
Analysis of the welding process
sound using Convolutional Neural

Networks for penetration state
recognition

Master’s Thesis

M. Kolek and S. Zelazny

2020

Aalborg University
The Faculty of Engineering and Science

The Faculty of
Engineering and

Science
Manufacturing

Technology
Niels Jernes Vej 10
DK-9220 Aalborg
www.ses.aau.dk

Title:
Analysis of the welding process
sound using Convolutional Neu-
ral Networks for penetration state
recognition

Theme:
Master’s Thesis

Semester:
4th semester of Manufacturing Tech-
nology.

Project Period:
Spring semester 2020

Group Members:
Maciej Kolek
Stanislaw Zelazny

Supervisors:
Prof. Simon Bøgh (AAU)

Page numbers:
24 pages

Submitted:
June 19, 2020

Abstract:

With a reliable and accurate method
for real-time feedback being a neces-
sity for robotic welding, various meth-
ods have over time been proposed for
online weld monitoring.
This paper investigates the use of Con-
volutional Neural Networks (CNNs) to
analyze the sound signature from the
welding arc, which contains informa-
tion about the penetration state of the
weld pool. The sound is transformed
into a spectrogram image using a se-
ries of STFT transforms and the image
is input into a CNN which classifies
it as one of three possible penetration
states. Given a pre-recorded dataset,
the authors investigate how different
sampling strategies impact the ability
of the network to generalize to un-
seen examples. Further it is investi-
gated, how various pre-processing pa-
rameters used when creating the spec-
trogram impact the prediction accu-
racy of the network. Using the op-
timal sampling strategy and pre pro-
cessing parameters a custom CNN is
built and tuned, achieving an average
testing accuracy of 69,94% in recogniz-
ing the penetration state based on a
sound sample of 0,25s.

www.ses.aau.dk

Preface

This master’s thesis is written by Stanislaw Zelazny and Maciej Kolek during 4th
semester of Manufacturing Technology at Aalborg University (AAU). It would not
have been able for the hereby presented thesis to be completed without the help
of our attentively involved supervisor prof. Simon Bøgh. Our gratitude also goes
to Anders Bidstrup and prof. Chen Li for sharing their knowledge regarding the
origin of the dataset used and the domain of audio classification. Finally, we must
express our very profound gratitude to our parents and to Anička Václavová and
Mary Mash for not letting us lose our spirits.

Aalborg University, June 19, 2020

Maciej Kolek
mkolek18@student.aau.dk

Stanislaw Zelazny
szelaz13@student.aau.dk

Preface

Reading Guide

The report is written in the style of an academic journal paper, highlighting the
points of the work done, its conclusions and considerations. It can be read indepen-
dently from its appendices, however the curious reader is encouraged to explore
the provided additional material, which, besides serving as a proof-of-work, better
captures some of the nuances not covered in the main report.
Being a software-based project, the additional material consists of two Jupyter note-
books:

• Preemphasis filter.ipynb is an elaboation of how the pre-emphasis filter shown
on figure 19 of the report is implemented (link: colab.research.google.com/
drive/1C9ckO19ECWTDysvJQBaJaeEReHD5yaiP?usp=sharing)

• CNN_factorial.ipynb Is an elaboration of the 2k-factorial tests of section 4.4 in the report. (link:
colab.research.google.com/drive/1mU_WOEnGFUx6LQlSTsE_w698sdVRd73U?usp=sharing

The notebooks can be opened in Google Collab using the provided links (requires
google account). Alternatively static html-versions of the files are avaliable as well,
to be opened with a standard web browser. (CNN_factorial is then split in two
parts, to be read chronologically.)

Additionally, a ROS pipeline for data acquisition has been developed, and is freely
available as a git repository at: https://SierraTangoZulu@bitbucket.org/mkolek/
welding_setup_packages.git Further materials, as the codebase, dataset and sim-
ilar are available from the authors upon request.

All units are assumed SI units unless otherwise specified.

colab.research.google.com/drive/1C9ckO19ECWTDysvJQBaJaeEReHD5yaiP?usp=sharing
colab.research.google.com/drive/1C9ckO19ECWTDysvJQBaJaeEReHD5yaiP?usp=sharing
colab.research.google.com/drive/1mU_WOEnGFUx6LQlSTsE_w698sdVRd73U?usp=sharing
https://SierraTangoZulu@bitbucket.org/mkolek/welding_setup_packages.git
https://SierraTangoZulu@bitbucket.org/mkolek/welding_setup_packages.git

00 (2020) 1–24 www.aau.dk

Analysis of the welding process sound using Convolutional Neural Networks for
penetration state recognition

Maciej K. Kolek1, Stanislaw Zelazny1

aInstitute of Materials and Production, Aalborg Unviersity, Fibigerstræde 16, 9220 Aalborg, Denmark

Abstract

With a reliable and accurate method for real-time feedback being a necessity for robotic welding, various methods have over time
been proposed for online weld monitoring.

This paper investigates the use of Convolutional Neural Networks (CNN’s) to analyze the sound signature from the welding arc,
which contains information about the penetration state of the weld pool. The sound is transformed into a spectrogram image using
a series of STFT transforms and the image is input into a CNN which classifies it as one of three possible penetration states. Given
a pre-recorded dataset, the authors investigate how different sampling strategies impact the ability of the network to generalize to
unseen examples. Further it is investigated, how various pre-processing parameters used when creating the spectrogram impact the
prediction accuracy of the network. Using the optimal sampling strategy and pre-processing parameters a custom CNN is built and
tuned, achieving an average testing accuracy of 69,94% in recognizing the penetration state based on a sound sample of 0,25s.

Keywords:
MIG-Welding, Welding sound analysis, Convolutional Neural Networks.

1. Introduction

Since it is industrial breakthrough in the 1940s electric arc
welding has been widely adopted as a major joining method in
a wide variety of industries ranging from consumer products,
to automotive, aerospace and construction. As welds are often
used in critical construction elements a wide body of research,
dedicated to the task of weld quality inspection, has steadily
evolved alongside new welding technologies. (Cary, 2004)

With the growing adoption of robotic welding, its focus has
in the recent two decades increased towards methods of on-line
welding inspection, enabling real time feedback control of the
process making it more robust and preemptively reducing the
amount of welding defects. Different approaches such as spec-
troscopy (Zhang & Chen, 2014) (Zhang et al., 2013) and visual
sensing (You et al., 2014), radiography (Guu & Rokhlin, 1990),
video (Zhang et al., 2019), (Liu et al., 2017) or through the arc
sensing have been proposed. However, the high temperature,
electric current and brightness of the welding arc has always
posed an additional challenge for sensor protection and sensor
placement.

1.1. Use of sound for weld monitoring - State of the art
Using the sound from the welding arc instead has already been
proposed as early as in 1969 (Jolly, 1969), and in 1998 Saini &
Floyd (Saini & Floyd, 1998) made the first mentions of using it

as a data source for online robotic feedback. A big advantage
of this mode of sensing is the ease of data acquisition requir-
ing nothing more than a microphone within the human auditory
range (20Hz to 20kHz). Any reader familiar with welding will
know, that the auditory feedback is an important cue for the
manual welder in controlling the welding process, as formally
proven in experiments by (Tarn & Huissoon, 2005).

Apart from this human intuition, numerous studies have
confirmed that the acoustic signature of the welding arc con-
tains rich information about the state of the process:
Rostek (Rostek, 1990) already in 1990 discovered that a wide
variety of process parameters, including voltage supply, wire
feed rate and even shielding gas flow could be traced back from
the arc sound.

Horvat et al. (Horvat et al., 2011), (M CÏudina, 2003),
(M. Cudina, 2008) were able to, using a physics-based model
for the relation between the welding arc and generated sound
pressure, with high accuracy reconstruct the welding sound from
the measured arc current. Chen et al. (Lv et al., 2014) proved
that the arc length can be predicted using a wavelet-packet de-
composition based noise filter, even enabling a feedback loop
for arc length control. Kamal Pal et al.(Pal et al., 2009) were
able to correlate the weld transfer mode and deposition effi-
ciency (percentage of useful electrode material in the weld) to
statistical values in the time domain of the sound signal.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 2

As, according to Horvat et. al, (Horvat et al., 2011) the
sound is related to the energy of the arc and the sound wave
is actively affecting the molten welding pool, there have been
numerous studies for using the welding sound for predicting
the weld penetration depth or penetration state (e.g. lack of
penetration or weld burn trough) (see Table 1 for references).

1.2. Machine Learning as an analysis tool

With the different in- and output parameters of the welding pro-
cess being present in the welding sound, as listed in the previ-
ous section, numerous methods for extracting that information
have been proposed. Early work such as Saini & Floyd (Saini
& Floyd, 1998) or Kamal Pal (Pal et al., 2009) (Pal, 2011),
selected a statistical property of the sound (e.g. signal kurto-
sis) and investigated its correlation with a certain weld prop-
erty, (e.g. penetration depth,) but with the new era of Machine
Learning (ML) the trend has shifted towards extracting multiple
features from the signal, and then applying ML algorithms for
finding hidden correlations within the data.

Table 1 summarizes a review of publications on the topic
over the past decade. Most listed methods rely on first divid-
ing the recording into smaller samples, (everywhere from sub-
second to 4 seconds length) and then extracting different fea-
tures from the temporal (e.g. total signal energy, rms, kurtosis)
and frequency domain (e.g, spectral centroid, frequency rms,
MFCC-coefficients etc.) The features are then collected in a
vector and fed into the selected algorithm. Different variations
of Neural Networks are used: (Saad et al., 2006) uses a tradi-
tional Artificial Neural Network (ANN) with back propagation,
but newer ML flavors are in use as well: (Wu et al., 2017) uses a
Deep-Belief Network (DBN), fed with a combination of video
and audio features, while (Lv et al., 2016) uses the Adaboost
method combine multiple ANNs into one strong classifier.

As training a network on a full set of features is more time
consuming, in order to improve performance (as real-time feed-
back control is often the end-goal) different methods have been
used to reduce the feature space and only extract the features
which prove to be relevant. Notable mentions include (Wang
et al., 2011) using Genetic Algorithms (GA) to reduce the fea-
ture length from 128 to 12, or (Wu et al., 2017) using t-stochastic
neighborhood embedding (t-SNE) to reduce the initial high-
dimensional feature set to a low dimensional eigenvector input.

A whole different approach is taken by (Ren et al., 2018)
who use a Convolutional Neural Network (CNN), a neural net-
work architecture commonly used in the field of image classifi-
cation.

Instead of a vector of pre-extracted features, their CNN is
fed a with an 129x32 time-frequency image of the sound sam-
ple, (i.e. a spectrogram), and the features are learned directly
by the network from the input. The main advantage of this is
making it more robust to the designers choice of features and
noise in the data. When compared by the researchers to a tradi-
tional ANNs the same dataset, the CNNs also outperformed the
ANNs on testing accuracy and stability of results.

1.3. Project background and Motivation

The project described in this paper stems from original work
on Aalborg University by Anders Bidstrup on using ANNs for
recognizing penetration state and transfer mode in DC MIG
welding (Bidstrup, 2017). While CNNs have been in existence
for long, and are widely used in the field of image analysis,
there are very few examples of this powerful method being used
on industrial non-image data, especially in the field of weld-
ing inspection. Continuing on Bidstrup’s line of research, this
project investigates and applies the CNN architecture to his ex-
perimental results, in an attempt to further analyze the differ-
ences between the two methods as well as to characterize what
parameters influence the performance of CNNs in this uncom-
mon application.

Section 2 introduces the dataset used for the project and
how the data was acquired. Sections 2.2 and 2.3 give an ini-
tial analysis of the dataset and investigate the effect of welding
settings on the acquired data. Before being able to design the
main architecture of the network, sections 3 and 4 investigate
the choice of an adequate sampling strategy for training and
how the prepossessing parameters affect the image input. After
choosing the input parameters the main CNN architecture is de-
signed and tuned in Section 5. Finally, the results are reviewed
and concluded in Section 7, with recommendations for future
work.

2. Dataset

Due to the Covid-19 pandemic it was unfortunately not possi-
ble to conduct laboratory experiments and gather new data for
the research project. The work was therefore continued on the
original dataset from (Bidstrup, 2017) providing an opportunity
to compare the two methods directly. (A software pipeline for
easy data acquisition based on the ROS robotic platform was
also developed, see details in accompanying material.)

2.1. Data collection

The welding sound dataset was originally acquired by Bid-
strup in 2018 using the welding setup shown on Figure 1. It
consists of an ABB IRB 140 robotic arm, equipped with a weld-
ing gun and a omnidirectional microphone mounted at a low an-
gle approximately 30 cm from the welding pool. The welding
current and voltage were also measured and collected alongside
with the sound.

