
5G Core & (NFVI) Network Functions
Virtualization Infrastructure

Penetration Testing
Simulating an Inside Cloud Attack

Bandar Ibrahim M Altariqi
Networks and Distributed Systems, 2020-06

Department of Electronics and IT

Master’s Project

S
T

U

D
E

N
T R E P O R T

Copyright c© Aalborg University 2020

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
5G Core and NFVI Network Functions Virtu-
alization Infrastructure Penetration Testing

Theme:
Project Theme

Project Period:
Spring Semester 2020

Participant(s):
Bandar Ibrahim M Altariqi

Supervisor(s):
Professor Tatiana Madsen [AAU]
Lars Nielsen (Mikkelsen) [Keysight]
Andrea Cattoni [Keysight]

Copies: 1

Page Numbers: 52

Date of Completion:
June 14, 2020

Abstract:

This project is a master thesis in collabo-
ration with Keysight Technologies in Den-
mark. It aims to test 5G core (NFVI)
components by penetration from inside the
cloud with the goal of discovering the
worst-case scenario (the cloud out of ser-
vice). It also studies the topic from an at-
tacker’s point of view, where the attacker
might have infected some components, or
vulnerability might be present, allowing an
attacker to get in. To simplify, I basically
donate it as an attacker and assume that
the attacker is in place. The testing, as
assumed, starts from an infected VM, and
then identifies the target component with a
scan tool like "nmap". And finally, it uses
different attack tools to launch the attacks.
Also, this project utilizes a variety of at-
tack tools to test cloud security by exam-
ining firewalls and intrusion detection sys-
tems if they can identify malicious traffic
from legitimate traffic. These tests were
performed in two different clouds, a local
cloud that is more development and sand-
box oriented, and a remote cloud that’s fo-
cused on deploying a 5G core that is close
to production and with more robust secu-
rity. Using smart attack tools, I was suc-
cessfully able to attack some critical com-
ponents that make the cloud in a denial of
service state, even though a firewall/IDS
was in place during the tests. As a solu-
tion, middleware is needed to separate the
infrastructure’s components from the rest
of the cloud by deploying a firewall/IDS
with load-balancer to prevent attacks from
reaching any critical entity.

http://www.aau.dk

Contents

1 Introduction 1

2 State of the Art 3
2.1 The Architecture of 5G Core . 3
2.2 Network Functions Virtualization Infrastructure (NFVI) 4

2.2.1 OpenStack . 5
2.2.2 Kubernetes . 6
2.2.3 NGINX . 7

3 Problem Statement 9

4 Existing Approaches 11

5 Methodology 13
5.1 Scenarios . 13
5.2 Targets . 14

5.2.1 OpenStack Keystone . 14
5.2.2 Kubernetes API Server . 14
5.2.3 NGINX API Gateway . 15

5.3 Test Equipment . 16
5.3.1 Target IP Discovery . 16
5.3.2 Attack Tools . 17

5.4 System Design (TestBed) . 20
5.4.1 Local Cloud . 20
5.4.2 Remote Cloud . 22

6 Test Implementation & Results 25
6.1 Local Cloud . 25

6.1.1 Keystone on Local Cloud . 25
6.1.2 Kubernetes Ingress on Local Cloud . 28
6.1.3 NGINX for K8s on Local Cloud . 30
6.1.4 pfSense Firewall Test on Local Cloud . 34

v

vi Contents

6.1.5 pfSense Firewall with Snort IDS . 35
6.2 Remote Cloud . 37

6.2.1 Discovering the Targets . 37
6.2.2 Testing . 38

6.3 Summary of Test Results . 42

7 Suggestions 45

8 Conclusion, Summary and Future Work 49

Bibliography 51

Preface

This thesis focuses on the core security of 5G cloud, including the standard cloud, as they
both share most of the infrastructure components. Clouds are multi-tenant or or multi-user
which means that the same resources are shared by all. If one component becomes at a
denial of service state, then most users of the cloud will be affected. This idea encouraged
me to think and perform an in-depth search to find out the actual outcome in case there is
an inside attack on the cloud.

This report would not have existed without the help and support from Keysight Tech-
nologies in Denmark. I genuinely thank the security team, Lars Nielsen and Andrea Cattoni,
for giving me full access to their labs, tools, and resources, and each of whom has provided
me valuable advice and guidance throughout the research process.

Special thanks are due to my supervisor, professor Tatiana Madsen "Aalborg University"
for following-up, support, and supervision which helped me discover the best ways to
succeed in my studies.

vii

Chapter 1

Introduction

Human need for faster network speed with low latency and high availability has increased
multifold in the past few years. To address this exigency, Information and communications
technology industry has given a 5G network solution that is capable of handling high-speed
data, enabling the machine-to-machine communication at low latency, on-demand, highly
customized networks, and auto-scaling [8]. Unlike its predecessor 4G where vendors used
to develop telecom applications which were designed to run on the proprietary hardware
provided by the same vendor. Whereas, 5G has application/software (called Network Func-
tions) made by one company, running over the hardware of another company, to make a
solution that is used by some third company.

In earlier network technologies, network scaling is a time-taking and complex task which
increases the operating expense of providers, whereas in 5G networks with the help of auto-
scaling, the network, software and resources can be scaled-up and down according to the
need and situations [8]. 5G provides a considerable degree of flexibility and scalability to
the industry of information and communications technology. The 5G Core, in particular, has
a multitude of storage, processors, and networks, which is an accessible on-demand basis,
and the customers share these resources to run their applications.

5G networks will bring new models of how the services, infrastructure, and networks are
being provided [2]. The use of virtualization, performance, and network slicing or zoning
will be the cornerstone in service delivery of the 5G cloud [2]. The 5G cloud is a novel tech-
nology and is still evolving with time. The swift acceptance and deployment of the 5G core
leave many security risks untested and unaddressed [21]. To identify the security risks and
security factors, security testing plays an important role [21]. It can help to uncover system
vulnerabilities, thus leading to improvement of system security from malicious actions of
intruders.

This document aims to devise an approach that would help testing the 5G core & NFVI

1

2 Chapter 1. Introduction

Network Function Virtualization Infrastructure components and identify any possible secu-
rity issues continuously during deployment, integration and development, as an update to
a component might expose some vulnerability that did not previously exist. With such a big
and complex system as NFVI uses hypervisor and virtual infrastructure manager (Open-
Stack) to transfer hardware resources to be utilized and shared virtually with components
called VNFs Virtual Network Functions, and these are software packages that can provide
network functions or services using the infrastructure of NFV Network Functions Virtual-
ization [18], it is impossible to cover all parts of the core & NFVI in terms of vulnerabilities
and security issues. Instead, it would be more beneficial to test and approach it from an
attacker’s point of view, where the attacker might have infected some components or that a
vulnerability might be already present, allowing an attacker to access it. We do not discuss
in detail how such access can be obtained in practice, but our investigations are based on
the assumption that an attacker has access to some components in the cloud.

The goal of this project is to define a methodological approach with which most of the
security risks can be identified and tested before they become a threat to the cloud. At
Keysight technologies in Denmark, we deployed a local cloud in a test environment, where
we test all the most important components that have been used in the 5G core for most
possible weaknesses using different tools mixed between simple open-source scripts that
are written in python or Go, and a powerful tool that is designed for penetration testing
and works out most of the weaknesses that can be addressed before live deployment. After
reaching a first impression of testing the local cloud, the next step is to use these methods
and tools on a 5G cloud that is close to production.

