuel driven cars in relation to efficiency, economy and environment [table 1.1], but cars running on fossil fuels do have other advantages such as lower cost prices and better range [Klimarådet, 2018]. In 2019, the sales of ECs made up 5,500 cars or 3,9% of the total car sale in Denmark [figure 1.4]. Currently, ECs account for approximately 15,500 cars or 1% of the Danish car fleet [Danmarks Statistik, 2019].

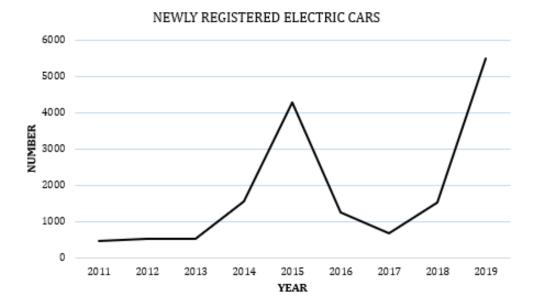
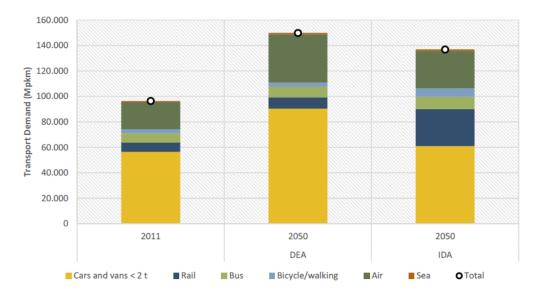


Figure 1.4: Newly registered electric cars in Denmark from 2011-2019 [Danmarks Statistik, 2020c]

The Danish Council on Climate Change suggests, on the background of socio-economic costs and the technology's potential to promote the green transition, that the number of ECs reaches 500,000 or 17% of the car fleet by 2030 [Klimarådet, 2018]. This means, that nearly 50,000 ECs will have to be sold every year for the next decade. Though, according to the DEA projections, the expected number of ECs in 2030 will only reach 300.000 [Energistyrelsen, 2019], which means that almost 30.000 ECs have to be sold every year.

1.3 Scenarios for the future Danish Energy System


Several scenarios have been composed to illustrate possible solutions to a fossil free energy system in 2050. The Danish Energy Agency has composed four different scenarios for a fossil free energy system in 2050:

- Wind scenario This scenario contains a bioenergy consumption equal to what Denmark can deliver. Besides that, electrification of the transport sector is crucial and requires expansion of the offshore wind turbine capacity. There is a wish to keep the bioenergy consumption to a minimum, which is managed by using hydrogen for upgrading biogas and biomass
- *Biomass scenario* This scenario does not contain hydrogen, but a higher bioenergy consumption that requires import of biomass
- *Bio+ scenario* This scenario is similar to the energy system of today, as it is based on combustion. But, instead of fossil fuels, the energy source will be bioenergy. The scenario contains no use of hydrogen
- *Hydrogen scenario* A small use of bioenergy is used in this scenario. Instead, hydrogen is the primarily energy source, and the wind capacity therefore has to be significantly expanded [Energistyrelsen, 2013]

In a report commissioned by IDA, composed by Aalborg University, another example of a renewable energy system is illustrated and compared to the DEA Wind scenario. In the IDA vision, the importance of cross-sectoral interaction is underlined. This means, that focus should be on the energy system as a whole instead of operating with the sectors individually [Mathiesen et al., 2015b].

Generally, the scenarios show, that a renewable energy system is a technical and economical possibility, but they are also an invitation to debate on how to reach a renewable energy system, because several possible scenarios can function as solutions [Mathiesen et al., 2015b].

In several of the 2050 scenarios there is widespread consensus about electrification of the transport sector being the most optimal solution [Energistyrelsen, 2013; Mathiesen et al., 2015b; Lund et al., 2011]. In the IDA vision, the passenger transport demand is 9% lower than for the DEA Wind scenario, though both scenarios operate with a higher demand for transport and an increase in the number of personal vehicles [Mathiesen et al., 2015b].

Figure 1.5: The past and future passenger demand (Mpkm) in different scenarios [Mathiesen et al., 2015b]

Figure 1.5 shows a difference in the transport demand for the two scenarios. Both scenarios agree on an increase in the demand for passenger transportation, but a great difference can be seen in the demand for 'cars and vans <2t' and 'rail', where the IDA vision operates with a lower demand in private vehicles because a large part of the passenger demand is relocated to public transportation [Mathiesen et al., 2015b].

In the IDA vision it is prioritized to use a minimum of biomass for fuel because of the limitation of the resource. Electrification has first priority, and the remaining demand is covered by electrofuels based on conversion from electricity. Besides that, does the IDA vision not contain gaseous fuels for the transport sector because a lower fuel demand from vehicles with higher efficiencies is prioritized. By using processes with higher efficiencies, the IDA vision has a lower energy demand in the transport sector than the DEA scenario [Mathiesen et al., 2015b]. In the DEA scenario, electric vehicles have first priority as well [Energistyrelsen, 2013], but the remaining demand is covered by BTL and hydrogen. This results in the biomass demand in the DEA scenario crossing the line for available biomass, which is 300 PJ [Mathiesen et al., 2015b].

The IDA vision operates with 75% of the transport demand for private cars being covered by BEVs, resulting in an electricity consumption of 21,7 PJ for 'cars and vans <2t'. In the same category, the electricity demand in the DEA scenario is 26,7 PJ due to the higher share of EVs in the scenario [Mathiesen et al., 2015b] where ECs account for 80% of the transport demand [Klimarådet, 2018].

2.1 Problem Definition

The core problem of this thesis is identified by examining historical data of the EC development. It is given, that a prediction of the future number in ECs is difficult to determine, which is why there is reason to believe that the estimated number in ECs in 2050 comes with great uncertainty as well. Based on the thesis introduction, the transport sector accounts for a significant part of fossil fuel usage, and it can thereby be argued that this uncertainty might affect the Danish goal of a fossil free energy system. Therefore, it is considered important to investigate different solutions to how given quantities of ECs can constitute potential risks or opportunities in the future Danish energy system. Furthermore, the problem is considered to be of relevance today and in the future, as the actions of today are affecting the structure of the future energy system.

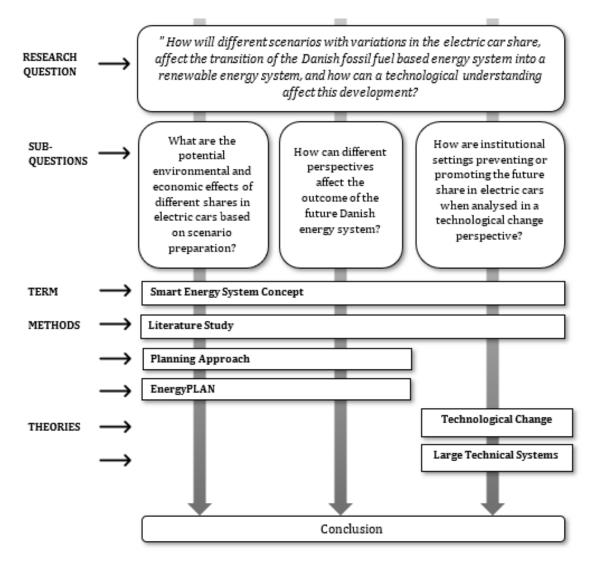
Based on the findings in the thesis introduction together with the problem definition, the following research question is established;

"How will different scenarios with variations in the electric car share, affect the transition of the Danish fossil fuel based energy system into a renewable energy system, and how can a technological understanding affect this development?"

The purpose of the research questions is to narrow down the problem definition in order for the thesis to be focused around what is desired to investigate. To be able to answer the research question, a set of sub-questions work as a division of the research question, which should bring structure to the thesis analysis. The formulations of the sub-questions are;

- 1. What are the potential environmental and economic effects of different shares in electric cars based on scenario preparation?
- 2. How can different perspectives affect the outcome of the future Danish energy system?
- 3. How are institutional settings preventing or promoting the future share in electric cars when analysed in a technological change perspective?

In addition to the sub-questions, a thesis scope is defined for the analysis to be focused as the desired investigation.


2.2 Scope

In this thesis, only one part of the transport sector is being touched upon. The thesis has a focus on passenger cars with a weight below two tonnes, which excludes other parts of the transport sector such as public transportation, sea and air. This division of the sector is natural and commonly used, which also is the case in the reference scenarios applied in the analysis. Besides that, only cars that run solely on electricity will be included in the analysis. This is chosen with the argument, that hybrid cars, which run on electricity in combination with another renewable energy source, have not been introduced to the market yet. In addition to that, it is assumed that hybrid cars in the future will run partly on biomass, which is an energy source that should be reduced to a minimum in the future because of it being a limited resource also used for food demands, biodiversity and different materials. This is also why it is not possible to cover the energy demand for transportation solely by using biomass [Lund, 2014b]. Besides that, it is difficult to estimate to which degree hybrid cars run on electricity or the supplementary energy source, which also is an argument to why ECs are in focus. Furthermore, analyses determining whether or not an expansion of the electricity grid is a necessity for some of the thesis scenarios to become a reality is not included. This means, that the thesis is based on the assumption that the Danish electricity grid does not require an expansion.

The purpose of the scope is to ensure that the focus of the thesis is maintained, and because of the limited space and time frame making it necessary to arrange a thesis delimitation.

2.3 Thesis Structure

The structure of the thesis is illustrated in figure 2.1 below. The figure shows the research question, the related sub-questions and the methods and theories that apply to each of these sub-questions.

 $Figure\ 2.1:$ Overview of the thesis structure including questions, methods and theory, and how these lead to the conclusion

An overall understanding of a smart energy system is used throughout the entire thesis. This means, that the smart energy system might not be often mentioned, but the smart energy system concept is what the thesis aims to obtain in the future. The simulation tool EnergyPLAN is used to carry out the technical part of the analysis which is preparation of scenarios. For this analysis, the planning approach is used as an overall understanding of what scenario planning include and what risk and alternatives assessment comprise.

For the second part of the analysis, where the understanding of technology is analysed, it is the theoretical framework of the thesis that is applied. Theories dealing with technological change and large technical systems are used to identify the external factors influencing on the technological development.

In continuation of the analysis is a discussion where the findings from the two analyses are discussed in relation to each other. This means, that the findings only are partly discussed in the analysis, and that a more holistic view is applied in the discussion where both the technical and institutional findings are combined. The theoretical framework of this thesis includes theoretical approaches and concepts. These have the purpose to give a better understanding of individual technology and technological systems in relation to change, as well as the influencing factors that can have an impact on the ability to carry out given scenarios. Additionally, the theoretical framework is applied for analysing how external factors in form of institutions, can affect technological change and thereby also the realization of the thesis scenario.

3.1 The Smart Energy System Concept

The term 'smart energy system¹' is of great importance in this thesis, as this approach to an energy system is the foundation of the analysis. In a SES, it is a necessity for the different sectors in the energy system to be connected in order to be able to make use of fluctuating energy sources. In this thesis, an understanding of a SES is important because ECs are one part of such a system. This theoretical approach thereby allows the results of the analysis to involve other parts of the energy system, because the transport sector being part of sector-coupling when using a SES approach. The scope of the thesis, which only includes ECs of the transport sector, should therefore only be seen in the light of the input of the analysis, as the holistic view in a SES requires the output to include the entire transport sector.

"[...] the Smart Energy System concept, [...] is a cross-sectoral approach that makes use of synergies between the various energy sub-sectors by identifying suitable and cost-effective renewable energy solutions for the future" [Mathiesen et al., 2015b] [p. 11].

The above definition and figure 3.1 are the ones applied in the IDA vision, which provide a natural argument for using the same definition in this thesis.

¹A SES consists of bioenergy and fluctuating renewable energy sources as the primary energy forms. When using fluctuating energy sources, the production of energy can be unstable, which means that other intermittent energy sources have to accommodate for the missing production. For that reason, considerable expansions of fluctuating energy sources have to happen along with the possibility of storage or conversion of energy [Mathiesen et al., 2015b]

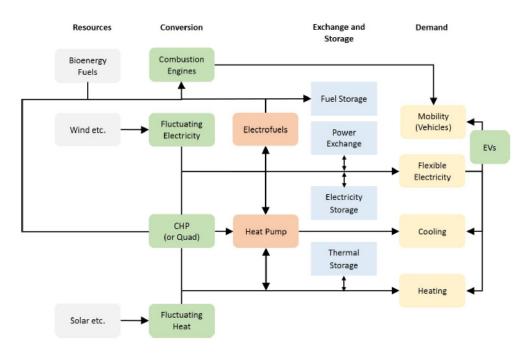
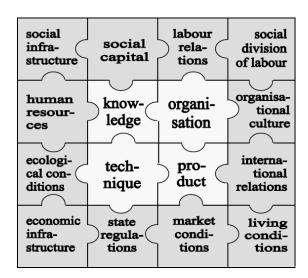


Figure 3.1: Overview of a Smart Energy System [Mathiesen et al., 2015b]


An approach that operates with the understanding that the different sub-sectors influence on one another is to be used in this thesis [Lund, 2014b]. This means, that even though this thesis revolves around the EC technology and one part of the transport sector, it is important to comprehend, that changes in one sector can affect other parts of the energy system as well. This is thereby also the overall understanding and approach that is used in the analysis, where it is analysed how changes in one sector can affect the energy system as a whole.

3.2 Technology & Change

The SES definition gives clarity about how one part of an energy system is able to affect other parts of the same system, which also can be understood as the energy system consisting of several sub-systems. The theoretical approach of this thesis is therefore extended with an understanding of these sub-systems as individual technologies in a larger technological system. One definition of technology is composed by Müller, who illustrates how technology consists of the four elements; *knowledge, organisation, technique and product* [Müller, 2011]. For every technology it applies, that the four elements are inseparable, and by describing the elements, it is possible to obtain knowledge about the technology structure. Besides that, an understanding of how the elements interact is important if technological change is desired as in this thesis, where the energy system and the EC technology can be conceived as technologies that undergo changes. If changes happen in one element, changes should also occur within the other elements, but if the other elements are not affected by the change, the initiative that was applied can be conceived as unsuccessful.

The main purpose of this perception is to approach technology through a holistic view, which makes it possible to determine the purpose of the technology, what problems or

needs it is intended to solve and to understand that technology interacts with different societal processes [Müller, 2011].

Figure 3.2: Figure showing the four elements of technology and the conditions that can result in changes [Müller, 2011]

Figure 3.2 shows some of the societal processes that interacts with technology. Whether technological change occurs is depending on the local conditions, which include the external economic, cultural and socio-political setting. As was the case for the four elements in technology, changes in one of the external elements [figure 3.2] will affect the other elements as well, and thereby also the technological setting [Müller, 2011].

"Technology does not drive choice; choice drives technology" [[Dicken, 2015], p. 75].

Technological change can be perceived as a learning form meaning that by using, doing and observing, it is possible to solve problems that are situated in environments that are highly changeable. Technological change is not exclusively inventions of new things, it is also depending on inventions transforming into innovations that are both usable and adoptable. Where technological change in an economic perspective works as an entrepreneurial process, it should on a long term basis work as an evolutionairy process [Dicken, 2015].

The elaboration of technology and how it changes is applied in the second part of the analysis. In relation to ECs as the technology and the Danish energy system as a technological system, it will be analysed how the external conditions can either promote or prevent the future development in ECs. The purpose of such an analysis is to be able to discuss possible solutions and to be able to be aware of how to ensure technological change, which can be used as a tool for reaching the desired number of ECs in 2050.

3.2.1 Approximation Models for Large Technical Systems

Besides an elaboration of the term 'technology', an understanding of a large technical system (LTS) is considered important to this thesis as well. In here, the Danish energy

system is defined as an LTS, and it is a sector in such a system that the thesis revolves around. The term LTS is therefore being explained along with the factors that might affect the composition of it. Besides that, the definition of technological change will be touched upon, as an understanding of this term makes it possible to analyse which factors can affect technological change and thereby also future scenarios.

A characterization of an LTS, is that its scope and structure are of a global nature. The meaning of a global scope is that some of the time, most people are affected by LTSs. A global structure means, that the dynamics and structures of a given situation or process is shaped by several factors. The two types of globalness are being combined in an LTS, which also can be identified through its four different phases:

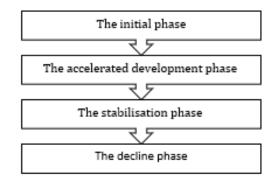


Figure 3.3: The four phases of a large technical system

The *initial phase* is characterized by being a phase with no overall plan for the development of the LTS, and a phase with debate of how the LTS can benefit the society in comparison with the existing LTS. In the *accelerated development phase*, the LTS is recognized because of it being superior and useful, and this phase also includes the LTS developing in compliance to a plan. Furthermore, the period can contain sub-periods that follow economic and political events. In the *stabilization phase*, the development rate of the LTS will decrease, which also results in a stagnation of the economic activities in relation to the LTS. The fourth phase is the *decline phase*, where the importance of an extension of the LTS diminishes along with its activity involvement. The last phase can also be determined by an LTS being replaced by a new LTS. In the two last phases, there is a chance that the old LTS is adopting some of the new LTS's characteristics, when this is going through the initial phase. However, this is not a revitalization of the old LTS as it is an affirmation of the new LTS. It also works as a sign that the new LTS is beginning it's domination over the old LTS, and thereby is using the old system as testing ground [Gökalp, 1992].

What is typical for an LTS, is that often there is a correlation between the industrial society development and the LTS. In addition, another characteristic feature is that there exists a close correlation between political and ideological views and the LTS.

The developer of the American radio technology, Hugh Aitken, argues that the rate and direction that the system will develop at, are determined by the socioeconomic²

 $^{^{2}}$ The socioeconomic position of an individual or group refers to the given society's economic ranking in relation to resource access such as wealth, income and education [Ball and Crawford, 2010]

context that the technology operates in. In addition to that, he composed three different approximation models to a technological system, where the one relevant to this thesis is presented. He considered science, economics and technology as the spheres of human action, and with approximations he was able to identify different types of interactions between the three spheres and thereby also how changes in one sphere affects the two others [Gökalp, 1992].

One of the approximation models accounts for the three spheres as not being unidirectional, and that there can be several kinds of interaction between these. The model presents, that there are two kinds of interaction, which happens between science and technology, and between technology and economy.

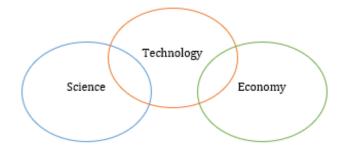


Figure 3.4: The interaction between the three spheres in one approximation model

As figure 3.4 shows, the spheres overlap and in these two areas the interactions that are most productive take place. In this model, feedback between the spheres exists in form of reverse flows, which could consist of information [Gökalp, 1992]. In the thesis analysis, the three spheres are discussed in relation to the technology jigsaw [section 3.2] together with the possibility of identifying a connection between the two spheres of science and economy.

In this thesis, the understanding of technological change and LTSs is applied in the second part of the analysis. The role of these terms is to be able to comprehend that ECs both function as a technology themselves, but also that they are part of an undergoing process in a larger system. ECs are therefore perceived individually together with how they operate in a system. The purpose is to give an understanding of the phase that the current system is going through and also to identify how external factors can affect the desired progress.

4.1 Data Collection

The data that is used for the analysis in this thesis, is solely collected through literature studies. In the introduction, knowledge about ECs was acquired through scientific articles and official statistics. This part of the thesis led to an overall problem definition and thereby also a question to answer through an analysis. The first part of the analysis has a technical approach with data collected mainly from the governmental administration DEA and the IDA vision. Here, the collected data, and the results of the analysis, is of quantitative matter because of the measurable numbers that form the input and output of the modelling tool. The theoretical framework of the thesis is used for the second part of the analysis, where the literature study has been the main method for establishing the framework. This part of the analysis is qualitative, because of the difficulty of quantifying the results of the applied theories.

4.2 Planning Approach, Risks & Alternatives

Different approaches to planning can be employed, but in this thesis *scenario planning* is preferred. Scenario planning differs from *strategic planning* by instead of predicting the future, it is possible to arrange multiple potential outcomes and with that knowledge, to select a preferred path for the future. It is problematic to make use of forecasting when wanting to predict something with a long-term time frame, so instead of relying on a guess on what is the most likely outcome, scenario planning can be used to construct many possible outcomes [Enzmann et al., 2011].

"Scenarios are not intended to be exactly predictive of the future, but rather, it creates plausible futures that offer a diverse scope to better capture eventual reality" [[Enzmann et al., 2011], p. 176.]

In this thesis, scenario planning can also be defined as a probabilistic prediction process, meaning that the prepared scenarios do not contain worst or best case scenarios, but instead different alternatives to an uncertain future [Enzmann et al., 2011]. Uncertainty is a key word in this relation, because several different forces influence on how the EC fleet and the future energy system will be structured which makes it hard to predict. This also means, that the scenarios presented in this thesis are not definitive results, but only a few out of several possible solutions. Scenarios are therefore not a consensus view, but forces that are expected to affect the outcome of the future can be known and the most uncertain and important forces can be in focus [Enzmann et al., 2011]. In this thesis, it is evaluated that the most important forces in relation to the EC development are *politics*, *technology development* and *climate focus*. How the different forces can affect the future, will be presented in the analysis. Following the scenario building, it is natural to analyse the outcome of these. In relation to the research question of the thesis, it is of interest to determine some of the risks that occur if the EC fleet develops differently, but also which alternatives are present in order to reach the political goal of a fossil free society in 2050. To do so, an understanding of the terms risk and alternative assessment have been applied.

For many years, risk assessment has been widely used by governments for instance. The purpose of risk assessment can, in an energy context, be to analyse possible damages to the environment in a given scenario [O'Brien, 2000]. In this thesis, the risks following different numbers in ECs are presented. Besides a presentation of the risks, the method of alternative assessment is applied as well. Alternative assessment is an extension of risk assessment, which includes to present alternatives of how damage can be minimized or avoided when wanting to achieve a given societal goal [O'Brien, 2000]. Alternative assessment is considered to be relevant in this thesis, because alternative solutions to the existing 2050-scenarios in relation to ECs can become a necessity in the future. It is still of interest to reach the national goal of a fossil free society in 2050, even though the EC development will move at another pace than what has been presented in the IDA vision. The analysis will therefore be approached with the purpose to be able to present advantages and disadvantages of the scenarios. Though, it should be noted that an advantage can vary depending on the perspective that the scenarios are seen from, meaning that if a scenario contains an economic advantage it does not necessarily mean that it comes with environmental advantages as well.

4.3 Energy System Analysis

For the purpose of the analysis in this thesis, an energy system modelling tool is considered to be an optimal method, because a simulation of the Danish energy system is necessary to answer the research question properly. To be able to decide on the most optimal modelling tool for this purpose, the overall objectives of the thesis are established. The objectives are;

- To identify how a given share in electric cars in 2050 will affect the Danish energy system
- To identify what the most optimal solutions in an energy system, with a given share in electric cars, are in relation to different parameters

By identifying the objectives, it makes it easier to determine which modelling tools that are able to fulfill these objectives [Connolly, 2015]. For this thesis, the purpose of using a modelling tool is to create scenarios and solutions for a Danish energy system with a different EC share than what is currently proposed. The changes will occur in the transport sector, but because of the need of a SES with cross-sectoral interactions in the future, focusing on an individual sector is not considered an optimal approach. It is assumed, that changes in the transport sector affect other sections of the energy system, and when wanting to consider the energy system as a whole, it is a criteria that the modelling tool makes use of the same approach. The modelling tool that has is considered to contain the needed characteristics, is the EnergyPLAN tool. The arguments for using the EnergyPLAN tool, are that the tool is used in a simulation for a Danish 100% renewable energy system before [Connolly, 2015]. This also means, that the tool is able to simulate energy systems on a national level, which is a requirement in this thesis. In 2050, a major part of the energy system consists of fluctuating energy sources, why it is important to create a flexible energy system. This flexibility can be obtained by using technologies such as electric vehicles, hydrogen and heat pumps in the integration of the heat, electricity and transport sector, which is a possibility when modelling in EnergyPLAN. To make sure, that EnergyPLAN is able to model the application of the thesis, a historical year can be used as a reference model [Connolly, 2015]. In this report, the reference model is already existing as the IDA 2050 scenario. For this scenario, the EnergyPLAN tool is used for the simulation, which also is an argument for choosing this tool for the thesis.

4.3.1 What is EnergyPLAN?

For the energy system analysis of this thesis, the modelling tool EnergyPLAN is applied, and this section contains an elaboration of the tool's attributes that are needed in order for the thesis analysis to be carried out.

EnergyPLAN has a focus on evaluating and designing renewable energy systems with a high level of fluctuating energy sources and energy storage alternatives to improve the flexibility of the system. The model makes it possible to design energy strategies that are based on economic and technical consequence analyses of the implementation of certain investments or energy systems. EnergyPLAN is an input/output simulation tool, that can model both regional and national energy systems over a one year time period by the use of hourly simulations. The user of the model is defining the inputs that can both be of technical and economic matter [figure 4.1] [Lund, 2014b]. For the purpose of this thesis, the user input definitions are an important attribute, because changes within the technical and cost related parameters are a necessity to be able to establish scenarios for a different number in ECs.

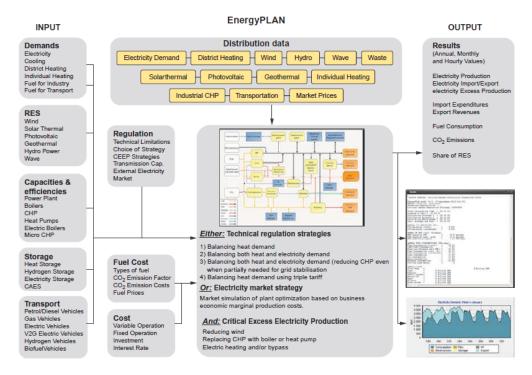


Figure 4.1: Overview of the inputs and outputs in the EnergyPLAN model [Lund, 2014b]

Furthermore, the tool operates on a cross-sectoral basis with the purpose to create synergy between these. Besides modelling the hourly balance of sub-sectors such as cooling, electricity and district heating, the tool also includes technologies such as CHP-plants and heat pumps, but also ECs [Lund, 2014b], which is the primary technology in this thesis.

4.3.2 EnergyPLAN and the Transport Sector

In EnergyPLAN, the transport sector is handled by allowing one to determine the energy consumption in relation to the different forms of energy that are used within the sector [figure 4.2].

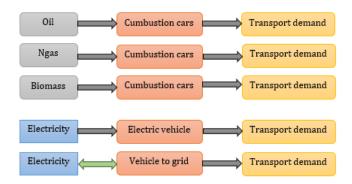


Figure 4.2: Overview of particular parts of the transport sector

In EnergyPLAN, it is possible to determine the efficiencies for given car types, and the part of the transport sector that runs on electricity has specific parameters to operate with, as seen in figure 4.3. In this thesis, it is mainly the parameters within electric vehicles that are adjusted to fit the scenarios in the analysis. Some values are provided by EnergyPLAN, but these are considered and changed in cases where they do not match the data applied to the thesis analysis. Besides the possibility to change the electricity consumption for the transport sector, it is also possible to define the grid to battery capacity, which is a definition for the charging stations needed for a given amount of ECs [figure 4.3].

Electric Vehicle	Specifications		
Smart Charge Vehic	es: Max. share of cars during peak demand:	0,2	
	Capacity of grid to battery connection: Share of parked cars grid connected:	16396 0,7	MW
	Efficiency (grid to battery) Battery storage capacity	0,9 14,2	GWh
Additional Specifical	ions for Vehicle-to-Grid (V2G): Capacity of battery to grid connection Efficiency (battery to grid)	820 0,9	MW

Figure 4.3: Input parameters for the electrified part of the transport sector with values from the IDA vision

The parameter which concerns charging stations is considered to be important in an economy perspective, but also for being able to meet the electricity demand, which is divided into smart charge and dump charge. The smart charge parameter is used as a way to bring down the business-economic costs in relation to electricity purchasing for being able to meet the demand. This means, that smart charge improves the flexibility of the energy system and makes it possible to achieve the lowest prices on the market [Lund, 2014a]. In this thesis, wind energy is given first priority, and since this is a fluctuating energy source, it is important to have a flexible system, where it is possible to cover the demand during low production periods. In the IDA vision, this is partly performed by using smart charge for the EC fleet, and this method is also used in this thesis. This means, that the total EC fleet is specified as smart charge.

Besides electricity, it is also possible to handle energy sources such as electrofuels, biofuels, gases and fossil fuels in the EnergyPLAN transport tab sheet [Lund, 2014a]. Changes within other fuel types are important to consider as alternatives to electricity or fossil fuel, to be able to compose scenarios for the entire car fleet. The scenarios composed in this thesis, contain alternatives that include biomass and hydrogen for fuel use. Here, biopetrol is chosen over biodiesel in spite of biodiesel being more commonly used in Denmark today. Biodiesel used in Denmark is mostly based on oils, but EnergyPLAN only allows a specification of biodiesel output from dry biomass. Besides that, biopetrol has a higher efficiency than biodiesel from dry biomass [Energistyrelsen and Energinet, 2020a], and for that reason biopetrol is prioritized to give a more representative illustration of the energy system, together with a lower biomass consumption. By making use of biopetrol, the bi-product distillers' dried grains (DDG) is produced and can be used as animal food or for export and is mentioned as food income in EnergyPLAN. Furthermore, the efficiencies and costs, in relation to biopetrol, are updated from the values used in the IDA vision to

match recent data from the DEA. This change makes the efficiency slightly higher in this thesis, but the DDG production lower.

In order to carry out a true comparison of the IDA vision and the scenarios composed in this thesis, the investments and efficiencies, in relation to the passenger transport sector, are changed if more recent data is available. The parameters subjected to changes are shown in table 4.1 below, and the results from the EnergyPLAN simulation can be seen in section B.1 in appendix B.

Parameter	IDA vision	Thesis	Unit
EC efficiency	5	5,1	km/kWh
EC investment	18,1	28	MEUR pr. 1000 vehicles
Charging station lifetime	10	30	Years
Charging station investment cost	745	1242	Euro
Grid to battery efficiency	0,9	0,82	Percentage
BioPetrol plant investment	0,44	0,66	MEUR pr. MW-bio
BioPetrol plant lifetime	20	25	Years
BioPetrol plant O&M	7,68	9,2	% of investment
BioPetrol efficiency	0,4	0,47	Percentage
Food bi-product efficiency	0,5	0,25	Percentage
Investment cost biofuel cars	-	22,8	MEUR pr. 1000
Electrolyser investment	0,28	0,4	MEUR pr. MW-e
Electrolyser lifetime	15	30	Years
Hydrogen efficiency	73	79	Percentage
Hydrogen storage investment	20	21	MEUR pr. GWh
Hydrogen storage O&M	0,5	0,6	% of investment
Investment cost hydrogen cars	-	28,1	MEUR pr. 1000 vehicles

Table 4.1: Parameters changed in EnergyPLAN based on updated data for the year 2050 [Energistyrelsen and Energinet, 2020a], [Energistyrelsen and Energinet, 2020b]

The changes include updated cost and efficiency data for the different vehicle types and technologies. This also include the production of biopetrol, electrolysers and hydrogen storage. The electrolysers used in this thesis are similar to the ones used in the IDA vision. The technology used is the solid oxide electrolyser cells (SOED), which have a higher efficiency than other types of electrolyser [Mathiesen et al., 2015b]. For the sake of simplicity, the above mentioned parameters are mentioned here because of them being applied in every scenario of the analysis.

4.4 Reference Scenario

For the analysis in this thesis, IDA's Energy Vision 2050 is used as a reference scenario. The IDA vision is one of several 2050 scenarios, but this particular scenario is chosen to function as point of departure for the analysis. The IDA vision is an addition to two previous plans composed by IDA, and is based on inputs and contributions from IDA's networks and researchers in energy system analysis from Aalborg University [Mathiesen et al., 2015b]. The scenario is chosen as reference because of the focus on a minimal biomass use, and because the scenario already being modeled in EnergyPLAN [Mathiesen et al., 2015b]. Some of the outputs from the IDA vision can be seen in table 4.2.