The welding sample consisted of two 3mm mild steel plates
of length 150 mm, spaced 2mm apart in order to be joined with
a square butt weld. The essential parameters of the setup are
listed in Table 2, with a more detailed description of the setup
available in the original document.

The main goal of the experiments was to capture sound
from 3 different penetration states: lack of penetration, normal
penetration and excessive penetration, illustrated on Figure 2,
encoded as c1, c2 and c3. (A smaller dataset containing differ-
ent metal transfer modes was captured, but will not be used in
this work.)

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 3

Reference welding process input features algorithm output
(Pal, 2011) P-MIG [] sound curtosis descriptive statistics Penetration depth
(Pal et al., 2009) P-MIG [] sound curtosis descriptive statistics Deposition efficiency
(Sipei Zhao & Lele, 2018) (P)1-GMAW [DC] 10 td, 4 fd GMM Transfer mode
(Ren et al., 2018) P -GTAW [AC] fd: (129x32) spectogram image CNN Penetration state
(Lv et al., 2016) P-GTAW [AC] 23 td/fd Adaboost- ANN Penetration state
(Dong et al., 2017) P-GTAW [AC] fd: 1501 STFT frequency bins PCA Penetration state
(Wu et al., 2017) VPPAW 2 2 vi3 , 5 td, 12 fd t-SNE, DBN Penetration state
(Saad et al., 2006) VPPAW 9 fd (Welch PSD) ANN (1 layer) Penetration state
(Wang et al., 2011) GTAW [] 12 td GA, ANN (1 layer) Penetration state
(Bidstrup, 2017) MIG [DC] 18 td, 32 fd, 1134 wpd4 ANN (2 layers) Penetration state

P = Pulsed [..] = Welding current (AC/DC), if specified td = time domain features fd = frequency domain fetures

1 - Both pulsed and continuous welding experiments conducted.
2 - VPPAW: Variable Polarity Plasma Arc Welding [AC].
3 - Visual. Two features describing the pool shape were extracted from a video feed.
4 - Wavelet Packet Decomposition. A WPD tree of depth 5 is used, at each node, 18 features are extracted, summing up to 18 · (2 · 25 − 1) = 1134 See Appendix

Appendix A for details.

Table 1: Overview of reviewed recent literature, summarizing different approaches to predicting process outputs from the welding
sound.

Figure 1: Welding setup overview (Bidstrup, 2017) (modified)

A total 53 welds were performed with varying welding set-
tings, summarized in Table 3. First, two runs of 10 welds each
were performed in order to collect sound samples of all the pen-
etration states. Due to a lack of enough data representing lack of
penetration, a series of further 14 runs were performed, varying
the welding settings as shown on the table, in order to provoke
it. After the experiments, the welded samples were investigated
and segments of the welds were categorized according to the
guidelines in ISO-5817. The corresponding sound recordings
were then likewise cut up into files and labelled, resulting in a
dataset of 77 files.

Equipment
Robot ABB IRB 140
Welding equipment Migatronic Flex 400
Microphone Projects Unlimited AOM-673P-R
Data acquisiton card NI USB-6216 M
Sound Card Roland Edirol UA-25
Weld sample
Material S235JR
Root gap 2 mm
Thickness 3 mm
Welding settings
Gas Mison 18 (18% CO2 82% Ag)
Gas flow rate 14 l/min
wire diameter 1,2 mm
Travel speed 2 mm/s
work / travel angle 82◦/22◦

CTWD 5 mm

Table 2: Summary of equipment and welding settings used for
data acquisition.

2.2. Preliminary data analysis
The original experiments yielded a total of 3091 seconds

(51m 31s) of sound. Due to uncertainties some of the files were
discarded by the author, resulting in a final pruned dataset of
2856 seconds (47m 37s) and 66 files. A preliminary analysis of
the dataset revealed some possible challenges lying ahead:

• While some welding settings shown on Table 3 were able
to produce welds with 100% normal or excessive pene-
tration, it has not been possible for Bidstrup to consis-
tently produce lack of penetration, resulting in multiple
penetration states occurring in some of the weld samples.
This casts doubt to whether there might have been am-
biguity in classifying the fragments of the weld bead, as
well as indicates that the welding process is unstable and

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 4

Voltage
22V+n

WFS
[mm/s] Rep. Exp. c1 c2 c3

-2,8 5,5 10 c2 17% 83% 0%
-3,5 7 10 c1, c3 11% 3% 86%
-1,5 7 4 c1 8% 0% 92%
-2,5 7 1 c1 0% 0% 100%
-4,5 7 1 c1 0% 0% 100%
-2,5 4,5 1 c1 0% 100% 0%
-2,8 4,5 2 c1 29% 71% 0%
-3,0 4,5 2 c1 50% 50% 0%
-3,0 5 1 c1 20% 80% 0%
-3,0 6 1 c1 0% 100% 0%
-3,0 7,5 5 c1 24% 0% 76%
-3,2 5,5 5 c1 29% 71% 0%
-3,3 5,5 1 c1 36% 64% 0%
-3,5 5 4 c1 25% 75% 0%
-3,5 6 4 c1 13% 12% 75%
-3,5 6,5 1 c1 13% 9% 78%

WFS = Wire Feed Speed Rep. = repetitions Exp. = Expected state

Table 3: Overview welds performed to obtain dataset. The
percentages represent the actual distribution of the penetration
states in the samples of each run (i.e. one weld can contain mul-
tiple states). The voltages represent adjustments from a base
voltage of 22V.

Figure 2: Illustration of the three penetration states, encoded as
c1, c2 and c3.

not in full control, as illustrated on Figure 3. This also
means, that as the welding process was crossing the dif-
ferent penetration regimes, some of the labelled sound
data represents a transition between the categories, in-
stead of representing a ”pure” (i.e. stable) penetration
state.

• The dataset has an unequal distribution of the 3 classes,
with c1, lack of penetration being underrepresented in the
dataset, as shown on figure 4. The files for that class are
also on average shorter. This requires extra steps in order
to equally present the 3 classes to the training algorithm,
as further described in section 3.

• The different penetration states were induced by chang-
ing the welding settings. This essentially changes mul-
tiple factors at once between the experiments, making it
harder to separate changes in the sound attributed to the
penetration state from changes resulting from weld set-
tings. Only three runs of experiments (run 2, 15 and 16)
contain all 3 classes while providing constant weld set-
tings, however each of them contains at most only 20s of

sound from the least represented class, which is insuffi-
cient for a training set.

• As described by the author, the data was collected over
several days, with different background noise conditions.
However the dataset contains sound clips with the silence
before and after the weld already removed. While back-
ground noise (mainly ventilation) is evidently audible in
the data, there is no reference data of the pure ambient
noise available for comparison. This leads to specula-
tion that the harmonic artifacts (horizontal stripes) seen
in some of the spectrograms, eg. those shown on Figure
16 may originate from the ventilation system.

-40 -30 -20 -10 0 10 20 30 40 50 60

1st Principal Component

-20

-10

0

10

2
n

d
 P

ri
n

c
ip

a
l
C

o
m

p
o

n
e

n
t

Experiment 18.5V wfs: 6.5 1

c1

c2

c3

(start)

(middle)

(end)

(26.5 , 73.4)

Figure 3: Principal components for the sound features of one
whole welding experiment (60s), plotted second by second.
The changing penetration state and erratic behaviour of the
sound, suggest that the welding process is not stable.

19:00
40%

5:23
11%

23:13
49%

Figure 4: Average file length and percent-wise data distribution
by class. (One full weld contains approx 64s of sound)

2.3. Effect of welding parameters

As listed in the previous subsection, there was concern whether
changing the welding parameters (voltage and WFS) in between
experiments would alter the behavior of the sound, posing an
additional source of variance in the dataset. Bidstrup’s original
ANN extracted over 1000 various time and frequency domain
features from the sound samples (an overview is available in
Appendix A). Using his choice of features as a point of origin,
the same set of features were extracted for each second of the
sound data, then concatenated and averaged for each file. A

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 5

Principal Component Analysis (PCA) was performed on the re-
sulting set of file-wise feature vectors and plotted as shown in
Figure 5. The figure shows, that while the three classes can in
a general sense can be clustered together (c1 is generally on the
left side of the chart, c3 occupies the middle and c2 the right),
the welding voltage (marker color) also consort the files into
groups. (A similar, albeit less consistent, pattern has also been
noted if grouping the experiments by WFS.)

-40 -20 0 20 40 60

1st Principal Component

-30

-20

-10

0

10

20

30

40

50

2
n

d
 P

ri
n

c
ip

a
l
C

o
m

p
o

n
e

n
t

PCA on each file, grouped by voltage

v:1.5

v:3.0

v:3.2

v:3.3

v:3.5

v:2.5

v:2.8

v:4.5

c1

c2

c3

Figure 5: Principal Components of the average sound features
for each whole file in the dataset.

It was therefore chosen to select the -3.5V group (marked
black on Figure 5) containing all 3 classes as a reference sub-
dataset: v35 which can be used for comparing the CNN perfor-
mance on data with and without varying weld parameters.

It is worth noting, that each point on Figure 5 represents
a whole file, which spanning over several seconds can contain
much more variance within. Figure 6 shows therefore the PCA
components of each second of sound individually. As it can
be seen from the figure, the three classes are highly overlap-
ping, making it difficult to assign an unlabelled point to a clus-
ter based on the main PCA values alone, (the first 3 Principal
components only explain 45% of the dataset variance.)

Besides motivating the use of a more advanced method,
(like the CNN,) plotting the second-wise PCA components for
the v35 set, shown on figure 7, shows an almost identical loca-
tion of the 3 clusters. When grouping the points by filename,
as shown on for Figure 8, the different files overlap in a ’con-
fetti’ pattern, indicating that there is no significant difference
between the individual files. This means the following can be
concluded about the v35 and main dataset:

• The PCA clusters for the three classes are highly over-
lapping as illustrated on Figure 6 and the two subplots in
Figure 7, indicating that the welding sound of the three
classes is very similar, (i.e. the features identifying the
class are not among the main sources of variation in the
dataset,) which is motivating the use of a more sophisti-
cated classification method.

-20 0 20 40 60 80 100

1st Principal Component

-50

-40

-30

-20

-10

0

10

20

30

40

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

PCA of each 1s, each file

c1
c2
c3

Figure 6: Principal Components for each second in the dataset.

• The shape and location of the clusters in the main dataset,
shown on Figure 6 and the v35 set, shown in Figure 7 is
very similar, meaning there is no apparent difference in
what features are identifying a certain class. (i.e. training
done on the ’cleaner’ V35 may be transferable.)

• As shown on Figure 8 the groups from each file within
a class in v35 overlap, (with exception of the single file
highlighted in Figure 7, removed from the set) meaning
that, despite having different WFS the files within the v35
set are similar, requiring no further subdivisions.

-40

-30

-20

-10

0

10

20

30

40

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

PCA of each 1s, -3.5V set

c1

c2

c3

-20 0 20 40 60 80 100

1st Principal Component

c1
outlier c1

-40 -20

0

-20

20

0

-20

20
c2

0 20 40 60 -40 -20 0 20 40 60

Figure 7: Principal Components for the sound features of each
second of sound in the v35 set. Figure on lower left highlights
one c1 file in the set, significantly different from its peers, a
possible mislabeling.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 6

PCA of each 1s, -3,5V, c3
c3_sound_2.0__3.5_6.0_1.csv
c3_sound_2.0__3.5_6.0_2.csv
c3_sound_2.0__3.5_6.0_3.csv
c3_sound_2.0__3.5_6.0_4.csv
c3_sound_2.0__3.5_6.5_1.csv
c3_sound_2.0__3.5_7.0_1.csv
c3_sound_2.0__3.5_7.0_10.csv
c3_sound_2.0__3.5_7.0_2.csv
c3_sound_2.0__3.5_7.0_3.csv
c3_sound_2.0__3.5_7.0_4.csv
c3_sound_2.0__3.5_7.0_5.csv
c3_sound_2.0__3.5_7.0_6.csv
c3_sound_2.0__3.5_7.0_7.csv
c3_sound_2.0__3.5_7.0_8.csv
c3_sound_2.0__3.5_7.0_9.csv

2n
d

P
rin

ci
pa

l C
om

po
ne

nt
40

-30

-20

30

20

10

0

-10

1st Principal Component

-20 0 20 40 60 80

Figure 8: Principal Components for the sound features of each
second of sound in the v35 set, c3 files highlighted and grouped
by filename.

Further figures illustrating the above mentioned conclusions from
the analysis can be found in Appendix B.