Chapter 2

State of the Art

In this section, we provide an overview of the 5G core, its infrastructure’s components, and
security and why it is different from previous generation. The following sections investigate
the present state of the art, as well as look at the main components that the cloud uses
to deliver reliable services. This will help build up a picture of the present scene and
which strategies and advances are valuable to take care of any current issue. The theoretical
findings will be utilized for later tests and solutions.

2.1 The Architecture of 5G Core

There are many expectations regarding 5G wireless technology which is expected to offer
a seamless worldwide experience. 5G technology is still in evolution and its specifications
that have been described by 3GPP are not yet finalized [18]. Every new development in
this technology accumulates additional efficiency, capability, application cases in different
scenarios, in which the 5G network architecture packet, switching and network slicing are
utilized to achieve higher efficiency [18].

5G core architecture has the vision to increase and have the widest range of applications
and services in the history of mobile wireless communications [19]. New applications of
5G can be divided into three categories namely enhanced mobile broadband (eMBB), Ultra-
Reliable and Low Latency Communications (URLLC) and Massive Machine Type Commu-
nications (mMTC) [19]. Network slicing as shown in Figure 2.1 is used to create end-to-end
slices on the same architecture for providing heterogeneous services [12]. There is a pres-
ence of consensus industry-wide that by 2020 5G systems will enable logical network slices
across multiple domains networks to create service-specific networks [7]. This will enable
mobile operators to offer networks as-a-service basis.

3

4 Chapter 2. State of the Art

Figure 2.1: 5G Network Slicing. source: viavisolutions.com

2.2 Network Functions Virtualization Infrastructure (NFVI)

VNF Network functions virtualization is software package that can provide network func-
tion such as vSwitch, vFirewall or VM using the infrastructure of an NFV. For the de-
ployment of VNF’s, all hardware and software resources are being provided by NFVI. The
architecture of NFVI, is defined by the European Telecommunications Standard Institute
(ETSI), that all the physical resources such as storage, processing and networking are pro-
vided through a virtualization layer to the Network functions VNFs [18] as shown in Figure
2.2. The virtualization layer is responsible for providing an abstraction, such as, Docker and
hypervisors [18].

VNF 1 VNF 2 VNF 3

Virtual hardware Virtual hardwareVirtual hardware

Virtualization Layer (Hypervisor)

Physical Hardware

Figure 2.2: VNFs sharing physical hardware

Chapter 2. State of the Art 5

Network function virtualization (NFV) as seen in Figure 2.3 offers many benefits with
the possibility of a cost-effective transition of hardware functionalities. The security can be
implemented virtually, using security VNFs like virtual firewalls, virtual intrusion detec-
tion systems, and virtual intrusion prevention systems. These components are implemented
to make network zoning and slicing with the help of VIM Virtualized Infrastructure Man-
ager to prevent any data leaking. Security in the NFV raises serious questions about the
adaptability of NFV in the telecommunications infrastructure. Some of these concerns are
related to the inherent architectural components of NFV, such as VIM Virtualized Infras-
tructure Manager “OpenStack.” The hypervisor is the main component in the VIM, and it
is witnessed hypervisors are susceptible to security attacks such as operating system ma-
nipulation and data destruction/exfiltration [5]. Security threats such as network configu-
ration exploits, malicious misconfiguration, orchestration exploits, SDN Software Defined
Networking controller exploits are of serious concern [14]. Due to the inherent scalability
present in NFV elements, a security breach can become amplified quickly.

Figure 2.3: NFVI overview. Source: 3GPP

Now we will look at some components which build up the 5G cloud and we will also
see how each of these individual components provides benefits to the 5G to provide more
significant services to customers. These components will not be the only ones that will be
utilized in the cloud. In fact, there are many more but I have chosen to delimit the focus on
these below elements in this report.

2.2.1 OpenStack

OpenStack software manages pools of compute (CPUs), storage, and networking resources.
It can be managed through a dashboard or via the OpenStack API [1]. It is widely used for
the deployment of cloud infrastructure in combination with the Network Functions Virtual-

6 Chapter 2. State of the Art

ization (NFV) technologies in data centers, networking services delivered by major service
companies and web providers [16]. It uses a hypervisor which takes the role of virtualizing
all the computing resources and applications. As an example of a hypervisor, a KVM (Ker-
nel Virtual Machine) is a Linux based visualization Technology that makes use of hardware
virtualization of different processors [3].

OpenStack is an open-source virtualization framework that allows service providers to
use commercial off the shelf (COTS) computer equipment to implement virtual network
functions (VNFs) [16]. This software may be housed in a data center but the architecture
behind NFV can be accessed through the cloud.
Due to its open-source nature, OpenStack infrastructure can be deployed of testbeds easily
without any issues, and since it is open-source, more eyes on it means faster bugs and
vulnerabilities fixes. OpenStack consists of components which are Nova, Cinder, Keystone,
Neutron, Glance, Swift, and Dashboard. These components can be seen in Figure 2.4.

Figure 2.4: Openstack components. Source: packtpub.com

2.2.2 Kubernetes

Kubernetes is the leading container-orchestration and management system. It is for au-
tomating deployment, scaling, and management of containerized applications [18]. If an
application goes down, then Kubernetes will automatically create a new one and if many in-
coming requests utilized all the capacity available then Kubernetes will scale up by spinning
up a second container of the application or instance. In the coming years, all telecommuni-
cations systems will be cloud-natively designed to improve the utilization and efficiency of
cloud infrastructure [22].
Kubernetes will be introduced into the NFVI to cater for both VMs and containers, which
will be essential for 5G. While Kubernetes has grown in popularity, it still has its collection
of security issues and raises the likelihood of applications being targeted [18]. A detailed
example of Kubernetes architecture is illustrated in Figure 2.5.

Chapter 2. State of the Art 7

Figure 2.5: Kubernetes architecture. Source: sensu.io

2.2.3 NGINX

Nginx started as an open-source web server but has expanded to include its services like a
reverse proxy and an advanced load-balancer for cloud-native applications [15]. It will hide
the identity of servers from clients, which can protect them from identifying and reaching
the servers directly, such as in cloud environment, where Nginx isolates outside clients from
inside entities. Nginx is a gateway that has been used by web or API servers to balance
incoming connections [15] and protect the server from a DoS as an example. Kubernetes is
one of the services that uses Nginx as ingress for its API server for providing more protection
[15].

Figure 2.6: NGINX Overview. source: Nginx.com

With this overview, the core and its infrastructure show its nature which heavily relies
on software-based components unlike 4G which relies on hardware. 5G cloud has many
advantages, but it shows some concerns as software-based components may be vulnerable
when assuming it is exposed and many users are sharing them.

Chapter 3

Problem Statement

The next generation of telecommunication services or 5G has been the most significant
overhaul of the telecommunication sector in decades in terms of speed and latency. It is
moving from typical hardware-based services and uses centralized software-based services.
The new generation of a cloud has many benefits, but it raises some security concerns. All
software and network are managed and controlled via virtual management infrastructure to
provide more robust and scalable services. With this much reliance on software components,
security is one of the biggest concerns. If an attacker can compromise one component in
the cloud, how is it likely that the attacker would compromise other components or disrupt
operations? This leads to the following problem statement:

• Given the perspective of an attacker inside a 5G cloud, can an attacker render the
cloud out of service? How can the attacker make that happen? In various NFVI
setups which infrastructure components are vulnerable?

To address this concern, I have done some research to find the most critical components
in the core, and I assumed to be an attacker who has access to the cloud. The project will
consist of the following steps:

− First, creating a test cloud environment and/or using a 5G prototype cloud.