IDA Energy Vision 2050	Result (TWh)
Onshore electricity	16,2
Offshore electricity	63,76
CEEP	2,99
Biomass consumption	47,91
Smart transport electricity	6,46
Electrolysers	40,93

Table 4.2: Selected results from the IDA vision [Mathiesen et al., 2015b]

With the reference scenario already modeled, it is not a necessity to do so in this thesis. The main changes in the reference scenario appear in the transport sector, because of the thesis' focus on ECs. The IDA vision operates with 75% of the passenger car demand running solely or partly on electricity by 2050, which is a result of different criteria to the transport sector:

- 1. A minimal use of biomass for fuel
- 2. Electrification has first priority remaining demand is covered by electrofuels
- 3. Prioritization of low fuel demand from high efficiency vehicles
- 4. No gaseous fuels for transportation

[Mathiesen et al., 2015b]

Besides the above-mentioned criteria, the results of the IDA vision are due to the technical optimisation used for modeling the scenario.

4.4.1Optimisation

The two kinds of optimisations that the EnergyPLAN tool is able to carry out, are a technical optimisation and a market economic optimisation. When using the technical optimisation, the consumption of fossil fuels is minimised, and with a market economic optimisation, the operation costs of the system are minimised. The components of the energy system, and the technical abilities of these are the basis of the technical optimisation. This means, that only in situations where the demand cannot be met by the power producing units, power will be imported from external markets, and if production of excess energy is present, this energy is exported. The demand is thereby met by the power producing units as long as these are capable of doing so. The design of the market economic optimisation is not to prioritize a minimum fuel consumption, but to meet the demand and supply at the lowest cost [Connolly, 2010]. With this optimisation, energy might be imported if the cost of this functions as the cheapest solution. The risk of the market optimisation therefore is, that energy produced by fossil fuels can be given first priority because of a low cost. In this thesis, the main priority is to avoid the use of fossil fuels and thereby obtain a CO₂-neutral society, which is why the technical optimisation is chosen for the energy system analysis.

4.4.2 Scenario Input & Energy System Criteria

For the scenario analysis in this thesis, different arguments are used as foundation for establishing the scenario criteria. The criteria are primarily based on the criteria applied in the IDA vision, which means that the use of biomass continuously is limited to a minimum. A biomass level higher than the projected might be available in 2050, but because of the uncertainty in regards to this, a low level of biomass is applied. The scenario results are considered to be unusable if the available biomass resources becomes lower than expected for the future. The biomass level used in this thesis, is the level applied in the IDA vision. This level is based on the assumption, that the food production and agricultural structure match the one that is seen today. This means, that the biomass level is a maximum of 250 PJ, but a level close to or below 200 PJ is preferable due to environmental and economic risks [Mathiesen et al., 2015b], and a biomass level at maximum 200 PJ is therefore also the aim in this thesis.

Besides that, wind energy is being prioritized in situations where a scenario requires more or less renewable energy in the system. In a report composed by Energinet, the socioeconomic potential of expanding onshore wind turbines is compared to a corresponding offshore wind turbine expansion. The potential for onshore wind was thereby found to be 12000 MW, because of this being a cheaper solution than an expansion of offshore wind turbines. The reason for this, is that compensation to neighbors, together with a purchase of the adjacent properties for an amount that is 50% higher than the value of the property is more profitable. The analysis in the report has its point of departure in the support tool from the Danish Nature Agency, which is a tool also applied by municipalities in the planning of wind turbines [Energinet, 2015]. In the IDA vision, a capacity of 5000 MW onshore wind is applied, but it is assumed that scenarios operating with a higher number of electric vehicles might require an expansion in renewable energy production. Potential expansion of renewable energy will in this thesis be obtained by expansion of both onshore and offshore wind turbines, where an expansion of onshore wind is considered to be possible based on Energinet's report.

In an renewable energy based system, there is a high probability of experiencing CEEP¹. In the analysis of this thesis, the aim is not to exceed a CEEP level higher than the one from the IDA vision results of 2,99 TWh/year [Mathiesen et al., 2015a]. A CEEP level of 2,99 TWh/year deviates from the level of 0,1 that is used in the official IDA vision report. The reason for this is, that the scenario in the IDA report is simulated with a market optimisation, but the scenario with a technical optimisation has a CEEP level of 2,99 TWh/year in EnergyPLAN. Since the technical optimisation is the one used in this thesis, a CEEP level of 2,99 TWh/year will therefore be applied here as well. The lowest possible quantity of CEEP is desired to avoid the energy from being dumped or for the electricity grid being to be unbalanced. A SES with a combination of different renewable sources together with storage of energy, can help to correct the CEEP level, but as more fluctuating energy sources come into the system, it is more difficult to control [Lund, 2014b].

¹The term CEEP is used when the produced electricity exceeds the demand, but also the capacity that can be exported by transmission lines to external markets. CEEP should therefore be low to avoid a collapse of the electricity system [Lund, 2014b]

5.1 Introduction

The purpose with this analysis is to identify how different shares in ECs in 2050 can affect the Danish energy system. The first part of the analysis has a technical approach, and it is thereby in this part that the thesis planning approach is carried out through the modelling tool EnergyPLAN. In the technical part of the analysis, the potential environmental and economic risks or benefits are emphasized through an energy system analysis. Besides that, it is presented how alternative energy system solutions can be constructed if the EC share deviates from the expected. The technical analysis consists of three scenarios with different EC developments [figure 5.1] than what is projected in the IDA vision as the reference scenario.

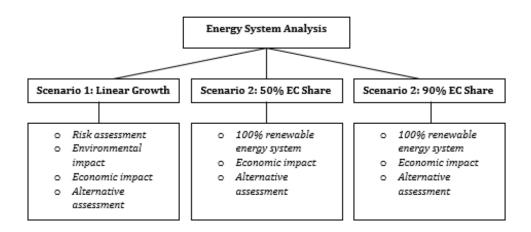


Figure 5.1: Scenario overview with the applied methods used for analysis

The first scenario which is analysed, is a scenario containing linear growth. A linear growth scenario has its point of departure in the existing knowledge about the EC development and with the presumption that the development continues along the same path. This scenario has the purpose to present the possible environmental risks that the current development has on the future energy system. This scenario is therefore also the only scenario where the energy consumption for the remaining part of the car fleet is replaced by fossil fuels. For the two remaining scenarios, which consist of the EC share being 50% and 90% respectively, the IDA vision is used as point of departure. The IDA vision already contains a suggestion of electricity based cars having a share of 75% of the passenger car fleet, but this share consists of both ICE hybrid vehicles, ICE PHEVs and ECs. Because of the scope [section

2.2] in this thesis, the BEV technology included in the analysis are cars that run solely on electricity. Exact numbers for the future car fleet are not to be found in the IDA vision, and the numbers that are applied from this derive from an appendix figure [Mathiesen et al., 2015a]. When reading from a figure, it can result in the numbers being imprecise to some extent. In this thesis, the imprecision is acceptable because scenario planning [section 4.2] is one of the overall approaches to the analysis, and imprecision is therefore not considered a barrier for composing relevant scenarios.

Based on a car fleet of 2,200,000 cars in 2050, ECs will account for 61,4% or 1,300,000 cars according to the IDA vision. The scenarios in this thesis operates with different shares in ECs, because it is considered of interest to investigate how these affect the energy system [table 5.1].

Scenario	Cars (M)	EC fleet
IDA Vision	2,2	61,4%
Scenario 1	2,2	8,3%
Scenario 2	2,2	50%
Scenario 3	2,2	90%

Table 5.1: Total number in cars and EC shares for the scenarios

So far, the EC fleet has not increased as desired [Klimarådet, 2018], which means that there might be a potential risk that this continues in the future. Deviations that are both lower and higher than what is projected in the IDA vision, makes the analysis operate with outcomes that fall on both sides of the IDA vision. Common to all three of the scenarios, is that the same approach for calculating the energy consumption is used with the following points in mind:

- 1. The average kilometer number for Danish people is determined
- 2. The average of the EC efficiency for the years up until 2050 is determined
- 3. The number in kilometers is converted to energy consumption with the efficiency taken into account
- 4. The number in charging points is considered in relation to the EC number
- 5. The capacity in wind turbines is considered in relation to the given scenario

Several of the above mentioned parameters vary depending on the year that they are applied to [Energistyrelsen, 2016]. This means, that prices and efficiencies are variables when operating with a long-term time frame, why the average of the parameters is used in the calculations. In appendix A, vehicle specifications are shown in relation to a given year.

Common to all of the scenarios, is that the calculations are based on values relevant to a given year from a data sheet composed by the DEA regarding vehicles and alternative fuels. In this thesis, the analysis has a focus on ECs, but as one scenario examines the risks of a car fleet with a share of fossil fuel driven cars, these values are shown in the appendix as well. Additionally, do the alternatives assessments contain shares of cars driven by biofuel or hydrogen why these are shown in appendix as well A. The DEA data sheet operates with different values for the years 2020, 2035 and 2050 [Energistyrelsen, 2016], but since the lifetime for each of the car types are stated to be 16 years, the cars in 2050 will be from 2034 at the earliest. This means, that the car fleet in 2050 only operates with consumption and efficiency values valid to the period from 2034-2050. It is expected, that the production years of the cars affect the outcome of the scenarios, because the efficiency of the car influences on the consumption. The average energy consumption for cars with different fuel types is illustrated in table 5.2 below.

Car type	MWh/year
Electric	3,9
Diesel	12,5
Gasoline	13
Biofuel	12,5
Hydrogen	8,2

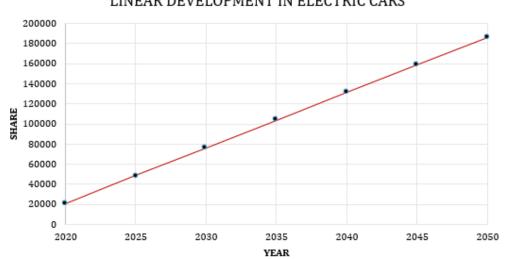
Table 5.2: Table showing the consumption for different fuel types

Besides the electricity consumption for ECs, the consumption for other fuel types are also shown, and the same method is used for calculating the average consumption for these as well. According to the IDA vision, the transport demand for passenger cars in 2050 is estimated to be 27,680 pkm/year, and this number is thereby also part of the consumption calculations in table 5.2. The values seen in the table are the ones applied to every scenario in the analysis.

It should be noted, that the same amount of electricity consumption per vehicle is applied in the IDA vision and in the DEA scenarios. But, when the IDA vision was composed, it was not possible to determine how the DEA differentiated between ECs and hybrid plug-in cars, and thereby also how large of an amount of electricity was used for the two types of cars. This means, that the IDA vision operates with all of the EVs as BEVs [Mathiesen et al., 2015b], which in this thesis are denoted as ECs. The electricity consumption will therefore not differ depending on the different types of BEVs, which also is an argument for not differentiate between these in this thesis.

In addition to that, a part of the electricity consumption in the transportation sector in the IDA vision is left for the scenarios in this thesis. This is because a part of the electricity for transportation is used in other vehicle categories than cars and vans < 2 t, which is the group focused on in this thesis. This is also the case for electrofuels, which means that electrofuels used for cars and vans < 2 t in the IDA vision will be subtracted in such a way that the remaining demand only covers the parts of the transport sector that are not a part of the scope in this thesis. By using this method, it is possible to model the relevant part of the sector from scratch, but with the whole transport sector still being included in the scenarios. The demand remaining is determined as shown in table 5.3.

Electricity (TWh)	IDA vision	Thesis scenarios
Total for transportation	8,83	
Cars and vans < 2 t	6,03	
Fixed demand for scenarios		2,8
Electrofuels (TWh)	IDA vision	Thesis scenarios
Total for transportation	20,86	
Cars and vans < 2 t	3,11	
Fixed demand for scenarios		17,75


Table 5.3: Table showing the demand divided into total demand and cars and vans < 2 t in the IDA vision together with the remaining demand used in this thesis

As the above indicates, 2,8 TWh electricity and 17,75 TWh electrofuels are used as fixed numbers in the transport sector, as this amount of energy is used in the part of the transport sector that is delimited from in this thesis. This method has the purpose to give a more realistic view on the energy system, because the whole transport sector is a part of the result in spite of the whole sector not being adjusted in the scenarios.

The share of cars that are parked and driving during peak hours constitute a fixed share for all the forthcoming scenarios. The maximum share of cars during peak demand is set to be 20%, which means that the remaining 80% of the cars are parked with the possibility to be connected to the grid [Lund and Kempton, 2008]. This division of the car fleet was relevant in the year 2008 and is used in the IDA vision as well. An argument for using the same shares for 2050, is that the demand for passenger transport in the future shifts from private to public transportation. This also means, that the car fleet is decreasing, reaching a lower share of cars in 2050 than what is seen today [Mathiesen et al., 2015b]. Lastly, the number of charging stations is determined on background of the method used in the IDA vision, where the number is defined by calculating with two charging stations per EC vehicle [Mathiesen et al., 2015b].

5.2Scenario 1: Linear Growth

The initiating scenario in the analysis is based on the principle of frozen policy^1 in relation to ECs, which is why this scenario contains a linear EC growth. In 2019, 15,500 ECs were to be found in Denmark and 5,500 of these were newly registered. For the linear development, 2019 will therefore be used as the reference year, as this year has experienced the highest increase in ECs so far. In figure 5.2, the linear development is shown.

LINEAR DEVELOPMENT IN ELECTRIC CARS

Figure 5.2: Graph showing a linear development in electric cars

The linear development is based on the premise that owners of ECs continuously will procure an EC, meaning that when the car's life time of 16 years [Energistyrelsen, 2016] has passed, the car owner will acquire an EC again. If a linear development occurs, 186,000 ECs are to be found in Denmark by 2050. In the IDA vision, the Danish car fleet will in 2050 consist of approximately 2,2 million passenger cars [Mathiesen et al., 2015a], which will result in ECs accounting for 8.3% of the car fleet if a linear development takes place. In projections from the DEA, ECs are expected to account for 9 % of the Danish car fleet in 2030 [Energistyrelsen, 2019], so if the transport sector has to be fossil free by 2050, a linear development is not to be preferred. The consequences of a linear growth rate are assumed to both be of environmental and economic matter. This is because it is expected to be necessary to make use of either fossil fuels or other more expensive renewable energy technologies than wind to cover the demand. Based on these assumptions, the scenario with a linear development is structured as seen in figure 5.3.

¹Frozen policy is a term used for scenarios, where there is no introduction of new policies. The policies of today that are present throughout the entire time frame of the scenario [Energistyrelsen, n.da].

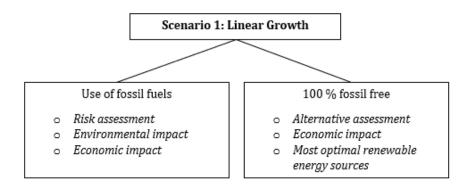


Figure 5.3: Focus points in scenario 1: Linear growth

As the figure shows, the linear growth scenario results in a compilation of several different sub-scenarios, which function as risk and alternative assessments of a linear growth rate. These assessments are carried out because it is assumed that a scenario with a notably lower EC fleet both can result in the remaining transport demand to be covered by fossil fuels or renewable energy.

In this scenario, the EC fleet in 2050 will consist of 186,000 cars, but because of the uncertainty about the distribution of car sizes and efficiencies in the future, a mean of the consumption is used. The same method is used when determining the consumption of fossil fuel driven cars, which only occur in this scenario. This method is used to produce, what is assumed to be, the most exact results in relation to energy consumption and economy, because of the difficulty in relation to determining when the ECs are being procured.

5.2.1 Risk Assessment

The first scenario prepared based on a linear growth functions as a BAU-scenario, where the rest of the transport sector is covered by fossil fuels. It is thereby this part of the scenario that contains a risk assessment of this development's environmental impact. In this scenario, the year 2050 has 1,114,000 fewer ECs than what is suggested in the IDA vision. With a determination of the energy consumption for one EC of 3,9 MWh/year, it is possible to calculate the overall consumption for the EC fleet in 2050, which will be of 0,718 TWh/year. Fossil fuel driven cars constitute the remaining car fleet, which is 2,014,000 cars. Based on data from the IDA 2035 scenario, where fossil fuels are still part of the energy system, diesel cars account for 60,5%, while gasoline cars account for 39,5% [Mathiesen et al., 2015b]. Because fossil fuels are not part of the IDA vision, numbers from the year 2035 is used, and the share of the two fuel types is transferred to 2050. The individual and total consumption of fossil fuel driven cars can be seen in the table 5.4.

Year/fuel type	Gasoline	Diesel	Unit
2035	48,7	46,8	GJ/year
2050	44,6	42,9	GJ/year
Mean (one car)	46,6	44,8	GJ/year
Total (TWh/year)	10,3	15,2	TWh/year

Table 5.4: Table showing the consumption of fossil fuel driven cars divided into fuel type, with a total consumption based on the car fleet share

As hybrid cars are not a part of the analysis in this thesis [2.2], the risk assessment of a linear growth scenario is based on a car fleet with a given EC share together with a share of gasoline cars and diesel cars. Though, the number of hybrid cars in the car fleet is not subtracted from the total number of cars but eliminated instead, meaning that the total car fleet consists of the same amount of passenger cars as in the IDA vision. This means, that the electricity demand for cars is modelled, but the additional fossil fuel consumption is added to the consumption from the IDA vision.

For ECs, the average efficiency is 78,5%, while the average efficiency for fossil fuel driven cars is 21,9%, making the efficiency for ECs approximately 3,6 times higher, why this will be corrected in EnergyPLAN.

Parameters	IDA vision	Linear growth	Unit
Electricity demand	6,03	0,72	TWh/year
Diesel	0	15,2	TWh/year
Gasoline	0	10,3	TWh/year
Conventional cars (total)	0	46322	MEUR
Dump charge	2,64	2,64	TWh/year
Smart charge	6,46	0,72	TWh/year
Electric cars (total)	61600	5208	MEUR
Charging stations (total)	4347	462	MEUR
Capacity of grid to battery connection	16396	2300	MW
Capacity of battery to grid connection	820	105	MW
Battery storage capacity	14,2	1,8	GWh
Biofuel cars (total)	0	45919	MEUR
Hydrogen cars (total)	0	34113	MEUR

Table 5.5: Table showing the parameters that are changed in EnergyPLAN, from the values in the IDA vision to the values relevant to the linear growth scenario

As table 5.5 shows, the demand for electricity is lowered, but the demand for fossil fuels has increased in comparison to the IDA vision. Furthermore, the biomass consumption is lowered because of the eliminated share of hybrid cars. The biomass demand decreases with 5 TWh based on data from the IDA vision showing how different shares of EVs are affecting the biomass supply [Mathiesen et al., 2015b].

As expected, the scenario with a linear growth rate results in higher emissions of CO_2 and a lower RES share due to a lower EC share and a fossil fuel replacement for the remaining car fleet. As seen in table 5.6, the scenario composition results in slightly higher annual costs and a noticeably amount of CO_2 emission costs, which are non-existing in the IDA vision.

Parameter	IDA vision	Linear growth	Unit
Annual investment costs	20268	19143	MEUR
Total annual costs	29642	29793	MEUR
CEEP	2,99	2,97	TWh/year
Oil usage	0	25,5	TWh/year
Offshore wind capacity	14000	13150	MW
RES share	100	85,2	%
CO2 emission	0	6,25	Mt
Total CO2 emission costs	0	263	MEUR

Results - Scenario 1: Linear Growth

Table 5.6: Results from the linear growth scenario in comparison with the IDA vision

The scenario has a slightly lower CEEP level than the IDA vision, which is because of a lower share of fluctuating energy in the system due to the reduced number in ECs. The offshore wind capacity is reduced because of the higher investment costs that are related to offshore wind in comparison to onshore wind [Energistyrelsen and Energinet, 2020c]. However, a scenario containing use of fossil fuels does increase the costs related to CO₂ emissions and prevents Denmark from producing energy that covers the Danish demand if there is a need to important fossil fuels [Energistyrelsen, n.db]. Overall, it is an indication that a frozen politics scenario has a negative effect on the growth in EC share and thereby also on the possibility of reaching the 2050 goal. The scenario gives an understanding of the importance of changes in politics that are in favour of ECs if the national goal should be reached. Furthermore, does the scenario contain climatic risks, and such a scenario is therefore not preferable in relation to the national goal of a fossil free Denmark in 2050. The results from the EnergyPLAN simulation can be seen in section B.1 in appendix B.

5.2.2 Alternatives Assessment

The risks of a linear growth rate with a replacement of renewable energy with fossil fuels are determined, but if a linear growth is to happen, alternative solutions for the car fleet are necessary if the 2050 goal should be reached. In this thesis, an alternative solution consists of a similar EC share as in the risk assessment, but with the remaining car fleet consisting of renewable energy sources instead of fossil fuels. It is expected that this scenario influences the economy, because of the potential need of expensive technologies or a increase in import in order to maintain the costs at a level similar to what can be seen in the IDA vision.

For the alternatives assessment, it is investigated if it is possible to replace the fossil fuels from the risk assessment with renewable energy sources, so that it is possible to reach the 2050 goal despite of a lower EC share. Additionally, it is investigated if it is possible to make use of biomass as an substitute in relation to the preference of keeping biomass at an acceptable level. Previously, an acceptable biomass consumption was noted to not exceed 250 PJ, but that a consumption close to 200 PJ or below is preferable 4.4.2. In the IDA vision, the annual biomass consumption equals 47,91 TWh/year or 172,48 PJ, leaving little room for an increase in biomass in the thesis scenarios. The fossil fuel consumption stands for 25,5 TWh/year. If this share is replaced by biofuel, the result is as seen in the table 5.7 below.

Parameter	IDA vision	Linear growth (risk ass.)	Linear growth (alternative ass.)	Unit
Annual investment costs	20268	19143	19156	MEUR
Total annual costs	29642	29793	15501	MEUR
CEEP	2,99	2,97	0,87	TWh/year
Oil usage	0	25,5	0	TWh/year
Offshore wind capacity	14000	13150	11400	MW
Biomass consumption	47,91	42,87	81,36	TWh/year
RES share	100	85,2	100	96
CO2 emission	0	6,25	0	Mt
Total CO2 emission costs	0	263	0	MEUR

Table 5.7: Results from the alternative assessment including biomass in comparison with the IDA vision and risk assessment

In a linear growth scenario where fossil fuels are replaced by biomass for transportation, the biomass consumption increases to 81,36 TWh/year, which is equal to 292,72 PJ/year. This scenario is thereby not desirable in the case where a biomass consumption below 250 PJ is preferred. Though, there is the possibility to import the remaining biomass demand when the 250 PJ limit is reached. But this method brings issues, such as a reduction in the security of supply that follows when energy is imported [Bran and Chipurici, 2015]. In addition to that, discussions regarding the use of biomass as a CO₂-neutral energy source is also worth bearing in mind. Biomass functions as a good substitute to fossil fuels, but CO_2 is still emitted during the incineration of biomass and new trees therefore have to be planted in order for them to bind the emitted CO_2 . For this to be successful, planting of new trees has to be carefully supervised, but when trees are planted years have to go by for them to reach a CO_2 -uptake equal to the level seen before the shedding [Johnston and van Kooten, 2015]. These arguments are worth considering when wanting to determine the share of biomass in the energy system. This also means, that a solution where biomass covers the remaining car fleet is not to be preferred. A third solution thereby has to be proposed in order for the scenario to meet the criteria in relation to the use of biomass, and in relation to the 2050-goal concerning fossil fuels. The results from the EnergyPLAN simulation can be seen in section B.2 in appendix B.

A third alternative to use as fuel for transportation is hydrogen produced by an electrolysis process. By using hydrogen for transportation, it is possible to lower the biomass consumption. The criteria for the two car types are as seen in table A.1 in appendix A, and the results from the EnergyPLAN simulation can be seen in section B.3 in appendix B.

For this scenario, the biofuel cars account for 800,000 cars or 36% of the car fleet, while hydrogen cars account for 55% or 1,214,000 cars. This distribution is used in order for the biomass consumption to be lowered to a level of 208,5 PJ, which is an acceptable level in relation to the scenario criteria even though it still exceeds the preferred level of 200 PJ. The scenario results can be seen in table 5.8 below.

Parameter	IDA vision	Linear growth	Unit
		(biofuel/hydrogen)	
Annual investment costs	20268	20199	MEUR
Total annual costs	29642	23047	MEUR
Onshore wind capacity	5000	6250	MW
Offshore wind capacity	14000	14000	MW
CEEP	2,99	0,71	TWh/year
Biomass consumption	47,91	57,93	TWh/year
RES share	100	100	%
Electrolyser capacity	9009	12500	MW-e
Hydrogen storage	552	800	GWh

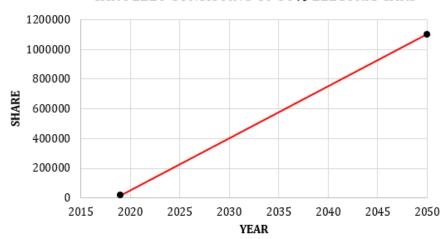

Results - Scenario 1: Linear Growth (biofuel/hydrogen)

Table 5.8: Results from the alternative assessment including biofuel and hydrogen in comparison with the IDA vision

The production process of hydrogen requires conversion of electricity and because of an energy loss during electrolysis and when driving the vehicle, the use of hydrogen requires a higher wind capacity [Connolly et al., 2014a]. For that reason, the onshore wind capacity is increased as seen in table 5.8. Electrolysis is currently a more expensive alternative than e.g. biomass and electricity used directly for ECs [Connolly et al., 2014a]. Though, it is more efficient and a solution for storing electricity as hydrogen, why it is also contributing to a more flexible energy system [Lund, 2014b]. Additionally, the increased flexibility affects the share of CEEP which is 0,71 TWh/year because of the improved energy storage facilities. In comparison to the updated IDA vision values, this alternative has lower costs, which makes this alternative attractive in an economic perspective. Though, cars for biofuel and hydrogen have a significantly lower efficiencies and higher energy consumption than ECs, which is one indication pointing towards ECs being the more obvious choice of technology for the future transport sector. For that reason, the following two scenarios consist of higher EC shares in order to examine how such scenarios affect the energy system.

5.3 Scenario 2: 50% Electric Car Share

This scenario does not follow a particular growth rate as the scenario is based on the end-result of a 50 % EC share, and not how the EC fleet develops. This scenario thereby consists of uncertainty in regards to when the ECs are added to the car fleet, which also comes with uncertainty about different factors in the calculations such as efficiencies and fuel consumption. In figure 5.4, the scenario is shown as a linear function, because of the uncertainty about the growth rate.

CAR FLEET CONSISTING OF 50% ELECTRIC CARS

Figure 5.4: Development in a scenario consisting of a car fleet with 50% ECs

Because of the uncertainty about when car owners procure the technology, the average of the different EC values is used as in the previous scenario. This scenario does not contain a risk assessment as in the first scenario, because the negative effects of having fossil fuels in the energy system and because a 100% renewable energy system in 2050 is preferred.

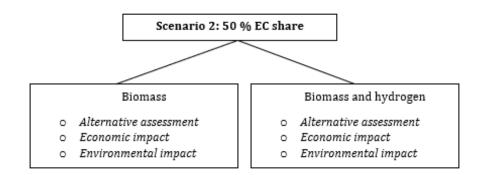


Figure 5.5: Focus points in scenario 2: 50% EC share

The above figure illustrates what the alternatives assessments consist of in this scenario. Similar to the previous scenario, one alternative consists of a biomass replacement, and the second alternative is a combination of biomass and hydrogen for the remaining 50% of the car fleet. For this scenario, the share of ECs is significantly higher, which results in a lower share of cars that are to be covered by alternatives fuel, than what was the case in scenario 1.

5.3.1 Alternatives Assessment

With 50% of the car fleet consisting of ECs, the remaining 50% account for 1,100,000 cars. Where the alternatives assessment in the previous scenario contains alternatives to the use of fossil fuels, this scenario operates with alternatives to the IDA vision because solutions operating with different shares of ECs might be useful when forming the future

Parameters	IDA vision	50 % scenario	Unit
Electricity demand	6,03	4,3	TWh/year
Dump charge	2,64	2,08	TWh/year
Smart charge	6,46	4,3	TWh/year
Electric cars (total)	61600	30800	MEUR
Charging stations	4347	2732,4	MEUR
Capacity of grid to battery connection	16396	11496	MW
Capacity of battery to grid connection	820	580	MW
Battery storage capacity	14,2	10	GWh
Offshore wind capacity	14000	11850	MW
Biofuel	0	13,7	TWh/year
Biofuel cars (total)	0	25080	MEUR

energy system. With point of departure in the values from section 5.1, the corrections in EnergyPLAN for this scenario are as shown in table 5.9 below.

Table 5.9: Table showing the parameters that are changed in EnergyPLAN, from the values of the IDA vision to the values relevant to the linear growth scenario

As mentioned, the first scenario does not include hydrogen cars, which means that 50% of the car fleet runs on biofuel in the first simulation, and the scenario results are shown in table 5.10, and the results from the EnergyPLAN simulation can be seen in section B.4 in appendix B.

Parameter	IDA vision	50 % scenario	Unit
Annual investment costs	20268	19596	MEUR
Total annual costs	29642	21950	MEUR
Onshore wind capacity	5000	5000	MW
Offshore wind capacity	14000	11850	MW
CEEP	2,99	0,71	TWh/year
Biomass consumption	47,91	68,53	TWh/year
RES share	100	100	96

Results - Scenario 2: 50% (biofuel)

Table 5.10: Table showing the results for a passenger car fleet consisting of 50% electricity and 50% biofuel

By using biofuel as an alternative to the remaining half of the car fleet, the scenario costs decrease in comparison to the IDA vision. With a 50% EC share, it is possible to lower the offshore wind capacity, resulting in a lower share of fluctuating energy in the system and thereby a reduced CEEP value.

The annual investment costs do not vary much from the IDA vision, but the difference in the total annual costs is considerable and is assumed to occur due to lower operation and maintenance costs associated with the technologies applied in this scenario. Furthermore, the biomass consumption in this scenario is 247,4 PJ, which is just below the critical limit of a sustainable use of biomass, but also a significant level above the preferred 200 PJ. In a situation where biomass below 250 PJ is acceptable, this scenario could function as

an alternative to the IDA vision if the EC fleet reaches 50% in 2050. The scenario has decreased CEEP and a lower offshore wind capacity, but it could be argued that it is more optimal to utilize the level of wind capacity utilized in the IDA vision because of wind energy being a renewable and zero-emitter energy source in comparison with biomass. In relation to exploring the option of utilizing the wind capacity, an alternative assessment with electricity, biofuel and hydrogen is composed. The changes from the previous scenario are shown in table 5.11 below, and the results from the EnergyPLAN simulation can be seen in section B.5 in appendix B.

Parameter	50 % (biofuel)	50 % (biofuel & hydrogen)	Unit
Biofuel	13,7	6,9	TWh/year
Hydrogen	0	4,5	TWh/year
Electrolyser capacity	9009	10810	MW-e
Hydrogen storage	593	712	GWh
Offshore wind capacity	11850	13100	MW

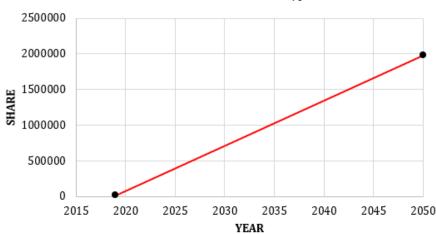
Table 5.11: Table showing the parameters that are changed in EnergyPLAN, from the values of the alternative with biofuel to an alternative consisting of biofuel and hydrogen

In this alternative, the biomass consumption is reduced by adding hydrogen to the transport sector. The scenario therefore consists of 50% ECs, 25% biofuel and 25% hydrogen, which makes the distribution of the car fleet as follows:

- 1,100,000 electric cars
- 550,000 biofuel cars
- 550,000 hydrogen cars

The results for this alternative are shown in table 5.12, and the results from the EnergyPLAN simulation can be seen in section B.2 in appendix B. By including hydrogen, the total annual costs increases, and the biomass consumption is reduced to 213,4 PJ, which is considered acceptable but above the proposed level of 200 PJ in the IDA vision.