3. Sampling strategy

Before a CNN can be trained an important consideration
to make, is how to manage the gathered data in order to avoid
overfitting and design a testing scenario that would truthfully
represent the anticipated performance in a real use case. In or-
der to compensate the uneven distribution of the classes and the
lack of data from the same set of welding parameters, discussed
earlier in Section 2.2, the training samples are generated from
the dataset as follows:

1. First, the last 20% of each file is truncated and stored in a
separate testing set, as illustrated in Figure 9, and won’t
be seen by the algorithm during training and validation, .

80% 20% Testing set

f1
c1

fn
cn

Figure 9: The files being truncated to generate a training/vali-
dation and testing set.

2. The remaining files are then sampled in order to cre-
ate spectrogram images for training the CNN. Generally,
more images are needed than there is seconds of weld-
ing sound, meaning that some data is sampled more than
once. As the three classes are unevenly represented in
the dataset (see Figure 4) , the number of samples, ns is
calculated by first deciding on how much class c1 will be
”oversampled” i.e. how many times the length of all c1
spectrograms will exceed the length of the c1 sound data:

nc1
s =

nc1∑
n=1

len(f c1
n) ·

1
ls
· ntimes (1)

Where ntimes is the amount of oversampling, len(f c1
n) is

the length of the n-th c1 file in the dataset, ls is the length
of one sample and nc1

s is the resulting number of c1 sam-
ples. Once the number is set, the total number of samples
is set as Ns = 3 · nc1

s . The Ns samples are then drawn one
by one, with each class having an equal probability of
being selected, ensuring all three classes are represented
equally in the sample pool.
Once a class is selected to be drawn from, the sample is
taken by selecting a random starting point in a random
file in the given class, with the probability of a file being
selected proportional to the file length, as illustrated in
Figure 10. This ensures that the average overlap of sam-
ple windows is the same for each file within a class, and
the random location of the starting point means that even
trough ntimes > 1, no samples are identical.

C1

f1
c1

f2
c1

ns
c1≈ 6

f1
c1

f2
c1

f1
c2

f2
c2

f3
c1

f1
c3

fn
c3

C2

ns
c2≈ 6

ns
c3≈ 6

C3

Figure 10: The files being sampled. Each class has an equal
probability of being selected, resulting in an approximately
equal ncn

s . The probability of a file being selected is propor-
tional to file length within its class, giving an equal density of
samples for all files in a class.

Expectably, if two sampling windows overlap, the same
features of the sound will be present in both resulting
spectrograms, although the location of the feature will
be shifted, as illustrated in Figure 11. This bears sim-
ilarity to the practice of augmenting visual image data
by rotating or cropping the images, in order to enlarge
the dataset, as well as make the algorithm more robust
against overfitting (Géron, 2019).

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 7

same feature

overlapping samples

fn
cn

Figure 11: Overlapping sample windows, resulting in the same
feature being present in both spectrograms.

3. After the samples are selected, they are transformed into
spectrogram images, as described in further detail in Sec-
tion 4. The images are then randomly split into 80% used
for training and 20% for validation, as shown in Figure
12.

C1 C1

C2 C2

C3C3

80%

20%

Training set

Validation set

Figure 12: The pool of samples is randomly split into 20% for
validation and 80% for testing.

4. After the CNN is trained its performance is tested using
the test data truncated in step 1. Each file in the test set is
traversed sequentially with no overlap, each sample being
classified by the neural net, as illustrated in Figure 13.
This mimics data incoming sequentially from a welding
setup and being classified in real-time for on-line weld
monitoring. The predictions are then compared to the
actual file labels, and an overall average accuracy accu is
calculated as an expression of the networks performance:

accu =

(
nc1

corr

nc1
ts

+
nc2

corr

nc2
ts

+
nc3

corr

nc3
ts

)
·

1
3

(2)

Where ncorr is the number of test samples predicted cor-
rectly and nts is the total number of test samples for a
given class. It is worth noting, that accu is not weighted
with respect to the relative size of the nts, which puts
more emphasis on recognizing all three classes equally,
instead of achieving high accuracy on classes represent-
ing a majority of the dataset.

The effect of choosing different numbers of samples was
investigated using an initial CNN architecture described in Sec-
tion 5. Holding the parameters for generating the spectrogram

C2 C1 C1

ft1
c1

C2 C1 C1

ft1
c1

Figure 13: Testing: the sound files from the test set are scanned
sequentially, with each sample window labeled by the algo-
rithm. The predicted window labels are then compared with
the actual file class and the accuracy is calculated.

Sampling density test:
step length lstep 0,5 / 0,25s
window length lwin 256
overlap 50%
pre-emphasis 0,0
epochs trained 20

Table 4: Pre-processing parameters for the tests shown in Fig-
ure 14.

constant, (see Table 4) the neural net was trained with samples
generated by different magnitudes of ntimes, with the results as
shown in Figure 14. As seen from the upper graph, even a ten-
fold oversampling does not induce overfitting: i.e. although the
training samples are highly similar due to the amount of over-
lap the algorithm is still able to generalize the information to
the unseen test set.

Although the overlap is always largest for the samples in
the c1 class, the amount oversampling does not seem to show
any trend on the prediction accuracy of the individual classes,
as shown on the lowest graph. Comparing the upper and mid-
dle graph of Figure 14 shows, that the relative performance of
different sample lengths is better assessed when compared at
the same ntimes value than the absolute number of samples, as it
directly expresses how many times the information in the data
set has been seen by the algorithm,

In general, accu increases linearly with ntimes, however the
larger number of samples also increases the pre-processing time
for generating the spectrograms. As a trade-off it is decided
to continue all further experiments with an ntimes = 2, when
investigating the pre-processing parameters in the next section.

4. Pre-processing

Before the data from the sound recording can be fed into
the neural network, it first needs to be converted into an image
representation that the CNN architecture operates on. This sec-
tion investigates the process of converting the time series data
from the sound into a spectrogram and the influence of different
pre-processing parameters on how the information contained in
the sound is exposed for the CNN to train on.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 8

52%

80%

71%

77% 80%

76%
68% 78%

69%

51%

73%

59%
52%

84%
81% 80%

48%
46%

59%

66%
54%

48%
55% 58%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1,5 2 2,5 3 3,5 4 10

te
st

 a
cc

u
ra

cc
y

(
in

d
iv

id
u

al
)

n_times (oversampling of c1)

c2

c3

c1

56%

59%

68%
67%

62%

69%

68%
72%

59%

60%

67%
61% 66%

65%
66%

68%

40%

45%

50%

55%

60%

65%

70%

75%

80%

0 5000 10000 15000 20000 25000 30000 35000

ac
c_

u

total number of samples (train + validation)

0.5s

0.25s

56%
59%

68%
67%

62%

69%
68%

72%

59%
60%

67%

61%

66%

65%
66% 68%

40%

45%

50%

55%

60%

65%

70%

75%

80%

0 2 4 6 8 10

ac
c_

u
 (

u
n

w
ei

gh
te

d
 a

vg
. o

f
c1

-c
3

)

n_times (oversampling of c1)

Test accuracy vs. sampling density

0.5s

0.25s

Figure 14: The overall accuracy accu and accuracy of individual
classes under different ntimes or number of samples.The lowest
graph is for sample length of 0.5s.

4.1. Spectrograms

The spectrogram represents the intensity of various frequen-
cies present in the time series, shown over time. The pipeline
for creating a spectrogram is illustrated in Figure 15 and con-
sists of four main steps:

1. First, as discussed in section 3, a sample window of a
certain length, denominated as the step length (lstep), is
taken out of the signal.

2. The sample is then again windowed using a sliding win-
dowing function (here, a Hamming window) of a given
window length (lwin), which is moved by a certain hop
length (lhop). The hop length is typically calculated from
a specified overlap in percent, which expresses the frac-
tion of the windowing functions overlapping:

lhop = lwin · (1 − overlap) (3)

Because of its connection to the STFT in the next step,
lwin and consequently also lhop are expressed in audio
samples and always chosen as a power of two, while lstep

is expressed in seconds.

3. Each of the windowed bits of data is then passed trough a
Short Time Fourier Transform (STFT), which calculates
the intensity (converted to dB) of the various frequencies
present in the signal . The intensities are returned as a
vector of lwin/2 + 1 frequency bins.

4. The vectors from each STFT are then concatenated column-
wise into a spectrogram image of the whole sample. Each
column of pixels represent the frequency spectrum of the
sound at a given point in time, with the rows of the image
representing the frequency bins. The dimensions of the
whole image therefore depend on the parameters chosen
and are calculated as follows:

height =
lwin

2
+ 1 width =

fs · step
lhop

(4)

Where fs is the samplerate of the audio signal.
5. Once all of the Ns images are created, the whole dataset

is normalized, mapping all pixel values from 1 to 0 (i.e.
the brightest pixel in the dataset is mapped to 1, preserv-
ing the relative ”loudness” difference between spectro-
grams.)

Time

Amplitude
windowing fcn

(Hamming)

STFT STFT STFT STFT

Frequency

Amplitude

step

Sample

window
length hop

Spectrogram

Frequency
Amplitude

1

2

3

4

F
re

q
u

e
n
c
y

Amplitude

Time

Figure 15: Conversion of time series data into a spectrogram
image: 1) the sample of data is selected, 2) the sample is win-
dowed using a sliding windowing function, 3) The windowed
data is passed trough a Short Time Fourier Transform (STFT)
outputting a vector of amplitude intensities, 4) The vectors are
concatenated in the time dimension to form a spectrogram im-
age.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 9

4.2. Pre-processing parameters
Besides the image dimensions, the parameters in equations

3 and 4 also affect how the information carried in the sound sig-
nal is accentuated. The correct choice of those pre-processing
parameters is therefore crucial for achieving good recognition
performance. This section investigates the meaning of each of
the parameters and how it influences the appearance of the spec-
trogram image.

The first parameter to consider is lstep i.e. how long a seg-
ment of the sound a single image represents. Unlike other au-
thors like (Ren et al., 2018) or (Wu et al., 2017) working with
AC welding, where the optimal step size can easily be chosen
from the frequency of the welding current, in DC welding the
electrical arc, the acoustic impulses from the ignition of the
electrical arc1 are irregularly spaced apart as visible in Figure
16. If the pattern of the impulses is in any way correlated to the
penetration state of the weld, it important to select a step size
long enough for it to be included.

c1 v: -1.5 , wfs: 7.0

c3 v: -2.5 , wfs: 7.0

c1 v: -3.0 , wfs: 7.5

C1:

Time

c2 v: -2.8 , wfs: 5.5 c2 v: -2.5 , wfs: 4.5

c3 v: -1.5 , wfs: 7.0

C2:

C3:

Fr
eq

u
en

cy

Pre-processing parameters:
step=0,5s; win_length=256; overlap=50%; pre-emph=0

large feature

Figure 16: Six sample spectrograms generated at the same pre-
processing parameters. The images, even within the same class,
can be wildly different with irregularly spaced arc impulses
(bright vertical lines), making it difficult to determine an op-
timal sample length (lstep). (The shown spectrograms span over
0,5s.)

As mentioned previously, the widow length lwin determines
the number of frequency bins the signal is sorted into. This
comes however at a cost: A larger lwin increases the resolution
in the frequency domain, but on the same time it stretches over
a longer period in the time domain, averaging out any short
-duration effects. Figure 17 illustrates this ”uncertainty princi-
ple”, (also known as the Gabor limit (Gabor, 1947)): the STFT
either has accuracy in pinpointing the frequencies of the two
harmonics, or temporal accuracy in locating the sharp clicks,
but it cannot offer both. To partially compensate for the short-
comings of the of the STFT, the overlap can be increased, allow-

1- The origin of the impulses is assumed to be from arc ignition, based on
the study of arc behavior in (Horvat et al., 2011) and (M CÏudina, 2003)

ing short-duration features to be present in more than one win-
dow, which makes them appear stronger on the spectrogram.

Window length: 128 (3ms), overlap: 0% Window length: 4096 (93ms) , overlap: 0%

Window length: 4096 (93ms) , overlap: 75%
0%

75%

Figure 17: Spectrograms of a signal consisting of two sine
waves at 5 and 15kHz, and four 5ms clicks. The various win-
dow lengths can either represent the waves or the clicks accu-
rately, but not both. Increasing the overlap accentuates the short
clicks as they appear in multiple time windows.