− Second, discovering a way to reach some of the critical components from a compro-
mised VM and check its probability.

− Third, searching for a tool that can make the attack happen.

− Fourth, when initiating attacks, my focus is mainly to test the targets aggressively as
well as cause harm or havoc to detect whether the target component disrupted and
will that result in partial or whole damage to the cloud.

− Fifth, documenting the results and finding solutions to mitigate this issue.

9

10 Chapter 3. Problem Statement

For simplicity, my scope will be on the infrastructure of the core "NFVI" that includes
VIM and some critical API servers’ security. Therefore, the other 5G core components in-
cluding configuration and design will be left for future work and not be covered in this
report.

Chapter 4

Existing Approaches

I have looked for packaged or a specific approaches for testing standard cloud’s infrastruc-
ture components as 5G is utilizing the same concept, but what I found was not intended
for taking the component or the cloud down. I came across a paper published by two re-
searchers at Johns Hopkins University in 2012 [13] where they made some experiments for
OpenStack management software that is the main software of a cloud. Their focus was
on the durability of OpenStack components’ software by running some tests like software
"fuzzing" to detect any abnormal behavior. They also used "session hijacking" to get access
using a previous session by a different user and used the stolen session to gain access to the
target.

Moreover, they attempted "credential theft" as a man-in-the-middle approach, where
they used a tool that captured all traffic between the user and the server for the purpose of
stealing user credential. Their test environment and approach were a single machine with
OpenStack deployed in it, with two other machines as user and attacker, and their attacks
came from outside OpenStack targeting inside components.

The other research that I have found is a theoretical case scenario called “VM escape
attack” [14] as shown in Figure 4.1 where the attacker can get access to the management
software (OpenStack) by a compromised VNF or VM in the cloud, then try to gain access
of the VIM and control the cloud. This is a theory case scenario where the authors did not
show what would happen in a real attack, and how that can be done.

11

12 Chapter 4. Existing Approaches

Figure 4.1: VM scape scenario. source:[14]

With these approaches, they have inspired me for creating an approach that is more
advanced and using fully working clouds, with the aim of testing from inside to inside the
cloud by attacking the infrastructure components with the purpose of making the cloud
partially or wholly out of service.

Chapter 5

Methodology

This chapter will show the approaches used for testing different types of clouds. Also, it
focuses on the most vulnerable components that can be targeted, and describes how these
tests can be done and which tools can be used. Furthermore, it will compare between
different tools to find one that can be used and not detected by middleware protections.

5.1 Scenarios

The scenario is to test from inside to inside the cloud to simulate an inside attack, then once
inside, I will look at the most sensitive components that are exposed to the whole cloud.
The attacking philosophy that will be used is somehow different from previous attacks, as
I will be searching for the most vulnerable components that can be an easy target, and test
them aggressively with the goal of tearing them down.

To bring this attacking scenario to reality, I have searched for discovery tools that can
be used to identify the targets using their IP, then I looked for best-attacking tools that are
aggressive and easy to use. I want see if an attack can occur using a variety of simple
open-source tools that are smart and hard to detect, and/or a powerful tool that is built for
penetration. I came across a published research paper [6] in which the authors brought a
list of tools that divided between powerful, old and easily detectable by modern firewalls,
and smart and hard to detect, see Section 5.3.2.

I will be choosing some of these tools that are using a smart method called “low and
slow.”, which works by sending HTTP requests (GET or POST) to the target server with
a low request rate per second to hide from being identified by the IDS, as opposed to at-
tacking tools that flood the target at once with a high requests rate. Also, these are slowly
responding to ACK to keep the connection alive with the target for as long as possible. By
doing that, the target resources can be utilized, and the target becomes in denial of service
state.

13

14 Chapter 5. Methodology

The below part will focus on the most important components used in a 5G core or nor-
mal IT cloud. This research is conducted in collaboration with the security team of Keysight
Technologies in Denmark, for testing and finding most critical components in the Core.

To start finding the components, I had to look at the main part of NFVI, which is the
VIM (OpenStack platform) i.e. the manager of the cloud used to deploy and manage cloud
resources. OpenStack consists of multiple components all of which are important to make
the platform running, but one of these components must be exposed to the cloud [16]. This
will be elaborated in Section 5.2.

5.2 Targets

5.2.1 OpenStack Keystone

Keystone (Identity) is the most important component of Openstack because all the other
components rely on it for API authentication, service discovery between components, and
distributed multi-tenant authorization. All API requests between Openstack components
must go through the keystone as shown in Figure 5.1 to check their tokens [11]. The keystone
must be exposed to the rest of the cloud because all Openstack’s instances and projects
are connected to the keystone for authentication/authorization, which makes us concerned
about its security. If keystone gets attacked, then the whole cloud becomes out of service.

Figure 5.1: Keystone API authentication requests

5.2.2 Kubernetes API Server

According to European 5G-VINNI project, their 5G core architecture design is supporting
VNFs containerization based [17]. The containerization manager component is used for

Chapter 5. Methodology 15

automating VNFs deployment, making the cloud scalable and helping speed VNFs fault
recovery. When a VNF goes down, it will spin up a new one.

Kubernetes (K8s) is a container management system for management, automation of de-
ployment and scaling. Hence, why am I focusing on it? because it is similar to OpenStack;
if attacked, the rest of the containers will be also affected. The API server for Kubernetes is
similar to Keystone of OpenStack, which needs to be exposed to be accessed from the users,
and any connection coming to k8s or between k8s’s components have to come through the
API server for authentication, authorisation, and management, as seen in Figure 5.2. The
default installation and configuration of k8s comes with default ingress that makes the API
server exposed to the cloud and/or the outside, which is a concern regarding its security.

Figure 5.2: k8s Ingress. source: medium.com

5.2.3 NGINX API Gateway

Nginx has been used as a web-server but now it has some extra services like a load-balancer
[15]. Some 5G providers are planning to use it to protect other API servers from load data
traffic and DoS attacks. Thus, Nginx will be a gateway for external requests, see Figure 5.3,
but how is it going to behave if an attack happened to its API from the inside? We need
to investigate and test its API as an attack from inside the core. According to keysight, this
software will be used on 5G-VINNI projects as a gateway for Kubernetes API server.

16 Chapter 5. Methodology

Figure 5.3: Gateway. source: nginx.com

5.3 Test Equipment

Discovering the target is the first step for an attack to happen. When the attacker is in place,
they will not know where the route to the target is, unless the attacker has a limited access to
OpenStack as a normal user where they can check the IPs of OpenStack’s components using
"API access" option in OpenStack user interface page (Dashboard). If the attacker does not
have access to the Dashboard, then a discovery tool is needed to scan the network to look
for a target to attack.

5.3.1 Target IP Discovery

To start testing the target, a tool is needed to discover its IP address. There are many tools
available but the chosen discovery tools are:

• Angry IP Scanner

– This tool is to scan a specific subnet and check which IP address has been utilized.
It is a GUI0-based tool that needs a Linux OS with ’desktop environment’ in-
stalled to be working. Many tools do the same but with a command-line method.

Chapter 5. Methodology 17

• Nmap

– This tool also checks for IPs and open ports of the target subnet. I specify the
target IP address and it scans the target to check what port has been opened, and
what type of server or application each port is using. This tool is command-line
based which is ideal for Linux-based VMs without desktop environment.

5.3.2 Attack Tools

The attacker can have different tools to attack the target. We will see if an attack can occur
using a variety of simple open-source tools that are hard to detect. Also, I will use a powerful
tool that is built for penetration if none of the open-source tools were able to attack.