Results - Scenario 2: 50%				
Parameter	IDA vision	50 % scenario (biofuel)	50 % scenario (biofuel & hydrogen)	Unit
Annual investment costs	20268	19596	20013	MEUR
Total annual costs	29642	21950	25250	MEUR
Offshore wind capacity	14000	11850	13100	MW
CEEP	2,99	0,69	0,27	TWh/year
Biomass consumption	47,91	68,53	58,29	TWh/year
RES share	100	100	100	%
Electrolyser capacity	9009	9009	10810	MW-e
Hydrogen storage	552	552	662	GWh


Table 5.12: Table showing the results for a passenger car fleet consisting of 50% electricity, 25% biofuel and 25% hydrogen

Furthermore, by being able to store the electricity from the increased wind capacity, the CEEP level is lowered to 0.27 TWh/year. As earlier mentioned, electrification has first

priority, and this scenario confirms why it should be prioritized to aim for an EC fleet above 50%. With an increase in the EC fleet, the demand for biomass can be lowered which results in a more sustainable solution. For that reason, a scenario including a passenger car fleet with a 90% EC share is composed.

5.4 Scenario 3: 90% Electric Car Share

Because of the inaccurate predictions of the development in ECs so far, a scenario operating with an EC share of 90% is chosen as one scenario in this thesis. It is assumed, that a higher EC share, than what has been suggested in the IDA vision, also is a possible outcome in the future.

CAR FLEET CONSISTING OF 90% ELECTRIC CARS

Figure 5.6: Development in a scenario consisting of a car fleet with 90% ECs

A scenario operating with a transport sector having an EC share of 100% is considered to be unlikely due to the fact that other renewable transport technologies are already existing. However, due to the efficiencies and thereby lower energy consumption for ECs in comparison with other vehicle types in 2050, it is assumed a possibility that this technology has high priority among car manufacturers and car buyers, and that a higher EC share than what the IDA vision projects is a possibility in the future.

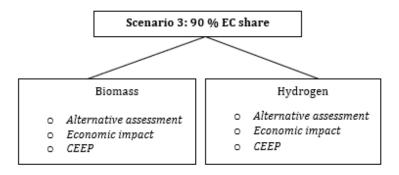


Figure 5.7: Focus points in scenario 3: 90% EC share

As figure 5.7 shows, two alternatives are composed with a 90% EC share. For this scenario, it is chosen to replace the remaining 10% of the car fleet by either biomass or hydrogen. This means, that they differ from the previous scenarios where biomass and hydrogen are combined. For the simplicity of the scenario, a combination of biomass and hydrogen is not included, as the remaining 10% make up for a minor share of the car fleet.

5.4.1 Alternatives Assessment

Two scenarios are composed including the remaining 10% of the car fleet to be driven by biomass and hydrogen, respectively. For these scenarios, it is expected for the wind capacity to be expanded due to the higher EC share. Though, the CEEP level is not expected to increase, because of the higher share of smart charge than applied in the IDA vision. The scenarios are consisting of a 90% EC share corresponding to 1,980,000 cars, which makes the remaining part of the car fleet consist of 220,000 cars. The parameters in EnergyPLAN are changed as seen in table 5.13 below, and the results from the EnergyPLAN simulation can be seen in section B.6 in appendix B.

Parameters	IDA vision	90 % scenario	Unit
Electricity demand	6,03	7,72	TWh/year
Dump charge	2,64	2,08	TWh/year
Smart charge	6,46	7,72	TWh/year
Electric cars (total)	61600	55440	MEUR
Charging stations (total)	4347	4919	MEUR
Capacity of grid to battery connection	16396	17660	MW
Capacity of battery to grid connection	820	884	MW
Battery storage capacity	14,2	15,3	GWh
Biofuel	0	2,72	TWh/year
Biofuel cars (total)	0	5016	MEUR
Hydrogen	4,99	6,79	TWh/year
Hydrogen cars (total)	0	6182	MEUR

Table 5.13: Table showing the parameters that are changed in EnergyPLAN. From the updated IDA vision values to the values relevant to a scenario with a 90% EC share

By changing the values in energy plan, the third scenario results in two different alternatives consisting of one with a combination of ECs and biomass, and one with ECs and hydrogen. The results show, that the costs of the three scenarios are similar to each other but also that the two scenarios in this thesis have a lower offshore wind capacity in comparison with the IDA vision. The lower wind capacity deviates from the expected increase in capacity but is assumed to be because of a high share of smart charge, which explains the low CEEP values as well. Additionally, can the lower wind capacity be a result of a higher EC share consisting of higher efficiencies than the electrofuels included in the IDA vision.

Parameter	IDA vision	90 % scenario (biomass)	90 % scenario (hydrogen)	Unit
Annual investment costs	20268	20191	20311	MEUR
Total annual costs	29642	28932	29420	MEUR
Offshore wind capacity	14000	12300	12800	MW
CEEP	2,99	0,04	0,09	TWh/year
Biomass consumption	47,91	41,15	36,23	TWh/year
RES share	100	100	100	%
Electrolyser capacity	9009	9009	10810	MW-e
Hydrogen storage	552	552	662	GWh

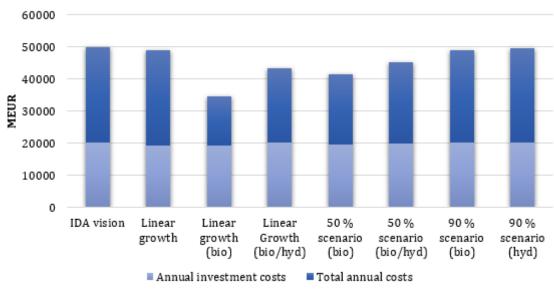
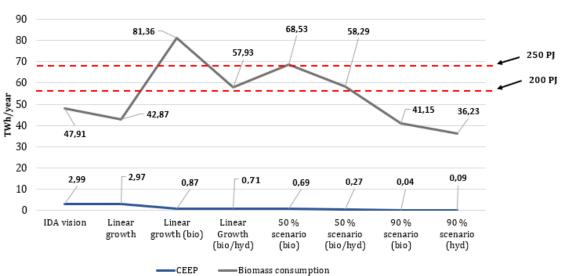

Results - Scenario 3: 90%

Table 5.14: Table showing the results of scenario 3 in comparison with the IDA vision

From the biomass scenario to the hydrogen scenario, the offshore wind capacity increases because of the need for electricity in an electrolysis process [table 5.14]. Additionally, the CEEP level decreases considerably in both of the 90% EC scenarios because of the higher EC share in combination with a lower wind capacity. The hydrogen scenario was expected to have the lowest CEEP level, but because of an increase in the wind capacity from the biomass scenario, the CEEP level is slightly higher. Besides that, the biomass consumption is lowered in the thesis scenarios in comparison with the IDA vision. This is because of an replacement of electrofuels with biopetrol, which results in higher efficiency. This means, that the biomass level from these scenarios still are within the preferred 200 PJ. The results from this scenarios EnergyPLAN simulation can be seen in section B.7 in appendix B.

5.4.2 Results

Based on the scenarios composed in this thesis, climate and economy perspectives are analysed in relation to the future car fleet and the energy system. Three scenarios withholding sub-scenarios are established, compared to the IDA vision and to one another.

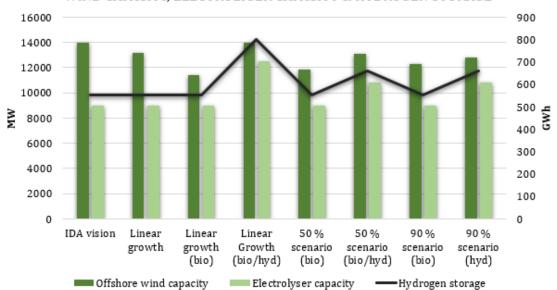


SCENARIO COSTS

Figure 5.8: Results for scenario costs

Figure 5.8 shows a comparison of the costs in the different scenarios. The annual investment costs are nearly the same for all of the scenarios, but differences occur in the total annual costs. Here, the IDA vision and the two scenarios with a 90% EC share are the scenarios with the highest total annual costs. The 50% (biofuel) scenario is the scenario with the lowest costs, because of the lower operation and maintenance costs on biofuel cars in combination with the lower investment costs related to biopetrol in comparison with hydrogen. The same arguments can support the results of the linear growth (biofuel) scenario where the costs are low despite a significantly lower EC share. This means, that low costs are related to the use of biomass, and that the costs increases in step with a higher EC share and the integration of hydrogen.

Besides the costs, other factors vary depending on the scenario as well. Figure 5.9 illustrates the biomass consumption and CEEP level for the scenarios. The scenarios in this thesis all have lower CEEP levels than the 2,99 TWh presented in the IDA vision. Of the thesis scenarios, the linear growth scenario accounts for the highest CEEP level, which is because of the low EC share with smart charge and the absence of hydrogen. Furthermore, does this scenario contain a high wind capacity in relation to the low EC share. The offshore wind capacity for this scenario is increased to the highest capacity possible without exceeding a CEEP level of 2,99 TWh. This increases the RES share as much as possible even though the scenario contains fossil fuels.



CEEP & BIOMASS CONSUMPTION

Figure 5.9: Results for scenario CEEP level and biomass consumption

Besides the CEEP level, does one graph in figure 5.9 illustrate the biomass consumption in the scenarios. Four scenarios contain a higher usage of biomass in comparison with the IDA vision, which means that these scenarios exceed the preferred 200 PJ. The scenarios show, that low biomass usage increases the costs, because of the necessity to utilize more expensive technologies such as electrolysers. Though, no thesis scenario exceeds the costs of the IDA vision. In relation to the criteria of a biomass usage below 200 PJ and no use of fossil fuels, only the two 90% scenarios meet the requirements.

In relation to figure 5.10, all three of the linear growth scenarios have relatively high wind capacities in comparison to the remaining scenarios which consist of higher EC shares and hydrogen usage. The highest wind capacity is experienced in the linear growth (biofuel/hydrogen) scenario, where the max capacity in offshore wind turbines is reached with a need to expand the onshore wind capacity as well [section 5.2.2]. The reason for this, is that the electricity produced by wind covers the demand outside the transport sector in order for the scenarios to still contain the highest possible RES share.

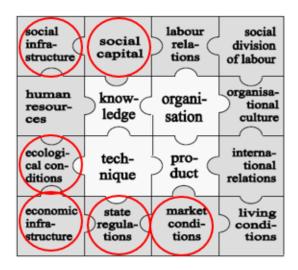

WIND CAPACITY, ELECTROLYSER CAPACITY & HYDROGEN STORAGE

Figure 5.10: Results for offshore wind capacity (MW), electrolyser capacity (MW-e) and hydrogen storage (GWh)

The reason for the linear growth scenario to contain a higher wind capacity than the linear growth (biofuel) scenario, is that the scenario with biofuel reaches a 100% RES share with a offshore wind capacity of 11400 MW. In the linear growth scenario, it is the remaining part of the transport sector that is replaced by fossil fuels, and because of the delimitation of the thesis, no other sector in the energy system has been adjusted [section 2.2]. Besides that, does the figure show a relation between hydrogen storage and the need for an increase in wind capacity. Non of the thesis scenarios have higher offshore wind capacities than the IDA vision, which is a result of higher biomass usage and the higher efficiencies for ECs in comparison with electrofuels. This means, that even though the EC share increases does it not necessarily mean that there is a need for an increase in wind capacity.

6.1 Technology Structure

With point of departure in the theoretical framework in section 3.2, a qualitative analysis of technological change is composed in relation to ECs in the Danish energy system and the scenarios produced in this thesis. With figure 6.1 as background, it is analysed how the external setting can promote or prevent the EC development. Even though most of the external conditions changes if one of these undergo change, the analysis is not examining all of the conditions, but the ones that are found most relevant to the theme of this thesis. The conditions are evaluated in relation to their direct influence on the EC development, and the ones considered are market at figure 6.1. Though, an analysis of certain conditions does not indicate that changes within the remaining conditions are not possible, but these changes are not considered of relevance in this thesis.

Figure 6.1: Figure highlighting the conditions relevant to technological change within electric cars [Müller, 2011]

Social infrastructure has the purpose to reproduce society's labour force, and it therefore includes health facilities, recreational facilities, educational organisations etc. [Müller, 2011]. Social infrastructure can thereby be defined as spaces, where social services can be accessed by the community [Queensland Government, 2020]. In this thesis, the external condition of social infrastructure does not include all of the facilities, but only focus on educational organisations because they are considered to influence on the EC development. Social infrastructure and *social capital* are terms that are closely related to the constituent of 'knowledge' in the technology concept. A general definition to the term 'social capital' does not exist, but in this thesis social capital is defined as being the resources that are available to the collective and the individual through the social relationships of these. Additionally, the term can be divided into a structural and cognitive dimension, where the structural dimension refers to what people do, whereas the cognitive dimension refers to how people feel in their social relations [Han, 2019]. In this thesis, both of the dimensions are, to some extent, important, and the social capital condition is related to social infrastructure why these are discussed together.

Social infrastructure as educational organisations is considered to be important in relation to the EC development, because of the correlation between ECs and climate. The purpose of integrating ECs in the Danish energy system is to eliminate fossil fuels from passenger transportation due to their negative effect to the climate. Today, studies are claiming ECs to emit more CO_2 than fossil fuel driven cars seen in a life cycle perspective, because of the emissions related to the production of ECs [Klimarådet, 2018]. For that reason, it is considered important that educational organisations take responsibility to pass on knowledge about how the production of ECs can become CO_2 neutral in the future. It is not possible for the EC production to become completely CO_2 neutral before the energy system is made up entirely by renewable energy sources. It is therefore necessary for society to be informed about the importance of perceiving the energy system as a whole, and to understand that a green transition is a long-term process. The importance of education should be seen in connection with misinformation being an obstacle when consumers decide whether or not they want to procure an EC.

The social infrastructure is related to social capital because of the necessity for mankind to have a shared understanding of the climate crisis and which initiatives are needed for the crisis to be averted. The structural dimension is referred to as being what people do, and the cognitive dimension is how people feel. Both of these dimensions can be linked to educational organisations in the social infrastructure, because of peoples' knowledge often being a driver for how they act [Funke, 2017]. Though, it is not solely the social infrastructure that influences on the social capital, but also economic conditions are driving the purchasing power.

State regulations, market conditions and economic infrastructure are also conditions that affect the EC development. State regulations in relation to ECs have already been applied by the Danish government to promote the EC sale. These initiatives have worked as shortterm solutions, which has resulted in the EC fleet of today not to be of the desired extend. The regulations have resulted in short-term effects because of the government's decision of phasing out the regulative benefits in relation to ECs [Klimarådet, 2018]. This is an example of how important long-term regulations are if it should be possible to obtain a fossil free society. Today, ECs are a more expensive alternative than fossil fuel driven cars, which also prevent many people from buying an EC [Thøgersen and Ebsen, 2019]. At the same time has the Danish government lowered the registration taxation for fossil fuel cars, which has made it possible for people to buy 'more car' for the same amount of money [Skatteministeriet, 2018]. These initiatives from the government are conflicting, as a lowering of both the EC taxation and fossil fuel car taxation can be assumed not to have a notably effect. In a social capital perspective, the credibility of the government can be impaired because of them not giving people a real option to procure an expensive EC even

though they are willing to help the climate. This is closely related to the market conditions of the EC market. Because of ECs being a relatively new technology for the public, the prices are higher and not many used ECs are available at the market in comparison with fossil fuel cars. Though, the price of ECs are expected to decrease in step with the technology becoming more mature and widespread. But, the social capital that is present among car owners and the EC technology also has to be strengthened. The technology experiences some lack in trust in relation to the technology being able to fulfill the demands of car users [Klimarådet, 2018]. Here, the economic infrastructure should be mentioned as well. This term covers the physical system of a nation or a business, including electric systems or transport systems, which are the ones most important to this thesis. It is a necessity for these systems to function in order for the national economy to develop and for the nation's functioning [Chappelow, 2020]. The transport and electricity systems are important to maintain in order for the EC fleet to increase as well. In Denmark, the security of supply is high, which is crucial to maintain in order for the car users to trust the technology and thereby procure an EC. Today, one reason for people not procuring ECs, is that they do not trust the technology to be able to fulfill the needs that a fossil fuel car can [Thøgersen and Ebsen, 2019]. At some points, that is the truth, and that is why the EC development is depending on how the technology develops and navigates at the market as well.

The last condition from the technological change jigsaw with relevance to this thesis, is the *ecological conditions*. The meaning of this is not defined by Müller, but in this thesis the understanding of ecological conditions is discussed in relation to the availability of the resources needed to produce or run a given technology, and how this affects the environment and technological change.

Today, the majority of passenger cars are driven by fossil fuels, which is a scarce resource. This means, that changes within vehicle technology has to occur eventually, because the fossil fuel resources are fully exploited a given time in the future [Society, 2019]. Though, because of the Paris Agreement¹, greenhouse gas emissions are to be reduced, which is why technological change within vehicles is now initiated, as the transport sector is responsible for a significant part of greenhouse gas emissions [chapter 1]. In relation to climate change, it can be considered responsible to force technological change within the car industry, as long-term security of supply not can be obtained with fossil fuels usage. By implementing vehicles that are driven by electricity from wind turbines, the resource is both renewable and CO_2 neutral. As earlier mentioned, it is possible for the production of ECs to be carried out by the use of renewable energy, but the production also includes use of metals that experience an increase in demand in step with ECs becoming a more widespread technology. This is therefore an examined problem today, as the metals used to produce ECs is increasing and therefore also might be a scarce resource in the future. In such a scenario, the EC technology will experience some challenges, forcing the manufacturers to reconsider the technology structure which is currently experienced by examining possible replacements of critical metals by the so-called strategic metals [Iglesias-Émbil et al., 2020]. Though, the EC industry emits less CO_2 than fossil fuel driven cars, it is still a possibility

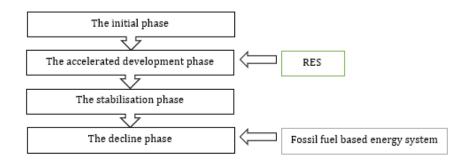
¹In 2015, 196 parties adopted the Paris Agreement comprising worldwide sustainable development with a goal to limit global warming. This means, that the temperature, in comparison with the pre-industrial level, should not exceed 1.5-2 degrees Celsius [United Nations, n.d]

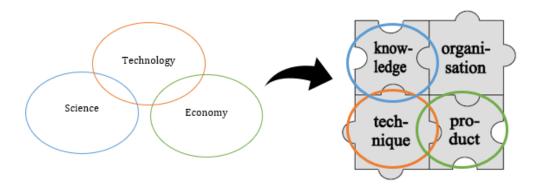
that this industry will meet similar problems to the ones related to fossil fuels when it comes to security of supply. Also, fossil fuels are still available today, giving competition to ECs from fossil fuel driven cars as a more convenient and cheap alternative. Overall, the EC technology functions as a good alternative to fossil fuel cars in relation to the environmental impacts, but obstacles with the production of ECs might still occur in the future, why one could say that the technology is not fully developed at this point. Additionally, from an institutional perspective, several regulative challenges are present and should be considered for the EC industry to develop as desired. This clarifies how changes in one condition can influence on technological change, but also that the conditions are connected in one way or another and that several of the conditions overlap by covering parts of the same area.

6.1.1 Electric Cars in Large Technical Systems

ECs can be perceived as an individual technology, but also as one part of an LTS. In this thesis, the LTS that is being considered is the Danish energy system. The EC technology is situated in the transport sector of the energy system and because of the SES concept, connecting sectors of the energy system strengthens the system's flexibility [section 3.1].

As presented in section 3.2.1, an LTS is characterized by being of global nature meaning that most people are affected by the LTS some of the time. This is an exact indication that the energy system can be defined as an LTS, as most people, businesses and sectors are depending on the energy system to function. In this thesis, the Danish energy system is approached as an LTS currently situated in the accelerated development phase, placing the energy system in the second of four phases. This means, that the old energy system based on fossil fuels is placed in the decline phase, because of the importance of an extension of this system is diminishing and because of an energy system based on renewable energy is prioritized.



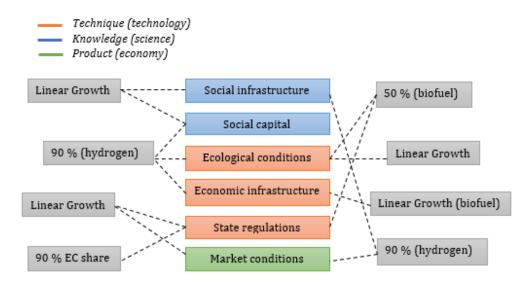

Figure 6.2: The Danish energy system undergoing changes, situating the current fossil fuel based system in the decline phase and the future 100% RES in the accelerating development phase

The new energy system, that is also illustrated in the thesis scenarios, has passed the initial phase, where the LTS does not yet undergo a plan. The initial phase also includes debates on how the new LTS can benefit the society, which has already happened by concluding that renewable energy sources give security of supply together with them not affecting the climate in a negative manner. The Danish energy system of today is thereby situated in

the accelerated development phase because of it developing in compliance to the plan of the energy system becoming fossil free in 2050. This development is a long-term process, meaning that the fossil fuel based system is situated in the decline phase and will continue to be for years to come. This also means that the linear growth scenario, including fossil fuels from the previous part of the analysis, is situated in the decline phase. Additionally, an EU memo stated that renewable energy sources made up for 37% of the energy usage in Denmark in 2018. This argues that the stabilisation phase has not yet been reached, because of fossil fuels still being the dominating energy source in the system.

How the energy system is situated in the phases can be transferred to the EC development as well, where the EC technology can be said to have passed the initial phase, but not yet be in the stabilisation phase. Additionally, a close correlation between ideological and political views and the LTS can be experienced. This is manifested in the political initiatives that are adopted in order for both the EC technology and the energy system to develop, as political regulation seeks to promote the green transition. The rate and direction that the system develops at are, according to Hugh Aitken, determined by socioeconomic contexts of the given technology [Gökalp, 1992]. In Denmark, the socioeconomic position is considered to be high due to the country being a welfare state with resources such as high income level, free education and healthcare. Hugh Aitken's statement is therefore considered correct in relation to the Danish energy system moving towards a completely renewable energy system. On the contrary, does the statement not match to the EC technology because of it developing at a slow pace compared to other countries with a similar socioeconomic position. EC promoting initiatives have produced positive results in Norway, leaving the country with the world's highest EC share. Though, Norway has made use of several initiatives to promote ECs including free parking, free fairy rides and exemption from registration taxation [Bjerkan et al., 2016]. With the Norwegian EC strategy in mind, the importance of long-term EC promoting initiatives are important in order for the population to adopt the technology.

The above-mentioned leads to an investigation of the three spheres in Aitken's second approximation model, and how these influence on the Danish energy system as an LTS. It is discussed in relation to the EC technology and how the spheres are affecting this as well. In this thesis, the three spheres are considered to have the same approach to technology as the four elements of technology and the conditions that surround these. An argument for this, is that the two approaches consider either technology or an LTS from a holistic view, meaning that the technology itself does not undergo change without external influence, and that changes within the technology affects the external conditions.


Figure 6.3: The three spheres from Aitken's approximation model transferred to Müller's four elements of technology

In figure 6.3, it is illustrated how there is a correlation between Aitken's approximation model and Müller's four elements of technology. This is shown by transferring the three spheres to the jigsaw of technology, where knowledge, technique and product functions as the three spheres leaving only organisation as an extra element of technology.

In the approximation model, the three spheres are not all related though it, in this thesis, is argued that a relation between science and economy can be found as well. This is based on how the economy influences on the possibility to carry out proper research. Research requires financial resources, and in Denmark such funds are distributed to research with the purpose to accelerate the green transition [Energistyrelsen, 2020b]. It can therefore be argued that the economy that the given LTS is located in, affects the pace in which the LTS develops and thereby connects science and economy in the approximation model. Additionally, this observation makes it possible to argue that science affects the economy as well. By being able to carry out research, the economy can be strengthened because of an increase in employment and the ability to be innovative [Loiseau et al., 2016]. Though, the relation that goes from science to economy can be argued to pass through the technology sphere because of the necessity of the research to produce technology that can enter the concerned market to create profit. This means, that science is affecting the technological development because of the generation of technological devices that occurs with assistance from science. As mentioned, innovative technological development affects the economy, but likewise does the sphere of economy have the power to affect technology directly. In this thesis, this can be experienced in a regulation perspective where political initiatives are able to promote technology. This does not mean that the development of the technology is affected directly, but that the spreading of the technology increases because of it obtaining a higher market share. In addition to that, the higher market share can be assumed to naturally result in the technology to develop because of an increased interest for the product.

6.1.2 Technological Change in Practice

This section includes examples of how an understanding of technological change functions in practice. Here, the theoretical framework is applied to the scenario composed in this thesis. Examples of how the external conditions are able to influence on technological change are countless. Most often do changes in one condition generate change in other conditions, which means that technological change should be perceived from many perspectives and in coherence. As earlier mentioned, have the most relevant conditions to this thesis been emphasized, but this is not synonymous with the other conditions being completely without relevance. Figure 6.4 illustrates examples of how the conditions can affect the outcome of the future energy system.

Figure 6.4: Examples of how technological conditions are related to the thesis scenarios. The colors of the conditions indicate the concerned elements of technology and the three approximation model spheres

The figure is not exhaustive, meaning that these are only few out of many possible influencing factors. The figure shows that changes in social infrastructure and social capital are able to result in the linear growth scenario becoming a possibility. This means, that if the general perception of climate change turns out in favour of fossil fuels, then the EC share develops into a scenario with linear growth. Likewise, it is possible for the linear growth scenario to be affected by market conditions and state regulations. This means, that if car taxation is regulated in favour of fossil fuel cars and if the EC technology does not mature as desired, then ECs do not become as widely distributed as is the case within the remaining scenarios. On the contrary, the same conditions can affect the EC development in the opposite direction. This can be seen in relation to the 90% EC scenarios, where state regulations are able to promote the EC development and where the right market conditions can result in a widely distributed technology.

The economic perspective is important for technological change as well. Here, the figure illustrates connections between the linear growth (biofuel) scenario and the 90% (hydrogen) scenario, respectively. In this thesis, the economic infrastructure covers elements as security of supply which can affect the future energy system in two ways. If the security of electricity supply in Denmark is reduced, a linear growth scenario is more likely to occur, but if the security of supply is maintained at the current level, a significant growth in ECs is expected. The market conditions are relevant to mention in relation to economy, as the market dictates the prices and thereby consumers' ability to purchase. In addition to that,

the market conditions are affecting the scenario that unfolds in Denmark, as declining prices strengthens the consumers' purchasing power. Contrary to this, will the purchasing power decrease in step with increaseing prices.

The ecological conditions are affecting the outcome of the scenario as well, depending on the resources available in the future. If limited resources are available for the production of ECs, linear growth and 50% EC scenarios are more likely to occur while the possibility of 90% scenarios decreases. Additionally, the ecological conditions in relation to biomass are also affecting the scenario outcome. If biomass resources become more available in the future, then scenarios including high shares of biomass, such as linear growth (biofuel) and 50% (biofuel), more likely to occur - especially because of the economic benefits related to biomass.

The coupling conducted between the theoretical framework and the technical analysis, illustrates the several external conditions that affect technological change in different directions. Once again, it should be stressed that this illustration is not complete and that a full elaboration of every condition, together with their positive and negative effects on technological change, not is possible to conduct in this thesis. Though, this illustration gives an understanding of the complexity that technological change is, and that changes in one condition result in other conditions to change as well. Furthermore, it exemplifies that changes in the conditions can result in different outcomes, meaning that no absolute answer exists when analysing technological change.

6.1.3 Summary

To summarize the findings in this chapter, table 6.1 contains the emphasized conditions from the technology jigsaw. The table explains what the mentioned conditions withhold, seen in a perspective where an increase in the sales of ECs is desired.

Condition	Factor	Content
Social infrastructure	Educational organisations	Responsibility to pass on correct knowledge Information about climate change, CO2 and the energy system
Social capital	Shared understanding	Perception of climate change Knowledge drives actions Personal finances equals purchasing power
State regulations	Political initiatives	Exemption from taxation Making other alternatives less attractive
Market conditions	Technology maturity	Strengthening of the technology reliability Lowering of cost prices
Economic infrastructure	Physical systems	Security of electricity supply
Ecological conditions	Resources	Alternatives to critical metals Focus on strategic metals Technology structure reconsideration

Table 6.1: The six conditions from the technology jigsaw with importance to the electric car technology

What was found, was that political regulation has a significant role in promoting ECs, especially because of the existence of fossil fuel cars, which is a competitive technology and for many also a more attractive alternative. In addition to that, the regulations that

have been adopted so far have worked on a limited time frame, which is conflicting with the actual goals for Denmark, as these operate on a long-term time frame. At the same time, have regulations on the EC technology happened in step with regulations being applied to fossil fuel cars, where both of the regulations have the purpose to make the technologies more attractive. These initiatives are contradictory to each other and makes the government appear inconsistent in the attempt to promote green technology.

In the case where the governmental regulations do not have the desired effect, the consumers are given the ability to choose from different technologies, which especially makes the other conditions important. These consist, to a high degree, of factors that are affecting the consumers willingness to procure an EC. This concerns people's knowledge about climate change together with their shared understanding of what is necessary to carry out in other to achieve sustainability. Besides that, do doubt among the consumers prevent them from buying ECs, but with developing the technology structure, this doubt should hopefully phase out.

Besides the EC technology being analysed individually, the Danish energy system as an LTS was analysed too. Here, it was determined that the future renewable energy system is currently situated in the accelerated development phase, whereas the current fossil fuel based energy system is situated in the decline phase. Aitken's approximation model to an LTS was applied to be able to determine where the most productive interactions take place, giving the LTS the needed tools to accelerate. An extension of the model was found by determining a unidirectional connection between economy and science. Additionally, a relation between the technology jigsaw and the approximation model was identified together with the possibility to influence on the LTS acceleration through the three spheres; technology, science and economy.

The correlation between changes in the external conditions and the outcome of the thesis scenarios is shown in section 6.1.2. Here, it is found that each of the conditions are able to affect how the energy system unfolds, both in a positive and negative direction given the perspective. In addition to that, if the effect of the external conditions are known, then it is possible to make adjustments in the conditions to promote technological change.

In the forthcoming chapter, the findings connected to the scenarios and the technological change analysis are discussed in relation to each other.

Discussion

This chapter includes discussions in relation to the possibility of the thesis scenarios to become a reality, how to combine the results from the two analyses and to what extent the approach used in this thesis fulfilled what was desired to investigate. The purpose of the discussion is to determine, which initiatives the future shall withhold in order for the Danish energy system to become renewable and what consequences are related to a reduced EC share in the future.

7.1 Scenario Possibility & Considerations

In relation to the first part of the thesis analysis, the possibility of the scenarios becoming a reality is discussed. Besides that, it is discussed which of the scenarios that should be prioritized in the future based on the information and analyses that are presented in this thesis.

As mentioned in section 4.2, predicting long-term processes are difficult, which is why scenario planning can be applied instead to create several possible outcomes, and thereby be able to choose the preferred path. Figure 7.1 shows the cone of possibility, which illustrates how the method of scenario planning includes several possible outcomes for the future. Additionally, the cone illustrates how the possibilities of the future covers a significantly larger area than the present, and that a prediction of the future covers a small area of what possibly will occur [Enzmann et al., 2011].

Furthermore, figure 7.1 illustrates how the possibility of scenario 2 and scenario 3 are approximately the same. This assumption is made because of the existing 2050-goal of obtaining a fossil free society. An assumption is that the government is persistent to reach the goal, why a future energy system containing fossil fuels is unlikely to unfold. Though, the development within the EC share is difficult to predict, leaving both scenario 2 and 3 as possible future outcomes. It is assumed, that the EC development can, to some extent, be influenced by political initiatives which also has been the case so far [section 6.1]. Though, many factors play a role in how the EC technology develops, as it is dependent on the consumers that are to procure the technology.

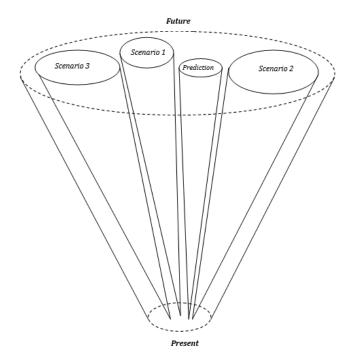


Figure 7.1: The cone of possibility [Enzmann et al., 2011]

As shown in figure 7.1, scenario 1: linear growth is considered to be the one least likely of the three scenarios in this thesis, which is due to the use of fossil fuels. Though, the linear growth scenario is assumed to be most likely to occur if no political initiatives in favour of ECs are implemented, and if the technology does not experience any noticeable improvements in the future. A linear development is assumed to be unlikely due to an increased focus on climate, technology improvement and possible changes in politics in regards to ECs. With policies that are in favour of ECs, it is assumed that the development will be different. So far, the sales in ECs have been fluctuating, and one reason for this is because of the taxation on this type of car. Notices of a phase-in of the so far exempted registration taxation has earlier proven to be a reason for an increase in the sales of ECs [Klimarådet, 2018]. Studies have also shown, that reasons for people not wanting to buy an EC include uncertainties about the technology, price, the range not being suitable for peoples' needs and the practicality of owning an EC being difficult [Thøgersen and Ebsen, 2019. Based on the fact that ECs as a technology are getting more mature, that the prices will decrease over time and that policy measures are assumed to be in favour of ECs over time, makes it unlikely for the growth in ECs to be linear. Instead, it is assumed that the EC fleet will experience a growth that is more likely to be exponential in some way.