Some sources using CNNs for speech processing recom-
mend boosting the input signal with a high pass filter (Fayek,
2016). A typical audio signal has an overall amplitude decrease
with increasing frequency, (eg. human speech decreases with
roughly -2dB/kHz, meaning the signal at 10 khZ will be ≈10x
weaker), which can lead to inaccuracies in some implementa-
tions of the discrete Fourier transform (Tom Backstrom, Aalto
University Wiki, 2019). Using a pre-emphasis filter balances
the frequency spectrum, as well as may improve the Signal-to-
noise ratio. In order to test that hypothesis, the sound is treated
with a first-order filter before it is passed trough the STFT (i.e.
between step 2 and 3 in Figure 15) :

P(z) = 1 − α · z−1 → y(t) = x(t) − αx(t − 1) (5)

Where α is the pre-emphasis parameter, P(z) is the fre-
quency domain expression, x(t) is the time series data, and y(t)
is the discrete implementation of the filter. The frequency re-
sponse of the discrete filter for different pre-emphasis values is
shown in Figure 18.

4.3. Pre-processing impact on CNN accuracy

With the knowledge on how the pre processing parameters
affect the spectrogram it remains to be tested how they im-
pact the CNNs performance. Due to the complex nature of
the CNN algorithm, it is not possible to a priori asses which
choice of pre-processing parameters will best accentuate the in-
formation that is relevant for correct classification. In order to
analyze both their impact, as well as the possible interactions
between them, the pre-processing parameters were tested in a
2k-factorial experiment. In this method each of the parameters
is varied in two settings and a response surface of the process

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 10

0 2500 5000 7500 10000 12500 15000 17500 20000
Frequency

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

am
pl

itu
de

High-pass filter
alpha:0.1
alpha:0.3
alpha:0.5
alpha:0.8
alpha:0.95

Figure 18: Frequency response of the discrete first-order filter
from equation 5, for different values of α, at sampling frequency
of 44kHz. (A more detailed analysis of the filter is available in
the accompanying material)

is modelled, as illustrated in Figure 19. The method ensures to
capture both the effect of the main parameters as well as their
interactions, requires less experiments and is more robust to-
wards finding the optimum than by optimizing the parameters
one-at-a-time (Montgomery, 2009).

(A full walk-trough of the 2k-factorial experiment is avail-
able in the accompanying material, the explanation below serv-
ing as a resume.)

Figure 19: 2k-factorial experiment design on a process with two
parameters. The 2k-factorial method uses only 4 experiments,
and better characterizes the process than adjusting the factors
one at a time, which would lead to a false optimum of 75%.
(Montgomery, 2009) (Modified)

The four pre-processing parameters, lwin, lstep, overlap and
pre-emph were encoded as the four variables x1...x4 in the ex-
periment and each assigned an empirical ”high” and ”low” level
shown in Table 5. The four variables yield 16 unique combina-
tions (called treatments). Each treatment was replicated twice
with two different randomness seed values (0 and 100,) provid-
ing a total of 32 data points, shown in Figure 20.

In general it was found that there is weak statistical evi-
dence for that the treatments have an impact on the recognition
accuracy of the CNN, meaning that, within the span of the pa-
rameters chosen in table 5, it is difficult to distinguish any effect

Parameter low (-1) high (+1)
x1: lstep 0,25 0,5
x2: lwin 128 256
x3: ovelap 25% 50%
x4: preemph 0,0 0,95

Table 5: Parameter values for the first 2k-factorial test.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
treatments

35

40

45

50

55

60

65

CN
N

ac
cu

ra
cy

 (%
)

no-preemph avg
no-preemph meas
preemph avg
preemph meas

Figure 20: Results of the 16 treatments listed in Table 6

of a particular treatment from the overall variation in the set,
as can partly be seen in the large overlaps between treatment
results in Figure 20. More replicates of the treatments could
partially help the issue, however due to the time constraints of
the project it was decided to carry on with only 2 replicates of
each treatment.

Secondly, it was early on established that pre-emphasis has
a strong negative effect on the CNNs’ performance as well as it
would make it less stable, as plotted in Figure 21. (On average
changing pre-emphasis from 0,0 to 0,95 would result in a 10,4
percentage-point (pp) drop in accuracy.) On those grounds it
was decided to exclude pre-emphasis as a parameter, (i.e. dis-
card the results of treatments 8 to 15) before continuing.

Figure 21: Comparison of 5 replicates of treatment no. 6 and
12, (see Table 6) highlighting the instability of the CNNs’ per-
formance when the pre-emphasis parameter is set high. (The
seed value refers to the randomness seed used to generate the
training set.)

After excluding the pre-emphasis the main effects and inter-
actions of the remaining three parameters were identified, (for

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 11

no. x1 x2 x3 x4 (avg.) y 0 y 100
0 - 1 - 1 - 1 - 1 60.450 56.99 63.91
1 +1 - 1 - 1 - 1 56.925 58.33 55.52
2 - 1 +1 - 1 - 1 59.480 59.25 59.71
3 +1 +1 - 1 - 1 53.835 51.33 56.34
4 - 1 - 1 +1 - 1 60.150 56.21 64.09
5 +1 - 1 +1 - 1 54.885 43.36 66.41
6 - 1 +1 +1 - 1 63.235 62.79 63.68
7 +1 +1 +1 - 1 57.735 53.35 62.12
8 - 1 - 1 - 1 +1 45.135 34.98 55.29
9 +1 - 1 - 1 +1 33.330 33.33 33.33
10 - 1 +1 - 1 +1 41.995 33.37 50.62
11 +1 +1 - 1 +1 54.770 56.78 52.76
12 - 1 - 1 +1 +1 59.940 52.54 67.34
13 +1 - 1 +1 +1 40.255 47.18 33.33
14 - 1 +1 +1 +1 51.685 36.44 66.93
15 +1 +1 +1 +1 53.195 55.69 50.70

y 0 = accu @ rand. seed 0 y 100 = accu @ rand. seed 100

Table 6: List of results for the 16 treatments in the first
2k-factorial run. The ±1 values represent the parameter
values defined in table 5.

parameter ∆y (25/50%) ∆y (50/75%)
x1 -4.98375 -3.67875
x2 0.46875 2.57375
x3 1.32875 1.03125

(x1, x2) -0.58875 -0.83375
(x1, x3) -0.39875 1.70375
(x2, x3) 2.49875 -0.39375

(x1, x2, x3) 0.47125 -0.71625

Table 7: Main effects and interactions of the two 2k-factorial
experiments. ∆y is the average change (in pp) of the CNNs’
accu if the listed parameter(s) are changed from their ”low” to
their ”high” setting.

more details on the methodology refer to the accompanying ma-
terial) shown on Table 7, and Figure 22.

x1

56

57

58

59

60

61

62

ac
c_

u
(%

)

x1 & x2
x2-
x2+

x1

x1 & x3
x3-
x3+

x2

x2 & x3
x3-
x3+

- + - + - +

Figure 22: Plot of the 2-way interactions between the 3 parame-
ters in the first iteration of the 2k-experiment. (See first column
in table 7 for numeric values.)

From the effects and interactions it could be concluded that
in order to obtain the best results: x1 should be kept low. x2
should be kept high, - not due to its importance on its own, but
the impact when combined with x3 and x3 should be kept high.

Encouraged by the results, it was decided to conduct a se-
ries of further 4 treatments with the overlap increased to 75%.
Combined with treatments no. 4 to 7 this would result in a new
2k-factor 3-parameter design. (I.e. the same experiment setup
as listed in Table 5, but with the parameter values for x3 being
50% and 75% respectively, and no variable x4.)

The second iteration yielded set of effects and interactions,
listed in the second column of Table 7.
In a similar fashion it was concluded that for best performance
x2 and x3 should be kept high, while x1 should be kept low, lead-
ing to treatment no. 6, ([1, 1, 1]) being chosen as the final set of
processing parameters: lstep: 0,25s, lwin: 256, overlap: 75% and
pre-emph: (none). The final parameters were then replicated 5
times, in order to test the stability of the results, yielding an
average recognition accuracy of 61,13% and a standard devia-
tion of 2,27 percentage-points, as shown in Figure 23, giving
all in all an average improvement of 2,83pp over the average of
iteration 1 (with x4 excluded).

It has to be kept in mind that due to the high variation and
low number of replicates in the 2k-experiments, all conclusions
have to taken with a grain of salt,however some of the sugges-
tions from the 2k-test can partly be explained: A high x2 value
(i.e. a high window length) results in more frequency bins of
the STFT providing more resolution in the frequency domain.
A high x3 value, (i.e. a high overlap) accentuates the short-
duration features, as illustrated in Figure 17. Interestingly those
parameter values coincide with the ones chosen by (Ren et al.,
2018).

The suggestion to reduce the step length is less intuitive: As
illustrated in Figure 16, some of the files contain sharp features
occurring irregularly, approximately once every 0,25s. The oc-
currence of those can itself not be linked to a particular class, as
they occur in all 3 classes. The choice to keep the spectrogram
length at 0,25s is partly motivated by the wish to enlarge the
chance that on average, if they occur in the given file, at least
one such feature will be present in each spectrogram. It could
however be investigated if the strong arc impulses indeed con-
tain information that can be linked to the penetration state, as
claimed by e.g. (Ren et al., 2018) .

0 100 200 300 400
rand. seed value

40

50

60

70

80

90

CN
N

te
st

 a
cc

ur
ac

y
(%

)

final (75%), no resizing
final (75%) w. resizing
avg. iter 1
avg. iter 2

Figure 23: comparison of the Performance of the CNN with the
final processing parameters, with and without image resizing,
as well as the averages of the two iterations of the 2k factorial
experiment.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 12

4.4. Effect of image resizing

When the pre-processing parameters were varied during the
2k-factorial experiments, as a consequence of Equation 4, the
resulting spectrograms had different image dimensions. Typi-
cally a CNN is designed to operate on a certain image size, as
it affects the ratio of inputs (the number of pixels) to trainable
parameters (filters and neurons in fully connected layers) in the
CNN.

To avoid introducing this extra source of variation in the ex-
periment, it was decided that all spectrograms in the 2k-factorial
test would be resized to the same size. The size of the largest
spectrogram size (129 x 345) was chosen and the images were
resized using nearest-neighbor interpolation. Choosing the largest
image size means the images are only enlarged, i.e. no infor-
mation in the spectrogram would be lost and the choice of in-
terpolation mode means that no additional data is created.

Of course, resizing the image still has an effect as some
features on the image may no longer be able to be covered by
the convolutional filter, as illustrated in Figure 24.

?

?

2x

Figure 24: Effect of resizing: As the image is enlarged, the
same 3x3 convolutional filter may be unable able to unambigu-
ously locate some of the features of the image. (e.g. the eye).

This possible effect of resizing can unfortunately not be ac-
counted for during the 2k tests, however in order to character-
ize the effect of image resizing, the final design parameters were
replicated 5 times without resizing the images, as shown in Fig-
ure 23. As shown on the figure, the un-resized spectrograms are
achieving a better accuracy than their resized counterparts. For
that reason, all experiments in the next sections are carried out
on the chosen parameters, without image resizing. (i.e. an im-
age size of 129 x 172.)

5. CNN Architecture

Having settled on a set of parameters to pre-process the in-
put to the CNN, the network itself can now be put under under
scrutiny, in an attempt to design an optimal architecture for the
task.

Numerous hyperparameters come into play when designing
a CNN, both related to the ”architecture” of the CNN itself such
as the number, type, size and depth of the layers, as well as hy-
perparameters related to the training of the network: the choice
of loss function, optimizer algorithm, learning rate or number
of epochs to train. The correct choice of those hyperparame-
ters, is the basis for achieving good algorithm performance, as

proven e.g. by (David Cox, 2011), achieving results ranging
from pure chance to state-of- the-art performance, depending
purely on hyperparameter choices.

Unfortunately, while there are methods for optimizing or
pruning existing, functioning CNN networks (eg. (Garg et al.,
2020)), very few systematic methodologies exist for manually
designing and tuning a network from scratch and in many cases
the choice of hyperparameters relies on domain knowledge of
the researchers (Bergstra et al., 2011).

As the domain knowledge is very difficult to generalize across
different application cases, most hyperparameter optimization
algorithms that do exist, are based on random search (Bergstra
& Bengio, 2012) or Sequential Model-Based Optimization
(SMBO) being an implementation Bayesian model-based opti-
mization (Ian Dewancker, 2015).

