
Navigation for Autonomous Surface Vessels

Master Thesis

Group 1033

Aalborg University
Control & Automation



Department of
Automation & Control
Control & Automation

Fredrik Bajers Vej 7B
DK-9000 Aalborg
www.es.aau.dk

Title:
Navigation for Autonomous Sur-
face Vessels

Theme:
Master Thesis

Semester:
4th semester Control & Automa-
tion (MSc)

Project Period:
Spring semester 2020

Project Group:
CA10-1033

Group Members:
Mohamed Yahya Maad
Simon Kaihøj

Supervisors:
Jesper Abildgaard Larsen

jal@es.aau.dk

Report:
72 pages

Submitted:
June 4, 2020

Abstract:

This thesis covers derivation of a non-linear
model, simulation of this model, develop-
ment of control systems and path planning
systems for an Autonomous Surface Vessel.
A nonlinear dynamic model was created
using Newtonian mechanics in combina-
tion with hydrostatics. This model was im-
plemented in both Simulink and Gazebo.
A PID controller was implemented, and the
possibility of applying LPV control was in-
vestigated. The Artificial Potential Field
method and the State Lattice method were
both implemented. Measurements made
on the model were used to ensure that the
State lattice was restricted to only finding
paths that the system is capable of follow-
ing.

www.es.aau.dk
mailto:jal@es.aau.dk


Preface

This report documents the Master Thesis work carried out as part of the study
program in Control & Automation at Aalborg University.

The work is carried out as of an effort headed by ’Center for Logistik og Samar-
bejde’, aiming to create an autonomous ferry connection across the Limfjord in
Aalborg, Denmark.

The purpose of this thesis is to evaluate the feasibility of some of the methods and
technologies considered to be used in the project, specifically within the areas of
modeling, control, and path planning.

To understand this thesis, it is beneficial to have fundamental knowledge of linear
algebra, calculus and vector calculus. An understanding of basic control theory
will also make some parts easier to understand. A familiarity with some common
methods used in path planning will aid in understanding of the proposed motion
planners.

References are made using the IEEE referencing scheme. Numbers in square brack-
ets [1] refer to an entry in the bibliography. Equations are referred to by the equa-
tion identifier in a parenthesis, so (1,2) would refer to the second equation in the
first chapter.

The thesis is written in the hope that it can serve as a reference for future students
and researchers working on Autonomous Surface Vessels.

The report’s structure is built up from seven chapters, each covering a significant
part of the entire project.

Chapter 1 introduces the problem, and introduces the architecture into which the
components developed in this report fits.

Chapter 2 describes how modeling of marine crafts is done, and derives the model
of the vessel and its parameters. The chapter concludes with a symbolic structure
of the equations of motion describing the system.

Chapter 3 describes how the model was implemented in both Gazebo and Simulink.

Chapter 4 proposes two different methods for designing a controller capable of
controlling the vessel. It also includes some analysis of why an one linearization
strategy does not work.
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Chapter 5 lays out two different path planning strategies, the Artificial Potential
Field method and the State Lattice method. It also describes how to generate a set
of motion primitives for use with the State Lattice method.

Chapter 6 shows the results from the different chapters.

Chapter 7 presents the conclusions that can be drawn from the project, as well as
what future work could be done to improve the project.

Aalborg University, July 4, 2020

Mohamed Yahya Maad
mmaad18@student.aau.dk

Simon Kaihøj
skaiha@student.aau.dk
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CHAPTER | 1

Introduction

The cities of Aalborg and Nørresundby, Denmark, both being part of the same
metropolitan area, are divided by a body of water, with the main city centre (Aal-
borg) located on the south side. There exists 3 connections between the north and
the south within the cities, one highway tunnel, one bridge for cars, pedestrians
and bicyclists, and one bridge for trains, pedestrians and bicyclists. Both of the
bridges are in the western end of the city, and there exists an area underserved
by public transport in the north east. This area is scheduled to be developed into
housing, and a connection from there to the south bank would help alleviate the
need for a large degree of personal motor vehicle ownership.

Fig. 1.1 The existing ways to cross the water, along with the proposed new route.

The municipal government has decided to explore the possibility of an autonomous
surface vessel ferrying passengers/bicyclists across the water, mainly to increase
the access from this new housing development to the city centre, and vice versa.
The first planned route is 500-600m long, depending on the exact choice of the
locations and size of the piers.

The route never takes the vessel far from shore, and as such, if the weather starts
worsening to the point beyond the capabilities of the vessel, it can simply dock
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Introduction

and wait for the weather to improve. This is in contrast to an oceangoing vessel
that must be able to handle any weather that is reasonably possible to occur on
any given voyage, or risk loss of life. The vessel discussed in this project still needs
to be able to handle the weather most days, as this is one of the most important
considerations for uptime.

In the plan laid out by the municipal government, there would be a manned control
room on shore, for monitoring the autonomous vessels, and raising the alarm if
anything goes wrong. This control room would be managing multiple vessels at
once, and would not necessarily be located physically close to the water to launch
a rescue operation.

Approximately every 5 years an event known as The Tall Ship Races comes to the
city, resulting in lots of traffic on the water for a week. Outside of this and similar
events, there is only sparse traffic on the water. It has therefore been decided that
the autonomy system does not need to handle the heavy traffic during these events,
instead the boats would be manned and manually controlled during these times.

This project was initially intended to include development and testing of a physical
test vessel, but because of events beyond the control of the project group, this
was cancelled. Instead this project will consider the Research vessel RV Gunnerus,
because a large amount of data about its physical properties are available, meaning
that a decent model can be made. RV Gunnerus is a research vessel owned and
operated by the Norwegian university NTNU.

How can a vessel be made to autonomously sail back and forth ferrying passengers
on the given route?

For this there must be a vessel that can be controlled autonomously (as in, the
controls of the vessel can be actuated by another system, not a human), an au-
tonomy system, encompassing navigation, control, and other computational tasks,
and lastly a sensing system, for positioning and obstacle detection. This paper fo-
cuses on the autonomy system but may discuss the others to the extent they affect
the former.

The vessel itself can be made in one of two ways. Either an existing vessel can
be modified to accept inputs from the autonomy system, such as by mounting
servomotors on the controls. Otherwise a ship purposefully built for autonomous
control can be used. Other intermediate options exit, such as for vessels that are
made with an autopilot system which can be replaced.

The sensor system consists of all the sensors that can function as inputs to the
autonomy system. These fall broadly into two categories, those sensing informa-
tion about the state of the vessel, and those that sense the surroundings. Measur-
ing the state of the vessel could include such things as gyroscopes for measuring
the angular velocity, accelerometers for measuring acceleration, magnetometers
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Introduction

for measuring compass heading, GPS systems for measuring position and velocity,
anemometers for measuring relative wind speed and direction, and logs for mea-
suring the speed through the water. These sensors would mainly be used by the
control system, but would also inform the navigation system on where to navigate
from.

The sensors for sensing the world around the vessel could include such things
as radar, lidar, and cameras with obstacle detection algorithms, and might also
include AIS transponders to include information sent by other vessels operating
in the same area. These sensors would not directly influence the controller, but
instead, their data would be used by the navigation subsystem to determine where
there are obstacles to be avoided.

The autonomy system discussed in this paper would mainly consist of two parts;
the navigation subsystem and the control subsystem. The navigation system is
responsible for plotting a course that will get the vessel from the current position
to the goal position, without colliding with obstacles, while the control system is
responsible for following this path.

A controller is a system for generating the inputs to a plan (in this case the plant is
an autonomous surface vessel), such that the state of the system reaches a desired
state. Therefore, to make a controller it is beneficial to have a model that describes
how the plant reacts to any inputs the controller may generate. The next chapter
will describe how to make such a model.
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CHAPTER | 2

System Modelling

The whole goal of this chapter is to find a complete dynamic model for any water
vehicle, and to prove how a dynamic model of the form 2.1 is derived, which is
the dynamic model of a vehicle in the BODY reference frame. This can later be
transformed to other reference frames as desired [2].

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (2.1)

With a complete dynamic model an advanced simulation environment can be cre-
ated, enabling development of control strategies in a cost-efficient and safe envi-
ronment, while also allowing “auto-tuning” by tools such as the MatLAB MPC-
toolbox.

The table below introduces variables used to describe forces, positions and veloci-
ties of a boat. These will be used throughout this chapter.

Direction Force Position Velocity

Linear along x-axis (surge) X x u

Linear along y-axis (sway) Y y v

Linear along z-axis (heave) Z z w

Angular about x-axis (roll, heel) K φ p

Angular about y-axis (pitch, trim) M θ q

Angular about z-axis (yaw) N ψ r

2.1 Basic Ship Theory

To be able to understand the data sheets and dimensions describing a boat, such as
the one in figure 2.1, some basic ship theory must be introduced. These dimensions
will later be used as constants in the dynamic model of the boat. It was also an
option to approximate the behaviour of the boat using some of these dimensions
in the same way as in [3], [4] or [5]. That was omitted either due to verification
difficulties, lack of detailed hull data, or unavailable software packages.
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System Modelling 2.1 Basic Ship Theory

Fig. 2.1 Some technical data about the RV Gunnerus [6]

Slicing Planes

The dimensions of a boat can be described by a set of planes slicing through its’
hull. As seen in figure 2.2, three types of planes exist:

The middle line plane, which is, more often than not, the boats’ only plane of sym-
metry. The shape created by a cut using the middle line plane is also called the
sheer profile or plan.

The design waterplane goes along the plane which would separate a boat into two
parts, one part in the water and one in the air, when the boat stands still and there
are no waves. All planes parallel to the design waterplane are called waterplanes.

The planes which are perpendicular to both the middle line plane and the water-
planes, are called transverse planes.
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System Modelling 2.1 Basic Ship Theory

Fig. 2.2 Figure illustrating the different planes the vessel can be segmented along [7].

