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Abstract:

The scope of this thesis is to develop
a non-linear model predictive control
(NMPC) based path planning for a non-
holonomic mobile robot. The purpose
of the planner is to enable the PAL
moving base robotic platform to navi-
gate in a dynamic environment consid-
ering static and moving obstacles. A
non-linear kinematic model is designed
for the robot as well as a linear state-
space model to represent moving obsta-
cles. These models are implemented in
a NMPC to predict robot and obsta-
cle movement. Driving the design of
this NPMC is a parallel simulation de-
velopment of different planning meth-
ods, Resulting in a set-point stabilisa-
tion NMPC local planner with multiple
shooting discretization. In addition, two
different polygon shaped obstacle repre-
sentation method is developed and im-
plemented as constraints to the NMPC
design. Finally the planner is imple-
mented on the PAL moving base and
compared to a contemporary planner
to evaluate performance, through these
test results concluding comparable per-
formance is achievable using the NMPC
based planner with added moving obsta-
cle functionality.
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PREFACE

This thesis is made as a completion of the master education in Control and Automation at
Aalborg University, ending spring 2020. The aim of this thesis is to develop a local path
planning algorithm for motion among people in addition to navigating a static environ-
ment. The local planner has to follow a series of local goal given by the global planner until
the robot reaches it’s target destination or global goal. This local planner is developed
alongside the working body of the Human Aware Mobile Robotics lab (HAMR-lab) at
Aalborg University(AAU). The planner has been mainly developed on the PAL Robotics
TIAGo robot. The TIAGo robot is intended to be used as a development platform for the
KUGLE Project where the dynamics of a ball-balancing robot, such as the KUGLE robot,
does not have to be taken into account. This is done such that the focus can be directed
towards planning rather than modelling. The local planner is based upon the concepts
of Non-linear Model Predictive Control, set-point stabilization and constraint identifica-
tion. The thesis also relies on the concepts of control theory, path planning, kinematic
modelling, linear algebra and optimization. To understand the Thesis knowledge within
these concepts is required.

The report’s structure is built up from seven chapters, each covering a significant part of
the entire project.
Chapter 1 - Introduces the Human Aware Mobile Robotics lab, the TIAGo robot and
what the scope of the project is. The chapter concludes with some core questions that
will be further investigated.
Chapter 2 - Presents the findings of the questions asked and further narrows down the
core questions that seeks to be answered in this thesis. This Chapter concludes with a
problem formulation.
Chapter 3 - Presents the modelling of the TIAGo robot as well as the pedestrians/-
moving obstacles. It also defines how the static and moving obstacles are represented as
constraints.
Chapter 4 - Details the formulation of a Non-linear Model Predictive Control (NMPC)
problem developed for local planning of the TIAGo robot. The general ideas of stabi-
lization and tracking NMPC are detailed. The Chapter gives a brief description of the
optimal control problem, NMPC discretization and the consideration of constraints for
the NMPC local planner.
Chapter 5 - Presents simulations of the local planner in MATLAB and Gazebo. The
simulations have been used to develop the NMPC.
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Chapter 6 - Describes the process of implementing the local planner into the TIAGo
platform and the formulation of the NMPC using the software tool CasADi for numerical
optimization.
Chapter 7 - Compares the obstacle representations in different scenarios. The Chapter
also compares the local planner developed in this thesis to the on-board PAL-local planner
pre-installed on the robot.
Chapter 8 - Discusses the results of the tests, the limitations of the tests and what they
mean for the local planner.
Chapter 9 - Summarizes and concludes on the overall results and findings of the Thesis
related to the problem formulation as well as the future work that could improve the local
planner.

Reading directions:

• The Nomenclature contains a list of abbreviations of terms and phrases used through-
out this report.

• The Figures that are not made by the authors of this report are referenced below
them.

• The Bibliography contains the sources and is written in order of appearance through-
out the report. The bibliography follows the IEEE referencing scheme.

• The Appendix includes extra materials that are used in the report, such as algo-
rithms, test results, simulation results and large figures.

• There is a list of figures and a list of tables that can be used to look up figures in
the report.

• The learning objectives can also be found in the Appendix, which should be fulfilled
through the formation and writing of this Thesis.

Special thanks to Karl Damkjær Hansen for the continuous supervising and suggestions
of possible solutions and methods throughout the project.
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NOMENCLATURE

Common Abbreviations

This section contains explanations and abbreviations of specific words which are used
throughout the report.

• AAU - Aalborg Unviversity

• AMCL - Adaptive Monte Carlo Localization

• CVM - Curvature-Velocity Method

• DBSCAN - Density-Based Spatial Clustering of Applications with Noise

• DoF - Degrees of Freedom

• DWA - Dynamic Window Approach

• HAMR - Human Aware Mobile Robotics

• HRI - Human Robot Interaction

• IMU - Inertial Measurement Unit

• LiDAR - Light Detection And Ranging.

• MPC - Model Predictive Control

• NLP - Non-linear Programing

• NMPC - Non-linear Model Predictive Control

• ODE - Ordinary Differential Equation

• OCP - Optimal Control Problem

• PFM - Potential Field Method

• PMB - PAL Mobile Base

• RDP - Ramer–Douglas–Peucker algorithm

• ROS - Robot Operation System

• RRT - Rapidly-Exploring Random Tree

• TEB - Timed Elastic Band

• VFH - Virtual Field Histogram

• VO - Velocity Obstacle
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CHAPTER 1

INTRODUCTION

Mobile robotics is increasingly deployed in public areas, dense with humans and other
moving obstacles. Navigating, through such an environment effectively without collision,
is one of the factors driving the need for more advanced motion planning algorithms.
Under the topic of manoeuvring in a space with moving obstacles, a vital part is taking
into consideration the movements of the people. Planning motion of a robot while avoiding
moving people is not a simple task, as the future position of a given person has to be taken
into consideration, as people usually do not move in a strictly linear patterns. Therefore
prediction of the people’s movement is needed, based on a representative model of human
movement, to figure out which path to take to not collide with people in the environment.
To provide the necessary comfort for someone who is moving in a given environment,
it is crucial to provide a sense of certainty about how one’s environment is going to
change. This is a feeling which is often hard to instil using robots in a Human-Robot
Interaction(HRI) scenario. Because of these factors, another important topic in shared
environments to consider is how to ensure comfortable HRIs in a dynamic environment.

This thesis is developed alongside the working body of the Human Aware Mobile Robotics
lab (HAMR-lab) at Aalborg University(AAU). The focus of HAMR-lab lies in creating
mobile robotics solutions, implementable in social environments around people. Social
environments being areas in which people move around freely. An emerging focus in
the field of mobile robotics is that of guiding robots for assistance in navigation. For this
purpose, the KUGLE robot [1] project is developed specifically for the scenario of aiding in
the navigation of a hospital environment. An imagined scenario could be the robot being
available at the hospital entrance with a list of locations, to which it can guide a visitor
around by leading them to their destination. The KUGLE robot is a ball balancing robot
capable of navigating static environments. In this, the HAMR research group works on
product development along with software development and modelling research pertaining
to both KUGLE and human movement modelling.
The focus of this Thesis lies in creating a navigation package for the mobile robots used
by the HAMR-lab group. Specifically, the robotic platform TIAGo from PAL Robotics
is used to simulate the KUGLE robot. The TIAGo platform is an extensive robotics
platform with many capabilities within the field of navigation.
The navigation package aims to increase the capabilities of the TIAGo platform. It is de-
veloped to be a local planner, which receives goal points from the already extensive global
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planner. There are already some local planning methods implemented on the TIAGo plat-
form, such as the Dynamic Window Approach(DWA) and Timed Elastic Bands(TEB).
However, the envisioned environment includes moving obstacles (humans), which are not
considered in these methods, requiring the expansion of local planning methods to in-
clude capabilities which consider moving obstacles. The algorithm used for planning the
trajectory of the robot has to ensure that the robot can navigate to the goal and consider
the motion of the robot throughout the trajectory, to make sure it moves naturally and
smoothly.

The TIAGo robot is used to avoid the challenges that arise with using a ball-balancing
robot, simplifying the model needed for control of the system. The TIAGo platform runs
Ubuntu with Robot Operating System(ROS) for inter-system communication, the idea
being for the navigation package to be a plug and play solution for navigation able to
run on any platform with ROS, given a minor initial setup. For solving the issue of local
planning in a dynamic environment, specific problems arise, some of the relevant problems
have been formulated as follows:

• How to represent pedestrian motion, modelling humans as moving obstacles?
• How can social situations be recognized and represented to ensure comfortable

human-robot interaction?
• How can local planning be implemented to ensure collision-less movement through

an environment with moving obstacles?
• How to ensure smooth robot motion throughout operation given an environment,

including moving obstacles?

A literature review is conducted in the following Chapter 2, specifically investigating
methods that propose solutions to above questions. Based on this state of the art research,
an approach is selected for further investigation throughout this Thesis.

2



CHAPTER 2

STATE OF THE ART

This chapter introduces the background of robot motion planning and investigates some
state of the art procedures previously used to solve problems similar to the ones treated
in this thesis. The problems, as stated in Section 1, can be split into two main issues. The
first being that of ensuring proper HRI, ensuring socially aware and responsible navigation
from the robot, described in Section 2.1. The second issue is that of facilitating robot
navigation through a dynamic environment. Ensuring no collisions in an environment,
including dynamic obstacles, described in Section 2.2. The chapter concludes with an
evaluation of the currently employed methods that solve the problem of navigation in an
environment with moving obstacles.

2.1 Human-Robot Interaction

An important part of most robot navigation scenarios is the ability to avoid obstacles.
For this thesis specifically, both static and moving obstacles are considered. The robot
should be able to navigate in an environment where humans should be able to interact
with the robot and while also avoiding humans that come in the way of the robot. The
root of this problem is ensuring natural Human-Robot Interaction (HRI). To interact
appropriately with humans, Dautenhahn [2] proposes that robots need to be equipped
with several non-trivial behaviours instilling a feeling of intelligence in the robot from
the human perspective. Such as ensuring that the robot responds reliably in real-time to
highly dynamic human behaviour.
To ensure natural HRI, criteria for defining natural interaction, need to be established.
This is done to ensure both physically safe and socially comfortable robot operation [3].
Specifically useful for the scenario envisioned in this project is the measure of proxemic
interpersonal distance as found by E.T.Hall [4], seen in Table 2.1. Describing different
distance thresholds in which people generally are comfortable, given different types of
interactions with actors in their environment. These distances are useful for guiding how
the robot should circumnavigate people in the environment while considering personal
space of the people.

3
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Designation Specification Reserved for...
Intimate Distance 0-45cm Embracing, touching, whispering
Personal Distance 45-120cm Friends
Social Distance 1.2-4.6m Acquaintances and strangers
Public Distance >3.6m Public speaking

Table 2.1: Proxemic interpersonal distances found by E.T.Hall[4]. The use of these dis-
tances regarding human-robot interaction is an open research question.

The proxemic interpersonal distances in Table 2.1 is an excellent guide to help figure out
the distance a robot should try to keep to people, specifically given the nature of the
interaction they might have. This way, basic distance measure would only pose as an
obstacle enlargement parameter; it is also important to consider the direction the person
is facing [5].
Kollmitz et al. propose a way to represent the people in the environment as dynamic
obstacles[6]. This is done by representing individual human obstacles as a set of Gaussian
distributions with varying standard deviation along the side and facing the direction of the
person, as well by the velocity in that direction. The obstacle is then being represented by
a field of probabilities, with a strictly non-traversable area in the centre representing the
predicted position given the velocity of the person. How the field of probabilities evolve
can be seen in Figure 2.1

Figure 2.1: The dynamic cost mapping created to represent human motion by Kollmitz
et al., the cost decreasing and spreading over time as confidence in path decreases. [6]

The field of probabilities is convertible to a potential field representation to enforce socially
preferable trajectories during motion planning. To represent the prediction of the position
of the obstacle a layered dynamic cost-map is proposed, with the social cost field being
propagated in time, the standard deviations of the distribution increasing for further
prediction steps.
Another thing to consider regarding these is the interpersonal relationships between actors
in the environment. A way to include these relations and circumnavigate them as not to
disturb social interactions is set forth by Truong & Ngo [5]. This method extends upon
the findings of Kollmitz by introducing social interaction spaces. Social interaction spaces
being a combination of dynamic obstacles given close enough proximity, if two people are
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gathered close enough, then a new object is created to signify the social interaction as an
obstacle. This can be seen illustrated in Figure 2.2.

Figure 2.2: Representation of different social zone situations. A person interacting with
an object (top left), a two person social zone (top right), 3 person social zone(bottom
left) and a 4 person social zone [5]

The method by Truong and Ngo implements these social interaction spaces as their own
obstacles with a potential field to deter close movement by the robot, based on people
gathered closely together. Based on these differently sized social zone representations a
preferred angle of interruption can also be investigated. For example the robot should
approach the depicted 3 person social zone from the top, as all three actors would be able
to see the robot approaching, providing a more comfortable interaction.

2.2 History of Motion Planning

Motion planning for mobile robots gained the attention of several researchers around the
world since 1979 when Loyano-Pérez and Wesley presented the concept of the configura-
tion space [7]. All service robots feature some kind of motion planning in a collision-free
manner, ranging from simple algorithms that detect an obstacle and terminate the robot’s
movement in order to avoid collision, through advanced algorithms, which enable the robot
to circumnavigate obstacles in an optimal way.
Early collision avoidance strategies were based on the use of artificial potential field meth-
ods (PFM). O. Khatib in [8] has suggested the idea of imaginary forces acting on a robot.
In this global planning strategy, obstacles have repulsive forces, while the target applies
an attractive force to the robot. By harnessing these repulsive and attractive forces, the

5



CHAPTER 2. STATE OF THE ART CA10-1032

mobile robot can avoid colliding with nearby obstacles and reach its target safely. The way
that these forces are implemented is based on the definition of their respective potential
fields. The attractive potential field being defined by:

Uatt(q) =
1

2
ξρm(q,qgoal) (2.1)

Where ξ is a positive scaling factor, ρ(q, qgoal) is the distance between the robot and goal
and m is a shaping factor for the field, if 1 it is conic and if 2 it has a paraboloid shape.
The corresponding attractive force acting upon the robot is then the negative gradient of
the attractive potential field Uatt:

Fatt(q) = −∇Uatt(q) = ξ(qgoal − q (2.2)

A commonly used simple definition of repulsive potential function being defined as fol-
lowing:

Urep(q) =


1

2
∗ η
(

1

ρ(q,qobs
)− 1

ρ0

)
, if ρ(q,qobs) ≤ ρ0

0, if ρ(q,qobs) > ρ0

(2.3)

Where η is a positive scaling factor, ρ(q, qobs) describes the distance between the robot
and a given obstacle and ρ0 a constant describing the influence distance of the obstacle,
beyond which the repulsive potential is zero. The corresponding repulsive force is given
by:

Frep(q) =

η
(

1

ρ(q,qobs
− 1

ρ0

)
1

ρ2(q,qobs)
∇ρ(q,qobs), if ρ(q,qobs) ≤ ρ0

0, if ρ(q,qobs) > ρ0

(2.4)

Adding the gradient of the distance to the obstacle ρ(q, qobs) and a scaling factor for
proximity to the obstacle 1

ρ2(q,qobs)
.

B. H. Krogh [9] has improved this concept by taking into consideration the robot’s velocity
in the vicinity of obstacles. C. F. Thorpe [10] has applied the potential field method to
off-line path planning. Later Krogh and Thorpe [11] suggested a combined method for
global and local path planning, which uses a "generalized potential field" approach. J.
Borenstein in [12] improved the artificial potential field method with certainty grids for
obstacle representation. He also considered the local minima problem as "trap states" and
implemented recovery routines such as wall following in order to overcome them. Despite
all the advantages over conventional PFM, it was abandoned due to its limitations, such
as the lack of passage between closely placed obstacles due to the local minima problem
and oscillating behaviour in narrow passages [13].
To overcome these limitations, J. Borenstein and Y. Koren et al. [14] introduced the
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Virtual Field Histogram (VFH) which was later improved and extended it to VFH+
[15] and VFH* [16] by I. Ulrich and J. Borenstein. These are alternative local planning
approaches that avoid collisions and allows the detection of unknown obstacles while
steering the robot toward the target. In addition, it handles local minima problems
caused by narrow passage greater then PMF methods. The VFH can select a central path
through a passage determined by the two-dimensional histogram and ignore the oscillation
in steering control with the averaging effect of the polar histogram. All different VFH
method based on polar histogram generation where all the area big enough to allow the
robot to pass through is identified separatly and included in the cost function. This
technique also comes with some drawback. The world model has to be represented as a
two-dimensional histogram grid where all the sensor measurements are represented. The
processing of this continuously updating data requires more memory and computation.
Besides, the inaccurate sensor data can effect the stability of the robot motion. Thus
unpredicted disturbances cause the robot to misidentify the environment openings and
consequently may not be able to maneuver through passages.
In 2000 Ge and Gui [17] highlighted the problem of goals being unreachable with obstacles
nearby when using potential field methods and presented a new repulsive function to
overcome it. They also proposed modification upon conventional potential fields methods
taking into consideration the relative distance between a robot and its goal to solve the
problem of non-reachable goals due to nearby obstacles[17] [18].On the other hand, this
method increased complexity and computation.
Other local planning approaches based on velocity space calculations are the curvature-
velocity method (CVM) by R. Simmons [19] and the Dynamic Window Approach (DWA)
by D. Fox et al. [20]. These approaches achieved high-speed navigation with decent
collision avoidance performance. The CVM local obstacle avoidance treats the problem
as one of constrained optimization in the velocity space of the robot and approximating
how far the robot could travel along a given curvature before the collision. Similarly, in
the case of DWA, the control commands are selected by maximizing an objective function
that considers speed, goal and safety while incorporating constraints in velocity space
arising from obstacles.
Concerning the physical aspect of safety, conventional or reactive robot navigation systems
usually consider humans as regular static obstacles. The ability of safe navigation in an
unknown environment becomes a crucial requirement for modern service robots, especially
when they are employed in a social environment where the people expect the robot to
behave consistently and predictably. Various research use potential fields and social cost
functions in global planning level ([21],[3], [6]).
R. Kirby et al. [22] presents human social conventions, such as personal space and tending
to one side of hallways, represented as constraints on the robot’s navigation. E. A. Sisbot
et al. [23] adjust the cost model with various aspect of safety, visibility, comfort along
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with hidden zones. One of the main drawbacks of the human-aware navigation approaches
mentioned above is that they do not consider the motion of humans over time. This static
planning treats humans as static obstacles and requires high-frequency robot behavioural
changes in order to react to uncertain human movements. This results in inconsistent
robot behaviour that is not consistent with socially comfortable movement.
Several research papers have been proposed to formulate motion planning in the presence
of moving obstacles. A method that works in velocity space has been suggested by Fiorini
and Shiller [24] that deals with collision avoidance in the presence of moving obstacles.
They discussed the velocity obstacle (VO) concept. This method lacks the simplicity of
potential fields, and it considers that the obstacles are moving with a constant speed. Also,
this collision avoidance strategy requires the environment to be pre-known. Similarly,
Fujimura and Samet [25] presented research in motion planning in the presents of moving
obstacles where the dynamic environment has to be completely pre-known. Tsoularis and
Kambhampati [26] and Chakravarthy and Ghose [27] proposed another method which
uses relative speed between the robot and the obstacle in order to detect collisions.