As evaluating the real objective function f (x) (i.e. training
and testing network at a given set of hyperparameters, x), is
computationally expensive, the SMBO method works by build-
ing a probability-based surrogate model p, based on an ini-
tial dataset D of function evaluations at different hyperparam-
eter values: (D = {(x1, y1), . . . , (xn, yn)}) . Using the surrogate
model as a fast alternative, a selection function S , can be opti-
mized, which is used to decide what set hyperparameters would
yield the improvement in the performance of f. The proposed
set of new hyperparameters, xi from the allowed search space X,
can be seen as a ”best educated guess based on current knowl-
edge” and is tested on the real objective function. The new
datapoint yi = f (xi) is then added to D, which enriches the
knowledge used for the next prediction. The procedure is then
repeated for a set number of iterations, or time limit, as summa-
rized in algorithm 1: (Bergstra et al., 2011), (Ian Dewancker,
2015)

Algorithm 1: Sequential Model-Based Optimization
input: f ,X ⊃ x, S
D← InitalS amples(f , X) . Create inital set of function evaluations
for i = |D| to imax do

p(y|x,D)← FitProbModel(D) . Fit surrogate model to D
xi ← argmaxx S (x, p(y|x,D)) . Optimize S based on p
yi ← f (xi) . Evaluate new x, (expensive)
D← D ∪ (xi, yi) . Add new data-point to D

end
x∗, y∗ ← max(D) . Retrieve the optimal parameters.

The Python hyper-opt (Bergstra et al., 2013) library offers
an easy to use SMBO implementation, using Tree Partzen es-
timators (TPE) as the surrogate function, and a metric of Ex-
pected Improvement (EI), as the selection function. In trials on
different computer vision problems, the algorithm tuned via the
the TPE-method outperformed both ones optimized via. ran-
dom search based methods as well as human experts.

Unfortunately, when applied on the current problem, due to
the number of hyperparameters which can be tuned to improve
the model, the method would require a high number of itera-
tions, which is not possible due to hardware constraints2.

2- The mentioned TPE-based optimization required roughly 24 hours of

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 13

Similarly, if the hyperparameter space was to be searched
using the 2k-factorial method as in Section 4.3, this would re-
sult in up to 26 = 64 treatments in the first iteration alone, each
requiring more than one replicate for reliable conclusions.

Facing those limitations it was decided to tune the hyperpa-
rameters manually, by first, in order to limit the search space,
choosing a ”base architecture” from a selection of different ar-
chitecture types. Then, on the base architecture, 6 selected hy-
perparameters which could be of influence were investigated:
The use of dropout layers, learning rate, choice of activation
function, use of batch normalization and varying the kernel size.

The experiments implicitly assume no interactions between
the hyperparameters, so that the parameters can be tuned se-
quentially. This assumption does not necessarily need to hold
true, however is necessary in order to limit the search space.

5.1. Selecting a base architecture:

When designing a general CNN architecture it common prac-
tice to start with larger but shallower (i.e. fewer filters) convolu-
tional layers, then as the network progresses the layers become
smaller but with more filters. This is motivated by the fact that
while the number of low level features is relatively low (e.g.,
vertical, horizontal lines, etc.), there are many different ways to
combine them into higher level features. (Géron, 2019).

Following those rules of thumb, four candidates for a base
architecture were selected:

5.1.1. Initial architecture: 01-arch
The tests done in sections 3 and 4 were done on an initial

CNN architecture, used to investigate the effects of different
sampling strategies and pre-processing parameters. This initial
architecture, dubbed 01-arch, is based on the network used by
Ren et al. (2018) for classifying the penetration state of alu-
minium GTAW welding. (See Table 1) The architecture, listed
below, bears resemblance to the LeNet-5 architecture (Lecun
et al., 1998), by using two sets of Convolution-Pooling pairs
followed by a fully connected layer. It characterizes itself by
using an uneven stride length of (2,1) on the first convolutional
layer, reducing the image height by half3 and by using Leaky-
ReLU units as an activation function. As an addition to the
original design, a dropout layer has been added after the last
MaxPooling layer, with a dropout of 0.5 to reduce overfitting.

01-architecture:

alpha=0.01

model = Sequential([

Conv2D(8, kernel_size=(3, 3), strides=(2, 1),

padding='same',↪→

input_shape=input_shape),

computation on 6 parallel GPUs to reach human level performance. (Bergstra
et al., 2013)

3- The input image used by Ren et al. was 129x32 pixels, therefore the
uneven strides try to bring the closer to a 1:1 aspect ratio. Surprisingly, the
stride length also works better on the current, 129x172 image than an equal
stride of (2,2).

LeakyReLU(alpha=alpha),

MaxPooling2D(pool_size=(2, 2)),

Conv2D(16, kernel_size=(3, 3), strides=(2, 1),

padding='same')),↪→

LeakyReLU(alpha=alpha),

MaxPooling2D(pool_size=(2, 2)),

Dropout(0.5),

Flatten(),

Dense(96),

LeakyReLU(alpha=alpha),

Dense(3, activation='softmax')
])

5.1.2. 02-arch
The second architecture is a carbon copy of the first, with

the exception that it does not have its special characteristics:
Normal ReLU activation functions are used4, and all convolu-
tional layers have a normal stride length of (1,1). In order to test
whether the improvement may lie in the fully connected layers,
an extra dense layer was added and the total number of fully
connected neurons was increased from 99 to 207:

02-architecture:

model = Sequential([

Conv2D(8, kernel_size=(3, 3), activation='relu',
padding='same', input_shape=input_shape),

MaxPooling2D(pool_size=(2, 2), strides=2),

Conv2D(16, kernel_size=(3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2), strides=2),

Flatten(),

Dense(120, activation='relu'),
Dense(84, activation='relu'),
Dense(3, activation='softmax')

])

5.1.3. 03-arch
The third architecture is a variation of 02-arch, except that

more emphasis is put on the convolutional aspect of the net-
work: instead of an extra dense layer, it has a third Convolution-
pooling pair making it deeper. The number of filters is also dra-
matically increased, starting at 32 and, as suggested by Géron
(2019), doubled after each Max pooling layer:

#03-architecture

model = Sequential([

Conv2D(32, kernel_size=(3, 3), activation='relu',
input_shape=input_shape),

MaxPooling2D(pool_size=(2, 2), strides=2),

Conv2D(64, kernel_size=(3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2), strides=2),

Conv2D(128, kernel_size=(3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2), strides=2),

4- Motivated partly by their use in 01-arch, as well as their superior perfor-
mance to tanh activation functions in speech recognition tasks (Maas, 2013).

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 14

Flatten(),

Dense(64, activation='relu'),
Dense(3, activation='softmax')

])

5.1.4. 04-arch
The fourth architecture is inspired by the VGG-16 and VGG-

19 networks (Simonyan & Zisserman, 2014) employing a Convolution-
Convolution-Pooling structure, which is repeated twice. It also
has a relatively large fully connected layer with 512 neurons.

#04-architecture

model = Sequential([

Conv2D(8, kernel_size=(3, 3), activation='relu',
padding='same', input_shape=input_shape),

Conv2D(8, kernel_size=(3, 3), activation='relu',
padding='same'),
MaxPooling2D(pool_size=(2, 2), strides=2),

Conv2D(16, kernel_size=(3, 3), activation='relu'),
Conv2D(16, kernel_size=(3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2), strides=2),

Flatten(),

Dense(512, activation='relu'),
Dense(3, activation='softmax')

])

Tables summarizing the four architectures, their sizes and
number of parameters can be found in Appendix C. Each of the
four architectures was run 5 times on the same seed values, with
the the average test accuracies listed in table 8.

Despite achieving the best results, 01-arch is already a re-
sult of the work of (Ren et al., 2018), and is therefore not in-
cluded in the further investigation. 04-arch with the highest
average testing accuracy of 60,46% is chosen as the best base
architecture for further improvement.

Architecture: # params avg accu
(%)

std dev.
(pp)

01-arch 596.067 67,51 1,46
02-arch 2.653.707 59,89 4,92
03-arch 4.221.827 44,67 13,88
04-arch 11.278.395 60,46 3,43
04-dropout 11.278.395 64,66 3,16
04-drp-leaky0.1 11.278.395 63,90 3,64
04-drp-leaky0.3 11.278.395 63,27 1,14
04-drp-leaky0.3-SGD 11.278.395 67,46 1,96

Table 8: Number of trainable parameters, the average test ac-
curacy and standard deviation (over 5 repetitions, seed values
as in Figure 27) of the four baseline candidates and the further
versions of 04-arch.

5.2. Architecture-related hyperparameters
With a baseline architecture selected its different ”internal”

hyperparameters can be varied. This section emphasizes on hy-
perparameters acting as modifiers to the base architecture.

As some of the parameter choices may not work at all, the
tests in this section were conducted with early stopping enabled
and a patience value of 2, i.e. if the validation loss increases for
more than 2 consecutive epochs, it is interpreted as an onset of
model overfitting, and the training is stopped and lowest vali-
dation loss so far is saved, as illustrated in Figure 25.

Figure 25: Early stopping with patience = 2: If the validation
loss does not decrease within 2 consecutive epochs, the training
is terminated, and the model at the lowest validation loss is ket.
This reduces the risk of overfitting, which is assumed to begin
once the disparity between training and validation loss starts to
diverge. (i.e. epoch 5).

5.3. Dropout

The first modification to the base architecture was the addi-
tion of a dropout layer after the last convolutional max pooling,
and before the fully connected layers. (I.e. between layers P6
and FL7, see table C.12 in Appendix C). Dropout regularization
works by at any given training step giving each neuron and in
the regularized layer a set probability of being turned off, i.e. its
value and connections being ignored. (Srivastava et al., 2014)

This simple method prevents the network from having com-
plex co-adaptations, i.e. specialized neurons that activate based
on very specific patterns in the input, but do not generalize well
when exposed to unseen data. (Hinton et al., 2012)

Dropout rates of (0.2, 0.4, 0.6, 0.8) were tested, and a dropout
rate of 0.6 proved to yield the best test performance, increasing
the average accu from 60,46% to 64.66% as listed in Table 8.
The change was therefore kept and incorporated into the net-
work.
A second dropout layer was also inserted between the two dense
layers (I.e. between layers D8 and D9 in table C.12) and tested
with the same values, however no improvement in performance
was observed.

5.3.1. Leaky - ReLU
As a second modification, based on its use in 01-arch, it was

tried to use the Leaky Rectified Linear Units (Leaky-ReLU), ac-
tivation function, which in differs itself from the regular ReLU
function, by having a nonzero slope when the unit is not active
(Chollet et al., 2015).

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 15

f (x) =

α · x , x < 0
x , x ≥ 0

(6)

Where α is the slope parameter. The small slope, set by
α, reduces a problem known as the dying ReLUs where the
weighted sum of all inputs to a neuron is negative for in all
instances of the training set and as illustrated in Figure 26, the
neuron does not pass on any signal. Leaky-ReLUs also partly
reduce the vanishing gradients problem. (Géron, 2019).

α

Figure 26: ReLU and Leaky-ReLU activation functions. (Xu
et al., 2015)

Similar to 01-arch, all activations were changed from ReLU
to Leaky-ReLU. Based on suggestions from (Xu et al., 2015)
and (Han et al., 2016) an alpha of 0,1 and 0,3 were tested, yield-
ing an average accu of 63,9% and 63,27% respectively. While
those numbers are one percentage-point lower than the previ-
ous 04-dropout architecture listed in 8, the runs with an α of 0,3
had a much lower standard deviation of just 1,14pp, as shown
in Figure 27. As a a stable performance is preferable in the fur-
ther search for hyperparameters over a small drop in accuracy,
the change is kept.

5.3.2. Batch normalization
Generally, in deep neural networks training is complicated

by internal co-variate shift (the fact that the distribution of each
layers input changes as the parameters of the previous layer
change during training, so that small changes in the parameters
amplify as the network becomes deeper). Batch normalization
(BN) addresses the problem by, during training, zero-centering
and normalizing the input before/after passing it on to the acti-
vation function. The input is normalized based on the mean and
standard deviation of the current mini-batch, hence the name.
(Géron, 2019) (page 333.) (Ioffe & Szegedy, 2015)

Although typically used in deep neural network architec-
tures, BN can also be used in CNNs. Similar to its use in
e.g. ResNet (He et al., 2015) , three BN layers were inserted
in the architecture, before each MaxPooling and Dropout layer,
(i.e. before layers P3, P6 and D8, in table C.12) and tested on
batch sizes of 32 (default), 128 and 256. No improvements were
noted in either the test, or training performance of the networks,
quite contrary, the networks were found to have poor learning
performance, resulting in early stopping after just 2-3 epochs.

Similar results were noted with BNs inserted before ev-
ery non-linearity in the model, (i.e. before every layer with a
Leaky-ReLU activation) as suggested by the creators in their
original publication. (Xu et al., 2015)

5.3.3. Kernel size
A last hyperparameter that was varied was the size of the

convolutional kernel. As discussed previously in Section 4.4
the kernel size may influence what features in the image the
CNN is able to capture. In order investigate that assumption,
the first convolutional layer, C1 was modified to use a 5x5 filter
with a stride length of (2,2). When implemented the change
yielded poor results, with an average accu of 45,7%, and in 3
out of the 5 cases the network did not start learning at all.