As seen in figure 2.3, the point between AP and FP is called the (a)midship, which
is also a transverse plane. AP, or after perpendicular, is the line defining where the
rudders are. FP, or fore perpendicular, is where the design waterplane and stem
of the ship intersect. Midship is often denoted by the symbol: ⊗ , where the
cross exceeds the circle. Depending on the ship, there will often be around 20
transverse planes with equal distance between FP and AP, to achieve the proper
decimation [7].

Fig. 2.3 This shows the location of AP, FP, LOA, and midships, among other important points and
measurements. [8].

Lines Plan

Figure 2.4 contains the whole lines plan, including the sheer, body and half breadth
plan. A lines plan describes the shapes of the hull by showing the contour of the
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System Modelling 2.1 Basic Ship Theory

hull on different planes. The lower part of figure 2.4 illustrates the half breadth
plan, where the contour of the hull is shown when sliced by different waterplanes.
At the points where transverse planes and this contour intersects, a distance y is
defined. The different values of y can be compiled into a table of offsets.

A table of offsets is used to describe the shape of the hull, such that it can be imported
into digital design or analysis tools, such as MultiSurf or ShipX VERES. These can
then be used to find and simulate the behaviour of the ship. As no table of offsets
was available, no such tools is being used.

Fig. 2.4 The lines plan shows the Body plan, Sheer plan and Half breadth plan [7]

Moulded Dimensions

In figure 2.5 a differentiation between the inner and outer surface of the hull is
presented. The displacement dimensions are defined as the dimensions wetted by the
sea. The displacement line goes along the outside of hull, separating hull from water.
Meanwhile, the moulded line, or moulded dimensions, is defined as the displacement
line minus hull thickness, resulting in a line describing the inside of the hull of
a ship. It is important to notice this difference when reading datasheets, as some
define the data of ships in moulded dimensions, while others do not.

The moulded depth of the ship D is separated into two parts: the moulded draught T
and freeboard f , as seen in figure 2.6. On top of that comes the height difference
caused by camber, which helps water flow off the deck.

Coefficients of Form

When examining the hydrodynamic properties of a ship, some coefficients may be
used to classify the relationship between the hull and the behaviour of the ship,
namely the coefficients of form. Ships with similar coefficients should have relatively
similar behaviour. These coefficients may be used for ship behaviour approxima-
tion. The dimensions in figure 2.7 are essential when finding the coefficients of
form.
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System Modelling 2.1 Basic Ship Theory

Fig. 2.5 The difference between the moulded line and the displacement line is the thickness of the
hull

Fig. 2.6 The moulded depth can be contrasted with the moulded draught and the freeboard [8].

∇ is the volume of displacement, describing the amount of fluid displaced by the
ship.

CWP is the coefficient of fineness of water, which describes the ratio between the area
of a waterplane AW and the area of the box around it made by LWLB.

CWP =
AW

LWLB
(2.2)

CM is the midship coefficient, which describes the ratio between the area of the sub-
merged transverse plane amidship AM and the area of the box around it made by
BT.
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System Modelling 2.1 Basic Ship Theory

Fig. 2.7 Figure showing the area of the planes AW and AM, in addition to some other basic dimen-
sions to find the coefficients of form.

CM =
AM

BT
(2.3)

CB is the block coefficient, which describes the ratio between the volume of displace-
ment ∇ and the volume of the block around it made by BTLpp.

CB =
∇

BTLpp
(2.4)

CP is the longitudinal prismatic coefficient, which describes the ratio between the
volume of displacement ∇ and the volume of the prism around it made by AMLpp.

CP =
∇

AMLpp
(2.5)

CVP is the vertical prismatic coefficient, which describes the ratio between the volume
of displacement ∇ and the volume of the prism around it made by AW T

CVP =
∇

AW T
(2.6)

Metacentric Height

To describe the metacentric height, the floating box illustrated in figure 2.8 is used.
For convenience of illustration, imagine the waterline is being rotated instead of
the box. When the box is at an equilibrium, the waterline will go along the dashed
line, and the center of buoyancy will be at point B. If the box/waterline is to be
rotated with an angle φ, the new center of buoyancy will be at point B1. Lines
which are perpendicular to the waterline and going through B or B1 can then be
created. The intersection between these new lines is called the metacentre, denoted
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System Modelling 2.2 Reference Frames and Coordinate Systems

as the point MT, where the T stands for transverse as this case is for the rotation
about the x-axis of the ship. The transverse metacentric height GMT is therefore
the distance between the center of gravity, here denoted as the point G, and the
metacentre MT.

The same procedure should be followed when finding the transverse metacentric
height GML, but rotate an angle θ about the y-axis of the boat. More about the axis
system of a boat can be found in figure 2.10.

Fig. 2.8 Figure illustrating the concept of metacentric height. Notice that this is in the NED reference
frame, hence positive z is downwards [2].

2.2 Reference Frames and Coordinate Systems

Different reference frames are used as some calculations are easier done in some
frames than others. Four reference frames are looked into in this project:

• ECI := {i} ∼ Earth-centered inertial frame

• ECEF := {e} ∼ Earth-centered Earth-fixed reference frame

• NED := {n} ∼ North-East-Down

• BODY := {b} ∼ Body-fixed reference frame

The following vector notation is used to express how positions and velocities are
defined wrt. the different reference frames:

un := ~u in {n}.

10



System Modelling 2.2 Reference Frames and Coordinate Systems

Fig. 2.9 Figure showing the NED coordinate system [9].

un =
[
un

1 un
2 un

3

]T
(2.7)

ve
b/n := Linear velocity of ob wrt. {n} expressed in {e}.

ωb
n/e := Angular velocity of {n} wrt. {e} expressed in {b}.

θnb := Euler angle between {n} and {b}.

The standard way of rotating something within a reference frame, is to use rotation
matrices:

Rotation about x-axis:

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (2.8)

Rotation about y-axis:

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (2.9)
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System Modelling 2.3 Forces and Torques, Mechanical

Rotation about z-axis:

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.10)

These matrices will later be used to calculate forces when rotated, or transforming
them from one coordinate system to another.

Certain important points on a boat needs to be defined, as the distances between
them are used to calculate torques on the body of the ship. These points are shown
on figure 2.10.

• CG ∼ Center of gravity.

• CB ∼ Center of buoyancy.

• CF ∼ Center of flotation.

• CO ∼ Center of origin.

Fig. 2.10 Figure showing some central points on a boat. Most important are center of gravity (CG)
and center of buoyancy (CB) [2].

One of these distances is the vector~rg, which is the vector between CO and CG in
{b}. This is used to calculate the rigid-body added mass and coreolis matrices in
the next section.

2.3 Forces and Torques, Mechanical

This section explains how forces and torques are found, excluding forces from
wind and waves, hence the section title.
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System Modelling 2.3 Forces and Torques, Mechanical

The matrix cross product operator is defined as:

λ× a := S(λ)a (2.11)

where:

λ =
[
λ1 λ2 λ3

]T
(2.12)

and:

S(λ) = −ST(λ) =


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 (2.13)

This will be used when calculating the added mass and coreolis-centripetal matri-
ces.

It should also be noted that the vector ν is a combination of linear and angular
velocities in {b}. ν1 represents the linear velocities (u, v, w), and ν2 the angular
velocities (p, q, r):

ν =

ν1

ν2

 =
[
u v w p q r

]T
(2.14)

Added Mass Matrix

Added mass is a concept which describes the mass distribution within an object,
represented as a matrix. The added mass may be separated into two parts, the
rigid body inertia matrix MRB and the hydrodynamic inertia matrix MA.

M = MRB + MA (2.15)

MRB is defined as:

MRB =

 mI3×3 −mS(rb
g)

mS(rb
g) I0

 (2.16)

Where I0 is the inertia matrix.

MA on the other hand has to be identified, either by performing frequency-response
tests on the boat, or by using simulation software where the hull of the boat is im-
ported and analyzed.

13



System Modelling 2.3 Forces and Torques, Mechanical

Coreolis-centripetal Matrix

The coreolis-centripetal forces may also be separated into two parts, the rigid body
matrix CRB(ν) and the hydrodynamic matrix CA(ν).

C = CRB + CA (2.17)

CRB(ν) is defined as:

CRB =

 03×3 −mS(ν1)−mS(ν2)S(rb
g)

−mS(ν1) + mS(rb
g)S(ν2) −S(Ibν2)

 (2.18)

Where Ib is the inertia matrix of the hull of the boat.

CA(ν) is dependent on the hydrodynamic inertia matrix MA, where MA is divided
into four 3× 3 matrices:

MA =

A11 A12

A21 A22

 (2.19)

CA(ν) is then defined as:

CA(ν) =

 03×3 −S(A11ν1 + A12ν2)

−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

 (2.20)

Heave Hydrostatic Force

The nabla symbol ∇ is used to indicate the static water displacement of the boat,
while δ∇(z) is the change of water displacement depending on the height of the
boat z with respect to the design waterplane. The force Z is the difference between
gravitational and buoyancy forces.

δ∇(z) is defined as:

δ∇(z) =
∫ z

0
Awp(ζ)dζ (2.21)

Where Awp(ζ) is a function returning the area of the waterplane depending on the
displacement height z.

If the shape of the hull and the height of the design waterplane allows it, δ∇(z)
can be approximated to a linear function. This will have the following form, where
one needs to know the height ζ and area of a waterplane Awp(ζ), at two points:

14



System Modelling 2.3 Forces and Torques, Mechanical

a is the slope of the linear function:

a =
Awp(ζ2)− Awp(ζ1)

ζ1 − ζ2
(2.22)

A new waterplane at height z can then defined as:

Awp(z) = Awp(ζ1) + a(ζ1 − z) (2.23)

Integrating equation 2.23 from 0 to z results in the difference in volume due to
variation of height from design waterline to z:

δ∇(z) = Awp(ζ1)z + aζ1z +
1
2

az2 (2.24)

The force Z is defined as:

Z = mg− ρg(∇+ δ∇(z)) = −ρgδ∇(z) (2.25)

When a boat is in steady-state, the buoyancy force cancels out the gravitational
force, so both Z and z are zero.