2.3 Set Point Stabilization, Trajectory Tracking and
Model Predictive Control

A set point stabilization problem is a fundamental control problem which can be explained
as the following: Consider the dynamical system as

ẋ(t) = f(x(t),u(t)), x(t0) = x0 (2.5)

where x ∈ Rnx is the state, u ∈ Rnu is the input, t ∈ R is the time and the feedback is
u = µ(x) starting at x0. Design a feedback control signal µ : x 7→ u where the solution
x(t,x0|µ(x)) converges the states to the set point xref :

lim
t→0

∥∥x(t)− xref
∥∥ = 0 (2.6)

This means that if the current state x is far away from the setpoint, then the controller
should control the system towards the reference point, while if the current state is already
near the reference, then the controller keeps it there. The set point stabilization prob-
lem is formulated in a variety of systems and has many examples in automation tasks.
Well-known examples are keeping balancing vehicles like segways or ballbots upright or
temperature control in buildings. Path planning for mobile robots can be formulated as
a set point stabilization problem where the setpoint is a reference state that the robot
should approach. This problem is usually called Set Point Tracking [28].
The Tracking problem is a similar control problem where instead of a set point the refer-
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ence; xref : [t0, inf)→ Rnx is a time-varying reference state which is pre-computed offline.
The task is to determine the control inputs u such that states x follows a given reference
xref as well as possible, such that:

lim
t→0

∥∥x(t)− xref (t)
∥∥ = 0 (2.7)

Tracking problems can also be formulated in the case of robot navigation with a reference
trajectory xref to be followed, which is calculated offline and determines where and when
the robot should be on this trajectory. This problem is known as Trajectory Tracking. Set
Point Tracking is an intermediate problem between set point stabilization and Trajectory
Tracking when the robot follows a set point which changes in the next step to another
one without specifying the exact continuous transition on the trajectory [28].
For set point stabilization and Trajectory Tracking problems, a wide range of applicable
control methods exist from classic linear control to advanced optimization-based control.
Assuming that motion planning requires the design of a controller with the consideration
of constraints on inputs and states or desires to predict the future behaviour of a system,
only a few controller design methods can be considered.
Model Predictive Control (MPC) is a very powerful optimal control design approach,
where the applied control actions are chosen based on repeated predictions of the future
system behaviour. Generally, MPC built upon an optimal control problem (OCP) that
calculates the best control actions by minimization an objective function and predicting
the system future behaviour. Furthermore, MPC has many advantages from a system
and control point of view with the consideration of [29]. One of the main advantage of
an MPC that the constraints can be defined explicitly in the algorithm. The predicted
states and control inputs can be bounded by constraints separately, to make it possible to
neglect unwanted results. MPC is suitable for multiple inputs and outputs in non-linear
systems. The online optimization respect to the cost criteria in order to find the most
optimal solutions. The general idea of any MPC formulation is built upon an iterative
control scheme that is executed by the following:

1. Obtaining the state measurement x(n) at every sampling instant n

2. At each sampling instant n, the controller optimizes the predicted future behaviour
of the dynamical system over a finite time horizon k = 0, .., N − 1 of length N ≥ 2

and find a set of admissible control inputs considering constraints on states and
inputs based the minimization on the objective function.

3. Applying the first element of the resulting optimal control sequence u?.

This scheme will be further detailed in the Chapter 4. The above scheme shows that
the central concept of MPC is based on a repetitive solution of an optimal control prob-
lem. Note, that its different from an optimal feedback controller which often turns to be
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infeasible for non-linear systems, since solving the partial differential equations can be
difficult [30]. Instead, the goal of an MPC is a simpler computation of an open-loop input
trajectory at each step for the given state.
Nowadays, MPC problem formulation is a widespread discussion in scientific researches,
but most MPC research is considered as set point stabilization ([27], [31]). For example,
this frequently appears in problems such as flight stabilization [32] or HVAC large scale
heating and cooling system control [33]. Other researches consider the change of the set
point as a disturbance on the reference states and handle this stabilization problem with
MPC formulations ([34] ,[35], [36]). Specifically regarding setpoint stabilization, it has
been used for localization purposes by Nishio et al. in an MPC implementation taking into
consideration moving obstacles, represented by fuzzy potential fields [37], given obstacles
with constant velocity.
While trajectory tracking is a well-known problem, there are only a few related works that
use trajectory tracking MPC design ([38], [39], [40]). The approaches in these researches
show several shortcomings and challenges. The constraints in simultaneous path planning
and tracking MPC algorithms are only sparsely considered and require long prediction
horizons. Also, the trajectory tracking MPC is highly dependent on the time-varying
reference signal, which might result in significant errors and less robust performance. As
a middle ground between set point stabilization and trajectory-following or -tracking is
the problem of path-following. Path-following allows for more freedom in the MPC for-
mulation. Where in trajectory-following the MPC has a path with set times for each
position, in path-following the controller is fed a curve which the robot should try to
follow, but freedom in how much it accelerates and when. An example of such path-
following is described by Kølbæk, in which a ball-balancing robot is made to follow a
given path specified by a polynomial, coefficients of which are fed to the MPC [1]. As
well Kanjanawanishkul et al. proposes an MPC for path-following scenario for an omnidi-
rectional robot, similar to the work of Kølbæk, though with omnidirectional wheels [41].
This work by Kanjanawanishkul shows advantageous performance grounded in the ability
for the MPC to handle system and input constraints while generating an optimal control
sequence, though no obstacles are yet considered. In the following section the hardware
available for this project is investigated.

2.4 Project Hardware

To solve the problems posed in circumnavigating an environment with dynamic obstacles,
the TIAGo robot is used. Designed to work in indoor environments, combining mobility,
perception, manipulation and HRI in one platform, TIAGo is a service robot. The TIAGo
robot has different configurations based on what is needed for implementation, Base, Iron,
Steel and Titanium. For this project, the Base and Steel versions are available. Of which
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the Base is considered mainly, as it has all the sensor capabilities needed for the navigation
package. The robot has a LiDAR capable of sensing its surroundings along with actuators
to enable mobility and odometry sensors to provide movement feedback. The robots used
in this project can be seen in Figure 2.3.

Figure 2.3: The robots provided for this project by AAU.

The hardware which provides the capabilities needed for robot navigation is further de-
tailed in Table 2.2.

TIAGo Base TIAGo Steel
Sensors Front LiDAR (5.6m range) Front LiDAR (5.6m range)

6 DoF IMU 6 DoF IMU
3x Rear stereo sensors (1m range) 3x Rear stereo sensors (1m range)
Actuator current feedback (wheels) Actuator current feedback

(wheels and arm)
RGB-D camera (head)

Computer Intel i5 CPU Intel i5 CPU
Hardware 250GB SSD 250GB SSD
Software Ubuntu 64bit Ubuntu 64bit

ROS LTS ROS LTS
Arm controller
(position/velocity/effort)

Max Speed 1.5 m/s 1 m/s

Table 2.2: Hardware specifications for TIAGo robots.

The TIAGo runs using an internal computer running ROS, providing a framework for
communication between the processing unit, sensors and actuators. Through ROS, a user
can access data gathered by the various sensors on the robot as well as sending commands
to the actuators to perform some desired motion.
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In order to enhance upon the envisioned package, the added capabilities of environment
manipulation or further HRI provided by the Steel robot configuration could be imple-
mented. The hardware present on the robot can be seen in Figure 2.4.

Figure 2.4: Hardware and sensor arrangement on the TIAGo Steel.

2.5 Problem Statement

The problem at hand of enabling a robot to navigate a dynamic environment sets up an
array of problems which has to be solved. Firstly internal communication on the platform
has to be established, using the sensors and actuators to get feedback on the state of
the robot for this purpose ROS is used as a framework for system communication. Per
the investigated methods for motion planning a decision is made to work with model
predictive control, given the robot available for the project being a non-holonomic robot
a non-linear model will be needed. From this arises the need of non-linear model pre-
dictive control(NMPC), so how can NMPC be implemented in a robotic system as a local
planner? A representation of the environment has to be established, representing the
various obstacles surrounding the robot, be they static or dynamic. This being necessary
to establish a controller capable of circumnavigating obstacles in its environment. How
can an NMPC local planner be made to consider static and moving obstacles?
Given the project being developed as parallel work as part of the work done by the AAU-
HAMR-lab an important aspect is introduction of the developed product as a part of
the framework used by the HAMR-lab. Per implementation in the ROS framework the
question is posed of How can an NMPC local planner be implemented on the robot as a
part of a navigation package?
Given the nature of the dynamic obstacles being human actors in the robot environment
the robot has to be able to navigate the environment considering various sociodynamic
factors, to ensure the comfort of people interacting with the robot in its environment.
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CHAPTER 3

MODELLING

This Chapter will regard all the mathematical modelling done in this project. A non-
linear kinematic model is designed for the robot and a linear state-space model for the
pedestrians. These models will later be used in the local planner to predict the movement
of the pedestrians and make the robot move according to these predictions. In section 3.2,
the discretization method used in this project will also be described. After the models
for the movement of the robot and obstacles have been formulated the representation of
these obstacles is described. This representation is then used in the controller design for
the local planner such that the local planner can account for and avoid both moving and
static obstacles.

3.1 TIAGo Robot Model

The TIAGo robot is a differential drive robot, which means it has two wheels mounted
on a common axis, and each wheel can move independently of each other. By varying the
velocities of each independent wheel, different trajectories can be achieved. The simple
kinematic model can be seen in Figure 3.1.

Figure 3.1: The differential drive scheme of the robot.

In Figure 3.1 (x, y) denotes the local position of the robot in (X, Y ) global coordinate
system. θ is the difference in orientation from the global coordinate frame. T is the track
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length of the differential drive robot. The linear velocities vl and vr are the product of
the angular velocity of the wheels and the radius of the wheels rw.

vl = ωl rw (3.1)

vr = ωr rw (3.2)

Due to the wheels being on a common axis the movement of the robot can be purely
rotational (vl = −vr) or translational (vl = vr). This can also be seen in Figure 3.2.

Figure 3.2: The pure translation or pure rotation of the robot given certain inputs [42].

Since the robot is a differential drive robot and assuming no slip, there will be no lateral
velocity. The motion of the robot can then be described by longitudinal linear velocity
from the centre of the robot and the angular velocity. This linear velocity is formulated
as:

v =
vl + vr

2
(3.3)

The angular velocity of the centre of the robot is defined as:

ω =
vr − vl
T

(3.4)

Respectively, the change of positions in the X and Y direction in the global frame is given
as:

ẋ = v cos(θ) (3.5)

ẏ = v sin(θ) (3.6)

Moreover the change of orientation between the local frame and the global frame is defined
by:

θ̇ = ω (3.7)
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The continuous-time model in state-space form can be seen in Equation 3.8.ẋẏ
θ̇

 =

v cos(θ)

v sin(θ)

ω

 (3.8)

The state-space model can then be reformulated with the input defined in a separate
vector. ẋẏ

θ̇

 =

cos(θ) 0

sin(θ) 0

0 1

 [v
ω

]
(3.9)

3.2 Discretization of the model

The Runge-Kutta method is used to discretize the model of the robot; more specifically,
the fourth order Runge-Kutta method is used. The Runge-Kutta method consists of
multiple iterative steps starting with the Euler method. The four steps can be seen in the
following Equation 3.10.

xn+1 = xn +
1

6
(k1 + 2 k2 + 2 k3 + k4)

k1 = Ts (Axn +B un)

k2 = Ts (A (xn +
k1

2
) +B un)

k3 = Ts (A (xn +
k2

2
) +B un)

k4 = Ts (A (xn + k3) +B un)

(3.10)

Where k1 to k4 are the steps of the Runge-Kutta method, Ts is the step size, A is the
system matrix, B is the input matrix, x is the state, and u is the input. Substituting
these equations into each other gives the following expression for the numerical solution
to the next time step as shown in Equation 3.11.

xn+1 =

(
I + TsA+

T 2
s

2!
A2 +

T 3
s

3!
A3 +

T 4
s

4!
A4

)
xn

+

(
Ts I +

T 2
s

2
A+

T 3
s

3!
A2 +

T 4
s

4!
A3

)
B un

(3.11)

This discretization method is simple to implement as well as fast and can be used for the
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robot model. The discretized model derived in this chapter will then be used in the local
planner designed in this project.

3.3 Pedestrian Model

The people/pedestrians are modelled to have constant velocity and moving linearly in
each time step. This moving obstacle will have a constant heading and variable velocity.
Using these parameters, a linear state-space model can be derived for the motion of the
obstacles. [

xmok+1

ymok+1

]
=

[
xmok
ymok

]
+

[
cos θmo

sin θmo

]
vmo (3.12)

In Equation 3.12, θmo is the constant angle between the orientation of the obstacle and
the global frame. vmo denotes the velocity of the obstacles. This model can be expanded
to a five-state model with varying velocity, radius and heading. If a perception package
for detecting people and estimating their position, heading and direction is implemented.
The varying radius of the obstacle could then represent the uncertainty in the estimation.
However, due to the fact that a perception package fitting the needs of this project is not
available, the two-state model in Equation 3.12 is implemented.

3.4 Moving Obstacle Representation

Mobile robots equipped with various sensors can detect their environment, and analyze
the measured data in order make decisions. For service robots that are running in a
dynamic environment populated with pedestrians it is essential to consider these obstacles
to circumnavigate them. This Section revolves around how obstacles can be represented
so they can be used in the path planning algorithms.

(a) An encirclement that is slightly larger
than the shoulder width of a person.

(b) A variable safety boundary is employed
around the robot footprint

Figure 3.3: Representation of the moving obstacles around pedestrians and the consider-
ation of safety boundary Sb around the robot perimeter which acts as an extension of the
robot radius rrob.
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One of the most trivial representation of an obstacle is the point-shape obstacles where
the obstacle considered as a point with a radius that determines the size of it. To represent
pedestrians in a two-dimensional map this is one of the primary methods. In Figure 3.3a,
an encirclement about the shoulder width of a person is used to represent the pedestrian
as a point-shape obstacle.
Using a convex structure for representing the moving obstacles is advantageous when
defining the moving obstacle as a constraint. In Figure 3.3b, the robot footprint can be
seen with a safety boundary denoted as Sb simply added onto the robot radius rrob. The
robot will have a safety distance implemented to make sure that it does not get close to
any obstacle to avoid collision, and to prevent discomfort for the person moving in the
same space as the robot. This also compensates for some of the modelling uncertainties
such that the probability of collision is reduced. We are considering two main types of
obstacle. Moving obstacles are obstacles which have a heading and velocity while static
obstacles are fixed, defined as non-traversable positions in space.
The moving obstacles and the robot can be defined as circles. When both are defined as
circles, they can be constrained, as two points that have to have a set minimum distance
between them. The distance between the moving obstacle and the robot can be seen in
Figure 3.4.

Figure 3.4: The distance dmo between the robot and the moving obstacle

The distance in Figure 3.4 is denoted dmo, the radius of the moving obstacle is denoted
rmo, and the robot and safety boundary is denoted rrob + Sb. This distance can be set as
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a constraint, as seen in Equation 3.13.

dmo ≥ rrob + Sb + rmo (3.13)

The movement of these obstacles is described by the state space pedestrian model in Sec-
tion 3.3. The next Section will describe how the static obstacles are found and represented
in this thesis.

3.5 Static Obstacle Representaion

For identifying these obstacles, the robot has a costmap based on prior mapping of the
room, and the static obstacles in the environment during runtime. This costmap is then
converted to obstacles using the costmap_converter node. This node converts every
obstacle recognized in the environment to polygons, and thereby, the environment can be
perceived as a list of polygons to circumnavigate. There are several different plugins for
the costmap_converter these are listed below:

• CostmapToPolygonsDBSMCCH

• CostmapToPolygonsDBSConcaveHull

• CostmapToLinesDBSMCCH

• CostmapToLinesDBSRANSAC

The plugin used in this thesis is the CostmapToPolygonsDBSMCCH because it creates simple
polygons out of the costmap. Three algorithms are used to create static obstacles from
the costmap. Firstly, a clustering algorithm is used to sort the costmap into clusters that
can be made into obstacles. Secondly, an algorithm creating a convex hull around these
clusters. Lastly, an algorithm which reduces the complexity of the polygons. The cluster-
ing algorithm used in this plugin is the Density-Based Spatial Clustering of Applications
with Noise(DBSCAN) [43] this will be described briefly in the following. DBSCAN sorts
points into three categories: core points, reachable points and outliers. A parameter for
the neighbourhood of a point is denoted as ε. The classification is the following:

• A point p is a core point if at least minPts points are within the distance ε of the
point p.

• A point q is directly reachable from p if point q is within distance ε from the core
point. Points can only be said to be directly reachable from core points.

• A point q is reachable if there is a path p1, ..., pn with p1 = p and pn = q, where
each pi+1 is directly reachable from pi.

• All points not reachable from any other point are outliers.
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The parameters which can be tuned in this clustering algorithm are the neighbourhood
size, and the minPts required for a point q to be classified as a core point. An illustration
of the DBSCAN algorithm with minPts = 4 can be seen in Figure 3.5.

Figure 3.5: DBSCAN algorithm on a cluster of points with parameters ε = 0.3 and
minPts = 4 made in python.

Once the points have been sorted into clusters, the convex hull is computed using Sklan-
sky’s algorithm(modified by S. Y. Shin and T. C. Woo) for finding a convex hull in linear
time [44]. The input to the algorithm is a set of n points P = V0, V1, ..., Vn−1, and the
output is a so-called "zipper". A zipper is a non-self-intersecting, concave chain of line
segments. A zipper for a set of n points/vertices is denoted as ZPR(V0, Vn). The algo-
rithm starts by choosing an extreme point/vertex to be the first entry in the zipper. Then
the algorithm traverses the set of points/polygon in the clockwise direction and classifies
each point by one of the three cases:

• Case 1: vertex of the given set of points is added to the zipper

• Case 2: vertex of the set of points is not added to the zipper

• Case 3: zipper vertex is deleted

After complete traversal of the polygon/set of points, the constructed zipper constitutes
the convex hull of the set of points. In order to classify each case, some definitions have to
be made. A directed line segment belonging to the zipper is defined as L(Zj−1, Zj) where
Zj is the jth entry in the zipper. Another definition is an edge of P and can be denoted
as E(Vi, Vi+1), a directed line segment between two adjacent points. The algorithm looks
for points that are to the right of the line segments to determine whether it is an extreme
point of the set of points. In Algorithm 3.1, there are two checks to see if the point falls
to the right side of the line. If so, the point is added to the zipper. In the next iteration,
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the next point is checked. If the next point is to the left of the line segments, then it is
known that the last point was not an extreme point and it is then deleted from the zipper,
and the new point is added to the zipper instead. This process iterates until V0 is reached
again.
Algorithm 3.1: Sklansky’s algorithm
Result: ZPR(V0, Vq)

1 V0 ← Z0, V1 ← Z1, j ← 1, q ← 1;
2 while Vq 6= V0 do
3 if Vq+1 is to the right of L(Zj−1, Zj) then
4 if Vq+1 is to the right of E(Vq−1, Zj) then
5 j ← j + 1;
6 Zj ← Vq+1;
7 q ← q + 1;
8 end
9 else

10 while Vq+1 is on or to the right of L(Zj−1, Zj) do
11 q ← q + 1;
12 end
13 end
14 end
15 else
16 while Zj 6= V0 and Zj−1 is not to the right of L(Zj, Vq+1) do
17 j ← j − 1;
18 end
19 end
20 j ← j + 1;
21 Zj ← Vq+1;
22 q ← q + 1;
23 end

A Figure showing Sklansky’s algorithm can be found in Appendix A Figure A.1. Once the
convex polygons have been created using this algorithm, they need to be reduced further
using the Ramer–Douglas–Peucker(RDP) algorithm for decimating a curve composed of
line segments to a similar curve with fewer points [45]. This algorithm takes in a set of n
points on a curve C = (P1, P2, ..., Pn) and the distance dimension ε where:

ε > 0 (3.14)

This algorithm first considers the simplest approximation possible, namely a straight line
between P1 and Pn. The point furthest from the line segment will then be selected as the
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first point included in the set of points that make up the simplified curve. This can also
be seen in Figure 3.6.