7.1.1 Determining the Future Path

Based on the findings in the thesis, this section discusses how the scenarios match the future 2050-goal. Though, there are no criteria to determine the exact path to reaching the goals, and it is therefore discussed in relation to the IDA vision and the results from the analysis.

The linear growth scenario is not perceived as a possibility for the future energy system, because the use of fossil fuels is contrary to future national goal. This leaves the scenarios

including a 50% and 90% EC fleet as possible proposals for the future car fleet. As earlier presented, the 50% (biofuel) scenario contains one of the highest biomass shares of all of the scenarios. The biomass share does not exceed the limit of 250 PJ, but since a biomass share below 200 PJ is preferred, other scenarios should have higher priority. Depending on the extent of the costs, both the 50% (biofuel and hydrogen) and the 90% EC share scenarios are preferred in relation to CEEP, but for the 50% (biofuel and hydrogen) scenario, the biomass consumption exceeds the limit of 200 PJ with approximately 10 PJ. The 90% (hydrogen) scenario is much in line with the costs of the IDA vision, and the scenario has a significantly lower biomass consumption and CEEP level. However, if lower costs are preferred, the 90% (biofuel) scenario and the 50% (biofuel and hydrogen) scenario are the remaining alternatives. The 50% (biofuel and hydrogen) scenario contains a higher biomass consumption than the IDA vision. This leaves the biomass consumption at an acceptable level, but not below 200 PJ. Though, the combination of biofuel and hydrogen results in a considerably lower CEEP value than what can be seen in the IDA vision. This is the case for the 90% (biofuel) scenario as well, as this scenario holds the lowest CEEP level out of all of the scenarios. Though, the 90% (hydrogen) scenario contain the lowest biomass consumption, making this scenario attractive in relation to the environmental issues related to biomass.

Based on the findings made in the thesis analysis and the execution of this, a car fleet with a 50% EC should be an absolute minimum to aim for. In relation to the biomass consumption in the scenarios, the EC fleet should exceed 50% in order for the biomass limit not to be crossed. Though, a 50% EC can be a possibility if the hydrogen usage is increased and the biomass consumption is lowered. In relation to the scenarios composed in this thesis, the 90% (biofuel) scenario is the most favorable. In an energy and economic perspective, this proposal is based on the low biomass consumption of 148 PJ, a low CEEP level and minor cost savings in relation to the IDA vision. In relation to the theoretical framework in this thesis, the EC technology experiences some institutional obstacles. This is also an argument for aiming for a solution with a 90% EC share, as this means that fewer technologies have to be obtained in the society together with the infrastructure needing expansion for as few technologies as possible.

Several scenarios are possible to implement in the future, and the ones presented in this thesis are only few out of many possibilities. It will therefore be beneficial for the Danish government to prioritize which of the criteria are more important in the future energy system. By assigning some criteria higher priority than others, it is possible to eliminate several scenarios and thereby narrowing down the possibilities. For example, the biomass criteria used in this thesis originates from the IDA vision, which is based on calculations of the available biomass resources in the future and which is considered in an energy perspective. Though, it is possible to still obtain a fossil free energy system in spite of other criteria being of higher priority. This could contain limits for investment costs and annual costs or limits for wind capacity. In a political view, it is assumed that the economic perspective is of importance, which can direct the energy system ion a path where the use of biomass is high and the costs are low [section 5.4.2]. Such a solution results in a fossil fuel free energy system as well, but the discussions related to the use of biomass makes this solution questionable in an energy perspective. Additionally, if wanting an energy system with a limited use of biomass, the economy related to this resource is something for the

government to consider as well, as it is currently a profitable resource to utilize. Today, subsidies are given when utilizing biomass in heat and electricity production together with the resource being exempted from taxation [Energistyrelsen, 2020a]. In a case where the government wishes to limit the biomass usage, it should be considered how this energy source is regulated. Though, it is difficult to foresee if such a regulation is necessary in the future, as the biomass prices can be expected to increase if the demand for the energy source increases as well. Biomass functions well as a substitute to fossil fuels because of it containing the same characteristics and the ability for it to be CO_2 -neutral. Though, a significant increase in the use of biomass can result in the resource not maintaining its CO_2 -neutrality, and for Denmark it also affects the ability to obtain self-sufficiency. This means, that one solution for the biomass consumption to decrease is to make the source unattractive to consumers, which can be executed by an increase in taxes.

7.2 Incorporating ECs into the Danish Energy System

In the previous section, the discussion was primarily focused on the thesis scenarios and the energy system as a whole in connection to the political choices related to obtaining the 2050-goal. In this section, it is discussed how the EC development can affect the 2050-goal.

Though, the purpose of this thesis is not to illustrate exactly how a Danish renewable energy system should be constructed, likewise it is not the purpose to determine which of the prepared scenarios that function best in reality. The purpose is to prepare different possible outcomes and on that background, to consider which of these few scenarios are the optimal solution when evaluated in different perspectives. In addition to that, this thesis is neither an analysis of whether or not the Danish government is aiming for a renewable energy system. The goal of a fossil free Denmark in 2050 is already composed, why this thesis has its point of departure in this goal with the assumption that the government is aiming to achieve an energy system on renewable energy. This means, that the purpose is to illustrate possible outcomes, but also the risks in particular. The thesis points out the insufficiency in solely composing a long-term goal and the importance of connecting the several factors that are affecting how and when a certain goal can be obtained.

To this discussion, the linear growth scenario is crucial to consider as a risk for the future energy system. It functions as a BAU-scenario and presents a possible future outcome in a case where frozen politics are dominating. Not only will this scenario prevent the 2050goal to be reached, but the costs of a BAU-scenario are much in line with the scenarios aiming for a 100% renewable energy system. Seen in an energy perspective, this means that the risks related to the CO_2 -emissions in the linear growth scenario can be used as an argument for why it is important to aim for a renewable energy system. On the other hand, do the costs of a linear growth scenario not deviate considerably compared to the remaining scenarios which, in an economic perspective, can be considered a strong argument for implementing a 100% renewable energy system. This is thereby also the reason for this scenario to function as a risk assessment, because this scenario is the only one which constitutes a potential risk to the climate when seen in relation to the 2050-goal. Though, it could be argued that other of the thesis scenarios constitute risks as well in relation to their use of biomass. Besides an assessment of the potential risks connected to a BAU-scenario, do the remaining scenarios illustrate potential alternatives to avoid fossil fuel usage. The count of possible alternatives to an energy system are close to endless, which is why only few are composed with EC shares different to the IDA vision. Though, the thesis scenarios deviate from the result in the IDA vision. In this thesis, scenarios are presented with lower costs, lower CEEP levels and a lower biomass consumption in comparison to the IDA vision, raising the question why these differences occur, and why IDA has not chosen to operate with similar solutions to the ones in this thesis. The major differences are, of course, the EC share which deviates with 29,6% and 11,4%, respectively, in relation to the 61,4% EC share in the IDA vision. Though, if one thesis scenario was prepared with the same EC share as in the IDA vision, the costs of such scenario are still expected to be lower in the thesis scenario. This means, that the fuel choices are affecting the costs, as the IDA vision makes use of electrofuels and bioelectrofuels, whereas hydrogen and biofuel are prioritized in this thesis. As earlier mentioned, biopetrol is preferred over biodiesel in this thesis because of the higher efficiencies and thereby lower costs, which has affected the costs of the scenarios. Likewise, an increase in hydrogen storage is also prioritized in this thesis, which lowers the demand for offshore wind turbines and the costs related to these. Additionally, higher efficiencies occur for hydrogen than for the electrofuels used in the IDA vision, which also can affect the electricity and biomass demand in transportation. Also, a part of the dump charge demand is replaced by smart charge, giving the thesis scenarios more flexibility. It should be noted though, that the choices made in this thesis, to a great extent, are made on the basis of available renewable energy technologies and the costs related to these. This means, that potential restrictions in relation to for example area and technology development not are taken into account as might be the case in the IDA vision. It is therefore not possible to conclude which of the scenarios are more realistic, as numerous factors are in play and the predictions for costs in the future might vary as well.

7.2.1 Institutions and Technological Development

This section discusses the findings from the second part of the analysis, where it is analysed which parameters it is possible to influence on to promote the EC development. As the first part of the analysis concerned the technical aspects, the second part includes the institutional aspects in relation to technology. These aspects are considered important, as they give an understanding of several factors that affect technological development. Furthermore, this perspective of the analysis is included to emphasize that technological change is an important part of EC integration as well. This means, that technological change does not occur by itself, but by changes in the external factors that surround technology. The external factors are creating technological change, making the theoretical framework crucial for obtaining an understanding of technological foundation.

In relation to technological change in this thesis, the political aspect should be emphasized in particular. This is because it makes it possible to regulate people's behaviour directly, and especially if other alternatives are excluded as options. It is also possible to affect several aspects in relation to social life including the perception of ECs and the understanding of climate change. Though, several aspects are difficult to change seen in a Danish perspective. This includes the technology production and maturity, and thereby the resources used for this as well. In this thesis, regulations are considered to be the most effective mean when wanting to promote the EC technology, but it requires that other technological alternatives are made less attractive for it to have an effect. As with the technical analysis, it should here be mentioned that the political aspect has been superficially touched upon, because a more thorough assessment of this would have required a different direction of the thesis. This means, that different factors within the political aspect are left out, As an example, this means that the influence of international is not included. It is known, that EU-law prevents the Danish government from banning fossil fuel cars, because it is conflicting with EU and its law for internal market [Svansø, 2019]. This is affecting the political initiatives in Denmark, and a ban therefore requires changes in EU law. Though, this obstacle should not hinder the EC development, as other regulations are possible to adopt - just as they have been so far. The missing in-depth analysis of the political aspect is thereby a reason for possible political obstacles to be left out. But, because of the previous and existing regulations in relation to the EC technology, it is assumed to be possible to continue these regulations in the future and thereby affect the EC development. The overall purpose of this part of the analysis is to emphasize some of the factors that are possible to adjust to achieve a 100% renewable energy system. Furthermore, it shows that events of today are affecting the development of a new technical system, and that long-term goals not should be fulfilled by applying short-term initiatives.

7.3 Thesis Approach

The research question in this thesis is investigated in an energy and climate perspective with the economic costs in mind. This approach is assumed to produce results that might vary from an approach where political or economic perspectives are dominating. The methodological approach used in the thesis, and the results generated through the analysis, come with several uncertainties in relation to the structure of the future Danish energy system. The purpose of the thesis is not to produce one exact result as it was to illustrate possible outcomes. The thesis scenarios function as examples, yet there is a possibility for them to come with uncertainties, meaning that if one scenario is chosen as a solution, the scenario might not unfold exactly as presented in this thesis. It is possible for the economic and technological conditions not to develop as today's data anticipates. For the second part of the analysis, where the theoretical framework of the thesis was applied, the findings are more certain. This means, that even with a long-term time frame, external conditions are still able to affect the technological development.

The methodology successfully assisted to produce an answer to the research question, and thereby strengthen the validity of the thesis. The findings include giving an understanding of the possibilities and factors that can affect the future outcome of an energy system. Though, it is not possible to directly generalize the thesis results to other cases, because of the thesis being directed at the Danish energy system and the goals applied to this. This means, that factors such as costs and technology availability might vary in relation to a different energy system. In addition to that, it is possible to apply the methodology and theoretical framework to other cases, which will, in combination with relevant data, give the ability to produce results that are relevant to the given energy system.

Lastly, the data including future costs do come with uncertainties that can affect the outcome of the scenarios. Sensitivity analyses are generally applied as a method to

illustrate how such uncertainties affect the result. These are not applied to this thesis, because of the scenario analysis already functioning as a sensitivity analysis. Though, if one scenario is chosen as a final solution, it is possible to perform a sensitivity analysis for this particular scenario.

Conclusion 8

The initiating part of the thesis led to an understanding of the environmental issues the transport sector creates by having a significant fossil fuel consumption. If the Danish government should succeed in reaching their goal of a fossil free energy system in 2050, it is crucial that alternatives to fossil fuel driven cars are integrated in the transport sector. Electric cars are currently a technology in development, with an expectation of the technology to be dominating in the passenger car category. The problem definition of the thesis led to the research question:

"How will different scenarios with variations in the electric car share, affect the transition of the Danish fossil fuel based energy system into a renewable energy system, and how can a technological understanding affect this development?"

Two analyses were conducted, where the first consists of scenario planning with a technical approach, and the second includes an institutional perspective with an examination of technological change. By combining the analyses, an answer to the research question was found.

From the technical analysis, it can be concluded that a correlation exists between low system costs and the use of biomass in the transport sector, where low biomass consumption increases the costs of the system due to more expensive technologies being integrated instead. It can also be concluded, that the CEEP level decreases in step with an increase in the electric car share together with an increase in hydrogen usage. Furthermore, an increase in electric cars does not necessarily equals an expansion of wind capacity, due to the possibility to use smart charging for electric cars.

With the IDA vision as reference, a biomass consumption below 200 PJ is preferred, but in the thesis scenarios the biomass requirement is only kept by one linear growth scenario and scenarios including a 90% electric car share. One scenario containing linear growth includes usage of fossil fuels, why such a scenario is not an option in relation to the 2050goal. It can be concluded, that a scenario consisting of a 90% electric car share and 10% biofuel car share is the most favorable scenario in this thesis, seen in an energy and economic perspective. This is due to a biomass consumption of 148 PJ and minor cost savings in comparison with the reference scenario. In relation to the scenarios composed in this thesis, the future EC fleet in Denmark should account for an absolute minimum of 50% for the biomass consumption not to exceed 200 PJ.

From the second part of the analysis, it can be concluded that the current Danish energy system is situated in a decline phase, while the future renewable energy system currently is situated in an accelerated development phase, which applies for the electric car technology as well. Furthermore, it was found that changes in external conditions result in technological change, meaning that several initiatives are possible for the Danish government to execute to promote the development within electric cars. It is concluded that economy, market and social factors are some institutional conditions affecting at what pace and how technological development unfolds. Though, it can be concluded that the most effective condition to change is state regulations due to the ability to influence on behaviour in favour of electric cars. Additionally, the political regulations that have been applied for electric cars up until today, have not had the desired effect due to them being of a short-term time frame when aiming to obtain a long-term goal. Finally, the external institutional conditions influence on the outcome of the thesis scenarios as well. This means, that when the effects of external change is known, it is possible to adjust these changes to obtain technological change.

- Ball and Crawford, 2010. Kylie Ball and David Crawford. Socioeconomic Inequalities in Fruit and Vegetable Intakes. ISBN:978-0-12-374628-3. Academic Press, 2010.
- Bjerkan et al., 2016. Kristin Ystmark Bjerkan, Tom E. Nørbech and Marianne Elvsaas Nordtømme. Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway. Transportation Research Part D: Transport and Environment, 43, 169–180, 2016.
- Bran and Chipurici, 2015. Stefania Daniela Bran and Petre Chipurici. Biomass -Renewable resources and sustainability utilization. Calitatea, 16(1), 731–736, 2015.
- Chappelow, 2020. Jim Chappelow. *Infrastructure*, 2020. URL https://www.investopedia.com/terms/i/infrastructure.asp. Accessed: 20-07-2020.
- **Connolly**, **2015**. David Connolly. *Finding and Inputting Data into EnergyPLAN*, Aalborg University, 2015.
- Connolly, 2010. David Connolly. A User's Guide to EnergyPLAN, University of Limerick, 2010.
- Connolly et al., 2014a. David Connolly, Brian Vad Mathiesen and Iva Ridjan. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy, 73, 110–125, 2014.
- Connolly et al., 2014b. David Connolly, Brian Vad Mathiesen and Iva Ridjan Skov. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy, 79, 110–125, 2014.
- Danmarks Statistik, 2020a. Danmarks Statistik. Nyregistrerede motorkøretøjer efter køretøjstype og tid, 2020. URL https://www.statistikbanken.dk/10091. Accessed: 13-02-2020.
- Danmarks Statistik, 2020b. Danmarks Statistik. Nyregistreringer, brugtvognshandel og bestand mv. efter enhed, køretøjstype og tid, 2020. URL https://www.statistikbanken.dk/10091. Accessed: 13-02-2020.
- Danmarks Statistik, 2020c. Danmarks Statistik. Nyregistrerede personbiler efter drivmiddel, ejerforhold og tid, 2020. URL https://www.statistikbanken.dk/10091. Accessed: 14-02-2020.
- Danmarks Statistik, 2019. Danmarks Statistik. Bestanden af personbiler pr. 1. januar efter tid, egenvægt og drivmiddel, 2019. URL https://www.statbank.dk/statbank5a/SelectVarVal/saveselections.asp. Accessed: 21-02-2020.

- Dansk Energi, n.d. Dansk Energi. *Biomasse*, n.d. URL https://www.danskenergi.dk/fakta-fokus/biomasse. Accessed: 05-03-2020.
- **Dicken**, **2015**. Peter Dicken. Global Shift Mapping the changing contours of the world economy. ISBN:978-1-4462-8209-0, 7. SAGE Publications, 2015.
- **Energinet**, **2015**. Energinet. Analyse af potentialet for landvind i Danmark i 2030, Energinet, 2015.
- Energistyrelsen, 2019. Energistyrelsen. Basisfremskrivning 2019 Energi- og klimafremskrivning frem til 2030 under fravær af nye tiltag, Energistyrelsen, 2019.
- Energistyrelsen, n.da. Energistyrelsen. *Denmark's Energy and Climate Outlook*, n.d. URL https://ens.dk/en/our-services/projections-and-models/ denmarks-energy-and-climate-outlook. Accessed: 06-04-2020.
- Energistyrelsen, 2016. Energistyrelsen. Alternative drivmidler (AD model, 2016. URL https://ens.dk/sites/ens.dk/files/Analyser/alternative_drivmidler_-_ rapport_3.0_2.pdf. Accessed: 14-02-2020.
- Energistyrelsen, 2013. Energistyrelsen. Energiscenarier frem mod 2020, 2035 og 2050, 2013. URL https://ens.dk/sites/ens.dk/files/Basisfremskrivning/ energiscenarier_-_analyse_2014_web.pdf. Accessed: 19-02-2020.
- Energistyrelsen, 2020a. Energistyrelsen. Biomasseanalyse, Energistyrelsen, 2020a.
- **Energistyrelsen**, **2018**. Energistyrelsen. Standardløsning for opgørelse af energibesparelser ved nyanskaffelse af energieffektive person- og varebiler (vognpark), Energistyrelsen, 2018.
- Energistyrelsen, n.db. Energistyrelsen. *Dansk Energipolitik*, n.d. URL https://ens.dk/ansvarsomraader/energi-klimapolitik/fakta-om-dansk-energi-klimapolitik/dansk-energipolitik. Accessed: 05-08-2020.
- Energistyrelsen, 2020b. Energistyrelsen. *EUDP*, 2020. URL https://ens.dk/ansvarsomraader/forskning-udvikling/eudp. Accessed: 27-07-2020.
- Energistyrelsen and Energinet, 2018. Energistyrelsen and Energinet. *Technology* Data Energy Storage, Energistyrelsen, 2018.
- **Energistyrelsen and Energinet**, **2020a**. Energistyrelsen and Energinet. *Technology Data Renewable Fuels*, Energistyrelsen, 2020a.
- Energistyrelsen and Energinet, 2020b. Energistyrelsen and Energinet. *Technology* Data Energy Storage, Energistyrelsen, 2020b.
- **Energistyrelsen and Energinet**, **2020c**. Energistyrelsen and Energinet. *Technology Data - Generation of Electricity and District Heating*, Energistyrelsen, 2020c.

- Enzmann et al., 2011. Dieter R. Enzmann, Norman J. Beauchamp and Alexander Norbash. Scenario Planning. Journal of the American College of Radiology, 8(3), 175–179, 2011.
- Funke, 2017. Joachim Funke. Knowledge and Action. ISBN:978-3-319-44587-8. Springer, Cham, 2017.
- Gökalp, 1992. Iskender Gökalp. On the Analysis of Large Technical Systems. Science, Technology and Human Values, 17(1), 57–78, 1992.
- Han, 2019. Sehee Han. Social capital and perceived stress: The role of social context. Journal of Effective Disorders, 250, 186–192, 2019.
- Iglesias-Émbil et al., 2020. Marta Iglesias-Émbil, Alicia Valero, Abel Ortego, Mar Villacampa, Josep Vilaró and Gara Villalba. *Raw material use in a battery electric car* – a thermodynamic rarity assessment. Resources, Conservation and Recycling, 158, 2020.
- International Transport Forum, 2019. International Transport Forum. *ITF* Transport Outlook 2019. ISBN: 9789282150146. OECD Publishing, 2019.
- Johnston and van Kooten, 2015. Craig M.T Johnston and G. Cornelis van Kooten. Back to the Past: Burning Wood to Save the Globe. Ecological Economics, 120, 185–193, 2015.
- Klimarådet, 2018. Klimarådet. Flere elbiler på de danske veje forslag til pejlemærker og virkemidler til elektrificering af personbilerne, Klimarådet, 2018.
- Loiseau et al., 2016. Eleonore Loiseau, Laura Saikku, Riina Antikainen, Nils Droste, Bernd Hansjürgens, Kati Pitkänen, Pekka Leskinen, Peter Kuikman and Marianne Thomsen. Green economy and related concepts: An overview. Journal of Cleaner Production, 139, 361–371, 2016.
- Lund, 2014a. Henrik Lund. EnergyPLAN Advanced Energy Systems Analysis Computer Model, Aalborg University, 2014a.
- Lund, 2014b. Henrik Lund. Renewable Energy Systems A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions. ISBN:978-0-12-410423-5, 2. Academic Press, 2014.
- Lund and Kempton, 2008. Henrik Lund and Willett Kempton. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36(9), 3578–3587, 2008.
- Lund et al., 2011. Henrik Lund, Frede Hvelplund, Brian Vad Mathiesen, Poul Alberg Østergaard, Per Christensen, David Connolly, Erik Schaltz, Jayakrishnan R. Pillay, Mads Pagh Nielsen, Claus Felby, Niclas Scott Bentsen, Niels I. Meyer, Davide Tonini, Thomas Astrup, Kai Heussen, Poul Erik Morthorst, Frits M. Andersen, Marie Münster, Lise-Lotte P. Hansen, Henrik Wenzel, Lorie Hamelin, Jesper Munksgaard, Peter Karnøe and Morten Lind. *Coherent Energy and Environmental System Analysis*, The Danish Council for Strategic Research Programme Commission on Sustainable Energy and Environment, 2011.

- Ma et al., 2013. Juan Ma, Vera Silva, Régine Belhomme, Daniel S. Kirschen and Luis F. Ochoa. *Evaluating and Planning Flexibility in Sustainable Power Systems*. IEEE Transactions on Sustainable Energy, 4(1), 200–209, 2013.
- Mathiesen et al., 2008. Brian Vad Mathiesen, Henrik Lund and Per Nørgaard. Integrated transport and renewable energy systems. Utilities Policy, 16(2), 107–116, 2008.
- Mathiesen et al., 2015a. Brian Vad Mathiesen, Henrik Lund, Kenneth Hansen, Iva Ridjan, Søren Roth Djørup, Steffen Nielsen, Peter Sorknæs, Jakob Zinck Thellufsen, Lars Grundahl, Rasmus Søgaard Lund, Dave Drysdale, David Connolly and Poul Alberg Østergaard. Technical Data and Methods - IDA's Energy Vision 2050, Aalborg University, 2015a.
- Mathiesen et al., 2015b. Brian Vad Mathiesen, Henrik Lund, Kenneth Hansen, Iva Ridjan, Søren Roth Djørup, Steffen Nielsen, Peter Sorknæs, Jakob Zinck Thellufsen, Lars Grundahl, Rasmus Søgaard Lund, David Drysdale, David Connolly and Poul Alberg Østergaard. *IDA's Energy Vision 2050*, Aalborg University, 2015b.
- Müller, 2011. Jens Müller. Making Ends Meet: Local socio-technological transformations in the South: based on case studies from Tanzania, Department of Development and Planning, Aalborg University, 2011.
- **O'Brien**, **2000**. Mary O'Brien. *Making Better Environmental Decisions*. Global Pesticide Campaigner, 10(2), 1, 2000.
- Queensland Government, 2020. Queensland Government. Social Infrastructure, 2020. URL https://www.statedevelopment.qld.gov.au/infrastructure/ infrastructure-planning-and-policy/social-infrastructure.html. Accessed: 16-07-2020.
- Simonsen, 2016. Katja Isabel Romme Simonsen. Fremtidens transportmidler kører på
 electrofuels, 2016. URL
 https://ida.dk/viden-og-netvaerk/temaer/fremtidens-transport/
 fremtidens-baeredygtige-transportmidler-skal-koere-paa-electrofuels.
 Accessed: 05-03-2020.
- Skatteministeriet, 2018. Skatteministeriet. Lavere registreringsafgift har givet danskerne mere bil for pengene, 2018. URL https://www.skm.dk/aktuelt/publikationer/aktuelle-skattetal/ lavere-registreringsafgift-har-givet-danskerne-mere-bil-for-pengene/. Accessed: 20-07-2020.
- Society, 2019. National Geographic Society. Distribution of Fossil Fuels, 2019. URL
 https:
 //www.nationalgeographic.org/encyclopedia/distribution-fossil-fuels/.
 Accessed: 05-08-2020.
- Svansø, 2019. Vibeke Lyngklip Svansø. Ny regering dropper mål om fast antal elbiler i 2030, men slipper ikke for at kigge på afgifter, 2019. URL

https://www.berlingske.dk/business/

ny-regering-dropper-maal-om-fast-antal-elbiler-i-2030-men-slipper-ikke. Accessed: 05-08-2020.

- The Danish Government, 2011. The Danish Government. Energy Strategy 2050 from coal, oil and gas to green energy, The Danish Ministry of Climate and Energy, 2011.
- Thøgersen and Ebsen, 2019. John Thøgersen and Jonas V. Ebsen. Perceptual and motivational reasons for the low adoption of electric cars in Denmark. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 89–106, 2019.
- United Nations, n.d. United Nations. Nationally Determined Contributions (NDCs), n.d. URL https://unfccc.int/process-and-meetings/the-paris-agreement/ the-paris-agreement/nationally-determined-contributions-ndcs. Accessed: 22-07-2020.

Appendix A

A.1 Vehicle Specifications

Parameter & Type	2035	2050	Unit
Cars lifetime	16	16	Years
Distance (one car)	0,032	0,028	Mpkm/year
EC - small battery	2035	2050	Unit
Cost price	193304	189401	DKK
Efficiency	79	81,6	%
Energy consumption	0,49	0,45	MJd/km
EC - large battery	2035	2050	Unit
Cost price	241192	229806	DKK
Efficiency	75,5	77,9	%
Energy consumption	0,56	0,51	MJd/km
Gasoline	2035	2050	Unit
Cost price	155116	155116	DKK
Efficiency	20,8	21,6	%
Energy consumption	1,76	1,61	MJd/km
Diesel	2035	2050	Unit
Cost price	170976	170976	DKK
Efficiency	22,2	23	%
Energy consumption	1,69	1,55	MJd/km
Biofuel	2035	2050	Unit
Cost price	170976	170976	DKK
Efficiency	22,2	23	%
Energy consumption	1,69	1,55	MJd/km
Hydrogen	2035	2050	Unit
Cost price	210569	210374	DKK
Efficiency	39,3	41	%
Energy consumption	1,11	1,01	MJd/km
Charging stations	2035	2050	Unit
Capacity	9	9	GJ/year
Cost price	9314	9314	DKK
Lifetime	30	30	Year
Conversion efficiency	80,2	80,2	%

Table A.1: Parameters considered in relation to fuel type for the years 2035 and 2050, respectively [Energistyrelsen, 2016], [Energistyrelsen, 2018], [Mathiesen et al., 2015a]

Appendix B

B.1 IDA vision - thesis version (updated values)