Fig. 2.11 Figure illustrating the change in submerged volume of a box caused by change in height
z. [2].

Buoyancy Forces and Torques

The buoyancy forces are dependent on the heave force Z, while the torques depend
on the transverse and longitudinal metacentric heigts, GMT and GML.

The vector g(η) contains the buoyancy forces and torques, and is defined as:
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g(η) = ρg



−
∫ z

0 Awp(ζ)dζ sin θ∫ z
0 Awp(ζ)dζ cos θ sin φ∫ z
0 Awp(ζ)dζ cos θ cos φ

∇GMT sin φ cos θ cos φ

∇GML sin θ cos θ cos φ

∇(−GML cos θ + GMT) sin φ sin θ


(2.26)

Ballast Forces and Torques

The ballast forces and torques are embedded into g0, which is defined as:

g0 = ρg



0

0

−∑n
i=1 Vi

−∑n
i=1 yiVi

∑n
i=1 xiVi

0


(2.27)

Where i signifies each ballast tank, while xi and yi is the x-y positions of a given
ballast tank. Vi is the volume of the water in that tank. n represents the number of
ballast tanks.

Propeller Forces and Torques

The propulsion system is modelled as a collection of azimuth thrusters. This was
done to replicate the propulsion system of R/V Gunnerus.

Each propeller has a thrust magnitude f , and a turning angle α. The generalized
force F is then defined as:

F =


f cos α

f sin α

0

 (2.28)

T is the generalized torque produced by a propeller:

T = r× F (2.29)

16



System Modelling 2.4 Forces and Torques, Environmental

Where r is the vector from CG to the center of thrust.

The forces and torques are embedded into the vector τ, which is defined as:

τ =

F

T

 (2.30)

Damping Forces and Torques

The damping forces/torques can be separated into two parts, a linear and non-
linear part, as presented in the following equation:

D(νr) = D + Dn(νr) (2.31)

Where νr is the difference between the boats’ linear velocities ν and water current
velocities νc. Both are represented in BODY coordinates.

νc =
[
uc vc wc 0 0 0

]T
(2.32)

νr = ν− νc (2.33)

Both damping matrices have to be determined either by measurements or using by
suitable software, such as VERES.

The simulation of memory effect was omitted due to lack of available empirical
data.

2.4 Forces and Torques, Environmental

This section explains how environmental forces and torques are calculated.

Wind Forces and Torques

When measuring the angle of the wind βw, forward is always along xb. This is
most likely how an onboard anemometer would report the angle as well.

The wind speed Vw can be decomposed into uw and vw.

uw = Vw cos(βw − ψ) (2.34)

vw = Vw sin(βw − ψ) (2.35)

These will be used to find the relative velocities urw and vrw:
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urw = u− uw (2.36)

vrw = v− vw (2.37)

This can then be used to calculate the relative wind speed and angle of attack, Vrw

and γrw:

Vrw =
√

u2
rw + v2

rw (2.38)

γrw = − arctan(vrw, urw) (2.39)

The forces and torques from the wind are then defined as:

τwind =
1
2

ρaV2
rw



CX(γrw)AFw

CY(γrw)ALw

CZ(γrw)AFw

CK(γrw)ALwHLw

CM(γrw)AFwHFw

CN(γrw)ALwLoa


(2.40)

Where:

• Ci := Wind coefficients, found either by measurements, software or lookup-
tables

• ρa := Air density

• AFw := Frontal projected area

• ALw := Lateral projected area

• HFw := Centroid of AFw above water line

• HLw := Centroid of ALw above water line

• Loa := Overall length
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System Modelling 2.5 BODY to NED transformation

Finding wind coefficients, Blendermann

One way of finding the wind coefficients of a ship is by using the estimations of
Blendermann, where four parameters are used to characterize a ship: Transverse
resistance CDt, longitudinal resistance CDl , cross-force parameter δ and rolling
moment factor κ.

The longitudinal resistance CDl is found using the longitudinal resistance coeffi-
cient CDlAF which is estimated by Blendermann.

CDl = CDlAF(γw)
AFw

ALw
(2.41)

The wind coefficients are found in the following equations:

CX(γw) = −CDl
ALw

AFw

cos(γw)

1− δ

2
(1− CDl

CDt
) sin2(2(γw))

(2.42)

CY(γw) = CDt
sin(γw)

1− δ

2
(1− CDl

CDt
) sin2(2(γw))

(2.43)

CK(γw) = κCY(γw) (2.44)

CN(γw) = [
sL

Loa
− 0.18(γw −

π

2
)]CY(γw) (2.45)

Where sL is the centroid of ALw.

Wave Forces and Torques

The wave forces and torques were not implemented due to the lack of Response
Amplitude Operators for the R/V Gunnerus.

2.5 BODY to NED transformation

When working with a simulation environment using the NED coordinate system,
a transformation of the dynamic model from BODY to NED is needed.

Θnb =
[
φ θ ψ

]
(2.46)

Using a ZYX-rotation matrix gives the following rotation matrix:

Rn
b (Θnb) := Rz(ψ)Ry(θ)Rx(φ) (2.47)

19



System Modelling 2.5 BODY to NED transformation

Fig. 2.12 Table showing the wind coefficient parameters estimated by Blendermann [10].

The matrix TΘ(Θnb) is defined as:

TΘ(Θnb) =


1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0
sin φ

cos θ

cos φ

cos θ

 (2.48)

The matrix JΘ(η) is the transformation matrix used to transform forces and vectors
from {b} to {n} coordinate systems.

JΘ(η) :=

Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

T

(2.49)

Where η is defined as:

η :=
[

N E D φ θ ψ
]T

(2.50)

η̇ = JΘ(η)ν (2.51)

η̈ = JΘ(η)ν̇ + J̇Θ(η)ν (2.52)

All variables with a star ∗ are in the NED coordinate system:

20



System Modelling 2.5 BODY to NED transformation

Added mass matrix:

M∗(η) = J−T
Θ (η)MJ−1

Θ (η) (2.53)

Coreolis matrix:

C∗(ν, η) = J−T
Θ (η)[C(ν)−MJ−1

Θ (η) J̇Θ(η)]J−1
Θ (η) (2.54)

Damping matrix:

D∗(ν, η) = J−T
Θ (η)D(ν)J−1

Θ (η) (2.55)

Forces and torques caused by buoyancy and ballast:

g∗(η) + g∗0 = J−T
Θ (g(η) + g0) (2.56)

Forces and torques from propulsion system, wind and waves:

τ∗ + τ∗wind + τ∗wave = J−T
Θ (τ + τwind + τwave) (2.57)

When combined, this results in a transformed dynamic model in NED:

η̈ = M∗(η)−1(−C∗(ν, η)η̇ − D∗(ν, η)η̇ − g∗(η)− g∗0 + τ∗ + τ∗wind + τ∗wave) (2.58)

Both the simulation environments in Simulink and Gazebo are based on equation
2.58, but as shown in the following subsection, the NED coordinates are trans-
formed to ENU for better visualization.

In the following chapter a detailed explanation of the simulation environments will
be presented.

NED to ENU transformation

The ENU positions is used for looking at the simulation results in Simulink, and is
the general coordinate system used in Gazebo.

ENU =

Rx(φ) 03×3

03×3 Rx(φ)

 η (2.59)
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CHAPTER | 3

Simulation

When tuning and testing controllers, either the real system which is to be con-
trolled or a simulation of it may be used. Accurate simulations have the advantage
of producing similar results, while removing the cost of operating and performing
tests on the real system. It also speeds up efficiency, where different tests may run
in parallel, and removes inaccessibility problems.

This chapter explains in detail simulations made in two environments, Simulink
and Gazebo [11]. Simulink is used to iron out model errors, while Gazebo is used
for better visualization and in combination with ROS to emulate interaction with
hardware.

All underlying code is based on the theory of chapter 2, and the code itself can be
found in appendix A.

3.1 Simulink Simulation

This section will be used to explain the structure of the Simulink simulation. As
seen in figure 3.1 the blocks are colour-coded to help show which blocks belong in
the same category. The system as a whole has two inputs: The propeller force f
and angle α to the teal thrust calculation block, and one output: The ENU position
from the rightmost white block, the NED to ENU transformation block.

The small white blocks are parameters which are generated in their own MatLAB
script, making it easier to keep track of the values of the parameters.

Buoyancy Simulation

The blocks shown in figure 3.2 are based on subsections Heave Hydrostatic Force
and Buoyancy in section 2.3, and are used to calculate the total buoyancy forces
and torques.

The change of submerged hull volume with regards to change in height z is first
calculated in “IAWP”. This is then sent to “BUOYANCY”, which calculates the
buoyancy forces and torques. The block named “BALLAST” calculates the change
in buoyancy caused by ballast tanks.
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Simulation 3.1 Simulink Simulation

Fig. 3.1 Figure showing an overview of the whole simulation setup in simulink. The blocks are
color-coded to show which ones belong together.

“VI”, “XI” and “YI” are vectors containing the information about the volume, x-
position and y-position of each ballast tank.

Mass and Coreolis Simulation

The blocks shown in figure 3.3 are based on subsections Added Mass and Coreolis
in section 2.3, and are used to calculate the added mass and coreolis matrices.

The body velocities denoted as “v” come from the dynamic model, representing
the vector ν.

The variable “RGB” contains the vector rb
g.

Wind Simulation

The blocks shown in figure 3.4 are based on subsections Wind Forces and Torques
and Finding wind coefficients, Blendermann in section 2.4, and are used to calcu-
late the forces and torques applied on the boat by the wind.
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Simulation 3.1 Simulink Simulation

Fig. 3.2 Figure showing the blocks simulating hydrostatic forces.

Fig. 3.3 Figure illustrating the blocks which generate the added mass and coreolis matrices.