Figure 3.6: The RDP algorithm called recursively on the line segments until all points
that are above the ε will be included in the approximation [46].

This recursively finds the point furthest from the new line segment and adds it to the
simplified path. If a point is within the ε distance from the simplified line, it is omitted
from the next iteration of the algorithm. So by merely giving an input number of points
and a certain ε, a simplified curve/polygon can be constructed. Furthermore, the greater
the ε distance is the lower the fidelity/resolution the curve/polygon will have. The result
of the costmap_converter can be seen in Figure 3.7.

Figure 3.7: A costmap conversion of the local costmap in RViZ, recorded by the robot.
The robot is facing upwards, with two cupboards as obstacles in the environment and a
wall of the environment. Original costmap in cyan and the polygon obstacles in green
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Using this polygon representation of the environment’s obstacles, two different obstacle
representations were developed. One is a simplified obstacle representation, performed
by finding the centroid of the polygons making up the obstacles in the environment and
encircling them, effectively turning them into circles. The other is to calculate the closest
point in each polygon to the robot, thereby simply knowing how far to stay away from
that point at any given time.

3.5.1 Polygon Centroid Representation

The polygon centroid representation method is used to simplify the representation of
static obstacles, through taking obstacles from a polygonal shape and turning them into
circles. The first step in creating the encircled polygons is to find the area of the given
polygon, calculated by Equation 3.15. [47]

aso =
1

2

nso∑
i=1

xsoi−1y
so
i − xsoi ysoi−1 (3.15)

Herein xsoi and ysoi denote the position of the i’th vertex of the polygon, nso being the
maximum number of vertices for the given polygon. Once having the area of the poly-
gon, the next step is to calculate the first moments of the polygon, giving the position
(xcent, ycent) of the centroid.

xcent =
1

aso

∫∫
R

xso dxso dyso =
1

aso

∫
b

−xsoyso dxso

=
1

6aso

nso∑
i=1

(xsoi−1 + xsoi )(xsoi−1y
so
i − xsoi ysoi−1)

(3.16)

ycent =
1

aso

∫∫
R

yso dxso dyso =
1

aso

∫
b

−xsoyso dxso

=
1

6aso

n∑
i=1

(ysoi−1 + ysoi )(xsoi−1y
so
i − xsoi ysoi−1)

(3.17)

Herein R being the region of the polygon, b is the border of the polygon and aso again
is the area. After the centroid has been found, in order to find the radius that encircles
the whole polygon, the distance between the centroid of the polygon, and the vertices is
calculated in Equation 3.18.

dcenti =
√

(xcent − xsoi )2 + (ycent − ysoi )2 (3.18)

Comparing all the distances dcenti , the longest distance is used as the radius of the circle
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rso = max(dcenti) made to encircle the obstacle.
For smaller obstacles, different centroid calculation is implemented, specifically for obsta-
cles small enough to constitute just one point. The method used in this case is simply
defining the point obstacles as their centroid and assigning a minimum size to them to
make sure at least a minimum distance is kept from them.
A representation of the polygon centroid method, as implemented in MATLAB, can be
seen in Figure 3.8.

Figure 3.8: The polygon centroid method for static obstacle representation. The circles
encompassing the polygons show the altered obstacles (green). The circles with a cyan
horizon are moving obstacles and the red horizon belongs to the robot.

3.5.2 Closest Point of Polygon Representation

In this Section, an unprecedented obstacle representation, called the closest point of poly-
gon obstacle method for static obstacles, is explained. This method takes the polygon-
shaped obstacles to form the costmap_converter plugin and instead of calculating the
centroid and encircle the polygon which inflates the real occupied area as was done in the
centroid representation (Section 3.5.1), it takes only the closest part of the obstacle at
any time into account.
Firstly, the polygon obstacles are evaluated per the number of considered polygons and
how many vertices they have. The NMPC local planner only consider a limited number
of static obstacles, denoted as nso, from the local costmap. The reason behind this is
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because the proposed method is computationally heavy, compared to the centroid polygon
representation. Another difference compared to the previously introduced method is, that
by considering only the closest point of the polygon to the robot position, the obstacle
radius is neglected (rmo = 0) and the distance between the obstacle and the robot are
directly measured to the side of the polygon as it is shown in Figure 3.9.

Figure 3.9: Closest point to polygon representation method showing the distance be-
tween the closest point and the robot. The green polygon is the polygon provided by
the costmap_converter while the black triangle is the maximum three sided polygon
considered by the NMPC local planner.

The NMPC local planner runs the algorithm, called ClosestPoint2Polygon, pre-
sented in Algorithm 3.2 in order to find the closest point of the polygon edge. Using
this point to set the constraints for the optimal control problem which keeps the distance
between the robot and the closest point of the polygon (xcl, ycl). The method to set these
constraints is explained in Section 4.5.2.
The polygon obstacles given to the ClosestPoint2Polygon algorithm has to come in a
special form. The obstacles provided by the costmap_converter are polygons represented
simply by their vertices, which has to be reduced in order to decrease the computational
burden. An algorithm called ClosestNTriangle finds the closest nso polygons by
the measured distances to the polygon centroids provided by the PolygonCentroid
algorithm. This function also calculates the distance between the robot and each of
the polygon vertices in order to find the three closest ones, effectively reducing complex
polygons to three sided triangles. Sometimes the costmap_converter provides point
and line shape obstacles. These have to be handled differently compared to polygons
with more vertices. The output of the ClosestNTriangle algorithm is the polygons
converted into a vector with the following 6 element:

xso = [xso1 , y
so
1 , x

so
2 , y

so
2 , x

so
3 , y

so
3 , ] (3.19)

In Equation 3.19 the values (xsoi , ysoi ) where i = 1, 2, 3 are the calculated closest vertices.

24



CA10-1032 CHAPTER 3. MODELLING

In the special cases when the polygons provided by the costmap_converter are lines
the values of (xso3 , yso3 ) are filled up with zeros, since they will be neglected. In the case
of the point obstacles only the (xso1 , yso1 ) values are filled with the position of the point
obstacle while the rest are zeros. The algorithm ClosestNTriangle includes as an
extra output Sso, called state size, which includes a number 1,2 or 3, defining the polygon
complexity. Both the vector xso and the variable Sso along with the current robot pose
xrob =

[
xrob, yrob

]
are required inputs for Algorithm 3.2 in order to calculate the closest

point to the robot.

Algorithm 3.2: ClosestPoint2Polygon algorithm
Input : xso = [xso1 , y

so
1 , x

so
2 , y

so
2 , x

so
3 , y

so
3 , ] , S

so,xrob =
[
xrob, yrob

]
Output: xcl, ycl

1 Function ClosestPoint2LineSegment(xR, yR, xA, yA, xB, yB):
2 dABx ← xB − xA;
3 dABy ← yB − yA;
4 dARx ← xR − xA;
5 dARy ← yR − yA;
6 sqAB ←max(0.001, d2

ABx
+ d2

ABy
);

7 dotAB−Ar ← dABx dARx + dABy dARy ;
8 pdiff ←max(0, min(1, dotAB−Ar

sqAB
));

9 xcl ← xA + dABx · pdiff ;
10 ycl ← yA + dABy · pdiff ;
11 return xcl, ycl

12 if Sso < 3 then
13 if Sso < 2 then
14 (xcl, ycl) ← (yso1 , x

so
1 )

15 else
16 xcl, ycl ← ClosestPoint2LineSegment(xrob, yrob, xso1 , yso1 , x

so
2 , y

so
2 )

17 end
18 else
19 xp1, yp1 ←ClosestPoint2LineSegment(xrob, yrob, xso1 , yso1 , x

so
2 , y

so
2 );

20 xp2, yp2 ←ClosestPoint2LineSegment(xrob, yrob, xso2 , yso2 , x
so
3 , y

so
3 );

21 xp3, yp3 ←ClosestPoint2LineSegment(xrob, yrob, xso3 , yso3 , x
so
1 , y

so
1 );

22 dist1 ←
√

(xrob − xp1)2 + (yrob − yp1)2;
23 dist2 ←

√
(xrob − xp2)2 + (yrob − yp2)2;

24 dist3 ←
√

(xrob − xp3)2 + (yrob − yp3)2;
25 xcl, ycl ← MinSearch(dist1, dist2, dist3);
26 end

The ClosestPoint2Polygon algorithm classifies the polygons by the number of ver-
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tices. For single-point obstacles the closest point is the point itself. For lines (two vertices)
the ClosestPoint2LineSegment algorithm finds the closest point to the line segment
by considering the vector from the start to the end of the line ~AB and the vector from the
start of the line to the robot position ~AR. The square of the magnitude of the vector ~AB,
denoted with sqAB, is calculated. This square is given a minimum value of 0.001 to avoid
division by 0 in the case of the polygon vertices coinciding due to some error related to
costmap_converter giving the first and last vertices as the same position. The scaling
factor pdiff is then calculated by dividing the dot product of the vectors ~AB · ~AR with the
squared magnitude (sqAB). By adding the dot product ~AB · pdiff to the starting point of
the line, the closest point on the line segment is calculated.
For the three sided polygon obstacles, the ClosestPoint2LineSegment function is
simply performed for each line segment constituting the polygon. The distance between
the robot and each point is evaluated, to determine which one is the closest point (xcl, ycl).
Algorithm 3.2 has been develop and implemented into the NMPC local planner. The
MATLAB simulation in Figure 3.10 show how the closest point to polygon representation
works in practice.

Figure 3.10: An environment with moving obstacles represented by circles (cyan), and
static obstacles represented as polygons (magenta), the black polygons being the ones
currently considered by the NMPC. The red horizon being the robot prediction horizon.
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CHAPTER 4

NMPC LOCAL PLANNER

This chapter focuses on the formulation of a Non-linear Model Predictive Control (NMPC)
problem developed for the local planning of the TIAGo robot. The general ideas of sta-
bilization and tracking NMPC formulations are derived from [28]. Firstly, the principal
ideas and advantages of an NMPC local planner will be explained in Section 4.1. Sec-
ondly, the basic formulation of an optimal control problem is introduced in Section 4.2. In
Section 4.3, the basic NMPC algorithm is derived for set point stabilization and trajectory
tracking problems. Later in Section 4.4 the discretization of the NMPC is investigated. In
addition, in this Section an improved direct approach called the direct multiple shooting
method, which was proposed by Bock and Plitt in ([48] is explained, in order to han-
dle non-linear propagation, which makes the system predictions highly non-linear. This
method overcomes this issue by lifting of the previously used direct approach, called the
direct single shooting method, which is used in the NMPC formulations in Section 4.3.
Furthermore, in Section 4.5, constraints on the states and inputs of the optimal control
problem are defined along with the static and moving obstacle constraints for dynamic ob-
stacle avoidance. Finally, the Section 4.6 summarizes the previously introduced methods
and presents the final formulation used for the NMPC path planning algorithm.

4.1 Introduction of NMPC Local Planner

In this thesis, the NMPC is applied as a local planner in the TIAGo robot’s navigation
algorithm. The local planner should receive the calculated global trajectory, which is an
optimal path calculated by a different type of path planning algorithm like A∗ or RRT
provided by the global planner. The local planner will generate the velocity commands to
the TIAGo velocity controller in order to follow the globally desired reference trajectory
while satisfying constraints and avoiding obstacles.
A path planner which utilizes an MPC scheme can be solved by integrating the MPC
into an advanced global planner (RRT) which also executes the control commands to the
vehicle, using a small segment of the predicted trajectory in the MPC’s optimal control
problem like as it was introduced in [49]. However, the disadvantage of this solution is
the computational burden. Instead, the solution proposed in this thesis is an NMPC
local planner that takes a small segment of the globally optimal trajectory provided by
the global planner algorithm and computes the velocity commands that accounts for
constraints while avoiding collision with obstacles.
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When moving in an environment with dynamic obstacles, it is desirable to predict the
future motion of the robot in order to navigate optimally. The NMPC problem is an
advanced optimization-based method which allows finding the most optimal trajectory
for the robot’s future motion by minimizing a cost function. However, this is not the
only reasons why an NMPC Local planner is the focus of this research. Generally, one
of the main reasons behind the success of all MPC formulation is the ability to take
constraints into account explicitly. This allows consideration of different constraints at
each prediction. It follows that by assuming that the future movement of a pedestrian is
also predictable, an NMPC local planner would be able to consider these predictions and
set the constraints in order to avoid the pedestrian in an optimal and socially acceptable
manner.

4.2 Optimal control problem

The idea of a predictive local planning strategy is to utilize an iterative optimization
method in order to compute the control inputs, that will ensure an optimal future be-
haviour of the robot motion model. Optimal control problems(OCP) are used in many
industrial applications, for example in design and operation of technical systems such as
large scale heating, ventilation and cooling(HVAC) systems, bridges, aircraft and cars.
In dynamic optimization or optimal control, solutions are sought for decision-making
problems constrained by ordinary differential equations (ODE). A basic optimal control
problem constrained by an ODE is defined as follows:

minimize
x(·),u(·),p

∫ N

0

L(x(t),u(t), p)dt

subject to
ẋ(t) = f(x(t),u(t), p),

u(t) ∈ U , x(t) ∈ X ,

}
t ∈ [0, N ]

x(0) ∈ X0, p ∈ P

(4.1)

where x(t) ∈ Rnx is the differential states, u(t) ∈ Rnu is the control inputs, and p ∈ Rnp

is a vector of free parameters in the model. In this consideration, the OCP has a Lagrange
term (L) and an ODE with initial conditions X0. Furthermore, there are admissible sets
for the states X , control U and parameters P .
The OCP can be efficiently solved by a direct approach, where the OCP in Equation 4.1
is transcribed into a non-linear program (NLP)
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minimize
ω

J(ω)

subject to g(ω) = 0, ω ∈ W
(4.2)

where ω ∈ Rnω is the decision variable, J is the objective function, and W is the interval
set. Genarally, in NLP problems we are looking for the optimal value of ω which minimizes
the objective J(ω):

ω? = argmin
w

(4.3)

There are several solvers that can be used to solve an NLP problem in order to obtain
the optimal decision variable ω? but these are out of scope of this thesis. The devel-
oped NMPC local planner solves the NLP problems by a solution called interior point
optimization (IPOPT), proposed by A. Wächter in [50]

4.3 Formulation of the NMPC Algorithm

Since the system model introduced in Chapter 3 is a non-linear model, this thesis focuses
on designing an NMPC controller. NMPC is an advanced optimization-based method
for feedback control of non-linear systems. Similarly to linear MPC formulation, it can
be used in a variety of different applications. It is generally used to control complex or
multiple input multiple output systems in which predicting the future behaviour of the
system is essential. However, it is primarily used for stabilization and tracking problems
which were introduced in Section 2.3.
The general idea of the NMPC scheme is the following: at each discrete time instant n
we optimize the predicted future behaviour of the system for some finite horizon k =

0, ..., N − 1 of length N ≥ 2 and then use the first element of the resulting optimal
control horizon as input to the system. The states x(n) are considered in a closed set
x(n) ∈ X ⊆ Rnx with 0 ∈ X and the control inputs are in a compact set u(n) ∈ U ⊂ Rnu

where 0 ∈ U . The NMPC utilizes the non-linear system model in order to predict and
optimize the future system behaviour. The general non-linear control system model in
discrete time form is:

x+ = f(x,u) (4.4)

where the f : X × U → X is the transition map that assigns the state x+ ∈ X at the
next sampling time to each pair of state x ∈ X and control value u ∈ U .
In order to be able to react to the current deviation of x(n) from the reference xref , the
control input u(n) has to be defined in feedback form u(n) = µ(x(n)) for some map µ,
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mapping the state x(n) ∈ X into the set U of control values.
In other words, the feedback law of the NMPC problem formulated as µ : X → U with
the assumption that the resulting closed-loop system satisfies:

x+ = f(x, µ(x)) (4.5)

where f is the same as in Equation 4.4. In the following Equation 4.5 will be called a
nominal closed-loop system.
In the case of the NMPC, which is based on the system model presented in Chapter 3,
the model includes the following states:

X = [x y θ]T X ∈ R3 (4.6)

where x and y denote the position of the robot in the local coordinate frame while θ is the
difference between the orientation of the map coordinate frame and the local coordinate
frame. The control value space U is described by the following:

U = [v ω]T U ∈ R2 (4.7)

where v and ω are the linear and angular velocities, respectively.
In this thesis, two different problem formulations were considered. The first one is the set
point stabilization NMPC, where the reference value is constant. Secondly, a trajectory
tracking problem where the NMPC is formulated by a time-varying reference which is
detailed further in Section 4.3.2.
In order to explain the concept of the NMPC design, firstly the problem will be considered
as a set point stabilization problem.