Input		Ida 2050 updated.txt	050	dn	atec	J.txt													È	The EI	nerg	yPL,	EnergyPLAN model 13.0	lode	113	0	N
Electricity demand (TWh/year): Fixed demand 33,17 Electric heating + HP 2,44 Electric cooling 1,55	emand (⊺ id ing + HF ng	FWh/year): 33,17 2,44 1,55	Flexit Fixed Trans Total	Flexible demand Fixed imp/exp. Transportation Total		3,44 0,00 9,10 49,71			Group 2: CHP Heat Pump	ump ,	Cap MV⊷ 1500 300	a a	elc 0,5	lic'	ss COP 3,50	r R C Z Z Z Z Z Z Z Z Z	Regulation Strategy: Techt CEEP regulation 2 Minimum Stabilisation share Stabilisation share of CHP	Rateg Ilation Stabilisat	y: Ted ion shar of CHP	nical regula 234580000 e 0,00	ati	ю. 2	Fuel Price level:	e level:	Capacities	ss Storage Ef GWh elec.	Capacities Storage Efficiencies
District heating (TWh/year) District heating demand Solar Thermal Industrial CHP (CSHP) Demand after solar and CSHP	ng (TWI ng demé al IP (CSH r solar _a	n/year) and P) ind CSHP	Gr.1 0,00 0,00 0,00		Gr.2 Gr.2 (12,94 2 1,75 0,00	Gr.3 22,30 0,60 0,00 21,70	Sum 35,24 2,35 0,00	4 võõõ	Boiler Group 3: CHP Heat Pump Boiler Condensing	3: ^v ump nsing	3500 400 4500	4400 2625 1400 7600	0,52 0,61	0,95 0,39 0,95	3,50	z z i ž ö	Minimum CHP gr 3 load Minimum PP Heat Pump maximum share Maximum import/export DiiNord_pool_system_2013_	CHP gr (PP o maxim mport/e	i load um shar port m_2013	Ē,	0 MW 0,50 MW 0 MW	>> >	Hydro Turbine: Hydro Turbine: Electrol. Gr.3: Electrol. trans.: Electrol. trans.: Ely. MicroCHP:	Inp. Gr.2: Gr.3: Irans.: SCHP:			0,90 0,80 0,10 0,80 0,10 0,79 0,10
Wind Offshore Wind Photo Voltaic River Hydro Hydro Power Geothermal/Nuclear	لم د Vuclear	5000 MW 14000 MW 5000 MW 0 MW 0 MW		16,20 63,76 6,35 1,35 0 0	TWh/year TWh/year TWh/year TWh/year TWh/year TWh/year		0,00 Grid 0,00 stabili- 0,00 sation 0,00 share	= E e	Heatstorage: Fixed Boiler. Electricity pr. Gr.1: Gr.2: Gr.3:		gr.2: 5 gr.2: 0, d. from	56 GWh 0,5 Per cent 0,00 0,00 1,20 0,00	ent gr. Waste 0,00 0,00 1,89	(TV)	56 GWh 0,5 Per cent /h/year)		Addition factor Multiplication factor Dependency factor Average Market Price Gas Storage Syngas capacity Biogas max to grid	ctor on facto cy factor larket Pr je sacity x to grid	1,00 2,00 0,00 ice 77 6000 2184 1721		EURMWH EURMWH Pr. MW GWH MW MW	N N	CAES fuel ratio. (TWh/year) (Transport Household Industry Various	el ratio: ar) Coal t 0,00 ld 0,00 0,00	00000	<u>- 2 8 8 8 8 8</u>	00 Ngas Biomass 0,00 0,00 0,00 1,59 0,00 3,41 8,41 0,00
Output	_	Ń	WARNING!!: (1) Critical Excess;		ili: (1	0 ()	ritica		ces	_	(3) PP/I		loor	mport problem	bler	 											
	Demand		Ö	District Heating Productior	ict Heating Production							Consumption	iption					Electrici	Electricity				Bala	Balance			Exchange
<u>ה</u> ב		Wast Solar CSHI MW MW	Waste+ CSHP DHP MW MW		₽₩	ELT MW	Boiler MW	ШМ М	Ba- lance MW	Elec. demand MW	Elec. Flex.& demand Transp. HP MW MW MW	_	L _	MEH MEH	Hydro Pump bi MW N	Tur- bine RE MW M	RES dro MW MW	-	o- Waste+ al CSHP v MW	ste+ HP CHP / MW	ЧЪ	Stab- Load %	M M M M M		CEEP EEP MW MW	-	Payment Imp Exp Million EUR
January February March April	6005 6126 5328 4417	103 2333 218 2343 247 2251 384 2100	33 13 0 0 0 0 0 0 0 0) 1019) 1207) 703) 707	9 1878 7 1750 3 1878 7 1205	0000	459 465 167 23	208 137 145 11	4 62 -13	4504 4388 4222 3846	1439 1405 1419 1435	1061 1019 957 647	5175 4108 5730 5075	208 137 145 11	0000	0 10422 0 8753 0 11677 0 9756	10422 8753 11677 9756	0000	0 352 0 352 0 352 0 352	2 1359 2 1610 2 937 2 943	9 351) 372 7 231 8 342	00 00 00 00 00 00 00 00 00 00 00 00 00	23 0 0 23	121 1 52 724 7 378 3	121 52 724 378	0000	2 5 1 2 0 26 0 14
st	3626 2048 2048 2048						-000	0 0 7 0 0	18 -392 -353 -363	3577 3637 3541 3776	1431 1421 1423 1450		4412 4969 3151 4629	0 - 0 0	0000		8773 9776 6951 9110	0000				100 100 100			128 547 136 320	0000	
September October November December	2747 3730 4663 5423	291 1873 187 1998 117 2152 70 2270	73 98 52 0 0 0 0) 325) 273) 539) 372	5 349 3 1282 9 1671 2 2086	0000	1 84 310	1 14 91 277	-92 -26 38	3764 3901 4134 4158	1412 1443 1442 1428	249 640 862 1061	4144 6324 5253 6710	1 14 91 277	0000	0 83 0 120 0 108 0 131	8348 12081 10829 13161	0000	0 352 0 352 0 352 0 352	2 434 2 364 2 719 2 496	t 721 t 124) 206 3 88	100 100 100	0000	283 2 599 5 323 3 463 4	283 599 323 463	0000	0 22 0 111 0 16
Average Maximum Minimum	4012 9949 1886	267 2043 2281 2936 0 1558	13 36 0 58 0) 488) 3750) 0	3 1117 0 2450 0 20	000	125 4643 0	74 900 0	-102 2500 -1499	3953 6099 2428	1429 11132 -539	606 1623 6	4979 9397 83	74 900 0	000	0 9980 0 22255 0 9	9980 2255 9	000	0 352 0 352 0 352	2 650 2 5000 2 0) 396) 4500) 0	100 100	4 2024 6 0	341 3 6500 65 0	341 6500 0	0 Ave 0 (E) 0 100	Average price (EUR/MWh) 100 44
TWh/year 35,24 2,35 11 FUEL BALANCE (TWh/year):	35,24 NCE (TV		0,0	0 4,28	3 9,81 Boilor2	0,00		1,10 0,65	-0,90 34	~	CAES BioCon- CAES BioCon-		74	0,65 (0,00 0ffeb	0,00 87	87,66 0,(Hindro	0,00 0,00	00 3,09	0 0,00 3,09 5,71	I 3,48 Industry	try Hotol	õ	03 2,99 2,99 Imp/Exp Corrected		0,00 CO2 emi Totol	00 3 133 CO2 emission (Mt): Total Not
Coal				1000		: '	-	-									-	-					_		0,00	0,00	0,00
Oil N.Gas Biomoro		- 5,76	- 5,22		· · č	- 5,66					23,66		- -3,48							· · 6	- 8,41 2,41	0,00 -2,09 47,04	0,00		0,00 -6,90	0,00 -0,43	0,00 -1,41
Renewable H2 etc.		00'0	00,0	יי מימ	0,00	- '00					•			- 16,20 63 -	- 63,76 -	- 6,35 -		- 4,59 -	4,99		 5	92,25 0,00			92,25 0,00	0,00	0,00 0,00
bioruei Nuclear/CCS												31,13	<u>. 1</u>						31,13 -			0,00 0,00	0,00		0,00 0,00	0,00 0,00	0,00 0,00
Total		5,76	5,22 (0,95	0,21	5,66	'	'	7,30	0 -32,81	81 0,42		3,85 16	16,20 63	63,76	6,35		4,59	36,12	1,32	11,82	138,07	-4,81	1 133,26		-0,43)6-juli-20	-0,43 -1,41 06-juli-2020 [16:56]

Output specifications	icatio	SL	ldâ	a 20	50 L	Ida 2050 updated.txt	ted.	txt								The	еEn	lergy	PLAN	EnergyPLAN model 13.0	el 13	<u>.</u> 0	N	
								Dist	District Heating	g Production	ion													~
Gr.1							Gr.2								Gr.3					RE	RES specification	ication		
District heating Solar MW MW	CSHP DHP MW MW	P heating N MW	t g Solar MW	CSHP MW	o CHP	AH M	ELT MW	Boiler MW	M EH	Stor- Ba- age lance MW MW	ce heating W MW	t ig Solar / MW	CSHP	o CHP	AH M	ELT MW	Boiler MW	EH age MW MW	v Ba- lance	RES1 Wind MW	-	RES2 RES3 RES Offshol Photo ¹ 4-7 ic MW MW MW	ρ _⊥ ,	tal MW
Estruction 0 0			17 0	400 730	401	90Z		505 0000		1/ 340	4 30UU 6 30TC	0 70		010	000		001	80001 CA		90A1	PCI 0 0	010 010		0752
				335		728		0000 811	C1 C1				1016	370	1001		121		ų	1400		010	`	1477
			•	300		644		6						342	561		<u>5</u> -			1984		1112	-	9756
• C	• C			256		494		- 1		16522		~		158	387		. 0			1527		1183		8773
0	0			228		161	0	0			-18 1296		-	0	13	0	0		'n	1755		1177		9776
0	0			218		87	0	0	0 16			-		0	13	0	0			1160		1267		6951
	0	0 752		222	66	140	0	0	0 17					0	13	0	0	0 40417	7 -357	1587		1081		9110
September 0 0	0	0 1009		247	275	262	0	-	1 16		7 1739		1626	50	87	0	0	0 40417	2 -99	1375	6007	810	156 8	8348
October 0 0	0	0 1370	140	276	166	785	0	-	14 20		-14 2360	0 47	1722	107	497	0	0	0 40941	1 -12	2194		407	197 12	12081
er 0	0	0 1712		312	314	817	0	83	89 17		10 2951	1 30		225	854	0	-	1 39873	3	1956		214	201 10	10829
	0	0 1991	I 52	340	174	952	0	286	186 18		1 3432		1930	197	1133	0	24	91 35656	6 37	2863	3 10033	100	166 13	13161
	0	0 1473	3 199	287	256	579	0	102	50 16	16651	0 2539	9 68	1756	232	537	0	23	24 35160	0 -102	1845	5 7259	723	154 9	9980
			<u>_</u>	495	~	1050		2182				a		2625	1400					4954	~	4388		22255
Minimum 0 0	0 0	0 692		174		7	0	0		'				0	13	0				0		0		6
Total for the whole week																								Τ
TWh/year 0,00 0,00	0,00	0,00 12,94	1,75	2,52	2,25	5,09	0,00	0,90	0,44	0,00	00 22,30	0 0,60	15,43	2,04	4,72	0,00	0,20 (0,21	-0,90	16,20) 63,76	6,35	1,35 8	87,66
Own use of heat from industrial CHP: 0.00 TWh/vear	strial CHP:	0.00 TWh/v	ear								-													
ANNI IAL COSTS (Million FLIR)	ELR)						DHP &	СНРО	đ	-ipul	Trans	Indi		NATURAL GAS EXCHANGE	AL GAS F Bio-	EXCHAN	IGE CO2HV	v SvnHv	SvnHv	/ Stor-	E S	<u></u>	, T	;
	~	1082				ממ	Boilers	CHP3	CAFS	vidual		Var Var				use das								t
		1) <	MM	MM	MM	MM		MM	MM		MM	MM	MM	MM	MM	MW	MM	MM	MM	. >
Coal =	0 0																							: 0
FuelOil =	0				January	2	0 0	2613	5/0	0 0	0 0	706 L	4141		1/21	9/3	2281	1//8	-3544	11/0	-238	00	Ňč	238
Gasoil/Diesel=	291				March	ary	- C	3095	376			100	1004		1/2/1	9/3	979C	9/11	4400-	2342	000		N C	200
Petrol/JP =	11				Anril	_		1012	510			108			1724	019 070	2040 2220	11/0	9544	202-	007-		ν c	<u>م</u>
Gas handling =	28							1012	100			105	3320 7577		1721	9/3 073	0777 0777	1//0	2544	410	002- 022		N C	20
Biomass =	752				anin			264	687	0 0		057			1721	073	2198	1778	-3544	020-	-238		1 0	
Food income =	0							246	1300			730			1701	072	1122	1778	3544	670-	728		1 6	ac ac
Waste =	0				Audust	,		255	1129			957			1721	678 973	1518	1778	-3544	133	-238		1 0	238
Total Ngas Exchange costs =	11	-62			September	mber	0	834	1172	0	0	957			1721	973	1663	1778	-3544	610	-238	0	5	38
		0			October	er	0	700	201	0	0	957			1721	973	2964	1778	-3544	-1796	-238	0	23	38
Marginal operation costs =		40			November	nber	0	1382	335	0	0	957	2674		1721	973	2332	1778	-3544	-348	-238	0	53	238
Total Electricity exchange =		ი			December	nber	0	953	144	0	0	957	2054	•	1721	973	3231	1778	-3544	-1867	-238	0	23	238
Ш	с				Average	đ	C	1250	644	C	C	057	2852		1701	073	2162	1778	-3544	C	-738	C	6	738
	-133				Maximum			0615	7317			027	10100		1701	073	5333	1778	-3544	10367	007- 738		1 6	n a
	133				Minimum							057	220		1701	019 073	1111	1778	-3544	-5066	007- 738		16	238
Fixed imp/ex=	0						þ		5	0	5	2	5		-	200	-			0000-	004-	D	1	3
Total CO2 emission costs :		-18			Total for th TW/h/vear	ē	whole yea	IL 10.08	5 66			а 11	25 <u>0</u> 6		15 10	8 55	18 00	15 GO	31.13					00 0
Total variable costs -		1051					00,0	0,20	00,00	0,00	5	- t 0			1	5	0,00	20,01	<u>, , , , , , , , , , , , , , , , , , , </u>	0,00	-2,03	000		00
Fixed operation costs =		8323																						
Annual Investment costs =	2	20268																						
		2904Z																						
RES Share: 101,5 Percent of Primary Energy	ent of Prima	y Energy	96,4 P	ercent o	96,4 Percent of Electricity	city	ω	9,6 TM	89,6 TWh electricity from RES	ty from R	ES											06-juli-2020 [16:56]	020 [16:5	56]

B.2 Scenario 1: Linear Growth (BAU)

Input		Linear.txt	ar.txt																The	Ene	figy		EnergyPLAN model 13.0	del	13.0		M
Electricity demand (TWh/year): Fixed demand 33,12 Electric heating + HP 2,44 Electric cooling 1,55	emand (T nd ing + HP ng	Wh/year): 33,12 2,44 1,55	Flexib Fixed Trans Total	Flexible demand Fixed imp/exp. Transportation Total	and 3,44 5. 0,00 n 2,80 43,35	4 0 0 10			Group 2: CHP Heat Pump	e.	Capa MW-e 1500 300	Capacities MW-e MJ/s 1500 1125 300 1050	Effici elec. T 0,52 (es	COP 3,50	Regul CEEP Minim Stabili	Regulation Strategy: Techi CEEP regulation 2 Minimum Stabilisation share Stabilisation share of CHP	ategy: on ilisation rare of C	Technic 234 share `HP	Technical regulation no. 3 234580000 share 0,00 SHP 0,00	tion no.		Fuel Price level: Basic Capacit MW-e	evel: Basic Capacit MW-e	sic icities Stori -e GWh	iorage Effic	Basic VUV Capacities Storage Efficiencies MW-e GWh elec. Ther.
District heating (TWh/year) District heating demand Solar Thermal Industrial CHP (CSHP) Demand after solar and CSHP	ing (TWF ing dema al IP (CSHI ir solar a	ı/year) and P) ind CSHP	Gr.1 0,00 0,00 0,00	Gr.2 12,94 1,75 0,00 11,19		Gr.3 22,30 0,60 0,00 21,70	Sum 35,24 2,35 0,00 32,89		boller Group 3: CHP Heat Pump Boiler Condensing	du ing	3500 400 4500	4400 2625 1400 7600	0,52 (0,61 (0,39 0,39 0,95 3,	3,50	Minim Minim Heat F Maxin Di:Nor	Minimum CHP gr 3 load 0 Minimum PP 0 Heat Pump maximum share 0,50 Maximum import/export 0 DiNord_pool_system_2013_EUR.TXT	^o gr 3 loć aximum ort/expol system	ad share 11 2013_EU	0 0,50 0 UR.TXT			Hydro Turbine: Electrol. Gr.2: Electrol. Gr.3: Electrol. trans.: Ely. MicroCHP:				00 00 30 30 0,10 0,10
Wind Offshore Wind Photo Voltaic River Hydro Hydro Power Geotthermal/Nuclear	nd כ Nuclear	5000 MW 13150 MW 5000 MW 0 MW 0 MW		16,20 1 59,89 1 6,35 1 1,35 1 0 1 0 1	TWh/year TWh/year TWh/year TWh/year TWh/year TWh/year	0,00 0,00 0,00) Grid) stabili-) sation) share		Heatstorage: Fixed Boiler: Electricity pro Gr.2: Gr.3:	Heatstorage: gr.2: Fixed Boiler: gr.2: Electricity prod. from Gr.1: Gr.2: Gr.3:	om C	56 GWh 0,5 Per cent 0,00 (1,20 0,00	gr.3: gr.3: Vaste (T 0,00 1.89	56 0,5 Wh/ye	GWh Per cent sar)	Additi Multip Deper Avera Gas S Synga Biogas	Addition factor Multiplication factor Dependency factor Average Market Price Gas Storage Syngas capacity Biogas max to grid	actor actor et Price ty grid	1,00 2,00 0,00 77 6000 1729 1729	EUR/MWh EUR/MWh pr. MW EUR/MWh GWh MW	/h /h pr. M' /h		CAES fuel ratio (TWh/year) (Transport Household Industry Various	atio: Coal 0,00 0,00 0,00	0,0 0il 0,00 0,00 0,00	00 Ngas E 0,00 0,00 8,41	00 Ngas Biomass 0,00 0,00 0,00 1,59 0,00 3,41 8,41 0,00
Output		Ň	WARNING!!: (1) Critical	В N	: (1	Ori		Excess;	Sess	; (3)	I/dd (/Imp	ا بد ا	problem	em												
	Demand		Dis	District Heating Production	ating iction						Ŭ	Consumption	Б					Electricity Production	r انلا				Balance	υ		EXO	Exchange
<u>ع</u>	Distr. heating 8 MW	Wast Solar CSHI MW MW	Waste+ CSHP DHP MW MW	MW CHP	₽₩	ELT MW	Boiler I MW I	MA EH	Ba- lance dei MW	Elec. Flex.& demand Transp. HP MW MW MW	Flex.& Transp. H MW M	HP trolyser MW MW	ser EH N MW	Hydro Pump V MW	o Tur- bine MW	RES	Hy- dro MW	Geo- thermal MW	Waste+ CSHP MW	MW -	PP Los	Stab- Load Imp % MW	-	CEEP	MW EEP	Payment Imp Million EU	Payment Imp Exp Million EUR
January February March April	6005 6126 5328 4417	103 2276 218 2286 247 2194 384 2043	76 36 34 0 0 13 0 0		1845 1698 1841 1195	0000	453 471 143 19	210 138 172 13		4498 - 4498 - 4382 - 64216 - 73840 - 33840 - 33840 - 33840 - 33840 - 33840 - 33840 - 33840 - 33840 - 33840 - 33840 - 34866 - 34866 - 34	721 10 694 10 714 9 717 6				0000	9927 8342 11170 9359	0000	0000	352 352 352 352	1483 1744 1042 1038	83 119 29 47		16 103 12 41 0 693 0 376			00	5 2 28 15
May June July	3626 2048 2048 2048	408 1853 371 1733 419 1689 303 1700	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	473 109 141	871 168 95 146	0000	- 0 0 0	N - O C	20 33 -333 3 -296 3 -206 3	3571 (3630 7 3535 7	695 4 721 1 705 7 713 1	467 4595 111 5006 84 3108 111 4540		0 0 0 0	0000	8412 9367 6682 8727	0000	0000	352 352 352 352	630 145 187	73 163 383 278	001000000000000000000000000000000000000	0 137 0 558 0 172 0 355	7 137 3 558 2 172 555	0000	0000	15 15 15
August September October November December	2040 2747 3730 4663 5423				140 348 1279 1631 2085	00000	0 1 69 307				~		ო		00000		00000		352 352 352 352 352	142 481 857 569		000000000000000000000000000000000000000				00000	10 23 11
Average Maximum Minimum	4012 9949 : 1886	267 1986 2281 2879 0 1501	36 0 79 0 01 0	544 3750 0	1100 2450 20	000	121 4677 0	80 900 2 0 -1	-86 3 2385 6 -1442 2	3947 7 6093 3 2421	711 6 3173 16 -67	601 5072 1623 9382 6 83	0,	80 000 0 0 0	000	9539 21419 9	000	000	352 352 352	725 5000 3 0	130 3370 0	100 2 100 1458 100 0	2 338 58 5593 0 0	3 338 3 5593) 0	000	Aver (EL 111	Average price (EUR/MWh) 111 48
TWh/year	35,24	2,35 17,45	15 0,00	4,78	9,66	0,00	1,07	0,70 -(-0,76 34	34,67 6	6,25 5		55 0,70	00'00.	00'00	83,79	0,00	0,00	3,09	6,37	1,14	0,02	02 2,97	7 2,97	o -	7	143
FUEL BALANCE (TWIvyear): DHP CHP2	NCE (TV DHP		CHP3 Bo	Boiler2 E	Boiler3	Ъ	Geo/Nu. Hydro	Hydro	Waste		CAES BioCon- Elc.ly. version	on- Electro on Fuel	o- Wind	l Offsh.	PV -	Hydro		Solar.Th. Transp. househ.	ransp. h		Industry Various	Total	Imp/Exp Corrected Imp/Exp Net	Corrected p Net		02 emiss Total N	CO2 emission (Mt): Total Net
Coal Oil N.Gas		 6,22	- - 6,03			 1,86					- - -19,50	- 5,66						- - 25 -	- 25,50 -		8,41	0,00 25,50 -2,64	0,0 0,0 8,00	0,00 25,50 -7,44		0,00 6,79 -0,54	0,00 6,79 -1,52
Biomass Renewable				0,89	0,23 -				7,30 -	• •	29,72 -		- 16,20	- 59,89	- 6,35		4	- 4,59		1,32	3,41	42,87 88,38	0,00 0,00	42,87 88,38			0,00
H2 etc. Biofuel Nuclear/CCS		0,00	0,00	00'0	0,00	0,00				-31,57 - -	-10,63 - -	37,22 -27,87 -						- 4 - 27 -	4,99 27,87 -			0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00		0,00 0,00 0,00	0,00 0,00 0,00
Total		6,22	6,03 0	0,89	0,23	1,86		.	7,30	-31,57	-0,41	3,68	16,20	59,89	9 6,35	۵.	4	4,59 58	58,36	1,32 1	11,82 1	154,11	4,80	149,31	31-j	6,25 5,27 31-juli-2020 [23:13]	5,27) [23:13]

Output specifications	ecific	atior	SI		nea	Linear.txt											F	The E	nergy	,PLA	EnergyPLAN model		13.0	M	6
									Dist	District Heating	ng Production	ction												7	\wedge
Ŭ	Gr.1							Gr.2								Gr.3					ш —	RES specification	ification		
District heating MW	Solar CS MW M	CSHP DHP MW MW	P heating V MW	t g Solar / MW	r CSHP MW	HP CHP	ЧН ММ	ELT MW	Boiler MW	M EH	Stor- Ba age la MW N	Ba- Dis lance hea MW N	District heating So MW M	Solar CSH MW MW	CSHP CHP MW MW	ЧH	ELT MW	Boiler MW	EH St MW AG	Stor- Ba- age lance MW MW	e Wind MW		RES2 RES3 RES Total Offshoi Photo ' 4-7 ic MW MW MW MW	RES To -7 ic MW	otal MW
January 0	0	0	0 2205				893	0	340		17329		3800	26 1922				113	101 17083		0 1958			156	9927
ary	0	0						0	329		16243			•				142							8342
L	0 0	0 0						0 0	128			-11 1 0		63 1859	59 427	,	0 0	15		Ŷ					11170
April	5 0	5 0			200	0 330	770		<u>o</u> -	01 0			2000			2/2 0		- c	00700 0	00700 -0 01107 6	1904	24 0142	7117	171	9009
									- c											ŕ				108	04.12
	- C								• c															63	6682
ist	o c) C		3692													125	8727
her	- C		·								3136 3136													156	7983
	0	0 0						0	· ~		0117 0117							0							11518
er	0	0						0	69		5913			Ì	33 287			-							10316
December 0	0	0	0 1991					0	274	192 18	18528		3432			~	0	33	110 32392	-	3 2863	33 9424		166	12552
Averade 0	0	0	0 1473	3 199	9 287	7 276	563	0	96	52 16	16326	0	2539	68 1700	00 268	3 537		25	28 30496	96 -86	3 1845	15 6818	3 723	154	9539
_				~		~	~		2182				α		5	~		2494		~		~	Ā		21419
Minimum	00	0 0	0 692					0	0		0						0	0							6
Total for the whole vear	ear											+													
TWh/year 0,00	8	0,00 0,00	00 12,94	4 1,75	5 2,52	2 2,42	4,94	0,00	0,85	0,46	0	0,00 22	22,30 0,0	0,60 14,93	93 2,35	5 4,72	0,00	0,22	0,24	-0,76	3 16,20	20 59,89	6,35	1,35	83,79
Own use of heat from industrial CHP: 0,00 TWh/year	m industria	I CHP:	0,00 TWh/y	/ear											NATUF	an Gas	NATLIRAL GAS EXCHANGE	NGF							
ANNUAL COSTS	(Million EUR)	R)						DHP &	CHP2	ЪР	-ipul-	. Trans	ns Indu.		Demand	Bio-	Syn-	CO2Hy	Hy SynHy		-ly Stor-	Sum			E×-
Total Fuel ex Ngas exchange =	sxchange		2773				ш	Boilers	CHP3	CAES	s vidual	al port	t Var.		Sum	gas	gas	gas		gas	age				port
Uranium =	0						_	MM	MΜ	MM	MM	/ MW		MW	MM	ΜM	MM	MM	MM	MM	MM	ΜW	MM		ΜW
Coal =	0					vianual.	NE	C	2852	135		0	0: 0	957 3	3944	1721	499	2161	1778	-3173	1258	-301	_	0	301
FuelOil =	0	_				February	Jarv	0	3354	193		, -			4504	1721	499	1578				-301			301
Gasoil/Diesel=	1332					March	Ĺ	0	2004	46					3007	1721	499	2539				-301			301
Petrol/JP =	792					April	:	0	1997	76					3031	1721	499	2125				-301			301
Gas handling =	27					Mav		0	1212	118		0 0	5 8 9 0		2287	1721	499	1719				-301			301
Biomass =	622					June		0	279	266		~			1502	1721	499	2050			-10	-301			301
com	0					VINL		0	360	623					1941	1721	499	1321				-301			301
Waste =	0					August	st	0	272	453					1682	1721	499	1318			'n	-301			301
Total Ngas Exchange costs =	'e costs =		-79			Septe	September	0	924	496		C			2378	1721	499	1459				-301			301
Marginal operation costs	osts =		41			October	ber	0 0	840	46		0			1843	1721	499	2777			'	-301		0 0	301
			c			Nove	November	0 0	1048	2 2 2	_ `		55 0		2009	1/2/1	499	1/22		•		-105-			105
I otal Electricity exchange	11		N			nece	December	D	GRUT	2	-	5			2011	1.771	499	3110	8//L	-31/3	50CL- 0	-301			301
						Average	age	0	1394	212		0		957 2	2563	1721	499	2039	1778	-3173	0	-301			301
	40					Maxi	Maximum	0	9615	5480		0	ю 0	957 12	12199	1721	499	5127	1778	-3173	3 10533	-301		0	301
Eived imploy	143					Minimum	unu	0	0	0		C			957	1721	499	1141				-301			301
						TotoT	Total for the whole year		ų																
Total CO2 emission costs	costs =		263			TWh	TWh/year (0,00	a 12,25	1,86	0,00	00'00		8,41 2	22,52	15,12	4,38	17,91	15,62	-27,87	0,00	-2,64	00'00 1		2,64
Total variable costs	II		3000																						
Fixed operation costs =	II S	-	7650																						
Annual Investment costs =	sosts =	16	19143																						
TOTAL ANNUAL COSTS)STS =	26	29793																						
DEC Chara: 86.7	86.0 Derrent of Drimary Energy	remind to		1 00		08 / Dercent of Electricity	ii	d	VIL ~ 3		86.7 TM/h alactricity from DEC	о Ц С											0. il.il.	34 1111 2020 [23-13]	101.0
			y Lindiy	1,05			Icity		1.00	ו בובכתו													-11n[-10	הקט (בי	<u>[</u> .

B.3 Scenario 1: Linear Growth - Biomass alternative

Input		Linear Biomass.txt	r Bio	ma	ss.tx															The EI	nerg	yPL/	EnergyPLAN model	odel	13.0	0	M
Electricity demand (TWh/year): Fixed demand 33,82 Electric heating + HP 2,44 Electric cooling 1,55	and (TV g + HP J	Nh/year): 33,82 2,44 1,55	Flexibl Fixed Transp Total	Flexible demand Fixed imp/exp. Transportation Total	and 3,44 0,00 2,80 44,06	4 0 0 0			Group 2: CHP Heat Pump	jub is	Cap MW 1500 300	αo	Effi elec. 0,52	es	s COP 3,50	Min Sta	Regulation Strategy: Techi CEEP regulation 2 Minimum Stabilisation share Stabilisation share of CHP	Strategy ation abilisati	: Tect on share	nnical regula 234580000 e 0,00	atio	0.3	Fuel Price level: Avdro Dumo:	rlevel: Ca Ca	Capacities MW-e G	Storage Ef GWh elec.	Capacities Storage Efficiencies MW-e GWh elec. Ther.
District heating (TWh/year) District heating demand Solar Thermal Industrial CHP (CSHP) Demand after solar and CSHP	j (TWh/j deman (CSHP solar an	year) id) id CSHP	Gr.1 0,00 0,00 0,00	Gr.2 12,94 1,75 0,00		Gr.3 22,30 0,60 0,00 21,70	Sum 35,24 2,35 0,00 32,89		Boiler Group 3: CHP Heat Pump Boiler Condensing	3: qmi gnis	3500 400 4500	4400 2625 1400 7600	0,52 0,61	0, 95 0, 39 0, 95	3,50	Mir Meč Disy Disy	Minimum CHP gr 3 load 0 Minimum PP 0,50 Heat Pump maximum share 0,50 Maximum import/export 0 DitNord_pool_system_2013_EUR.TXT	HP gr 3 P maximu nport/ex J_syster	load m sharé port n_2013) 0, _EUR.T.	0 MW 0,50 MW 0,50 MW		Hydro Turbine: Hydro Turbine: Electrol. Gr.3: Electrol. trans.: Ely. MicroCHP:				0,90 0,80 0,10 0,80 0,10 0,73 0,10
Wind Offshore Wind Photo Voltaic River Hydro Hydro Power Geothermal/Nuclear	rclear	5000 MW 11400 MW 5000 MW 0 MW 0 MW 0 MW		16,20 T 51,92 T 6,35 T 1,35 T 0 T 0 T	TWh/year TWh/year TWh/year TWh/year TWh/year TWh/year		0 Grid 0 stabili- 0 sation 0 share		Heatstorage: Fixed Boiler: Electricity pro Gr.2: Gr.3:		gr.2: 56 gr.2: 0,5 d. from	56 GWh 0,5 Per cent CSHP W 0,00 1,20 0,00	gr.3: pr.3: Waste (T 0,00 0,00		56 GWh 0,5 Per cent /h/year)		Addition factor Multiplication factor Dependency factor Average Market Price Gas Storage Syngas capacity Biogas max to grid	tor in factor y factor irket Pri e acity to grid	1,00 2,00 0,00 0,00 ce 77 6000 1721		EURMWh EURMWh pr. MW GWh MW MW	MW.	CAES fuel ratio (TWh/year) (Transport Household Industry Various		00000		00 Ngas Biomass 0,00 0,00 0,00 3,41 8,41 0,00
Output		MA	WARNING!!: (1) Critical Excess;	Ю N С	1: (1	ပ်	itica	Х Ш	Ses		(3) PP/I	ml/c	port	mport problem	blen	_											
	Damand		Dis	District Heating	ating ~tion							Consumption	tion		$\left \right $			Electricit	Electricity				Ralance	0.0		ш	Exchange
Distr. heating MW		Waste+ Solar CSHP MW MW	Waste+ CSHP DHP MW MW	CHP	HP MM	ELT MW	Boiler MW	ШК ШК	Ba- lance d MW	Elec. demand MW	Elec. Flex.& demand Transp. HP MW MW MW		<u> </u>	EH MW MM	Hydro Tur- Pump bine MW MW	r- le RES W MW	S dro N MW	· · ·	- Waste+ I CSHP	ste+ HP CHP	PP MM	Stab- Load %	Imp Exp MW MW		CEEP EEP MW MW	-	Payment mp Exp Million EUR
January 6 February 6 March 5 April 4				889 1112 622 566	1505 1351 1248 660	0000	350 329 139 47	75 24 102 17		4578 4462 4296 3920	721 691 716 718			75 24 102 17	0000					~ ~		100 100 100		4 10	1 7 270 104		0000
May June July August September October November December S	3626 2048 2048 2048 2048 2048 3730 3730 5423	408 2655 371 2536 419 2492 393 2511 393 2511 291 2619 117 2898 70 3016	00000000	394 115 115 153 119 330 284 584 584 584 375	413 163 82 82 136 704 957 1509	00000000	1 0 0 1 2 2 2 0 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2	1 0 0 0 7 1 1 166 166	-246 -1138 -1138 -1112 -720 -51 -51	3651 3711 3615 3850 3850 3875 4208 4208	694 722 712 712 712 707 707 708	332 332 332 332 332 332 332 332 332 332	3996 4495 2693 4013 3572 5844 4732 6117 1	66 23 0 0 0 <i>1 1</i>		0 7669 0 8525 0 6128 0 7937 0 7232 0 1238 0 9259 0 11298		000000000	0 352 0 352 0 352 0 355 0 355 0 355 0 355 0 355 0 355 0 355 0 352 0 352	525 154 2 154 2 159 2 159 2 159 2 159 2 379 2 379 2 779 2 499	164 214 214 214 265 3695 395 395 91 91 91 91	00 00 00 00 00 00 00 00 00 00 00 00 00	000000000	210 2 59 23 75 133 1 75 7 72 7 72 1 75 1 72 1 72 1 72 1 72 1 72 1 72 1 72 1 72	36 210 59 133 83 75 72	00000000	
Average 4 Maximum 9 Minimum 1	4012 9949 23 1886	267 2789 2281 3682 0 2304	000	459 3750 0	746 2450 20	000	105 2777 0	42 900 0 -	-396 2181 -2043	4027 6173 2502	711 3620 -	499 44 1623 9; 6	4429 9382 (83	42 900 0	000	0 8632 0 19699 0 9		000	0 352 0 352 0 352	2 612 2 5000 2 0	210 3952 0	100 100	1 1136 39 0	66 3933 30	99 3933 0	0 Ave 0 (E 0 106	Average price (EUR/MWh) 106 56
TWh/year 35,24 2,35 24 FUEL BALANCE (TWh/year):	35,24 2 NCE (TWI	+	0'0	4,03	6,55	0,00	0,92	0,37	-3,48	က္	24 Bio(06 ¢) 75,	0'0	0 0'00	0 3,09	9 5,38			Ő		o –	00 202 emi	00 1 49 CO2 emission (Mt):
Coal	aHO '	- CHP2	CHP3	Boller2 B	Boiler3	h. .	Geo/NI	Geo/Nu. Hydro -	Waste	te Elc.ly.	ly. version	Ion Fuel	pui M		Ottsh.	2 '	Hydro	Solar. II	. Irans _i	Solar. I h. Iransp. househ. 	h. Various	IS Iotal		_	0.00	l otal	0.00
Oil N Gas		- 7 43 2	- 291			300					- 19.50	0	er.								- 841	0,00			0,00	0,00	0,00 -0,28
Biomass	ī			0,96	0,01) 1 1		'	7,30	-	68,36	Ĩ				- L	,	· .	,	1,32	3,41	81,36			36	0,00	0,00
Kenewable H2 etc. Biofuel		,0 00,0	0,00 - 0,	- 00,0	- 00,0	- 0,00				- -27,63 -	- 3 -10,63 -25,50	- 3 33,27) -27,87	7 16,2U 7 - 7 -			0,35 		4,54 	- 4,99 53,37			80,41 0,00 0,00			0,00 0,00 0,00	0,0 0,0 0,0	0,00 0,00
Nuclear/CCS		,		,				•	'		. '				,				, י			0,00			0,00	0,00	0,00
Total		7,43 2,	2,91 0,	0,96 (0,01	3,00	,	'	7,30	-27,63	3 12,73	3 3,17	7 16,20	20 51,92		6,35	,	4,59	58,36	1,32	11,82	161,79	9 -1,41	160,39	_	0,00 1-juli-202	0,00 -0,28 31-juli-2020 [22:39]