The relative wind speed Vrw and angle γrw are first calculated in “WINDGAMRW”.
The angle is then sent to “COFGAM”, which calculates the corresponding wind co-
efficient. The block “WIND” uses the wind speed and coefficient from the previous
blocks to calculate the wind forces and torques.
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Simulation 3.1 Simulink Simulation

Fig. 3.4 Figure showing the blocks which generate forces applied on the boat by wind.

Drag Simulation

The block shown in figure 3.5 is based on the subsection Damping Forces and
Torques in section 2.3, and is used to calculate the forces and torques created by
the drag and damping from the water.

v is the velocities of the boat ν, while Vc is the velocities of the current νc.

Fig. 3.5 Figure showing the block which calculates drag. DL is the linear drag term.

Thrust Simulation

The block shown in figure 3.6 is based on the subsection Propeller Forces and
Torques in section 2.3, and is used to calculate the forces and torques generated by
the azimuth thrusters.

This is the only block which receives control signals.
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Fig. 3.6 Figure showing the block which calculates the force produced by the azimuth thruster.

Dynamic Model Base

The block shown in figure 3.6 is based on section 2.5, and is used to ultimately find
the systems positions in an ENU reference frame.

As some of the produced forces and torques are dependent on the velocities in {b},
ν, and the positions in {n}, η, they are first calculated in the blocks presented in the
previous subsections, which feed the results into “VD” and “ETADD”. The blocks
“VD” and “ETADD” are semi-independent of each other, as they are not directly
connected in any way.

The block “JMATRIX” is used to calculate the matrix JΘ(η).

After finding η, “NED2GLOBAL” is used to transform the positions from the NED
to ENU reference frame. This is the only block with an output going out of the
overall system.

3.2 Gazebo Simulation

The Gazebo simulation plug-in is based on the Simulink setup presented in section
3.1. The code has the same modular structure, made with a class hierarchy which
allows for changes to be made without having modify the main logic of the plug-in.

The plug-in is separated into three parts:

The world file which binds all necessary information together. While it is possible
to write logic for objects in this file, only code for world settings like gravity is
written. It does point to the C++ code, which contains all the logic for the boat,
and it points to the model of the boat, which can be seen in figure 3.8.

The C++ code contains all the logic for the boat, including a rudder which shows
the direction of the rear thrusters.

For visual representation, a model of a RIB and a rudder are made in Blender to
be imported into Gazebo. These models do not contain any kind of logic, except
for collision boundaries.
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Fig. 3.7 Figure showing the blocks which calculate the states in BODY and NED reference frames.

Fig. 3.8 Figure showing a small boat with a rudder, representing Gunnerus and the angle of the
azimuth thruster.

Each part of the dynamic model is segregated into separate C++ files, with a class
hierarchy as shown in figure 3.9. R/V Gunnerus does have a bow thruster, which
is not modelled in Simulink or included in the C++ code, since the bow thruster is
deemed unnecessary as this thesis does not tackle the problem of docking. If it is
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ever needed in the future, any thrusters can easily be added due to the modular
code structure.

All constants are in the main file “BoatCode.cc”.
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Fig. 3.9 Figure showing a class diagram of the implementation in Gazebo.
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Controller Design

This chapter presents the design paradigms for two controllers, the PID and the
LPV controller.

The PID controller is a classical controller with no predictive capabilities. The input
is often the difference between reference and output feedback. In this case the error
is a turning angle error calculated by the trolley steering method. PID controllers
were originally designed for automatic ship control in 1922, by observation of the
helmsman at ships. This in itself was motivation for using the PID controller as a
benchmark.

A Linear Parameter Varying (LPV) controller is a state-space controller with pre-
dictive capabilities due to the LPV model. The input can either be state-feedback
or output feedback. In the case of output feedback, and LPV model will be part
of an observer which can estimate the states of the real system. If certain condi-
tions are met, an LPV controller may have guarantees for stability. The motivation
for using an LPV controller is the need for a nonlinear controller with prediction
capabilities, and which can handle a MIMO system.

4.1 Trolley Steering Method

Since boats can drift, and the heading of a boat does not equal the direction it is
moving, the controller needs a corrected error signal. One way to solve this is by
using the trolley steering method, which will be explained in this section.

The Concept

The concept of this method is derived from the behaviour of a trolley with a han-
dlebar. The steering of the trolley is determined by the handlebar, which controls
the wheels, as seen 4.1. This concept can be transformed for use with autonomous
planar vehicles, with a virtual handlebar which points towards a point on a path
which is to be followed. The handlebar controls the steering mechanism of the
vehicle, and the length of the handlebar decides how aggressively the vehicle will
react to change of direction caused by the points on the path. A longer handle
means smaller steering angles, as will be explained in the coming subsection [12].
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Controller Design 4.1 Trolley Steering Method

Fig. 4.1 Figure showing a trolley and a handlebar [12].

Steering Error Calculation

When a path is generated, it comes in the format of array of points. In this thesis
a distance of 10 cm is selected as the maximum distance between each point. The
setup for the trolley steering method with a boat is illustrated in figure 4.2.

For the trolley steering method to work, an origin (x0, y0) for the virtual handlebar
must first be decided. A search space is then defined, with a minimum and a
maximum distance, dmin and dmax, from (x0, y0). In this search space, the first
point to be found along the path with a distance ∈ [dmin, dmax], is selected to be
the end of the handlebar (xp, yp). The distance d is calculated by the following
equation:

d =
√
(xp − x0)2 + (yp − y0)2 (4.1)

A vector āh used for representing the heading is then defined as:

āh =

cos θ

sin θ

 (4.2)

And a vector āa used for representing the virtual handlebar, or the aim, is defined
as:

āa =

xp − x0

yp − y0

 (4.3)

To find the correct steering error, the angle α between the vectors āh and āa must
be found. If |α| is larger than 90◦, it is deemed invalid, and a new point will have
to be found. If no points are found the steering error β is set to zero.

α = cos−1(
āh · āa

|āh| · |āa|
) (4.4)
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The angle α does not account for direction, and to find the steering error β, the
sign needs to be determined as well:

β = α sign(det([ah āa]) (4.5)

Fig. 4.2 Figure showing how the trolley steering method is used on a boat, with a turning propeller
instead of wheels.

4.2 PID Control

A PID controller consists of a Proportional, Integral and Derivative part, as shown
in figure 4.3. The error signal is the input to each of the parts, and each part has a
gain which is used for tuning the controller. These amplified signals get summed
together to form the control signal.

As mentioned in the introduction of this chapter, the input to the controller is a
steering error calculated by the trolley steering method. The output is an angle in
radians which is sent to the azimuth thruster which runs at constant power.

Fig. 4.3 Figure showing a basic PID setup.
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The controller was initially tuned using MatLABs’ PID tuning toolbox for Simulink,
to warm-start the selection of tuning gains.

It was found that oscillations of the error would disturb the derivative term, and
therefore a second-order low-pass filter is added to curb the oscillations. To ensure
a smooth control signal, a second order low-pass filter is added to the output as
well.

An example of jagged signals is shown in figure 4.4 and 4.5, where the blue line
represents the input to each of the filters, and the output is represented by the
yellow line.

The transfer function of the first filter:

TF1(s) =
1

0.05s2 + 0.35s + 1
(4.6)

The filter TF1(s) smooths out the error signal. This helps against derivative term of
the PID getting affected by high-frequency noise.

Fig. 4.4 Figure showing the steering error, blue before passing through a filter, and yellow after
being filtered.

The transfer function of the second filter:

TF2(s) =
1

0.005s2 + 0.35s + 1
(4.7)

The filter TF2(s) smooths out the control signal. This inhibits unnecessary oscilla-
tions of the control signal which would damage the actuator of a real system in the
long run.

To ensure that the integral part doesn’t grow beyond the maximum control signals,
and to hinder it from dominating the other control signals over longer periods, a
saturation is added to the integrator.
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Fig. 4.5 Figure showing the produced control signal, blue before passing through a filter, and yellow
after being filtered.

A saturation is included before the second filter as well, to keep the control signal
within the limits of the actuator dynamics.

The full structure of the PID controller in combination with the trolley steering
method can be seen in figure 4.6.

Fig. 4.6 Figure showing the solution with a PID controller, filters, saturation and trolley steering
method.

Parameter values selected for the PID solution:

• Kp = 2.5

• Ki = 1.5

• Kd = 8.5

• Virtual handle length ∈ [4.5, 5.0] meters

• Integrator saturation ∈ [−π

4
,

π

4
] radians
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• Output saturation ∈ [−π

2
,

π

2
] radians

4.3 Linear Parameter Dependent Plant

Before looking at how to make state-space controllers, a state-space model is re-
quired. When making state-space models, there are two alternatives:

Linear state-space models, where one linearizes about some operating point and
some static system matrices are found.

Parameter varying state-space models, which are used to emulate the nonlinear
dynamics of a system. These state-space models come with system matrices which
depend on parameters. As this thesis focuses on parameter varying control, these
models will be used.

Because the controller will exist in the BODY reference frame, states from this
reference frame are be used as well.

x̄ is the state vector of the system.

x̄ =

∫ ν

ν

 =



xb

u

yb

v

zb

w

φb

p

θb

q

ψb

r



(4.8)

ū is the input vector of the system.

ū =

 f

α

 (4.9)

w̄ is the disturbance vector of the system. It is a 6× 1 vector.

w̄ = τwind + τwave (4.10)
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f (x̄, ū, w̄) is a set with differential equations describing the change of states in the
system.

f (x̄, ū, w̄) =
d
dt

x̄ = ˙̄x (4.11)

ρ is a vector of parameters which the state matrices depend on. In this case ρ is a
concatenation of the states and inputs.

ρ =

x̄

ū

 (4.12)

To find the system matrices, the Jacobian matrix of f (x̄, ū, w̄) with regards to x̄,
ū and w̄ must be calculated. The result will be the parameter dependent system
matrices A(ρ), B(ρ) and E(ρ).