• SlowLoris and RUDY

– SlowHTTPTest is a DDoS attack tool that allows an attacker to overwhelm the
target’s server by sending many HTTP connection requests and maintaining this
connection between the attacker and the target server until utilizing all server
resources [20]. The main feature of this tool is sending the attack traffic using "low
and slow" method which means it sends the traffic with low number of requests
per second and slowly interacts to the returned responses from the target to keep
the connections alive, which prevents firewall and the IDS/IPS from detecting
these traffic as they are similar to legitimate traffic. [20].

18 Chapter 5. Methodology

• HULK

– HTTP Unbearable Load King DDoS tool is slightly different from other tools as it
generates unique requests, and as clean as legitimate traffic because each request
is different from the next request to prevent IDSs from identifying their pattern
which results in blocking the attack traffic [9]. As shown in Figure 5.5 each request
has a randomly different header which makes it look like it has been sent from a
real user.

Figure 5.4: HULK command interface

Chapter 5. Methodology 19

Figure 5.5: HULK code design

• Ixia BreakingPoint

– BreakingPoint is a security testing tool created by Ixia (Keysight). It is designed
for organization for testing their infrastructure, network, application for security
weaknesses. BreakingPoint is capable of simulating more than 300 real-world
protocols, and it is customizable and can manipulate any protocol. It creates
different protocols with high speed and a realistic load. Also, it supports more
than 37,000 attacks and malware. It can simulate with single or multiple ports all
types of traffic at the same time, which can be legitimate traffic, DDoS, and/or
malware. [10].

– A Virtual Edition will be utilized in this project which is a software-based test
platform that enables us to run a BreakingPoint vController and traffic genera-
tion blades on a virtual chassis.

20 Chapter 5. Methodology

5.4 System Design (TestBed)

This section will give an overview of the systems (Clouds) design which I am going to use
for testing. It will focus on how they are built and what physical elements and software are
used to make the cloud functions. Also, it will show the difference between them.

5.4.1 Local Cloud

Keysight Technologies in Denmark has a cloud that is designed for testing and a bit more
development and sandbox oriented. I used it for testing the chosen components that are
available in the 5G core, with the chosen attack tools.

Keysight cloud is using OpenStack Rocky as a Virtual Management Infrastructure that
deployed in multiple machines, and utilizes KVM and QEMU as Hypervisors.

For hardware, the local cloud is:

• Hosted on 5 physical nodes, where some focus on providing compute resources
while others focus on networking and storage

• Routing and Switching are provided
by OpenStack Open vSwitch (OVS)

• pfSense vFirewall (VNF), with add-on
Snort Intrusion detection system

• Kubernetes deployed in a VM with Ubuntu server 18.04
• Nginx deployed on top of Kubernetes API server as a gateway

Compute

System Dell PowerEdge R630

vCPU 32 cores @ 2.1 Ghz

CPU model Intel(R) Xeon(R) CPU E5-2620 v4

Memory 96.0 GiB RAM

Storage 1x500GB (ssd)

Deployed OS Ubuntu 18.04 LTS

Kernel bionic

Table 5.1: Configuration for each compute node

Chapter 5. Methodology 21

Control

System Dell PowerEdge R630

vCPU 16 cores @ 2.1 Ghz

CPU model Intel(R) Xeon(R) CPU E5-2620 v4

Memory 48.0 GiB

Storage
1300.2 GB over 3 disks

2x500GB (ssd)

1x300GB (hdd)

Deployed OS Ubuntu 18.04 LTS

Kernel bionic

Table 5.2: Control node configuration

Network

System Dell PowerEdge R630

vCPU 16 cores @ 2.1 Ghz

CPU model Intel(R) Xeon(R) CPU E5-2620 v4

Memory 48.0 GiB

Storage 1300 GB

Deployed OS Ubuntu 18.04 LTS

Kernel bionic

Table 5.3: Network node configuration

Storage

System Dell PowerEdge R630

vCPU 16 cores @ 2.1 Ghz

CPU model Intel(R) Xeon(R) CPU E5-2620 v4

Memory 48.0 GiB

Storage
3300.6 GB over 7 disks

6x500GB (ssd)

1x300GB (hdd)

Deployed OS Ubuntu 18.04 LTS

Kernel bionic

Table 5.4: Storage node configuration

22 Chapter 5. Methodology

5.4.2 Remote Cloud

5G-VINNI Project - Norway Facility is part of 5G-VINNI (Verticals INNovation Infrastruc-
ture) European projects, and it is located in Oslo, Norway by Telenor [17]. It is focused
on deploying a 5G core close to production with stronger security. It is under testing and
development which means not all components are up and running. For our test, some of
the chosen components are deployed and ready to be tested.
There are 3 major vendors for Telenor 5G Cloud, and these are Ericsson and Huawei for
providing 5G Radio network. 5G EPC, VNF-EMS and VNF-M will be implemented by Eric-
sson. Nokia is the providor of NFVI, NFVO and VIM.

Norway Cloud infrastructure design and hardware [4]:

• 6 servers as compute nodes only
• 3 servers as compute and controller nodes
• 3 servers for Nokia Nuage components, 2 leaf switches and 1 management

switch. Nuage leaf switch is providing L2/3/4 connectivity. Each port is ca-
pable of delivering up to 100GbE

• 9 servers as compute and storage nodes
• OpenStack Queens is utilized as a VIM provided by Nokia called Nokia Cloud

Infrastructure Real-time (NCIR), see figure 5.7 on Page 23.
• Norway cloud has 4 security classes and these are (Exposed, non-Exposed, Se-

cure and Management) see Figure 5.8 on Page 24
• Palo Alto Firewall PA-5220 is used to separate security classes and applies poli-

cies between them, while Palo Alto vFirewalls are used to separate traffic be-
tween instances within the same security class

Compute and Controller nodes Configuration

Server/Processor 2x Intel Xeon 6138, 20-Core 2.0 GHz (Dual socket)

Memory 384GB (DDR4), 2666MHz

Network

Totally 4 ports x 25Gb:

1 x Airframe OCP Mezzanine NIC (2x 25Gbit)

1x Airframe PCIe NIC (2x25 Gbit)

+ BMC port used for IPMI (1000Base-T RJ45)

Storage
1 x 480GB Airframe Disk SSD 2.5 Inch

1x 480GB Airframe M.2 2280 SATA

Table 5.5: Compute server configuration. Source [4]

Chapter 5. Methodology 23

Figure 5.6: Compute node CPU allocation. Source [4]

Figure 5.7: Nokia Cloud Infrastructure Real-time (NCIR). Source [4]

Compute and Storage nodes Configuration

Server/Processor 2x Intel Xeon 6138, 20-Core 2.0 GHz (Dual socket)

Memory 384GB (DDR4), 2666MHz

Network

Totally 4 ports x 25Gb:

1 x Airframe OCP Mezzanine NIC (2x 25Gbit)

1x AirframeC PIe NIC (2x25 Gbit)

+ BMC port used for IPMI (1000Base-T RJ45)

Storage
2 x 3.84TB Airframe Disk SSD 2.5 Inch (OSD Data)

1x 480GB Airframe M.2 2280 SATA (Boot OS)

Table 5.6: Storage server configuration. Source [4]

24 Chapter 5. Methodology

Figure 5.8: Security Zones and classes Design. Source [4]

Chapter 6

Test Implementation & Results

This section will cover the test implementation on the local and remote clouds, using various
tools for testing the chosen components, and compare between these clouds in terms of their
level of security. After creating the methodology and setting up the testbeds, I started test-
ing to answer the problem statement questions and then figuring out solutions to mitigate
discovered issues.