Output specifications	ut sp	ecific	cati(suc		Lin	ear	Linear Biomass.txt	nass	; txt									F	The E	nerg	y PL	EnergyPLAN model	lodel	13.0		M
											District	District Heating	g Production	tion												>	2
-	0	Gr.1								Gr.2								Gr.3						RES (RES specification	tion	
-	District heating		٩			Solar	۵.	СНР						ġ.		Ŭ	-			Boiler					ES2 RE Ifshoi Pho	щ 4	۴.
	MM	MM	MM	MΜ	MM	MM	MM	MM	MM	MM	MM MM	MW MW	MM	MM	MM MM		AM V	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM MM
January	0	0	0	0	2205	17	354	499	856	0	347		18800			26 2725			0	ო		6134	7		6644		156 8907
February	0	0	0	0	2249	163	357	583	801	0			18193	4						10		15544	0				
March	0	0	0	0	1957	184	335	415	791	0								-		2		7611	-19				—
April	0 0	0 0	0 0	0 0	1622	285	300	445	538	0 0	47	17 140		-10 27			<u> </u>	—		0 0			- 63				
May	0 0	0 0	0 0	0 0	1332	304	256	362	3/8	0 0	- (1 14			-					0 0			-2/6				
June	0	0	0	0	752	277	228	115	150	0	0									0			-1119				
July	0	0	0	0	752	310	218	153	02	0	0		17365							0			-1101				
August		0	0	0	752	296	222	119	123	0	0		18299	-9						0			-1103		~		
September		0	0	0	1009	216	247	330	214	0	-		17645							0			-721			_	
October	0	0	0	0	1370	140	276	256	639	0	29		19556							0			-248		7559		·
November	0	0	0	0	1712	87	312	457	692	0			17797	6 20					0	0	0	11791	-57		6888		
December	0	0	0	0	1991	52	340	241	903	0	289	165 20	172	1	3432	18 2676	6 133	3 606		0	1	14944	ო	2863 8	8170	100 1	166 11298
Averade	0	0	0	C	1473	199	287	330	512		104	41 17	17354	0 25	2539 (68 2502	129	233		- -	- -	11395 -	-396	1845	5911	723 1	154 8632
Maximum						1624	495		1050	0					α		5	~		1203			21.28				~
Minimum	0	0 0	0	0 0		0	174		20001	0									00	0		•	-1731				
				+																							
Total for the whole year TWh/year 0,00 0,0	e whole) 0,00	8	0,00	0,00	12,94	1,75	2,52	2,90	4,50	0,00	0,91 0	0,36	, 0	0,00 22	22,30 0,6	0,60 21,98	1,14	1 2,05	0,00	0,01	0,01	Ŷ	-3,48	16,20 5	51,92	6,35 1	1,35 75,82
Our use of heat from industrial CHB: 0.00 TMb/war	c hoot fro	m inductri			1001/4/VL																						
	וופמרוור				I WILY YEAR																						
	o Lo C												100	L L			NATUF	RAL GA	NATURAL GAS EXCHANGE	ANGE						8	ÿ
		(אווווסוו בטרא)	(אטן														Derriario					ž	<u>></u>		line		× 1
I utal Fuel ex Ngas excriange =	ex Ngas -	excriarige	" c	ZACA-						'n		VUV VVV		II port	Val.			gas MMM	gas	9as MMM	y MMV		gas a	age	1111	hana.	1 Jod
	1														-												
FuelOil								January			2281	437	0				3675	1721	499	1622				1226	7	7	0
Gasoil/Diesel=	<u> </u>	246	ہ ب					February	Y		2851	373	0				4181	1721	499	1288				2066	7	7	0
Petrol/JP		439	68					March			1595	126	0				2678	1721	499	2022				-170	2	2	0
Gas handlind =	= 25	2 00	30					April			1452	203	0				2612	1721	499	1664			-	121	7	7	0
Biomass	ار م ا	2443	2 5					May			1010	267	0				2235	1721	499	1334				73	7	7	0
Food income =	li Li	-12750						June		0	296	348	0				1602	1721	499	1749				-974	7	7	0
Waste	2 11	1717						July		0	393	759	0				2110	1721	499	1142				141	7	2	0
			>					August		0	306	600	0			957 1	1863	1721	499	1142				-106	7	0	0
Total Ngas Exchange costs =	Exchan	ge costs =		-				September	ber		847	642	0				2447	1721	499	1142				478	2	2	0
Marginal operation costs	beration (costs =		37				October	F		729	122	0		б О		1808	1721	499	2146				-1165	7	7	0
0				5				November	Jer		1498	148	0				2603	1721	499	1834				-58	2	2	0
Total Electricity exchange =	ricity exc	hange =		-				December	Jer	0	960	89	0			957 1	1986	1721	499	2673	3 1778		-3173 -15	-1514	7	7	0
	П		.					Averade		0	1178	341	C			957 2	2476	1721	499	1649	a 1778		-3173	C	~	~	C
Export =	11	4	49					Maximum	, E		9615 9615	6427	, c				12199	1721	499	5127	-			10230	10	10	,
Bottleneck =	Ш	4	49					Minimum	Ē	, , c					5 ð 0 0		957	1721	499	1142				-4996	10	10	
Fixed imp/ex=	=Xe		0						=	>	þ	þ	J			5		-		-				2	1	1	,
Total CO2 emission costs	emissior	n costs =		0				Total fo	Total for the whole year	ole year	ar 40.24	00 0					04 7E	15 10	00 1	~ ~ ~ ~	15 67		0 20 20				
Totol Vionio	10 0000	I		0551							t 0,0	o, o	n, uc			0,4 - 7	<u>, , , , , , , , , , , , , , , , , , , </u>	10,12	4,00	-+,+C					70°0	7n'n	5
Fixed operation costs =	ation cos	ts =		5900																							
	-	-																									
Annual Investment costs =	estment	costs =		061.61																							
TOTAL ANNUAL COSTS	NUAL C	OSTS =		15501																							
RES Share: 100.0 Percent of Primary Energy	100.	0 Percent	t of Prir	narv Ene		3.1 Per	cent of	96.1 Percent of Electricity	>	.77	7 TWh	electrici	77.7 TWh electricity from RES	ES											, Ю	31-juli-2020 [22:39]	0 [22:36
					L																						

B.4 Scenario 1: Linear Growth - Biomass and hydrogen alternative

Input		Linear Biomass Alternative.txt	r Bic	ma	ss A	Iter	nati∖	/e.tx	بب											he E	Ener	JVP	The EnergyPLAN model 13.0	то Ш	del	13.0		M
Electricity demand (TWh/year): Fixed demand 33,39 Electric heating + HP 2,44 Electric cooling 1,55	and (TV g + HP J	Vh/year): 33,39 2,44 1,55	Flexib Fixed Trans Total	Flexible demand Fixed imp/exp. Transportation Total	and 3,44 p. 0,00 n 2,80 43,63	4 0 0 ũ			Group 2: CHP Heat Pump	ump	Cap MW 1500 300	a a	ele 0,5	illi '.	es COP 3,50	r 2020 20	Regulation Strategy: Tech CEEP regulation 2 Minimum Stabilisation share Stabilisation share of CHP	n Strate julation Stabilis on shar	gy: T∉ ation sh ∍ of CH¦	nical I 3458	regulatio 30000 0,00 0,00	on no. 3	Fuel Hvdr	Fuel Price level: Basic Capaci MW-e-	vel: Basic Capaciti MW-e	sic acities Stora -e GWh	torage Effic	Basic VUV Capacities Storage Efficiencies MW-e GWh elec. Ther.
District heating (TWh/year) District heating demand Solar Thermal Industrial CHP (CSHP) Demand after solar and CSHP	g (TWh/) g deman (CSHP) solar an	year) id) d CSHP	Gr.1 0,00 0,00 0,00		- (1 (1	Gr.3 22,30 0,60 0,00 21,70	Sum 35,24 2,35 0,00 32,89	9 0 0	Boiler Group 3: CHP Heat Pump Boiler Condensing	3: ump 1sing	3500 400 4500	4400 2625 1400 7600	0,52 0,61	0,39 0,95	3,50	2 2 I 2 0 ·	Minimum CHP gr 3 load Minimum PP Heat Pump maximum share Maximum import/export DiNord_pool_system_2013	CHP gr PP Ip maxir import/ ool_sys	3 load num shi export tem_20	ĒŪ,				Hydro Turbine: Electrol. Gr.2: Electrol. Gr.3: Electrol. trans.: Ely. MicroCHP.	ee: 	c		0,90 0,80 0,80 0,73 0,73 0,80
Wind Offshore Wind Photo Voltaic River Hydro Hydro Power Geothermal/Nuclear	uclear	6250 MW 6200 MW 5000 MW 0 MW 0 MW		20,25 1 63,76 1 6,35 1 1,35 1 1,35 2 0 1 0 1	TWh/year TWh/year TWh/year TWh/year TWh/year TWh/year		0,00 Grid 0,00 stabili- 0,00 sation 0,00 share	 ≓ ⊑ e	Heatstorage: Fixed Boiler: Electricity pro Gr.1: Gr.2: Gr.3:		gr.2: 5 gr.2: 0, d. from	56 GWh 0,5 Per cent CSHP W 0,00 1,20 0.00	ent gr Waste 0,00	(TV)	56 GWh 0,5 Per cent /h/year)		Addition factor Multiplication factor Dependency factor Average Market Price Gas Storage Syngas capacity Biogas max to grid	actor tion fact ncy factur vlarket F ige apacity ax to gri	• • •	1,00 EUR 2,00 EUR 77 EUR 6000 GWI 1709 MW 1721 MW	EURMWh EURMWh pr. MW GWh MW MW	Pr. MW		CAES tuel ratio (TWh/year) (Transport Household Industry Various	Tito: Coal 0,00 0,00 0,00	0,0 0,00 0,00 0,00 0,00	00 Ngas E 0,00 0,00 8,41	00 Ngas Biomass 0,00 0,00 0,00 1,59 0,00 3,41 8,41 0,00
Output		MF	WARNING!!: (1) Critical Excess;	NG	II: (1) C	ritica	EX	ces		(3) PP/I	P/In	Q	t prc	ləld	F												
	Demand		Dis	District Heating	ating							Consumption	notion						Electricity					Balance	_		ĔX	Exchange
Distr. heating MW	p p p p >	Waste+ Solar CSHP MW MW	Waste+ CSHP DHP MW MW	CHP	dH MW	ELT MW	Boiler MW	ШЧ ШМ	Ba- lance MW	Elec. demand MW	Elec. Flex.& demand Transp. HP MW MW MW		L _	E H H	Hydro T Pump b MW 1	Tur- bine R	RES dro MW MV	>	5	Waste+ CSHP CHP MW MW	CHP PP MW MW	Stab- Load W %	b- d Imp MW		CEEP	o EEP	Payn Imp Millio	Payment mp Exp Million EUR
January 60 February 63 March 53 April 44 May 36 June 20 July 20	6005 6126 5328 5328 4417 3626 2048 2048 2048 2048	103 2648 218 2657 247 2565 384 2414 408 2224 371 2104 371 2104 419 2061	0000000	1091 1272 752 714 489 116 157	1677 1543 1559 870 524 163 81	0000000	355 395 395 37 37 1 0 0	127 35 109 1 1 1 0	4 6 -56 -21 -20 -707 -669	4530 4413 4248 3871 3603 3662 3567	720 694 714 718 694 722 705	1004 957 868 549 366 105 75	6685 5534 7552 6512 6512 6317 3943	127 35 109 19 1 1	0000000		10912 9112 12253 10252 9155 10215 7241	0000000		\leftarrow \leftarrow	1454 28 1696 40 1003 12 952 18 651 19 155 24 209 52 209 52	284 10 127 10 127 10 189 10 191 10 241 10 526 10	100 63 100 78 100 78 100 1 100 0 100 0 100 0				0000000	0074606
ust ember ember ember	2048 3 2747 2 3730 1 4663 1 5423	 393 2080 291 2187 187 2312 117 2466 70 2585 	0 0 0 0 0 0		131 233 885 1229 1819	00000	0 26 84 288	0 0 29 87 185	-679 -308 -54 5 46	3801 3789 3926 4160 4183	712 713 707 724 709		5667 5151 8242 6917 8741	0 0 87 185	00000	0 99 0 12 0 13 0 13 13 13 13 13	9507 8691 12630 11318 13877	00000						0 113 0 71 0 109 0 67 0 63	~ ~		00000	4 0 0 0 0
	4012 2 9949 22 1886 22	267 2358 2281 3250 0 1872		539 3750 0			111 3208 0 0	1 1	-205 -205 2241 -1653	3978 6124 2453	711 3483 -47	540 1623 1: 6 6 775 5				0 10	10441 23463 9 01 71 0	000		352 7. 352 500 352 300 6.	719 253 5000 4136 0 0		100 12 100 2524 100 0	2 81 4 3833 0 0	81 3833 0 071			Average price (EUR/MWh) 117 56
FUEL BALANCE (TWh/year): DHP CHP2	UCE (TWP	5	l no	oiler2	Boiler3	PP d		Geo/Nu. Hydro	- 1,00 Jut	ñ	CAES BioCon- CAES BioCon- Elc.ly. version		R 6	Wind O			1 2	Solar.	u,uu u Ir.Th. Trar	<u>ک</u>		us try	Total	UN E	corrected		D2 emiss Total N	sion (M Net
Coal Oil N.Gas		- - 7,26 4	4,89		· · · · C	- - 3,62			' ' č			· ·	4,60							· · · · 6			0,00 0,08 0,08	00 0 0 0 00 0 0	0,00 0,00 -0,91			0,00 0,00 0,19
Biofuel Biofuel		0 00,00	0 0 0 	0,00 - -	- 00'0	0,00				 -40,25 -	- 44,07 25 -10,63 10,00	 33 36,00 00 -27,87		- 20,25 6 -	- 63,76 -	- 6,35 -		4,59 -	- - 14,89 37,87		20 		96,30 0,00 0,00	0,00 0,00 0,00 0,00	96,30 96,30 0,00			0,00 0,00 0,00
Total	, ,	- 7,26 4	- 4,89 0	- 0,96	- 0,07	3,62	, ,		- 7,30	- 0 -40,25	 25 4,74		- 3,52 20	- 20,25 6	- 63,76	- 6,35	, ,	4,59	- 52,76	- 5 1,32	2 11,82		0,00 154,31	00'n 66'0-	u,uu 153,32		0,00 0,00 0,02 -0,19 04-maj-2020 [22:31]	0,00 -0,19 0 [22:31]

Output specifications	spe	cific	ation	S	Ľ.	lear	Linear Biomass Alternative.txt	mas	s Al	tern	ative	e.txt						F	The E	nerg	yPL/	EnergyPLAN model	, labo	13.0		
										Distr	District Heating	ng Production	Iction													シ
	Gr.1								Gr.2								Gr.3						RES sp	RES specification	Ę	
District heating		Solar CS	CSHP DHP	District heating	Solar	CSHP	P CHP	HP	ELT	Boiler	EH	Stor- B age la	Ba- Di lance he	District heating So	Solar C	CSHP CHP	HP HP	V ELT	Boiler	EH 8	Stor- Ba- age lanc	e V	RES1 RES2 Wind Offshol	RES2 RES3 RES Offshoi Photo 14-7 ic		Total
2							-			MM						-	-								-	
January	0 0	00	00	2205	77	354		865 909	0 0	332	94 1	17989 17276	4 (3800 2076	20 20 20	2293 6	612 812 700 724	812 0	23		17135 77747	0 0	2448 8159	59 149 74 240	9 156 9 220	`
March							700	808 706		400 146		2)() 2)()		3370 3370						λ Ω Π	21.141 21075					1 10053
Anril								247		04-				2105										~		
								260		5		2804														
undy June								150		- c		16310									ī			37 1177		•
July	0 0							89		0 0	. 0	16906	0			1843		13 0				-				
August	0	0	0					118	0	0		18231	ę			1858									~	
September	0	0		-				209	0	-		18336	ကု	1739		1940										
October	0	0						645	0	26	29 2	20154		2360			(N			0						~
November	0	0	0					209	0	84		17553		2951												
December	0	0						914	0	286		19708	-	3432				0 0		12 32						
Averade	0	C		1473	199	287	, 322	516	C	103	45 1	16884	C	2539	68 2	2071 2	217 376		2	5 3,	31113 -2	-205	2306 7259	59 723		1 10441
Maximum	0 0		0 0		<u>_</u>		~	1050		2192							~		1713				~	4	8 300	
Minimum	0	0						7	0	0						1698										
Total for the whole vear		H.																								
TWh/year 0,	0,00 0	8	0,00 0,00	12,94	1,75	2,52	2,83	4,54	0,00	0,91	0,40)	0,00	22,30 0	0,60 18	18,19 1,	1,91 3,30	30 0,00	0,06	0,04	- -	-1,80 21	20,25 63,76	76 6,35	5 1,35	5 91,71
Own use of heat from industrial CHP:	at from	industria		0,00 TWh/year	ar																					
																NATL	JRAL G/	NATURAL GAS EXCHANGE	ANGE							
ANNUAL COSTS (Million EUR)	TS (N	Aillion EU	R)						DHP &	CHP2	Ч	-ipul		Trans In	Indu.	Demand	Bio-	Syn-	CO2HV		SynHy Sy	SynHy Stor-		Sum	<u></u>	ж Ш
Total Fuel ex Ngas exchange =	lgas ex	change :		-3209				ñ	Boilers	CHP3	CAES	s vidual		-	Var.	Sum	gas	gas				gas age			port	port
Uranium =		0						2	MM	ΜM	MM	MM		MW	MM	MM	MM	MM	MM	/ MW		MW MW	MM NM		MM	ΜW
		0					January	≥	0	2797	462		0	0	957	4217	1721	499	2076	6 1778	78 -3173	73 1307	70	o	0	0
FuelOil =		0,0					February	ary	0 0	3261	651		0 0		957	4870	1721	499					. 00	0	0	0
ăś		246					March	`_	0	1929	206		0		957	3092	1721	499					00	б	o	0
Petrol/JP =		179 2					April		0	1830	308		0		957	3095	1721	499					22	0	0	0
Ĕ		31					Мау		0	1253	310		0		957	2520	1721	499	-				33	6	6	0
Biomass =		1335					June		0	298	392		0		957	1647	1721	499	1934			-3173 -1120	20	6	6	0
Food Income =		000 9 -					Julv		0	401	855		0		957	2214	1721	499					39	6	6	0
Waste =		0					August	ĭt	0	315	611		0		957	1884	1721	499					-92	6	6	0
Total Ngas Exchange costs =	shange	costs =		7			September	mber	0	880	714		0	0	957	2551	1721	499					75	6	6	0
Morainal Constant	tion oot	1					October	ér	0	885	156		0		957	1998	1721	499	2560			-3173 -1396	96	6	6	0
Marginal operation costs		sis =		+			November	nber	0	1728	198		0		957	2883	1721	499	2224	4 1778	78 -3173	73 -175	75	6	6	0
Total Electricity exchange =	/ exchai	nge =		12			December	nber	0	1108	<u> 8</u> 6		0	0	957	2163	1721	499	3327	7 1778		-3173 -1998	98	6	6	0
Import =		12					A.C.C.	0	c	1202	112		c		05.7	750	1701	007	1010	0771	2173	7.2	c	c	c	c
Export =		40					Moximum	100		0001	114				100	2012	1211						2 2	n c	n c	- c
Bottleneck =		40							5 0	0106	47/0			,, c	90 / 05 7	12199	1771	499	0407	0//1 0			0.0	ກເ	ກເ	- C
Fixed imp/ex=		0							5	5	5	_	D		108	106	171	400					מ	מ	מ	5
Total CO2 emission costs	ssion or	octo =		.			Total	ē	hole yea	L																
				-			TWh/year		0,00	12,14	3,62	0,00		0,00 8	8,41	24,17	15,12	4,38	16,85	5 15,62	32 -27,87	87 0,00		0,08 C	0,08	0,00
Total variable costs	costs =		ကို	-3152																						
Fixed operation costs =	1 costs		o O	6001																						
Annual Investment costs =	tent co	sts =	20199	66																						
TOTAL ANNUAL COSTS		= STS	23047	47																						
5)	5				i																			
RES Share:	100,0	Percent c	100,0 Percent of Primary Energy		94,9 P	ercent	94,9 Percent of Electricity	city	ດ	3,6 TM	'h electri	93,6 TWh electricity from RES	RES											04-ma	04-maj-2020 [22:31]	22:31]

B.5 Scenario 2: 50% - Biomass alternative

	ncies	0,10 0,10	mass 0,00 3,41 0,00		e	T Exp	0 0 0 .	4 – 0	- 4 N O M M	price IWh) 56	40	Mt):					
N	: Basic VUV Capacities Storage Efficiencies MW-e GWh elec. Ther.		i Si Ci		Exchange	/meni on El	0 - 0			Average price (EUR/MWh) 111 56	e	CO2 emission (Mt) Total Net	0,00 0,00 42			· · ·	
	ss Storage GWh ele		<u>, </u>			-	0000		000000	0 0 Å	Q	CO2 emi Total	0,00 0,00	0,00	0,00	-0,19	
The EnergyPLAN model 13.0	Basic apacities MW-e G		0 0 0 0 0			CEEP EEP MW MW	4 4 225	81 21 176	32 95 52 63 74	81 876 0	71 0,00		00 5	33		3 4	
del	le /		atio: Coal 0,00 0,00 0,00		e		-		32 32 32 35 52 52 52 52 52 52 52 52 52 52 53 138 138 138 138 138 138 138 138 138 13	36	1 0,71	Imp/Exp Corrected Imp/Exp Net	0,00 0,00 0,00	68,53	0,00 0,00 0,00	148,94	
M M	Fuel Price lev	Hydro Turbine: Hydro Turbine: Electrol. Gr.2: Electrol. trans.: Ely. MicroCHP:	CAES fuel ratio. (TWh/year) (Transport Household Industry Various		Balance	-	-			36	3 0,71	mp/Exp Co Imp/Exp	0,00 0,00	0,00	0,00 0,00	-1,11	
[A]						ч М М М М		0000	00 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 3 100 1608 100 0	0,03	Total	0,00 0,00	68,53 02.46	0,00	150,05	
gyP	n no. 3		EURMWh EURMWh pr. MW GWh MW			Stab- Load V %					8	Industry Various T			o 		
ner	egulatio 0000 0,00 0,00		EUR/MWh EUR/MWh EUR/MWh GWh MW			d P M			8 784 4 662 0 652 0 199 8 227 6 104	3 407 0 4247 0 0	2 3,58		8 8.41			11,82	
l e E	34581	e c				Waste+ CSHP CHP MW MW			52 198 52 154 52 420 52 410 52 838 536 546	52 663 52 5000 52 0	9 5,82	Solar.Th. Transp. househ.		1,32		1,32	
Ē	y: Tec ion shar of CHP	Ioad Jm shar kport m_2015	10 001		Electricity				0 352 0 352 0 352 0 352 0 352 0 352 0 352	0 352 0 352 0 352	0 3,09	h. Trans		'	- 4,99 41,57	46,56	
	Strateg lation tabilisati share	HP gr 3 P maximu nport/e) ol_syste	ctor on factor or factor arket Pri arket Pri e e acity		Electricit	· >	0000			000	00,00	Solar.Tl		- 1	t 	4,59	
	Regulation Strategy: Techt CEEP regulation 2 Minimum Stabilisation share Stabilisation share of CHP	Minimum CHP gr 3 load 0 Minimum PP 0 Heat Pump maximum share 0,50 Maximum import/export 0 DiNord_pool_system_2013_EUR.TXT	Addition factor Multiplication factor Dependency factor Average Market Price Gas Storage Syngas capacity Biogas max to grid			s Adro H					7 0,00	Hydro					
	Rec CEF Mini Stat	Min Min Max Max				KES MW			0 6271 0 8140 0 7425 0 10656 0 9531 0 11621	0 8865 0 20142 0 9	0 77,87					6,35	
	COP 3,50	3,50	56 GWh 0,5 Per cent /h/year)	lem		ro Tur- h bine / MW	0000			000	00'0 0	PV					
	es	0,95 0,39 0,95 ³	56 G 0,5 P Wh/yea	problem		Hydro Pump V MW					8 0,00	l Offsh.		- 53 07		53,97	
	Efficia elec. T 0,52 (0,52 (0,61 (gr.3: 56 GV nt gr.3: 0,5 Pel Waste (TWh/year) 0,00 1.89	-	Ę	د EH «er EH			16 7 2		1 0,38	-c Wind				16,20	
		4400 2625 (1400 7600 (0		sumption				81 2793 110 4150 218 3663 521 5866 221 4780 6093	945	0 39,67	- Electro Fuel	02 6-	i Î	- 33,81 -27,87	3,24	
	Capacities MW-e MJ/s 1500 1125 300 1050	4 3500 2 400 1 4500 7	: 56 GWh 0,5 Per o m CSHP 0,00 1,20	ЪР	Cons					162	33 4,70	CAES BioCon- Elc.ly. version	- 23.66	55,48	- -10,63 -13,70	7,48	
xt	<u> </u>		Heatstorage: gr.2: Fixed Boiler: gr.2: Electricity prod. from Gr.1: Gr.2:	(3)					35 1113 19 1134 07 1109 14 1126 78 1134 78 1134 11 118	96 1120 42 8284 71 -396	0 9,83	CAES Elc.ly.			 -28,16 -10,63 13,70	-28,16	
e2.t	Group 2: CHP Heat Pump	Boiler Group 3: CHP Heat Pump Boiler Condensing	Heatstorage: Fixed Boiler: Electricity prc Gr.2: Gr.3:	SS:		ce demand V MW			85 3585 97 3819 04 3807 97 3944 -1 4178 -1 4178	51 3996 37 6142 22 2471	21 35,10	Waste		7,30	, , , ,	7,30 -	
ativ	Group CHP Heat	Boiler Group CHP Heat F Boiler Conde	Heats Fixed Gr.1: Gr.2:	Excess;		V Ba- lance		15	, , , , ,	43 -251 00 2097 0 -1722	8 -2,21						
alternative2.txt		um 35,24 2,35 0,00 32,89	Grid stabili- sation share	ăl E		ler EH V MW			~	0	96 0,38	Geo/Nu. Hydro					
is al		Sum 35, 2, 32,	0,00 G 0,00 st 0,00 st 0,00 st	Critic		r Boiler v MW	0.00		0 0 0 0 1 0 0 10 0 85 0 292 292	0 110 0 3098 0 0	0 0,96	Gec		•			
Biomass	3,44 0,00 6,38 47,37	Gr.3 22,30 0,60 0,00 21,70		(1) (N MW	<u>5</u> 8 4 5	ç 2 7 7	87 139 240 871 764	371 50 20	35 0,00	о ВР	5.82		- 00 [°] 0	5,82	
Bio		Gr.2 12,94 1,75 0,00 11,19	TWh/year TWh/year TWh/year TWh/year TWh/year TWh/year) ::ic	ict Heating Production	E HP		0 47 1	~ ~	54 8	37 7,65	Boiler3		0,06	- 00 [°] 0	0,06	
- 2	Flexible demand Fixed imp/exp. Transportation Total		16,20 53,97 6,35 1,35 0		District Heating Production				0 148 0 116 0 315 0 308 0 308 0 629 0 410	0 497 0 3750 0 0	00 4,37	Boiler2		0,96	- 00'0	0,96	
Scenario 2		Gr.1 0,00 0,00 0,00		WARNING!!: (1) Critical		Waste+ CSHP DHP MW MW	35 2 4 2 2	2 1 2	78 76 75 20 20 20 20 20 20 20 20 20 20 20 20 20	75 37 39	74 0,00	CHP3	4 15		- 00,0	4,15	
Scen	h/year): 33,55 2,44 1,55	ar) CSHP	5000 MW 5000 MW 5000 MW 0 MW 0 MW	×					419 2178 393 2197 291 2304 187 2429 117 2583 702 2702	57 2475 81 3367 0 1989	35 21,74		202		- 00,0	7,06	
	hd (TW) + HP	(TWh/ye demand CSHP) Mar and			pu	ig Solar N MW				26	24 2,35	TWh/		,	0	. 7	
_	ly demai mand neating · xooling	ieating (ieating c ermal I CHP ((after so	Wind Staic dro wer nal/Nuc	but	Demand	Distr. heating MW	6005 6126 5328	44 17 3626 2048	2048 9r 2048 3730 r 4663 r 5423		35,24	ALANCE (
Input	Electricity demand (TWh/year): Fixed demand 33,55 Electric heating + HP 2,44 Electric cooling 1,55	District heating (TWh/year) District heating demand Solar Thermal Industrial CHP (CSHP) Demand after solar and CSHP	Wind Offshore Wind Photo Voltaic River Hydro Hydro Power Geothermal/Nuclear	Output		I	January February March	Aprii May June	July August September October November December	Average Maximum Minimum	TWh/year	FUEL BALANCE (TWh/year): DHP CHP2	Coal Oil N Gas	Biomass	H2 etc. Biofuel Nuclear/CCS	Total	
							Ϋ́ĔΖ̈́	ל≥ֿ⊃	≺₹ǿ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	άΣΣ	F	-	, = = = =		Z	=	_