54%

58%

62%

66%

70%

74%

0 100 200 300 400

04-arch 04-arch-0.6-dropout 04-drp-leaky0.1

04-drp-leaky0.3 04-drp-leaky0.3(SGD)

C
N

N
 a

cc
ur

ac
y

(%
)

rand. seed value

Figure 27: Test performance of the 4 variants of 04-arch listed
in Table 8. The seed values refer to the randomness seed values
used to generate the training dataset.

5.4. Training hyperparameters
Besides the hyperparameters related to the design of the net-

work itself, it is important to consider the training method, as it
determines whether the network is able to reach its full poten-
tial.

5.5. Learning rate
The learning rate can be a hugely important hyperparame-

ter as it can have influence on both the convergence speed as
whether the optimizer is capable of converging to the minimum
at all, or may be stuck at local plateaus. Typically the inputs to
a model are normalized so a default learning rate of 0,01 would
work for most problems (Montavon et al., 2012) (page 437.),
nevertheless the best learning rate may depends on the partic-
ular problem, and should therefore always be reassessed. As
learning rates typically lie in the interval 10−6 to 1 (Montavon
et al., 2012) (page 437.) Common advice (Surmenok, 2017),
(Ramesh, 2018) suggests to try learning rates of sequentially
increasing orders of magnitude: i.e. 0,001, 0,01, 0,1, 1. The
suggested learning rates of 0,001 (default), 0,01 and 0,1 were
tried, however no significant improvements, neither in accuracy
nor training time were observed and the default rate of 0,001 for
the Keras Adam optimizer was kept.

5.5.1. F1-loss
Until now, all networks were trained using the Categori-

cal Cross-entropy loss which is used as the the default in Keras
multi-class problems. However, due to the imbalance in the rep-
resentation of the classes in the dataset, as discussed in Section

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 16

2.2 other loss functions may be more appropriate. (Note that
the 3 classes are still equally represented in the training data,
but due lack of raw c1 data, the c1 samples are more similar, as
discussed in Section 3.)

The F1-score is an expression of the balance between Pre-
cision and Recall of a set of predictions, defined as:

Precision =
T P

T P + FP

Recall =
T P

T P + FN
(7)

F1 = 2·
Precision · Recall
Precision + Recall

Where TP, FP and FN are true positives, false positives and
false negatives, respectively (see Figure 28.)

The precision metric asks the question: ”what fraction of
the predicted positives were correct?”, favoring only classifying
”sure bets” as positive, while the recall asks: ”what fraction of
actual positives was caught by the algorithm?” favoring a ”label
as positive, just in case” approach. The F1 score balances the
two, favoring classifiers that have similar precision and recall.

The F1-score cannot be used directly as a loss function, as it
is not differentiable for back-propagation. This can be changed
by slightly modifying it, so instead of the 0/1 predictions the
probabilities from the softmax layer are accepted:

Algorithm 2: F1-loss
input: y, ŷ, tresh

ŷ = greater(ŷ) . set yi < tresh to 0

tp =
∑c

i=1(yi · ŷi)
f p =

∑c
i=1((1 − yi) · ŷi)

f n =
∑c

i=1(yi · (1 − ŷi))

p =
tp

tp+ f p+ε

r =
tp

tp+ f n+ε

F1 =
2·p·r

p+r+ε

return 1 − F1 . We minimize 1-F1 i.e. maximize F1

Where c is the number of classes, y is the one-hot encoded vec-
tor with the true labels, y = [0, 0, 1] and ŷ is the softmax predic-
tions ranging from 0 to 1. ε is a machine epsilon added to avoid
division by zero. The input predictions can also be optionally
filtered trough a threshold filter (typically set to 0,5). (Maiza,
2019)

Figure 28: Definition of terms in equation 7.

The F1-loss was tried with the current best network, (04-
drp-leaky0.3, see table 8) at various threshold values. No sig-

nificant improvement in neither test accuracy or training perfor-
mance was noted.

5.5.2. Choice of optimizer
After the endeavours of the previous sections, one last hy-

perparameter remaining is the choice of the optimizer itself.
Until now the Keras Adam optimizer was used, as it is often
considered a good all-purpose optimizer for a wide range of
problems. However, a suggestion in (Géron, 2019) p.351 points
to a paper by (Wilson et al., 2017) showing that adaptive gradi-
ent optimizers (eg. RMSProp and Adam) on over-parametrized
datasets may find solutions which generalize poorly in test-
ing. Following the suggestion, a Stochastic Gradient Descent
(SGD) optimizer was used instead, with a Nesterov Accelerated
Gradient (NAG), explained in Figure 29.

Different values of the momentum parameter were experi-
mented with, settling on a m = 0, 9 and a fixed learning rate of
0,01.

momentum vectorA
B

C

D
Nesterov
update

Regular
momentum update

Starting
point

βm

θ1

Cost
θ2

η∇A
η∇A

η∇B

Figure 29: Nesterov Accelerated Gradient: Normally the opti-
mizer would take a step in the direction of the gradient at point
A plus the momentum from previous steps (~s = η∇A + βm),
NAG instead calculates the gradient at the end of the mo-
mentum vector, Point D, (~s = η∇B + βm), which brings it
closer to the optimum, (and less likely to overshoot.) (Géron,
2019)(modified)

As the SGD by nature has a more erratic path of descent,
its validation loss also in the first few epochs shows more of a
zigzag pattern, when compared to Adam as shown in Figure 30.
As this is expected, the patience factor for early stopping was
increased to 4. The SGD also generally converges slower, and
the maximum number of epochs was likewise extended from 20
to 50.

As seen on the figure, training with the SGD optimizer took
longer, but it did improve the test accuracy by over 4 percentage
points, (from 64,7% to 67,5%, listed as 04-drp-leaky0.3-SGD
on table 8), without compromising the stability. If the average
drop between validation accuracy and testing accuracy, (i.e. a
hint on how well the model generalizes to the unseen test set)
is calculated, the Adam optimizer has an average accuracy drop
of 16,25pp over the 5 trials, whereas SGD has a slightly lower
drop of 15,12pp. The difference is too small to firmly conclude
that the model trained on the SGD is able to generalize better,
nevertheless the small difference, coupled with the better per-
formance of the SGD could motivate a deeper look into the dif-
ferences between adaptive optimizers and SGD in future work.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 17

0.0

0.4

0.8

1.2

0.0 4.0 8.0 12.0 16.0 20.0 24.0

Validation loss

Epochs

Lo
ss

SGD
Adam

Training loss

Epochs

SGD
Adam

0.0 4.0 8.0 12.0 16.0 20.0 24.0

Figure 30: Plot of 5 runs with the same seed values for the
SGD and Adam optimizer respectively. While SGD converges
slower and with more erratic validation loss, SGD achieves bet-
ter results in testing.

The 04-arch using SGD with the added dropout and Leaky-
ReLU is considered the final version of the CNN, identified as
04-drp-leaky0.3-SGD its Keras definition shown below:

#04-drp-leaky0.3-SGD (Final architecture)

alpha = 0.3

model = Sequential([

Conv2D(8, kernel_size=(3, 3), padding='same',
input_shape=input_shape),

LeakyReLU(alpha=alpha),

Conv2D(8, kernel_size=(3, 3), padding='same'),
LeakyReLU(alpha=alpha),

MaxPooling2D(pool_size=(2, 2), strides=2),

Conv2D(16, kernel_size=(3, 3)),

LeakyReLU(alpha=alpha),

Conv2D(16, kernel_size=(3, 3)),

LeakyReLU(alpha=alpha),

MaxPooling2D(pool_size=(2, 2), strides=2),

Dropout(0.6),

Flatten(),

Dense(512),

LeakyReLU(alpha=alpha),

Dense(3, activation='softmax')
])

6. Testing the final architecture

In section 3 it was concluded that a ntimes = 2 (i.e. a 2x
oversampling of class c1) was a good trade-of between a good
performance and shorter training time. With the CNN model
set, 04-drp-leaky0.3-SGD was tested on a 2x oversampling ow
the whole dataset (i.e. a ntimes = 6), in order to produce more
training. samples. The over 5 training runs, the model yielded,
an average accu of 69,94% with a standard deviation of 2,14pp,
confirming the earlier conclusion of Section 3, that a larger
oversampling is still beneficiary for testing performance.

The greater overall number of samples, also means that the
optimizer is able to see more examples in each epoch, meaning
that its validation loss behaves more smoothly than previously
illustrated in Figure 30.

Lastly, as discussed in Section 2.3, a second dataset v35
was created consisting only of welding experiments at the same
welding voltage. The hypothesis was that this would remove
an extra noise factor from the dataset, perhaps leading to bet-
ter results. As the v35 dataset is much smaller the model was
again trained with 2x oversampling of the whole dataset, giving
an average accu of 70,17%. Surprisingly neither the average
testing performance, nor the class accuracy of the individual
classes look much different from models trained on the whole
dataset, suggesting that the ”training value” of the two data sets
is similar.

6.0.1. Confusion characteristics
A confusion matrix of the final CNN model, is seen in Fig-

ure 31.

c1 c2 c3

c1 50,3% 6,7% 3,3%

c2 37,6% 81,1% 34,2%

c3 12,1% 12,2% 62,6%

50,3% 81,1% 62,6%

Predicted

A
ct

u
al

Predict on acc.

Predicted
A

ct
u

al
Class acc.

i

4,4% 9,2% 86,3% 86,3%

c1 c2 c3

c1 65,9% 18,0% 16,1% 65,9%

c2 11,3% 50,2% 38,5% 50,2%

c1 c2 c3

c1 65,9% 18,0% 16,1% 65,9%

c2 11,3% 50,2% 38,5% 50,2%

c3

Figure 31: Confusion matrix for the 04-drp-leaky0.3-SGD (av-
erage of 5 models). The upper matrix shows prediction accura-
cies (columns add up to 100%), the lower, the class accuracies.)

Looking at the class accuracies (rows of lower matrix) it is
clear that that the 3 classes are ”lying on a line”, as illustrated
conceptually in Figure 32: If the true class is c3 the sample is
more likely to be misclassified as c2 than c1, (and vice versa for
c1) which hints that c2 lies between c1 and c3. This makes log-
ical sense, as during the welding process, the category cannot
change from c1 (lack of penetration) to c3 (excessive penetra-
tion), without going trough c2 (normal penetration).

Secondly, if the true class is c2 the sample is more likely
to be misclassified as c3 rather than c1, hinting that class c2 re-
sembles c3 more than c1, hence the unequal distance illustrated
in Figure 32. This corresponds well with the predictions of the
PCA analysis in Section 2.3, particularly in Figure 6, showing
a bigger overlap between the points of c2 and c3.

Comparing the prediction accuracy with the class accuracy,
it can be hypothesized how the network weights the different
classes, as drawn in Figure 32: If the 3 classes are seen as 3
distinct agents, a column of the class accuracy confusion ma-
trix, can be seen as a measure of the probability of the class
”laying a bet” on a sample, given the real class it belongs to.
E.g. as shown on the upper part of the figure, p(ĉ1|c1) = 0, 659,
p(ĉ1|c2) = 0, 113 and p(ĉ1|c3) = 0, 04).

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 18

C2C1 C3

What the sample resembles
True class

Probability of
class being
predicted

Area under curve = class acc.

0,659 0,113
0,04

C2C1 C3

C1
C2

C3

Figure 32: The confusion matrix conceptually drawn as a the
hypothesized ”selection probability curve” of the 3 classes.

The probability of that bet being right, is then the predic-
tion accuracy, which can be used to approximate the shape of
the curve: E.g. for c2: p(ĉ2|c2) = 0, 50 meaning there is only
a small chance of c2 being predicted, but when the network
decides to bet on it, the prediction accuracy is high (81,1 %),
meaning that the peak of the curve is probably well centered on
the class.

7. Conclusions and future work

In this article the use of Convolutional Neural Networks
(CNNs) for the task of classifying the weld penetration state
via the process sound was investigated.

An initial analysis of the obtained welding sound dataset in
Section 2.3 revealed that the characteristics of the sound may
vary depending on not only the penetration state, but also the
welding parameters used and that the sound of the 3 penetration
states is highly similar, requiring more than a PCA analysis of
sound features to reliably separate out the 3 states.