6.1 Local Cloud

6.1.1 Keystone on Local Cloud

To start performing the test on the Keystone, first I have to identify its IP and port number.
There are two scenarios:

1. Pretending to be inside the cloud with access to the dashboard. here, I’m not going to
mention how the attacker got access to the dashboard because it can happen in many
different ways like stolen credential.

Keystone can be reached by IP and port number, which makes it possible for me to
make it as a target. The IP and port number or URL can be obtained from OpenStack
Horizon -> after accessing the dashboard, there is “API Access” option in the upper
left side -> Once you click on that, you will see the list of Openstack services URLs ->
Look for Identity IP address and port number, as seen in Figure 6.1.

25

26 Chapter 6. Test Implementation & Results

Figure 6.1: Dashboard API Access page

2. The other scenario is that the attacker is inside the cloud without access to the dash-
board of OpenStack. Instead, the attacker has inside access because of compromising
a VNF or VM. To find the network of the keystone even if the network of keystone is
different than the VM network, nmap will do network and port scanning with tracer-
oute. Using nmap will give some information about other networks beyond the local
network. By using nmap command as shown below the attacker can search for other
network for keystone default port number 5000 and the host name, which may give a
clue about the host identity. see Figure 6.2 .

1 $ nmap -v -A 192.168.11.0/24

Figure 6.2: nmap scan results

Once I have the IP address of the target (Keystone), I can use the tool to attack it. For this
experiment, I have chosen a "Low and Slow" tool called SlowLoris that sends many HTTP

Chapter 6. Test Implementation & Results 27

requests to Keystone and keeps the connection a live for as long as possible using the below
command.

1 slowhttptest -c 500 -o ./ output_file -i 10 -r 200 -H -g -t GET -u \\ http
://192.168.11.18:5000 -x 30 -p 2

As shown in Figure 6.3 the attack is going from north to south as the traffic is going
directly down to keystone API server without any interruption.

Figure 6.3: Keystone attack route

The result is a bit surprising as the server was completely dead within seconds after
launching the attack with 500 connections, and it went up again after one minute after
stopping the attack. See Figure 6.4

Figure 6.4: Keystione Attack Results

28 Chapter 6. Test Implementation & Results

6.1.2 Kubernetes Ingress on Local Cloud

Kubernetes API server is the main component of Kubernetes, which is similar to keystone of
Openstack. It receives requests from other Kubernetes components and incoming requests
from outside, Once the server is down, all other components will be down as well. For this
test, I also used nmap to get the IP of the API of Kubernetes as shown in Figure 6.7, and
the SlowLoris tool because it is one of the best open source tools available [6] that used the
"Low and Slow" technique.

Figure 6.5: nmap IP scanning shows port number and server name

The results for this test is "failed" check figures 6.8, 6.9, 6.10, the API server was in denial
of service state during the attack until I stopped it. That was not surprising because the
server does not have a protection system like a load-balancer or gateway. The attack route
was coming from a VM directly to the API server without a middleware protection as you
can see in Figure 6.6.

Figure 6.6: Kubernetes API server attack route

Chapter 6. Test Implementation & Results 29

Figure 6.7: nmap IP scanning shows port number and server name

Figure 6.8: SlowLoris tool output results shows the server is not available

Figure 6.9: Kubernetes-master "API controller" is not responsive

30 Chapter 6. Test Implementation & Results

Figure 6.10: Kubernetes test results chart

6.1.3 NGINX for K8s on Local Cloud

For Nginx, I deployed the kubernetes community version of Nginx on top of Kubernetes API
server as the ingress (gateway) and "loadBalancer" for outside connections. Nginx server is
much easier to discover because it is intended to be exposed to the public, which makes it
easy to find it using any tool like nmap. Figure 6.11 shows the port number, Nginx web
application called (OpenResty) as an ingress controller.

Figure 6.11: nmap scan result for Nginx

Nginx is designed to be exposed to outside for protecting inside servers from unwanted
behavior. I launched the attack against Nginx API server using two different tools (SlowLoris
and HULK), and the attack route was directly from a VM to the server as shown in Figure
6.12. The results for testing Nginx is different than previous tests, because I tried to attack

Chapter 6. Test Implementation & Results 31

it using one tool (SlowLoris) as usual but Nginx managed to close the connections, even
though I assigned 5000 attack connections, but it would not accept more than 2500 at a time,
see Figure 6.13. Moreover, I used the second tool (HULK) with normal configuration but
it turned out Nginx also managed to close the connections and I did not see any abnormal
behavior from Nginx. During the attack, Nginx server was still serving normally when I
tried to access it from a different machine. Eventually, I tried attacking it again using these
two tools at the same time, with two sessions using SlowLoris with 5000 connection each,
and three sessions using HULK with no limited connection cap, as shown in Figure 6.14. I
would say Nginx server has passed the test, but what would it do if I test it using a powerful
tool like "Ixia BreakingPoint"?

Figure 6.12: Nginx attack route

32 Chapter 6. Test Implementation & Results

Figure 6.13: Nginx closes connections and the server is still available

Figure 6.14: Nginx attack from two tools with 5 sessions

Because of the excellent performance of Nginx, which defeated the open-source attack
tools combined, I tried to attack it using BreakingPoint, which is a platform designed for

Chapter 6. Test Implementation & Results 33

applications and network security testing.

I started testing using Two-Arms which means two vBlades (VMs) are attacking the Ng-
inx API server, and each vBlade can reach up to 100,000 connections. The attack method is
slow post (Slowloris), which keeps the connections alive for as long as possible.

The results are not surprising as BreakingPoint known is one of the powerful tools de-
signed for security testing. In the beginning of the attack, Nginx was performing well until
20 second when I started noticing that Nginx was not behaving normally. When I tried to
access it using a browser, it gave me error "The server is taking so long to respond". The
results from BreakingPoint are shown in the figure below.

Figure 6.15: BreakingPoint attacked Nginx successful

Figure 6.16: TCP Connection

34 Chapter 6. Test Implementation & Results

6.1.4 pfSense Firewall Test on Local Cloud

• These firewall tests are meant for two things: First, testing virtual firewalls capabili-
ties, and second, checking the ability of used attack tools to hide from firewalls and
IDSs. All previous tests were performed without a middleware protection system as
per normal cloud design.

• The first test was performed with the "SlowLoris and RUDY" method using "SlowHTTPTest"
tool, which targets one of the components as shown in Figure 6.17. pfSense firewall
was updated to the latest packages, and then I did the test for pfSense only without
an IDS installed. this test failed as expected because there is no IDS configured, and
the results shown in Figure 6.18.

Figure 6.17: Attacking the components with pfSense firewall as the middleware

Figure 6.18: Results with pfSense firewall

Chapter 6. Test Implementation & Results 35

6.1.5 pfSense Firewall with Snort IDS

• For this test, I have configured pfSense to have a Snort intrusion detection system run-
ning and updated with the default configuration, and the same test has been repeated.
The results are a bit surprising, because Snort did not catch any of the tools and the
attack was successful by making the target server out of service, see Figure 6.19.

Figure 6.19: The attack was successful with default Snort IDS configuration

• These test tools are made to be smart and hard to detect, so I was searching to see a
smart add-on to pfSense so it may catch these types of traffic, and I found an extra
service by Snort that needs subscription to activate it, which is called Emerging Threats
(ET). I activated it and started the same tests again. I started with the SlowHTTPTest
tool and it was surprising that Snort + ET caught it within seconds and blocked the
traffic coming from the source IP address, see the figure below.