Output specifications	pecif	ficat	ions		Sc	Scenario	rio 2	I.	oma	SS SS	Biomass altern	ative	ative2.txt					The	еEr	lergy	PLAN	EnergyPLAN model 13.0	lel 13	3.0	Ø	
										Distric	District Heating	g Production	ion												27	\wedge
	Gr.1								Gr.2								Gr.3					R	RES specification	fication		
District heating MW	t g Solar MW	CSHP DHP MW MW	DHP	District heating MW	Solar MW	CSHP MW	MW MW	HP M	ELT B MW	Boiler E MW N	EH age MW MM	Stor- Ba- age lance MW MW	- District ce heating V MW	ct ng Solar V MW	r CSHP MW	P CHP MW	H M	ELT MW	Boiler E MW n	EH age MW MW	r- Ba- e lance V MW	RES1 Wind MW	-	RES2 RES3 RES Total Offshoi Photo ^v 4-7 ic MW MW MW M	RES To -7 ic MW	otal MW
			c	2005	77	364	181	BEE	c	341	87 165				0110	500	002	6	VC	28 0158		1058			156	0160
February 0		о с		2249	163	357	552	811		341			4 3876	76 56 56			694		48		2 1	1435			229	7713
		0 0		1957	184	335	396	806		144							689		5 4		e,					10395
				1622	285	300	427	570		34							220		· c	0 23599				~		8752
				1332	304	256	335	406		5 ~				~		73	116								116	7860
		0 0		752	277	228	114	151	0 0	. 0	1 152	15202 -1	-19 1296				13				1	1755		-	108	8742
		0	0	752	310	218	148	75	0	0				-			13	0	0						93	6271
ust		0	0	752	296	222	116	127	0	0			-9 1296				13	0	0						125	8140
ber		0	0	1009	216	247	313	224	0	~							16	0	0						156	7425
		0	0	1370	140	276	239	693	0	10	21 209					69	178	0	0			2194				10656
ēr		0	0	1712	87	312	427	720	0	85						⁽ N	457	0	0			1956				9531
December 0	0	0	0	1991	52	340	227	915	0	292	165 185	18589	1 3432				849	0	-	2 27359	59 18	2863			166 `	11621
Averade		C	С	1473	199	287	313	530		104	40 15801	301	0 2539	69 68	2188	184	341	C	ų	3 22126	6 -251	1845	5 6144	723	154	8865
2				3653	1624	105	1175	1050	ç		300 305	337 651		α		c	1400		1506		-		~			20112
Minimum	0	00	0 0	692	0	174	0	20001			0 0	'			0 1815		13	00	0							6
Total for the whole year TWh/year 0,00 0,0	e year) 0,00	0,00	0,00	12,94	1,75	2,52	2,75	4,65	0,00	0,91 (0,35	0,00	00 22,30	0,60	0 19,22	1,62	3,00	0,00	0,05	0,02	-2,21	16,20	0 53,97	6,35	1,35	77,87
Own use of heat from industrial CHP: 0,00 TWh/year	rom indus	strial CF	HP: 0,0C	TWh/yea									_									-				
																NATURAL GAS EXCHANGE	AL GAS	EXCHAN	IGE							
ANNUAL COSTS	(Million EUR)	n EUR)						L L		CHP2	Ы	Indi-	Trans			pu	Bio-	Syn-	CO2Hy	•,			Sum			Ex-
Total Fuel ex Ngas exchange	s exchan	= ebu	-4603					Bol	rs	CHP3	CAES	vidual	port	Var.		_	gas	gas	gas	gas	gas	age		port		ort
ium		0 0						MM		MΜ	MM	MM	MM	MM	MM		MΜ	ΜM	ΜW	MM	MM	MM	ΜW	MM	_	ΜW
		0 0					January	>	0	2570	744	0	0	957	7 4271		1721	973	1719	1778	-3173	1359	-106	0		106
FuelOII =		0					February	, ≥		3110	845	0	0	957	7 4913		1721	973	1285	1778	-3173		-106	0		106
		240					March		0	1783	310	0	0	957	7 3051	-	1721	973	2186	1778	-3173		-106	0		106
		1.42					April		0	1660	489	0	0	957	7 3107	-	1721	973	1746	1778	-3173	168	-106	0		106
Biomose -	Ŧ	10021					May		0	1045	678	0	0	957			1721	973	1372	1778	-3173		-106			106
	- (6711					June			292	615	0	0	957	7 1865		1721	973	1773	1778	-3173	7	-106	0		106
	Ŷ						July			380	1275	0	0	957			1721	973	1176	1778	-3173	244	-106			106
		5					August			296	1077	0	0	957			1721	973	1142	1778	-3173		-106			106
Total Ngas Exchange costs =	inge costs	II S	-28				September	nber		808	1061	0	0	957			1721	973	1167	1778	-3173		-106			106
Marginal operation costs	n costs =	.,	43				October	L.		789	324	0	0	957			1721	973	2301	1778	-3173	'	-106			106
							November	ber		1612	369	0	0	957			1721	973	1863	1778	-3173		-106			106
l otal Electricity exchange =	xchange :		ŝ				December	ber	0	1051	169	0	0	196	7111		1721	9/3	2658	1778	-31/3	-16/4	-106	0		106
		ກູ					Average	Ð	0	1275	662	0	0	957	7 2895		1721	973	1702	1778	-3173	0	-106	0		106
		04					Maximum	Ę	6 0	9615	6906	0	0	.96	7 12199		1721	973	5127	1778	-3173	9864	-106	0		106
Eived imp/ov-		0 1					Minimum	Ē	0	0	0	0	0	957		957 1	1721	973	1141	1778	-3173	-5362	-106	0		106
rixea imp/ex=		D					Totol fo	Total for the whole year																		
Total CO2 emission costs	on costs :	ш	φ				TWh/vear	ar trie wriole ear 0.00	ole year	ا 11.20	5.82	00.0	0.00	8.41	1 25.43		15.12	8.55	14.95	15.62	-27.87	0,00	-0.94	00.0		0.94
Total variable costs	ts =		-4592																							
Fixed operation costs =	osts =		6946																							
Annual Investment costs =	it costs =		19596																							
TOTAL ANNUAL COSTS	COSTS	11	21950																							
			, L , .			7 7			C F		1717		ſ													Ę
RES Share: 100,6 Percent of Primary Energy	0,6 Perc	ent of H	rimary El		13,U Pe	rcent or	93,0 Percent of Electricity	IT IT	R/	NVI 8	electrici	79,8 TWh electricity from RES	EK.											06-maj-2020 [13:15]	020 [13	:15]

B.6 Scenario 2: 50% - Biomass and hydrogen alternative

Dut Centration 2<- Biomass Hydrogen.txt		es	0 0			r				00	1 2	7 0	0 0	- 0	I - I	9 - 0	16								٦
Dut Scharario 2 - Biomass Hydrogen.Kt The Energy-LAN model Riskmann state Riskmannn state Risk	Ń	V	0,90 0,80 0,10 0,73 0,10 0,73	s Biomass			Exchange	ayment	ip Exp							Average price (EUR/MWh) 17 59		nission (Mt). Net							020 [17:01]
Dut Scharario 2 - Biomass Hydrogen.Kt The Energy-LAN model Riskmann state Riskmannn state Risk	0	s Storag SWh e	0000 000 000 000 000 000 000 000 000 0	2						00	0 0	0 0	0 0	0 0	000		8	CO2 en Total	0,00	-0,01	0,00	00'0	nn'n	-0,01	3-maj-2
Dut Scenario 2- Biomass Hydrogen.txt Production Reference Referenco Reference Reference	el 13.	: Basic Capacities MW-e	0 0 10810 0	Coal O					_	0 -	109 24	11 71	13 39	18 37	21	31 2855 0			0,00	0,34	58,29 88 15	0,00	0,00	l6,11	ŏ
Dut Scenario 2- Biomass Hydrogen.txt Production Reference Referenco Reference Reference	por	se level:	Gr.2: Gr.3: Gr.3: oCHP:	atic	보			ance	_	0 -	109 24	11	13 39	18 37	22		0,27	xp Corr v/Exp 1					2 0		
Dut Scenario 2 - Biomass Hydrogen.txt Mathematical and a set of the set of	AN n	Fuel Pric	Hydro Ti Hydro Ti Electrol. Electrol. Electrol.	CAES TU (TWh/ye	Transpo Househc Industry Various			Bal	_	54 64	е 0 М	0 0	00	0 0	000									-	
Dut Scenario 2 - Biomass Hydrogen.txt Mathematical and a set of the set of	yPL/	о о		MW				- č		100 100	100 100	100 100	100 100	100	100	00 00 00 00 00 00 00 00			0,0	-0,04	58,29 88.15	0,00	00'0	146,41	
Dut Scenario 2 - Biomass Hydrogen.txt Mathematical and a set of the set of	lerg.	ulation n 00 00			H M M M M				РР MW	429 597	210 349	434 407	779 654	682 256	234 110	428 4133 0	3,76			8,41	3,41			11,82	
Dut Scenario 2 - Biomass Hydrogen.txt Mathematical and a set of the set of	Ш	ical reg 3458000 0,0	0,5 EUR.TX	EUK/I	MV MV MV MV				CHP MV	1471 1713	1020 972	642 154	205 162	462 464	911 592	727 5000 0	6,38	househ		I	1,32			1,32	
Dut Scenario 2 - Biomass Hydrogen.xt Exercise demand (MY)verit) Flexible demand 3.4 Capacities Efficiencies Exercise demand (MY)verit) Flexible demand 3.4 Capacities Efficiencies Efficiencies Exercise demand (MY)verit) Task (Flexible demand 3.4 Capacities Efficiencies Efficiencies Exercise demand (MY)verit) Task (Flexible demand 3.4 Capacities Efficiencies Capacities Efficiencies Extending (MYM)verity Task (Flexible demand 3.4) Capacities	Th€	Techni 23 23 cHP CHP	ad share ort 2013_E	1,00 2,00	• • • •		city	- Lo	Waste CSHP MW	352 352	352 352	352 352	352 352	352 352	352 352 352	352 352 352	3,09	Fransp.				9,49	+, C	4,26	
Dut Scenario 2 - Biomass Hydrogen.xt Exercise demand (MY)verit) Flexible demand 3.4 Capacities Efficiencies Exercise demand (MY)verit) Flexible demand 3.4 Capacities Efficiencies Efficiencies Exercise demand (MY)verit) Task (Flexible demand 3.4 Capacities Efficiencies Efficiencies Exercise demand (MY)verit) Task (Flexible demand 3.4 Capacities Efficiencies Capacities Efficiencies Extending (MYM)verity Task (Flexible demand 3.4) Capacities		ategy: on ilisation hare of	^o gr 3 lo aximum ort/expc system	actor	et Price ity grid		Electri	roductio	Geo- Termal MW	00	0 0	0 0	00	0 0	000	000	0,00	lar.Th. ⁻			- 05	C			
Dut Scenario 2 - Biomass Hydrogen.xt Exercise demand (MY)verit) Flexible demand 3.4 Capacities Efficiencies Exercise demand (MY)verit) Flexible demand 3.4 Capacities Efficiencies Efficiencies Exercise demand (MY)verit) Task (Flexible demand 3.4 Capacities Efficiencies Efficiencies Exercise demand (MY)verit) Task (Flexible demand 3.4 Capacities Efficiencies Capacities Efficiencies Extending (MYM)verity Task (Flexible demand 3.4) Capacities		ttion Str regulati um Stab sation s	um CHF um PP um imp um imp	n tactor ication f	je Mark orage s capac max to				>	00	0 0	0 0	00	0 0	000	000	0,00				V	Ê		4	
DIT Sciences Efficiencies DIT Scenario 2.83 Finantie demand 3.44 Capability Efficiencies Efficiencies <td></td> <td>Regula CEEP Minimu Stabilis</td> <td>Minimu Minimu Heat P Maxim DiNord</td> <td>Multipli</td> <td>Averaç Gas St Syngas Biogas</td> <td></td> <td></td> <td></td> <td>RES MW</td> <td>9898 8318</td> <td>11141 9336</td> <td>8391 9343</td> <td>6666 8704</td> <td>7962 11485</td> <td>10286 12516</td> <td>9513 21370 9</td> <td>83,56</td> <td>Hyd</td> <td> ' '</td> <td>'</td> <td></td> <td></td> <td></td> <td>1</td> <td></td>		Regula CEEP Minimu Stabilis	Minimu Minimu Heat P Maxim DiNord	Multipli	Averaç Gas St Syngas Biogas				RES MW	9898 8318	11141 9336	8391 9343	6666 8704	7962 11485	10286 12516	9513 21370 9	83,56	Hyd	' '	'				1	
put Scenario 2 - Biomass Hydrogen txt trity dramat (TW)/Yam): Fleatible demand 3,44 Capabilies Efficient of the point 3,33 Comp 12,50 Cop 12,50				ר cent		Ľ			l ur- bine MW	00	0 0	0 0	00				0,00	Z		'	- 6 35	י הי		6,35	
put Scenario 2 - Biomass Hydrogen txt trity dramat (TW)/Yam): Fleatible demand 3,44 Capabilies Efficient of the point 3,33 Comp 12,50 Cop 12,50				56 GWI 57 Per 6	ı/year)	oble		-	Hydro Pump MW	00	0 0	00	00	00	000	000	0,00	Offsh.			- 50.66	· ∽ •		59,66	
Dut Scenario 2 - Biomass Hydrogen.txt Dut Scenario 2 - Biomass Hydrogen.txt tetre fully demand (TWN/year) 3335 Fead Implexe 0.00 Fead Implexe 0.00 15.00 100 <td></td> <td>Efficienc c. The 2 0,3</td> <td></td> <td></td> <td>e (TWF</td> <td>rt pr</td> <td></td> <td></td> <td></td> <td>137 25</td> <td>100 17</td> <td></td> <td>00</td> <td>0</td> <td></td> <td>48 900 0</td> <td>0,42</td> <td>Wind</td> <td> </td> <td>I</td> <td>- 16 20</td> <td></td> <td></td> <td>16,20</td> <td></td>		Efficienc c. The 2 0,3			e (TWF	rt pr				137 25	100 17		00	0		48 900 0	0,42	Wind		I	- 16 20			16,20	
Dut Scenario 2 - Biomass Hydrogen.txt Dut Scenario 2 - Biomass Hydrogen.txt tetre fully demand (TWN/year) 3335 Fead Implexe 0.00 Fead Implexe 0.00 15.00 100 <td></td> <td>ele 0,5</td> <td></td> <td></td> <td>Was 0 0,0 0 0,0 1,8</td> <td>odu</td> <td></td> <td>Imption 2</td> <td>Elec- trolyser MW</td> <td>5405 4555</td> <td>6262 5411</td> <td>4708 5299</td> <td>3237 4795</td> <td>4327 6901</td> <td>5640 7063</td> <td>5306 11267 83</td> <td>46,61</td> <td>ģ</td> <td> </td> <td>3,17</td> <td></td> <td></td> <td>ر,۵<i>۱</i></td> <td></td> <td></td>		ele 0,5			Was 0 0,0 0 0,0 1,8	odu		Imption 2	Elec- trolyser MW	5405 4555	6262 5411	4708 5299	3237 4795	4327 6901	5640 7063	5306 11267 83	46,61	ģ		3,17			ر,۵ <i>۱</i>		
Dut Scenario 2 - Biomass Hydrogen.txt Dut Scenario 2 - Biomass Hydrogen.txt tetr beside demand 344 3.43 Free biole demand 344 3.44 tetr beside demand 345 7.44 Free biole demand 344 0.00 tetr beside demand 345 7.44 Free biole demand 344 0.00 tetr beside demand 345 7.44 Free biole demand 344 0.00 tetr beside and Tetr beside demand 345 7.46 0.00 0.00 0.00 tetr beside and tetr solar and CSHP 0.00 1.75 0.20 0.00		apacitie V-e M. 0 112 0 105		56 GW 0,5 Per	CSHF 0,0 1,2 0,0					1010 968	885 565	385 105	79 107	219 543	754 996	551 1623 6	4,84				18				
Dut Scenario 2 - Biomass Hydrogen.txt Dut Scenario 2: Fixed implexp. 3.44 Group 2: transportation 6.38 Heat Pump Bole trictly demand (TWhyeen) 1.55 Fixed implexp. 4.718 Group 2: transportation 6.38 Heat Pump Bole trictly demand (TWhyeen) 1.55 Transportation 6.00 1.55 Group 3: transportation 6.00 0.00 <td></td> <td>30 CC 150 30</td> <td>350 40 450</td> <td></td> <td>d. from</td> <td>3) F</td> <td></td> <td>ī</td> <td></td> <td>1127 1085</td> <td>1126 1124</td> <td>1115 1121</td> <td>1110 1133</td> <td>1107 1126</td> <td>1136 1119</td> <td>1119 10137 -396</td> <td>9,83</td> <td>AES Bid c.ly. ve</td> <td> </td> <td>23</td> <td>- 45,</td> <td></td> <td>ρ̈́ · ·</td> <td></td> <td></td>		30 CC 150 30	350 40 450		d. from	3) F		ī		1127 1085	1126 1124	1115 1121	1110 1133	1107 1126	1136 1119	1119 10137 -396	9,83	AES Bid c.ly. ve		23	- 45,		ρ̈́ · ·		
Dut Scenario 2 - Biomass Hydrog Finite damand $\frac{3.44}{1.55}$ Finite damand $\frac{3.44}{4.1.18}$ triansportation $\frac{3.33}{6.38}$ Finite damand $\frac{3.44}{4.1.18}$ triansportation $\frac{3.34}{6.38}$ Finite damand $\frac{3.44}{4.1.18}$ Transportation $\frac{6.38}{6.38}$ tric cooling 1.55 Total $\frac{3.44}{4.1.18}$ Transportation $\frac{6.38}{6.38}$ tric cooling 1.55 Total $\frac{2.44}{4.1.18}$ Transportation $\frac{6.38}{6.38}$ tribulation $\frac{3.33}{6.00}$ $\frac{1.75}{0.00}$ Total $\frac{4.718}{4.188}$ $\frac{3.44}{4.188}$ tribulation $\frac{6.38}{6.00}$ Transportation $\frac{6.38}{6.38}$ $\frac{1.75}{4.100}$ $\frac{2.41}{2.200}$ $$	X	, mb	3: ump insing	orage: Boiler:	city prod			ī	demand MW	4526 4410	4244 3868	3599 3658	3563 3798	3786 3923	4156 4180	3975 6121 2449	34,91				0	-33			
putScenario 2ricity demandTricity demandTrivity earlyd demand33,36Fixed impled demand33,36Fixed impled demand33,36Fixed impletric beating + HP2,44Transportattric cooling1,55rotalrict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001strial CHP (CSHP)0,001bore Wind13100 MW5966bore Wind13100 MW5906 MWbore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind10001,00copower0,001,00bore Wind1001,00brenard1001,00bore Wind5000 MW16,20bore Wind60051032576brenard100103brenard2,442,3430brenard2,442,3430brenard37120380brenard10325160brenard10325130brenard53282412494brenard5328241244brenard5423702513brenard2442,35	len.	Group CHP Heat F	Boiler Group CHP Heat F Boiler Conde	Heatst Fixed	Electri Gr.1: Gr.2: Gr.3:	ces		ſ		5	-59 -16	-635 -635	-598 -608	-250 -39	51	-179 2307 -1742	-1,57		' '		7,3			7,3	
putScenario 2ricity demandTricity demandTrivity earlyd demand33,36Fixed impled demand33,36Fixed impled demand33,36Fixed impletric beating + HP2,44Transportattric cooling1,55rotalrict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001strial CHP (CSHP)0,001bore Wind13100 MW5966bore Wind13100 MW5906 MWbore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind10001,00copower0,001,00bore Wind1001,00brenard1001,00bore Wind5000 MW16,20bore Wind60051032576brenard100103brenard2,442,3430brenard2,442,3430brenard37120380brenard10325160brenard10325130brenard53282412494brenard5328241244brenard5423702513brenard2442,35	drog		0 0 2 4	<u>.</u>	ι = Ξ ο	Ш			ЕH MW	137 25	100 17	~ ~	00	0		48 900 0	0,42	u. Hydro		'				'	
putScenario 2ricity demandTricity demandTrivity earlyd demand33,36Fixed impled demand33,36Fixed impled demand33,36Fixed impletric beating + HP2,44Transportattric cooling1,55rotalrict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001strial CHP (CSHP)0,001bore Wind13100 MW5966bore Wind13100 MW5906 MWbore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind10001,00copower0,001,00bore Wind1001,00brenard1001,00bore Wind5000 MW16,20bore Wind60051032576brenard100103brenard2,442,3430brenard2,442,3430brenard37120380brenard10325160brenard10325130brenard53282412494brenard5328241244brenard5423702513brenard2442,35	Hy H		Sum 35,2 2,3 0,0 32,8			itica			Boiler MW	383 429	160 36	- 0	00	1 00	93 295	118 3683 0	1,03	Geo/N		·		•			
putScenario 2ricity demandTricity demandTrivity earlyd demand33,36Fixed impled demand33,36Fixed impled demand33,36Fixed impletric beating + HP2,44Transportattric cooling1,55rotalrict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001strial CHP (CSHP)0,001bore Wind13100 MW5966bore Wind13100 MW5906 MWbore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind10001,00copower0,001,00bore Wind1001,00brenard1001,00bore Wind5000 MW16,20bore Wind60051032576brenard100103brenard2,442,3430brenard2,442,3430brenard37120380brenard10325160brenard10325130brenard53282412494brenard5328241244brenard5423702513brenard2442,35	lass	4088	rr.3 2,30 0,60 0,00) C			ELT MW	00	0 0	00	00	00	000	000	0,00	д		6,11		00'0		6,11	
putScenario 2ricity demandTricity demandTrivity earlyd demand33,36Fixed impled demand33,36Fixed impled demand33,36Fixed impletric beating + HP2,44Transportattric cooling1,55rotalrict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001ict heating demand0,001strial CHP (CSHP)0,001bore Wind13100 MW5966bore Wind13100 MW5906 MWbore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind13100 MW1,620bore Wind10001,00copower0,001,00bore Wind1001,00brenard1001,00bore Wind5000 MW16,20bore Wind60051032576brenard100103brenard2,442,3430brenard2,442,3430brenard37120380brenard10325160brenard10325130brenard53282412494brenard5328241244brenard5423702513brenard2442,35	liom	N		Wh/yea Wh/yea	Wh/yea Wh/yea Wh/yea Wh/yea	: (1	ting	ction	MW MW	1698 1578	1621 925	589 163	83 133	244 946	1291 1859	927 2450 20	8,14	oiler3			,11	- 00'),11	
Dut Sc addemand TWh/year) atric beating + HP 33, tric cooling atric beating + HP 31, tric cooling atric beating + HP 2, tric beating + HP atric beating + HP 33, tric beating + HP atric beating + HP 50 beating + HP 50 beating + HP 50 atric beating + HP 50 beating + HP 50 atric beating + HD 50 atric beating + 440 50 atric beating + 4403 117 atric beat 2,35 atric beat 2,413 atric beat 2,35 atric beat 2,35 </td <td> I</td> <td>e demai mp/exp. ortation</td> <td>Gr.2 12,9 1,7 0,0 11,11</td> <td></td> <td></td> <td>ЮЛ И</td> <td>ict Hea</td> <td>Produc</td> <td>CHP</td> <td>1103 1285</td> <td>765 729</td> <td>482 115</td> <td>154 121</td> <td>346 348</td> <td>684 444</td> <td>545 3750 0</td> <td>4,79</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	I	e demai mp/exp. ortation	Gr.2 12,9 1,7 0,0 11,11			ЮЛ И	ict Hea	Produc	CHP	1103 1285	765 729	482 115	154 121	346 348	684 444	545 3750 0	4,79								
Dut Sc addemand TWh/year) atric beating + HP 33, tric cooling atric beating + HP 31, tric cooling atric beating + HP 2, tric beating + HP atric beating + HP 33, tric beating + HP atric beating + HP 50 beating + HP 50 beating + HP 50 atric beating + HP 50 beating + HP 50 atric beating + HD 50 atric beating + 440 50 atric beating + 4403 117 atric beat 2,35 atric beat 2,413 atric beat 2,35 atric beat 2,35 </td <td>lio</td> <td>Flexible Fixed ii Transp Total</td> <td>Gr.1 0,00 0,00 0,00</td> <td>16 50</td> <td>30-</td> <td>SNII</td> <td>Dist</td> <td></td> <td>DHP</td> <td>00</td> <td>0 0</td> <td>00</td> <td>00</td> <td>00</td> <td>000</td> <td>000</td> <td>0,00</td> <td></td> <td></td> <td></td> <td>Ő</td> <td></td> <td></td> <td></td> <td></td>	lio	Flexible Fixed ii Transp Total	Gr.1 0,00 0,00 0,00	16 50	30-	SNII	Dist		DHP	00	0 0	00	00	00	000	000	0,00				Ő				
Dut Sc addemand TWh/year) atric beating + HP 33, tric cooling atric beating + HP 31, tric cooling atric beating + HP 2, tric beating + HP atric beating + HP 33, tric beating + HP atric beating + HP 50 beating + HP 50 beating + HP 50 atric beating + HP 50 beating + HP 50 atric beating + HD 50 atric beating + 440 50 atric beating + 4403 117 atric beat 2,35 atric beat 2,413 atric beat 2,35 atric beat 2,35 </td <td>enal</td> <td>ar): 66 55</td> <td>뚜</td> <td>MW 0</td> <td></td> <td>NAF</td> <td></td> <td></td> <td>Waste⁻ CSHP MW</td> <td>2576 2586</td> <td>2494 2343</td> <td>2152 2033</td> <td>1989 2008</td> <td>2116 2241</td> <td>2395 2513</td> <td>2286 3179 1801</td> <td>20,08</td> <td></td> <td> </td> <td>5,12</td> <td></td> <td>0,00</td> <td></td> <td>5,12</td> <td></td>	enal	ar): 66 55	뚜	MW 0		NAF			Waste ⁻ CSHP MW	2576 2586	2494 2343	2152 2033	1989 2008	2116 2241	2395 2513	2286 3179 1801	20,08			5,12		0,00		5,12	
Input Electricity demand (Fixed demand (Fixed demand (Electric beating + HI Electric beating (TW District heating (TW District cooling Nind Offshore Wind Photo Voltaic River Hydro Hydro Polistrict Demand after solar Wind Offshore Wind Offshore Wind Photo Voltaic River Hydro Hydro Polstrict Photo Voltaic River Hydro MW MW MW MortpUt Demand MW MW MW MW MW MW DutpUt Demand Morense MW	S0	TWh/ye 33,5 2,4 1,5	h/year) and HP) and CSI	500 1310	-				Solar MW	103 218	247 384	408 371	419 393	291 187	117 70	267 2281 0		Wh/yea CHP2		7,15		0,00		7,15	
Input Electric bear Electric bear Electric bear Electric bear Electric bear District heati District heati District heati Solar Them Industrial CF Demand afte Wind Offshore Wi Photo Voltai River Hydro Hydro Powel Hydro Powe		emand (id ing + HF ng	ng (TW ng dem al IP (CSH	Ę	Nuclear	L		emand .		6005 6126	5328 4417	3626 2048	2048 2048	2747 3730	4663 5423	4012 9949 1886	35,24	NCE (T		. 1					
Total Biomunic Construction of the second s	but	ricity de l demar ric heati ric cooli	ict heati ict heati Therma itrial CH and afte		 > Voltaic > Hydro > Power > hermal/l 	utpu ⁻		ă	n n n	y ary						5 6		- BALAI		Ň	ass wahla	to.	ei sar/CCS		
	l n	Elect Fixec Elect Elect	Distri Distri Solar Indus Dema	Wind	Phote River Hydr	б				Janua. Februá	March April	May June	July August	Septer	Noven Decen	Avera Maxim Minimu	TWh/y	FUE	Coal	N.Ga	Biom	H2 el		Total	

Output specifications	ations		S	Scenario	rio 2	I	jon,	Biomass Hydro	 	oge	gen.txt						The	Ene	rgyP		EnergyPLAN model	el 13	13.0	N	
								Distri	District Heating	ng Production	ction														\wedge
Gr.1							Gr.2								0	Gr.3					RE	RES specification	ication		
District heating Solar C: MW MW M	CSHP DHP MW MW	District heating MW	Solar MW	CSHP MW	0 CHP MW	НР MW	ELT MW	Boiler MW	EH MM	Stor- B age la MW N	Ba- Di lance he MW	District heating S MW N	Solar C MW N	CSHP C MW N	CHP F MW N	HP ELT MW MW	F Boiler V MW	ler EH V MW	Stor- age MW	Ba- lance MW	RES1 Wind MW		RES2 RES3 RES Total Offshoi Photo ' 4-7 ic MW MW MW M	tes To 7 ic MW	otal MW
January 0 0 Echricary 0 0	00	2205	77	354	478 540	867	00	336	88 16	16161 15540	4 4	3800 2076	26 26 26	2222	626 8	831 765	00	46 49	9 15001	00	1958	5635 6226	149	156	9898 0210
		1957	184	335	395	802	0 0	154 154		11569	ာစု	3372				819			5 23509	-20	2304		844 844	~	11141
0		1622	285	300	433	559	0	36		11600	- o-	2795	99 2			365	0				1984		1112		9336
0		1332	304	256	350	391	0	-	1	12632	28	2295				198	0				1527		1183		8391
		752	277	228	115	151	0	0	1 12	4905	-20	1296		1805	0	13	0			-616	1755		1177		9343
0		752	310	218	154	7	0	0		15399	0	1296		1771	0	13	0				1160		1267		6666
0 0		752	296	222	121	120	0	0 ·		16699	φ·	1296		1786	0	13	0 0				1587		1081		8704
oer U		1009	216	247	338	211	0 0	- 00	0 16	16649	4 c	1/39 7260	5 5 7	1868 1064		33 266	0 0		0 37299	-246	13/5	02920	810	156	11105
		1712	87	312	421	000 715	00	93 50		15928 15928	V 00	2951				200 576	0 0			<u>4</u> –	2134		407 214		10286
0		1991	52	340	226	916	0	292		18219	~	3432				944	0	4 25		50	2863		100		12516
0		1473	199	287	317	523	0	106			0				228 4	404					1845		723	154	9513
Maximum 0 0 Minimum 0 0	0 0 0 0	3653 692	1624 0	495 174	1125 0	1050 7	0 0	2190 0	300 31 0 31	31941 0	651 -876	6296 1193	841 0 1 2	2684 2 1627		1400 13	0 1784 0 0	09	0 56000 0 0	2282 -1337	4954 0	12950 0	4388 0		21370 9
Total for the whole year TWh/vear 0.00 0.00 0		12.94	1 75	2.52	67.0	4.59	000	0.93	0.36			22.30	0.60 17	17.56	2 00	3 55 0 00	0 0 0	0.06		-1.57	16.20	59.66	6.35	135	83.56
of heat from indust	I CHP: 0.0	0 TWh/ves		Ì	î) 				
	- - -		;											LAN	URAL (NATURAL GAS EXCHANGE	HANGE								
ANNUAL COSTS (Million EUR)	JR)					Ō	DHP &	CHP2	ЧЧ	-ipul-		Trans In	Indu.	Demand	nd Bio-	- Syn-		- CO2Hy	SynHy	SynHy	Stor-	Sum	<u></u>	Ш	Ex-
ex Ngas exchange	= -1800	0				ă	Boilers	CHP3	CAES	-	_	-	Var.	Sum	gas			gas	gas	gas	age		port	ğ	port
= _	_					2	MM	MM	MM	MM		MW	MM	MM	MM	MM /		MM	MM	MM	MM	MM	MM	Σ	MM
					January	2	0	2829	697		0		957	4484	172			1812	1778	-3173	1377	-2	0		5
_ Diesel= 24					February	γıε	0	3294	971	-	0		957	5223	1721			1302	1778	-3173	2626	-2	0		5
					March		0 0	1962	342		0 4		957 257	3261	1721			2408	1778	-3173	-442	ις ι	0 0		ι Ω
lling =	~				April			1869 1235	706	-			957 057	3394 2800	1721		9/3 1 073 1	1798 1330	1778 1778	-3173 -3173	301 265	γų	00		Ω ư
	-				June		0 0	296	661	-			957	1914	1721			1820	1778	-3173	-1200	ρ φ			о ю
Food income = -3450 Waste = 0	~ ~ ~				July		0	394	1267		0		957	2619	1721			1142	1778	-3173	182	Ϋ́	0		5
Total Nicas Evoluance costs =		-			August Sentember	t nhar		311 888	1064 1108				957 057	2333	1721		9/3 1 073 1	1142 1142	1778 1778	-3173 -3173	-104 518	γų			Ω ư
		- 1			October	ž r	0	892 892	416		00		957	2265	1721			2338	1778	-3173	-1368	ဂု	00		ъ с
iviarginal operation costs =	41				November	lber	0	1753	380	- 1	0		957	3091	1721			1960	1778	-3173	-164	-2	0		5
ectricity exchange =		10			December	ıber	0	1139	179		0	0	957	2276	1721		973 2	2821	1778	-3173	-1840	ς	0		£
Evnort = 10	- "				Average	je	0	1397	695		0		957	3050	1721	_		1755	1778	-3173	0	-5	0		5
∋ck =					Maximum	um	0 0	9615 2	6720 î		0	0 0	957 257	12199 222	1721			6270	1778	-3173	9763	ι Υ	0 0		5 I
					Minimum	Ę	0	0	0		0		957	957	172	-	973 1	1142	1778	-3173	-6607	Ϋ́	0		5
Total CO2 emission costs =		0			Total for th TWh/vear	é	whole yea 0.00	ar 12.27	6.11	00.0		0.00	8.41	26.79	15.12		8.55 11	15.42	15.62	-27.87	00.0	-0.04	00.0		0.04
Total variable costs = Fixed operation costs =	-1745 6982	5.0																							
Annual Investment costs =	20013	e																							
TOTAL ANNUAL COSTS =	25250	0																							
RES Share: 100.0 Percent of Primary Energy	of Primarv F		12 3 Pe	rcent of	92.3 Percent of Flectricity	itv	œ	5.5 TW) electric	85.5 TWh electricity from RFS	RFS												06-mai-2020 [17-01]	-710 CC	-011
	- (2				"	200															1	-	-