4.3.1 Set Point Stabilization NMPC

In NMPC formulation we are talking about set point stabilization problems if the reference
value is:

xref ≡ x∗ ∈ X (4.8)

where x∗ is constant.
The prerequisite for stabilizing the system at x∗ by the feedback law is that the reference
value x∗ has to be the equilibrium of Equation 4.5, the nominal closed-loop system, while
satisfying the required condition where such u∗ ∈ U control value exists, where:

x∗ = f(x∗, u∗) (4.9)

Since NMPC is predictive control, it uses the non-linear system model in order to predict
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and optimize future system behaviour. In order to differentiate the real state and control
variables x(n), u(n) from the predicted variables, the latter are denoted as x̄(n) and
ū(n). Starting from the current state x(n) for the control sequence u(0), ...,u(N − 1)

where N ≥ 2 is the length of the prediction horizon, the prediction trajectory can be
constructed as:

x̄(0) = x(n), x̄(k + 1) = f(x̄(k), ū(k)), k = 0, ..., N − 1 (4.10)

by iterating with Equation 4.4. By this iterative method, the x̄(k) state prediction is
obtained for the state x(n + k) at time tn+k in the future. Also, based on the chosen
control sequence u(0), ...,u(N − 1) the prediction of the system behaviour is obtained on
the discrete-time interval tn, ..., tn+N .
In order to decide the optimal control sequence u(0), ...,u(N − 1) that results in states
x̄(k) approaching the reference value (set point) x∗ for k = 0, ..., N − 1 a minimization of
a cost function is used. This cost function penalizes the state error xerr between x̄(n) and
x∗. Furthermore, it can penalize the deviation of the control values u(k) to the reference
control u∗. A common choice for this cost function `(x̄(k),u(k)) is a quadratic function
that satisfies following condition:

`(x∗,u∗) = 0 and `(x̄,u) > 0 for all x̄ ∈ X ,u ∈ U with x 6= x∗ (4.11)

Such a quadratic function for set point stabilization NMPC local planner is formulated
as,

`(x(k),u(k)) = ‖xerr(k)‖2
Q + ‖u(k)‖2

R + ‖∆u(k)‖2
W

= QTxerr(k)Q + RTu(k)R + W T∆u(k)W
(4.12)

where ‖·‖ denotes the Euclidean norm. The state error xerr(k) defined as,

xerr(k) = x(k)− xref = [εx εy εθ]
T (4.13)

where εx, εy and εθ are the positions and heading errors. In Equation 4.12 ∆u(k) is the
change in control input and defined as the following:

∆u(k) = u(k)− u(k + 1) (4.14)

In Equation 4.12, the weighting cost matrices Q, R, W ≥ 0 are positive semi-definite in
order to guarantee that the cost is always positive semi-definite. These cost matrices are
considered as weights on the state error vector xerr, control inputs u and the change of
control inputs ∆u, respectively.
Given such a cost function ` respect to Equation 4.12 along the prediction horizon, N ≥ 2
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formulates the NMPC scheme algorithm. The optimal control problem (OCP) in this
algorithm has to respect all admissible control sequences u(0), ...,u(N − 1) with x̄ gen-
erated by Equation 4.10. Here admissible means that there are a set of control sequences
UN(x0) ⊆ UN which includes constraints depending on the initial value x0.
In the case of the NMPC local planner, several constraints will be considered, which will
be explained in Section 4.5. For now, simply assume an unconstrained scenario where
UN(x0) ≡ UN for all x0 ∈ X .
Also, note that here direct single shooting is applied as optimal control method where
the optimal state trajectory x̄(·) is not included in the optimization parameters of the
OCP, leaving only ū(·) to be the decision variable of the NLP. In this case, the set point
stabilization NMPC scheme performs predictions at each sampling time tn, n = 0, 1, 2, ...

via the solution of the optimal control problem.

Algorithm 4.1: set point stabilization NMPC scheme
1 Measuring the state x(n) ∈ X ;
2 Set x0 := x(n), solve the optimal control problem

minimize
ū(·)∈UN (x0)

J(x0, ū(·)) :=
N−1∑
k=0

`(x̄(k,x0), ū(k))

subject to, x̄(0,x0) = x0, x̄((k + 1),x0) = f(x̄(k,x0), ū(k))

(4.15)

obtain the optimal control sequence by u?(·) ∈ Un(x0);
3 Get NMPC-feedback value µ(x(n)) := u?(0) ∈ U and use it in the next sampling

period

In Algorithm 4.1, the optimal control sequence u?(·) is calculated using the state infor-
mation x(n) at sampling time tn assuming that such an u? exist. At each sampling time
tn, the future behaviour of the system is predicted over the horizon of [tn, tn +N ] by
computing the optimal input u?(·).
The NMPC local planner is running on a fixed rate between each new time sample tn
which results in a set time span between separate path planning. During that time, the
first optimal control input u?(0) is applied to the system. When a new iteration starts
the prediction horizon shifts forward to [tn+1, tn+1 +N ].
Note that in Algorithm 4.1, the constraints are not considered. The constraints will be
detailed further in Section 4.5. The next Section will introduce NMPC local planning
problem with the consideration of varying reference.

4.3.2 Trajectory Tracking NMPC

If the NMPC is formulated by considering a time varying reference, the problem is called
a tracking problem. In an NMPC with a non-constant reference xref (n) it is assumed that
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x∗ ∈ X is the equilibrium of the nominal closed-loop system for corresponding control
value u∗ ∈ U . In this case, xref can then be defined as:

xref (n) = xuref (n,x0) (4.16)

where x0 = xref (0) and some suitable reference infinite horizon control sequence uref (·) ∈
U∞(x0). When the reference is not constant, the xref (·) and uref (·) has to be taken into
account when formulating the cost function `. In such a time-varying case, the cost for
the reference becomes:

`(n,xref (n),uref (n)) = 0 ∀n ∈ N0 (4.17)

and,
`(n,x,u) > 0 ∀ n ∈ N0, x ∈ X , u ∈ U with x 6= xref (n) (4.18)

where X and U are the set of states and control inputs, respectively. N0 is the set of
natural numbers, including 0. Applying the same motive as in Section 4.3.1 the quadratic
function for a trajectory tracking NMPC local planner is defined as:

`(n,x,u) = ‖xerr(n)‖2
Q + ‖uerr(n)‖2

R + ‖∆u(n)‖2
W (4.19)

where Q,R,W ≥ 0 are positive semi-definite weighting matrices. The state error xerr(n)

is defined as:

xerr(n) = x̄− xref (n). (4.20)

The error on the control input uerr(n) is:

uerr(n) = u− uref (n) (4.21)

and the change in the control input ∆u(n) defined as:

∆u(n) = u(n)− u(n+ 1) (4.22)

For each k = 0, ..., N − 1, the prediction x̄(k,x0) with x0 = x(n) used in the NMPC
algorithm now becomes a prediction of the closed-loop state x(n + k). This prediction
should be close to the desired reference state xref (n+k). Therefore the prediction x̄(k,x0)

is used in the cost function defined in Equation 4.19. This leads to the following algorithm
for minimizing the set of control sequences UN(x0) in the horizon k = 0, ..., N − 1.
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Algorithm 4.2: trajectory tracking NMPC scheme
1 Measuring the state x(n) ∈ X ;
2 Set x0 := x(n), solve the optimal control problem

minimize
ū(·)∈UN (x0)

J(n,x0, ū(·)) :=
N−1∑
k=0

`(n+ k, x̄(k,x0), ū(k))

subject to, x̄(0,x0) = x0, x̄((k + 1),x0) = f(x̄(k,x0), ū(k))

(4.23)

obtain the optimal control sequence by u?(·) ∈ Un(x0);
3 Get NMPC-feedback value µ(x(n)) := u?(0) ∈ U and use it in the next sampling

period

In Algorithm 4.2 the optimal control sequence u?(·) is calculated using the state infor-
mation x(n) at sampling time tn assuming that such a u? exist. At each sampling time
tn, the future behaviour of the system is predicted over the horizon of [tn, tn +N ] by
computing the optimal input u?(·).
Similarly, as is the case for the set point NMPC scheme (Algorithm 4.1), direct single
shooting is applied as optimal control method where the optimal state trajectory x̄(·)
is not included in the optimization parameters of the OCP, leaving only the ū(·) as the
decision variable of the NPL. In addition, remark that the OCP in Algorithm 4.2 is
reduced to Algorithm 4.1 if ` is not dependent on n. Moreover, Algorithm 4.2 is free from
constraints; this is further explained in Section 4.5.

4.4 Discretization of NMPC

The previous sections (Section 4.3.1, 4.3.2) explained how the optimal solution x̄(k,x0)

of a discrete-time system (Equation 4.4) from the OCP could be obtained using numerical
methods for differential equations, but not how the minimization problem in the OCP
can be solved.
In particular, how the OCP problem (Equation 4.1) can be reformulated into an NLP
problem (Equation 4.2)
Even though OCP is already considered as a discrete-time problem, the process to turn
it into an NLP problem is called discretization.
There are several methods for discretization, but for now, concentrate on direct methods
which are by far the most popular class of algorithms in NMPC applications. In these
methods, the OCP is transformed into a static optimization problem which can then be
solved by NLP algorithms.
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4.4.1 Direct optimal control methods

Popular direct approaches or direct optimal control methods can be distinguished into
main families. The first one is the sequential approach, represented as direct single shoot-
ing method where the state trajectory is not included in the decision variables, leaving
the control trajectory a set of free parameters to be determined by the NLP solver.
The second approach is the simultaneous approach where the state trajectory is estimated
by polynomials whose coefficients are determined by the NLP solver. One of the first
simultaneous approaches is the direct collocation approach which was presented by Lynn
in [51].
A hybrid solution between the sequential and simultaneous approaches is the direct mul-
tiple shooting method, proposed by Bock and Plitt in ([48], [52]). This method has some
important aspect of the simultaneous approach, which makes it able to handle unstable
systems, while avoiding storing the whole state trajectory in the problem formulation.
For the NMPC local planner, the direct multiple shooting has been considered and im-
plemented.

4.4.2 Direct multiple shooting discretization

The previously used method in Algorithm 4.1 and 4.2 was called direct single shooting
method where ū(·) was the only optimization variable in the NLP. Generally, this means
that the discretization occurs only at the first entry of the OCP when x̄(0,x0) = x0.
This is called a shooting point. The main drawback of this method is the non-linear
propagation, which means that the integrator function tends to become highly non-linear
for long horizons N .
As it was mentioned before, direct multiple shooting is a hybrid solution between the
sequential and simultaneous approaches. It is also called lifted single shooting. The
principal idea of this method is to include some or all component states x̄(·) as independent
optimization variables in the problem. This means that the optimization variables ω in
the NLP problem are formulated as:

ω =
[
ū(0)T , ..., ū(N − 1)T , x̄(0,x0)T , ..., x̄(N,x0)T

]
(4.24)

where
x̄(k + 1,x0) = f(x̄(k,x0), ū(k)) (4.25)

with the initial condition x̄(0,x0) = x0.
In order to ensure the optimal solution of the NLP, an extra equality constraint has to be
applied at each optimization (shooting) step which satisfies the system dynamic.

x̄(k + 1,x0)− f(x̄(k,x0), ū(k)) = 0, k = 0, ..., N − 1 (4.26)
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The direct multiple shooting is called lifted single shooting because by reformulating
the system, by adding the predicted states x̄ as decision variables and considering an
extra equality constraint (Equation 4.26) where the difference between the actual state
x̄(k + 1,x0) and the predicted state f(x̄(k,x0), ū(k)) represents the system model and
applying it at every prediction step k = 0, ..., N − 1 or shooting step.
By increasing the number of decision variables the dimensionality of the NLP grows, since
it increases the number of optimization variables in the problem, in exchange for a less
non linear system model, which often results in a smaller NLP problem that can be solved
faster. Also by adding x̄ as decision variable it gives an opportunity to initialize by state
trajectory.

4.5 Constraints

One of the significant successes of MPC is the ability to take constraints into account
explicitly. In this Section, the different considerations of constraints are explained. Firstly,
the constraints on the states which are considered to be bounded by the local costmap.
Secondly, the constraints on the control inputs that are limited due to the robot technical
properties but also has a great influence on the robot motion and performance as a tuning
parameter. In Section 4.5.2 the constraints for collision avoidance with static obstacles
are detailed. Finally, Section 4.5.3, shows how an NMPC local planner can use the
predictions from moving obstacles and apply different constraint at each prediction in
order to consider only the admissible trajectories.

4.5.1 Constraints on States and Inputs

It is a common practice to define the constraints both on the states and on the control in-
puts. To do so, the admissible states are understood as x ∈ X, where the set of admissible
states are X ⊆ X . Furthermore, u ∈ U(x) is considered as the admissible control values
for x, where the set of admissible control values is U(x) ⊆ U . By introducing these sets
and using a control system like in Equation 4.4 it is possible to calculate with the OCP
problem where the states and control inputs are constrained by X and U(x), respectively.
Such a control system should have the following control sequence and the corresponding
trajectory:

u(k) ∈ U(x̄(k,x0)) and x̄(k + 1,x0) ∈ X for all k = 0, ..., N − 1 (4.27)

where N ∈ N and x0 ∈ X is an initial value. Here u ∈ UN control sequence with the
trajectory x̄(k,x0) is admissible for x0 up to time N if its hold for k = 0, ..., N − 1.
Also, an assumption should be considered where for each x ∈ X exist a u ∈ U(x) where
f(x,u) ∈ X holds. This is an essential assumption in order to ensure feasibility. The
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OCP is called feasible for x0 if the set of admissible control sequences UN(x0) for x0 up
to N over which the OCP is optimized is nonempty.
In the case of NMPC handling, these constraints are straightforward because these can
directly be inserted into Algorithm 4.1 or Algorithm 4.2.

Figure 4.1: Dimensions of the costmap of the robot’s current state

In the case of the NMPC local planner, the set of admissible states X can be considered
as unconstrained if there are no margins on the map ((x, y) can reach any value) and
the robot can turn towards any direction (θ). Another concept is to limit the admissible
positions (x, y) to the size of the local costmap. This method neglects all the spaces that
the sensor measurements do not consider. In this case, the local planner will not consider
solutions where the robot ends up in an undetected area. Most of the local planners like
DWA or TEB do not consider those areas either. The parameters for the height and
width of the costmap are denoted as hcm, wcm, and they are measured from the current
position of the robot (x0, y0). For better understanding, Figure 4.1 shows the boundary
of the costmap around the robot’s current state x0.
To define the set of admissible states for this application the upper and lower bounds on
the state variable x are defined as:

xmax = x0 + hcm cos(θ0) + wcm sin(θ0)

xmin = x0 − hcm cos(θ0)− wcm sin(θ0)
(4.28)

where the xmax, xmin are the upper and lower bound of the state variable x respectively.
Similarly the upper and lower bounds (ymax, ymin) on the state variable y are calculated
as:
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ymax = y0 + hcm sin(θ0) + wcm cos(θ0)

ymin = y0 − hcm sin(θ0)− wcm cos(θ0)
(4.29)

In this concept, the θ is still unconstrained. The set of admissible states in the NMPC
local planning problem are defined as the following:

x ∈ X where X :=

xminymin
−∞

 ≤ X ≤
xmaxymax
∞

 (4.30)

The control values are constrained by the maximum and minimum velocity commands
that should be applied to the robot. In this case, the set of admissible control values
UN(x) are the following:

u ∈ UN(x) where U :=

[
vmin
ωmin

]
≤ U ≤

[
vmax
ωmax

]
(4.31)

Where the vmax and vmin are the maximum and minimum linear velocities control inputs
while ωmax and ωmin are the maximum and minimum angular velocity control inputs,
respectively. Note that the minimum angular velocity control input should be ωmin =
−ωmax since the robot should be able to turn to both directions equally. Furthermore,
if vmin = 0 then the NMPC local planner neglects all solutions, where the robot moves
backwards. This can be useful since the TIAGo Base and Steel do not proper rear facing
sensing capabilities for sensing the area behind the robot, while they are differential
driven robots which makes them capable of turning back by rotating in place (v = 0, ω 6=
0). Moreover, since the objective function (Equation 4.19) does not penalize backwards
motion vmin < 0, once the robot started to move backwards it usually continues its motion
this way for extended periods, due to costs on turning, which is not preferable due to the
sensor arrangement problem.

4.5.2 Static Obstacle Constraints

An essential property of a local planner is that it calculates velocity control inputs that
respect obstacles and avoids collision between them and the robot. The global planner
calculates an optimal path based on a previously mapped area that the local planner
should follow. However, sometimes the environment changes which results in the appear-
ance of new obstacles. In addition, if the reference that the local planner follows is only
one point of the globally optimal path, an obstacle-free path is not guaranteed between
the robot and the reference point. It is expected of the local planner to overcome these
challenges, circumnavigate the obstacles and avoid a collision.
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Figure 4.2: Scenario with two static obstacles (O1 and O2)

NMPC is suited to handle obstacles as constraints and directly insert them into the OCP.
In this report two different static obstacle representation were considered: the polygon
centroid representation (Section 3.5.1) and the closes point of polygon representation
(Section 3.5.2). In both cases, the final goal is the same: keeping the current and predicted
states far enough from specific points of the polygon-shaped static obstacles by neglecting
the unwanted states from the set of admissible states X.
For better understanding, a scenario was created, which illustrates a simplified problem
in Figure 4.2. In this scenario, two obstacles are considered, O1 in the position (xso1 , y

so
1 )

and O2 in the position (xso2 , y
so
2 ) as point obstacles with the radius rso1 and rso2 respectively.

These obstacles are placed in the area between the current state x0 = [x0, y0, θ0]T of the
robot and the reference state xref .
The set point stabilization NMPC local planner should predict a collision-free trajectory
x̄(k,x0) from x0 up to the horizon N if it holds for k = 0, ..., N − 1 by minimizing the
state error xerr in the cost function from Equation 4.12. In order to minimize the distance
between x0 and xref while respecting the obstacles, further constraints have to be defined,
ensuring that the robot cannot move into areas occupied by static obstacles.
The distances dso1 and dso2 to the obstacles play an essential role in collision avoidance.
These distances can be calculated by the Euclidean distance between the trajectory
x̄(k,x0) =

[
x̄k, ȳk, θ̄k

]T and the obstacle positions as follows:

dsok,i =
√

(x̄k − xsoi )2 + (ȳk − ysoi )2 (4.32)

where the notation ·k,i denotes the k’th prediction of the NMPC scheme and the i’th
obstacle consideration. These distances should not be smaller than the sum of the robot
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radius and the radius of the obstacles.

dsok,i ≥ rrob + rsoi (4.33)

By combining Equation 4.32 and Equation 4.33, the following inequality constraints can
be defined:

Gso(k, i) := −
√

(x̄k − xsoi )2 + (ȳk − ysoi )2 + rrob + rsoi ≥ 0 (4.34)

for all k = 0, ..., N − 1 and i = 0, ..., nso.
As mentioned before, the NMPC local planner implementation considers two different
static obstacle representation. The first one is the polygon centroid representation, where
the centroid position of the i’th polygon obstacle (xcenti , ycenti ) is calculated by Equation
3.16 and 3.17. In addition, the minimum radius rsoi that encircles all the vertices of the i’th
polygon from the centroid is defined (Equation 3.18). This representation is equivalent
to the scenario from Figure 4.2.
The second representation is the closest point to the polygon method, which differs from
the previous example. In this method, the closest point on the polygon edge has to be
defined in relation to the robot position. There are several difficulties with this concept.
First of all, the closest point on the polygon is a varying parameter between each predic-
tion, since by predicting a trajectory x̄(k,x0) at each k = 0, ..., N − 1 the closest point
of the i’th polygon (xsok,i, ysok,i) might be in a different position at each prediction. Another
difficulty is that the closest point between a point and a polygon calculated by the Algo-
rithm 3.2 presented in Section 3.5.2, can be defined only by an algorithm which includes
conditional statements since it is dependent on the number of vertices of the polygon. This
is why every polygon is reduced into a three-sided polygon by the ClosestNTriangle
algorithm presented in Section 3.5.2.
By the mentioned assumption, the closest point of the polygon (xsok,i, ysok,i) at each prediction
k can be calculated by the ClosestPoint2Polygon (Algorithm 3.2) to the predicted
trajectory by x̄(k,x0) =

[
x̄k, ȳk, θ̄k

]
and the distance between them can be defined as:

dsok,i =
√

(x̄k − xsok,i)2 + (ȳk − ysok,i)2 (4.35)

In this method the radius of the polygon is rsoi = 0, so a consideration of a safety boundary
Sb was necessary to keep some distance between the robot and the closest point. In this
case the constraints can be defined as follows:

Gso(k, i) :=
√

(x̄k − xsok,i)2 + (ȳk − ysok,i)2 + rrob + Sb ≥ 0 (4.36)
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4.5.3 Moving Obstacle Constraints

Moving obstacles are handled by the NMPC local planner similarly to the static obstacles.
For a better understanding, consider the following scenario in Figure 4.3.