36 Chapter 6. Test Implementation & Results

Figure 6.20: Snort with ET can blocked the attack traffic

However, I used the same test and the target was Openstack keystone, but this time I
used HULK tool. I started the test with Snort and ET active but they did not show any
sign of attack. after two minutes, Keystone was completely down. Figure 6.21 shows
that the dashboard could not authenticate with keystone. In my opinion, HULK is
the smartest open-source tool because during my experiments it showed its ability to
change every request with a unique header and ID and hide from protection middle-
wares.

Chapter 6. Test Implementation & Results 37

Figure 6.21: The attack was successful with default Snort IDS configuration

6.2 Remote Cloud

In order to test the remote cloud, the approach is the same as in the local cloud. First, I
started with discovering the targets (OpenStack Keystone, Kubernetes, and Nginx) IP ad-
dresses and port numbers, then attacking them with the chosen tools.

The cloud management team sent me this information before before performing the
tests:

• IDS/IPS is enabled.
• Antivirus/malware is enabled.
• DoS/DDoS protection is not enabled, means any-to-any policy between all in-

side keysight networks.
• We have tightened the security for all networks in our cloud by only allowing

specific applications and ports between VMs/networks. We do not allow com-
munications between networks if not asked for and approved.

6.2.1 Discovering the Targets

For discovering the first target (Keystone), I have used the same tool "nmap" for scanning the
networks. The default port of Keystone is 5000, so I started to scan the entire cloud starting

38 Chapter 6. Test Implementation & Results

from 10.0.0.1/8, which took so long until I ended up reaching 10.0.2.4 that has a 443 port
only open. I did not find any other port during the usual scan, which made me think that
something was blocking my scanning. I tried to specify searching the IP 10.0.2.4 and looked
more thoroughly deep to look for other open ports, but that also did not help discovering
other ports. I used a firewall bypass command that could detect if other ports were buried
behind a firewall, and I specified port 5000 which gave me more results. Keystone was
found, as shown below

Figure 6.22: nmap discovery results

The results were not precise as the name of the server is not shown, but I knew that port
5000 is for the Keystone, which matches the IP in the "API Access" page in the dashboard.

6.2.2 Testing

After discovering the IP and port number, I started to attack the Keystone using HULK
testing tool as shown in Figure 6.24

Chapter 6. Test Implementation & Results 39

Figure 6.23: Keystone attack route

Figure 6.24: Failed Keystone attack

Once I launched the attack, the connection stopped because the firewall has blocked the
connection using port 5000. I started to check if it can be accessed by using this command

1 wget https ://10.0.2.4:5000

but I could not reach it as well. The connection appeared to be allowed from Keysight
zone or network only through port 443, and the rest were blocked by a firewall proxy as I
assumed.

Because port 443 was the only open port, I tried to attack it just to see how the proxy and
the firewall will behave. I used a tool called "SlowHTTPTest" which was difficult to identify
by firewalls/IDS when I tested the local cloud, I pointed the tool to port 443 and started
attacking, but the connection was amazingly blocked in seconds, see Figure 6.25

40 Chapter 6. Test Implementation & Results

Figure 6.25: Low and Slow test blocked

Compute NetworkStorage

Hypervisor

Glance

CeliometerClinder

Neutron

Heat

Nova

Shared
Services

Keystone

Dashboard

Keysight
zone

Virtualized Infrastructure Manager

Company ACompany B

Kubernetes

K8s API
Server

etcd

Controller
Manager

Scheduler

NGINX Gateway API

Proxy & Load-balancer
Firewall & IDS/IPS

Figure 6.26: Connection blocked

I was planning to discover and attack other components (Kubernetes and Nginx) but the
security team blocked all ports, and I have tried all my other tools and knowledge to figure
out a way to sneak out, but all my attempts were unsuccessful.

My last attempt was spoofing the source IP address, as I think the security team blocked
all ports for keysight’s networks only. If I use one of keysight’s IPs 10.0.112.x then the fire-
wall will block all requests except for port 443, so that posed the question as to what if I

Chapter 6. Test Implementation & Results 41

sneak out using other IPs not assigned to Keysight?

I used a tool called "Hping3" that could spoof the source IP and make DoS attacks as
well. I used the command below

Figure 6.27: Spoofing the source IP with remote PC’s IP address

which I sourced the IP address of my PC that I am using with a VPN for accessing
the cloud, and its IP is 10.0.5.200. I used this IP as a source IP address to check if I could
receive a response from Keystone or not. If I receive a reply from the target (Keystone), then
sneaking out by manipulating the firewall will be a success. Check Figure 6.28 for a clearer
picture. I used Wireshark on the PC to capture the ACK reply from Keystone if I assumed
that it would pass the firewall in the first place. If I don’t receive any reply, then the firewall
has blocked the attempt too.

Compute NetworkStorage

Hypervisor

Glance

CeliometerClinder

Neutron

Heat

Nova

Shared
Services

Keystone

Dashboard

Keysight
zone

Virtualized Infrastructure Manager

Company ACompany B

Kubernetes

K8s API
Server

etcd

Controller
Manager

Scheduler

NGINX Gateway API

Proxy & Load-balancer
Firewall & IDS/IPS

Spoofed IP
Source 10.0.5.200

Dest: 10.0.2.4:5000

IP: 10.0.5.200

IP: 10.0.112.20

Figure 6.28: Spoofing route from VM to Keystone then to PC

Once I ran this command, I checked Wireshark in the PC to look for a reply from 10.0.2.4,
and surprisingly I received a punch of responses to the sent spoofed SYN requests, as shown
below.

42 Chapter 6. Test Implementation & Results

Figure 6.29: Replies from spoofed IP requests

As you can see that I received many replies with "Ignored Unknown Record," which
means the handshake is happening before the TLS negotiation, as the PC received the hand-
shake response while it did not request it in the first place. With this result, I can confirm
that an attack can happen to the Keystone or other components using this method to bypass
the firewall rules. Still, this type of attack will not make the Keystone or other components
down, because this attack uses half connections, that the target will drop eventually, but it
will make the target component disturbed.

As mentioned before, I could not test other components because of the extreme firewall
rules that have been applied. I did not do DoS tests inside Keysight networks or zone
because DoS protection was not enabled.

6.3 Summary of Test Results

Here is the summary of the tests and tools that I used in the local and remote clouds, and I
created a table to simplify them in a simple way.

With local cloud, I used three tools (SlowHTTPTest for Slowloris and RUDY), (HULK)
and (Ixia BreakingPoint). I also used a middleware that is pfSense vFirewall with an add-on
Snort intrusion detection system. Snort also has an add-on feature called Emerging Threats
for extra detection performance. I was trying to see how powerful the tools were and what
can be added to catch their traffic. The below table shows each tool and its target with
results.

Chapter 6. Test Implementation & Results 43

Name of tool Attack type Attack target Firewall Snort IDS
Snort with add-on

Emerging Threats
Results

Yes NO NO Successful

Yes Yes NO SuccessfulSlowHTTPTest
DDoS Slow HTTP

GET and POST

Header and Body

Keystone

or

Kubernetes
Yes Yes Yes Blocked

HULK
DDoS unlimited of

HTTP requests

Keystone

or

Kubernetes

Yes Yes Yes
Successful

Attack

SlowHTTPTest

+

HULK

Mixture of DDoS

L7 HTTP attack
Nginx No No

Five sessions simultaneously

targeting Nginx API gateway

with no success

BreakingPoint HTTP DDoS attack Nginx No No
With two-arms attacking Nginx,

BreakingPoint was able to make

it out of service.