B.7 Scenario 3: 90% - Biomass alternative

Input	Scen	Scenario 3 -		Biomass	ISS 8	alternative.txt	nativ	e.txt									μ	Je E	nerg	yPL/	The EnergyPLAN model 13.0	odel	13.(M
Electricity demand (TWh/year): Fixed demand 33,30 Electric heating + HP 2,44 Electric cooling 1,55	(TWh/year): 33,30 HP 2,44 1,55		Flexible demand Fixed imp/exp. Transportation Total	nd 3,44 0,00 9,80 50,54			Grou CHP Heat	Group 2: CHP Heat Pump	3,73 €	Capacities MWv-e MJ/s 1500 1125 300 1050	ele 0,5	lic '	ies COP 3,50	x ii z x	Regulation Strategy: Tech CEEP regulation 2 Minimum Stabilisation share Stabilisation share of CHP	Rtrateg Jation Stabilisat	y: Tec ion shar of CHP	nical regul 234580000 e 0,00	atic	ۍ ن	Fuel Price level: Basic Capacit MW-e-	Cap Cap	Basic Capacities (MW-e GV	s Storage Ef GWh elec.	: Basic VUV Capacities Storage Efficiencies MW-e GWh elec. Ther.
District heating (TWh/year) District heating demand Solar Thermal Industrial CHP (CSHP) Demand after solar and CSHP	Wh/year) mand SHP) r and CSHP	Gr.1 0,00 0,00 0,00	Gr.2 12,94 1,75 0,00 11,19	Gr.3 Gr.3 5 0,60 0,00 21,70	Ō	Sum 35,24 2,35 0,00 32,89	Boller Group CHP Heat F Boiler Conde	Boller Group 3: CHP Heat Pump Boiler Condensing		4400 3500 2625 400 1400 7600 4500	.00 225 0,52 .00 .00 0,61	0,95 2 0,39 0,95	3,50	<u>zzĭž</u>	Minimum CHP gr 3 load 0 Minimum PP 0 Heat Pump maximum share 0,50 Maximum import/export 0 DitNord_pool_system_2013_EUR_TXT	CHP gr (PP 5 maxim import/e: vol_syste	t load um shar xport em_2013	EUR.T	0 MW 0,50 MW 0,50 MW		Hydro Turbine: Electrol. Gr.2: Electrol. Gr.3: Electrol. trans.: Ely. MicroCHP:				0,90 0,80 0,10 0,79 0,10 0,80
Wind Offshore Wind Photo Voltaic River Hydro Hydro Power Geothermal/Nuclear	5000 5000 5000 0 0 0		16,20 TV 56,02 TV 6,35 TV 1,35 TV 0 TV 0 TV	TWh/year TWh/year TWh/year TWh/year TWh/year TWh/year	0,00,00,00,00,00,00,00,00,00,00,00,00,0	Grid stabili- sation share	Heats Fixed Gr.1: Gr.2: Gr.3:	Heatstorage: Fixed Boiler: Electricity pro Gr.3: Gr.3:	Heatstorage: gr.2: Fixed Boiler: gr.2: Electricity prod. from Gr.1: Gr.2:	0,5 Pe CSF 0 1 0 1	Wh gr er cent gr HP Waste ,00 0,00 ,20 0,00	gr.3: 56 GV nt gr.3: 0,5 Pe Waste (TWh/year) 0,00 1.89	6 GWh 5 Per cent (year)		Addition factor Multiplication factor Dependency factor Average Market Price Gas Storage Syngas capacity Biogas max to grid	ictor on facto cy factor larket Pr Je pacity x to grid	1,00 2,00 0,00 ice 77 2184 1721		EURMWh EURMWh pr. MW EURMWh GWh MW		CAES fuel ratio: (TWh/year) (Transport Household Industry Various	ratio:) Coal 0,00 0,00 0,00	0 0 0 0 0 0	0,000 il Ngas E ,00 0,00 ,00 0,00 ,00 8,41	00 Ngas Biomass 0,00 0,00 0,00 1,59 0,00 3,41 8,41 0,00
Output	Ň	WARNING!!: (1) Critical	ii SN	(1)	Criti		Excess;	;SS;	(3) F	PP/Ir	의	rt prc	problem	_ _											
Demand		Dis	District Heating Production	tion						Consu	umption					Electrici Production	Electricity				Balance	JCe		Ĕ	Exchange
Distr. heating MW	Solar MW	Waste+ CSHP DHP MW MW	MW CHP	E E E E E E E E E E E E E E E E E E E	MW M	Boiler EH MW MM	EH Ba- MW MW	- Elec. ce demand N MW		₽₩	Elec- trolyser MW	H⊒ M	Hydro T Pump b MW h	Tur- bine RE MW M	RES dro MW MW	- Geo- o thermal W MW		Waste+ CSHP CHP MW MW	Ч М	Stab- Load %	Imp MW MW	Exp CEEP MW MW	K WW	-	Payment mp Exp Million EUR
January 6005 February 6126 March 5328 April 4417	103 2406 218 2416 247 2324 384 2173	06 16 24 73 0	1080 1271 749 732	1809 1665 1791 1103	0000	428 1 484 0 156 1 23	175 65 120 -5 13 -5	4 4519 6 4403 -59 4237 -11 3861	9 1516 3 1468 7 1514 1 1512	1041 995 932 618	4544 3722 5497 4748	175 65 120 13	0000	0 94 0 79 0 106 89	9432 7931 10663 8962	0000	0 352 0 352 0 352 0 352	2 1439 2 1695 2 999 2 976	525 632 304 461	00 00 00 00 00 00 00 00 00 00 00 00 00	47 43 1			0 0 0 0 4 w 0 0	0070
	408 371 419			779 169 94	0000	- 0 0 0	4 4 .				3931 4760 2868	0 0	0000		8051 8958 6413	0000			-	001 001 001 001	0000				
August 2048 September 2747 October 3730 November 4663 December 5423	393 1838 291 1946 187 2071 117 2225 70 2343	38 0 46 0 71 0 43 0 43 0	111 329 318 643 421	139 311 1163 1496 2002		0 306 2 20 2	0 -434 1 -130 18 -32 78 11 241 40	434 3791 130 3779 -32 3915 -11 4149 40 4173	1 1511 9 1516 5 1522 9 1524 3 1506	110 238 605 812 812 1037	4354 3776 5942 4801 6045	0 18 78 241	00000	0 83 0 76 0 109 0 98 0 98 0 119	8343 7618 10954 9802 11943		0 352 0 352 0 352 0 352 0 352 0 352	2 148 2 439 2 424 2 858 2 858 2 561	923 899 278 353 146	00 100 100 100 100	0 - 0 0 0	0 0 10 10 0	0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	00000
Average 4012 Maximum 9949 Minimum 1886	267 2116 2281 3009 0 1631	16 0 09 0 31 0	526 3750 0	1043 2450 20	0 43 0 43	124 (4388 9(0	60 -124 900 2414 0 -1572	24 3968 14 6114 72 2442	8 1509 4 11724 2 -530	585 1623 6	4588 11279 83	09 006	000	0 90 0 205 0	9098 20584 9	000	0 352 0 352 0 352	2 701 2 5000 2 0	554 4500 0	100 100	8 2478 15 0	4 4 1510 1510 0 0		0 Avei 0 (El 0 115	Average price (EUR/MWh) 115 64
TWh/year 35,24	2,35 18,59	59 0,00	4,62	9,16 (0,00	1,09 0,	0,52 -1,09	34,8	5 13,26	~+	40,30	0,52	0,00	0,00 79,	79,92 0,0	0,00 0,00	0 3,09	9 6,16			0,07 0	0,04 0,04	°	8.	
FUEL BALANCE (TWh/year): DHP CHP2		CHP3 Bc	Boiler2 Bc	Boiler3 P	РР G	Geo/Nu. Hydro		Waste	CAES BioCon- Elc.ly. version		Electro- Fuel V	Wind 0	Offsh.	PV	Hydro	Solar.T	h. Trans	Solar.Th. Transp. househ.	Industry h. Various	ry Is Total		Imp/Exp Corrected Imp/Exp Net		02 emis: Total	CO2 emission (Mt): Total Net
Coal Oil N.Gas Biomace	6,40	5,44	0	- - - 7,	- - 7,91			230		- - 23,66	-4,62							-	8,41 8,41	0,00 0,00 -0,12	0,00 0,05 0,05	0,00 0,00 -0,07	00	0,00 0,02 -0,02	0,00 0,00 -0,01
Renewable - H2 etc Biofuel - Nuclear/CCS -	00	0			0,00						2 2	16,20 5 - -	56,02 	6,35 		4,59	- 4,99 30,59 -	- -	- - - - - - - - - - - - - - - - - - -	84,51 0,00 0,00 0,00			2 5 0 0 0	0,0 0,0 0,0 0,0 0,0 0,0	000 000 000
Total -	6,40	5,44 0	0,96 0	0,19 7,	7,91			7,30 -3	-30,37 -6	-9,04	3,53 1	16,20 5	56,02	6,35		4,59	35,58	1,32	11,82	125,54	0,05	125,59		-0,02 maj-2020	-0,02 -0,01 11-maj-2020 [17:54]

Output specifications	ıt sp	ecific	cati	suo		Sc	Scenario	rio 3	Т	oma	ISS 8	Biomass altern	Jativ	ative.txt					F	The Er	lergy	PLA	EnergyPLAN model		13.0	N	
											Distri	District Heating	g Production	tion													
1	Ō	Gr.1								Gr.2								Gr.3					R	RES specification	ication		
	District heating		٩		District heating	Solar	CSHP	-			Boiler			e, .	District heating So		<u>د</u>			Boiler			RE W		щ 4	μ μ	-
	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	MW	MM		MM		MM MM			MM		WM WW	MM M	MM	MM	MM		MM
January	0 0	0 0	00	0 0	2205	77	354	442	886	0 0	341 252	101 17	17131 15000	4 4 8 6	3800	26 2052 EE 2052	52 638 50 770	8 923	00	87	74 16071	71 0	1958	8 7168 5040	149	156 9	9432
March		0 0			2243 1957	184	335	363	833 833		146		11918 -							10		4			310 844		10663
April	0	0	0	0 0	1622	285	300	397	611	0	23									0					1112		8962
May	0	0	0	0	1332	304	256	286	457	0	~							4 323		0	0 35762	'			1183		8051
June	0	0	0	0	752	277	228	109	156	0	0	1 15	15889 -	-18						0		i			1177		8958
July	0	0	0	0	752	310	218	143	81	0	0	0 16			1296 10	109 1602		0 13		0	0 35792	92 -428	1160	0 3893	1267	93 6	6413
August	0	0	0	0	752	296	222	111	127	0	0	0 17		4						0					1081		8343
September		0	0	0	1009	216	247	294	245	0	-									0		'			810		7618
October	0	0	0	0	1370	140	276	201	743	0	S			-13						0	0 36096	7			407		10954
November	0 0	0 0	0 0	0 0	1712	87	312	375	758	0 0	93		16729						0 0	← į					214		9802
December	0	0	0	0	1991	52	340	202	934	0	291	172 18	166	1 3	3432	18 2003	03 219	9 1068		15	69 32711	11 40	2863	3 8814	100	166 11	11943
Average	0	0	0	0	1473	199	287	284	555		104									20			1845		723		9098
Maximum	0	0	0	0	3653	1624	495	1125	1050	0	2181	300 35				841 2514	262	44	0	2208	600 56000	00 1899	4954	4 12159	4388	300 20	20584
Minimum	0	0	0	0	692	0	174	0	7	0	0	0		-746 1	1193	0 145		0 13		0	0	0 -1428		0 0	0	5	6
Total for the whole year	e whole y	6			10 01	1 75	7 67	01 0	80 1		100	0.20			0 00	60 16 07	07 0 10					00	16.20	0 26 03	6 2E	1 35 70	000
I wnyear	nn'n		n'n	n'n	12,34	C/'I	70,2	z,43	4,00	n, uu	0,81	0,39	ć			n'on lo'n			n,uu	0, 10	0, 14	- 1,08					19,92
Own use of heat from industrial CHP:	^t heat fro	m industr	rial CHF	00,00	0,00 TWh/year	T.																					
ANNUAL COSTS		(Million FUR)							10	DHP & (CHP2	dd	Indi-	Trans		Indu.	NATUF Demand	RAL GAS Bio-	NATURAL GAS EXCHANGE	NGE CO2Hv	v SvnHv	v SvnHv	v Stor-	Sum	<u></u>	× L	
	v Nage 6		, I , I	673					n a						2			000		100				50			+
Uranium		coulding	<u></u> 0	200					Ξ		MM	MM			_		MM	MW	MW	MM	9as MW	MW	MW	MM	MM	MM	
Coal																											
Ξ	П		0					January 	×		2768 2200	853	0 0				4579	1721	973	1892	1778	-3173		-14	0 0	÷,	4.
Gasoil/Diesel=	<u>=</u>	24	246					February	<u>Z</u>		3260	1028	0 0				5245	1721	973	1387	1778			-14	0 0	4	4 .
Petrol/JP =	11	ر بہ _ا	56					March			1921	494	0				3373	1721	973	2511	1778		•	-14	0	÷.	14
Gas handling =	= D(32					April			1878	749	0				3584	1721	973	2022	1778			-14	0	÷.	4
Biomass	5 II	16	918					May			1129	/98	0 0				2884	1721	9/3	1484	1//8			-14	0 0	÷ .	14
Food income	е Е	-2	-579					June		0 0	280	296	0 0				2200	1721	9/3	20/02	1//8		7	-14	0 0	4	4 .
Waste	П		0					July		5 0	300	1/13			55 0		3036	1/2/1	9/3	1306	1//1			- 14			4 •
Total Maaa	Duchova			•				Sontombor	, Lock		204 0 1 1	1001				201 201 201	2142	1271	C / G	0701	1710	0/10-	871	+ + -			, t
		- eienn af	1	ŧ				October			а15 15	150					0020	1701	079	14/3 7657	1778						t <
Marginal operation costs	veration c	costs =		50				November	, her		1650	574					3181	1721	079	2053	1778			14			
Total Electricity exchange =	icity exch	ange =		8				December	ber		1079	238	0				2274	1721	973	2820	1778		'	-14	0	4	4
Import =	•		8														0000			0007				:	G		
Export =			2					Average	e		1348	901	0 0				3206	1/2/1	9/3	1920	1//8	-31/3		-14	0 0	4	4 .
Bottleneck =	Ш		2					Maximum	m		9615 î	7317	0 0		0 0		12199 î =-	1721	973 0-0	6444	1778	-3173		-14	0 0	÷ .	4 .
Fixed imp/ex=	=×		0					Minimum	Ē	D	0	D	Ð			106	196/	1721	9/3	1141	1//8	-31/3	-6773	-14	D	÷	4
Total CO2 emission costs =	mission	costs =		7				Total fc	ē	iole year																	
								I wn/year		0,00	11,84	7,91	0,00	n'nn		8,41 2	28,10	12,1Z	8,55	10,8/	Z0,CT	-21,81	0,00	-0,12	0,'UU	0, 1Z	N
Fixed operation costs =	tion costs	 		7.26 8014																							
		3		-																							
Annual Investment costs =	estment c	costs =		20191																							
TOTAL ANNUAL COSTS	NUAL CO	= STSC		28932																							
RES Share:		100,1 Percent of Primary Energy	it of Prii	nary En€		11,0 Per	cent of	91,0 Percent of Electricity	ity	81	,8 TWI	ı electric	81,8 TWh electricity from RES	ίES											11-maj-2020 [17:54]	20 [17:5/	4]
	I				I																						1

B.8 Scenario 3: 90% - Hydrogen alternative

	> ncies er.	0,10 0,10	mass 0,00 1,59 3,41 0,00		Эс	T Exp	000	007	000-00	price 1Wh) 61	5	Mt):]
N	: Basic VUV Capacities Storage Efficiencies MW-e GWh elec. Ther.		Ngas Biomass 0,00 0,00 0,00 1,59 0,00 3,41 8,41 0,00		Exchange	/meni on El	020	000	000000	Average price (EUR/MWh) 118 61	11	CO2 emission (Mt): Total Net		00'0		0,01	
0	ss Storag GWh e	0 662 0,000					000	000	00000		0,00	CO2 em Total	0,00 0,00 0,01	00,0 0,00	0,00	0,01	
I 13	Basic Capacities MW-e (00000			CEEP EEP MW MW	004	4 5 6	000470	10 1970 0	0,09 0,	cted et	0,00 0,00 0,04	36,23 86,79 0,00	0,00	05	
ode	<u>e</u>		d 0,00 0,00 0,00		nce	Exp MW M	004	4 5 6	0 0 0 4 7 4		0,09 0	Imp/Exp Corrected Imp/Exp Net				123,05	ļ
Z	Fuel Price lev Hvdro Primo	Hydro Turbine: Hydro Turbine: Electrol. Gr.2: Electrol. Gr.3: Ely. MicroCHP: CAES fuel ratio.	(TWh/year) Transport Household Industry Various		Balance	MW E	63 62 3	000	00-000		0,09 0	Imp/Exp Co Imp/Exp	0,00 0,00 0,01	0,00	0,00	0,01	
The EnergyPLAN model 13.0						Stab- Load In % N	100 100 100	100 100	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Total	0,00 0,00 0,03	36,23 86,79 0.00	0,00	123,05	
ergy	Technical regulation no. 3 234580000 share 0,00 SHP 0,00	MM M ⁴	EURMWh pr. MW EURMWh GWh MW MW			MA PP	510 640 303	452 490 576	1038 896 894 280 350	547 547 4500 0	4,81	Industry Various	8,41	3,41		11,82	
Еле	nical regula 234580000 e 0,00	0 1 0,50 1 0,50 1 UR.TXT EURMWh	EUR/MWh EUR/MWh GWh MW MW			MW F	1482 1733 1027	1022 620 146	192 (148 462 439 877 1 148 148 148 148 148 148 148 148 148 148		6,35			32		1,32 1	
The	Technica 234 share HP	4 t 2013_EL			ty	Waste+ CSHP 0 MW	352 352 352	352 352 352	352 352 352 352 352		3,09	Solar.Th. Transp. househ.		- 1 - 6.79	87		
	ategy: on lisation s are of C	gr 3 load ximum s irt/expor iystem_2			Electricity	Geo- thermal MW	000	000	000000		0,00	ar.Th. Tr				9 34,66	
	Regulation Strategy: Tech CEEP regulation 2 Minimum Stabilisation share Stabilisation share of CHP	Minimum CHP gr 3 load 0 Minimum PP 0 Heat Pump maximum share 0,50 Maximum import/export 0 DiNord_pool_system_2013_EUR.TXT Addition factor 1,00_EUR/M	Multiplication factor Dependency factor Average Market Price Gas Storage Syngas capacity Biogas max to grid		2	Hy- dro MW	000	000	000000	000	0,00			- 4,59 -		4,59	
	Regula CEEP Minimu Stabilis	Minimum CHI Minimum PP Heat Pump m Maximum imp DisNord_pool_ Addition facto	Multiplication Dependency Average Marl Gas Storage Syngas capa Biogas max t			RES	9723 8173 10962	9196 8263 9199	6571 8569 7833 11286 10104	9358 9358 21075 9	82,20	Hydro				'	
	£ Q		th cent	ше		Tur- bine MW	000	000	000000		0,00	Ы		- 6,35 -		6,35	
	icies ar COP 39 3,50		56 GWh 0,5 Per cent hhyear)	problem		Hydro Pump MW	000	000	000000		0,00	Offsh.		- 58,29 -		58,29	
	Efficiencies elec. Ther 0,52 0,39	0,52 0,39 0,61 0,95	gr.3: 56 GV nt gr.3: 0,5 Pei Waste (TWh/year) 0,00 1,89			L EH	184 78 132	1 1 13	0 1 79 79		0,56	Wind		- 16,20 -		16,20	
	_		GWh Per cent SSHP Wa 0,00 0, 1,20 0, 0,00 1,3	mport	Consumption	Elec- trolyser MW	4881 4027 5797	5018 4178 4981	3027 4555 4033 6284 5115	-	42,72	Electro- Fuel	-4,74	- - 36.15	-27,87	3,55	
	Capacities MW-e MJ/s 1500 1125 300 1050	44 3500 26 400 14 76 4500	56 - C:	PP/I	Cons) 1044) 997 938	627 8 451 111	83 83 83 83 83 842 83 842 83 842 842 842 842 842 842 842 842 842 842		5,19		 - 23,66	23,02 - 10.63	•	1,28	
.	- 2 # 0		Heatstorage: gr.2: Fixed Boiler: gr.2: Electricity prod. from Gr.1: Gr.2: Gr.3:	(3)			t 1516 3 1470 2 1512	5 1512 7 1513 7 1504	1 1501 5 1524 1 1503 1 1522 1 1522 1 1522 1 1524	-	2 13,26	CAES BioCon- Elc.ly. version	ې ب ب ب	-32.31 -1	, I I	-32,31 -11,28	
/e.tx	Group 2: CHP Heat Pump	Boller Group 3: CHP Heat Pump Boiler Condensing	Heatstorage: Fixed Boiler: Electricity pro Gr.2: Gr.3: Gr.3:	SS;		Elec. e demand	4 45046 43888 4222	6 3846 8 3577 1 3637	865 3541 3776 3776 99 3764 26 3901 11 4134		3 34,72	Waste I		7,30 3 -3		7,30 -3	
תati∖	Group CHP Heat	Boller Group CHP Heat F Boiler Conde	Heats Fixed Electr Gr.1: Gr.2: Gr.3:	xce		Ba- lance V MW	μų	13 -16 1 18 1 -401	ייי	-15 -15	6 -0,93					-	
Iter		um 35,24 2,35 0,00 32,89	Grid stabili- sation share	Critical Excess;		er EH V MW		24 1 0	c		2 0,56	Geo/Nu. Hydro					
e u a		Sum 35 2 32 32	0,00 G 0,00 st 0,00 st 0,00 st	Critic		T Boiler V MW	0 441 0 497 0 162	000	c	4	0 1,12	Geo				Ľ	
drog	3,44 0,00 9,80 50,41	Gr.3 22,30 0,60 0,00 21,70	'year 'year 'year 'year 'year	(1) (HP ELT MW MW	1818 1674 1814	136 813 167	93 139 325 1210 1541	201 2450 20	9,34 0,00	r3 PP	- - 7,81	00.0		7,81	
hyo	~~ ~	Gr.2 12,94 1,75 0,00 11,19	TWh/year TWh/year TWh/year TWh/year TWh/year	:::5	ct Heating Production	CHP HP MW MW	1111 1818 1300 1674 770 1814	767 1136 465 813 110 167	- 0 2 2 2		4,76 9,	2 Boiler3		0,22		0,22	
03-	Flexible demand Fixed imp/exp. Transportation Total	Gr.1 0,00 0,00 0,00 0,00	16,20 58,29 6,35 1,35 0	Ň	District Heating Production			000			0,00 4,	Boiler2		0,96 - 0,00	1 I	0,96	
Scenario 3 - hydrogen alternative.txt			00 MWV 00 MWV 00 MWV 00 MWV 0 MWV 0 MWV	WARNING!!: (1)		Waste+ CSHP DHP MW MW	2344 2353 2261	2110 1920 1800	1757 1776 1883 2008 2162	2054 2946 1568	18,04 0,	CHP3	- - 5,82	0	1 1	5,82	
Sce	Wh/year) 33,17 2,44 1,55	year) nd , d CSHF	5000 MW 5000 MW 5000 MW 0 MW 0 MW	\$		Solar C.	103 23 218 23 247 23	384 21 408 19 371 18	291 17 291 18 291 18 117 20 117 20 70		2,35 18	/h/year): CHP2	 6,39	0		6,39	
	Electricity demand (TWh/year): Fixed demand 33,17 Electric heating + HP 2,44 Electric cooling 1,55	District heating (TWh/year) District heating demand Solar Thermal Industrial CHP (CSHP) Demand after solar and CSHP	u clear		Demand		6005 6126 5328	4417 3626 2048	2048 2048 2747 3730 4663		35,24 2	FUEL BALANCE (TWh/year) DHP CHP2					
rt	Electricity demand (T) Fixed demand Electric heating + HP Electric cooling	District heating District heating Solar Thermal Industrial CHP Demand after	Wind Offshore Wind Photo Voltaic River Hydro Hydro Power Geothermal/Nuclear	Output	Den	Distr. heating MW	~	4 ŵ Q				BALAN		iss vable	Biofuel Nuclear/CCS		
Input	Electri Fixed Electri Electri	Distric Distric Solar ⁻ Industi Demar	Wind Offshore Wi Photo Voltai River Hydro Hydro Powe Geothermal	no			January February March	April May June	July August September October November	Average Maximum Minimum	TWh/year	FUEL	Coal Oil N.Gas	Biomass Renewable H2 etc.	Biofuel Nuclea	Total	

Output specifications	ut sp	ecifi	cati	ons		N S C	Scenario	rio 3	- 1	droc	Jen a	alter	nativ	hydrogen alternative.txt					The	Б Г	Jergy	PLAN	EnergyPLAN model	el 13	13.0	N	
											District	District Heating	Production	uo													~
	0	Gr.1								Gr.2								Gr.3					R	RES specification	ication		
	District heating	Solar (CSHP MW	DHP	District heating	Solar	CSHP MW	CHP	HP MM	ELT E	Boiler E	EH age	Stor- Ba- age lance	District beating	ct ng Solar v MMV	r CSHP	o CHP	ΗΡ	ELT	Boiler	EH age	er-Ba- e lance M MM	RES1 Wind	-	RES2 RES3 RES Offshoi Photo ' 4-7 ic MW MW MW	RES Total 7 ic	tal
											-			_	2												
January -	0 0	0 0	0 0	0 0	2205	<u>11</u>	354	439	887	0 0				4 3800	0 26		672	931	0 0	86	83 17187	37 0	1958		149		9723 0120
February	0 0	- 0	0 0	0 0	2249	163	705	499	833	0 0								840	0 0	14/			14:35		318	`	81/3
Marcn î i	0 0	- 0	5 0	0 0	/ G61	184	335	302	833	5 0					2 2			981	0 0	<u>+</u> 0		i	2304		844		2060 L
April		- -	5 0	5 0	7701	C87	300	290	909	5 0	74 7	13 13404		GE/Z 8-	-		308	170	5 0	5 0			19991		7111	171	91.90
		5 0	-		752		007	700	400 1 1 1	5 0	- c	1 15425		CR77 0	101 91	1504		000	-		0 20504	0- 0- P+	1201	0401	2011		0070
			. .	-	707	117	077		<u>+</u>			1 10/01			Ţ			5 5					0911		1111		9199 6674
			0 0		767	206	017	- + + + + +	00 126									5 5	-						1021		1 / 00
Sentember						216	777	205	071		⊃ -						Ľ	- α							010		2000
October					1370	110	076	100	543								~	10					N010		2010	· ·	11286
November					1712		310	370	750		1 10					`	286	787	0 0				1056		101		10104
December	00	00	0 0	0 0	1991	22	340	201	935	0							230	1096	0 0	25	87 35646	(7)			100		12301
Averade		6	6	c	1173	100	787	787	555	6	101	AE 16143		0 2530	G GR	1767	758	508	c	23			18/5	6636	703	151	0358
Maximum					3653	1601	105		1050				02		α		2625	1100		232F				~	1388		21075
Minimum	00	00	0 0	0 0	692	0	174		7	00			'				0	13	00	0007		•			0		6
Totol for th		100																									
TWh/year 0,00 0,0	e whole (8	0,00	0,00	12,94	1,75	2,52	2,49	4,87	0,00	0,92 C	0,39	0,00	00 22,30	0 0,60) 15,52	2,27	4,47	0,00	0,20	0,17	-0,93	16,20) 58,29	6,35	1,35 8	82,20
		.																									
Own use of heat from industrial CHP: 0,00 TWh/year	f heat frc	om indust.	rial CH	P: 0,00	TWh/yea	L										-	NATURAL GAS EXCHANGE	L GAS	EXCHAN	JGE							
ANNUAL COSTS	COSTS	(Million EUR)	EUR)						HO		CHP2	ЬР	Indi-	Trans	Indu.		Demand E	Bio-	Syn-	CO2Hy	ly SynHy	•••	y Stor-	Sum	<u></u>	жш	*
Total Fuel ex Ngas exchange =	ex Ngas	exchange	II M	1041					Boi	Boilers C	CHP3	CAES	vidual	port	Var.		_	gas	gas	gas	gas				port	g	port
Uranium	Ш		0 (MM		ΜM	MM	MM	MM	MM	MM		MΜ	MM	MM	MM	MM	MM	MM	MM	Ž	MM
L Coal			0 0					January	,	0	2849	829	0	0	957	4635	-	1721	973	1943	1778	-3173	1390	с	с С		0
	<u> </u>	Ċ	0,					February	~		3333	1040	0	0	957			1721	973	1417	1778	-3173		ę	с		0
Gasoli/Diesel=		Ň,	240					March		0	1975	493	0	0	957	3425		1721	973	2545	1778	-3173		e	e		0
	11	·	11					April			1965	734	0	0	957			1721	973	2033	1778	-3173		с	с С		0
Gas handling =	= Bu	i	32					Мау			1193	796	0	0	957			1721	973	1474	1778	-3173		с	с С		0
BIOMASS	11	~	5 <i>د</i> ر/					June			281	937	0	0	957	2176		1721	973	2061	1778	-3173	7	с	e		0
Food income	ne =		0					Julv		0	369	1688	0	0	957			1721	973	1286	1778	-3173		e	e		0
Waste	п		0					August		0	285	1457	0	0	957			1721	973	1284	1778	-3173		ς Υ	ς Ω		0
Total Ngas Exchange costs	Exchanic	de costs =	Ш	-				September	ber	0	888	1454	0	0	957			1721	973	1452	1778	-3173		с	с		0
Moreirol	- or officer			1				October	5	0	845	455	0	0	957			1721	973	2700	1778	-3173	7	З	З		0
Ivial gillal operation costs	heration			0				November	ber	0	1687	569	0	0	957	3214		1721	973	2091	1778	-3173	-180	с	3		0
Total Electricity exchange	ricity exc	change =		11				December	ber	0	1105	237	0	0	957	2299		1721	973	2885	1778	-3173	-1889	с	с		0
Import	Ш		11					Viceouv		Ċ	1000	000	C	c	05.7	7000		1704	07.0	1001	1770	0170	c	c	c		0
Export	Ш		-2					Average	ש		280	080						171	010	1001	0//1	0/10-		° c	ο c		
Bottleneck =	П		5						Ę	" ~ ~	0106	1101		5 0	102	2		1711	91.5	10:40	0//1	0/10-	9/ 00 6 70F	° c	о с		5 0
Fixed imp/ex=	=Xe		0					IMINIMUM	E	D	D	C	D	D	106	106		1771	9/3	1.41.1.	8//1	-31/3	C6/0-	σ	υ		5
Total CO2 emission costs =	emissior	costs =		C				Total fo	Ð	ole year																	
								I Wh/year	ear 0,00		12,21	7,81	0,00	0,00	8,41	28,43		15,12	8,55	16,99	15,62	-27,87	0,00	0,03	0,03		0,00
Total variable costs	ble costs	 		1105 8004																							
		1		9004																							
Annual Investment costs =	estment	costs =		20311																							
TOTAL ANNUAL COSTS	NUAL C	OSTS =		29420																							
BES Share: 100.0 Dement of Drimary Energy	100	n Darran	t of Dri	, TD4		4 1 Dar	nont of	01 1 Darcant of Electricity	;	ВЛ	4WF 1	oloctricity	84.1 TWh electricity from RES	ŭ											08-init-2020 [13-05]	-21 000	0E1
				IIIal y Li i) _ _	כמויר כי	Election		5		בובריו וריי	11011	2											100-Juirz	יהון טבנ	[rn