Jx( f ) = Jx[ f (x̄, ū, w̄)]⇒ ∂ f
∂x̄

(x̄, ū, w̄) = A(ρ) (4.13)

Ju( f ) = Ju[ f (x̄, ū, w̄)]⇒ ∂ f
∂ū

(x̄, ū, w̄) = B(ρ) (4.14)

Jw( f ) = Jw[ f (x̄, ū, w̄)]⇒ ∂ f
∂w̄

(x̄, ū, w̄) = E(ρ) (4.15)

g(x̄, ū, w̄) is a set with differential equations describing the relationship between
the states and the output of the system.

g(x̄, ū, w̄) = ȳ = ν (4.16)

The rest of the system matrices C(ρ), D(ρ) and F(ρ) are found by calculating the
Jacobian matrix of g(x̄, ū, w̄) with regards to x̄, ū and w̄.

Jx(g) = Jx[g(x̄, ū, w̄)]⇒ ∂g
∂x̄

(x̄, ū, w̄) = C(ρ) (4.17)

Ju(g) = Ju[g(x̄, ū, w̄)]⇒ ∂g
∂ū

(x̄, ū, w̄) = D(ρ) (4.18)

Jw(g) = Jw[g(x̄, ū, w̄)]⇒ ∂g
∂w̄

(x̄, ū, w̄) = F(ρ) (4.19)

As the following subsection will prove, a lot of trouble arises if the states, control
signals or parameters are inside trigonometric functions.
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Example Showing That Jacobian Linearization Does Not Always Work

Consider a fixed pendulum as illustrated in figure 4.7, where the control input is
set to zero.

θ is the current angle of deviation from the upper equilibrium point.

Fig. 4.7 Figure showing a pendulum with no control input.

To simplify, the length of the pendulum l is set to be the same as the gravity
constant g. This gives the following differential equation:

g
l
= 1⇒ θ̈ = sin θ (4.20)

Where the state vector x̄ is:

x̄ =

θ

θ̇

 (4.21)

With a following dynamic model:

f (x̄) =

 θ̇

sin θ

 (4.22)

Calculating the Jacobian matrix from f (x̄) with regards to x̄ gives the following
A(θ) matrix:

A(θ) = Jx( f ) =

 0 1

cos θ 0

 (4.23)

The method of Jacobian Linearization does not give us the correct system matrix,
since sin θ is not equal to cos (θ)θ as it is implied in the previous equation.
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One “hacky” way to solve this is by dividing by the states instead of differentiating

by the states. Some terms will produce results which are either ±∞ or
0
0

. These
terms should be set to 0.

This method gives the following system matrix:

A(θ) =
f (x̄)

x̄
=

 0 1

sinc θ 0

 (4.24)

Where sinc θ is defined as:

sinc θ :=


1, if x = 0
sin θ

θ
, otherwise

(4.25)

This method has been tested on a dynamic model of an inverted pendulum on a
cart, and it worked. As this method is done in a semi-automated fashion, all the
system matrices have to be checked manually. The B(ρ) matrix is found by looking
at the state matrix A(ρ) when the input force F onto the cart is zero, and then
finding the difference to when F is a symbolic variable.

This method is feasible for the inverted pendulum on a cart because A(ρ) is a 4× 4
matrix. It did however not work for the boat model, and finding the error within a
reasonable time frame is difficult when the state matrix has the dimensions 12× 12.

4.4 Linear Parameter Varying Control

Linear parameter varying control uses parameter dependent state-space models for
designing either state-feedback or output-feedback controllers. These controllers
are parameter dependent as well.

To synthesize

Some symbols and notations will be used throughout this chapter. These are listed
here:

• V(x) ∼ Lyapunov function.

• Sn
�0 ∼ Symmetric positive definite matrix of dimension n× n.

• Cn ∼ Function which is continuously differentiable n times.

• ρ(t) ∼ Vector with parameters.

• ∆ρ ∼ Set of values which contains the parameters. ρ ∈ ∆ρ

• λ ∼ Vertices of a polytopic LPV system.

• ΛN ∼ Compact and convex hull of the vertices λ.
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Stability Notions for LPV Systems

Some definitions about stability will be introduced in this subsection. These meth-
ods can be used for stability analysis of the system.

Lyapunovs’ Stability Theorem:

A general dynamical system of the form may look like the following equation:

ẋ(t) = f (x(t))

x(0) = 0
(4.26)

x∗ = 0 is an equilibrium point. Let:

• D ∈ Rn be a domain containing x∗ = 0

• V : D → R be C≥1

Such that:

V(0) = 0

V(x) > 0 in D− {0}
V̇(x) ≤ 0 in D

(4.27)

x∗ = 0 is then a stable equilibrium point. If the following equation is valid, x∗ = 0
is an asymptotically stable equilibrium point:

V̇(x) ≤ 0 in D− {0} (4.28)

The function V(x) is called a Lyapunov function.

Barbashin-Krasovskii Theorem:

The equilibrium point x∗ = 0 is globally asymptotically stable if the following is
fulfilled. Let:

• x∗ = 0 be an equilibrium point for f(x)

• V : Rn → R be C≥1

Such that:

• V(0) = 0 and V(x) > 0 ∀x 6= 0
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• ||x|| → ∞ ⇒ V(x)→ ∞

• V̇(x) < 0 ∀x 6= 0

Parameter Dependent System:

A new system x(t) is considered:

ẋ(t) = A(ρ(t))x(t), t ≥ 0

x(0) = x0
(4.29)

Quadratic Stability Theorem nr. 1:

The system is quadradtically stable if Vq(x) is a Lyapunov function for ẋ(t).

Vq(x) = xTP0x, P0 ∈ Sn
�0 (4.30)

This Lyapunov function is often called a “parameter-independent Lyapunov func-
tion”.

Quadratic Stability Theorem nr. 2:

The system ẋ(t) is quadradtically stable if and only if:

∃P ∈ Sn
�0

such that: A(ρ)TP + PA(ρ) ≺ 0

holds: ∀ρ ∈ ∆ρ

(4.31)

Robust Stability:

The system is robustly stable if Vr(x, ρ) is a Lyapunov function for ẋ(t).

Vr(x, ρ) = xTP(ρ)x, P(ρ) � 0, ρ ∈ ∆ρ (4.32)

This Lyapunov function is often called a “parameter-dependent Lyapunov func-
tion”.

Generic Parameter Dependent Systems

A generic way to represent an LPV model can be seen in the following equation.
This is the most general form to represent a LPV system:
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ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t) + E(ρ(t))w(t)

z(t) = C(ρ(t))x(t) + D(ρ(t))u(t) + F(ρ(t))w(t)

y(t) = Cy(ρ(t))x(t) + Fy(ρ(t))w(t)

x(0) = x0

(4.33)

Where:

• x ∈ Rn is the system states.

• u ∈ Rm is the control input.

• w ∈ Rp is the disturbance input.

• z ∈ Rq is the controlled output.

• y ∈ Rr is measured output.

Singular LPV systems of the following form, descriptor form, will also be consid-
ered. This formulation is beneficial when the system has a rational dependence on
the parameters.

I 0

0 0

 ẋ(t)

ẋa(t)

 = Ã(ρ(t))

 x(t)

xa(t)

+ B̃(ρ(t))u(t) + Ẽ(ρ(t))w(t)

z(t) = C̃(ρ(t))

 x(t)

xa(t)

+ D̃(ρ(t))u(t) + F̃(ρ(t))w(t), xa(t) ∈ Rη

y(t) = C̃y(ρ(t))

 x(t)

xa(t)

+ F̃y(ρ(t))

x(0) = x0

(4.34)

Where the matrices Ã(ρ), B̃(ρ), Ẽ(ρ) are defined as:
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Ã(ρ) :=

A11(ρ) A12(ρ)

A21(ρ) A22(ρ)


B̃(ρ) :=

B1(ρ)

B2(ρ)


Ẽ(ρ) :=

E1(ρ)

E2(ρ)


(4.35)

Quadratic Stabilization by State-Feedback, Generic LPV

This method creates a parameter-dependent state-feedback controller which guar-
antees quadratic stability if:

• X ∈ Sn
�0

• Y : ∆ρ → Rm×n

Such that the LMI holds ∀ρ ∈ ∆ρ:
He[A(ρ)X + B(ρ)Y(ρ)] E(ρ) [C(ρ)X + D(ρ)Y(ρ)]T

? −γIp F(ρ)T

? ? −γIq

 ≺ 0 (4.36)

The controller is then given by:

u = Y(ρ)X−1x (4.37)

This ensures that ||z||L2 ≤ γ||w||L2 + (γxT
0 X−1x0)1/2, w ∈ L2, ρ̇ ∈ ∞

The controller in itself has been tried implemented, but due to the lack of a proper
state-space model, no satisfying results are found when solving the LMI.

Quadratic Stabilization by Dynamic-Output Feedback, Generic LPV

If states can not be measured directly, an alternative is to use an output feedback
controller instead, which includes an observer to estimate the states.

First step is to compute the controller matrix Dc(ρ) by solving:

σ̄(F(ρ) + D(ρ)Dc(ρ)Fy(ρ)) < γ (4.38)
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And then define Dcl(ρ) as:

Dcl(ρ) := F(ρ) + D(ρ)Dc(ρ)Fy(ρ) (4.39)

The next step is to solve the two following matrix equations for B̂c(ρ) and Ĉc(ρ):


0 Fy(ρ) 0

Fy(ρ)T −γIp Dcl(ρ)
T

0 Dcl(ρ) −γIq




B̂c(ρ)T

?

?

 = −


Cy(ρ)

E(ρ)TX1

C(ρ) + D(ρ)Dc(ρ)Cy(ρ)

 (4.40)


0 D(ρ)T 0

D(ρ) −γIq Dcl(ρ)

0 Dcl(ρ)
T −γIp




Ĉc(ρ)T

?

?