Figure 4.3: Scenario with two moving obstacles (O1 and O2)

In Figure 4.2, two obstacles are considered; O1 and O2 in the measured state xmo0,1 =[
xmo0,1 , y

mo
0,1

]T and xmo0,2 =
[
xmo0,2 , y

mo
0,2

]T respectively. Each obstacle has a constant radius rso1 ,
rso2 and moving with a constant speed vmo1 , vmo2 and orientation θmo1 , θmo2 . These obstacles
are placed in the area between the current state x0 = [x0, y0, θ0]T of the robot and the
reference state xref .
At every sampling time tn, the initial states of the moving obstacles prediction are up-
dating in regards to their measured state x̄mo0,i = xmo0,i . After that, by applying a forward
simulation, the future position of the moving obstacles are predicted:

x̄mok,i =

[
x̄mok,i
ȳmok,i

]
=

[
x̄mo0,i

ȳmo0,i

]
+ Ts

[
cos(θmoi )

sin(θmoi )

]
(4.37)

for all k = 0, ..., N − 1 and i = 1, ..., nmo where nmo is the number of considered moving
obstacles. It is essential that Ts step size is the same as the one in the discretization of
the system model in Equation 3.10, since this guarantees that at each prediction instant
k the predicted elapsed time between each iteration is equivalent. The minimum distance
between the trajectory x̄(k,x0)) and the predicted trajectories of moving obstacles x̄mok,i
has to comply with the following inequality:

dmok,i ≥ rrob + rmoi + Sb (4.38)
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where the rrob is the robot radius, and Smob is the safety boundary for moving obstacles.
Each distance can be calculated as the Euclidean distance between the two trajectories:

dmok,i =
√

(x̄k − x̄mok,i )2 + (ȳk − ȳmok,i )2 (4.39)

The constraints for the moving obstacles in the OCP are formulated as following:

Gmo(k, i) := −
√

(x̄k − x̄mok,i )2 + (ȳk − ȳmok,i )2 + rrob + rmoi + Sb ≥ 0 (4.40)

for all k = 0, ..., N − 1 and i = 0, ..., nmo. These constraints can be directly added to the
NMPC algorithms in Algorithm 4.1 or Algorithm 4.2.
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4.6 Summary of NMPC local planner

The following algorithm summarizes NMPC path planning algorithm:
Algorithm 4.3: NMPC path planning algorithm
Input : x(n),xmo(n),xso(n),xref

Output : u(n)

Parameter: N, Ts, hcm, wcm, vmax, vmin, ωmin, ωmax, nso, nmo, Sb, dgt,Q,R,W
1 while norm(x0 − xref) > dgt do
2 x0 ← x(n)

3 x̄moi=0,...,nmo
← moving obstacle forward simulation from xmo(n) (Equation 4.37)

4 if Centroid Polygon Method then
5 xcent, ycent, rso ← Calculate centroids ∀xso(n) (Equation 3.16, 3.17, 3.18)
6 xsoi=0,...,nso

, rsoi=0,...,nso
← Closest nso to x0

7 else
8 xsoi=0,...,nso

, Ssoi=0,...,nso
← ClosestNTriangle(x0,x

so(n), nso)

9 end
10 Solve OCP:

minimize
ū(·)∈UN (x0)

x̄(·)∈X

J(x0, ū(·)) :=
N−1∑
k=0

`(x̄(k,x0), ū(k))

subject to x̄(0,x0) = x0

x̄(k + 1,x0)− f(x̄(k,x0), ū(k)) = 0

ū(k) ∈ UN(x0) (Equation 4.30) ∀k ∈ [0, N − 1]

x̄(k) ∈ X (Equation 4.31) ∀k ∈ [0, N ]

Gmo(k, i) ≥ 0 (Equation 4.40) ∀k ∈ [0, N ] ∀i ∈ [0, nmo]

Gso(k, i) ≥ 0 (Equation 4.34, 4.36) ∀k ∈ [0, N ] ∀i ∈ [0, nso]

obtain the optimal control sequence by u?(·)
11 u?(n)← u?(0)

12 end
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CHAPTER 5

SIMULATION

This chapter evaluates the different NMPC local planner designs from Chapter 4 based
upon the difficulty of implementation and general performance in a simulated environ-
ment. Firstly, in Section 5.1 the different methods are implemented in MATLAB, then
the simulated controller designs are evaluated. The ones that perform the best will then
be implemented in Python and ROS and simulated using Gazebo in Section 5.2.

5.1 MATLAB Simulation

The NMPC local planner has first been implemented and developed in the MATLAB
programming platform. Many iterations of the NMPC have been developed over the
course of the semester. As extensions of the original MPC concept or as new concepts
that would perform better in certain scenarios, for example, set point stabilization or
trajectory tracking. In addition, MATLAB has been used as a test-bench to test different
scenarios and for adding constraints and costs to the objective function. This section
will result in two advanced planning algorithms that can take both moving and static
obstacles into account.

Figure 5.1: The robot drew as a circle with a heading moving towards the goal with the
prediction horizon in red. The already travelled path is marked in blue.
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The first NMPC developed is equivalent with the simplified example presented in Section
4.3.1 which only considers that the robot state has to reach a specific target state or a
goal; this is also known as set-point stabilization. A simulation of this iteration of the
NMPC can be seen in Figure 5.1.
The first improvement upon this simple set-point stabilization (Algorithm 4.1 was ’lifting’.
Instead of using the direct single shooting discretization, a more advance method, called
direct multiple shooting, also known as ’lifted’ single shoot, was implemented for more
information about the two methods, see Section 4.4.2. This method makes the NLP
problem formulation computationally more expensive but decreases the non-linearity of
the system model, which makes the NLP problem more sparse.
The next added functionality was static obstacles defined in the constraints of the NMPC.
This was done with one obstacle, as seen in Figure 5.2a and later with multiple static
obstacles, as seen in Figure 5.2b.

(a) One static obstacle obstructing the way
of the robot.

(b) Multiple static obstacles obstructing the way
of the robot.

Figure 5.2: NMPC path planning with static obstacles consideration as constraints, simu-
lated in MATLAB. The blue line is the driven trajectory, the red circles are the predicted
states with the robot footprint and the black circles with points in the middle are the
static obstacles

The next objective was to implement moving obstacles into the NMPC. Unlike the static
obstacles, these are the time-varying constraints whose predicted movement has to not
coincide with the predicted movement of the robot. Much like the implementation of the
static obstacles, firstly the constraints for one moving obstacle was implemented and then
for multiple obstacles once the correct formulation had been derived. The robot together
with the moving obstacles, can be seen in Figure 5.3.
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(a) One moving obstacle obstructing the way
of the robot.

(b) Multiple moving obstacles obstructing the
way of the robot.

Figure 5.3: NMPC in MATLAB with moving obstacles as time-varying constraints,

In Figure 5.3, the predictions of the movement of the obstacles are illustrated with a cyan
horizon and a red horizon for the robot. The constraints for the static obstacles and the
time-varying constraints of the moving obstacles have to be combined and formulated in
one NMPC that can consider both types of obstacles. This can be seen in Figure 5.4.

Figure 5.4: Set-point stabilization NMPC with static and moving obstacles. Static ob-
stacles are represented as circles.

In Figure 5.4, the ten nearest static obstacles are considered in the NMPC while all the
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moving obstacles are considered. The static obstacles currently considered by the NMPC
are marked with black circles, and the rest of the static obstacles are marked with green.
As mentioned in prior figures, the prediction horizon is marked in red, and the predictions
of the moving obstacles are marked in cyan. In this scenario, the original obstacles
that are polygons are represented as circular obstacles. For more information about this
obstacle representation see Section 3.5.1. A simulation of this NMPC with a different
static obstacle representation has also been developed. Another obstacle representation,
called closest point to polygon method (Section 3.5.2, simplifies the complex polygons
into three types/cases of obstacles, namely single-points, lines or three-sided polygons
(triangles). In this method the NMPC use a complicated algorithm (Algorithm 3.2) in
order to only consider the closest point to the simplified obstacles at each prediction. This
simulation can be seen in Figure 5.5.

Figure 5.5: Set point stabilization NMPC with static and moving obstacles using the
closest point to polygon static obstacle representation

The goal is kept constant throughout the simulations when using set-point stabilization.
However, a time-varying reference can be useful when trying to, for example, follow a
specific trajectory rather than merely finding a path to a given goal. To investigate how
a trajectory tracking NMPC from Section 4.3.2 can be used for local planning, it was
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implemented and investigated in MATLAB. The reference trajectory consists of a set of
poses with linear and angular velocities; this set is the same length as the prediction
horizon. The reference trajectory moves along the global plan in time. To implement this
trajectory tracking, a simple line was first used as the global plan that the robot has to
follow. This can be seen in Figure 5.6a.

(a) The robot has to follow a trajectory along a
straight line.

(b) Obstacles are now introduced in the con-
straints.

Figure 5.6: NMPC with trajectory tracking along a straight line.

In Figure 5.6 the reference trajectory can be seen in green, and the prediction horizon
in red. Once the reference trajectory reaches the goal, the local planner starts using set-
point stabilization to converge to the goal. Moving obstacles can also be introduced to
the environment, resulting in Figure 5.7.

Figure 5.7: Trajectory tracking NMPC with moving obstacles(cyan) and static obsta-
cles(magenta).

More complex global paths can also be followed using trajectory tracking. In fact, any
path can be followed using trajectory tracking, given that a set of reference states and
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control inputs are given. The NMPC local planner following a circular trajectory can be
seen in Figure 5.8.

Figure 5.8: The NMPC following a circular trajectory while avoiding moving and static
obstacles. The reference trajectory is marked with green on the circle

Lastly, the behaviour of the NMPC in both trajectory tracking and set-point stabilization
has been quite erratic. This is due to the fact that there is no constraint or cost on the
acceleration of the robot. This means that the robot will move as fast as possible while
there are no obstacles in the way. This resulted in sudden stops when the robot was near
an obstacle and very high acceleration when the robot starts to move again.

(a) The local planner trajectory tracking
without a cost on acceleration. It can be
seen that the robot does, indeed stop in the
prediction waiting for the obstacle to pass by.

(b) The local planner trajectory tracking with a
cost on acceleration. Instead of stopping at the
obstacle, the robot slows down and speeds up
again once the obstacle has is cleared from the
predicted trajectory.

Figure 5.9: NMPC with trajectory tracking along a straight line before and after intro-
ducing a cost on the acceleration.
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An example of this can be seen in the trajectory tracking scenario seen in Figure 5.9a.
Therefore a cost has been put on the acceleration such that the robot accelerates and
decelerates slower, resulting in smoother applied control inputs. The same scenario with
cost on acceleration can be seen in Figure 5.9b.
The control outputs from the local planner have also been smoothened by introducing the
cost on the acceleration. The control output has been recorded from start to goal in the
scenario presented in Figure 5.9 and can be seen in Figure 5.10.

(a) The control output of the local planner
without cost on the acceleration. The
sudden spikes in linear and angular velocity
are apparent.

(b) The control output of the local planner with
cost on the acceleration. The sudden spikes in
linear and angular velocity are smoothened such
that the robot does not stop while moving to-
wards the goal.

Figure 5.10: NMPC with trajectory tracking along a straight line before and after intro-
ducing a cost on the acceleration.

While the local planner without acceleration cost reaches the goal faster than the local
planner with cost on the acceleration, however, it makes two stops while moving towards
that goal. This more aggressive behaviour in relation to movement is less desired for a
robot that has to be integrated into an environment with people as it might be uncom-
fortable to interact with. This is the final development of the NMPC local planner in
MATLAB. The development has resulted in an NMPC local planner that uses set-point
stabilization to converge to the goal and an NMPC local planner that uses a mixture of
trajectory tracking and set-point stabilization to converge to the goal. The NMPC local
planner with set point stabilization is chosen for continued work due to the fact that the
local planner using trajectory tracking needs a reference trajectory not only containing
position and heading, but also the linear and angular velocities. The global planners used
on the TIAGo robot use the A* search algorithm that gives a set of poses to the final goal,
but no information about intermediate velocities with these poses. Hereby providing a set
of poses that can be treated as intermediate final goals for set-point stabilization, while
having no velocities inhibits these poses being used for trajectory tracking. Hence trajec-
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tory tracking NMPC is not implemented to any of the global planners that are installed
on the TIAGo robot.

5.2 Gazebo Simulation

PAL robotics has made a quite comprehensive simulation environment for testing new
packages for the TIAGo robot. The simulation environment consists of a complete robot
model, sensor models and different Gazebo worlds for testing scenarios. The local planners
chosen from the MATLAB simulation have been implemented in Gazebo before being
implemented on the actual robot. The Gazebo simulations run all the same topics as the
real robot and make use of the same localization and planning methods such as amcl and
Globalplanner. This makes implementation easier due to only minor differences between
the Gazebo simulation and the actual robot. Most of the differences were discovered in
the change from MATLAB to Gazebo and ROS. One of the major differences was keeping
track of the frames in which the data come in and the transformations needed to represent
the data correctly. This problem arose, for example, in the shape of having to transform
obstacles detected by the Lidar from odom frame to map frame, such that the obstacle
data is static in relation to robot movement.

5.2.1 Simulation Scenarios

The two simulation scenarios are described in this section. These scenarios are done in
the simulation to test the performance of the two local planners. First, the planners were
tested in a static environment such that the differences in obstacle representation can be
assessed. Then a test with multiple moving obstacles is done to assesses the capabilities
of the local planner when in a highly dynamic environment. This test is only done once
since both local planners use the same formulation for moving obstacles.

5.2.1.1 Environment with only static obstacles

In this simulation test, the robot has to navigate through a room with static obstacles
consisting of shelves, tables and walls. Both the local planner will have the same starting
position and goal. The test can be seen in Figure 5.11.
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Figure 5.11: The map with the initial position and the goal marked as a red arrow
indicating the final orientation.

In Figure 5.11, the test scenario can be seen with the initial position being the robot
position, and the goal marked as a red arrow indicates the final orientation. The global
plan can also be seen as the blue line in the Figure. The two local planners will be tested
based on distance travelled, time taken to reach the goal as well as the overall smoothness
in the control outputs. In Figure 5.12, the resulting paths that the robot took with each
of the two local planners.

(a) Map of the first test with circular obstacles.(b) Map of the second test with polygons as ob-
stacles.

Figure 5.12: Obstacle representation and safety boundary alongside each other.
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In Figure 5.12, the initial global plan can be seen in red, and the actual path the robot
moved in blue. The global planner does not take into account the tabletops in the global
costmap because the mapping is done using a laser scanner that can only detect the legs of
the tables. The initial global plan can, therefore, be seen going through one of the tables.
However, as the tables move into the local costmap zone, and the robot can detect the table
with the RGB-D camera, the global planner remaps the global plan to move around the
table. It can be seen in Figure 5.12a that the robot makes some unnecessary movements.
This is due to the varying size of the circular obstacles. However, in Figure 5.12b, the
robot moves straighter and closer to the obstacles due to their polygon representation.
The unnecessary movements become more apparent when looking at the control outputs
from the local planner that can be seen in Figure 5.13.

(a) Control outputs of test 1. (b) Control outputs of test 2.

Figure 5.13: The path of the local planner with centroids and the global plan superimposed
on the global costmap.

In test 1, with circular obstacles, the robot stops at certain points to readjust because
of the constant change in the size of the obstacles. The planner also changes direction
multiple times when it is not needed. In test 2, with the polygon obstacles, the local
planner runs at an almost constant speed and only changes the angular velocity when it
is necessary to turn. The distance to the initial global plan can be seen in Figure 5.14.
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(a) Distance from the global plan in test 1. (b) Distance from the global plan in test 2.

Figure 5.14: The distance from the global plan over time.

In Figure 5.14, it can be seen that test 2 converges to the goal faster than test 1. Due
to a minimum velocity of 0 as well as a high cost on changes in acceleration for both
linear and rotational velocity, a slight overshoot of the global path results, likely turning
to proper goal position after reaching the goal. More results and details concerning the
test are available in Table 5.1.

Test nr. Test parameters Distance travelled [m] Min. distance from obs. [m] Avg. distance from obs. [m] Time [s]
1 Ts = 0.25 and N = 20 15.43 0.274 0.685 36.6
2 Ts = 0.25 and N = 20 14.25 0.365 0.775 30.57

Table 5.1: Test parameters and results.

(a) Static obstacles represented as circles. (b) Static obstacles represented as points, lines
or three-sided polygons.

Figure 5.15: Obstacle representation and safety boundary alongside each other.

From the two tests recorded and through the implementation process into the simulation
environment, it has become apparent that the polygon representation of the obstacles is
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superior to the circular obstacles. This is mainly due to the sensitivity of the circular
representation to irregular polygons and lines. Moving close to walls can create large
circles that fill up far more space than the actual size of the obstacles. However, if the
obstacles are regular polygons or points, the representation is more accurate.
In Figure 5.15, the obstacle representations can be seen in red on the costmap. In addition
to the obstacle representations, the local goal and prediction horizon can be seen as a large
red arrow and a set of small arrows, respectively. The global plan and goal can also be
seen with the plan being the blue line leading to the global goal at the end of the line
represented as a large red arrow. In conclusion, the polygon obstacles representation
overall performs better than the circular obstacle representation. However, both methods
will be implemented on the robot for real-life testing. Next is the moving obstacles test
where static obstacles are not considered.

5.2.1.2 Environment with only moving obstacles

In this simulation test, the local planner has to avoid moving obstacles while moving
towards a goal that is 8 meters away from the initial position of the robot. There are, in
total, eight moving obstacles that have to be taken into account in this test. The obstacles
will have varying speed, heading and size. A table containing the parameters for each
obstacle can be found in Table 5.2.

Obstacle nr. x-position [m] y-position [m] Heading [rad] Speed [m/s] Radius [m]
1 -2 2.66 -1.57 0.5 0.3
2 -0.05 3.44 -1.57 0.5 0.35
3 -3.02 -2.01 1.57 0.5 0.2
4 -0.09 -3.56 1.57 0.4 0.4
5 2.91 3.95 -2.355 0.3 0.25
6 3.85 2.84 -2.355 0.3 0.25
7 3.97 -3.03 -2.355 0.3 0.25
8 1.35 -3.41 -2.355 0.3 0.25

Table 5.2: The obstacle parameters in the moving obstacle test.

The obstacles can be seen in the map in Figure 5.16 with numbering for each of them.
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Figure 5.16: The moving obstacle scenario, obstacles visualized with their prediction
horizons ahead of them.