In Section 4 the optimal pre-processing parameters for con-
verting the sound time series data to spectrogram images were
investigated. It was found that in general, the use of pre-emphasis
has a strong negative influence on the usability of the spec-
trograms as input to the CNN. Secondly, the remaining pre-
processing parameters have a statistically weak influence on the
CNN performance, with a short step length and high overlap
having a mildly positive effect.

With the pre-processing parameters set at the recommended
values, a custom CNN architecture was built and manually tuned
with various iterations of the design, achieving a gradually in-
creasing testing accuracy,shown on figure 33, culminating in a
test accuracy of 69,94% with a standard deviation of 2,14 per-
centage points. The improvements from the baseline accuracy
of 60,46% were achieved trough the use of Dropout, Leaky-
ReLU activation functions and a Stochastic Gradient Descent

(SGD) optimizer. The final trained model is relatively lightweight
being able to classify a 129x172 spectrogram in 0,0025s, i.e.
1/10th of the time that the image represents while running on
a regular Nvidia GTX 960M laptop GPU 5. This makes it fea-
sible to envision it in the end application being used on eg. an
industrial computer.

60,46%
64,66%

63,27%

63,90% 67,46%

69,94%
70,17%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
vg

 t
es

t
ac

cu
ra

cy

04-arch

04-arch-0.6-dropout

04-drp-leaky0.3

04-drp-leaky0.1

04-drp-leaky0.3(SGD)

04-arch (2x all)

04-arch (v35)

Figure 33: Testing accuracy of the various iterations of 04-arch.
04-arch (2x all) and 04-arch (v35) refer to the tests described in
Section 6

7.1. Discussion and recommendations for future work

While the final accuracy of the model is not sufficient for
applying it to online weld monitoring we are still firmly con-
vinced that, once properly implemented, CNNs can be used as
a powerful tool for the application.

7.1.1. Recommendations for further experiments
Firstly, some of the poor performance of the CNN can be

traced back to the dataset itself. As discussed in Section 2.3
the varying welding parameters may be an additional source of
noise in the used dataset. For future work it could therefore be
recommended that all welds are performed with a constant set
of process parameters and the different penetration states are
provoked by varying the workpiece (e.g. the root gap) or torch
position, as it more likely would occur in an industrial process.
(It could also be considered to use aluminium as material, as
it is much more difficult to weld, making it easier to provoke
different process faults.) Furthermore, based on the literature
study in Section 1 there seems to be a significant difference in
the abundance of information contained in the sound in AC and
DC welding. Unless the DC welding is of particular interest,
implementing CNN’s for weld monitoring should be much eas-
ier for AC. It has also been speculated by the authors, whether
placing a second microphone on the underside of the weld bead
may be useful for detecting lack of penetration.

7.1.2. Considerations for further hyperparameter tuning
Besides the faults of the dataset, the CNN could also be

improved by further tuning of hyperparameters. As discussed
in section 5, provided the computational resources, the model
lends itself to automated hyperparameter optimization, which

5- Note that the computational time required to create the spectrogram is not
considered.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 19

would be able to adjust all the discussed hyperparameters (in-
cluding the 4 base architectures) simultaneously.

In Section 5.3.2 the use of Batch normalization was dis-
cussed, and its poor performance when applied to the network.
In retrospective BN assumes that the samples within each batch
are independent and identically distributed. In theory no such
guarantee is given for the spectrograms and an analysis whether
this is indeed the case may shed some light on why this other-
wise popular regularization method failed so badly.

Throughout the tests in Section 5, the various versions of
the CNN has always scored lower validation and testing accu-
racies on the c2 class, eg. illustrated on figure 31 . This leads to
believe that the c2 examples are more difficult to classify than
the remaining classes. The Focal loss (FL) function developed
by (Lin et al., 2017) addresses just that.

The normal Cross entropy (CE) loss function, assigns a low
loss value to well-predicted examples and then a progressively
higher loss to less well-predicted. By adding a modifier term,
(1 − pt)γ the Focal loss is able to reduce the loss for the ”easy
to guess ” examples, as shown on Figure 34. This means that
with eg. at a pt of 0,9 and a γ = 2, the a sample would get a
100x lower loss of 0,001 compared to 0,1 loss with CE. (In the
meantime an incorrectly classified sample of pt = 0.45 would
only have a loss reduction of about 3,3x)
This choice of loss function accelerates learning in scenarios
where the dataset contains highly imbalanced classes, as the FL
function down-weights the relative impact across of the well-
learned examples (∼ 0, 6 < pt < 1).

Figure 34: Focal loss as a function of γ. (Lin et al., 2017) At
γ = 0 Focal loss becomes CE-loss (blue line). The figure is
for a binary classification, i.e. a pt > 0, 5 means the class is
predicted correctly.

The FL function can further be modified with an class weight-
ing factor αt so that the loss function becomes:

− αt · (1 − pt)γ · log(pt) (8)

αt can then be defined for arbitrarily for additionally weighing
certain classes. (in case of unbalanced datasets, it could e.g. be
set to the inverse class frequency.)

One last question which remains unanswered is how the
ANN used by Bidstrup (2017), which operated on the exact

same dataset was capable of achieving 80% testing accuracy on
a similar time step of 0,25 and 0% overlap, like test procedure
used by the authors. A part of the answer may lie within the fact
that the spectrogram images used by the CNN operate only on
frequency-domain data, while Bidstrups input to the ANN in-
cluded temporal and features, which simply do not exist in the
spectrogram. A look at the litterature review in Table 1 reveals
that some temporal features (eg. signal kurtosis) recur in many
of the publications, implying that they may great predictors of
penetration state.

Furthermore the total number of features extracted by the
various authors is fairly limited, ranging from 10-20. This means
that some of those temporal features could in theory be ex-
tracted from the sound alongside the spectrogram and added
to it as a few additional rows of pixels. While this defeats the
main purpose of using spectrograms in the first place (avoiding
feature engineering,) it could be interesting to see if this best-
of-both-worlds approach could yield better results at a slightly
higher computational cost.

Acknowledgements

The authors of this paper would like to thank Anders Bid-
strup and prof. Simon Bøgh for their invaluable help during the
process of creating this thesis.

References

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for
hyper-parameter optimization. En: Proceedings of the 24th International
Conference on Neural Information Processing Systems. NIPS’11. Curran
Associates Inc., Red Hook, NY, USA, p. 2546–2554.
URL: http://papers.nips.cc/paper/4443-algorithms-for-

hyper-parameter-optimization.pdf

Bergstra, J., Bengio, Y., Feb. 2012. Random search for hyper-parameter opti-
mization. The Journal of Machine Learning Research 13 (1), 281–305.

Bergstra, J., Yamins, D., Cox, D. D., 2013. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures. En: Proceedings of the 30th International Conference on Interna-
tional Conference on Machine Learning - Volume 28. ICML’13. JMLR.org,
p. I–115–I–123.

Bidstrup, A., 2017. Acoustic sensing for metal transfer mode and penetration
state classification of gmaw using artificial neural networks. Master’s thesis,
Aalborg University.

Cary, H. B., 2004. Modern welding technology., 6th Edición. Prentice hall,
Upper Saddle River, N.J.

Chollet, F., et al., 2015. Keras. https://keras.io.
David Cox, N. P., 2011. Beyond simple features: A large-scale feature search

approach to unconstrained face recognition. En: Face and Gesture 2011. pp.
8–15.

Dong, X., Wen, G., Ren, W., Luan, R., Yang, Z., Zhang, Z., 2017. Frequency
selection for on-line identification of welding penetration through audible
sound*. En: 2017 IEEE 7th Annual International Conference on CYBER
Technology in Automation, Control, and Intelligent Systems (CYBER). pp.
326–331.
DOI: 10.1109/CYBER.2017.8446299

Fayek, H., 2016. Speech processing for machine learning: Filter banks,
mel-frequency cepstral coefficients (mfccs) and what’s in-between.
URL: haythamfayek.com/2016/04/21/speech-processing-for-

machine-learning.html

Gabor, D., May 1947. Acoustical quanta and the theory of hearing. Nature
159 (4044), 591–594.
DOI: 10.1038/159591a0

http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://keras.io
haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 20

Garg, I., Panda, P., Roy, K., 2020. A low effort approach to structured cnn
design using pca. IEEE Access 8, 1347–1360.

Guu, A. C., Rokhlin, S. I., 1990. Weld penetration control with radiographic
feedback. Review of Progress in Quantitative Nondestructive Evaluation 9,
1973–1980.

Géron, A., 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow, 2nd Edición. O’Reilly Media.

Han, Y., Kim, J., Lee, K., May 2016. Deep convolutional neural networks for
predominant instrument recognition in polyphonic music. arXiv e-prints,
arXiv:1605.09507.

He, K., Zhang, X., Ren, S., Sun, J., Dec. 2015. Deep Residual Learning for
Image Recognition. arXiv e-prints, arXiv:1512.03385.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R. R., Jul. 2012. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv e-prints, arXiv:1207.0580.

Horvat, J., Prezelj, J., Polajnar, I., Čudina, M., 2011. Monitoring gas metal arc
welding process by using audible sound signal. Strojniški vestnik - Journal
of Mechanical Engineering 57 (3), 267–278.
DOI: 10.5545/sv-jme.2010.181

Ian Dewancker, Michael McCourt, S. C., 2015. Bayesian optimization primer.
Tech. rep., SigOpt.
URL: https://app.sigopt.com/static/pdf/SigOpt_Bayesian_

Optimization_Primer.pdf

Ioffe, S., Szegedy, C., Feb. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv e-prints,
arXiv:1502.03167.

Jolly, W., 1969. The use of acoustic emission as a weld quality monitor. Tech.
Rep. BNWL-SA-2727, Battelle Memorial Institute Pacific Northwest Labo-
ratory.

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 12 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, 2278 – 2324.
DOI: 10.1109/5.726791

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., Aug. 2017. Focal Loss for
Dense Object Detection. arXiv e-prints, arXiv:1708.02002.

Liu, X., Wu, C., Jia, C., Zhang, G., 2017. Visual sensing of the weld pool
geometry from the topside view in keyhole plasma arc welding. Journal of
Manufacturing Processes 26, 74 – 83.
DOI: https://doi.org/10.1016/j.jmapro.2017.01.011

Lv, N., Xu, Y. L., Fang, G., Yu, X. W., Chen, S. B., 2016. Research on welding
penetration state recognition based on bp-adaboost model for pulse gtaw
welding dynamic process. En: 2016 IEEE Workshop on Advanced Robotics
and its Social Impacts (ARSO). pp. 100–105.

Lv, N., Zhong, J., Chen, H., Lin, T., Chen, S., 2014. Real-time control of weld-
ing penetration during robotic gtaw dynamical process by audio sensing of
arc length. The International Journal of Advanced Manufacturing Technol-
ogy 74 (1), 235–249.
DOI: 10.1007/s00170-014-5875-7

M. Cudina, J. Prezelj, I. P., 2008. Use of audible sound for on-line monitoring
of gas metal arc welding process. Metalurgija 47, 81–85.

M CÏudina, J. P., 2003. Evaluation of the sound signal based on the welding
current in the gas–metal arc welding process. Proceedings of the Institution
of Mechanical Engineers ,Part C: J. Mechanical Engineering Science 217,
483–494.

Maas, A. L., 2013. Rectifier nonlinearities improve neural network acoustic
models.

Maiza, 2019. The unknown benefits of using a soft-f1 loss in classification
systems.
URL: https://towardsdatascience.com/the-unknown-

benefits-of-using-a-soft-f1-loss-in-classification-

systems-753902c0105d

Michel Misiti, Y. M., 1996. Wavelet Toolbox User’s Guide. MathWorks, 24
Prime Park Way, Natick, MA 01760-1500, 1st Edición.

Montavon, G., Orr, G. B., Müller, K.-R., 2012. Neural Networks: Tricks of the
Trade, 2nd Edición. Springer, Berlin, Heidelberg.

Montgomery, D. C., 2009. Introduction to Statistical Quality Control, 6th
Edición. John Wiley & Sons.

Pal, K., Bhattacharya, S., Pal, S. K., 2009. Prediction of metal deposition from
arc sound and weld temperature signatures in pulsed mig welding. The In-
ternational Journal of Advanced Manufacturing Technology 45 (11), 1113.
DOI: 10.1007/s00170-009-2052-5

Pal, K. P. . S. K., 2011. Monitoring of weld penetration using arc acoustics.