Table 6.1: Summary of tests results in the local cloud

With the remote cloud, Because of extreme security configuration, the results are much
different than the tests performed on the local cloud. With all ports blocked plus a well-
known firewall/IDS, I was not expecting any security weaknesses. with that, nothing is
100% secure, as I was able to sneak out and access the only found target (keystone).

Name of tool Attack type Attack target
Palo Alto

Firewall & IDS
Results

SlowHTTPTest DDoS Slow HTTP Keystone Yes Blocked

HULK
DDoS unlimited of

HTTP requests
Keystone Yes Blocked

HULK DDoS L7 HTTP attack
Port 443

Proxy
Yes Blocked

BreakingPoint HTTP DDoS attack Keystone Yes Blocked

Hping3 IP Spoofing with DoS Keystone Yes Not Blocked

Table 6.2: Summary of tests results in the remote cloud

Chapter 7

Suggestions

After testing the chosen components on the local and remote clouds it was shown that
various entities could be disrupted, which could potentially happen in a production de-
ployment. Some of the components tested in the local cloud were deployed with minimum
security hardening in place, while in the remote cloud, components were deployed with
maximum security hardening.

By comparing these two clouds with different security configurations, the trade-off is
quite obvious. Adding more security often means more issues when deploying compo-
nents. In a dynamic environment with different users/vendors, providing various inter-
working components will most likely cause problems.

With the local cloud, the process of deploying and scaling up and down is much easier
and faster, as everything can be done in a less complicated process. In this cloud, each
user/tenant can manage its zone security by creating multi "security-groups" or editing the
default group rules, adding new rule sets, and giving each instance different security rules.
The remote cloud is 5G, which means it should be faster when deploying, changing or
scaling any component up or down. As seen, the management team mentioned that when
deploying or changing any component, they have to be asked to change the security config-
urations, which is not an optimal solution for a 5G cloud. The tenant option of managing
its zone security is still there but the cloud management team have applied security rules
on top of the tenant zone, which makes it more secure but cannot be managed by the tenant.

Automated processes for 5G cloud are essential to support automated CI/CD Contin-
uous Integration and Continuous Deployment, and testing VNFs or infrastructure compo-
nents. With current configuration, If a tenant wants to make changes, update, test or deploy
a new function it would greatly slow down everything and make all seem more manual than
automated. On the other hand, with an automated cloud, once the tenant adds or changes
something in its zone, all the other security-related configuration will be applied in seconds

45

46 Chapter 7. Suggestions

without the cloud management team interactions, because they secured the infrastructure
zone and made the tenants control its side in terms of security rules.

What can be done to mitigate this issue is to protect the infrastructure components from
attacks while making it less man-controlled and more into automated by decreasing the
security restrictions, which is a mix between the two cloud security configuration. This
suggestion will separate the infrastructure zone from the rest of the cloud by deploying
two layers of middleware components: a "firewall with IDS/IPS," and a "reverse proxy &
load-balancer" (Nginx) as shown in Figure 7.1.

Compute NetworkStorage

Hypervisor

Glance

CeliometerClinder

Neutron

Heat

Nova

Shared
Services

Keystone

Dashboard

Keysight
zone

Virtualized Infrastructure Manager

Company ACompany B

Kubernetes

K8s API
Server

etcd

Controller
Manager

Scheduler

NGINX Gateway API

Reverse Proxy & Load-balancer

Firewall & IDS/IPS

Infrastructure Zone

Figure 7.1: Middleware solution to separate and protect VIM from VMs attacks

Half of the idea came after testing the local cloud, which had been more secure when
I applied Nginx as a reverse proxy that isolated the servers from clients, which makes it
secure even without a firewall enabled as can be seen in Subsection 6.1.3. Clients would not
be able to discover what is beyond the reverse proxy even when I used namp tool which

Chapter 7. Suggestions 47

just showed me Nginx ports 80 and 443 only, and if an attack is launched against it, the
rest of the servers behind it will not be affected. Moreover, In the remote cloud, the rest
of the idea came after I tested the infrastructure components with the firewall/IDS enabled
using different tools and how a powerful intrusion detection system can detect, catch and
differentiate between legitimate and attack traffic. Why half of the idea not all of it came
from the remote cloud while it uses a proxy which is similar to my idea? Because the re-
mote cloud uses a proxy not a reverse proxy. With a proxy, clients can discover the servers
beyond it, similar to when I discovered a component (Keystone) beyond the proxy as seen
in Subsection 6.2.1.

I have tested the reverse proxy and the firewall/IDS separately, and the results were
interesting as both of them did their job as it should be. Combining them without doubt
is going to be a huge plus point, which increases the infrastructure security and decreases
manual security configuration by the cloud management team.

The firewall and IDS should be placed on top, and the reverse proxy should be under it,
as the firewall will first inspect and block unwanted traffic, while the reverse proxy forwards
the incoming connections to the destination which prevents the attackers from reaching the
target directly or even knowing the identity of the components. On top of that the load-
balancer will mitigate high-load traffic in case of DoS attacks that sneaked from the firewall
and IDS. Implementing and configuring this solution depends on a cloud to a cloud, but
it will not need a whole cloud reconfiguration, because these middlewares components are
VNFs which can be created and configured, then route the traffic from the tenants networks
to the infrastructure components through these middlewares protection as shown in Figure
7.1.

Chapter 8

Conclusion, Summary and Future Work

In this report, I have searched about the cloud core security in which an attack may be
launched on the infrastructure component from the inside with the intention to disturb
some elements or render the cloud out of service.

I have collaborated with Keysight Technologies in Denmark for help and support from
the security team, and I used their labs and tools to conduct this research. I have also
used their local and remote cloud for searching and testing and pretended to be an attacker
who has access to the inside of the cloud. By searching for the most critical components,
I have found some that are critical and exposed to the users by their nature for API au-
thentications. These components are the API server (Keystone) of the virtual infrastructure
manager (OpenStack), and the API server of container-management system for automating
containers deployment (Kubernetes).

These are critical components of the core, so if one of these components is down, the
whole cloud will be affected. To support my findings, I have run some tests in two different
clouds to support the idea and check if an attack was possible. I have used various attack
tools to test and verify if these attacks could be made from inside the cloud to these crit-
ical components. The two clouds yielded different results, where the local cloud has less
security configuration, which results in an attack that may happen, and that supported my
idea. On the other hand, the remote cloud had extreme security configuration, which made
it difficult to attack from the inside; however, that may be possible but not likely due to the
applied security rules that blocked most ports and using a well-known firewall and IDS.

I learned in technologies that nothing is 100% secure, even a cloud with firewalls and
IDS/IPS will not prevent the cloud from being attacked, because some attacking tools use
smart techniques to hide or spoof their attacking traffic from being intercepted by firewall-
s/IDS, because they would appear to be legitimate requests coming from different users.

49

50 Chapter 8. Conclusion, Summary and Future Work

The remote cloud with its extreme security configuration has limited my research from
finding and testing other components that should be open to all users. Also, because it is
under production, not all components were up and running during the testing period.

Future work is strongly needed, to check other components’ security of the core as only
a limited number of tests have been made simulating inside attacks. Testing 5G core VNFs,
in particular, is an interesting things to do to discover if an attack can be launched from a
compromised VNF to other VNFs. The list of components that should be tested includes
but not limited to:

• OpenStack Networking (Neutron)

• OpenStack Cinder (Storage)

• Network Exposure Function API Server

• Open RAN API Server

• Firewall Direct Attack

Finally, after testing, these tests should be run in an automated fashion. When a new
component is deployed or a VNF has been updated, a security test should be performed
again in an entirely automated manner. Automated processes are essential to support auto-
mated CI/CD and testing of VNFs and infrastructure. With a continuous testing solution, it
will help discover the vulnerabilities before attackers do.