As presented in Figure 5.16, the test carried out in an empty room such that there are no
static obstacles that have to be avoided. This scenario also gives insight on how the robot
would perform in a highly dynamic environment with people moving around it. This test
is only carried out virtually due to issues with the robot hardware and with localization.
Therefore the results of this test can be found in the Chapter 7 of the report, namely in
Section 7.3.

56



CHAPTER 6

IMPLEMENTATION

The HAMR navigation package has been implemented into the PAL robotics TIAGo
software environment. The TIAGo robot is using the Robot Operating System (ROS)
as its framework for communication between different pieces of software and sensors, and
much more. This Chapter will describe the implementation process and what measures
had to be taken to make the package work with the actual robot. Firstly, some of the
keynotes about the ROS framework will be described since the ROS framework will be
used as heavily in the following sections. Then the navigation stack on the TIAGo robot
will be described, and finally, the HAMR navigation package will be described and how
it fits into the general structure on the TIAGo robot.

6.1 Robot Operating System(ROS)

In this Section, some of the general concepts of the robotics framework will be outlined.
These will be used when describing the package structure in ROS and the communication
between these nodes/processes within the packages.

6.1.1 ROS Packages

Workspaces, as well as packages, follow a specific structure when build and run in ROS.
In Figure 6.1, the structure of a workspace can be seen with a pack inside.

Figure 6.1: The structure of a ROS workspace with a package.
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Within the source (src) folder of the workspace, all the packages are stored. A package
must have a CMakelists.txt which contains the description of how to build the package.
A package also needs a package.xml which contains information about package names,
version numbers, authors and dependencies.

6.1.2 ROS Nodes, Topics & Services

ROS processes are referred to as nodes in a graph-like structure that is connected by edges
known as topics. These ROS nodes can pass messages to each other through the use of
topics or services. All communication through topics is managed by the ROS master each
node has to be registered at the Master when setting up node-to-node communication.
This type of communication is often used for one way communication, such as sensor data
messages or control signals. Services do not go through the ROS master when sending
messages between nodes. Instead, the ROS master sets up peer-to-peer communication
between all the nodes after they have been registered with the ROS master. ROS services
work per request and reply and can be useful for two-way communication between nodes.
A simple illustration of the ROS topic communication can be seen in Figure 6.2.

Figure 6.2: Communication between two nodes registered to the ROS master through a
topic

The publisher publishes messages at some desired rate to the topic then the subscriber
’listens’ to this topic and every time it receives a message, it runs the callback function.
The subscriber often handles most of the processing of the received data inside the callback
function.

6.1.3 Transformations & Frames

Another important topic within ROS and robotics, in general, is coordinate frames and
the transformations between them. The TIAGo robot has many different coordinate
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frames. Some examples could be the camera frames in the head of the robot and the
base_footprint frame. ROS has a package called tf that is used to keep track of all
the coordinate frames over time. The tf package allows for transformations of points and
vectors between the different coordinate frames. As mentioned before the tf package can
not only transform between different coordinate frames but also transforming in time.
Firstly, a regular transformation from some a to some frame c through some intermediate
frame b:

T ca = T ba T
c
b (6.1)

Now imagine an observation was made at time t0 and it is now time t1 there is now a
missing term in the Equation 6.1. A transformation between time t0 and t1 has to be
added in between the two transformations as such:

T c@t1a@t0
= T b@t0a@t0

T b@t1b@t0
T c@t1b@t1

(6.2)

This way, coordinates can be transformed through time using the tf package [53]. All
frames are managed in a tf tree with the /map or /world frame as the root in it. The tf
tree for the TIAGo robot can be found in the Github repository [54]. In Figure 6.3, the
TIAGo robot can be seen in the ROS visualization tool Rviz with all its frames.

Figure 6.3: The TIAGo robot with all its coordinate frames.

With this short introduction to the concepts of ROS, the next section will continue with
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a description of the TIAGo navigation stack.

6.2 TIAGo Navigation Stack

The navigation stack takes in the information from odometry, sensor streams and goal pose
and outputs velocity commands that actuate the robot towards the goal position. These
primary components are the move_base, Map_server, sensor sources, odometry source,
tf transforms described in the previous section and finally the amcl. An illustration of
the TIAGo navigation stack can be seen in Figure 6.4.

Figure 6.4: Diagram of the TIAGo navigation stack.

The move_base carries out the planning (global and local), costmap definition, bypassing
obstacles and recovery features when the robot is stuck. The output of this structure
is the velocity commands that actuate the robot. The Map_sever feeds the map to the
move_base. This map can either be downloaded if the area is already mapped or the
area can be mapped by the robot itself using gmapping. The primary sensor sources
on the TIAGo robot is the RGB-D camera in the head and the lidar in the base. The
odometry source comes from the encoders in the wheels of the TIAGo robot. These give
a temporary position estimate while the map updated using the amcl. Adaptive Monte
Carlo Localization (amcl) is a probabilistic localization system for a robot moving in 2D.
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The amcl plugin is based on using particle filtering for position estimation. This localiza-
tion system helps the robot cope with error in position and orientation accumulating by
integrating encoder ticks.

6.2.1 Deployment of Packages

In order to develop packages on the TIAGo robot, a PAL SDE development computer
based on the Linux Ubuntu 16.04 LTS distribution is needed. This development computer
is capable of building a workspace on the computer itself and afterwards it can be moved
to the TIAGo robot via Secure Shell(ssh) connection. When the TIAGo robot boots up,
it creates two sources of packages to its ROS environment. One is the ROS software
distribution erbium, and the other is a fixed location at /home/pal/deployed_ws, which
is where the deployment tool installs the packages. The deploy function follows the rules
of the CMakelists.txt, so everything needed must be added to it when the workspace
is built. These are the main features of the TIAGo navigation stack and how to deploy
packages to that environment. The next section will describe how this navigation stack
has been modified in this project.

6.3 HAMR Navigation Package

This section will specifically outline the structure of the navigation package developed in
this project as well as the pieces of software used to interface with the TIAGo software
environment. There are four packages created in this project. Three of these nodes,
namely the Moving Obstacle Publisher, Local Goal Publisher, and the Costmap Conver-
sion Publisher are used to feed the input from the TIAGo navigation stack to the CasADi
MPC node. The CasADi MPC node is then responsible for sending control signals to the
actuators. A modified version of the TIAGo navigation stack can be seen in Figure 6.5.
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Figure 6.5: Modified navigation stack with the local planner outside the move_base.

As seen in Figure 6.5, the local planner the local goal position from the local goal pub-
lisher. The local_goal_publisher finds the closest pose to a set distance of 1.2 meters
from the robot in the global plan. The local_goal_publisher then publishes this pose
to the robot at the same rate as the global plan, which is approximately 2 Hz. The
costmap_converter publishes the obstacles in the local_costmap to the robot at a vari-
able rate depending on how much the costmap updates over time. A completely separate
node from the move_base is the MO_obs_publisher this publishes virtual obstacles which
are only handled in the MPC. This is mainly used for testing the MPC and is merely
a placeholder for a perception package, which should have the same output. Lastly, the
local planner gets feedback from the Robot_pose, which publishes the estimated position
of the robot based on the amcl and the odometry. With these nodes, the local planner
does not directly interact with the move_base; however, in principle, it works the same
way. If the local planner had to directly interact and be a part of move_base, it would
have to be written as a plugin in C++. Having the local planner outside the move_base
allows for the planner to be written in any language adding flexibility to the system. This
is beneficial since most documentation for the solver used in this project, namely CasADi,

62



CA10-1032 CHAPTER 6. IMPLEMENTATION

is written in Python. A simplified graph of this is shown in Figure 6.6.

Figure 6.6: Simplified graph of the navigation package.

An RQT-graph of the entire node network, including all implemented nodes from this
project, can be found on the Github repository [54]. An overview of the topics used in
the navigation package can be seen in Table 6.1.

Name Message
Type

Update
Frequency

/robot_pose /PoseStamped 50 Hz
/plan /Path 2 Hz

/goal_pub /PoseStamped 2 Hz
/costmap_obstacles /ObstacleArrayMsg Variable

/costmap /OccupancyGrid Variable
/nav_vel /Twist 5 Hz

/MO_Obstacles /ObstacleArrayMsg 50 Hz

Table 6.1: List of the topics mainly used in the navigation package.

The core of the modified navigation stack is the NMPC local planner script. This has
mainly been developed in Python as mentioned earlier. Furthermore the NMPC has made
used of CasADi for defining and solving the NLP problem, the next section will describe
the process formulating an OCP in CasADi.

6.4 OCP with CasADi

CasADi is an open-source software tool for numerical optimization in general and optimal
control (i.e. optimization involving differential equations) in particular [55]. In order to
formulate and solve the OCP and NLP problems of the NMPC local planner, the model
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has to be established in CasADi. This is done using CasADi’s symbolic framework that
allows for the model of the robot and the functions to be constructed using symbolic
expressions [56]. A model can be established by first constructing the state and control
inputs to the system. This can be seen in the Listings 1 and 2.

x = ca.SX.sym('x')
y = ca.SX.sym('y')
theta = ca.SX.sym('theta')
states = ca.vertcat(x, y, theta)

Listing 1: The state vector.

v = ca.SX.sym('v')
omega = ca.SX.sym('omega')
controls = ca.vertcat(v, omega)

Listing 2: The input vector.

Once the state and input vector has been established using CasADi’s SX data type used to
represent matrices whose elements consist of symbolic expressions. The right-hand side
of the state equations is then established, and a mapping function is used to map the
previous state and control into the new state. The right-hand side of this project:

rhs = ca.vertcat(v * ca.cos(theta), v * ca.sin(theta), omega)

The mapping function that is part of the CasADi framework as well can be written as:

mapping_func = ca.Function('f', [states, controls], [rhs])

This mapping function can then describe the evolution of the system based on what
integrator/discretization is used. As mention before in this project RK4 integrator is
used. Once the model is set up, constraints are constructed for the states, inputs, static
obstacles and moving obstacles. To understand how the constraints are fed into the NLP
solver, the form of the parametric NLP that CasADi solves is formulated.

minimize
x

f(x, p)

subject to: xlb ≤ x ≤ xub

glb ≤ g(x, p) ≤ gub

(6.3)

where lb and ub denote the lower and upper bound of the constraints, respectively. The
parameter p is a vector that contains all the values for the current state, goal, obstacle
parameters etc. g(x, p) is a non-linear constrained function that has to be bounded. An
example of g(x, p) is the position of a moving obstacle relative to the robot, x is the state
of the robot and p is the parameters of the moving obstacle. The optimization variables,
the objective function, g(x, p) and the parameter vector p are used to set up the NLP
problem. This is done using the CasADi function nlpsol(). A specific solver also has to
be picked, the open-source Interior-Point Optimization(IPOPT) method that is included
in the CasADi installation is used in this project. The setup in python then becomes:
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nlp_prob = {'x': OPT_variables, 'f': obj, 'g': const_vect, 'p': P}
solver = ca.nlpsol('solver', 'ipopt', nlp_prob)

Once the solver has been constructed, the parameters can be given to solve the problem.
The parameter vector, current bounds(lbx, ubx, lbg, ubg) and current state can be given
to the solver.

sol = solver(x0=x0k, lbx=lbw, ubx=ubw, lbg=lbg, ubg=ubg, p=p)

The sol array then contains the predicted states and control inputs for the optimal path
to the goal. This is how CasADi is used to formulate and solve the OCP in this project.
The next Chapter will investigate the performance of the two solvers developed in this
project through a series of tests.
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CHAPTER 7

TESTING & RESULTS

Testing of the system is carried out to evaluate the performance of the navigation package
developed by the project group. This evaluation is carried out partially as a comparison
with the original navigation system in place for the PAL moving base(PMB) robot. This
comparison is the foundation for evaluating how well the robot fulfills the task of nav-
igating a dynamic environment including static and moving obstacles. To compare the
navigation system already in place on the PMB, with the MPC based navigation package,
a static environment test is carried out.On top of this another test involving moving obsta-
cles is carried out to determine the performance of the NMPC local planner, with respect
to moving obstacles. Lastly a scenario is set up to simulate a possible real-life interaction
between the robot and a human/moving obstacle in an implementation environment.

7.1 Mapping

For testing the developed robot navigation system the control lab at AAU’s Fredrik Bajers
vej 7C building is used. A ground plan of the laboratory can be seen in Figure 7.1, from
which the main room (2-104) was used.

Figure 7.1: Plan of the Control and Automation Laboratory.

Using the PMB’s built-in mapping functionalities the lab was mapped out for the different
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planned tests. The maps that were created can be seen in Figure 7.2.

(a) Static obstacle stress testing map. (b) Static obstacle setup as seen in the lab.

(c) Hallway scenario map. (d) Hallway Scenario as seen in the lab.

Figure 7.2: The two main maps used for robot implementation testing

7.2 Static Obstacle Avoidance

This test is carried out to compare the capability of static obstacle avoidance for the
different developed planners in this thesis. The procedure for the static obstacle testing
is as follows: The robot has to move through a small mapped area with static obstacles,
the mapped area can be seen in Figure 7.2a. The static obstacles consist of walls made
of cardboard and paper walls along the sides of the workspace. There will be a constant
starting position and end position throughout all tests of this scenario. The tests are
carried out for the two local planners developed by the research group and one propri-
etary planner developed by PAL robotics. Firstly, the two planners are tuned with the
parameters of time-step size (Ts) and horizon length (N). Afterwards tests are conducted
multiple times for each planner to test reliability and performance.
Before testing for performance of the NMPC local planner, tuning was performed to figure
out a fitting interval of tuning parameters to compare performance with the PAL local
planner that is already implemented on the robot. During this it was determined a lower
max turning speed (ωmax) was needed, from the initial π/2 down to π/4, to eliminate the
chance for overshooting rotational movement and to reduce the likelihood that the MPC
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prioritizes turning. During the tuning procedure of this test an initial focus was upon the
horizon of the robot, as the path in question consists of multiple twists it is important
that the horizon be long enough to circumnavigate possible obstacles between robot and
local goal effectively.

7.2.1 Testing

For evaluating the planners made by the group an initial number of tests are carried
out to compare tuning parameter performance, followed by a number of test runs with
set parameters for consistency of planner behaviour. These tests are evaluated based
on the distance from the global goal, time to complete given navigation task, overall
driven distance as well as the given control outputs(nav_vel), these work as metrics for
optimality of the route taken. An example of the RViZ visualization of these tests can be
seen in Figure 7.3 1.

Figure 7.3: The lab setup and system information as vizualized in RViZ, a recording of
which can be seen here

7.2.1.1 NMPC Local Planner with Polygon Centroid Representation

The NMPC Local Planner with Polygon Centroid Representation was tested for different
time step values; 0.1, 0.25 and 0.5 as well as different maximum robot velocities 0.3 m/s
and 0.5m/s. One of the first tests carried out with the centroid planner can be seen
in Figure 7.5, showing the resulting behaviour of a close quarters environment, arising
especially from the fact that obstacle sizes are increased using this method.

1https://youtu.be/ajY194H95yk
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(a) (b)

(c)

Figure 7.4: Values for test of centroid planner with values of Ts = 0.1 and vmax = 0.5

From this can be seen that tuning is necessary, also why no more tests were carried out
with such a short horizon, since the robot repeatedly gets into situations where it cannot
pass obstacles. After initial tuning and from one of the later tests can be seen smoother
behaviour, in Figure 7.5. Smoother performance, though still the robot arrives in some
situations where it has to turn almost all the way around to get out of, as can be seen by
the linear velocity outputs going to 0.
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(a) (b)

(c)

Figure 7.5: Values for test of NMPC planner with centroid polygon representation with
values of Ts = 0.5 and vmax = 0.5

For the different parameters tested average results were calculated as can be seen in Table
7.1. From this can be seen a significant decrease in travelled distance for longer predictions
arising by the larger time step.

Timestep [s] Robot
Max Velocity [m/s]

Global Plan
Distance [m]

Robot Travelled
Distance [m]

Travelled distance -
Global distance difference [m]

Average distance
Robot to Global plan [m] Time [s] Distance to

Obstacles [m]
0.25 0.3 10.1835 14.8928 4.7093 0.2195 62.0774 0.6111
0.25 0.5 10.2420 14.7534 4.5114 0.3901 44.5088 0.6482
0.5 0.5 10.2383 11.2465 1.0081 0.1507 28.9006 0.6982

Table 7.1: Average values for tests carried out at given Timestep values

7.2.1.2 NMPC Local Planner with Polygon Representation

For the polygon test 4 different robot velocities (vmax) were tested for; 0.3 m/s, 0.5 m/s,
0.75 m/s and 1 m/s. As well as time step size (Ts); 0.1, 0.25 and 0.5. The values for
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these tests for the Polygon test can be seen in Appendix B.1. An example of each of the
velocities tested for can be seen in Figures 7.6 and 7.7.

(a) low speed, 0.3 m/s, testnr.: 40 (b) medium-low speed, 0.5 m/s, testnr.: 44

(c) medium speed, 0.75 m/s, testnr.: 45 (d) high speed, 1 m/s, testnr.: 47

Figure 7.6: Example in difference in performance of different speed values with same
horizon parameters.

Figure 7.6 shows in all tests a common trend of the global planner to disregard the middle
wall in the environment as seen in Figure 7.2c of the laboratory layout. Also as can be
seen from the robot paths that as the maximum linear velocity of the robot increases it
can lead to overshooting, as seen in Figure 7.6c. A video of the exact behaviour of the
robot can be seen here [57].
The behaviour of the local planner can be analyzed more precisely from the control out-
puts, these are shown in Figure 7.7.
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(a) low speed, 0.3 m/s (b) medium-low speed, 0.5 m/s

(c) medium speed, 0.75 m/s (d) high speed, 1 m/s

Figure 7.7: Four different parameters were tried in the static obstacle test.

In Figure 7.7 it can be seen for the slower tests they have more smooth performance, given
the pretty much constant speed throughout the test. In the higher speed tests rougher
control input curves are seen because the robot has to slow down after too high speeds
cause it to overshoot the obstacles. Also the distance between the robot and obstacles
have been taken into account, as it should remain relatively stable over the course of these
tests, to see if different parameters have any impact on how well the robot manages to
keep away from the obstacles.
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(a) low speed, 0.3 m/s (b) medium-low speed, 0.5 m/s

(c) medium speed, 0.75 m/s (d) high speed, 1 m/s

Figure 7.8: Obstacle distance for four different velocities tested for SO performance

Above can be seen the impact of changes in velocity on system performance. From Figure
7.8d that with a robot velocity of 1m/s the robot overshoots its targets and therefore
violates the safety distance set for the robot, in this case a robot radius of 0.27 and a
safety boundary of 0.1, meaning the minimum distance should be around 0.4. Along with
these multiple tests were carried out for different timesteps, some averaged results for
which are shown in Table 7.2.
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Timestep [s] Global Plan
Distance [m]

Robot Travelled
Distance [m]

Distance between
Travelled and Global plan [m] Time [s] Distance to

Obstacles [m]
0.1 10.2349 10.9297 0.1928 50.4802 0.6812
0.25 10.2225 10.7488 0.1661 41.9704 0.7148
0.5 10.2135 11.1124 0.1267 35.6688 0.7247

Table 7.2: Average values for tests carried out at given Timestep values with robot velocity
0.3 m/s

For these timestep consistency tests a minimum of 10 runs through the static obstacle
course were performed. Showing that for higher timesteps the robot adheres more closely
to the global plan, being able to consider more obstacle parts in the planned horizon.