 = −


B(ρ)T

C(ρ)TY1

[E(ρ) + B(ρ)Dc(ρ)Fy(ρ)]T

 (4.41)

Âc(ρ) is found by computing the following equation:

Âc(ρ) =−
[

A(ρ) + B(ρ)DC(ρ)Cy(ρ)
]T

+

 (XE(ρ) + B̂C(ρ)Fy(ρ))T

C(ρ) + D(ρ)Dc(ρ)Cy(ρ)

T

M

(E(ρ) + B(ρ)Dc(ρ)Fy(ρ))T

C(ρ)Y1 + D(ρ)Ĉc(ρ)

 (4.42)

Where the matrix M is defined as:

M =

−γIp Dcl(ρ)
T

? −γIq

 (4.43)

The following equation should then be solved for X2 and Y2 using singular value
decomposition.

X2YT
2 = I − X1Y1 (4.44)

The controller matrices Ac(ρ), Bc(ρ) and Cc(ρ) are found by solving the three equa-
tions below.
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Ac(ρ) = X−2 1(Âc(ρ)− X1(A(ρ)− B(ρ)Dc(ρ)Cy(ρ))Y1

− B̂c(ρ)Cy(ρ)Y1 − X1B(ρ)Ĉc(ρ))Y−2 T
(4.45)

Bc(ρ) = X−2 1(B̂c(ρ)− X1B(ρ)Dc(ρ)) (4.46)

Cc(ρ) =
[
Ĉc(ρ)− Dc(ρ)Cy(ρ)Y1

]
Y−2 T (4.47)

This method has not been implemented properly due to time constraints and lack
of a proper LPV model. While it shows great promise, the conclusion is still the
same as in the previous subsection.

Polytopic LPV Systems

The polytopic LPV system may be looked at as some type of the generic LPV
system where the parameters have been discretized.

A good reason to use the polytopic representation instead of the generic comes
to light when trying to synthesize a controller. While in a generic LPV the state-
feedback controller is a function of the parameters which has to be found, a poly-
topic state-feedback controller has one static gain for each region of the parameters.
This makes it easier for LMI solvers to find the state-feedback gains [13].

ẋ(t) = A(λ(t))x(t) + Bu(t) + E(λ(t))w(t)

z(t) = C(λ(t))x(t) + Du(t) + F(λ(t))w(t)

x(0) = x0

(4.48)

The matrices which depend on λ are defined as:

M(λ) =
N

∑
i=1

λi Mi (4.49)

Where M := {A, C, E, F}, and λ ∈ ΛN .

ΛN is a compact, convex hull which contains all the vertices of the parameters λ.

Quadratic Stabilization by State-Feedback, Polytopic LPV

This method creates a polytopic parameter-dependent state-feedback controller
which guarantees quadratic stability if:

• X ∈ Sn
�0

• Yi ∈ Rm×n, i = {1, ..., N}
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• A scalar γ > 0

Such that the following LMI hold for all i = 1, ..., N :
He[AiX + BYi] Ei (CiX + DYi)

T

? −γIp FT
i

? ? −γIq

 ≺ 0 (4.50)

The state-feedback is then given by the following equation. This forces the L2-gain
of w→ z to be smaller than γ > 0, for all λ : R≥0 → ΛN .

This method seems to be the easiest one to implement on discrete systems. Due to
time constraints this was has not been tried.

Ki = YiX−1 (4.51)

LPV Systems in LFT Form

This way of representing an LPV system was barely examined. The main idea is
to separate out all the nonlinearities, as shown in figure 4.8 and in the following
equation:

ẋ(t) = Ax(t) + Bw(t)

z(t) = Cx(t) + Dw(t)

w(t) = Θ(ρ(t))z(t)

(4.52)

The reason to represent a system in LFT form is that when the complex system
is transformed into an interconnection of a well-behaving part and a complicated
part, a lot of tools for analysing the interconnected system are available, such as
the Popov criterion.

While this seems promising, it has not been implemented due to time constraints.
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Fig. 4.8 Figure showing the interconnection of an LPV controller in LFT form. [14]
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CHAPTER | 5

Motion Planning

Motion planning is an umbrella term which encompasses a wide range of chal-
lenges, depending on the system and task at hand. The prototypical task is to find
a path through configuration space for a robot such that obstacles are avoided,
whether it is an autonomous car, turtlebot or robot arm. This is also known as the
piano mover’s problem, but other tasks have since been lumped in with motion plan-
ning. A motion planners most important characterization is the type of problem
it is solving, whether it is navigation, coverage, localization, mapping, etc. This
report will focus only on navigation, due to the nature of the system and environ-
ment. It is assumed that a map is already provided, that the state of the boat is
constantly known, as well as the position of both stationary and moving obstacles.
The main goal is to optimize for time while adhering to given constraints.

Two motion planning systems are described in this section, one based on artificial
potential fields, and one based on state-lattices. While being completely different
approaches to the navigation problem, each of them offer advantages over the
other.

5.1 Artificial Potential Fields

Artificial potential fields approach the problem by transforming it into an opti-
mization problem where the minimum represents the goal, and using gradient
descent to find a path to this minimum. The goal is represented as a function with
a minimum at the goal point, and with a potential that is monotonically increasing
covering the entire workspace. Such a function is often a cone with its tip at the
goal point, but other choices are possible. Obstacles are represented as areas of
higher potential, with a somewhat smooth transition, such that the gradient never
descend into them. The function to calculate this potential is often chosen so to to 0
beyond a certain distance, such that obstacles beyond this distance can be ignored
when calculating the potential elsewhere.

As the potential is only used for gradient descent, the actual value of the potential
at any point is irrelevant. The gradient at any discontinuities from any of the
underlying functions (such as when transitioning from including an obstacle to
excluding it) can be assumed to be zero. The potential of each point in the space is
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a sum of the potential of the goal and of each of the obstacles for that point. The
gradient descent method is used to find a path towards the goal and the path of
this gradient descent is the result.

This method has multiple advantages in computation time over more traditional
approaches that spend a lot of resources making an efficient map of the workspace.
These other methods are very useful in static environments, where such a map can
be used repeatedly, but in the case involved in this project, no static obstacles exist
between the starting and goal positions.

However, the method also has some disadvantages, chiefly among them local min-
ima and the handling of kinematic and dynamic constraints. For the constraints,
consider a vehicle represented by a bicycle model with a constraint on how sharply
it can turn. The gradient descent method is modified such that instead of moving
in the gradient direction, it turns towards the gradient direction, and moves for-
ward. If we consider the situation shown in 5.1, it is clear to see that, while a
feasible path exists, this method may not necessarily find it. This can, to some ex-
tent, be mitigated by expanding the obstacles, such that outside corners are more
rounded, but this would also lead to some otherwise feasible baths being marked
as infeasible.

Fig. 5.1 The path in blue (generated by the APF method) will result in a collision with the wall. The
dashed line shows a kinematically feasible path.

The other major consideration is the tendency of the method to end up in a local
minimum. This is because the potential field has a local minimum, and gradient
descent is only a local minimiser. The APF planner can be seen getting stuck in a
local minimum in figure 5.2. There exists multiple methods that attempt to mitigate
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this problem [15], and by using some of these, the method may come a lot closer
to be considered complete.

Fig. 5.2 The APF planner getting stuck in a local minimum. The green X indicates the start position.
The red X indicates the goal position

5.2 State-lattice

One of the classical ways of doing path planning involves decomposing the
workspace into a graph, by a method known as cell decomposition. Once the
problem is expressed in graph form, the well understood field of pathfinding can
be used to find a set of nodes that connects the start node to the end node. These
methods do not take into account the constraints on the kinematics and dynamics
of the system, and may result in a path that the vehicle is unable to follow.

Other algorithms such as Probabilistic Roadmaps choose a random set of points
within the workspace, and compute connectivity between them. If regular sam-
pling is used instead of probabilistic sampling, the samples can be chosen to align
with a square graph. If a set of allowable motions has been precomputed, that align
with the transitions from one node in the graph to another, these motions can be
used as the connectivity of the graph. The workspace can be extended to include
dimensions representing more states, such as velocities. This can be particularly
useful if the kinematic constrains (such as how sharply the vessel can turn) depend
on the velocity.

For a given system, in a given workspace, for a given start and end state, the
State Lattice method can be made to give a path within any non-zero bound of the
optimal path, by discretizing enough of the system dynamics finely enough, and by
having enough motion primitives between them. This requires that the workspace
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be well formed, such as having no passages between obstacles where the the vessel
can pass through exactly, there must always be some extra space.the system must
also be well behaved and not stiff. The bound that the solution has to be within
defines how close to optimal the solution is. The method never guarantees an
optimal solution, but can get arbitrarily close. A large number of states, each with
fine discretization, and a large number of motion primitives may make the method
computationally infeasible. [16]

An important consideration when implementing a State lattice planner is the choice
of grid size and sampling technique in the different dimensions. For spatial dimen-
sions, using the same size for all directions gives rotational symmetry, resulting in
a lower number of motion primitives giving the same result. A finer grid will nat-
urally result in the possibility of planning finer motion, but also cost more in terms
of computational resources.

For orientation, an important consideration is the desire for straight line paths,
as these will often be a major component of optimal paths, and more samples in
heading results in more possible straight line paths. Intuitively, one might naïvely
want to sample heading with small, uniform increments. However, uniform sam-
pling of heading cannot result in more than eight straight line paths. Uniform
sampling of heading results in all the angles being of the form θ = 2rπ, where r
is a rational number. For a selected angle to result in a usable straight line path,
the ratio between the change in x and the change in y must be rational. Niven’s
theorem [17] states that “If θ is rational in degrees, say θ = 2πr for some rational
number r, then the only rational values of the trigonometric functions of θ are as
follows: ... tan(θ), cot(θ) = 0,±1.” Following from that, it can be shown that 8
rational result from arctan 2(x, y), which represent the 8 different possible straight
line path possible with uniform sampling of heading. Finer sampling can be used,
but it should be non-uniform if more straight line paths are desired.