Bibliography

[1] OpenStack . Build the future of Open Infrastructure. 2020. url: https://www.openstack.
org/.

[2] W3schools . Cloud Virtualization. 2019. url: https : / / www . w3schools . in / cloud -
computing/cloud-virtualization/.

[3] “5G PPP Architecture Working Group. "View on 5G architecture." White Paper.” In:
(5G-VINNI_D2.1_Annex_A1, 2018) (July (2016)).

[4] “5G-VINNI Solution facility sites High Level Design (HLD) - v1”. In: (2019). url:
https://www.5g-vinni.eu/wp-content/uploads/2019/02/5g-vinni_d2.1_annex_
a1_norway.pdf.

[5] Ijaz Ahmad et al. “Overview of 5G security challenges and solutions”. In: IEEE Com-
munications Standards Magazine 2.1 (2018), pp. 36–43.

[6] Sunny Behal and Krishan Saluja. “Characterization and Comparison of DDoS Attack
Tools and Traffic Generators -A Review”. In: International Journal of Network Security 19
(Apr. 2017), pp. 383–393. doi: 10.6633/IJNS.201703.19(3).07).

[7] Min Chen et al. “Data-driven computing and caching in 5G networks: Architecture
and delay analysis”. In: IEEE Wireless Communications 25.1 (2018), pp. 70–75.

[8] M. Elkhodr, Q.F. Hassan, and S. Shahrestani. Networks of the Future: Architectures, Tech-
nologies, and Implementations. Chapman & Hall/CRC Computer and Information Sci-
ence Series. CRC Press, 2017. isbn: 9781351651561. url: https://books.google.com/
books?id=gyE6DwAAQBAJ.

[9] “HULK DDoS Tool Smash Web Server, Server Fall Down.” In: (Retrieved April 29,
2020 from). url: https://threatpost.com/hulk-ddos-tool-smash-web-server-
server-fall-down-051812/76581/.

[10] “Ixiacom.com. (2020). BreakingPoint VE | Ixia. [online] Available at:” in: (). url:
https://www.ixiacom.com/products/breakingpoint-ve[Accessed4Jan.2020]..

[11] “Keystone, the OpenStack Identity Service”. In: OpenStack Docs: Keystone, the Open-
Stack Identity Service (). url: https://docs.openstack.org/keystone/latest/.

[12] Zbigniew Kotulsk et al. Towards constructive approach to end-to-end slice isolation in 5G
networks. 2018. url: https://doi.org/10.1186/s13635-018-0072-0.

51

https://www.openstack.org/
https://www.openstack.org/
https://www.w3schools.in/cloud-computing/cloud-virtualization/
https://www.w3schools.in/cloud-computing/cloud-virtualization/
https://www.5g-vinni.eu/wp-content/uploads/2019/02/5g-vinni_d2.1_annex_a1_norway.pdf
https://www.5g-vinni.eu/wp-content/uploads/2019/02/5g-vinni_d2.1_annex_a1_norway.pdf
https://doi.org/10.6633/IJNS.201703.19(3).07)
https://books.google.com/books?id=gyE6DwAAQBAJ
https://books.google.com/books?id=gyE6DwAAQBAJ
https://threatpost.com/hulk-ddos-tool-smash-web-server-server-fall-down-051812/76581/
https://threatpost.com/hulk-ddos-tool-smash-web-server-server-fall-down-051812/76581/
https://www.ixiacom.com/products/breakingpoint-ve [Accessed 4 Jan. 2020].
https://docs.openstack.org/keystone/latest/
https://doi.org/10.1186/s13635-018-0072-0

52 Bibliography

[13] Ralph LaBarge and Thomas McGuire. “Cloud Penetration Testing”. In: arXiv.org (2013).
url: https://arxiv.org/abs/1301.1912.

[14] Shankar Lal, Tarik Taleb, and Ashutosh Dutta. “NFV: Security threats and best prac-
tices”. In: IEEE Communications Magazine 55.8 (2017), pp. 211–217.

[15] NGINX Docs: Overview. url: https://docs.nginx.com/nginx-ingress-controller/
overview/.

[16] “OpenStack Rocky addresses the new demands for infrastructure”. In: OpenStack ().
url: https://www.openstack.org/software/rocky/.

[17] Jan Pitter et al. “D2.1 5G-VINNI Solution Facility-sites High Level Design (HLD)”. In:
Zenodo (2019). url: https://zenodo.org/record/2668791.

[18] Konstantinos Samdanis et al. “Enabling 5G verticals and services through network
softwarization and slicing”. In: IEEE Communications Standards Magazine 2.1 (2018),
pp. 20–21.

[19] Silvia Sekander, Hina Tabassum, and Ekram Hossain. “Multi-tier drone architecture
for 5G/B5G cellular networks: Challenges, trends, and prospects”. In: IEEE Communi-
cations Magazine 56.3 (2018), pp. 96–103.

[20] “Slowloris DDoS Attack. (n.d.). Cloudflare - The Web Performance & Security Com-
pany | Cloudflare.” In: (). url: https://www.cloudflare.com/learning/ddos/ddos-
attack-tools/slowloris/.

[21] SDxCentral Staff. How 5G NFV Will Enable the 5G Future. 2017. url: https://www.
sdxcentral.com/5g/definitions/5g-nfv/.

[22] Péter Suskovics et al. Building the next-generation edge-cloud ecosystem. 2020. url: https:
//www.ericsson.com/en/reports- and- papers/ericsson- technology- review/
articles/next-generation-cloud-edge-ecosystems.

https://arxiv.org/abs/1301.1912
https://docs.nginx.com/nginx-ingress-controller/overview/
https://docs.nginx.com/nginx-ingress-controller/overview/
https://www.openstack.org/software/rocky/
https://zenodo.org/record/2668791
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.sdxcentral.com/5g/definitions/5g-nfv/
https://www.sdxcentral.com/5g/definitions/5g-nfv/
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/next-generation-cloud-edge-ecosystems
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/next-generation-cloud-edge-ecosystems
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/next-generation-cloud-edge-ecosystems

	Front page
	English title page
	Contents
	1 Introduction
	2 State of the Art
	2.1 The Architecture of 5G Core
	2.2 Network Functions Virtualization Infrastructure (NFVI)
	2.2.1 OpenStack
	2.2.2 Kubernetes
	2.2.3 NGINX

	3 Problem Statement
	4 Existing Approaches
	5 Methodology
	5.1 Scenarios
	5.2 Targets
	5.2.1 OpenStack Keystone
	5.2.2 Kubernetes API Server
	5.2.3 NGINX API Gateway

	5.3 Test Equipment
	5.3.1 Target IP Discovery
	5.3.2 Attack Tools

	5.4 System Design (TestBed)
	5.4.1 Local Cloud
	5.4.2 Remote Cloud

	6 Test Implementation & Results
	6.1 Local Cloud
	6.1.1 Keystone on Local Cloud
	6.1.2 Kubernetes Ingress on Local Cloud
	6.1.3 NGINX for K8s on Local Cloud
	6.1.4 pfSense Firewall Test on Local Cloud
	6.1.5 pfSense Firewall with Snort IDS

	6.2 Remote Cloud
	6.2.1 Discovering the Targets
	6.2.2 Testing

	6.3 Summary of Test Results

	7 Suggestions
	8 Conclusion, Summary and Future Work
	Bibliography