7.2.1.3 PAL Local Planner

The PAL local planner was tested and used as a benchmark for the local planners designed
in this project. Throughout all the tests the PAL local performed the task with a high
max speed of 0.8m/s. For the PAL local planner no parameters were changed. The test
runs carried out are illustrated in Figure 7.9.

Figure 7.9: All the different paths taken by the local planner used by the PMB.

A total of 13 runs back and forth through the testing environment were carried out.
Shown in Figure 7.9, all but two tests providing a very smooth similar performance, the
latter two tests having an extra introduced obstacle, shown by the two outlier paths. A
differing global path shown for the path towards the right and one for the path to the
starting position at the left. Gathering again the difference between the initial global
goal and the final robot movement. Data seen in B.1. The values mostly showing as well

74



CA10-1032 CHAPTER 7. TESTING & RESULTS

uniformity over the different runs. For the different planner tests a number of tests were
undertaken, data gathered for each, averaged as can be seen in Table 7.3

V_max Ts [s] N global path
length

robot path
length

robot path
global path error

Average distance
to global plan End Time Average Distance

to Obstacles
PalNav 0.8 11.4027 10.9038 0.7090 0.1246 23.8819
Centroid 0.3 0.1 10.2086 14.7694 4.5608 0.2094 66.9201 0.5624

0.3 0.25 10.2484 11.9192 1.6708 0.1964 46.5279 0.7144
0.5 0.5 10.2420 14.7534 4.5114 0.3901 44.5088 0.6482
0.5 0.5 10.2383 11.2465 1.0081 0.1507 28.9006 0.6982

Polygon 0.3 0.1 20 10.2349 10.9297 0.6948 0.1928 50.4802 0.6812
0.3 0.25 20 10.2173 10.7406 0.5233 0.1574 42.0602 0.7202
0.3 0.5 20 10.2142 10.8482 0.6339 0.1417 42.7113 0.7114
0.5 0.5 20 9.8403 10.5173 0.6770 0.1605 25.1127 0.7621
0.75 0.5 20 10.2753 11.1609 0.8856 0.1015 21.7980 0.7246

1 0.5 20 10.3367 11.8899 1.5532 0.1051 40.7326 0.7326

Table 7.3: Averaged results for the static obstacle tests per test parameters.

From the above table, noticeable results are the average times to complete the tests.
From the tests conducted at with a maximum robot velocity of 0.5m/s and 0.75m/s a
performance comparable to the PAL planner is achieved. As well a close or even smaller
resulting error to the global path is achieved. In Appendix B.1 can be seen few outlier
results with some exceptional metrics, these have not been included in the calculation
of average test performance. The following sections describes the test carried out in
simulation of avoidance of moving obstacles in an open environment with multiple moving
actors.

7.3 Moving Obstacle Avoidance

One of the main functionalities of the developed NMPC local planners is to circumnavigate
moving obstacles of varying sizes and speeds. This test is performed in simulation due to
technical difficulties with the wheels on the TIAGo robot. An empty room is used as the
map for testing, with the robot moving from one end of the room to the other. Keeping
the goal and starting point fixed in the map. The varying parameters in this case will be
the horizon (N) and the time step (Ts). Eight moving obstacles will be introduced in the
space and the robot will have to avoid all of them to get to the goal. The space with the
obstacles has been shown before in Rviz as seen in Figure 5.16.
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(a) The positions for test 1 in time. (b) The positions for test 2 in time.

Figure 7.10: Plots showing the movement of the robot and obstacles in time with the
global plan.

The two first tests moved through the space successfully without collision and minor
unnecessary movement their. The parameters for these tests can be found in Table 7.4.
Both paths are relatively similar in terms of position and time it took to get to the goal.
This is also apparent in the control outputs in Figure 7.11.

(a) The control outputs for test 1. (b) The control outputs for test 2.

Figure 7.11: Plots showing the control outputs: linear velocity and angular velocity.

Test 2 in Figure 7.11b changes direction for longer than test 1 and slows down for longer
than test 1. These are however minor differences and the two tests perform quite similarly.
Both tests in Figure 7.10 also had good average distance from the obstacles as well as
an acceptable minimum distance from the obstacles. However when changing the time
step in test 3 to Ts = 0.5 the robot collided with obstacle 2 and 4 as seen in Figure
7.12b(These obstacles can be seen with numbering in Figure 5.16).
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(a) Distances represented for test 2 (b) Distances represented for test 3

Figure 7.12: Plots showing the distances to each obstacle in meters with Sb, rr and robs
accounted for.

One of the likely causes of the collision is that the time step is simply too long and the
robot predicts too far into the future trying to make up for obstacles much further ahead
than the robot itself. Since there is no cost for obstacles closer all obstacles within the
prediction horizon are treated equally and the local planner tries to consider too many
thing at once. There is also the opposite end of the scale as seen in test 4 in Table 7.4 the
horizon and time step can be too short for the robot to take the obstacle properly into
account before its too late to react.

Test nr. Test parameters Collision Avg. dist to obs. [m] Min. dist. to obs. [m] Distance travelled [m] Time [s]
1 Ts = 0.25 and N = 20 No 0.329 0.105 9.36 21.26
2 Ts = 0.15 and N = 20 No 0.336 0.28 8.59 20.41
3 Ts = 0.5 and N=20 Yes 0.295 -0.315 7.96 15.14
4 Ts = 0.25 and N = 15 No 0.279 0.115 10.64 24.17
5 Ts = 0.15 and N = 15 Yes 0.259 -0.241 10.70 25.6
6 Ts = 0.5 and N = 15 Yes 0.337 -0.284 7.94 18.37
7 Ts = 0.25 and N = 25 No 0.257 0.152 11.75 24.59
8 Ts = 0.15 and N = 25 Yes 0.238 -0.293 8.01 18.5
9 Ts = 0.5 and N = 25 Yes 0.226 -0.306 7.98 15.4

Table 7.4: These are the parameters and results from the 9 tests done relating to moving
obstacle avoidance.

Further interpretation of the results will be can be found in Chapter 8. The next section
will describe the hallway scenario with moving obstacles and static obstacle together.

7.4 Hallway scenario

This test is carried out to see how well the robot planner can handle the real life scenario of
navigating through a hallway including a human actor, introduced as a moving obstacle.
For the purposes of the test, avoidance and navigation through the hallway is prioritized.
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The setup for the test can be seen in Figure 7.13, made such that the robot will have to
circumnavigate the moving obstacle.

Figure 7.13: The hallway scenario setup.

The procedure for the test is as follows: The robot has to move through a narrow corridor
with a moving obstacle in its path. The robot then has to maneuver out of the obstacles
way before they collide. This will be tested with different time steps for the horizon as
well as different speeds of the robot and the obstacle. This will be tested for the polygon
MPC planner and the PAL planner.

7.4.1 Testing

Testing was carried out with the PAL local planner as well as the Polygon obstacle repre-
sentation local planner, to see how well a local planner without moving obstacle avoidance
compares to one with. For the PAL planner a moving person was moving down the hall-
way against the robot, while for the polygon MPC a simulated moving obstacle was used.
The hallway tests were carried out with obstacle velocities of 0.2m/s, 0.43m/s and 0.6m/s.
These values were chosen based on a study of hospital patients, per the scenario of guid-
ing visitors or patients around hospitals. In this study by Graham et al. a mean walking
speed was found of 0.43 m/s for ambulatory adults aged 65 and up [58].

7.4.1.1 PAL Local Planner

For comparison the PAL local planner was run through the hallway scenario, with same
starting and end point as the developed polygon obstacle MPC planner. The main dif-
ference being that the PAL planner simply reacts to obstacles in its vicinity and tries to
avoid them, no actual recognition of their movement. The path taken by the runs taken
with the Pal planner can be sen in Figure 7.14.
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Figure 7.14: The paths resulting from testing the PAL planner.

6 different runs through the hallway were tested, the first one with a person moving
through the hallway in the right side and the rest having the person in the left side, right
side illustrated in Figure 7.13.
The PAL planner tests were run with a group member walking against the robot, most
of the time experiencing the robot colliding with them or getting close enough for them
requiring to stop to avoid collision.

7.4.1.2 NMPC Local Planner with Polygon Representation

During the tuning procedure for the hallway scenario the first parameters that were
changed was the obstacle size as well as the robot safety boundary. These were changed
to make sure the robot could fit besides the obstacle moving within the corridor. Quite
some tests were performed with different sizes, ending up with an obstacle of merely 20cm
in diameter and a robot safety boundary of 0.05m around the robot. Though it was found
that the main reason for early faulty performance was a long prediction horizon, as the
obstacle would overlay the current goal of the robot, making the problem of solving for
a path infeasible. The size of the obstacle could likely be increased after this discovery,
though it was ruled that the robot movement represented the avoidance of the obstacle
with these parameters as intended and they were kept.
In Figure 7.15 can be seen an isolated example of how the path travelled compares, red
showing the initial global path and blue the actual path taken by the robot, green being
the moving obstacle with a radius of 0.2 m and the black circles are the static obstacles
seen by the robot.
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Figure 7.15: The environment and position as seen by the robot, test run at 0.5m/s for
Robot velocity, timestep of 0.25 and a horizon of 10 samples

Also compared are the control inputs provided to the system by the MPC, in Figure 7.16
can be seen an example with a maximum robot velocity maxed out at 0.5. On the angular
control input can be seen in the spike of negative angular velocity, how the robot turns
back unto the global path after initially turning off it to allow the moving obstacle to
pass.

Figure 7.16: Control inputs for the system for the test run at 0.5 Robot velocity, timestep
0.25 and 10 horizon

From the results shown in Appendix B.2 can be seen that the robot travelled distance, as
well as the average error to the global plan is reduced with a longer horizon. To visualize

80



CA10-1032 CHAPTER 7. TESTING & RESULTS

the interaction between the robot moving through the corridor and the moving obstacle,
the distance between the two actors is visualized in Figure 7.17.

Figure 7.17: Distance to moving obstacle for tests 21 through 29.

It can be seen that in these tests (21-29) the distance minimum holds with the safety
boundary set by the robot. The distance being calculated as the length between the
center of the robot and the center point of the moving obstacles. From the figure can
be seen one of the tests giving a faulty distance measure, upon investigation of the data
recorded it can be seen that this is caused by path infeasibility, the robot getting run over
by the moving obstacle. This is also shown here 2 The following chapter will describe some
of the insights gained through this project and explain some of the further conclusions
upon the data gathered from the tests performed.

2https://youtu.be/FQIK5868tsQ
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CHAPTER 8

DISCUSSION

The main goal of the system is to provide comparable performance to current planners
with the added functionality of avoiding moving obstacles. Through a series of tests the
system has shown to be capable of avoiding static and moving obstacles given that the
NMPC is tuned well. Given the results from the averaged static obstacle testing seen
in Table 7.3 the NMPC local planner with polygon obstacle representation have shown
to yield comparable results to that of the PAL local planner given similar maximum
velocity. Given vmax = 0.75 for the NMPC local planner and a vmax = 0.8 for the PAL
local planner, the NMPC local planner converges to the goal on average 2.08 seconds faster
than the PAL local planner, which is a 9.1% difference. However distance travelled by
the NMPC local planner is 0.287 meters longer than that of the PAL local planner, which
is a 2.6% difference. The NMPC local planner with closest point to polygon obstacles
representation also outperforms the version with polygon centroid obstacle representation
on average in time to traverse as well as distance travelled before reaching the goal this
can also be seen in Table 7.3. The NMPC local planner with polygon obstacles performed
the best in the static obstacle tests with either a maximum velocity of 0.5m/s or 0.75m/s.
Above 0.75m/s the robot started to overshoot on the trajectories resulting in undesirable
effects where the robot tries to recover from the overshooting. In the majority of static
obstacle tests run the average distance to the obstacles have been kept well above the
safety boundary of 0.15m to the obstacles. No collisions were encountered during this
test, example for each velocity can be seen in Figure 7.8. Although no collision were
encountered due to overshooting of the NMPC local planner with polygon obstacles the
safety boundary was violated for a brief amount of time as seen in Figure 7.8d.

Two important things to note about the hallway test scenario. Firstly, multiple tests
were not carried out using the centroid obstacle representation because it simply did not
perform well with walls due to the inherent flaws in the representation when dealing with
irregular polygons and lines. Secondly, the robot velocity has been kept constant at 0.5m/s
for the hallway scenario, because of the good results yielded from the static obstacle tests.
The best results from the hallway scenario resulted from a combination of high resolution
horizon N = 20 and a time step of Ts = 0.25 yielded the best results with an average time
to traverse of 13.81 seconds and with no collisions or failures. A significant oversight in
the implementation was discovered in that the NMPC local planner has no way to deal
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with local goals obscured by moving obstacles, resulting in problem infeasibility. One
way of overcoming this problem is to ensure that the local goal will not be inside the
moving obstacle or it’s predictions it to modify the local goal publisher. However due to
time constraints of the Thesis this is not an option. Through tuning this problem can be
overcome. Having a horizon that does not predict as far into the future will yield good
results as seen with the parameters mentioned earlier.

A moving obstacle test was also conducted in the in Chapter 7. This moving obstacle
test was a stress test for the NMPC local planner it was therefore expected that some
of the tests would fail. 9 tests were done with the local planner varying the same test
parameters as in the hallway scenario and the static obstacle tests. 4 tests succeeded the
test while 5 failed the test. The 4 tests that succeeded all had time steps shorter than
Ts = 0.5 from which test 1 and test 2 were clearly the best. This is an expected result
because predicting 0.5 seconds per step in a highly dynamic environment will result in
loss of accuracy because a lot can happen in 0.5 seconds in a highly dynamic environment.
Similar to the hallway scenario a high resolution of the horizon N = 20 whilst keeping
the time step Ts relatively low. There are also cases where the horizon and the time step
are too low and the robot cannot predict far enough into the future to compute a solution
that avoids all the obstacle while converging to the goal this can for example be seen in
test 4 with a horizon of N = 15 and a time step of Ts = 0.15.

During the physical testing some limitations were identified and has to be taken into
account when analyzing the data. Firstly, the A∗ planner in place on the robot, in the
static obstacle test had issues with the map per some of the obstacles not being properly
recognized as solid obstacles throughout the testing iterations. This can be observed in
Figure 7.6 where the global plan goes through the center wall. This however is a minor
problem for the NMPC local planner as it can detect the obstacles once they are within
the local costmap bounds. Secondly, Per the implementation of the local planner the
current robot_pose is taken as the true position of the robot, received by the Adaptive
Monte Carlo Localization(AMCL) running on the robot. However this robot_pose is only
an estimate of the current robot position. To truly test the local planner with an exact
position it would be possible to use the Vicon system in the Control and Automation
Laboratory in order to pinpoint the robot pose to centimeter or even millimeter precision.
And lastly the largest problem with the robot is a mechanical fault causing one of the wheel
to not move when control signals are sent to it. This causes the AMCL to completely lose
track of the robot and that results in a test failure. Due to this mechanical fault starting
to arise multiple times the moving obstacle physical test had to be done in simulation
only.
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CHAPTER 9

CONCLUSION

The purpose of this Thesis was to investigate whether it was possible to create a local
planner using Non-linear Model Predictive Control to predict the motion of moving ob-
stacles and avoid them. Based upon this task, three key questions were formulated in the
Problem Statement (Section 2.5). This conclusion will seek to summarize the answers
found to these questions, through the research done in this thesis.

The first question was: How can an NMPC be used as a local planner? This was investi-
gated through a series of papers and research which used MPC for local planning along
with development through a series of local planners designed in MATLAB. Different tech-
niques using MPC for path following and using MPC integrated with RRT* to reach a
specific goal were described in the papers and research investigated. In this Thesis, a set of
different techniques were employed to broaden the field for MPC used for local planning,
specifically local planning with moving obstacle avoidance. The techniques employed in
the thesis were, namely, set-point stabilization and trajectory tracking. Through simu-
lations of the NMPC local planners utilizing the techniques mentioned above, it became
apparent that implementing the NMPC local planner with trajectory tracking would prove
difficult. The difficulties arose with the need for a global planner that could produce ref-
erence trajectories with linear and angular velocities at each point in time. Therefore the
continued thesis work revolved around the set-point stabilization local planner. During
testing the local planner using polygon obstacle representation performed similarly to the
native PAL local planner already implemented on the TIAGo robot. This is furthermore
verified in Chapter 8 where the NMPC local planner and the PAL local planner with
similar parameters had an average difference in time to traverse of 2.08 seconds, which is
a 9.1% difference, and the average difference robot path length of 0.2871 meters, which is
a 2.6% difference, in the static obstacle tests.

The next key question formulated was: How can an NMPC local planner be made to
consider static and moving obstacles? This question can be split into two answers, namely
considerations for moving obstacle and considerations for static obstacles. Firstly, moving
obstacles were investigated specifically in relation to Human-Robot Interaction (HRI).
Many of the papers investigated used costmap-like models for representing humans. These
models were either used for representing the uncertainty of a prediction and/or a position
or for representing a social zone with cost associated with distance. Due to time limitations
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of the Thesis, a more straightforward representation with predictive capabilities has been
developed throughout the Thesis. This representation defines humans as points with a
radius, heading and velocity moving through time. These obstacles are then formulated
in the NMPC as time-varying constraints. Using this method, the distance between the
robot and the humans was defined by a constant safety boundary Sb. This method of
representing moving obstacles has been tested both in pure simulation and in real-life
with virtual obstacles, specifically the moving obstacle test in Gazebo and the physical
hallway scenario. Using this representation of moving obstacles the robot was able to move
through an environment with 8 moving obstacles without collision given the right tuning
parameters. Improvements to the moving obstacle representation are discussed in Section
9.1. Secondly, static obstacle representations have been investigated. In MATLAB, the
local planner had been designed with two different representations, namely a centroid
obstacle representation, similar to the moving obstacles with a point and a radius, and a
polygon representation that considers the distance from the closest point on a polygon to
robot. Both of these techniques required polygons as initial input, so a package named
costmap_converter was used to transform the obstacles in the costmap into polygons
that could then be used in the NMPC formulation of the static obstacles. These two
representations have been tested and compared both in simulation and in real life. It can
be concluded based upon the results analyzed in Chapter 8 that the local planner with
the polygon representation is faster and more consistent than the centroid representation
in terms of time to traverse a path as seen in Table 7.3.

Another question sought to be answered was: How can an NMPC local planner be im-
plemented on the robot as a part of a navigation package? The NMPC local planner
developed in this Thesis was integrated into a ROS package that has then been deployed
on the TIAGo robot. The ROS package was implemented outside the /move_base package
because of the possibility to develop the local planner in Python. Even though the local
planner has not been implemented as a C++ plugin in the /move_base, it still performed
well in the test scenarios described in Chapter 7 with an update frequency of 5Hz. In
these tests, local planner frequency was not a limiting factor due to the robot and the
moving obstacles moving at relatively low speeds between 0.3m/s to 1m/s. For testing and
experimentation, this local planner frequency is sufficient; however, in a finished product,
it would be desirable to have a higher local planner frequency. This is discussed further
in Section 9.1.