If the kinematic constrains of the system vary with velocity, such as by changing the
turning radius, and an optimal path in terms of time spent is desired, the velocity
needs to be a dimension in the state lattice. This way it becomes possible to plan
a path that manoeuvres slowly and carefully and smoothly through any dense
obstacle fields, while also going faster through longer straight or almost straight
parts of the workspace, and to correctly weigh the cost of each. One method that
has been used with some success for similarly constrained systems, is the use of
three velocities, one standing still, for rotating on the spot, one moving slowly,
for maneuvering through tight spaces, and one high velocity for covering long
distances in little time. Velocities for reversing can also be added.

Other states, such as angular velocity, can also be sampled and added to the graph
dimensions, although the selection should be made carefully. The size of the graph
grows exponentially with the number of states included, resulting in the subse-
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quent graph search being more computationally expensive. However, if the if all
relevant states are included, the path will approach optimality.

Once the parameters for the lattice itself is designed, the connections between the
nodes must be made. These connections are known as the motion primitives, and
represent the transitions between discrete points in the state space of the system.
Since the system is a mobile robot operating on a flat plane, the system is transla-
tionaly and rotationally invariant. As such, the same set of transitions can be used
from any point in the configuration space representing position and angle. This
set, however, will need to be generated for each combination of the other states
included in the system. Rotation is also a bit special, as while rotating a motion by
a multiple of 90◦ will work, other rotations will not necessarily result in the end of
the motion ending on a valid state in a square grid, as seen in figure 5.3.

Fig. 5.3 When a feasible motion primitive (a) has been generated, the mirror image (d) and 90◦

degree rotation (c) both produce valid motion primitives that align with the grid. 45◦ degree rotation
(b) does not align with the grid. Translation (e) produces valid motion primitives for other starting
points

There exists multiple ways of making such a set of motion primitives, and which
method is appropriate depends on the decisions made above. For a simple bicycle
model equivalent system, where the goal is to replace a grid based planner with a
planner that guarantees any path found will be kinematically feasible, it is possible
to simply make them from the kinematics of the robot. There will be 4 different
angles, and the grid spacing will be the minimum turning radius. There will be
3 different motion primitives; forward, left, and right. For more complicated sys-
tems, especially ones that include more states, more formal methods exits. Some
of these will be explained below.

For a path to be feasible, it must avoid collisions between the vessel and any ob-
stacles that may be present. To do so, the system must know what space must
be free, in order to execute a given motion primitive. The area occupied by the
vessel during a particular motion is known as a swath. Each motion primitive has
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an associated swath. A swath is represented in a 2D grid for vessels operating in
a plane, regardless of any other states represented in the state lattice. The grid
should have at least the same spatial resolution as the state lattice, but may have
a finer resolution. A finer resolution will result in more optimal paths in tight
quarters, at the cost of increased computational resources.

Some work has been done on robots where the ’collision’ with an obstacle is asso-
ciated with a cost, such as a planetary rover operating in a rocky field. For such
robots, storing the amount of interaction with different parts of the swath, and
the swath grid may be real valued to reflect this interaction. But for the system
described in this thesis, such a collision would be a critical failure. As such, the
swath grid will be binary. Such a binary swath can be seen in Figure 5.4, for a
tractor trailer system.

Fig. 5.4 The swath generated by a tractor-trailer system moving through a workspace. the darkened
area represents the area that needs to be free for this motion to not collide with an obstacle

At runtime, the system will use a pathfinding algorithm (such as Dijkstra or A*)
to compute a path through the state lattice. When the pathfining algorithm wants
to use a specific motion primitive from a specific node, the intersection of the
space occupied by obstacles and the swath of this motion primitive is taken. If
the intersection is non-zero, taking this motion could lead to a collision, and it is
discarded. Some motions that may not necessarily lead to a collision are discarded
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by this, if the vessel and the obstacle would occupy different parts of the grid
square of the swath, which is why a finer grid may be desired for the swath grid.

When the state lattice method was first developed, it generated the entire graph
in computer memory, before removing nodes and edges that would result in colli-
sions. More modern implementations instead implicitly represent the graph, and
only evaluate collisions as the path planner makes its way through the workspace.

Motion Primitives

Once the parameters for the lattice have been decided, the motion primitives need
to be generated. To do this, two things are necessary, a method for deciding which
motion primitives are needed, and a way of generating them. for deciding which
ones to generate, the algorithm described as algorithm 1 in [16] is used (see figure
5.5).

Fig. 5.5 The algorithm used to generate the motion primitives. The trajectory function returns
the set of control inputs needed to go from initial state (first argument) to the goal state (second
argument). If it cannot find such a trajectory, the empty set is returned. For each combination of
initial and final orientation and curvature, this algorithm finds a motion primitive with the lowest
possible infinity norm.

While the formula is useful, one must exercise caution when using it. The formula
does not define the order in which the different end positions are tested, beyond the
infinity norm, and as such, may appear in any order respecting that. For instance,
the algorithm might decide to try the motion from [0, 0, 0, 0] to [−1, 0, 0, 0] before
trying to move to [1, 0, 0, 0]. If the trajectory generator can find such a trajectory,
the algorithm will not look for a shorter motion. This motion can be seen in figure
5.6

This issue was worked around by limiting the trajectory generator to only find
with lengths shorter than the Euclidean norm times some constant. If this constant
is set to one, only straight line paths are acceptable. If it is set to π

2 , semicircular
paths are acceptable. the value used for this project is 2
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Fig. 5.6 The path from [0, 0, 0, 0] to [−1, 0, 0, 0]. There exists no legal motion that has a lower infinity
norm of the start and end positions, and therefore no other

For generating the trajectories, multiple methods were considered. The function to
generate a trajectory takes an initial state, a goal state, and if it can find a feasible
trajectory, the control inputs to achieve this are returned. Handling of the case
where no trajectory can be found varies with the different methods.

Three different ways of generating the trajectories were seriously considered. First,
the method described in Kelly & Nagy[18] was considered, along with relying
on the controller proposed in chapter 4. Finally, generation of trajectories based
defining an optimisation problem satisfying our constraints was considered, and
in the end, chosen.

The method described in Kelly & Nagy has many attractive properties for more
general solutions, such as fast runtime and optimal trajectories. However, when
working with a specific vessel, and when a accurate model is available, with con-
strains that fall outside of what can easily be included in the method, it may not
preform well. On the other hand, a controller running this more detailed model
would, by definition, only be able to preform motions that the model is capable of
preforming. However, time constraints in the project made it so that this controller
was not ready in time for the generation of the motion primitives. Thus, it was
decided to use the last method to generate trajectories, until a new set could be
generated from the controller.

In order to formulate this optimisation problem, a simple model of the vessel
must be created. This is done by using the formula usually used by wheeled
robots.While velocity states may be added later, for now we are considering only
the constant velocity model. As such, t is used to represent the distance driven
along the path. x(t), y(t) and θ(t) are used to represent the state of the system,
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and u(t) represents the input to the system.
x(t)

y(t)

θ(t)

 =

∫ 
cos(θ(t))

sin(θ(t))

u(t)

 dt (5.1)

Adding initial conditions, terminal constrains, and control constrains, the problem
begins to resemble something that can be used with a computer based solver.

min
u(t)

t f

s.t.


x(t)

y(t)

θ(t)

 =

∫
t

0


cos(θ(t))

sin(θ(t))

u(t)

 dt

x(0) = x0

y(0) = y0

θ(0) = θ0

x(t f ) = x f

y(t f ) = y f

θ(t f ) = θ f

|u(t)| ≤ umax(t)

(5.2)

Where t f represents the distance moved along the trajectory, x0, y0, and θ0 repre-
sents the initial conditions, x f , y f , and θ f represents the terminal constraints, and
umax represents limits on our input.

However, as the tool chosen is CasADi [19], and this tool requires any integrals to
be over a defined area, some changes are needed still necessary.
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x(s)

y(s)

θ(s)

 =

∫
s

0


cos(θ(s))

sin(θ(s))

u(s)

 csds

x(1) = x f

y(1) = y f

θ(1) = θ f

(5.3)

In this version cs is used to represent the coefficient of scaling, such that the system
can avoid having to optimise against the limits of the integral.

The next task is to develop a function for the input u, such that a finite number of
parameters can be used to generate inputs for the range of s ∈ [0, 1]. In Kelly &
Nagy an n’th order polynomial was used, but for this paper, a linear interpolation
between the parameters is used.

u(s) = U (s1)(1− s2) + U (s1 + 1)s2 (5.4)

s1 = bs(n− 1)c (5.5)

s2 = s(n− 1)− s1 (5.6)

In this function, n represents the number of inputs to be interpolated between, U
represents the vector of these inputs, s1 represents the interpolation segment, and
s2 represents where in this segment we are. The values in U describe the curvature
at n uniformly spaced points along the path from [x0, yo, θ0] to [x f , y f , θ f ], and this
makes the limit for umax easier to check. Additionally, it would make the addition
of a curvature state trivial, by assigning the first value in U to the initial curvature,
and likewise for the last value in U and the final curvature.

The number of inputs is a minor consideration in this process. The minimum
number required for solutions to exist is 2, but having more than that makes it
possible for more optimal paths to be generated. A very large number may make
it computationally hard to find optimal solutions. For this project, a value of 10
was chosen.

Once the motion primitives have been generated, the pathfinding process can be-
gin. For this SBPL library was used through the SBPL Lattice Planner[20] package
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for ROS[21]. This combination uses a user-defined set of motion primitives to navi-
gate through a map provided by other ROS nodes. While SBPL itself has the option
of including additional states, this is not implemented in the SBPL Lattice Planner.
As such, adding states such as curvature and velocity is not possible without major
modifications to SBPL Lattice planner.