Materials and Manufacturing Processes 26:5, 684–693.
Ramesh, S., 2018. A guide to an efficient way to build neural network

architectures- part i: Hyper-parameter selection and tuning for dense
networks using hyperas on fashion-mnist.
URL: https://towardsdatascience.com/estimating-optimal-

learning-rate-for-a-deep-neural-network-ce32f2556ce0

Ren, W., Wen, G., Liu, S., Yang, Z., Xu, B., Zhang, Z., 2018. Seam pene-
tration recognition for gtaw using convolutional neural network based on
time-frequency image of arc sound. En: 2018 IEEE 23rd International Con-
ference on Emerging Technologies and Factory Automation (ETFA). Vol. 1.
pp. 853–860.
DOI: 10.1109/ETFA.2018.8502478

Rostek, W., 1990. Investigation on the connection between the welding process
and airborne noise emission in gas-shielded metal-arc welding. Schweissen
Schneiden 6.

Saad, E., Wang, H., Kovacevic, R., 2006. Classification of molten pool modes
in variable polarity plasma arc welding based on acoustic signature. Journal
of Materials Processing Technology 174 (1), 127 – 136.
DOI: https://doi.org/10.1016/j.jmatprotec.2005.03.020

Saini, D., Floyd, S., April 1998. An investigation of gas metal arc welding
sound signature for on-line quality control. Welding Research Supplement,
172–179.

Simonyan, K., Zisserman, A., Sep. 2014. Very Deep Convolutional Networks
for Large-Scale Image Recognition. arXiv e-prints, arXiv:1409.1556.

Sipei Zhao, Xiaojun Qiu, I. B. M. R., Lele, A., 2018. Gmaw metal transfer
mode identification from welding sound. En: Hear to Listen - Proceedings
of ACOUSTICS 2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
2014. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research 15 (56), 1929–1958.
URL: http://jmlr.org/papers/v15/srivastava14a.html

Surmenok, P., 2017. Estimating an optimal learning rate for a deep neural
network.
URL: https://towardsdatascience.com/estimating-optimal-

learning-rate-for-a-deep-neural-network-ce32f2556ce0

Tarn, J., Huissoon, J., 01 2005. Developing psycho-acoustic experiments in gas
metal arc welding. Vol. 2. pp. 1112 – 1117 Vol. 2.
DOI: 10.1109/ICMA.2005.1626707

Tom Backstrom, Aalto University Wiki, 2019. Pre-emphasis.
URL: https://wiki.aalto.fi/display/ITSP/Pre-emphasis

Wang, J. F., Yu, H. D., Qian, Y. Z., Yang, R. Z., Chen, S. B., 2011. Feature
extraction in welding penetration monitoring with arc sound signals. Pro-
ceedings of the Institution of Mechanical Engineers, Part B: Journal of En-
gineering Manufacture 225 (9), 1683–1691.
DOI: 10.1177/0954405411405108

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., Recht, B., May 2017. The
Marginal Value of Adaptive Gradient Methods in Machine Learning. arXiv
e-prints, arXiv:1705.08292.

Wu, D., Huang, Y., Chen, H., He, Y., Chen, S., 2017. Vppaw penetration mon-
itoring based on fusion of visual and acoustic signals using t-sne and dbn
model. Materials & Design 123, 1 – 14.
DOI: https://doi.org/10.1016/j.matdes.2017.03.033

Xu, B., Wang, N., Chen, T., Li, M., May 2015. Empirical Evalua-
tion of Rectified Activations in Convolutional Network. arXiv e-prints,
arXiv:1505.00853.

You, D., Gao, X., Katayama, S., 05 2014. Multisensor fusion system for mon-
itoring high-power disk laser welding using support vector machine. Indus-
trial Informatics, IEEE Transactions on 10, 1285–1295.
DOI: 10.1109/TII.2014.2309482

Zhang, Z., Chen, S., 10 2014. Real-time seam penetration identification in arc
welding based on fusion of sound, voltage and spectrum signals. Journal of
Intelligent Manufacturing 28, 1–12.
DOI: 10.1007/s10845-014-0971-y

Zhang, Z., Wen, G., Chen, S., 2019. Weld image deep learning-based on-line
defects detection using convolutional neural networks for al alloy in robotic
arc welding. Journal of Manufacturing Processes 45, 208 – 216.
DOI: https://doi.org/10.1016/j.jmapro.2019.06.023

Zhang, Z., Yu, H., Lv, N., Chen, S., 2013. Real-time defect detection in pulsed
gtaw of al alloys through on-line spectroscopy. Journal of Materials Process-
ing Technology 213 (7), 1146 – 1156.
DOI: https://doi.org/10.1016/j.jmatprotec.2013.01.012

https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0
https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0
http://jmlr.org/papers/v15/srivastava14a.html
https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0
https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0
https://wiki.aalto.fi/display/ITSP/Pre-emphasis

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 21

Appendix A. Overview of sound features extracted

Feature name: Symbol: Matlab reference:

Figure A.35: The complete set of features extracted from each window of sound (Bidstrup, 2017) (modified)

In the original thesis by by Bidstrup, a set of a total 50 fea-
tures were extracted from each time window, summarized in
Figure A.35. (See (Bidstrup, 2017) p. 65-66). Furthermore
the signal was decomposed using a Wavelet Packet Decompo-
sition (WPD) tree, like the one illustrated on Figure A.36. At
each node of the tree, the signal is split into two branches, each
filtered trough a low-pass and high-pass filter respectively, as
shown on figure A.37. In order to reduce the amount of data ac-
cumulating at each division, the filtered signals are then down-
sampled by a factor of 2. the remaining datapoints are then
called the approximation coefficients for the low-pass filtered
data and detail coefficients for the high pass filtered (Michel Mis-
iti, 1996). In Bidstrups thesis decomposition tree of depth 5 is
used. As the wavelet coefficients are also a data series, their
properties can also be described trough descriptive statistics.
Therefore the 18 temporal features listed in Figure A.35 are
also extracted at each of the tree nodes. This leads to a total of
1166 features being extracted for each analyzed time window:

N f eat = nwpd · ftemp + fss + fh + fprc

N f eat = (2 · 25 − 1) · 18 + 9 + 3 + 20
= 1166

Where N f eat is the total number of features, nwpd is the num-
ber of nodes on the WPD tree, and ftemp, fss , fh and fprc the
number of temporal, spectral shape, harmonic and perceptual
features listed in Figure A.35 respectively.

Figure A.36: A wavelet packet decomposition tree of depth 3.
(Michel Misiti, 1996)

Figure A.37: A source signal S, being decomposed into a high-
frequency set of detail coefficents cD and low-frequency ap-
proximation coefficents cA by the wavelet packet decomposi-
tion. This process is recursively repeated at every node of the
WPD tree. (Michel Misiti, 1996)

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 22

Appendix B. Additional figures from PCA analysis of dataset

-40 -20 0 20 40 60 80 100

1st Principal Component

-40

-30

-20

-10

0

10

20

30

40

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

XY-view

-40 -20 0 20 40 60 80 100

1st Principal Component

-40

-30

-20

-10

0

10

20

30

3
rd

 P
ri
n

c
ip

a
l
C

o
m

p
o
n
e

n
t

XZ-view

-40

40 100

-20

20 50

PCA on each 1s, all files

3
rd

 P
ri
n

c
ip

a
l
C

o
m

p
o

n
e

n
t

0

1st Principal Component2nd Principal Component

0
0

20

-20

-40 -50

c1 lack

c2 full

c3 excessive

xz-view

xy-view

yz-view

-40-30-20-10010203040

2nd Principal Component

-40

-30

-20

-10

0

10

20

30

3
rd

 P
ri
n

c
ip

a
l
C

o
m

p
o

n
e

n
t

YZ-view

Figure B.38: 3D plot of the 3 first Principal components of the 1166 sound features extracted for each second of sound in the
dataset. The first three components explain 45% of features variance.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 23

-40 -20 0 20 40 60

1st Principal Component

-30

-20

-10

0

10

20

30

40

50

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

PCA of each 1s with 3.5V

c1_sound_2.0__3.5_5.0_1.csv

c1_sound_2.0__3.5_6.0_1.csv

c1_sound_2.0__3.5_6.0_2.csv

c1_sound_2.0__3.5_6.5_1.csv

c1_sound_2.0__3.5_7.0_2.csv

c1_sound_2.0__3.5_7.0_4.csv

c1_sound_2.0__3.5_7.0_8.csv

Figure B.39: Principal Components for the sound features of
each second of data in the v35 set, c1 files highlighted and
grouped by filename. The file c1 sound 2.0 3.5 5.0 1.csv is
treated as an outlier and excluded from the v35 set.

-40 -20 0 20 40 60

1st Principal Component

-30

-20

-10

0

10

20

30

40

50

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

PCA of each 1s with 3.5V

c2_sound_2.0__3.5_5.0_2.csv

c2_sound_2.0__3.5_5.0_3.csv

c2_sound_2.0__3.5_5.0_4.csv

c2_sound_2.0__3.5_6.0_4.csv

c2_sound_2.0__3.5_6.5_1.csv

c2_sound_2.0__3.5_7.0_2.csv

Figure B.40: Principal Components for the sound features of
each second of data in the v35 set, c2 files highlighted and
grouped by filename.

-20 0 20 40 60 80

1st Principal Component

-30

-20

-10

0

10

20

30

40

2
n

d
 P

ri
n

c
ip

a
l
C

o
m

p
o

n
e

n
t

PCA of each 1s, -3.5V, c3

c3_sound_2.0__3.5_6.0_1.csv

c3_sound_2.0__3.5_6.0_2.csv

c3_sound_2.0__3.5_6.0_3.csv

c3_sound_2.0__3.5_6.0_4.csv

c3_sound_2.0__3.5_6.5_1.csv

c3_sound_2.0__3.5_7.0_1.csv

c3_sound_2.0__3.5_7.0_10.csv

c3_sound_2.0__3.5_7.0_2.csv

c3_sound_2.0__3.5_7.0_3.csv

c3_sound_2.0__3.5_7.0_4.csv

c3_sound_2.0__3.5_7.0_5.csv

c3_sound_2.0__3.5_7.0_6.csv

c3_sound_2.0__3.5_7.0_7.csv

c3_sound_2.0__3.5_7.0_8.csv

c3_sound_2.0__3.5_7.0_9.csv

Figure B.41: Principal Components for the sound features of
each second of data in the v35 set, c3 files highlighted and
grouped by filename.

M.K. Kolek, S. Zelazny / 00 (2020) 1–24 24

Appendix C. Baseline architecture candidates

01 Arch

Layer Type size
(h,w,maps) filter stride

(v,h)
trainable
params

In Image 129x173x8 - - -
C1 Conv 65x173x8 3x3 2,1 80
P2 MaxP 32x86x8 2x2 2,2 -
C3 Conv 16x86x16 3x3 2,1 1.168
P4 MaxP 8x43x16 2x2 2,2 -

FL5 Flatten 1x5504x1 - - -
D6 Dense 1x96x1 - - 528.480
Out Dense 1x3x1 - - 291

sum: 530.019

Table C.9

02 Arch

Layer Type size
(h,w,maps) filter stride

(v,h)
trainable

params
In Image 129x173x1 - - -
C1 Conv 129x173x2 3x3 1,1 80
P2 MaxP 64x86x8 2x2 2,2 -
C3 Conv 62x84x16 3x3 1,1 1.168
P4 MaxP 31x42x16 2x2 2,2 -

FL5 Flatten 1x20832x1 - - -
D6 Dense 1x120x1 - - 2.499.960
D7 Dense 1x84x1 - - 10.164
Out Dense 1x3x1 - - 255

sum: 2.511.627

Table C.10

03 Arch

Layer Type size
(h,w,maps) filter stride

(v,h)
trainable

params
In Image 129x173x1 - - -
C1 Conv 127x171x32 3x3 1,1 320
P2 MaxP 63x85x32 2x2 2,2 -
C3 Conv 61x83x64 3x3 1,1 18.496
P4 MaxP 30x41x64 2x2 2,2 -
C5 Conv 28x39x128 3x3 - 73.856
P6 MaxP 14x19x128 2x2 - -

FL7 Flatten 1x34048x1 - - -
D8 Dense 1x64x1 - - 2.179.136
Out Dense 1x3x1 - - 195

sum: 2.272.003

Table C.11

04 Arch

Layer Type size
(h,w,maps) filter stride

(v,h)
trainable

params
In Image 129x173x1 - - -
C1 Conv 129x173x8 3x3 1,1 80
C2 Conv 129x173x8 2x2 1,1 584
P3 MaxP 64x86x8 3x3 2,2 -
C4 Conv 62x84x16 2x2 1,1 1.168
C5 Conv 60x82x16 3x3 1,1 2.320
P6 MaxP 30x41x16 2x2 2,2 -

FL7 Flatten 19680 - - -
D8 Dense 1x512x1 - - 10.076.672
Out Dense 1x3x1 - - 1.539

sum: 10.082.363

Table C.12