To summarize the three questions: It was possible to formulate the local planner using
NMPC with various obstacle representations. The results from the local planner was
comparable to the results of the native PAL local planner on the robot. The moving
obstacle representation has worked well in both simulation and real-life tests if the NMPC
was tuned well. Furthermore it was possible to implement the navigation package into the
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existing TIAGo navigation stack with relative ease. And thus this concludes the overall
remarks of the Thesis.

9.1 Future Work

To improve upon the NMPC based local planner developed in this project some key points
are proposed:

• Currently all obstacles only considered as hard constraints in the NMPC. By mod-
ifying the const function by adding an extra term that penalizes the close distances
to the obstacle would result a much more stable control system

• The method of keeping a certain distance between the robot and humans lends itself
to adding a cost to this distance, effectively creating a costmap-like model defining
the moving obstacles. This weighting could as well be extended to shape the moving
obstacle costmap per the facing direction and velocity of the person.

• Considering costmaps for individual people in an environment could be expanded
upon through a proximity based obstacle re-representation as social zones, increasing
the comfort with which the robot can navigate in populated environments.

• The costmap_converter plugin has an experimental algorithm for moving obstacle
tracking and prediction based on the changes of the costmap that could be imple-
mented.

• The proposed NMPC design can be further improved by various well known control
methods. For example considering terminal constraints by adding a Mayer term to
the optimal control problem would further guarantee stability. An other improve-
ment would be to consider parts of calculated optimal control sequences instead of
applying only u?(0) in those cases when the OCP runs into an infeasiblity problem.

• Several researches show that IPOPT can be tackled by other NLP solvers considering
non-linear system model

• Required processing power could be reduced significantly by conversion of the MPC
script to a more efficient language such as C++, possibly even generated by the
use of CasADi code generation, creating specific code capable of calculating the
optimization of NLP problems more efficiently. Auto-generated code compiled with
code optimization flags by CasADi can reach 4 to 10 times faster code execution
than CasADi virtual machines.
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APPENDIX A

SKLANSKY’S MODIFIED ALGORITHM

Figure A.1: An illustration of Sklansky’s algorithm with a small set of points.
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APPENDIX B

TESTING RESULTS

B.1 Static Obstacle Stress Test Results

Testnr. &
Controller

N Ts
Robot

Velocity
Global Plan

Length
Robot path

Length

Robot path -
global path

error

Average
Distance to
global plan

Time
to Traverse

PalNav: 1 10.5370 11.0614 0.5244 0.1171 24.3926
2 10.1998 11.0741 0.8743 0.0921 27.9182
3 10.1474 10.7078 0.5604 0.0645 17.9874
4 10.1224 10.6736 0.5511 0.1134 19.3225
5 10.0745 10.5281 0.4536 0.0661 16.7914
6 10.1134 10.5638 0.4504 0.1426 21.3927
7 10.1232 10.5915 0.4682 0.1226 20.6902
8 10.1564 11.5000 1.3437 0.1077 48.0845
9 10.2483 10.6697 0.4215 0.1246 17.0992

10 10.1294 10.7390 0.6097 0.0961 17.5785
11 10.0803 10.7700 0.6897 0.0913 18.9061
12 10.2976 11.0840 0.7864 0.1092 31.5026
13 10.3030 11.7861 1.4831 0.3728 28.7985

Centroid: 1 0.1 0.5 10.2066 17.5470 7.3404 0.2566 67.6948
2 0.1 0.3 10.1813 15.1889 5.0075 0.2045 67.9525
3 0.25 0.3 10.1100 12.4853 2.3752 0.2024 46.7747
4 0.25 0.3 10.2360 14.3500 4.1140 0.2143 65.8876
5 0.25 0.3 10.2104 11.0586 0.8482 0.1367 40.8943
6 0.25 0.3 10.4247 12.2136 1.7889 0.2501 51.9147
7 0.25 0.5 10.1933 12.4948 2.3014 0.2296 34.2175
8 0.25 0.5 10.2318 22.8067 12.5749 1.0290 78.7243
9 0.25 0.5 10.2546 11.5743 1.3197 0.1748 41.0586

10 0.25 0.5 10.2882 12.1376 1.8494 0.1271 24.0349
11 0.25 0.5 10.1709 10.7169 0.5460 0.1042 25.5318
12 0.25 0.5 10.2265 12.2356 2.0091 0.1755 38.3363
13 0.25 0.5 10.1911 10.9670 0.7759 0.1069 23.1690
14 0.25 0.5 10.2527 11.3517 1.0990 0.2415 33.7907
15 0.25 0.5 10.2251 10.8939 0.6688 0.1282 25.5398
16 0.25 0.5 10.2482 10.9384 0.6902 0.1673 25.4372
17 0.25 0.5 10.3489 10.8894 0.5406 0.1147 23.3574
18 0.25 0.5 10.2430 11.9786 1.7355 0.1676 36.0426

Polygon: 1 0.3 0.1 20 10.2999 11.0298 0.7299 0.2568 47.2049
2 0.3 0.1 20 10.2517 11.7422 1.4905 0.1348 101.2029
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Testnr. &
Controller

N Ts
Robot

Velocity
Global Plan

Length
Robot path

Length

Robot path -
global path

error

Average
Distance to
global plan

Time
to Traverse

3 0.3 0.1 20 10.2948 10.8917 0.5969 0.1875 41.9858
4 0.3 0.1 20 10.2500 11.1129 0.8629 0.1662 71.5060
5 0.3 0.1 20 10.2567 11.2028 0.9461 0.1931 43.2233
6 0.3 0.1 20 10.2073 11.5847 1.3774 0.1586 73.0834
7 0.3 0.1 20 10.2803 10.7984 0.5182 0.1582 48.1163
8 0.3 0.1 20 9.8330 10.8512 1.0182 0.1504 40.6808
9 0.3 0.1 20 10.2625 8.3560 -1.9065 0.3943 56.3305

10 0.3 0.1 20 10.3434 11.1130 0.7696 0.1701 51.3113
11 0.3 0.1 20 10.2952 11.4918 1.1966 0.1961 51.7564
12 0.3 0.1 20 10.2365 11.0678 0.8313 0.1812 47.7132
13 0.3 0.1 20 10.2517 11.1450 0.8933 0.2136 57.2724
14 0.3 0.1 20 10.2759 11.0346 0.7587 0.1116 111.1375
15 0.3 0.1 20 10.1436 10.1805 0.0369 0.2223 44.3225
16 0.3 0.1 20 10.2672 11.3259 1.0587 0.1197 42.0462
17 0.3 0.1 20 10.2440 10.8771 0.6332 0.2636 40.6506
18 0.3 0.25 20 10.2350 10.9429 0.7079 0.1651 49.0303
19 0.3 0.25 20 10.3089 10.7437 0.4348 0.2404 40.8850
20 0.3 0.25 20 10.1540 10.3543 0.2003 0.1282 36.6189
21 0.3 0.25 20 10.2872 10.7547 0.4675 0.1497 42.9196
22 0.3 0.25 20 10.1561 10.7081 0.5520 0.1111 39.0527
23 0.3 0.25 20 10.2827 10.5264 0.2437 0.1956 39.3234
24 0.3 0.25 20 10.1559 10.8748 0.7189 0.1256 49.2788
25 0.3 0.25 20 10.2520 10.8820 0.6300 0.1843 42.6407
26 0.3 0.25 20 10.1238 10.8781 0.7543 0.1170 38.7929
27 0.3 0.25 20 10.2691 10.8233 0.5541 0.2442 41.1616
28 0.3 0.5 20 10.1545 10.8784 0.7239 0.1290 42.8958
29 0.3 0.5 20 10.2777 10.8373 0.5595 0.1888 43.3825
30 0.3 0.5 20 10.1410 10.7657 0.6247 0.1021 37.9787
31 0.3 0.5 20 10.2836 10.9113 0.6276 0.1471 46.5883
32 0.5 0.5 20 9.8403 10.5173 0.6770 0.1605 25.1127
33 0.75 0.5 20 10.2303 11.3676 1.1373 0.0819 20.5067
34 0.75 0.5 20 10.3203 10.9542 0.6339 0.1212 23.0893
35 1 0.5 20 10.3366 12.9108 2.5742 0.0983 48.7619
36 1 0.5 20 10.3368 10.8690 0.5322 0.1120 32.7033

Table B.1: Data Gathered from running the static obstacle stress test.
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B.2 Hallway Test

Testnr. &
Controller N Ts Robot

Velocity
Obstacle
Velocity

Global Plan
Length

Robot path
Length

Average Distance
to global plan

Time
to Traverse

Minimum Distance
To Moving Obst. /
Collision

PalNav:1

N/A

0.8

N/A

4.985755 5.273188 0.036368 10.006123
2 0.8 5.006918 5.084404 0.040659 9.798106
3 0.8 5.011056 5.211132 0.016125 10.406404
4 0.8 5.049714 5.296439 0.035529 12.990999
5 0.8 5.012859 5.325864 0.032475 11.377043
6 0.8 5.014061 5.149848 0.029393 9.216872
Polygon: 1 0.5 0.25 20 0.43 5.167372 5.852483 0.052619 14.698828 0.4838 YES
2 0.5 0.5 20 0.43 5.208394 6.062019 0.375842 3.624748 0.2413 YES
3 0.5 0.5 20 0.43 5.223907 11.031980 0.023860 14.591687 0.4945 YES
4 0.5 0.5 10 0.43 5.094775 10.860470 0.062871 14.402799 0.4903 YES
5 5.216681 5.515018 0.041564 17.179003 0.5158 NO
6 0.5 0.25 10 0.43 5.213243 5.642186 0.080274 15.245204 0.5195 NO
7 0.5 0.25 10 0.2 5.074556 5.328053 0.039735 14.197330 0.5101 NO
8 0.5 0.5 10 0.2 5.033884 5.351431 0.057048 18.200160 0.5007 NO
9 0.5 0.5 20 0.2 5.173414 5.783427 0.060030 15.009254 0.4966 YES
10 0.5 0.25 20 0.2 5.072094 5.994115 0.099257 14.185422 0.4944 YES
11 0.5 0.25 20 0.6 5.109662 5.545254 0.043849 13.804583 0.5449 NO
12 0.5 0.5 20 0.6 5.197066 5.651408 0.040176 25.177992 0.1559 YES
13 0.5 0.5 10 0.6 5.081707 5.640632 0.075551 14.960675 0.5201 NO
14 0.5 0.25 10 0.6 5.095165 5.824872 0.136024 14.385966 0.5352 NO
15 0.5 0.5 20 0.6 5.193369 3.959708 0.166189 21.580598 0.5172 NO
16 0.5 0.5 20 0.6 5.173404 1.668924 0.085326 15.220656 0.7512 NO
17 0.5 0.5 20 0.6 5.054360 2.234901 0.098995 7.308320 0.0799 YES
18 0.5 0.5 20 0.6 5.057601 8.811474 0.708745 14.243881 11.7282 NO
19 0.5 0.5 20 0.6 5.287672 2.841163 0.081149 7.119133 0.1686 YES
20 0.5 0.25 20 0.6 5.702262 6.167772 0.163853 12.606640 0.5077 NO
21 0.5 0.5 10 0.6 5.085177 5.138287 0.128437 14.217596 0.4864 YES
22 0.5 0.5 15 0.6 4.780771 2.327948 0.112024 5.909939 0.0882 YES

Table B.2: Hallway Test Data
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APPENDIX C

TESTING PROCEDURES

The procedures carried out for establishing connection to the robot, software deployment
and test procedures for this project.

C.1 General Procedures and Information

The first step, universal for all the tests, is to turn on and connect to the TIAGo robot.
First the robot must be turned at which the on/off button will light up in a pushed down
position. The system components are then turned on by the electric switch which will
light up green when on and the display will turn on. The user interface for this procedure
can be seen in Figure C.1. Before using the robot the emergency stop button needs to be
in the free position (not pushed down).

Figure C.1: This is the user panel of the TIAGo robot.

The startup procedure as described prior is the same for both the PAL TIAGo moving
base and TIAGo Steel, except for an initial setup procedure for the Steel of moving the
torso, head and gripper around a bit. In contrast the moving base simply has LED’s along
its sides that light up and blink once when it is ready for operation. For the operation of
the robots a joystick is associated, one should click the blue X button(2) on the right side
of the controller to shift priority from on-board control to the joystick, pressing the start
button(1) might also be necessary if priority is transferred from a fresh startup. After
this the joysticks (4 and 5) should be enabled for use to maneuver the robot base.
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Figure C.2: The controller layout while testing

After the startup the robot is available for establishing connectivity, for this either an
ethernet connection can be established or connection to the on-robot Wi-Fi network.
In the case of the moving base the Wi-Fi name should be pmb2-1. After connection is
established a simple ssh connection can be launched by the command ’ssh root@pmb2-33c’
the with the password ’palroot’. The system by default has 2 users; pal and root with the
passwords pal and palroot respectively At this point any ROS packages should be easily
deployable within the ROS environment on the robot, using the pal_deploy package

C.2 Static Obstacle Avoidance

C.2.1 Real-life test setup

Figure C.3: The test setup for the static obstacle avoidance.
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C.2.2 Test procedure

For testing upon the robot all the following nodes directly on the robot after having
deployed necessary packages and copied over script files. For the test we have two ROS
packages running, the local goal received from pathlist and the obstacle data received
from costmap_converter_publisher

rosrun pathsplit pathlist
rosrun costmap_converter_publisher publish_costmap_conversion

The MPC local planner is then run, for the polygon and centroid obstacle representations
they each have a separate script. They are respectively:

python CasadiMPC_Polygonavoidance.py
python CasadiMPC_Centroidavoidance.py

The goal to the robot should be published separately using rostopic publish command:

rostopic pub -r 10 /move_base_simple/goal geometry_msgs/PoseStamped
"header:

seq: 0
stamp:

secs: 0
nsecs: 0

frame_id: 'map'
pose:

position:
x: 0.0
y: 0.0
z: 0.0

orientation:
x: 0.0
y: 0.0
z: 0.0
w: 1.0"

With the position fields specific to the given goal position desired for the robot. At this
point the MPC will be running, waiting for the moving obstacles to be declared, the
moving obstacle publisher has been created such that it starts setting up the topic for the
moving obstacles and after another input defines where they are. Therefore the recording
of test data should be launched after the moving obstacle publisher is started but before
the obstacles have been defined. The obstacle publisher is run by:
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python MO_publisher.py

After which a prompt appears for user input, now is a great time to set up recording of
ROS topics since all the topics used in implementation have been created. With recording
simply performed by:

rosbag record -a

Recording all the topics currently running within the ROS structure on the robot. Now
all that is left is to start the MO_publisher, by inputting ’Q’ it is possible to define new
points through the ’publish points’ option in RViZ for the MO_publisher.py script, 4 of
which are required, after which the robot should move on its own to the given position.

C.3 Moving Obstacle Avoidance

This section will describe the test procedure for the moving obstacles avoidance test.

C.3.1 Test procedure

Since this test has be made purely in simulation the Gazebo simulation has to be run with
the correct world that will be used for this test. This is done with the following roslaunch
file is run with some certain parameters defined:

roslaunch tiago_2dnav_gazebo tiago_navigation.launch public_sim:=true
world:="simple_office"

For the test we have two ROS packages created in this project, the pathsplit that gives
the local goal to the robot from the global plan and the costmap_converter_publisher
that publishes all the obstacles from the costmap_converter:

rosrun pathsplit pathlist
rosrun costmap_converter_publisher publish_costmap_conversion

After these packages has been run the Moving obstacle publisher is run with the obstacle
parameters saved in a numpy array that can be used for each test.

python MO_publisher.py

Then the MPC local planner is run. There is two different scripts for the two static
obstacles representations. For the polygon representation:

python CasadiMPC_Polygonavoidance.py

or for the circular obstacle representation:
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python CasadiMPC_Centroidavoidance.py

Once all the packages for the local planner has be run, the rosbagging is used to save all
the data posted to the relevant topics. The following command is run in order to do this:

rosbag record -a -x "/xtion/(.*)|/gains/(.*)"

This command record all topics except the topics related to the xtion camera and the
robot arm gains since this data is redundant to this thesis. Once the logging of the topics
has begun the global goal has to be published for the robot to start moving toward the
goal.

rostopic pub -r 10 /move_base_simple/goal geometry_msgs/PoseStamped
"header:

seq: 0
stamp:

secs: 0
nsecs: 0

frame_id: 'map'
pose:

position:
x: 4.0
y: 0.0
z: 0.0

orientation:
x: 0.0
y: 0.0
z: 0.0
w: 1.0"

The tests have simply been recorded until the robot has reached the goal published. Once
this is done all process/nodes are terminated and the data is saved in a rosbag file for
later analysis. Between each test the parameters in the MPC have been adjusted in the
order seen in Table 7.4.

C.4 Hallway Scenario

This test is carried out to test the capabilities for moving obstacle avoidance in a real life
scenario.
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C.4.1 Real-life test setup

Here in Figure C.4 can be seen the testing environment for the hallway with moving
obstacle test.

Figure C.4: The test setup for the hallway scenario.

C.4.2 Testing Procedure

Firstly an SSH connection should be established upon the robot, and the pathsplit and
costmap_converter_publisher package should be deployed unto the robot by using the
deploy pal_deploy package. The deployment being done from the development computer,
having an established connection to the robot platform.

rosrun pal_deploy deploy.py --user root pmb2-33c

Along with these then the MPC script file CasadiMPC_Polygonavoidance.py should be
copied unto the robot along with the moving obstacle publisher MO_publisher.py.
From here on out the procedure is the same as for the static obstacle avoidance scenario.
An extension upon it can be implemented by using the "L" key prompt to load a previously
saved set of initial positions for the moving obstacles. After which the user should input
the timestamp upon the saved MO_Matrix file in the same folder it is run from, to achieve
similar obstacles to last test iteration.
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LEARNING OBJECTIVES

Knowledge

• have knowledge, at the highest international level of research, of at least one of the
core fields of the education

• have comprehension of implications of research (research ethics)

Skills

• are able to reflect on a scientific basis on their knowledge,

• can argue for the relevance of the chosen problem to the education including specif-
ically account for the core of the problem and the technical connections in which it
appears

• can account for possible methods to solve the problem statements of the project,
describe and assess the applicability of the chosen method including account for the
chosen delimitation and the way these will influence on the results of the product

• can analyze and describe the chosen problem applying relevant theories, methods
and experimental data

• are able to describe the relevant theories and methods in a way that highlights the
characteristics and hereby document knowledge of the applied theories, methods,
possibilities and delimitations within the relevant problem area

• have the ability to analyze and assess experimental data, including the effect the
assessment method has on the validity of the results.

Competences

• are able to communicate scientific problems in writing and orally to specialist and
non-specialist.

• are able to control situations that are complex, unpredictable and which require
new solutions,
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• are able to independently initiate and to perform collaboration within the discipline
and interdisciplinary as well, and to take professional responsibility,

• are able to independently take responsibility for his or her own professional devel-
opment and specialization.
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