For this project the state space was sampled with 8 headings, and 1 meter steps
were used for spatial discretization. During testing of the model, it was calculated
that the vessel can turn by at most 0.3 radians per second, largely unaffected by the
linear velocity of the vessel. When traveling at a constant velocity of 1.5 m/s, this
results in a turning radius of 5 meters, which was used as the limit on curvature.
The motion primitives that were generated can be seen in figure 5.7. A similar
set was generated for an initial angel of 45◦. These were copied and rotated to
represent all the different orientations.
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Motion Planning 5.2 State-lattice

Fig. 5.7 The motion primitives used in this project for one direction. Then straight line motion
primitive is almost obscured by the longer, curved motion primitives
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CHAPTER | 6

Results

This chapter will describe the results of any test preformed. It contains some com-
parisons between the model that was developed with the boat it is based on.it
contains some examples of the PID controller following a path, but the other con-
troller it was supposed to be compared to was not completed. There are also some
results from the motion planning algorithms. While there is not a direct compari-
son between the two, it does show a successful path from each, as well as showing
the APF failing at generating a trajectory for a configuration that the State Lattice
solved.

6.1 Simulation Verification

In this section an attempt at verifying the boat simulation is made. Different tests
are performed, and the results are compared with real life results for R/V Gun-
nerus.

Max thrust forward

The top speed of Gunnerus is known to be 12.6kn. The simulation model stabilizes
at a top speed of 14.5kn. This most likely due to erroneous nonlinear damping
terms.

Fig. 6.1 Figure showing the straight line test at max thrust.
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Results 6.1 Simulation Verification

Set Zig-Zag Maneuver for comparison

Some tests have been done on R/V Gunnerus in the past as another master thesis
[22]. One of the most relevant tests is one where the boat does some zig-zag moves,
changing rudder heading each 10-20 seconds. These tests are not fully accurate
anymore, as these were performed while R/V Gunnerus still had rudders instead
of azimuth thrusters.

A simulated test with similar control inputs has been done, to evaluate the model
fidelity.

The rudder angle can be seen in figure 6.2. This can be compared to the simulated
thruster angle in figure 6.3. While the amplitude is the same, the frequency is a bit
off.

Fig. 6.2 Figure showing rudder angles of R/V Gunnerus, from a test done with the real boat [22].

The DP-system uses a gyroscope to predict the heading of Gunnerus, while Seap-
ath uses GPS data.

As it can be seen in figure 6.5, the boat goes completely off-track. This is most likely
to the inherent instability at high speeds due to the wrong nonlinear damping
coefficients. Meanwhile the real boat does some smooth zig-zag maneuvers, as
shown in figure 6.4 for comparison.

Both the real and the simulated boat start at about 10kn. While the speed of the
real boat decreases a bit while turning, it does never reach a speed below 8kn. The
simulated boat on the other hand almost reaches zero, and slowly increases its’
velocity after that.
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Results 6.1 Simulation Verification

Fig. 6.3 Figure showing rudder angles of the simulated R/V Gunnerus.

Fig. 6.4 Figure showing the x-y coordinates of R/V Gunnerus, from a test done with the real
boat [22].

As these tests show, something needs to be corrected on the model. Because the
simulated boat is well-behaved at relatively low speeds, it is assumed that the false
nonlinear damping coefficients are the reason for the inaccuracies in the model.
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Results 6.2 PID Controller Results

Fig. 6.5 Figure showing x-y position of the simulated R/V Gunnerus.

Fig. 6.6 Figure showing speed of R/V Gunnerus, from a test done with the real boat [22].

6.2 PID Controller Results

This section shows the results from some tests using the PID controller from section
4.2 as a heading controller, with the same gains, filter and trolley steering method.
The thrust is constant, producing speeds up to 3kn. Two tests were done. One
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Results 6.2 PID Controller Results

Fig. 6.7 Figure showing the speed of the simulated R/V Gunnerus.

where the boat follows a sinusoidal path, and one where the boat follows a circular
path.

PID Zig-Zag Maneuver

The desired and sailed path can be seen in figure 6.8, where the blue line is the
reference path, and the red is the sailed path. The blue path is followed nicely,
with a deviation less than 3m. The oscillations at the end are caused by the abrupt
ending of the path.

Fig. 6.8 Figure showing the blue reference path and the red sailed path from a test of the PID
controller.

PID Circle Maneuver

The desired and sailed path can be seen in figure 6.9, where the blue line is the
reference path, and the red is the sailed path. The first lap it misses the path a bit,
but that is due to the trolley steering method. The deviation from the desired path
stabilizes at about 5m, which is also the length virtual handlebar.

Considering that the boat is almost 10m wide, a deviation of less than 5m from the
desired path is deemed a satisfactory result.
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Fig. 6.9 Figure showing the blue reference path and the red sailed path from a test of the PID
controller.

6.3 Model Analysis

In order to create the simplified model for generation of the motion primitives,
some amount of information needs to be gathered from the real model. The one
parameter that needs to be extracted is the maximum sustained angular velocity.
This can be read form figure 6.10. Another parameter that could be useful for a
slightly more advanced model is the maximum angular acceleration, however this
graph is inconclusive on that point.

Fig. 6.10 The maximum sustained turning rate of the vessel (represented by the red line) is esti-
mated to be around 0.3 rad/s
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Results 6.4 Motion Planning Results

6.4 Motion Planning Results

An implementation was made for both Artificial Potential Fields and State Lattice
planners, and they were tested on a similar map. The reason the same map was
not used, is that the APF uses a list of obstacles, each defined by a list of points,
while the State lattice planner uses a bitmap to describe the obstacles. From the
bitmap, a similar looking set of obstacles was made for the APF.

None of the maps tested managed to prevent the State lattice planner from finding
a path, while for some of the maps, the APF failed to find a solution. An example
of this is provided in figure 6.11 showing the APF unable to find a path that figure
6.12. Figure 6.13 shows the APFs ability to plan elsewhere in the same workspace.

Fig. 6.11 The APF system is unable to find a path through the workspace

A direct numerical comparison of performance between the two was not made,
because comparing that would not be meaningful. If the APF gave better results, it
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Results 6.4 Motion Planning Results

Fig. 6.12 The Lattice planner can find a path through the same workspace that the APF was unable
to navigate through

could simply be argued that it is because it does not guarantee the satisfaction of
the model constraints. Similarly, if the APF fails to eclipse the State Lattice results,
it could be argued that the tests do not reflect the workspace they would actually
be working in.

The workspaces used in testing use a series of static obstacles, while the real
workspace would mainly have moving obstacles. While local minima are of course
problematic, in most cases, the obstacle would be moving out of the way before it
becomes a problem. Neither method is currently implemented in a way that can
deal with moving obstacles.
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Fig. 6.13 The APF can successfully navigate in other parts of the workspace but it is particularly
bad around concave obstacles.
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CHAPTER | 7

Evaluation

In this chapter, the project will be concluded, and the results will be evaluated.
Potential solutions to problems discussed but not solved in the project will be
discussed.

7.1 Conclusion

While each of the components implemented in this project face challenges, none
of these challenges seem insurmountable. The model only accurately represents
the system at fairly low speeds, this should be solvable with better data about the
vessels behavior at high speeds.

Since the simulation directly rely on the model for their maths, they face the same
problems as the model itself.

Because the linearization failed to work as planned, the model did not become a
a good input for the controller design phase. Nevertheless a decent PID controller
was made that mostly satisfies the need for a controller.

The motion planners both work, but neither work with moving obstacles yet. How-
ever, both of the methods are upgradable to handle moving obstacles.

In conclusion, this project has failed to find anything that should make the ar-
chitecture proposed in the introduction unworkable as a solution to the problem
described the same place.

7.2 Future Work

Modeling

While a reasonably accurate model was created, it did act erratically at higher
speeds. It would be desirable for the better model some of the non-linearities that
occur at high speed. It is also desirable to create a better linearization of the model,
perhaps using something similar to [23].
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Simulation

While the model may be reasonably accurate in itself, it is not useful if the param-
eters of the model do not reflect the vessel that the system is actually intended to
be used with. As such, having a detailed set of parameters that represent other
vessels more similar to the final product would be very useful.

Control

If the model can be linearized in a useful way, finishing the LPV controller could
be very beneficial. If not, other controllers, such as sliding mode control, may be
more beneficial to develop for this project. Sliding mode control

Motion Planning

The biggest change that needs to be made to the motion planning system is for
it to be able to handle moving obstacles. This involves estimating how the obsta-
cles move, and calculating the probabilities of them occupying different parts of
the workspace. Doing so can enable the vessel to navigate around other vessels
without risk of collision. Any method selected will also have to make sure that tra-
jectories near other vessels comply with the traffic rules of the workspace. There
are rules about such things as which side to move to to avoid a head on collision,
not blocking the wind of a sail ship, and other related concepts. Compliance with
this is best achieved by incorporating it into the trajectory.

The system can generate a trajectory, but for that trajectory to be useful, it needs
to be sent to the control system. it also needs to be based on data from the sens-
ing system. Right now, each component exists on its own, and they need to be
integrated together to be able to control the vessel.

The current set of motion primitives do not guarantee continuity in our control
inputs. While there is continuity within each motion primitive, there is not when
switching from one motion primitive to another. While the program currently has
the features available to remedy this, it is only possible with only one curvature.

Adding states such as velocity and curvature, and discretizing them to a reasonable
number of values could be beneficial. The current model of the vessel indicates that
the vessel is able to turn at a certain angular velocity, almost regardless of the linear
velocity

Adding these states would mean using a different implementation than the SBPL
Lattice Planner, or modifying it heavily, but it would nevertheless be a change
worth making.

If the APF is to be used, the local minima problem needs to be mitigated. A
complete motion planner may net be required, but the current implementation
may be too prone to getting stuck.
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APPENDIX | A

Gazebo Code

The code listing has been moved to Github: github.com/skaihoj/masters-thesis

The code in /simulation is the standalone gazebo version of the simulator

The code in /aauship-sim is the same, but integrated into ROS

The code in /StateLattice and /APF test is the implementation of the State Lattice
and Artificial Potential Fields, respectively. In state lattice, the path5.py generated
the motion primitives used in this thesis. In APF test, APF_v2.py generated the
trajectories shown in this thesis
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